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The increased demand for superior materials has highlighted the need of investigating the mechanical
properties of composites to achieve enhanced constitutive relationships. Fiber-reinforced polymer
composites have emerged as an integral part of materials development with tailored mechanical
properties. However, the complexity and heterogeneity of such composites make it considerably more
challenging to have precise quantification of properties and attain an optimal design of structures
through experimental and computational approaches. In order to avoid the complex, cumbersome, and
labor-intensive experimental and numerical modeling approaches, a machine learning (ML) model is
proposed here such that it takes the microstructural image as input with a different range of Young's
modulus of carbon fibers and neat epoxy, and obtains output as visualization of the stress component S11
(principal stress in the x-direction). For obtaining the training data of the ML model, a short carbon fiber-
filled specimen under quasi-static tension is modeled based on 2D Representative Area Element (RAE)
using finite element analysis. The composite is inclusive of short carbon fibers with an aspect ratio of 7.5
that are infilled in the epoxy systems at various random orientations and positions generated using the
Simple Sequential Inhibition (SSI) process. The study reveals that the pix2pix deep learning Convolu-
tional Neural Network (CNN) model is robust enough to predict the stress fields in the composite for a
given arrangement of short fibers filled in epoxy over the specified range of Young's modulus with high
accuracy. The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a
majority of the samples in the design spectrum, indicating excellent prediction capability. In this paper,
we have focused on the stage-wise chronological development of the CNN model with optimized per-
formance for predicting the full-field stress maps of the fiber-reinforced composite specimens. The
development of such a robust and efficient algorithm would significantly reduce the amount of time and
cost required to study and design new composite materials through the elimination of numerical inputs
by direct microstructural images.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

The combination of two or more materials of different me-
chanical properties synthesizes a composite [1], which is gaining
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increasing application for manufacturing devices and structures of
superior mechanical properties [2,3]. In various mechanical, aero-
space, and civil engineering structures, the binder (matrix) can
commonly be a thermoplast, elastomer, or thermosetting, which is
mixed with reinforcement/fillers [4]. Due to the availability of
enormous possible material and geometrical combinations, it be-
comes extremely challenging for researchers to search for the
optimal configurations in composite design. The increasing de-
mand for composites in the industries has led researchers to look
into the details of mechanical properties and multi-functionalities
of the fabricated materials [3,5e12]. Analyzing the behavior of
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such new materials can be challenging for their time-taking and
expensive fabrication and testing processes. Physics based numer-
ical modeling approaches such as finite element method are also
quite cumbersome since each new configuration of the composite
requires a fresh modeling, meshing and analysis. However, the
assistance of focused computational solutions that learn the pro-
vided data and modify the configurations accordingly can help in
accommodating solutions to complex analytical problems [13].
Artificial Intelligence (AI) has been already used in past for opti-
mizing the composite designs based on the calculations of Finite
Element Method (FEM) for different loading conditions and various
forms of static and dynamic analyses [14e16]. The focus of such
studies is mostly limited to predictions based on an input-output
numerical dataset, wherein it is difficult to capture the intricate
microstructural details of composite materials. We aim to develop
an image-based predictive algorithm for composites in the study
that directly connects to material microstructure and predicts the
physical fields (such as stresses).

Machine learning (ML) which is a subset of AI enables one to
search for an optimized solution to the problem statement and
verify the expected results [17]. Over the past few years, Deep
Learning Neural Network (DLNN) based AI algorithms are being
applied to an increasing number of areas which include geotech-
nical engineering [18,19], material sciences [20,21], and structural
health monitoring [22e24] where neural networks make use of the
training and testing data to find and interpret results closer to the
ground truth [25]. It is evident that for a number of engineering
problems, the usage of intelligent programs has provided extensive
breakthroughs in science [26e29]. Likewise, Convolutional Neural
Network (CNN) is another class of DLNN that is used in 2D data
image classification tasks. It provides a more scalable approach to
object recognition and image classification by taking advantage of
matrix multiplication in further identifying the patterns within an
image [30,31]. DL employs a neural network that passes data
through various processing layers of the conditional Generative
Adversarial Network (cGAN) based paired image to image (pix2pix)
translation algorithm to obtain output closer to the ground truth
[22,33]. The DL model briskly and efficiently collects the data sets
and translates them into useable data. The cGAN model presents
the probability distribution in data by adding specific conditions
[32]. GAN embodies generative models that focus on generating
real images similar to the target data by ascertaining the underlying
data distribution. The distribution in the data is discovered by two
adversarial competitors namely; generator and discriminator.
However, the disparity between GAN and cGAN is that uncondi-
tioned GAN is uncontrollable during any type of data generation
whereas the cGAN model by providing the additional information
has control and manages the data generation process. Thereby
cGAN gives finer results over the GANs. The current study aims to
use cGANwith CNN classifier to amplify accuracy in results through
data augmentation. AI can be considered as one form of simulation
research method used for prediction; it can typically be a replace-
ment for experimentation and engagement in a costly, risky, or
inconvenient actual system [34]. Thereby, the simulation environ-
ment makes it easy, safe, and quick for the researchers to make
verdicts that resemble the results made in reality. Collectively, the
deep learning CNN approach can save us from lengthy experi-
mental and computational exercises for exploring the complete
design space of composites which consists of an intractable number
of combinations of materials and microstructural arrangements.

We provide a concise literature survey in this paragraph con-
cerning DL-based prediction of material responses. In a recent
study, the DL model has predicted complex stress and strain fields
in hierarchical composites [35]. The material properties of the
composite are kept the same between samples and only the
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arrangement of the composite is changed through a random ge-
ometry generator. The authors have divided the composite into
square grids and randomly assigned one of the two materials. It is
asserted that along with the mechanical properties like stiffness,
local features such as stress concentration around the cracks can be
obtained from the DL model. Likewise, the stress GAN model is
proposed for predicting stress distribution in solid structures [36].
In the present paper, the material with randomly distributed rect-
angular carbon fibers mixed in neat epoxy would be considered,
wherein the aim is to develop the training data generation such
that it gives the lowest mean square error that is implemented as
the loss function in the generator, and thus obtains a good corre-
lation factor for the generated image.

Characterization of the stress fields under different micro-
structural configurations (including filler shape, filler volume
fraction, aspect ratio, and material properties) is of utmost impor-
tance for mechanical applications of composites in order to avoid
failure under static and dynamic loadings [37e42]. In order tomake
the process convenient, theMLmodel can be built such that it takes
the input of an image corresponding to the material microstructure
and provides output as a visualization of the principal stress com-
ponents over the entire domain. For demonstration, here wewould
focus on the study of principal stress component S11 (x-direction) in
the composite within the elastic range. Sobol sequence [43] would
be adopted for generating quasi-random training data concerning
the elastic properties of the constituents. The deep learning model
formed thereafter would be able to predict the stresses for a variety
of ranges of elastic modulus of short carbon fibers and epoxy in the
composite with high accuracy. In this study, ML would be imple-
mented to the composite system tested against tensile loading with
an aim to further demonstrate the capacity of pix2pix algorithm
extension of cGAN Convolutional Neural Network (CNN) to accu-
rately and efficiently predict the major stresses. Such an image-
based ML model would reduce the series of lengthy experimental
tests or computationally intensive finite element analyses that are
normally needed for micromechanics-based studies [44,45].
Further, the ML algorithm model can run on a low-end machine
and efficiently provides an output in less time and at a much lower
computational cost. In this paper, wewould focus on the stage-wise
chronological development of the CNN model with optimized
performance for predicting the full-field stress maps of the fiber-
reinforced composite specimens. The research is aimed toward
optimizing the convolutional neural network for facilitating the
innovation of new materials while reducing the computational
intensiveness by coupling deep learning with finite element anal-
ysis (refer to Fig. 1). Hereafter the paper is arranged into four
different sections that consist of Section 2: Methodology; Section 3:
Results and Discussion; Section 4: Conclusions.

2. Methodology

This work couples the cGAN algorithm with a finite element-
based solver for short fiber composites with the aim of efficiently
predicting the stress field for different microstructural combina-
tions of the elastic properties of the constituents. The training data
generation under the conditional GAN deviates from the concept of
feeding a random noise vector to the generator, unlike GAN archi-
tecture [46]. The paired image-to-image translation uses a condi-
tional Generative Adversarial Network (cGAN) in its architecture
(i.e., converting one image to another) which refers to the case that
its output is conditioned on the input [33]. Although cGAN is a
subclass of GAN, contrarily it inputs additional labels to the
generator, bringing the model closer to supervised learning and
saving the model from feeding the random noise to the generator.
Therefore, rather than starting from random noise, the generator



Fig. 1. A brief overview of the coupled ML assisted image based computational analysis. Convolutional Neural Network is used for supervised learning. The CNNs capture different
features at various hierarchical levels by calculating convolutions and are pixel-based. The model depicts the predicted elastic behavior of carbon fibers in the composite (carbon
fibers and neat epoxy) using CNN. The representative area element is modeled using finite element analysis and the images corresponding to stress in x-direction S11 are obtained
for training and testing data. The size of each image is considered to be 512 � 512 pixels where the input image includes three varying parameters like Young's modulus of the two
constituent materials (each) and regular time steps (in the best performing model, the details of with are provided later in this paper). The output (prediction) received from the
conditional Generative Adversarial Network (cGAN) is found close to the ground truth.
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generates images from the given labels. The study uses the image as
an input label which is further used by the pix2pix algorithmwhere
the generator and discriminator give an output based on the
training and testing data. There are two adversarial networks in
GAN, namely, generator and discriminator [47]. Both the networks
are trained simultaneously, where the generator generates very
likely examples that are ideally indistinguishable from the real
examples in the dataset, and the discriminator model classifies the
given image as either real (existing images from the dataset) or fake
(generated). The formation of more identical images to real images
by the generator tends to increase the chance of the discriminator
getting fooled and output accurate results for predictions. In
accordance with the game theory, GAN model optimizes at the
point when two competing neural networks reach a Nash equi-
librium, where one of the components becomes stable [48]. The
application of ML to composite design can be a promising tool for
material innovation as the model built in the study takes about 10 s
to generate and download 50 images. The robustness of the model
built is systematically discussed here, and the overall mechanism
studied in this research can reduce the required time for the
composition of new materials fromweeks to just hours. Novelty of
the paper lies in obtaining the finest model that can provide the
users with higher accuracy results through optimizing the input
parameters and reducing the error closest to zero. In this section,
60
we provide comprehensive descriptions of the microstructural
configuration and modeling of composites, followed by the ma-
chine learning algorithm coupled therein.
2.1. Carbon-epoxy composite modeling

A dog bone-shaped carbon fiber-filled epoxy specimen is nor-
mally tested against static tension under displacement control
mode with a loading rate of around 2 mm per minute. The
modeling process of a 3D carbon fiber specimen is simplified here
using 2D models based on a representative area element (RAE) of
the composite [49]. The carbon fiber rods are approximated as
rectangular sections of size 60 � 8 mm2 in 2D. The RAE of
600 � 600 mm2 in size is accommodated with 38 random points
that are generated using MATLAB code; these random points are
obtained for a 5% area fraction (Af) of the RAE at a certain well-
distributed distance using Simple Sequential Inhibition (SSI) pro-
cess [50]. The points give a typical representation of the position of
carbon fibers with generated angles between �180� and 180�

corresponding to the 38 points on the RAE (refer to Fig. 2).
It is well understood that the effective mechanical properties of

materials illustrate the response of composite materials under the
action of externally applied loads. The effective strength of the
material depends on the constituent material types and their

mailto:Image of Fig. 1|tif


Fig. 2. Representation of fiber orientation in the epoxy matrix. (a) Actual image of carbon fibers; (b) Typical scanning Electron Microscope (SEM) image of fibers in epoxy; (c) Typical
representation of Representative Area Element (RAE) of Carbon-epoxy composites; (d) Abaqus model showing finite element representation of the microstructure; (e) Random
points generationwith a well-distributed distance between the pints for 5% Area ratio (Af) carbon fiber modified epoxy composite; (f) Typical representation of sample points for the
range of values of Young's Modulus in Carbon and Epoxy generated using Sobol sequence.
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microstructural configurations. Keeping that in view, the modulus
of short carbon fibers and neat epoxy are taken into consideration
for examining the stress-strain response. In order to model the
specimen, the RAE of carbon fibers filled neat epoxy composite is
drafted in AutoCAD and then imported to ABAQUS for further finite
element modeling. The model is restrained at the bottom in the y-
direction and the center node at bottom is constrained in the x-
direction. The upper part is displaced with velocity of 2 mm/min in
the y-direction which is similar to cross-head speed in the tension
tests. The element type for plane stress and plane strain are 4-
noded bilinear quadrilateral and reduced integration elements,
denoted as CPS4R and CPE4R respectively. Three different mesh
sizes are used for convergence of the study, which included coarse
mesh at the top, and finer at the bottom. Note that the RAE based
modeling can provide reasonably accurate results for effective
mechanical properties [49]. The initial elastic properties of neat
epoxy and carbon fibers are shown in Table 1.

2.2. Description of the ML model

The cGANmodel is used for predicting the stress fields in the 2D
model of composites. It involves two sub-models that incorporate
Table 1
Elastic properties of epoxy and carbon fibers.

Material Elastic modulus E/GPa Poisson's ration q

Neat Epoxy 4.0 0.3
Carbon Fibers 225 0.2

Fig. 3. Basic architecture of GAN and CGAN Models: (a) Generative Adversarial Network. T
generator basically is accountable for building new output, such as images, that possibly hav
fake data to be trained on the discriminator, it learns to generate rational data. The generated
to make the discriminator classify its output as real. The discriminator takes a fixed-len
Adversarial Network (cGAN). The cGAN’s are an extension of the GAN model. The conditiona
generator is given a label and random array as input that aims to solve the problem by telli
generator to create examples very similar to the real dataset.
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the Generator and the Discriminator. Here, the generator is used to
generate new plausible examples from the problem domain. On the
other hand, the discriminator is used to classify these examples as
either real or fake. As the generator minimizes its loss function, the
discriminator’s loss function tends to maximize. The discriminator
and generator act as adversaries to each other; thus, providing a
good correlation factor (closer to 1) and minimum L2 norm (mean
square error). The cGAN is a supervisedmodel which is a subclass of
the innovative unsupervised GAN model [51] dedicated to pre-
dicting the target distribution and generating data thatmatches the
target distribution without depending on any deducible assump-
tions [52,53]. In other words, the cGAN is a type of GAN that also
takes advantage of labels during the training process (refer to
Fig. 3).

The output from the algorithm is label-dependent where cGAN
model has two key components-a U-Net Generator and PatachGAN
Discriminator [54]. The U-Net architecture segments the objects
from images that are given as input to the generator. The archi-
tecture has two paths, first path is used to capture the context in the
image and is a contraction path, called the encoder. The encoder
takes the grayscale image and produces a latent representation of
it. On the other hand, the second path is symmetrically expanding
path that enables precise localization using transposed convolu-
tions. The decoder’s job is to produce an RGB image by enlarging
this produced latent representation. The generator has an encoder-
decoder structure with layers placed symmetrically. The Generator
tries to increase the error rate while the discriminator tries to reach
an optimal solution to identify fake images. The model is based on
he GAN architecture is comprised of both a generator and a discriminator model. The
e come from the original dataset. The generator present in the neural network creates
instances become negative training examples for the discriminator. The generator aims
gth random noisy input vector and generates a sample; (b) Conditional Generative
l generative adversarial network also takes the benefit of labels while training data. The
ng the generator to generate images of a particular class only, which further helps the

mailto:Image of Fig. 3|tif


S. Gupta, T. Mukhopadhyay and V. Kushvaha Defence Technology 24 (2023) 58e82
Game Theory and after some time, the generator and the discrim-
inator reach a Nash equilibrium which means one component
maintains its status regardless of the actions of the other compo-
nent [48]. The generator and the discriminator are the neural net-
works that run alternatively in the training phase. The path is
repeated a number of times, and the discriminator and generator
Fig. 4. Layers used in the Generator. There are two types of layers in the generator model tha
the transpose convolutional layer that performs an inverse convolution operation. In the G
Upsampling layer is simple and effective, it performs well when followed by the convolu
collectively upsamples input and learn to fill details during the model training process.
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both get finer with each repetition of steps in the layers. For the
number of steps considered in the algorithm, in one step, the
generator runs once and the discriminator runs twice. The gener-
ator takes the grayscale image and outputs an RGB image.

In paired image-to-image translation the sole purpose of the
discriminator abides in examining the real and fake examples. The
t consists of the upsampling layer that simply doubles the dimensions of the input and
AN architecture, upsample input data is used in order to generate an output image.
tional layer. The transpose convolutional layer is an inverse convolutional layer that

mailto:Image of Fig. 4|tif
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real sets of images are fed to discriminator from the original
dataset, while the fake data comes from the generator. The purpose
of the generator resides in producing images so realistic that
discriminator is convinced the images are real. Over the time
application of backpropagation to update biases and weights of the
models, the generator steadily learns to build the samples that
mimic both physical and mathematical distribution of the original
dataset. The similarities between the two images (ground truth and
prediction) are determined by calculating the L2 norm. For
instance, L2 norm between the two images I{1} and I{2} is defined
as
Fig. 5. Layers used in the Discriminator Model. The discriminator in a GAN is termed as a cla
for the discriminator comes from two sources - real data (original set of data) and fake data (
The discriminator uses the real data as positive examples during training whereas fake dat

64
L2¼
X
l;m;n

���If1glmn � If2glmn

���2 (1)

Here, subscripts l,m refer to one pixel in the images, and n ¼ 1, 2, 3
represents the three channels red, green, blue (RGB) of the image
colors. Furthermore, as the images generated from the generator
are able to convince the discriminator, a secured value is obtained
for the correlation factor. The correlation factor between the two
images is given as Ref. [48].
ssifier as it classifies both real data and fake data from the generator. The training data
created by the generator). It distinguishes real data from data created by the generator.
a is used as negative examples during the training.
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Correlation¼
P

l;m;nI
f1g
lmn � If2glmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l;m;nI
f1g2
lmn

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l;m;nI

f2g2
lmn

q (2)

As mentioned before, the correlation factor becomes better with
the decrease in loss function of the generator. With the increasing
degree of accuracy, the model can further be useful in fast predic-
tion of physical fields in the composites with geometric informa-
tion in image-based description.

2.3. Coupled machine learning assisted algorithm for composites

Purely data-driven mapping of input and output quantities of
interest through machine learning has widely been investigated in
the context of composite materials and structures [56e66]. In the
present study, we incorporate image-based learning [35,54] for
better performance in the microstructural characterization of
composite materials. The GAN framework incorporates generator
and discriminator where both are neural networks. Both these
neural networks with different architectures tend to produce
several types of GANs [55]. Here, cGAN uses CNNs as the generator
and discriminator where discriminator is a classifier that classifies
whether the image received is an original image or if it is generated
by the generator (refer to Fig. 4 and Fig. 5). The input data is fed in
the pix2pix GAN where it controls conversion of a given source
image to the original image. The image-to-image translation re-
Fig. 6. Deep learning-assisted optimization algorithm. The flowchart represents the steps
training and testing datasets of a 2D RAE of the tested sample from FEA code. The deep l
translation model which particularly is a more powerful and accurate way of solving classi

65
quires specialized models and loss functions for a given translation
of dataset. Accordingly, cGAN provides a condition on the input
image for generating the target image and implements it in pix2pix
GAN which further changes the loss function and uses a condition
on the input image in order to obtain generated data that resembles
the real data. In this work, we couple the machine learning model
with finite element simulations. The main aim of this study is to
capture the full field stress under varying mechanical properties of
the constituents for a given microstructural configuration in the
elastic regime. The data generates points using Abaqus by varying
Young's modulus of the carbon fibers and the epoxy within ±30% of
their nominal values, which are 2.8e5.2 GPa for neat epoxy and
157.5e292.5 GPa for carbon fibers. There are 256 values generated
for Young's modulus of both carbon and epoxy based on Sobol
sequence in thementioned ranges. Sobol sequences are given at the
base of 2 and are an example of quasi-random low-discrepancy
sequences that are used to generate well-distributed points in the
sample space. Note that the sample size of 256 is finalized here
based on a convergence criteria considering prediction accuracy.
Primarily, the simulations are run for all the 256 pairs for values of
Young's modulus using Abaqus scripting, and then odb files are
stored for the set of pairs. The images are then resized andmodified
for best performances using python script to generate training data
for the ML model (refer to Fig. 6). We have investigated different
schemes for the training data generation and subsequently testing
the accuracy. A detailed description of such stage-wise chrono-
followed for obtaining a suitable CNN-based deep learning model from the extracted
earning assisted cGAN is used for obtaining the accurate output from paired pix2pix
fication problems.
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logical developments is given in the following section. Among the
256 samples, we have divided them into training and testing
sample sets for ensuring prediction accuracies corresponding to
unseen samples, the details of which are provided in the following
section.
3. Results and discussion

The training process is a very crucial step in the implementation
of cGAN, wherein the generator and discriminator are optimized
such that the loss functions of both the generator and discriminator
Fig. 7. Typical representation of the pix2pix input images with contours turned off in ground
train and test sets (Model 1). (a) Representative black to white spectrum output images. The
The input image comprises two parts, where the left part represents Young's modulus of the
the ground truth and predicted images along with the obtained correlation factor and L2 nor
test data.
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are satisfied for creating minimum error and desired correlation of
value closer to 1. It is observed that for achieving a good correlation
in the ground truth and predicted results, the loss function of
discriminator has to perform two tasks, firstly, it has to accurately
label real images as ‘real’ coming from the training data and sec-
ondly, it must correctly label images as ‘fake’ for the generated
data coming from the generator. In this study, the RGB images are
converted to grayscale which acts as the input data for our model.
The pix2pix model requires input in the form of an image and the
size of the input image is chosen 512� 512 dimensions. This section
consists of training data generation through a number of models
truth and received predicted results along with the correlation factors and L2 Norm for
input image in the pix2pix model is in the form of an image of 512 � 512 dimensions.
epoxy and the right part represents Young's modulus of carbon. The model consists of

m; (b) The results of correlation and L2 norm are obtained for the given sets of train and
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(Model 1 to Model 8) and we have further verified the accuracy of
predicted results in the form of correlation and L2 norm of the
specified inputs. The output received for the predicted images is in
the form of RGB image. The whole work has revolved around the
tensor flow library that requires a Graphical Processing Unit (GPU)
for its ability to efficient, smooth, and optimized execution on the
computer system.

Model 1 is created for black to white spectrum output images,
where the image input is divided into two parts. The left part of the
input image represents Young's modulus of the epoxy and the right
part represents Young's modulus of the carbon. The values of
stresses are linearly scaled between 0 and 255 representing the
Fig. 8. Typical representation of the pix2pix input images with contours turned on along wi
train and test sets (Model 2). (a) Representative black to white spectrumwith contours turne
the output. It becomes feasible for the model to observe and learn the variations in the ima
the colors; (b) The results of correlation and L2 norm are obtained for the given sets of tra
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colour in greyscale. The first 256 samples of the Sobol sequence
generated for two variables are divided into a training set con-
sisting of 230 images and a testing set consisting of 26 images.
However, it is observed that the model is not able to capture the
variations in the stresses and is stuck in the local minimum. The
variations in the predicted image are very small which means that
the model has found an image that is optimum to predict for all the
cases (refer to Fig. 7).

In Model 2, similar images are passed as for the case in Model 1
with the only difference that the contours are turned on for
showing the variation of stresses more apparently in the output.
This could make it easier for the model to observe and learn the
th ground truth and predicted results including the correlation factors and L2 Norm for
d on. The contours are turned on in composite for more apparent variation of stresses in
ges as the shape of contours in the images are also changing along with the changes in
in and test data.
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variations in the image. Consequently, along with the changes
made in contours, the shape of contours in the images is also
changing. However, the observations in the predictions remain the
same like in the case of contours turned off. The model is found
stuck in the local minimum. Also, it predicts very similar images for
all the input images (refer to Fig. 8).

Model 3 has shifted from black to white spectrum and used the
rainbow spectrum in Abaqus. Each of the three parameters (red,
green, and blue) defines the intensity of the colour as an integer
between 0 and 255. Additionally, the higher dimension can repre-
sent the colors with higher accuracy. The observations made for the
model captured certain variations in the stress field but not with
perfect accuracy. Despite that, some samples have shown good
Fig. 9. Typical representation of the pix2pix input images with the rainbow spectrum includ
for train and test sets (Model 3). (a) Rainbow spectrum in Abaqus is obtained for the mode
dimensions. The colors are represented using RGB colour values; (b) The results of correlat
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results and the problem of predicting very similar images for all the
samples is avoided. Model 3 is found to give more improved results
over the last two models (refer to Fig. 9).

Model 4 follows the previous case with the only difference of
contours enabled just as in model 2. The model is designed such
that it is able to capture changes in images better since there are
shape changes in addition to colour changes. However, the model
has performed accurately in regions where there is a lot of variation
in contours. The changes in the stresses are captured accurately by
the model for some cases and there are improvements seen in this
case as well over the previous three models (refer to Fig. 10).

Model 5 incorporates time steps along with the earlier used
parameters which include varying Young's modulus of carbon and
ing ground truth and predicted results along with the correlation factors and L2 Norm
l, which means that the stress from the single pixel is represented with the help of 3
ion and L2 norm are obtained for the given sets of train and test data.
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Fig. 10. Typical representation of the pix2pix input images with the rainbow spectrum including ground truth and predicted results along with the correlation factors and L2 Norm
for train and test sets (Model 4). (a) Representative plots in rainbow spectrum with contours enabled. The current model is the same as Model 3 with the only difference being that
the contours are enabled. The model is such that it captures changes in images for additional shape changes along with the colour changes; (b) The results of correlation and L2
norm are obtained for the given sets of train and test data.
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epoxy in the composite. The stresses are varying in the material as
the time steps are varying in Abaqus. Time is captured by variable
frame number in Abaqus which is referred to as time step, wherein
the simulation includes time step from 0 to 102. All-time steps are
included in the training data and the input image is given with a
different colour strip for time steps. There are 6-time steps taken in
the range from 15 to 90 and are linearly scaled to the range 0e255,
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which act as the greyscale value, representing frames. The model is
prepared for 1350 training and 415 testing images using Young's
moduli created with Sobol sequences. In this context, it can be
noted that we are increasing the training samples here significantly,
while the number of finite element simulations still remains the
same. This is because of the fact that no additional finite element
simulations are required for capturing the images corresponding to
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Fig. 11. Typical representation of the pix2pix input images with additional time-step parameter including ground truth and predicted results along with the correlation factors and
L2 Norm for train and test sets (Model 5). (a) The additional parameter in the input image includes time. The model is prepared such that it has an additional parameter of varying
time steps along with the changing Young's modulus for carbon and epoxy in the composite. Time steps are captured by the frame number in Abaqus which is referred to as time
steps. The Timestep is represented in the input image in the same way Young's modulus variations are represented. The model consists of three columns in the input images,
representing, Young's modulus of epoxy, Young's modulus of carbon, and time step respectively. The contours in the model make it easier to distinguish between different images
but also introduce some noise to the model. (b) The results of correlation and L2 norm are obtained for the given sets of train and test data.
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different time steps. It is found that this model predicts the con-
tours accurately for almost all samples barring from a few initial
time steps with very low stresses. However, these contours also
create noise in the model. The predictions obtained suggest giving
the ground truth images to the pix2pixmodel with contours turned
off could obtain better results (refer to Fig. 11). We also note here
70
that it becomes difficult to distinguish between different stresses in
the full field images since the range of stress is very high. We try to
address these issues in the subsequent models.

Model 6 is created to train for three different spectrums of
stresses to address the issue of high stress variation in the entire
domain. The other modeling attributes are kept the same as that of
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Fig. 12. Typical representation of the pix2pix input images with either in black or grey based onwhether the values are higher or lower than the current spectrum, including ground
truth and predicted results along with the correlation factors and L2 Norm for train and test sets (Model 6). (a) It represents training for S11min to �1.03 � 10�5 spectrum, where S11
is the minimum stress observed in the composite. The image generated for the sample representing the spectrum consists of part of the composite not present in the spectrum. This
makes the stresses in the epoxy region become apparent and can be easily learnt by the model. (b) The figures represent the results of the correlation and L2 norm for input images
corresponding to S11min to �1.03 � 10�5.
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Model 4 here. The uniform green color in the epoxy shows a low
magnitude of stress as compared to the carbon fibers in Fig. 10.
Keeping that in view, the stresses are split into three equally spaced
ranges and the mean of the values form the boundary of these
ranges. These averages come out to be: 1.03� 10�5 and 8.83� 10�4.
So, all the results are split into three ranges: S11min
71
to �1.03 � 10�5, �1.03 � 10�5 to 8.83 � 10�4, and 8.83 � 10�4 to
S11max, where S11min is the minimum stress observed in composite
and S11max is the maximum stress in the composite. Three different
images are generated for each sample representing different
spectrums and the part of the composite that is excluded from the
stress range spectrum has painted either black or grey based on if
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Fig. 13. Typical representation of the pix2pix input images with either in black or grey based on whether the values of training lie in �1.03 � 10�5 and 8.83 � 10�4 spectrum,
including ground truth and predicted results along with the correlation factors and L2 Norm for train and test sets (Model 6). (a) The model corresponds to a different range of
stresses. It represents the same features as Model 6 in Fig. 10 and concerns training for �1.03 � 10�5 and 8.83 � 10�4 spectrum; (b) Representation of the Histogram of train and test
set showing L2 norm and correlation factor.
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the values are higher or lower than the current spectrum. Following
this model makes the stresses in the epoxy region more apparent
and the stress field can be learned by themodel more precisely. The
model is trained without considering the time steps. Figs. 11e13
show that Model 6 can predict the variation in stresses very well
for the spectrum -10�5 to 10�5, while the model gave conservative
72
results for the other two ranges. This model predicts similar images
for all samples as in the case of observation made in Model 1 and 2.
Another obstacle in using this approach is that some fibers lie in
one spectrum for some values of Young's modulus while in another
spectrum for some other values of Young's modulus. This has led
the model to predict carbon fiber in some instances evenwhen it is
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Fig. 14. Representation of Model 6 training for 8.83 � 10�4 to S11max spectrum where S11max is the maximum stress in the composite. (a) Stress contour in the specified range. The
black corresponds to the value of stress in the material below the minimum stresses. It means the black part does not lie in the chosen spectrum and is not the area of interest. (b)
The graphs represent the correlation and L2 norm of the considered train and test dataset.
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absent in the ground truth. Despite this, the model has also given
promising results, which motivated us to improve this model
further (refer to Figs. 12e14).

Model 7 takes a different approach to deal with the stress range,
wherein the input images are divided into two images for each
sample. The two output images for carbon and epoxy exhibit
different colour bars; hence representing different ranges of
stresses. Different models are trained for both the image sets. It is
73
found that the model predicts the stresses quite accurately for both
carbon and epoxy (refer to Fig. 15 and Fig. 16). However, the results
can be further improved if we split the output images into different
spectrums of stresses, specifically for the positive and negative
stress ranges considering the fiber and matrix separately.

Model 8 improves theModel 7 by incorporating different output
images based on positive and negative stress ranges. In addition to
training the different models for carbon and epoxy as in Model 7,
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Fig. 15. Representation of stress field prediction only in fibers (Model 7). (a) The model shows the results for stresses developed in the carbon fibers. The model accurately predicts
stresses in the carbon fibers for the given range of stresses. (b) The graphical representation gives an interpretation of the results of the L2 norm and correlation factor between the
ground truth and predicted images.
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the positive and negative ranges of the spectrum representing
stresses are separated in Model 8. In this case, a total of four models
are trained for each carbon and epoxy corresponding to the positive
and negative spectrum of stresses as shown in Table 2. Model 8, in
addition to the upper and lower limit of stresses, incorporates the
time steps variable as followed in Model 5. This is done based on
the clear understanding that incorporation of time step to increase
74
the training data improves the accuracy (as shown in Model 5). The
Model 8 consists of six-time steps at regular intervals of 15, 30, 45,
60, 75, and 90. The model can affirmatively predict the stresses
with a reasonable degree of accuracy, wherein it is observed to
obtain outputs very close to the ground truth (refer to Figs. 17e20).

A concise description of all the models according to their order
of development and level of accuracy is provided in Fig. 21. The
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Fig. 16. Representation of stresses developed in epoxy matrix for Model 7. (a) The model predicts the results for the stresses developed in epoxy, wherein a good prediction
capability can be noticed. (b) The graphical representation of the output in the form of L2 norm and correlation factor.

Table 2
Limits of stress in colour spectrum corresponding to neat epoxy and carbon fibers.

S. No. Material Limits of stress in colour spectrum

Lower limit Upper limit

1 Carbon S11min ¼ �3.880 � 10�4 0
2 Carbon 0 S11max ¼ 3.730 � 10�4

3 Epoxy S11min ¼ �1.921 � 10�4 0
4 Epoxy 0 S11min ¼ 1.843 � 10�4
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Fig. 17. Typical representation of the negative stress spectrum in carbon fibers (Model 8). (a) This model predicts results for the negative spectrum of carbon fibers. The models in
this case are separated for the negative and positive range of stresses for both the materials. There are four different models created under Model 8 for the lower limit and upper
limit of stresses for each case of the material. (b) The results are found to be in good agreement with negative stresses developed in the carbon fibers and the plots show high
correlation factor with low value of the L2 norm.
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purpose of the model validation here is to make the ML model
accurate enough for having adequate reliability. It concerns the
identification and elimination of errors in the learning of data. An
76
L2 Norm of less than 0.005 for most of the samples in the spectrums
is achieved in Model 8, which refers to the accuracy obtained in the
generated images from the generator. Thus the cGAN-based Model
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Fig. 18. Typical representation of the positive stress spectrum in carbon fibers (Model 8). (a) This model predicts results for the positive spectrum of carbon fibers. The models in
this case are separated for the negative and positive range of stresses for both the materials. There are four different models created under Model 8 for the lower limit and upper
limit of stresses for each case of the material. (b) The results are found to be in good agreement with positive stresses developed in the carbon fibers and the plots show high
correlation factor with low value of the L2 norm.
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8 predicts the principal stress in the x-direction (S11) with an
acceptable degree of accuracy. The cGAN-based model has
77
satisfactorily learned to predict the stress distribution for the given
geometry, the position of fibers, loading, and boundary conditions
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Fig. 19. Typical representation of the negative stress spectrum in epoxy (Model 8). (a) This model predicts results for the negative spectrum of epoxy matrix. The models in this case
are separated for the negative and positive range of stresses for both the materials. There are four different models created under Model 8 for the lower limit and upper limit of
stresses for each case of the material. (b) The results are found to be in good agreement with negative stresses developed in the epoxy matrix and the plots show high correlation
factor with low value of the L2 norm.
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through generator and discriminator. The discriminator is trained
in such a manner that it has given output probabilities closer to 1
for real images (from the dataset). Thereupon the generator is
78
trained to forge such realistic images that it makes the discrimi-
nator output probability closer to 1 even for forged images (images
from the generator). The effective learning of the cGAN-based DL
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Fig. 20. Typical representation of the positive stress spectrum in epoxy (Model 8). (a) This model predicts results for the positive spectrum of epoxy matrix. The models in this case
are separated for the negative and positive range of stresses for both the materials. There are four different models created under Model 8 for the lower limit and upper limit of
stresses for each case of the material. (b) The results are found to be in good agreement with positive stresses developed in the epoxy matrix and the plots show high correlation
factor with low value of the L2 norm.
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model is justified by the obtained results for stress distribution
closer to ground truth images in the case of both carbon fibers and
neat epoxy. It is observed that the problems encountered in the
other models, where the generated data is unable to trick the
discriminator and inefficient to create results as good as Model 8,
79
have been sorted in the final model. As a result, the stress distri-
bution in the predicted results is found to be very similar to ground
truth in comparison with the other input methods opted in the
previous models.
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Fig. 21. Chronological development and descriptions of the models. The figure shows the specific descriptions of the input and output images (Model 1 to Model 8) for training and
testing sets along with the respective figures representing the results (refer to Figs. 7e20).
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4. Conclusions

This paper proposes a deep learning model such that it takes the
microstructural image as input with a different range of Young's
modulus of carbon fibers and neat epoxy, and obtains output as
visualization of the stress component S11. For obtaining the training
data of the ML model, a short carbon fiber-filled specimen under
quasi-static tension is modeled based on 2D Representative Area
Element (RAE) using finite element analysis. The study reveals that
80
the pix2pix deep learning Convolutional Neural Network (CNN)
model is robust enough to predict the stresses in the composite for
a given arrangement of short fibers filled in epoxy over the speci-
fied range of Young's modulus with high accuracy. The CNN model
achieves a correlation score of about 0.999 and L2 norm of less than
0.005 with adequate accuracy in the design spectrum, indicating
excellent prediction capability. In this paper, we have focused on
the stage-wise chronological development of the CNN model with
optimized performance for predicting the full-field stress maps of
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the fiber-reinforced composite specimens. Among different pro-
spective models, which are explored in this study, Model 8 shows
the best prediction accuracy. In this model, we have divided the
stress field for fiber and matrix into their respective positive and
negative stress spectrums. We further show that along with the
respective Young's modulus of matrix and fibre, the inclusion of
time step as input level improves the prediction accuracy signifi-
cantly without any additional cost of finite element simulation.

In summary, the cGAN is capable of satisfactorily learning to
predict the full-field stress distribution in composites for the given
geometry, boundary conditions, and loading condition. The devel-
opment of such a robust and efficient algorithmwould significantly
reduce the amount of time and cost required to study and design
new composite materials through the elimination of numerical
inputs by direct microstructural images. The proposed approach
may be extended to explore other stress and strain components
along with various failure criteria. The new developments in the
paper would contribute significantly toward direct image-based
data-driven predictions, which will accelerate the microstructural
analysis of composites and bring about novel efficient approaches
for innovating and designing multifunctional materials.
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