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Abstract—Index Modulation (IM) is capable of striking an at-1

tractive performance, throughput and complexity trade-off. The2

concept of Multi-dimensional IM (MIM) combines the benefits3

of IM in multiple dimensions, including the space and frequency4

dimensions. On the other hand, IM has also been combined with5

compressed sensing (CS) for attaining an improved throughput.6

In this paper, we propose Joint MIM (JMIM) that can utilize the7

time-, space- and frequency-dimensions in order to increase the8

IM mapping design flexibility. Explicitly, this is the first paper9

developing a jointly designed MIM architecture combined with10

CS. Three different JMIM mapping methods are proposed for11

a space- and frequency-domain aided JMIM system, which can12

attain different throughput and diversity gains. Then, we extend13

the proposed JMIM design to three dimensions by combining14

it with the time domain. Additionally, to circumvent the high15

detection complexity of the proposed CS-aided JMIM design, we16

propose Deep Learning (DL) based detection. Both Hard-Decision17

(HD) as well as Soft-Decision (SD) detection are conceived.18

Additionally, we investigate the adaptive design of the proposed19

CS-aided JMIM system, where a learning-based adaptive mod-20

ulation configuration method is applied. Our simulation results21

demonstrate that the proposed CS-aided JMIM (CS-JMIM) is22

capable of outperforming its CS-aided separate-domain MIM23

counterpart. Furthermore, the learning-aided adaptive scheme24

is capable of increasing the throughput while maintaining the25

required error probability target.26

Index Terms—Index Modulation (IM), Compressed Sensing-27

aided Multi-Dimensional Index Modulation (CS-MIM), Soft-28

Decision Detection, Machine Learning, Neural Network.29

I. INTRODUCTION30

INDEX Modulation (IM) [1] can be considered as an31

energy-efficient candidate for next-generation wireless sys-32

tems as a benefit of its flexible resource activation [2].33

The concept of IM has been derived from that of Spatial34

Modulation (SM), which is a low-complexity Multiple-In and35

Multiple-Out (MIMO) scheme capable of striking a flexible36

performance vs. complexity trade-off using a single Radio37

Frequency (RF) chain [2]–[4]. Then, the concept of SM has38

also been extended to the frequency and time dimensions,39

where the philosophy of IM has been proposed [5], [6]. In the40

Frequency Domain (FD), the IM combined with Orthogonal41
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Frequency Division Multiplexing (OFDM) is referred to as 42

Subcarrier-IM (SIM), where only a fraction of the subcarriers 43

is activated for signal transmission and the index of active 44

subcarriers conveys extra information bits [7]. The effective 45

signal power of the subcarriers activated in the FD is amplified, 46

without increasing the time domain signal power after Inverse 47

Fast Fourier Transform (IFFT). This results in a higher Signal- 48

to-Noise Ratio (SNR) for the modulated symbols without 49

requiring extra radiated power. Then, Tsonev et al. [8] pro- 50

posed an enhanced SIM and Basar et al. [9] conceived a 51

novel IM-aided OFDM (OFDM-IM) scheme for increasing 52

the spectral efficiency. However, subcarrier-index modulated 53

OFDM suffers from significant throughput reduction compared 54

to the classic OFDM due to the deactivation of a number of 55

subcarrers. Hence, Zhang et al. [10] proposed an improved 56

SIM concept relying on Compressed Sensing (CS) [11], which 57

benefits from the sparsity of symbols in the FD by compressing 58

the sparse transmit vector [12]. 59

To further increase the overall performance, Datta et 60

al. proposed the concept of Generalized SIM (GSIM) and 61

proved that Generalized Space-and-Frequency IM (GSFIM) 62

achieves better performance than MIMO-OFDM. Their so- 63

lution conveyed extra information in the SM part compared 64

to GSIM [13]. However, the detection complexity of GSFIM 65

escalates. Hence, Chakrapani et al. [14] proposed a message 66

passing based low-complexity detection method for reducing 67

the complexity of GSFIM detection. Furthermore, inspired by 68

the SM and Quadrature SM (QSM) concepts [15], Quadra- 69

ture Space-Frequency IM (QSF-IM) was proposed in [16], 70

which applies a twin-antenna constellation for the in-phase 71

and quadrature-phase transmission, in order to increase the 72

throughput without extra energy consumption. Hence this 73

solution struck a compelling Spectral Efficiency (SE), Energy 74

Efficiency (EE) and Cost Efficiency (CE) trade-off. 75

Furthermore, several researchers considered the design of 76

Multi-Dimensional Index Modulation (MIM) relying on both 77

the Spatial Domain (SpD) and FD. For example, Space- 78

Frequency Shift Keying (SFSK) [17] relies on an SFSK 79

Dispersion Matrix (DM), which achieves beneficial transmit 80

diversity in rapidly time-varying channels. Space-Time Shift 81

Keying (STSK) constitutes another multi-functional MIMO 82

technique in the family of MIM. It combines the Time Domain 83

(TD) and the SpD and it is capable of striking a beneficial 84

diversity versus multiplexing trade-off [18]. More specifically, 85

in STSK, Q DMs are designed for spreading the signal over 86
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TABLE I: Contrasting our contributions to the literature

Contribution proposed* [10] [24] [22] [25] [26] [27] [28] [29] [30]
Index modulation X X X X X X X X X X
CS at transmitter X X X
Learning aided detector X X X X X X
Soft decision detector X X X X
Adaptive design for index modulation X X
Multi-dimensional index modulation X X X
Joint index mapping design X X X
3-Dimensional joint index modulation X

T Time Slots (TSs) and M Transmit Antennas (TA) in the87

TD and the SpD, respectively. Furthermore, the IM design88

activates one out of the Q DMs for transmission, hence log2Q89

extra IM bits may be conveyed. By appropriately adjusting90

these parameters, improved Bit Error Ratio (BER), throughput91

and complexity trade-offs may be struck [19].92

Additionally, the concept of MIM was proposed in [20],93

which is capable of improving the degrees of freedom, hence94

achieving all the benefits of the IM concept in several domains95

without introducing extra deployment costs, such as extra RF96

chains or transmission power. Furthermore, Lu et al. [21]97

proposed Compressed-Sensing-Aided Space-Time Frequency98

Index Modulation (CS-STFIM) to combine CS techniques99

with STSK and OFDM-IM, which is an MIM system concept100

that inherits the benefits of both STSK and OFDM-IM. As a101

further advance, SM was also integrated into this MIM scheme102

for TA selection in [22]. In [6], the concept of multi-functional103

layered SM was proposed, which offers flexible trade-offs in104

terms of performance, hardware cost and power dissipation.105

However, in previous MIM schemes, the index selection106

was performed separately in each dimension. By contrast, in107

this paper, we extend this concept to a Joint MIM system,108

where we jointly designs the IM in several dimensions. More109

specifically, the degrees of freedom of the IM mapping design110

is increased by harnessing multiple dimensions, which leads111

to a more flexible trade-off between the throughput, power112

efficiency, and cost. In this case, both SFSK and STSK can be113

considered as special cases of the proposed joint MIM (JMIM)114

family. JMIM may also be combined with CS techniques for115

increasing the spectral efficiency.116

However, the joint detection of multiple dimensions leads117

to massive computational complexity at the receiver side.118

More specifically, conventional Maximum Likelihood (ML)119

detection, suffers from a rapidly escalating complexity upon120

increasing in the number of dimensions [31]. Coherent detec-121

tion also requires the accurate knowledge of Channel State122

Information (CSI) at the receiver side, which leads to a123

substantial pilot overhead [32] as well as to a high Channel124

Estimation (CE) complexity [33], [34]. In [22], CS-aided MIM125

(CS-MIM) was presented, where multiple detection stages126

were required for recovering the data from the constituent127

CS, STSK, OFDM-IM and SM schemes. As a result, near-128

capacity operation can only be achieved, when Soft-Decision129

(SD) detection is used [35], but again, the complexity of MIM130

detection escalates with the number of IM dimensions.131

Recently, learning-based detection has been used as an effi-132

cient tool for reducing the complexity of detection, while dis-133

2001

2023

SM Chau et al. conceived SM [1].2001

SIM Abu-Alhiga et al. proposed SIM
OFDM [7].

2009

STSK Sugiura et al. proposed STSK [23].

2010

OFDM-IM Basaret al. proposed a improved
SIM method which called OFDM-IM [9].

2013

IM family Basaret al. conclude the philoso-
phy of IM [5].

2016

CS-SIM OFDM CS harnessed with SIM
OFDM [10].

2016

GSFIM Datta et al. Generalized SIM and
proposed GSFIM [13].

2016

SFSK Space-Frequency Shift Keying [17].

2018

MIM Shamasundar et al. conceived concept
of MIM [20].

2018

CS-STFIM Lu et al. proposed [21].

2018 CS-MIM Lu et al. proposed CS-MIM based
on the CS-OFDM-IM-STSK [22].2019

JMIM propsoed in this paper

2023

Fig. 1: Milestones of the index modulation family from single
dimensional index modulation to MIM.

pensing with the requirement of explicit CSI estimation [36]. 134

In [37], a Deep Neural Network (DNN) based model is 135

proposed for detecting the OFDM-IM signal, while the authors 136

of [38] and [39] harnessed convolutional neural networks 137

for IM detection, when the CSI is available at the input of 138

the detector. By contrast, blind learning based detection was 139

designed for Millimeter Wave (mmWave) IM in [28] and for 140

multi-set STSK in [29]. However, the authors of [29] only 141

investigated the combination of basic SD and Deep Learning 142

(DL). In [36], both DNN-based Hard-Decision (HD) and 143

iterative SD assisted blind detection have been proposed for 144
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CS-MIM.145

Additionally, given the flexibility of our CS-aided JMIM146

(CS-JMIM) design, we can adapt the JMIM mapping to hostile147

time-varying channel environments to improve the attainable148

performance. Hence, the concept of adaptive modulation can149

be intrinsically amalgamated with CS-JMIM to improve the150

attainable throughput, while maintaining a specific target BER.151

Yang et al. proposed machine learning aided adaptive SM [40],152

while Liu et al. [41] conceived learning-assisted IM for153

mmWave communications. In their follow-on research, they154

further developed the work by considering CE employing155

sparse Bayesian leaning for accurate CSI estimation [42].156

Table I boldly contrasts the novelty of this paper to the157

literature. More explicitly, the contributions of this paper can158

be further detailed as follows:159

1) We propose the CS-JMIM system concept and present160

several JMIM mapping matrix designs. Then, we161

demonstrate that the proposed JMIM mapping design162

is capable of striking an attractive trade-off between163

diversity and throughput.164

2) We propose a DL-based HD detection aided CS-JMIM165

system that can achieve near-ML performance, while166

imposing significantly reduced complexity. Furthermore,167

we propose a DNN-aided SD detector for the proposed168

CS-JMIM that is capable of achieving near-capacity169

performance.170

3) Both a K-nearest neighbour (KNN) algorithm based and171

a DL-assisted adaptive modulation scheme is proposed172

for CS-JMIM. We demonstrate that the learning-assisted173

adaptive CS-JMIM scheme is capable of selecting more174

appropriate CS-JMIM mapping design for transmission175

than its conventional threshold-based adaptive counter-176

parts. Hence it can obtain a significant throughput gain177

over the conventional threshold-based adaptive method.178

4) Our simulation results demonstrate that the proposed179

learning-based detector is capable of approaching the180

performance of the conventional coherent detection tech-181

niques at a reduced detection complexity. We also pro-182

vide the associated capacity and throughput analysis,183

for characterising the trade-off between each mapping184

matrix and the benefits of the learning-assisted adaptive185

method.186

The rest of the paper is organized as follows. In Section II,187

the system model of CS-JMIM is presented. In Section III, we188

characterize both HD and SD based learning-aided detectors.189

Then, in Section IV we present our proposed adaptive system190

design. In Section V, we present our simulation results, while191

our conclusions are offered in Section VI.192

II. SYSTEM MODEL193

In this section, we introduce the transceiver model of the194

proposed CS-JMIM system employing Nt TAs and Nr Re-195

ceive Antennas (RAs). Fig. 2 shows the block diagram of the196

CS-JMIM system considered, where b bits are equally divided197

into G groups. We consider OFDM having Nc subcarriers,198

which are then split into G groups and each group has199

Nf = Nc/G subcarriers in the FD1, while Nvt TAs and 200

Nv subcarriers of each group are applied for the CS-JMIM 201

system in the Virtual Domain (VD) 2. To be more specific, in 202

each subcarrier group, there are Nv available subcarrier indices 203

within the VD, where the dimension Nv of the VD is larger 204

than the dimension Nf of the FD. Similarly, Nvt antennas 205

in the VD are larger than the Nt antennas of the SpD. For 206

each group of b bits as bg(g = 1, 2, · · · , G) , b1g bits are used 207

for generating K Phase Shift Keying/Quadrature Amplitude 208

Modulation PSK/QAM symbols, while the remaining b2g bits 209

are mapped to the JMIM mapping matrix selector, which 210

chooses a specific mapping matrix out of Q JMIM matrices. 211

Then, these K PSK/QAM codewords and the selected JMIM 212

mapping DM are combined to generate a Space-Time (ST) 213

block S. Afterwards, the block creator of Fig. 2 collects all 214

codewords from the G groups for forming a frame, which is 215

mapped to multiple index domains by the carrier index mapper, 216

followed by the CS method and OFDM modulation, as shown 217

in Fig. 2. Then, after transmission over the wireless channel, 218

the receiver estimates the channel and detects the signal. At the 219

receiver side, the signal is transformed back to the subcarrier 220

symbols and each JMIM group signal is detected separately. 221

In the following, we present the details of the processing 222

stages at the transmitter and the receiver. In this case, we only 223

focus our attention on a single group instead of G groups, 224

since the same procedure is applied to all groups, as shown 225

in Fig.2. The transmitter model is introduced in Section II-A, 226

followed by the receiver model in Section II-B. 227

A. Transmitter 228

As shown in Fig. 2, b bits are split into G groups, where 229

the bg bits, (g = 1, 2, 3...G) of each group are split into two 230

parts by the block splitter: b1g bits are used for JMIM mapping 231

matrix selection and b2g bits for the classic PSK/QAM. In the 232

following we explain in detail the Joint Index Mapping (JIM) 233

part of the CS-JMIM transmitter of Fig. 2. 234

1) Joint Index Mapping: As shown in Fig.2, the Nc sub- 235

carriers of the OFDM symbol are divided into G groups of 236

size Nf , with Nf = Nc/G. For each bg group of bits, the first 237

part b1g is used for selecting the active DM from the Q candi- 238

dates D1,D2, · · · ,Dq, · · · ,DQ with Dq ∈ CNv×Nvt , q = 239

1, 2, · · · , Q. The second part is used for determining the 240

constellation symbol, which is employed for modulating the 241

active DM. The classic constellation symbol is then selected 242

from a M-ary PSK or QAM constellation χ. 243

Let us denote the selected DM and the selected constellation 244

symbol, respectively, by Di, i ∈ {1, · · · , Q} and x, x ∈ χ. 245

Then the combined signal in group g can be expressed by 246

Sg = xDi, g = 1, · · · , G. (1)

In the following, we introduce three designs of the DMs. 247

Firstly, to leverage the multi-dimensionality of MIM systems, 248

the design of IM encompasses all dimensions. Then, the 249

activation of the corresponding indices is guided by the 250

1FD is the OFDM symbol domain after CS processing, as shown in Fig. 2.
2VD is the actual domain. This concept was firstly introduced in [10] to

illustrate the CS techniques in IM systems to improve the spectral efficiency.
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Fig. 2: CS-JMIM system transmitter block diagram.

coordinates of these joint dimensions, which is detailed in the251

following section in the context of a DM design referred to252

as General JIM. Secondly, to strike a design trade-off between253

the throughput and diversity gain attained, we can further split254

the joint multi-dimensional matrix into sub-group matrices,255

where different general JIM DMs can be selected for each256

sub-group matrix. We refer to this mapping design as Grouped257

JIM, which is further detailed in the following sections.258

Additionally, we introduce a coded DM design for achieving259

a high diversity gain, which is detailed in the following260

sections. Furthermore, we start a discussion considering the261

Space-Frequency (SF) dimensions and then we present a 3-262

dimensional mapping design for the Time-Space-Frequency263

(TSF) dimensions of JMIM.264

a) General Joint Index Mapping: As JIM, first we con-265

sider joint SF DM design. The index is selected based on266

both dimensions’ coordinates. We assign Nvt TAs and Nv267

subcarriers to a specific group, which results in NvtNv possi-268

ble active positions and to a total of C(NtNvt,K) legitimate269

realizations. As an example, let us consider having K = 2270

active subcarriers and Nvt = 2, Nv = 2 for each group. Then,271

we have b1g = [log2 C(NvtNv,K)] = [log2 C(4, 2)] = 2 bits272

for selecting K = 2 active subcarriers out of 4 available273

subcarriers in each group, since we have 22 = 4 legitimate274

combinations which equivalent to Q = 4 DMs, as shown in275

Table II. Fig.3 shows a block diagram of the general JIM276

example presented in Table II, where the activated index is277

then combined with the QAM symbol by the multiplier to278

form the combined symbol S. Furthermore, when compared279

to the CS-aided separate MIM system, CS-JMIM can attain280

comparable throughput as CS-MIM with significant sparsity.281

b) Grouped Joint Index Mapping: Given a substantial282

number of TAs, subcarriers, and a limited quantity of active283

index elements K in each group, most elements in the DM284

remain inactive, leading to diminished SE. To address this,285

we propose grouped JIM, which divides the DM matrix into286

Fig. 3: Block diagram of the general JIM example in Table II
with b1=[ 0 0].

TABLE II: An example selection procedure of joint SF index
selection in a CS-JMIM system having K = 2, Nv = Nvt = 2

b2 matrix No. Indices Allocation

[00] D1 (1, 2)

[
1 1
0 0

]
[01] D2 (1, 3)

[
1 0
1 0

]
[10] D3 (1, 4)

[
1 0
0 1

]
[11] D4 (2, 3)

[
0 1
1 0

]

smaller sub-group matrices, each adopting a general JIM. Fur- 287

thermore, striking a trade-off between throughput and diversity 288

involves choosing either the same or different DMs across 289

groups. To elaborate further, applying the same DM across 290

all groups results in multiple copies of the information bits, 291

which produces a diversity gain. On the other hand, employing 292

different DMs for each group improve the throughput. 293

For example upon assuming Nvt = 4, Nv = 4 and K = 2 294

for each groups DM results in Dq ∈ CNvt×Nv . Then, we 295
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further split Dq into four equal sub-matrices expressed as296

Dq =

[
D1,1
q D2,1

q

D1,2
q D2,2

q

]
, (2)

where we have Di
q ∈ CNvt/2×Nv/2, i = 1, 2, 3, 4. For each297

sub-matrix Di,j
q , (i = 1, 2, 3...gsx), (j = 1, 2, 3...gsy) general298

JIM can be applied. Here, gsx and gsy represent the number299

of sub-group’s in the FD and SpD, respectively. In the above300

example, we can have a total of gs = gsx × gsy = 4301

sub-groups and b1g = [log2 C(4, 2)] = 2 bits for each sub-302

groups matrix. To maximize the throughput, four different303

sub-matrices can be aggregated to one DM Dq to obtain 8304

bits in total. Fig.4 shows the block diagram of the grouped305

JIM, where we have four sub-groups of smaller general JMIM306

matrix. For a small general JMIM matrix we can apply Q = 4307

DMs in total, where we can assign 4×2 bits for all sub-groups.308

On the other hand, if four repeated sub-matrices are used, we309

can achieve similar structure of coded JMIM which will be310

discussed below.311

Fig. 4: Block diagram of a grouped JIM example with b1=[0
0 0 0 0 0 0 0]

Subsequently, the grouped JIM optimally utilizes the avail-312

able space of the VD matrix, albeit at the expense of sparsity.313

By adjusting the index mapping of each sub-group, it offers314

significant throughput or diversity gains. However, this leads315

to a substantial increase in detection complexity for conven-316

tional methods, such as the ML detector.317

c) Coded Joint Index Mapping: Another way of further318

increasing the transmit diversity is to employ coded index319

mapping, where we use a circular shift based design of the320

DMs, which was proposed for SFSK in [17]. In this method,321

the number of active subcarriers in each column is nq , with322

Nq − nq inactive subcarriers, where Nq is the column length323

of Dq . Then, the second column is the circular down shift of324

the first column by one position. Similarly, other columns can325

be obtained based on the previous column distribution.326

To elaborate a little further, using a ’toy’ example, for Nq =
Nvt = 4, nq = 2, we can have Q = C(Nq, nq) = 6 possible
combinations, yielding b1g = blog2 C(Nq, nq)c = 2 bits. The

following is an example of a circular shifting based DM:

D1 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 , D2 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ,

D3 =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 , D4 =


0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0

 ,

D5 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , D6 =


0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

 .
Given b1g = 2 bits, then 22 = 4 DMs are selected for the 327

CS-JMIM system. 328

Fig.5 shows a block diagram of the coded JIM, where 329

we can apply the first JIM DM for b1=[0 0] based on 330

the code book used. In this scenario, coded JIM offers the 331

maximum diversity in the design of coded DMs, enabling 332

reliable detection even in highly noisy environments. 333

Fig. 5: Block diagram of a coded JIM example with b1=[0 0]

d) 3-Dimensional Dispersion Matrix Design: In this de- 334

sign, the TD is introduced as an extra dimension for the JIM. 335

We assume that Tv TSs are applied in the VD and T TSs are 336

used in the TD, while we have Tv > T . Then, we can assign 337

three-dimensional DMs Dq ∈ CNv×Nvt×Tv . In this case, the 338

above-mentioned three mapping techniques can be applied. 339

Specifically, for the general JIM we may consider the 340

following example for further illustration. Let K = 1 and 341

Nvt = Nv = Tv = 2 as shown in Fig. 6(a) and b1g = [001]. 342

More specifically, the three-dimensional matrix can be ex- 343

pressed in the coordinate form of (nv, nvt, tv). In this case, 344

given the IM bits b1g = [010], we activate the fourth element in 345

a set of 8 elements in this three-dimensional matrix with the 346

coordinates (2, 2, 1) as shown in Fig. 6(a). Then, the number 347

of bits of this JMIM applied for the DM selection becomes 348

b1g = blog2 C(NvtNvTv,K)c = blog2 C(8, 1)c = 3 bits. 349

Fig. 6(b) shows the structure of the grouped JIM applied in 350

three dimensions. Similar to the SF matrix, the TSF matrix can 351

be split into several equal sub-groups. As shown in Fig. 6(b), 352

we assume Nvt = Nv = Tv = 4 and K = 1 for each group’s 353

DM, which results in Dq ∈ CNv×Nvt×Tv . Then, we further 354

split Dq into 8 equal sub-matrices. Each sub-group DM can 355
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(c) Structure of coded JIM DM, while having
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subcarriers.

Fig. 6: Illustration of the structure for JIM DM in time-space-frequency domain

be expressed in the form of Dgsx,gsy,gsz
g , where gsx, gsy, gsz356

represents the split size in the FD, the SpD and the TD,357

respectively. For each sub-matrix Dgsx,gsy,gsz
g , general JIM358

can be applied within a set of gs = gsx×gsy×gsz = 8 sub-359

group matrices. Then, we can have blog2 C(8, 1)c = 3 bits360

for each sub-matrix. To maximize the throughput, we can also361

assign different information to each sub-group and then the 8362

sub-matrices can be aggregated to form a single DM Dq to363

obtain b1g = gsblog2 C((Nv/gsx)(Nt/gsy)(T/gsz),K)c =364

8blog2 C(8, 1)c = 24 bits for the JMIM design. Compared365

to the same DM size used in the general JIM, which has366

b1g = blog2 C(64, 1)c = 6 bits, the grouped JIM can provide a367

significant gain in the spectral efficiency. On the other hand,368

in order to attain a diversity gain, the sub-matrices can achieve369

maximum diversity gain, when all 8 sub-groups have the same370

active index.371

Furthermore, for the coded JIM matrix design in three372

dimensions, the same method is applied for the first TS of373

the space-frequency matrix. Then, circular shifting is applied374

to the entire SF matrix to generate the next TS matrix375

with shifting by one position. As shown in Fig. 6(c), upon376

assuming Nvt = Nv = Tv = 4 for the DM size, as well as377

Nq = nq = 2 for the activated subcarriers and b1 = [01], then378

the corresponding circular shifting based DM D2 presented in379

the previous section is applied to the first TS of the 3D matrix.380

Then, we can generate each TS index mapping with the aid381

of a single position shifting, which can be represented as:382

Dt1 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 , Dt2 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,

Dt3 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 , Dt4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
2) Compressed Sensing and Block Assembly: In order to383

exploit the sparsity of the JIM DM, CS is applied to all384

the dimensions of the joint multi-dimensional matrix symbol385

created by the block assembled to increase the throughput. As386

shown in Fig. 7, a matrix Sg associated with Nvt = Nv = 4387

s

Compressed Sening
Reshape

s
RD

S

S
RD

Virtual Domain

Real Domain

Fig. 7: Illustration of the process for compressing the JMIM
DM in the SF domain with Nvt = Nv = 4,K = 1. Note that
this example applies the general JIM with b1g = [0100].

will be transformed from the matrix S,S ∈ CNvt×Nv into the 388

vector s, s ∈ CNvtNv×1. 389

The symbol vector s is then compressed by a CS measure- 390

ment matrix A ∈ CNfNt×NvNvt from the NvNvt-dimensional 391

s in the VD into the NfNt-dimensional form in the Real 392

Domain (RD)3 denoted as s(RD), which can be written 393

as: sRD = As. The RD vector sRD after CS is then 394

transferred into a compressed joint multidimensional symbol 395

matrix S(RD), where S(RD) ∈ CNt×Nf . Then, the index 396

carrier mapper maps the corresponding joint multidimensional 397

symbol elements to the OFDM subcarriers and the TAs to form 398

the SF symbols. Afterwards, G groups of SF symbols S are 399

assembled by the OFDM creator to a long SF symbol frame, as 400

shown in Fig. 2. The RD SF symbol can be separated into Nt 401

FD symbols, which means that Nt FD symbols are transmitted 402

by Nt TAs. Similar to conventional OFDM, the FD symbol 403

will be transformed into TD symbols to be transmitted by 404

their corresponding TAs and then a Cyclic Prefix (CP) will 405

be added. The G groups of SF symbols S are assembled 406

by the block creator of Fig. 2 to form a long ST frame, 407

which is processed by the ST mapper to output a symbol for 408

transmission over multiple TAs and TSs, Equivalently, the ST 409

symbols S of each subcarrier group are mapped to Nt TAs 410

during T TSs, which have Nt symbol sequences {s1, ..., sNt} 411

for transmission from the Nt TAs during each TS. 412

3RD is the joint dimension of DM after the CS process. For instance, the
SF-based JMIM signal conveys more bits in the VD than in the RD.
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Time Slots

Subcarrier

Compressed Sening Reshape

S

s

s
RD

S
RD

Virtual Domain

Real Domain

Fig. 8: Illustration of the process for compressing the JMIM DM in the TSF domain with T = Nt = Nv = 4K = 1.
Additionally, the example presented applies the general JIM for b1g = [000100].

For the three-dimensional JMIM, utilizing the TSF dimen-413

sions, the TD is also compressed by CS for improving the414

throughput, where Tv TSs are introduced in the VD for IM,415

complemented by T TSs in the TD. Specifically, for the416

general JMIM scheme, the TD is introduced for increasing417

the sparsity and for incorporating extra embedded information418

bits. As shown in Fig. 8, we apply CS to the TSF JMIM,419

where all the three dimensions are compressed for increasing420

the throughput. Specifically, a (4×4×4)-sized DM in the VD421

will be compressed to a (2× 2× 2)-sized DM of the RD. For422

example, when we have Tv = Nvt = Nv = 4, b1g = [000100]423

and K = 1, the element at the fourth subcarrier, fourth TA424

and first TS is activated, corresponding to the coordinate of425

(4, 4, 1).426

As for the coded JMIM scheme, additionally the TD is427

harnessed for further increasing the diversity gain, where CS428

is not considered for the TD. We assign either the same or429

different symbols in a sub-group matrix of the grouped JMIM430

scheme, which leads to a different CS approach. Given the431

different sub-group matrix symbols, the TD is exclusively432

harnessed for carrying extra copies of the symbol without CS.433

The design objective of this scheme is to increase the diversity434

gain.435

B. Receiver Processing436

As shown in Fig. 9, a receiver having Nr antennas is437

employed, where we assume that the transmitted signals are438

conveyed over a frequency-selective Rayleigh fading channel439

and the CSI is perfectly acquired at the receiver side. The G440

groups of signal are received by the receiver over Nr antennas441

and then the CP part of the received signals is removed.442

Finally, the processed signal is transformed into the FD by443

using the Fast Fourier Transform (FFT), as shown in Fig. 9.444

The channel model can be expressed as hα ∈ CNr×Nt ,445

which represents the TD CSI between the Nt TAs and the446

Nr RAs. Then, the FD channel matrix can be expressed447

as Hα ∈ CNr×Nt for α = 1, . . . ,M , which are then448

Nr

Output

Bits

bG

bits

b̂1 Y1

FFT/
-CP

Block SplitterP/S
b̂g

b̂G

Yg

YG

CS-JMIM Detection

CS-JMIM Detection

CS-JMIM Detection

Fig. 9: CS-JMIM system receiver block diagram

split into G groups by the Block Splitter of Fig. 9. The 449

symbols received by each subcarrier group are represented as 450

Y = {Y [1], . . . ,Y [α], . . . ,Y [Nf ]}, with Y ∈ CNr×Nf and 451

α = 1, 2, · · · , Nf . 452

As for the three-dimensional signal, the transmitted signal is 453

mapped ST symbols, which are also collected by the receiver 454

and split into G groups by the Block Splitter of Fig. 9. 455

Afterwards, the symbols received in the three dimensions by 456

each subcarrier group Y ∈ CNr×M×T may be expressed as 457

Y =


Y 1

1,1 . . . Y 1
1,Nf

. . . . . . . . .

Y Nr
1,1 . . . Y Nr

1,Nf


1

, . . . ,

Y 1
T,1 . . . Y 1

T,Nf

. . . . . . . . .

Y Nr
T,1 . . . Y Nr

T,Nf


T

 .

(3)
The received symbol of the t-th TS can be represented 458

as Yt = {Yt[1], . . . ,Yt[α], . . . ,Yt[Nf ]}, with Yt ∈ CNr×T 459

and α = 1, 2, . . . , Nf , t = 1, 2, . . . , T characterizing the ST 460

structure per group and the ST symbol received at the α-th 461

subcarrier of each subcarrier group, respectively. Since the 462

index is jointly decided in the multi-dimensional space, we can 463

transform the ST symbol into a vectorial form y associated 464

with y ∈ CNrNfT×1. 465

Let the FD channel be Hα ∈ CNr×T for α = 1, . . . , Nf . 466

Then the signal Y t[α] ∈ CNr×T (α = 1, . . . , Nf ) received 467

during the T TSs for each subcarrier group can be expressed 468

as [22] 469

Y [α] = HαS
(RD)[α] +W [α], (4)
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where SRD[α] ∈ CNr×T denotes the ST symbols at the sub-470

carrier α transmitted from the Nt TAs in the RD. Furthermore,471

W [α] ∈ CNr×T represents the Additive White Gaussian noise472

(AWGN) obeying the distribution of CN (0, σ2
N ), and σ2

N is473

the noise variance.474

III. CS-JMIM SIGNAL DETECTION475

Given the received signal model Y in (4), the receiver476

detects the information bits of the JMIM mapping matrix,477

which jointly conveys the index of the active subcarrier, the478

active TA and TS in the VD. Firstly, we reshape the received479

signal into a vectorial form y associated with y ∈ CNrNfT×1.480

The received signal y contains Nf ST symbols at Nf481

subcarriers in the FD of each subcarrier group. Then, we can482

rewrite y with the aid of (4) in the following form:483

y = HĀs̄+w, (5)

where Ā is the equivalent measurement matrix A used for484

compressing the s VD vectors. In our three-dimensional CS-485

JMIM system, Ā also compresses the TD, where we have486

Ā ∈ CNvtNv×NtNf . Furthermore, s ∈ CNvNvtTv×1 denotes487

the vector of DM combined with the PSK/QAM symbol. In488

this case, we could rewrite s̄ in a matrix S̄ associated with489

S̄ = xD̄, where D̄ ∈ CNv×Nvt×Tv denotes the realization of490

the JMIM DM in each subcarrier group.491

Conventional exhaustive search based maximum likelihood492

(ML) detection can be applied at the receiver, albeit this may493

lead to excessive complexity [5]. Furthermore, in the soft494

detection scenario, the received signal is converted into prob-495

ability values, which are referred to as Log Likelihood Ratios496

(LLR) that are fed into the channel decoder for obtaining a497

near-capacity performance [43].498

In the following section we present the conventional ML-499

based HD detector, followed by our proposed DNN aided HD500

detector, where the neural network replaces the exhaustive501

search by a learning-based classification model in order to502

significantly reduce the complexity. Afterwards, we discuss503

the SD detector, where we first present the conventional SD504

detectors followed by our learning-aided SD receiver.505

A. Hard Decision Decoding506

Again, we commence with the conventional ML-based507

detection of the CS-JMIM system, followed by the DNN-based508

detector.509

1) Maximum Likelihood Detection: As shown in Fig. 9,510

we detect each group;s signal separately. In the CS-JMIM511

detector, according to the receiver model of (5), we have512

the modified joint JMIM and PSK/QAM symbol, which can513

be expressed as S̄ = xD̄. Here D̄ represents a specific514

realization of the selected JMIM DM and x represents K515

STSK PSK/QAM symbols. To detect the specific realization,516

we use D̄(β) (β = 1, 2, ..., NJMIM ) to denote all the possible517

realizations of the JMIM DM. Furthermore, as there are518

Nx = (X)K realizations of x, X̄ (γ) (γ = 1, 2, ..., Nx) denotes519

all the possible realizations of the selected PSK/QAM symbol.520

Fig. 10: Fully-connected DNN model for CS-JMIM HD de-
tection.

The ML detector makes a joint decision concerning the 521

JMIM DM and PSK/QAM with the aid of exhaustive search, 522

which can be modelled as 523

〈γ̂, β̂〉 = arg min
γ,β
‖Y −HĀX(γ)ĪD(β)‖2, (6)

where γ̂ and β̂ represent the estimates of the selected DM and 524

the corresponding PSK/QAM constellation in each subcarrier 525

group, respectively. 526

The excessively high search complexity of considering 527

all possible candidates by the ML detector is given by 528

O[NJMIM (X )K ] per subcarrier group. 529

2) DNN-based Detection: To reduce the complexity of the 530

ML detector, learning based detection is considered in this 531

section, where a DNN based model is proposed for detecting 532

the received CS-JMIM signal. 533

Detection may also be considered as a classification prob- 534

lem, where the corresponding bits of the harnessed CS-JMIM 535

DM and PSK/QAM symbol constitute the DNN output. Under 536

the assumption of perfect CSI at the receiver side, we use 537

the received signal and the CSI as the input of the DNN 538

model. The proposed DNN structure is shown in Fig. 10, 539

where both the CSIH at the receiver and the received symbols 540

Y constitute the inputs of the L-layer Fully-Connected (FC) 541

network. Then, the output bits û can be modelled as 542

û =fsigmoid(Wn...fRelu{W2(fRelu1 [W1fLSTM (Y ) + θ1])

+ θ2}+ ...+ θn),
(7)

where Wn and θn, n = 1, · · · , L represent the weights and 543

biases, respectively. In (7), the Rectified linear unit (Relu) 544

function of fRelu(s) = max(0, s) is employed for activating 545

the DNN during the training phase, while the sigmoid function 546

of fsigmoid(s) = 1
1+e−s is used to obtain the detected bits 547

û. The raw input data represented in the complex-valued 548

matrix form obtained from the received signal Y is vectorized 549

first and then we rearrange the complex values by separately 550

extracting the real as well as the imaginary parts and then 551

merging them into a real-valued vector. 552

In the training phase, we employ randomly generated re- 553

ceived signals, which are transmitted over a frequency selec- 554

tive Rayleigh fading channel for CS-JMIM. Afterwards, both 555

the CSI and the received symbols are employed as the input 556

data of the DNN. The number of training samples required is 557
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selected based on experimentation by gradually increasing the558

training size until acceptable mean square error (MSE) values559

are achieved. In this case, the MSE loss function of the DNN560

used for the training is561

L(u, û;Wn,θn) =
1

B

B∑
i=1

‖u− û‖2, (8)

where B is the sample size of the current iteration. A stopping
criterion can be defined either by the number of iterations or
by an MSE threshold. Then, the parameter sets {Wn,θn} can
be updated in each training iteration based on our learning
algorithm using gradient descent, which is formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})562

represents the gradient of L({Wn,θn}). In our proposed563

network aided detection, we use α = 0.001.564

By the end of the training phase, the DNN has learnt the565

mapping from the received signal and stores both the weight as566

well as the bias information, which will be used for producing567

the desired outputs based on the input data in the testing568

phase. The statistical properties of the input/output data have569

to remain the same as those used during training.570

The detection complexity of the learning algorithm is domi-571

nated by the calculation of the layer weights and biases, which572

may be considered to be of the order of O(ninh) +O(n2h) +573

O(nhno) [29], with n representing the number of neurons in574

each layer. Hence, the DNN complexity order is significantly575

lower than that of the ML detector.576

B. Soft Decision Decoding577

SD detection is employed for attaining near-capacity perfor-578

mance, when combined with channel coding. As the computa-579

tional complexity of the maximum a posteriori probability in580

SD detector rapidly increases upon increasing the modulation581

order and the number of dimensions [44], the complexity582

of CS-JMIM rapidly becomes prohibitive, owing to the joint583

detection of JMIM signal in multiple dimensions. In the584

following, we present the conventional SD detector of CS-585

JMIM, followed by the correspond learning aided SD detector.586

1) Conventional Soft Decision Detection: A channel coded587

CS-JMIM scheme is shown in Fig. 11, which was derived from588

the CS-MIM model of [22], [36] for achieving near-capacity589

performance. A Recursive Systematic Convolutional (RSC)590

encoder encodes the information bit sequence b followed by591

an interleaver, where the coded bit sequence c is interleaved592

to generate the stream u of Fig. 11. Then, the stream u is593

modulated in the CS-JMIM modulator of Fig. 2.594

At the receiver side of Fig. 11, the received signal Y and595

CSI H̄ are input to the soft CS-JMIM that outputs LLRs.596

The LLRs output from the demodulator are then passed to the597

de-inteleaver and the RSC decoder performs soft decoding. In598

Fig. 11, L(·) represents the LLRs of the bit sequences, where599

Le(u) is the output extrinsic LLR after soft demodulation and600

La(c) is the de-interleaved LLR sequence of Le(u).601

The LLR of a bit is defined as the ratio of probabilities602

associated with the logical bits ’1’ and ’0’, which can be603

Fig. 11: The transceiver architecture of channel-coded CS-
MIM.

written as L(b) = log p(b=1)
p(b=0) . The conditional probability 604

p(Y |Xβ,γ) of receiving the group signal Y is given by [45] 605

p(Y |Xγ,β)

=
1

(πN0)NT
exp(−||Y −HĀx(γ)D̄(β)||2

N0
),

(9)

where Xγ,β represents the PSK/QAM symbol at the β-th CS- 606

JMIM DM. Furthermore, N0 is the noise power, where we 607

have σ2
n = N0/2 with N0/2 representing the double-sided 608

noise power spectral density. 609

Hence, we can formulate the LLR of bit ui as 610

Le(ui) = ln
p(y|ui = 1)

p(y|ui = 0)

= ln

∑
X
γ,β∈X l1

p(Y |Xγ,β)∑
X
γ,β∈X l0

p(Y |Xγ,β)
,

(10)

where X l1 and X l0 represent a subset of the legitimate equiv- 611

alent signal X corresponding to bit ul, when ul = 1 and 612

ul = 0, respectively, yielding X l
1 ≡ {Xγ,β ∈ X : ui = 1} and 613

X l
0 ≡ {Xγ,β ∈ X : ui = 0}. 614

Upon using (9) and (10) we obtain the LLR L(bi) of the bit 615

sequence conveyed by the received signal Y. To simplify the 616

calculation, the Approximate Log-MAP (Approx-Log-MAP) 617

algorithm based on the Jacobian Maximum operation can be 618

used, which is given by [46], [47] 619

Le(ul) = jacXγ,β∈X l1(λγ,β)− jacXγ,β∈X l0(λγ,β), (11)

where jac(.) denotes the Jacobian maximum operation and the 620

intrinsic metric of λγ,β is 621

λγ,β = −||Y −HĀx(γ)D̄(β)||2/N0. (12)

At the receiver, the soft demodulator evaluates the prob- 622

ability of each bit being logical ’1’ and ’0’. Then it ap- 623

plies the approx-log-MAP algorithm for obtaining the extrin- 624

sic LLR of the coded bits, which has a complexity order 625

O[2(cg)(NJMIM (X )K)], where cg represents the number of 626

coded bits after the RSC encoder and interleaver, and NJMIM 627

represents the number of possible realizations of JMIM. 628

2) DNN-based SD Detection: In this section, we propose a 629

reduced-complexity SD detector using DNN, which considers 630

a similar DNN architecture to that of [29]. Since the conven- 631

tional SD detector obtains the LLRs of the received signal 632

after the CS-MIM soft demodulator, we replace the detected 633
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Fig. 12: Fully-connected DNN model for CS-JMIM SD de-
tection.

bits û output by the DNN in Fig. 10 with the extrinsic LLR634

Le at the output of the DNN, as shown in Fig. 12. Then, the635

output of the SD DNN model can be expressed as636

L̂e =WN2
...fRelu{W 2(fRelu1

[W 1(Y τ ) + b1])

+ b2 + ...+ bN2
),

(13)

and the corresponding loss function is637

L(θ, ) =
1

BT

B∑
i=1

T∑
t=1

‖L̂e(τ)−Le(τ)‖22. (14)

We can also define a stopping criterion, which can be
either the number of iterations or meeting a maximum MSE
threshold. Then, the parameter sets {Wn,θn} can be updated
in each training iteration based on the learning algorithm using
gradient descent, which is formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})638

represents the gradient of L({Wn,θn}).639

In our proposed neural network aided detection, we use α =640

0.001. Similar to the HD DNN detector described above, the641

model learns the parameters in the training phase and then642

outputs the LLR information.643

The detection complexity of the learning algorithm is domi-644

nated by the calculation of the layer weights and biases, which645

may be considered to be of the order O(ninh) + O(n2h) +646

O(nhno) [29], with n representing the number of neurons in647

each layer.648

IV. ADAPTIVE DESIGN649

Since the proposed CS-JMIM design provides flexibility in650

the design of the JMIM DM, we can design appropriate JMIM651

DMs for different channel conditions that can provide either652

an improved BER performance or an increased throughput.653

Furthermore, in our system, the transmitter can adapt both654

the JMIM DM D and the modulation order Q of PSK/QAM.655

Then, the system throughput may be adapted by appropriately656

adjusting the above parameters, while maintaining a target657

BER performance.658

In the following two subsections, we highlight the classic659

threshold-based adaptive modulation, followed by its learning-660

aided counterpart. More specifically, both the KNN and DNN661

based adaptive model are applied for the proposed system.662

Fig. 13: BER vs. SNR performance of the CS-JMIM system
for different mapping modes shown in Table III.

TABLE III: Configuration of the modes presented in Fig. 13

Mode Mapping Type Q Nt Nvt Nf Nv K Rt

1 Coded 4 4 8 4 8 2 1.333
2 General 4 4 8 4 8 3 4.666
3 Grouped 4 4 8 4 8 1 5.333

1) Conventional Threshold-based Adaptive Design: In our 663

adaptive scheme, we can adapt both the configuration of JMIM 664

DM and of the PSK/QAM mode. We can define the different 665

configurations as Mode1, Mode2, Mode3, . . . , which can 666

attain different BER performance and throughput. Based on 667

the different modes, the parameters Nv, Nt, T and A of JMIM 668

DM can be selected according to the SNR calculated at the 669

receiver, where the SNR threshold values are selected for the 670

different modes to satisfy a specific target BER [41], [42]. 671

In the following, we present the scenario, where the different 672

adaptive modes P refer to different configurations of the JMIM 673

DM for characterising its design flexibility4. 674

As an example, Fig.13 shows the BER performance of 675

three different CS-JMIM mapping modes. The corresponding 676

parameters and data rates provided by these modes are shown 677

in Table III. For a target BER of 10−3, as shown in Fig. 13 678

the SNR values of mode transition points P1 and P2 can 679

be selected as the thresholds for operating the appropriate 680

modes. Specifically, Mode1 is applied at low SNR values until 681

the specific SNR reaches P1. Then, the mode is changed to 682

Mode2 to provide higher throughput, when the SNR range 683

spans from P1 to P2. Finally, Mode3 is selected at SNRs 684

higher than P2, which has the highest throughput among the 685

three modes. 686

For adaptive modulation, the receiver has to confidently 687

infer the choice of the most appropriate transmission mode 688

by comparing the instantaneous SNR of the received sym- 689

bol against the Mode-switching threshold values. Then, the 690

decision is fed back to the transmitter and applied for the 691

next frame to be transmitted. Generally, with more available 692

operation modes as well as faster and more accurate SNR feed- 693

4Note that the modulation scheme such as PSK/QAM can also be adapted,
but in this design example, we aim to show the flexibility of the proposed
CS-JMIM design.
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back to the transmitter, we can obtain an increased throughput694

compared to non-adaptive designs. However, threshold-based695

adaptive modulation design ignores many of the hardware696

imperfections when deciding upon the threshold values, which697

results in sub-optimal performance of the adaptive system [41],698

[42]. Hence, in the next subsection, we propose the learning-699

based adaptive modulation scheme for our CS-JMIM system700

to further improve the adaptive system’s performance.701

2) Learning aided adaptive modulation: The adaptive mod-702

ulation can be modelled as a classification problem, which703

can be solved using learning-based methods. The SNR of the704

received signal, which is evaluated at the receiver side, can705

be fed back to the transmitter and then given the SNR infor-706

mation, which also corresponds to the current channel state707

information, the transmitter can select a specific mode from a708

range of candidates to achieve the highest throughput, which709

still maintain the target BER. Therefore, for a given channel710

condition, adaptive modulation selects the most suitable mode711

to achieve the highest throughput, under the constraint of712

achieving the target BER. In this paper, both the KNN and713

DNN techniques are investigated in the context of adaptive714

modulation.715

Before the training phase, the input data should be pre-716

processed to improve the learning efficiency. First, we ran-717

domly generate the training data of each mode under different718

instantaneous SNR values at the receiver. Then, the corre-719

sponding switching SNRs that can maintain a BER lower than720

the target BER are stored. Given these training data, we can721

use learning models to find the mode switching thresholds in722

the training phase. After training, the trained model becomes723

capable of predicting the next mode, given the knowledge of724

the SNR. In the following, we first employ KNN for our725

adaptive modulation scheme and then we propose a DNN-726

based adaptive model for further improving the performance.727

a) KNN-based Adaptive Design: KNN is a popular clas-728

sification techniques relying on low-complexity implementa-729

tion and yet providing a good performance [48]. Yang et al.730

[40] developed KNN-assisted adaptive modulation schemes731

for SM, while Liu et al. [41] further developed DNN aided732

adaptive modulation to millimeter wave communication. To733

elaborate briefly on the KNN process, we define the training734

sets as735

T (i) = [ξ
(i)
1 , · · · , ξ(i)n , · · · , §(i)Np ]T , (15)

where ξ represents the SNR value of a symbol with a BER736

lower than the target BER value, with i = 1, 2, · · · , I repre-737

senting the adaptive mode index and Np is the total number of738

instantaneous SNR values with BER under the target. Then,739

the total training set of each mode can be formulated as740

T = [T (1), · · · , T (i), · · · , T (I)]T . (16)

During runtime, for a given new data point, which corre-741

sponds to the instantaneous SNR ξ, the KNN model finds742

k nearest neighbours in the training set T , using a distance743

metric d(.), which can be expressed as744

d(ξ(i)n ), ξnew) = ||ξ(i)n )− ξnew||2. (17)

Then, the mode is decided by the majority mode of the k745

nearest neighbours to the input test point. With the possibility746

Fig. 14: Fully-connected DNN model for CS-MIM adaptive
modulation selection.

of several modes having the same number in the k nearest 747

neighbours, the mode with the highest throughput will be 748

selected. 749

The performance of KNN significantly depends on its 750

parameters and on the value of k, where the best value of 751

k can be selected empirically. In this adaptive system, the 752

best value of k is determined by considering the trade-off 753

between the BER and throughput. Furthermore, KNN results 754

in a high computational complexity for the nearest neighbour 755

search in addition to requiring a large memory for storing the 756

training. Hence, in the following we present a DNN based 757

design alternative. 758

b) DNN-aided Adaptive Design: In this section, we 759

present the DNN-based adaptive modulation regime of Fig. 14. 760

Similarly to KNN, we randomly generate the training data 761

and then store the mode index and SNR value pairs, which 762

have BERs lower than the target value. Then, the training set 763

T constitutes the estimated SNR ξ of a symbol associated 764

with a BER lower than the target BER. We use the DNN- 765

based classification model, where the input corresponds to the 766

instantaneous SNR and the output corresponds to the mode 767

index of adaptive modulation. 768

The output mode index î of the DNN can be expressed as 769

î =fsoftmax(Wn...fRelu{W2(fRelu1 [W1ξ + θ1])

+ θ2}+ ...+ θn),
(18)

where Wn and θn, n = 1, · · · , L represent the weights and 770

biases, respectively. Relu is also employed for activating the 771

DNN during the training phase, and the softmax function is 772

used to obtain the mode index î, which is 773

fsoftmax(s) =
es∑C
c=1 e

sc
. (19)

The number of training samples required is selected based 774

on experimentation by gradually increasing the training size 775

until acceptable MSE values are achieved. In this case, the 776

MSE loss function of the DNN used for the training is 777

L(ξ, ξ̂;Wn,θn) =
1

B

B∑
i=1

‖ξ − ξ̂‖2, (20)

where B is the sample size of the current iteration. 778
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TABLE IV: CS-MIM system simulation parameters.

Parameters Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 Scheme 9
Scheme type CS-GFIM-SM CS-JMIM CS-GFIM-SM CS-JMIM CS-MIM CS-JMIM
Detection type HD SD
Multi-carrier System OFDM
Number of subcarriers, Nc 128
Cyclic prefix 16
Num of subcarrier group, G 64 32 64
Num of active indices/gp, K 1,2 1,2,3 1,2 2
Receiver antennas, Nr 2 4 8 2
RSC code, (n, k,K) - (2,1,3)

Real Domain
Num of subcarrier/group, Nf 2 4 2
Transmit antennas, Nt 2 4 8 2
Activated antennas, Nat 1 - 1 - 2
Time Slots,T 2

Virtual Domain
Num of available subcarrier/group, Nv 8 4 16 8 8 4
Transmit antennas, Nvt - 4 - 8 - 2
Time Slots,Tv 4
STSK codeword, (m,n, t, q, l) - (2,2,2,2,4) -

A stopping criterion can be defined either by the number of
iterations or by the maximum tolerable MSE threshold. Then,
the parameter sets {Wn,θn} can be updated in each train-
ing iteration based on our learning algorithm using gradient
descent, which is formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})779

represents the gradient of L({Wn,θn}). In our proposed780

DNN-aided detection, we use α = 0.001.781

V. SIMULATION RESULTS AND ANALYSIS782

In this section, we characterize the performance of the783

proposed CS-JMIM system, where conventional detection will784

be used for benchmarking the proposed learning aided detec-785

tion methods. Furthermore, we consider the system employing786

SF CS-JMIM and TSF CS-JMIM. The BER performance787

is evaluated by Monte-Carlo simulations, where we use the788

simulation parameters summarized in Table IVThe parameters789

used by the learning models are presented in Table VI. In our790

simulations, we assume that the receiver has perfect channel791

knowledge, while in practice this is estimated using channel792

estimation techniques.793

In the following, we present the different schemes con-794

sidered in our simulations for comparison purposes. Firstly,795

we compared CS-aided separate multi-dimensional IM with796

CS-JMIM. More specifically, for our SF domain system, we797

compared CS-aided Generalized Subcarrier Index Modulation798

with SM (CS-GFIM-SM). These are termed as Scheme 1, 3,799

with CS-JMIM as Scheme 2, 4. Then, for the TSF domain,800

the CS-JMIM of Scheme 5 is compared to Scheme 6, which801

represents the CS-MIM [22] [36]. Secondly, we compared the802

performance of different parameters in the context of Schemes803

2, 4, 6. Thirdly, we characterized the performance of DNN-804

aided CS-JMIM both in HD and SD in Schemes 6-9. We also805

quantified the complexity and compared it to conventional ML806

detection. Finally, we also exploited the adaptation of CS-807

JMIM between different JMIM methods in Scheme 10. To808

elaborate:809

1) Scheme 1: applies ML HD detection for the CS-GFIM-810

SM, which activated one of 2 TAs, 2 RAs, and 2811

subcarriers per group, while considering 8 subcarriers 812

per group in the VD and K = 1, 2 activated subcarriers. 813

2) Scheme 2: applies maximum likelihood hard decision 814

detection for the CS-JMIM system in the SF domain 815

along with 2 TAs, 2 RAs, and 2 subcarriers per group in 816

the RD, while considering 4 antennas and 4 subcarriers 817

per group in the VD. In this scheme, we consider the 818

following mappings: 819

a) General JMIM with K = 1, 2. 820

b) Grouped JMIM with gs = 4 subgroups, and each 821

subgroup applies general JMIM in conjunction 822

with K = 1 (In this case, we can consider that 823

both the FD and SpD is split into two sub groups, 824

which have gsx = gsy = 2.). 825

c) Coded JMIM with nq = 2. 826

3) Scheme 3: applies ML HD detection for the CS-GFIM- 827

SM, which activated one antenna out of 4 TAs, 4 828

RAs, and 4 subcarriers per group, while considering 829

16 subcarriers per group in the VD and K = 1, 2, 3 830

activated subcarriers. 831

4) Scheme 4: applies maximum likelihood hard decision 832

detection for the CS-JMIM system in the SF domain 833

along with 4 TAs, 4 RAs, and 4 subcarriers per group 834

in this RD, with 8 antennas and 8 subcarriers per group 835

in the VD. In this scheme, we consider the following 836

mappings: 837

a) General JMIM with K = 1, 2, 3. 838

b) Grouped JMIM with gs = 4, gsx = gsy = 2 sub- 839

groups, with each subgroup applying the general 840

JMIM along with K = 1. 841

c) Coded JMIM with nq = 4 842

5) Scheme 5: applies ML HD detection for the CS-MIM 843

system in the TSF domain with 8 TAs, 8 RAs, 2 sub- 844

carriers per group and 2 TSs, while having 8 subcarriers 845

per group in the VD. For the Space-Time-Shift-Keying 846

(STSK) codeword STSK(M,N, T,Q,L) used in CS- 847

MIM [22], STSK(2,2,2,2,4) is applied. In this case, 848

we have 2 activated antennas out of 8 and K = 1, 2 849

activated subcarrier out of 8 subcarrier in the VD. 850

6) Scheme 6: applies maximum likelihood hard decision 851
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TABLE V: Simulation results and complexity analysis of each Scheme.

Scheme index SNR at BER of 10−5 Throughput(bits/s/Hz) Complexity
HD Detection

Scheme 1 K=1 20.8 2.667 1.4× 105

K=2 26.5 4 5.6× 105

Scheme 2
a) K=1 30.3 2.667 9.5× 105

K=2 30.2 4.444 3.8× 106

b) 34.9 7.111 5.1× 108

c) 22.4 1.778 1.8× 105

Scheme 3
K=1 16.6 1.778 8.6× 106

K=2 23.4 2.667 3.4× 107

K=3 28.1 3.778 1.4× 108

Scheme 4
a)

K=1 8.2 1.778 5.3× 107

K=2 13.4 3.111 2.1× 108

K=3 19.4 4.667 8.3× 108

b) 34.6 5.333 2.2× 1010

c) 8.3 1.333 7.2× 106

Scheme 5 K=1 9.6 3.556 1.2× 107

K=2 13.3 5.333 4.9× 107

Scheme 6
a) K=1 -0.4 3.556 4.1× 107

K=2 4.9 6.222 6.5× 109

b) 15.7 17.778 5.4× 1011

c) 1.5 1.778 1.1× 107

Scheme 7
a) 5.6 3.556 2.2× 105

b) 18.7 17.778 1.7× 106

c) 1.8 1.778 6.6× 104

SD Detection

Scheme 8
a) 1.1 1.778 2.2× 1013

b) 6.2 8.889 3.2× 1014

c) 0.1 0.889 3.4× 1012

Scheme 9
a) 4.3 1.778 1.3× 106

b) 8.9 8.889 8.3× 106

c) 4.1 0.889 1.2× 105

Adaptive Modulation

Scheme 10
a) - - -
b) - - 5.2× 106

c) - - 1.22× 105

TABLE VI: Training configuration for learning-aided detection
method of Scheme 7,9

Setting Hard-decision Soft-decision
Maximum training epoch 400 1000
Initial learning rate 0.001
Target SNR for training 0dB-20dB -10dB to 5dB
Mini batch size 1000 200 to 500
Optimizer Adam
Training data size 50000
Validation data ratio 0.1

TABLE VII: Training configuration for adaptive modulation
of Scheme 10

Setting value
Number of Channel realizations for training 100000
Number of Channel realizations for testing 20000
Target SNR for training 0dB-30dB
Number of neighbors in KNN searchin k 15
Number of FC layers in DNN 3
Number of neurons in each FC layer (128,256,128)
Number of output layer size 3
Activation function for output layer Soft Max

detection for the CS-JMIM system in the TSF domain852

with 2 TAs, 2 RAs, 2 subcarriers per group and 2 TSs in853

the RD, while using 4 antennas, 4 subcarriers per group854

and 4 TSs in the VD. In this scheme, we consider the855

following mappings:856

a) General JMIM with K = 1, 2. 857

b) Grouped JMIM with gs = 8, gsx = gsy = gsz = 858

2 subgroups, where each subgroup applies general 859

JMIM along with K = 1.(In this case, we further 860

split the TD into two parts, which have gsz = 2.). 861

c) Coded JMIM nq = 2. 862

7) Scheme 7: applies DNN based HD detection for the 863

CS-JMIM system. Here, we consider 2 TAs, 2 RAs, 2 864

subcarriers per group, and 2 TSs in the RD, while using 865

4 antennas, 4 subcarriers per group and 4 TSs in the VD. 866

In this scheme we consider the following mappings: 867

a) General JMIM with K = 2. 868

b) Grouped JMIM with gs = 8, gsx = gsy = gsz = 869

2 subgroups, where each subgroup applies general 870

JMIM with K = 1. 871

c) Coded JMIM with nq = 2. 872

8) Scheme 8: applies conventional SD detection for the 873

CS-JMIM system in the TSF domain, while using RSC 874

channel coding RSC(2,1,3). Here, we consider 2 TAs, 875

2 RAs, 2 subcarriers per group, and 2 TSs in the RD, 876

while using 4 antennas, 4 subcarriers per group and 4 877

TSs in the VD. In this scheme, we consider the following 878

mappings: 879

a) General JMIM with K = 2. 880

b) Grouped JMIM with gs = 8, gsx = gsy = gsz = 881
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2 subgroups, each subgroup applied general JMIM882

with K = 1.883

c) Coded JMIM with nq = 2.884

9) Scheme 9: applies DNN-based SD detection for the CS-885

JMIM system in the TSF domain, while using RSC886

channel coding RSC(2,1,3). Here, we consider 2 TAs,887

2 RAs, 2 subcarriers per group, and 2 TSs in the RD,888

while using 4 antennas, 4 subcarriers per group and 4889

TSs in the VD. In this scheme, we consider the following890

mappings:891

a) General JMIM with K = 2.892

b) Grouped JMIM with gs = 8, gsx = gsy = gsz =893

2 subgroups, each subgroup applied general JMIM894

with K = 1.895

c) Coded JMIM with nq = 2.896

10) Scheme 10: Adaptive HD-CS-JMIM system based on897

the TSF domain with 2 TAs, 2 RAs, 2 subcarriers per898

group, 2 TSs in RD and 4 antennas, 4 subcarriers per899

group and 4 TSs in VD. The details of the DNN based900

adaptive system design are shown in Table VII. In this901

system, we consider the following adaptation schemes:902

a) Conventional adaptation.903

b) KNN-based adaptation.904

c) DNN-based adaptation.905

Fig. 15: BER performance comparison of Scheme 1 and
Scheme 2a). Our simulation parameters are shown in Table IV.

As shown in Fig. 15, we compared the CS-aided separate906

MIM - namely the CS-GFIM-IM in this case - to CS-JMIM,907

Fig. 16: BER performance comparison of CS-JMIM Scheme 2.
Our simulation parameters are shown in Table IV.

which applied the general JMIM method of Section II-A1a). 908

In this case, based on the transmission rate calculation formula 909

bG
Nc+LCP

, we have the transmission rate of the CS-GFIM- 910

IM associated with K = 1 in Scheme 1 as Rk=1
t = 2.667 911

bits/s/Hz. This is the same as the CS-JMIM associated with 912

K = 1 in Scheme 2a) under identical hardware configuration. 913

However, the performance of Scheme 2a) is almost 10 dB 914

worse than that of Scheme 1 at a BER of 10−5. Hence CS- 915

JMIM is unattractive in this situation. For more activated index 916

entities of both CS-JMIM and CS-GFIM-IM, the throughput 917

of Scheme 1 is increased to R1,k=2
t = 4 bits/s/Hz and Scheme 918

2a has R2,k=2
t = 4.444 bits/s/Hz. In this case, Scheme 2a of 919

K = 2 has a 3.6 dB better performance than Scheme 1 of 920

K = 2 at a BER of 10−5. 921

Fig. 16 shows the performance of the proposed CS-JMIM 922

Scheme 2 for different JMIM methods. Observe that for a 923

small index space of Nt = Nf = 2, the detector cannot 924

beneficially exploit the sparsity. The transmission rate of 925

Scheme 2 is either Rk=1
t = 2.667 bits/s/Hz, or Rk=2

t = 4.444 926

bits/s/Hz and we have Rbt = 7.111 bits/s/Hz, Rct = 1.778 927

bits/s/Hz. As shown in Fig. 16, Scheme 2a) associated with 928

K = 1, 2 has a similar BER performance, while Scheme 2a) 929

of K = 2 has a higher throughput. Additionally, Scheme 2b) 930

has almost 4 times the transmission rate compared to Scheme 931

2c), but the latter has an increased diversity gain. Hence the 932

BER performance of Scheme 2c) is 12dB better than that of 933

Scheme 2c). 934

Fig. 17: BER performance comparison of Scheme 3 and
Scheme 4a). Our simulation parameters are shown in Table IV.

To further exploit the sparsity of CS-JMIM, we also con- 935

sider larger SF dimensions applied to the JMIM method, as 936

shown in Fig. 17. We assume that both schemes have the 937

same number of TAs and subcarriers per group along with an 938

adjustable number of VD subcarriers. For Nt = 4, Nf = 4, 939

the CS-JMIM of Scheme 4a) achieves better performance 940

than the separate MIM in Scheme 3 with the same K value. 941

Specifically, both schemes have Rk=1
t = 1.777 bits/s/Hz and 942

Scheme 3 associated with K = 1 obtains 5 dB SNR gain over 943

Scheme 4a) with K = 1 at BER of 10−5. When relying on a 944

higher K, CS-JMIM is capable of providing higher throughput 945

as well as improved detection performance. With K = 2, 3, 946

the throughput of Scheme 3 is Rk=2
t = 2.667 bits/s/Hz and 947

Rk=3
t = 3.333 bits/s/Hz, respectively, while Scheme 4a) could 948

achieve Rk=2
t = 3.111 bits/s/Hz and Rk=3

t = 4.667 bits/s/Hz. 949
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Fig. 18: BER performance comparison of CS-JMIM Scheme 4.
Our simulation parameters are shown in Table IV.

Fig. 18 shows the BER performance of Scheme 4. A950

higher VD index mapping DM size allows for more flexible951

K value selection in Scheme 4a). Observe that Scheme 4a)952

with K = 1 achieves a similar performance to Scheme 4c),953

where Scheme 4a) with K = 1 has Rt = 1.778 bits/s/Hz and954

Scheme 4c) has Rt = 1.333 bits/s/Hz.955

Fig. 19: BER performance comparison of Scheme 5 and
Scheme 6a). Our simulation parameters are shown in Table IV.

For the TSF domain system of Fig.6(a), we consider a956

separate model termed as CS-MIM [22]. This model applied957

SIM and STSK in the FD and CS is applied for the FD. Then958

the symbol after IFFT is modulated using SM and transmitted959

by the activated antennas. The CS-MIM scheme is simulated960

using the parameters of Table IV for Scheme 5. In this case,961

to achieve the same throughput as Scheme 5 and Scheme 6a)962

at K = 1, for Scheme 5, we deliver the signals over 8 TAs963

with the aid of 2 RF chains. Then both Scheme 5 and Scheme964

6a) can have a throughput of RK=1
t = 3.556 bits/s/Hz with965

K = 1. Then, we can observe in Fig.19 that Scheme 6a)966

achieves a BER of 10−5 at -0.1 dB while Scheme 5 requires967

about 9.8 dB at the same BER. For K = 2, Scheme 5 requires968

13.5 dB SNR at 10−5 BER for RK=2
t = 5.333 bits/s/Hz and969

Scheme 6a) requires 7.5 dB lower SNR than Scheme 5 for970

RK=2
t = 6.222 bits/s/Hz.971

In Fig. 20, the TSF domains are considered for the972

CS-JMIM using Scheme 6. As shown in Fig. 20, Scheme973

6a) with K = 1 attains the best performance among all974

types in Scheme 6. Quantitatively, at a BER of 10−5,975

it requires an SNR of −0.3 dB and has a throughput of976

Fig. 20: BER performance comparison of CS-JMIM Scheme 6.
Our simulation parameters are shown in Table IV.

Rt = 3.555bits/s/Hz. Scheme 6c) achieves a BER of 10−5 977

at an SNR of 1.1 dB. When higher dimensions are introduced, 978

both the general JMIM and grouped JMIM can provide a 979

high throughput as well as a good BER performance, albeit 980

at the cost of a huge detection complexity. In Fig. 20, 981

Scheme 6b) represents the grouped JMIM associated with 982

8 sub-groups. When K = 1 and the general JMIM DM 983

is applied, we have Rt = 17.778bits/s/Hz. This scheme 984

attains a BER of 10−5 at an SNR of 15.1 dB. Scheme 985

6a) with K = 3 has Rt = 9.333bits/s/Hz and achieves 986

a BER of 10−5 at an SNR of 11 dB. Hence, for higher 987

dimensions, the grouped JMIM outperforms the other 988

two JMIM methods. However, the complexity of grouped 989

JMIM is exponentially increasing. Specifically, the detection 990

complexity order of the grouped JMIM can be expressed as 991

O[(NJMIM (XK)Nsub ] for the TSF domain CS-JMIM system. 992

This can be simplified to O[((NvNvtTv/(gs))(M
K)Nsub ], 993

where Nsub represents the number of sub-groups. On the 994

other hand, the detection complexity order of the general 995

JMIM is O[(NvNvtKTvM
K)]. Furthermore, the coded 996

JMIM complexity order can be O[(Nq − nq)nqM ]. Then we 997

can formulate the computational complexity order of ML 998

for Scheme 7a) as OML[NrNfNtT (NrNfNtTN
2
vtN

2
vT

2
v + 999

NvtNvTvM
2NfNtT + MK)(NJMIM (XK))] . For 1000

Scheme 7b), the sub-groups must be considered 1001

in each rounds, which have a complexity of 1002

OML[(NsubNrNfNtT/gs)(NrNfNtTN
2
vtN

2
vT

2
v /(gs

2) + 1003

NvtNvTvMNfNtTM/gs + MK)(NJMIM (XK))Nsub ]. 1004

For Scheme 7c), we have a reduced complexity order of 1005

OML[NrNfNtTNvtNvTvMNfNtTM(Nq − nq)nqM ] due 1006

to having multiple bit copies. Then we can calculate the 1007

computational complexity based on Table IV, as shown in 1008

Table V. 1009

Upon increasing the throughput excessive detection com- 1010

plexity is imposed by conventional ML detection. To reduce 1011

the detection complexity, we have to accept a performance vs. 1012

complexity trade-off. In this context, we compare our DNN- 1013

based detector of the TSF based CS-JMIM system to conven- 1014

tional maximum likelihood detection by comparing Scheme 6 1015

and Scheme 7 in Fig 21. Observe that the DNN-assisted HD 1016

detector achieves a similar performance to the ML detector. 1017

Furthermore, the complexity of the NN is determined by that 1018
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Fig. 21: BER performance comparison of CS-JMIM Scheme 6
and Scheme 7. Our simulation parameters are shown in
Table IV.

of the forward and backward propagation, where we have the1019

general DNN complexity order of O[ninlnl+1nhLno]. Here ni1020

and no denote the number of neurons in the input and output1021

layers, nl(l = 1, 2, · · · ) is the number of neurons in the hidden1022

layer between the input and output. Then we can analyse each1023

DNN model in Scheme 8. For a classification neural network,1024

we have the LSTM layer as the activation layer of the input1025

layer, which has the complexity of OLSTM [4nl(nd+2+nl)],1026

where nd is the number of neurons in the input layer and1027

the popular sigmoid function is used as the activation layer of1028

the output layer. The associated complexity is O[2nLnL−1 −1029

nL−1 + 2nL−1]. The complexity of the FC layer with the1030

ReLu function is given by O[2nlnl−1−nl−1+. Then we have1031

the computational complexity order of O[4nl(n1 + 2 + nl) +1032 ∑L−1l(2nl+1nl−nl)+2nL−1]. Now we can also summarize1033

the computational complexity of the DNN methods in Table1034

V.1035

Fig. 22: BER performance comparison of CS-JMIM Scheme 8
and Scheme 9. Our simulation parameters are shown in
Table IV.

Furthermore, we extend the DNN-assisted detector to the1036

SD of the TSF domain CS-JMIM system in Scheme 8 and1037

Scheme 9, while using the half-rate RSC encoder RSC(2,1,3),1038

having a memory of 3. As shown in Fig. 22, with the aid of1039

channel coding, the performance of CS-JMIM can be further1040

increased, as seen for Scheme 8. By comparing Scheme 8 of1041

TABLE VIII: Configuration of mode used in conventional
adaption with TSF domain CS-JMIM

No Type Scheme Rt

1 Coded Scheme 7a) 1.778
2 General Scheme 7b) 6.222
3 Grouped Scheme 7c) 17.778

Fig. 23: Adaptive modulation performance comparison of CS-
JMIM Scheme 7. Our simulation parameters are shown in
Table IV.

Fig. 22 and Scheme 6 of Fig. 21, the detection performance 1042

is 1dB better for Scheme 8c) than for Scheme 6c) at the BER 1043

of 10−5. Furthermore, Scheme 8a) requires an SNR of 6.2 1044

dBs at BER=10−5, while Scheme 6a) necessitates SNR=1.6 1045

dB. Scheme 8b) has the best performance, outperforming 1046

Scheme 6b) by about 8 dB at a BER of 10−5. Fig.22 also 1047

shows the performance of DNN based detection for TSF CS- 1048

JMIM, where Scheme 9a) and Scheme 9c) exhibit similar 1049

performance. Quantitatively, they require about 4 and 3.2 dB 1050

at a BER of 10−5. Scheme 9b) requires 3 dB higher SNR 1051

than the conventional SD detector, but it is still about 6 1052

dB better than Scheme 7b). The proposed learning method 1053

has a complexity order of O[O(ninl) + O(n2l ) + O(nlno)] 1054

compared to O[2cg (TvNtNvt(QX )K ] for the conventional 1055

scheme, where cg denotes the RSC-coded number of bits in a 1056

transmitted symbol. 1057

Finally, we present the performance of Scheme 10 in 1058

Fig. 24: Adaptive modulation performance comparison of CS-
JMIM Scheme 7. Our simulation parameters are shown in
Table IV.
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Fig. 23. For the sake of a fair comparison, we use the1059

data sets of the same size for both training and testing1060

the KNN and DNN-based systems. Table VIII presents the1061

configurations of the three modes of operation used in the1062

adaptive system simulated. The switching thresholds for the1063

conventional adaptive modulation are set as P1 = 1.85 dB1064

and P2 = 10.3 dB, as shown in Fig. 23. Specifically, the1065

conventional adaptive modulation scheme characterized in1066

Fig. 23 uses Mode1 when SNR < P1, and Mode2 for1067

P2 > SNR. After the instantaneous SNR becomes higher1068

than P2, Mode3 is selected. Again, our KNN-based and DNN-1069

based mode-selection algorithms are used in Fig. 23. Observe1070

that the DNN based adaptive system attains a BER closer1071

to the target of 10−3 than the KNN based adaptive system.1072

Then we can further analyse the throughput of each mode1073

selection scheme in Fig. 24. Observe that the DNN-based1074

adaptive modulation scheme achieves a higher throughput than1075

the KNN-based one, because more accurate decisions can1076

be made by the DNN classifier than by the KNN classifier.1077

Clearly, the learning assisted adaptive schemes are capable1078

of selecting the best possible mode, while the conventional1079

adaptive modulation uses the predefined average SNR-based1080

thresholds for mode selection.1081

VI. CONCLUSIONS1082

A CS-JMIM system was proposed and DL-aided detection1083

using both HD and SD was conceived for reducing the detec-1084

tion complexity. We demonstrated that the proposed JMIM1085

system is capable of outperforming its individual domain1086

based counterpart, striking more flexible trade-offs between1087

the BER performance and throughput. The learning method1088

constructed is capable of approaching the performance of1089

the maximum likelihood detector at a significantly reduced1090

complexity. Furthermore, we showed that adaptive modulation1091

can be applied for the selection of the JMIM DM design.1092

We demonstrated that the CS-JMIM can flexibly adjust the1093

transmission mode for accommodating time-variant channel1094

conditions. We presented both KNN and DNN based adap-1095

tive schemes. Our simulation results showed that both the1096

KNN and DNN-based approaches outperform the conventional1097

threshold-based adaptive modulation. We also demonstrated1098

that the DNN based adaptive design has a lower computa-1099

tional complexity and higher throughput than the KNN based1100

approach.1101
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