
Reachability Verification Based Reliability Assessment for Deep
Reinforcement Learning Controlled Robotics and Autonomous Systems

Yi Dong1, Xingyu Zhao1, Sen Wang2 and Xiaowei Huang1

Abstract— Deep Reinforcement Learning (DRL) has achieved
impressive performance in robotics and autonomous systems
(RASs). A key impediment to its deployment in real-life opera-
tions is the spuriously unsafe DRL policies—unexplored states
may lead the agent to make wrong decisions that may cause
hazards, especially in applications where end-to-end controllers
of the RAS were trained by DRL. In this paper, we propose a
novel quantitative reliability assessment framework for DRL-
controlled RASs, leveraging verification evidence generated
from formal reliability analysis of neural networks. A two-
level verification framework is introduced to check the safety
property with respect to inaccurate observations that are due
to e.g., environmental noises and state changes. Reachability
verification tools are leveraged at the local level to generate
safety evidence of trajectories, while at the global level, we
quantify the overall reliability as an aggregated metric of
local safety evidence, according to an operational profile.
The effectiveness of the proposed verification framework is
demonstrated and validated via experiments on real RASs.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved im-
pressive experimental results in video game playing, in
which DRL agents are deployed under a trial-error-replay
model. However, safety critical applications normally are not
able to trial and replay at will in the real-world, such as
autonomous vehicles, power systems, and humanoid robots.
A recent trend in autonomous navigation, including ground
and underwater vehicles, is to use end-to-end controllers
trained by reinforcement learning methods [1]–[4]. For these
applications that require a high level of safety integrity,
deploying unverified DRL policies can lead to catastrophic
consequences. In the meantime, Deep Neural Networks
(DNN) in DRL algorithms are known to be unrobust to
adversarial examples, i.e., the output of a DNN may be
subject to dramatic change under a minor input disturbance.
Such issues have motivated this work to formally analyse the
end-to-end DRL systems and assure their reliability before
they are deployed.

DRL verification and testing are emerging in recent years,
including safe exploration, run-time monitoring, adversarial

*This work is supported by UK Dstl through Safety Argument
for Learning-enabled Autonomous Underwater Vehicles and UK EP-
SRC through End-to-End Conceptual Guarding of Neural Architectures
[EP/T026995/1]. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 956123.

1Yi Dong, Xingyu Zhao and Xiaowei Huang are with the Depart-
ment of Computer Science, University of Liverpool, Liverpool, UK
{yi.dong,xingyu.zhao,xiaowei.huang}@liverpool.ac.uk

2Sen Wang is with the Department of Electrical and
Electronic Engineering, Imperial College London, London, UK
sen.wang@imperial.ac.uk

training, etc.. Pattanaik et al. first proposed adversarial at-
tacks for DRL algorithms, which trains the DRL with engi-
neered adversarial attacks to improve the DRL performance
and obtain more robust DRL models [5]. However, these
adversarial training methods cannot guarantee the safety
during the training process. To this end, Dalal et al. designed
a safety layer that solves an action correction formulation per
state [6]. Felix et al. used the Lyapunov function to calculate
the region of attraction for a specific policy, and applied
statistical models to obtain high-performance DRL policies
[7]. These algorithms focus on the safety property in the
training process, but the testing environment may be different
from the training environment. Therefore, run-time monitors
were proposed to assure the safety during the operations. The
shield structure is created to prevent the agent from making
unsafe decisions [8]—it bans all unsafe actions for each state
to achieve safe reinforcement learning.

Aforementioned methods answer the binary/worst-case
question of whether there exists any safety violation in
the presence of extreme perturbations/attacks. They do not,
however, provide an overall understanding of how safe the
DRL policy is whenever a violation can be found locally (in
line with the insight gained from evaluating Deep Learning
(DL) classifiers [9], [10]). In this regard, we introduce a relia-
bility metric based on the probabilistic notion of proportions
of safety violations in the global input space representing
the environment and formulated by the Operational Profile
(OP). Furthermore, most DRL algorithms are explored and
learned in simulation environments for, e.g., efficiency and
cost considerations. However, the gap between simulated and
real environments may lead to violation of the safety property
set in simulation. Observation in the simulation environment
is assumed as an accurate and unbiased signal, which is an
unacceptably strong assumption in safety critical context.
To this end, we proposed a novel two-level verification
framework to assess the reliability of DRL algorithms: i) at
the local level of an initial state, reachability analysis tools
are utilised to generate safety verification evidence that are
interval based trajectories starting from an initial state; ii) at
the global level, we borrow ideas from software reliability
engineering to model the distribution of initial states as
the OP (representing all possible operational scenarios), and
then aggregate local safety evidence according to the OP to
statistically estimate the overall reliability.

The main contributions of this paper include:
a) A two-level assessment framework is designed to assess

the reliability of DRL algorithms. Reachability analysis
formally verifies the safety of trajectories starting from an

ar
X

iv
:2

21
0.

14
99

1v
1

 [
cs

.R
O

]
 2

6
O

ct
 2

02
2

initial state at the local level, while overall reliability claims
are supported statistically at the global level across initial
states.

b) At the local level, the state-of-the-art reachability ver-
ification tool POLAR [11] is integrated and optimised for
faster computation and tighter bounded results. Meanwhile,
OP is introduced and approximated to support a global level
reliability claims.

c) A publicly accessible repository of our method with
all source code, datasets, experiments and a real-world case
study based on BlueRov2 unmanned underwater vehicles
(UUVs).

The rest of this paper is organised as follows. The math-
ematical preliminaries used in this paper are summarised
in Section II. A detailed two-level verification algorithm is
demonstrated in Section III, including local-level reachabil-
ity analysis and global-level statistical analysis. Simulation
results and corresponding discussion are presented in Section
IV. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Deep Reinforcement Learning

We use discounted infinite-horizon Markov Decision Pro-
cess (MDP) to model the interaction of an agent with the en-
vironment E. An MDP is a 5-tuple ME = (S,A,P,R, γ),
where S is the state space, A is the action space, P(x′|x, a)
is a probabilistic transition, R(x, a) ∈ R≥0 is a reward
function, and γ ∈ [0, 1) is a discount factor. We use x to
range over the state space S because it not only is a state but
also will later be used as input to a policy neural network. We
consider different DRL algorithms, such as DDPG [12], TD3
[13], PPO [14], which return an optimal policy π∗ includes
a mapping µ : S → A that maps from states to actions.

Based onME , a policy π induces a trajectory distribution
ρπ,E(ζ) where ζ = (x0, a0, x1, a1, ...) denotes a random
trajectory. The state-action value function of π is defined
as

Qπ(x, a) = Eζ∼ρπ,E [
∞∑
t=0

γtR(xt, at)] (1)

and the state value function of π is V π(x) = Qπ(x, π(x)).
We consider a DRL driven robot that navigates, and avoids

collisions, in a complex environment where there are static
and dynamic objects (or obstacles). The interaction of the
robot with the environment can be modelled as an MDP. At
each time t, the robot has its sensor observation from the
environment, namely state xt, i.e., xt = (o1t , o

2
t , · · · , ont)T

where o1t , o
2
t , · · · , ont are observable sensor signals at time

t. It is worth noting that the robot’s parameters are also
formatted as observations because these variables are relative
to the environment, such as the pose in the global coordinate
system and the velocity relative to the stationary ground.
The sensors can only observe partial information of the
environment, e.g., by scanning the environment within a
certain distance. For example, the observation range is within
3.15 metres in Turtlebot Waffle Pi [15] for a distance sensor.

An action at ∈ A consists of several decision variables.
With the Proportional-Integral-Derivative (PID) controller on
the robot, we consider two action variables, representing
line velocity and angle velocity, respectively, i.e., at =
(vlinet , vanglet)T . At each time t, the DRL policy outputs an
action at from the action set A.

A fundamental functionality of an autonomous robot is to
avoid the obstacles and reach a goal area. On every state
xt, the sensory input oit can be utilised to e.g., predict the
distance to the obstacles when they are within the sensing
range. To implement the functionality, the environment may
impose a reward function R on the states, the actions or
both. A reward on the states can be, e.g., with respect to
the distance to obstacles, and a reward on the actions can
be, e.g., with respect to the acceleration in linear or angular
speeds.

B. Reachability Analysis and Verification

Reachability analysis has been developed recently for the
verification of safety and robustness of DNNs [16]–[19].
Adapted to the context described in Section II-A, reachability
analysis determines the set of states that a system can reach,
starting from a set of initial states and considering the
interaction between the DRL policy and the MDP. Safety
verification, which is to determine whether a given DRL
policy may lead to any unsafe state over an MDP, can be
reduced to the reachability problem of whether an unsafe
state is reachable.

In this paper, we verify a safety property on a model-
free DRL algorithm by computing its reachable set over a
full trajectory. Similar to POLAR [11], the following two
mathematics are employed to calculate the reachable set:
Taylor Arithmetic and Bernstein Polynomial.

1) Taylor Arithmetic: Followed by [11], [20], [21], any
interval could be transferred into a Taylor model. A Taylor
model is combined by a polynomial approximation p and an
interval error bound I:

TM = p(x) + I, x ∈ D (2)

where D is the input domain of the Taylor model. I is the
remainder of the Taylor model.

Given two Taylor Models: TM1 = (p1, I1) and TM2 =
(p2, I2), the addition and multiplication are computed as:

TM1 + TM2 =(p1 + p2, I1 + I2)

TM1 × TM2 =(p1 × p2 − rk, I1 × I2 + Int(p1)× I2
+ Int(p2)× I1 + Int(rk))

where Int(·) is the interval of the polynomials, k is the
maximum order of the Taylor models, and rk is the truncated
polynomial of the Taylor models.

2) Bernstein Polynomial: There are several different ac-
tivation functions in DNNs, e.g., Sigmoid, ReLU, and Tanh.
The Taylor model can only propagate with continuous ac-
tivation functions, but DNNs may use piece-wise activation
functions to fit the data, such as the ReLU function. Inspired
by [11], the Bernstein polynomial can be applied to calculate
the Taylor models with discrete activation functions.

To achieve over-approximation for safety, the conservative
remainder for Bernstein polynomial should be considered:

pσ =

k∑
i=0

(
σ(a+

b− a
k

i)Cki
(yi − a)k(b− yi)k−i

(b− a)k

)
(3)

where a, b are the infimum and supremum of the activation
function input, k is the maximum order of the Bernstein
polynomial, y is the sampled point between a and b.

ε = max
i=0,··· ,m

(∣∣∣∣pσ (b− am
(i+

1

2
) + a

)
−σ

(
b− a
m

(i+
1

2
) + a

)∣∣∣∣+ b− a
m

)
(4)

where m is the sampling steps and ε is the conservative error
bound of the Bernstein polynomial Iσ = [−ε,+ε].

C. Operational Profile based Reliability Assessment

In real world scenarios, the agent can take different
trajectories from different initial states under a given pol-
icy and an operational environment. To support reliability
claims for DRL in safety critical applications, all possible
trajectories need to be considered. In real applications, the
initial state (and its trajectory) of the agent usually obeys
some distribution that can be approximated from data.

The OP has been widely modelled in reliability assess-
ment, which is applied to represent the occurrence proba-
bilities of function calls and the distributions of parameter
values [22], [23]. In other words, the OP is a Probability
Density Function over the whole input domain D, and returns
the probability of x ∈ D being selected as the next random
input. Later, we formally define the reliability metric of a
DRL policy in a given environment, considering the OP.

III. ALGORITHM DESIGN

In this paper, we design a novel two-level framework
for assessing the reliability of DRL controlled Robotics and
Autonomous Systems (RAS) based on the reachability verifi-
cation tools and statistical analysis technologies. At the local-
level, safety verification is reduced to a reachability problem
of checking whether an unsafe state is reachable from an
initial state, while the global-level claims on reliability can
be obtained by OP-based statistical methods.

A. Local-level Safety Verification

At the local level, we introduce an interval based method
to calculate the reachable set of a DRL policy. DDPG
algorithm is composed of an actor network and a critic
network. We reduce the verification problem to a reachability
problem, which is to calculate the overall reachable set of
actor neural network and environment, cf. Fig. 1.

The observation from the environment is normally noisy
due to, e.g., inaccurate sensor signal and external disturbance.
These noises could be ignored under safe conditions and in
wide spaces but will cause safety issues in some corner cases,
as illustrated in subfigures (A-D) of Fig. 2. It is obvious
that the UUV is safe in case A because the real paths and
observable path are safe. In cases B, C, and D, the UUV is

Fig. 1: Reachability verification framework.

unsafe since at least one signal shows that a crash occurs.
If the sensor did not observe the correct distance perception
in a corner case, the decision of the current policy will lead
to a crash with high probability. Consequently, these errors
should also be considered in safety verification. Following
the recommendation from [24], the interval methods are
suitable to deal with the uncertain sensor noises. Based on
the reachability verification tools, we use an interval to bound
the real paths around the observable path. Subfigure (E) in
Fig. 2 shows that all the real paths are bounded in green
intervals.

Fig. 2: Different corner cases and illustration diagram.

Specifically, the robot’s initial states are over-
approximated with a range η and all possible true
states are theoretically bounded in this green interval. Then
we have

at ∈ NNactor(x), x ∈ η (5)

where NNactor is the actor neural network of DDPG.
Transferring the initial input domain into a Taylor model:

TM0
i = (pi(xi), Ii) , xi ∈ ηi (6)

where xi is the ith state value of the observation. There is no
activation function after the first layer of the neural network.
The Taylor model can be directly propagated to the next
layer.

tmj
i =

N∑
k=1

wk × TM j−1
k + bi (7)

where tmj
i is the temporary Taylor model that has not passed

the activation functions. w, b are the weights and biases of
NNactor, respectively. j, k are the indices of neural network
layers and neurons, N is the total number of neurons.

For the rest layers of NNactor, there are activation
functions. Meanwhile, Taylor arithmetic cannot process the
interval input with the noncontinuous activation functions.
Therefore, we employ the Bernstein polynomial to deal the
activation functions. Although the transformation will yield
errors, we can summarise these errors into the remainder of
the Taylor models by equations (3) and (4).

TM j
i = pσ(

N∑
k=1

wk×TM j−1
k +bi)+Int(rk)+Iσ, j > 0 (8)

It is noticed that the maximum order of the Taylor models
will be increased after the activation functions, and therefore
we truncate the part polynomial rk of the output Taylor
model to maintain the complexity of the Taylor models. After
several layers propagation, the output Taylor model is

TMout
i =

N∑
k=1

wk × TMout−1
k + bi (9)

Here, the output Taylor model could be reverse to the interval
by calculating the upper and lower bound of the Taylor model
regarding to the input domain D.

a) POLAR Algorithm Optimisation: In this paper, PO-
LAR algorithm is selected to test DRL algorithm due to
its advantages of tighter remainder bounds [11]. Different
from other interval arithmetic methods, POLAR algorithm
generate better performance in reachable set calculation,
especially for DNNs. The deeper neural network layers cost
POLAR longer time to do Bernstein polynomial sampling.
In consideration of the characteristics of ReLU activation
function, the propagation law of the Taylor models is sepa-
rated into three parts, which depends on the interval ranges
TM ∈ [a, b].

Furthermore, it is time consuming to calculate the accurate
bound of the high order Taylor models. Similar to [11], [25],
we calculate the conservative bound for the Taylor models
with the Minkowski addition [26]:

P ⊕Q = {p + q|p ∈ P, q ∈ Q} (10)

Consequently, to accelerate the testing speed and further
enhance the testing accuracy of ReLU activation functions,
we define the following propagation law for the Taylor
models:

TMo =

0, if b ≤ 0,

pσ(TM i)+Int(rk) + Iσ , if a ≤ 0 & b ≥ 0,

TM i, if a ≥ 0,

(11)

where TM i and TMo are the Taylor models before and after
the Relu activation function, respectively.

We enhance the original POLAR algorithm by first split-
ting the polynomial fit on each neuron into three piecewise
functions based on the characteristics of the ReLU function,
and then using the Bernstein polynomial to calculate the TMs
if and only the interval of TMs contains 0. It is obvious that

the proposed approach (11) is much faster than the original
POLAR algorithm since the sampling steps of the Bernstein
polynomial are excused when the lower and upper bounds
of TMs are positive or negative simultaneously. Nevertheless,
the proposed method (11) can get the results without error
(when the interval is positive-definite) or even eradicate the
errors passed from the previous layer to zero (when the
interval is negative-definite). Therefore, this optimisation step
can reduce the computation time and increase accuracy.

B. Global-level Reliability Assessment

The execution of a DRL-driven RAS in an environment
leads to a trajectory distribution (modelled as a Discrete-
Time Markov Chain, discussed later), where the uncertainty
(modelled with probability distribution) is from the environ-
ment1. Formally, given an environment E, a policy π, and
an initial state x0, we can construct a modelME(π, x0) rep-
resenting the probability distribution of a set of trajectories.
Assume that we have a verification technique g, as discussed
in Sections III-A.

Definition 1: The verification problem is, given a con-
structed model ME(π, x0) and a verification tool g, to
determine whether the model is safe with respect to certain
property φ, written as ME(π, x0) |=g φ. We may omit the
superscript g and write ME(π, x0) |= φ, if it is clear from
the context. We can also assume that g returns a probability
value – a Boolean answer can be converted into a Dirac
probability. Then, the verification problem is to compute
Pr(ME(π, x0), φ), i.e., the probability of safety.

In the following, we discuss how the above verification
problem may contribute to the computation of the reliability.
Similar as [28], [29], we partition the space of initial states
into m sets, each of which is represented as a constraint
Ci, for i = 1..m. Then, we can also define the empirical
distribution pop over the partitions, and find a model Gθ that
is as close as possible to pop. Formally, assume that Gθ is a
generative model over parameters θ, we have

θ∗ = argmin
θ

KL(Gθ, pop) (12)

where KL(·, ·) is the KL divergence between two distribu-
tions.

Based on these, we can estimate the reliability (defined as
the probability of failure in satisfying φ with the policy π in
the environment E) as

Reliability(E, π, φ) =
m∑
i=1

Gθ(Ci)(1−Pr(ME(π, xCi), φ)) (13)

where Gθ(Ci) returns the probability density of the partition i
that is represented as the constraint Ci, xCi denotes the central
point (i.e., a representative) of Ci, and 1−Pr(ME(π, xCi), φ)
returns the failure rate of the DRL agent π working on
inputs satisfying the constraint Ci under the environment E.
Note that, Gθ can be estimated in the same way as the data
distribution in [28], [29].

1For simplicity and without loss of generality, we assume DRL policy is
deterministic, while our method can be adapted for probabilistic policies.

TABLE I: Connections between reliability assessment for traditional software, DL classifiers and DRL controllers.

Traditional safety critical software DL classifiers DRL controllers

Metric Probability of failure
per random demand (pfd)

Probability of misclassification
per random image (pmi)

Probability of crash per
random initial state

OP Distribution of
independent demands

Distribution of
independent images

Distribution of
independent initialisations

Event of
interest

Failure that has
safety impact

Misclassification that
has safety impact

Failure that leads to
hazards, e.g., crash

Partitions Classes of input demands (“bins”)
based on functionalities

Norm-balls in the input space
with certain radius

(e.g., the r-separation distance [27])

Norm-balls in the input space with certain
radius representing a set of initial states

(e.g., a specified bound of errors)

V&V in
each partition

Estimation on conditional
pfd of each bin (e.g., by stress

testing of a “bin”)

Local robustness estimation
within a given norm-ball

Reachability verification
(a “strip” of bounded trajectories in the input

space starting with a norm-ball)
Oracle of

each partition
By observation or given

by the specification
Label of the central-point
(seed) of the norm-ball

Emptiness of the intersection of
the “strip” and predefined unsafe-areas

To better position the scope of our work, we summarise
our approach for DRL, compared with reliability assessment
methods designed for traditional software and DL classifiers,
in Table I, where the proposed method is written in bold font.

IV. EXPERIMENT RESULTS

This section presents experimental results regarding the
following research questions (RQs):
RQ1: How effective the proposed local-level reliability as-
sessment is of a single trajectory (reachability verification)?
RQ2: How accurate the proposed method is compared to
original POLAR algorithm?
RQ3: How conservative it is between our interval-based
method and traditional sampled point-based method?
In the following, we will first introduce our experimental
environment, and then address the RQs individually.

A. Experiment Setup

The mission of this experiment example is to automatically
dock the UUV based on DRL algorithm. We have both
simulation and physical experiments for Bluerov2 UUVs2.
For the simulation environment, we use ROS [30] and
Gazebo [31] as shown in the left side of Fig. 3.

Docking Cage

UUV Robot

Real Docking Cage

Physical UUV Robot

Simulation Environment

Fig. 3: Simulation and physical experiment environments.

For the physical experiment environment, the training
process is conducted on a real-world water tank with a
docking cage as shown in the right side of Fig. 3. In the real-
world experiment environment, we randomly initialise the
UUV from different start points, which naturally generate the

2All source code, DRL models, datasets, and experiment results are
available at solitude website https://github.com/Solitude-SAMR

OP in our reliability assessment framework. Theoretically,
we will accurately estimate the model’s safety if the verified
all initial intervals can cover whole initial space. Due to the
limitation of computing power and the scalability problem,
we use the sampling method to estimate the safety of the
entire input space in this paper. It can be obtained from Fig.
4, the distribution of the approximated OP converges as the
number of samples increases.

Fig. 4: Approximating the OP as more data is sampled.
Multivariate distribution is projected to a 2D space for
visualisation.

B. Verification of an Initial State

In this subsection, we show the local-level reachability
verification process of an initial interval. In this paper, we
use POLAR [11] as the reachability verification tool to over-
approximate the reliability of an initial state. Here, we set
a deadzone ([-0.1, +0.1]) around the target to accelerate
the UUV’s stability and improve the missions’ success rate.
It can significantly solve the scalability problem of the
verification tool and the over-conservative problem caused
by the error accumulation. The verification results are shown
in Fig. 5.

From the figure, the reachable sets of the robot converges
to 0, which means the robot from that initial state interval
will reach its destination. Due to the existence of the dead-
zone, if the variables tend to the target value, then all the
variables will eventually converge to the deadzone, that is,
the UUV will eventually be parallel to the dock frame. Note
that state variables 3 (roll velocity) and 4 (pitch velocity)

https://github.com/Solitude-SAMR

Fig. 5: The reachable set of six state variables (Top 3 figures:
x, y, z velocity; Bottom 3 figures: roll, pitch, yaw velocity).
Each plot shows a “strip” of bounded trajectories.

are not changed ideally since they are uncontrollable by the
DRL policy in this experiment.

C. Comparison with Original POLAR Algorithm

Here, we show the over-approximated range between our
method and POLAR [11] to illustrate the advantages of the
proposed algorithm. The experiments are performed using
Python on a same computer equipped with a AMD core
EPY C 7452. The initial states, system dynamics, neural
network models and weights are same. In the experiment, we
found that the POLAR algorithm is too loose after iterating
50 steps. To better show the performance, we update the
input state interval on every single steps. The output Q ranges
of each step in a trajectory are compared in Fig. 6.

C
rit

ic
 N

et
w

or
k

O
ut

pu
t R

an
ge

s

0 50 100 150 200
Testing Steps

100

0

-100

-200

-300

-400

Upper Bound with POLAR
Lower Bound with POLAR
Upper Bound with Optimised POLAR
Lower Bound with Optimised POLAR

Fig. 6: Comparisons between the original POLAR and our
optimised POLAR—the latter yields tighter bounds.

In Fig. 6, our optimisation for the original POLAR greatly
improves its performance. Although both algorithms can
obtain the reachable set of the DNNs, the proposed approach
yields tighter thus more accurate results.

D. Comparison with Point-based Assessment

After the local-level verification, we show the reliability
assessment of different DRL policies to validate the effec-
tiveness of the proposed framework in this subsection. For a
given DRL policy and a set of initial spaces, we can estimate
the reliability of the system based on equation (13) and
reachability verification tools. In this paper, we collected the
data from the real world water tank environment and trained

a DRL model to finish the mission task. After we sampled
500 initial states in the real-world environment, we calculate
the reachable set by the proposed method and estimate the
reliability of the UUV system between our interval-based
method and traditional point-based methods, where we use
the same OP on the global-level assessment. The comparison
results are summarised in Fig. 7:

Sa
fe

ty
 P

ro
pe

rty

1.0

0.9

0.8

0.7

0.6

0.5

0 500 1000 1500 2000 2500 3000
Testing Trajectories

Point-based Testing
Two-level Assessment

Fig. 7: Comparisons between point-based and our two-level
interval-based assessments—the latter yields more conserva-
tive results.

As can be seen from the Fig.7, the proposed interval-based
approach is more conservative than the point-based testing
method. This is because the point-based method is equivalent
to a sample from our interval. Therefore, the proposed local-
level reachability verification algorithm considers the entire
environment and is an over-approximation of all possible
points. The result of original POLAR algorithm is not
shown here, because the result is too conservative, where
the reachable set covers all safe and unsafe area.

It can be seen from the Fig. 7, as the number of sampled
initial states (representing trajectories starting from them)
increases, the predicted reliability of UUV system converges.
We found that the reliability of the system tested here is
not very high. This is mainly due to the fact that safety
factors are not considered in the training of the DRL model.
It is conceivable that the goal of the reinforcement learning
model is to dock the UUV at the harbour, which will cause
the UUV always attempt to approach the destination in a
straightforward route to achieve maximum reward and speed.

V. CONCLUSION

This paper studies the probability of failures that can
cause hazards in DRL controlled RASs. A two-level reli-
ability assessment framework is proposed, using reachability
verifications at the local-level and statistically supporting a
probabilistic reliability claims based on the OP at the global-
level. An optimisation on the local-level reachability analysis
algorithm is applied to enhance the verification speed and
accuracy. The results in the simulation and the real world
manifest the effectiveness of the proposed framework.

ACKNOWLEDGMENT

We thank Vibhav Bharti for his support in the experiments.

REFERENCES

[1] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[2] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[4] F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, “A survey of deep
reinforcement learning algorithms for motion planning and control of
autonomous vehicles,” in 2021 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2021, pp. 1073–1080.

[5] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary,
“Robust deep reinforcement learning with adversarial attacks,” in
Proceedings of the 17th International Conference on Autonomous
Agents and Multi-Agent Systems, ser. AAMAS ’18. Richland,
SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2018, p. 2040–2042.

[6] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[7] F. Berkenkamp, “Safe exploration in reinforcement learning: Theory
and applications in robotics,” Ph.D. dissertation, ETH Zurich, 2019.

[8] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[9] S. Webb, T. Rainforth, Y. W. Teh, and M. P. Kumar, “A statistical
approach to assessing neural network robustness,” in 7th Int. Conf. on
Learning Representations (ICLR’19). OpenReview.net, 2019.

[10] B. Wang, S. Webb, and T. Rainforth, “Statistically robust neural
network classification,” in Proc. of the Thirty-Seventh Conference on
Uncertainty in Artificial Intelligence, ser. PMLR, vol. 161 of UAI’21,
2021, pp. 1735–1745.

[11] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Polar: A polynomial
arithmetic framework for verifying neural-network controlled sys-
tems,” in the 20th Int. Symp. on Automated Technology for Verification
and Analysis, 2022.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in ICLR’16, 2016.

[13] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[15] Robotis, “Robotis(2019) turtlebot3 – e-manual, waffle pi,” [Online]
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/.
(Accessed on 02 August 2021).

[16] W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of
deep neural networks with provable guarantees,” in Proceedings of
the 27th International Joint Conference on Artificial Intelligence, ser.
IJCAI’18. AAAI Press, 2018, p. 2651–2659.

[17] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[18] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.

[19] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Ph.D. dissertation, Technische Uni-
versität München, 2010.

[20] K. Makino and M. Berz, “Taylor models and other validated func-
tional inclusion methods,” International Journal of Pure and Applied
Mathematics, vol. 6, pp. 239–316, 2003.

[21] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in Int. Conf. on Computer Aided Verification.
Springer, 2021, pp. 249–262.

[22] J. D. Musa, “Operational profiles in software-reliability engineering,”
IEEE Software, vol. 10, no. 2, pp. 14–32, 1993.

[23] C. Smidts, C. Mutha, M. Rodriguez, and M. J. Gerber, “Software
testing with an operational profile: Op definition,” ACM Comput. Surv.,
vol. 46, no. 3, 2014.

[24] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-
mare, “Deep reinforcement learning at the edge of the statistical
precipice,” Advances in neural information processing systems, vol. 34,
pp. 29 304–29 320, 2021.

[25] G. Yang, G. Qian, P. Lv, and H. Li, “Efficient verification of control
systems with neural network controllers,” in Proceedings of the 3rd
International Conference on Vision, Image and Signal Processing,
2019, pp. 1–7.

[26] P. Gritzmann and B. Sturmfels, “Minkowski addition of polytopes:
computational complexity and applications to gröbner bases,” SIAM
Journal on Discrete Mathematics, vol. 6, no. 2, pp. 246–269, 1993.

[27] Y.-Y. Yang, C. Rashtchian, H. Zhang, R. R. Salakhutdinov, and
K. Chaudhuri, “A closer look at accuracy vs. robustness,” Advances in
neural information processing systems, vol. 33, pp. 8588–8601, 2020.

[28] Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao,
S. Schewe, and X. Huang, “Reliability assessment and safety argu-
ments for machine learning components in system assurance,” ACM
Tran. on Embedded Computing Systems, 2022.

[29] X. Zhao, W. Huang, A. Banks, V. Cox, D. Flynn, S. Schewe,
and X. Huang, “Assessing the Reliability of Deep Learning Clas-
sifiers Through Robustness Evaluation and Operational Profiles,” in
AISafety’21 Workshop at IJCAI’21, 2021.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[31] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, vol. 3. IEEE, 2004, pp. 2149–2154.

	I INTRODUCTION
	II PRELIMINARIES
	II-A Deep Reinforcement Learning
	II-B Reachability Analysis and Verification
	II-B.1 Taylor Arithmetic
	II-B.2 Bernstein Polynomial

	II-C Operational Profile based Reliability Assessment

	III ALGORITHM DESIGN
	III-A Local-level Safety Verification
	III-B Global-level Reliability Assessment

	IV EXPERIMENT RESULTS
	IV-A Experiment Setup
	IV-B Verification of an Initial State
	IV-C Comparison with Original POLAR Algorithm
	IV-D Comparison with Point-based Assessment

	V CONCLUSION
	References

