
IEEE INTERNET OF THINGS JOURNAL, 2023 1

Enabling ImageNet-Scale Deep Learning on MCUs
for Accurate and Efficient Inference
Sulaiman Sadiq, Jonathon Hare, Simon Craske, Partha Maji, Geoff Merrett

Abstract—Conventional approaches to TinyML achieve high
accuracy by deploying the largest deep learning model with
highest input resolutions that fit within the size constraints
imposed by the microcontroller’s (MCUs) fast internal storage
and memory. In this paper, we perform an in-depth analysis of
prior works to show that models derived within these constraints
suffer from low accuracy and, surprisingly, high latency. We
propose an alternative approach that enables the deployment
of efficient models with low inference latency, but free from the
constraints of internal memory. We take a holistic view of typical
MCU architectures, and utilise plentiful but slower external
memories to relax internal storage and memory constraints. To
avoid the lower speed of external memory impacting inference
latency, we build on the TinyOps inference framework, which
performs operation partitioning and uses overlays via DMA, to
accelerate the latency. Using insights from our study, we deploy
efficient models from the TinyOps design space onto a range
of embedded MCUs achieving record performance on TinyML
ImageNet classification with up to 6.7% higher accuracy and
1.4x faster latency compared to state-of-the-art internal memory
approaches.

Index Terms—Edge AI, Internet of Things (IoT), Artificial
Intelligence of Things (AIoT), TinyML, Microcontrollers, Em-
bedded Systems, Machine Learning, Deep Learning, Neural
Networks (NNs), Convolutional Neural Networks (CNNs).

I. INTRODUCTION

Deep Neural Networks (DNN) have found success in a
variety of fields including Image Classification [1], [2], Natural
Language Understanding [3], [4] and Gameplay [5] amongst
several others. At the same time, Internet of Things (IoT)
devices are increasingly pervading society with forecasts that
there will be 29.4 billion connected IoT devices by 2030 [6].
Typically, DNN inference on IoT devices is applied with the
traditional cloud computing paradigm where data collected on
the IoT device is processed in the cloud [7]. However, issues
of reliability, privacy, latency and cost associated with cloud
based solutions [8] has led to the development of the field
of Tiny Machine Learning (TinyML) which aims to develop
models and frameworks suitable for processing data locally on
IoT devices without streaming the raw data to the cloud. This
is desirable for applications including smart homes [9], health
analytics [10] and industrial sensing [11].

Corresponding Author: Sulaiman Sadiq
Sulaiman Sadiq, Jonathon Hare and Geoff Merrett are with the Department

of Electronics and Computer Science, University of Southampton, UK (email:
sulaiman.sadiq@soton.ac.uk, jsh2@ecs.soton.ac.uk, gvm@ecs.soton.ac.uk)

Simon Craske is with ARM Ltd, UK (email: simon.craske@arm.com)
Partha Maji is with Tenstorrent, UK (email: pmaji@tenstorrent.com)

A significant challenge in TinyML is the severe resource
constraints of the IoT devices. While modern GPUs have
memory in the range of gigabytes and thousands of cores
for parallel processing of DNN workloads, IoT devices host
microcontrollers (MCUs), with limited memory in the order
of kilobytes, a small or even no cache, and a single core
for processing. Considering these constraints and the trend of
model sizes getting larger [12], efficient inference on MCUs
requires optimising across the inference stack by designing
efficient models and inference software that effectively utilises
the devices resources to maximise its compute capability.

The majority of approaches [13]–[17] to DNN deployment
in TinyML take a simplified view of MCU architectures where
they consider only limited internal storage and memory which
have low power consumption and access latency. However,
these works do not consider the limitations on model per-
formance imposed by size constraints of this internal memory
design space. In this article, we analyse state-of-the-art models
derived from the constrained internal memory design space
to show that they suffer from low accuracy and, somewhat
counter-intuitively, high latency as well. This suggests the need
for an alternative approach, free from internal memory size
constraints. While larger external memories are available, they
have lower performance and energy efficiency for inference,
as they are slower and have higher power consumption. To
effectively utilise external memories, we build on the TinyOps
inference framework [18], which accelerates inference from
external memory to combine advantages of speed of internal
memory and design flexibility of external memories using
operation partitioning and DMA based overlaying. We perform
experiments on ARM® Cortex® M class devices and utilise
insights from our study to derive efficient models from the
TinyOps design space demonstrating that it outperforms prior
approaches in terms of accuracy, latency and energy efficiency
as shown in Figure 1.

1.7% higher 1.6x faster 1.4x higher 1.1x lower

Fig. 1. The TinyOps design space achieves higher accuracy with lower latency
and energy efficiency than the internal memory design space.



IEEE INTERNET OF THINGS JOURNAL, 2023 2

The main contributions of this work are as follows:
• We study DNN deployment on MCUs, and show that

deriving models within the constraints of the internal
memory design space leads to deployment of degenerate
architectures with low accuracy and high computation
focused in inefficient operations leading to high latency.

• We build on the TinyOps inference framework [18] to
accelerate inference from external memory by up to
2x, enabling a new efficient design space for tiny deep
learning on MCUs.

• We derive efficient models from the TinyOps design
space for a range of devices, with up to 6.7% higher
accuracy and 1.4-2.1x faster inference latency than the
previous state-of-the-art [13], [17].

Our analysis demonstrates the strength of the TinyOps
design space and suggests that it should be studied further
for tiny deep learning applications on MCUs.

II. BACKGROUND AND RELATED WORK

Due to the limited compute capabilites of microcontrollers,
prior works have focused on improving efficiency across a
number of different dimensions.

a) Quantisation: A common approach to reducing the
memory footprint of models is reducing the precision of
weights and activations. Varying fixed point precisions have
been shown to work including 2-bit, 4-bit, 8-bit or mixed-bit
[15], [19]–[21], in addition to vector quantisation approaches
[22], [23]. In the case of MCUs, we use the industry standard
8-bit quantisation due to the DSP/SIMD instructions of the
architectures that enable faster throughput.

b) Pruning: Another approach is to prune less im-
portant connections in a network to induce sparsity. [24]–
[27]. These approaches reduce the memory footprint of the
model allowing deployment within tight memory constraints.
However, unstructured pruning approaches tend to not carry
over to microcontrollers due to lack of efficient sparse matrix
manipulation kernels. In our study, we use the conventional
approach of scaling existing mobile models by treating the
width and resolution as hyper-parameters which are selected
to meet memory and storage requirements [15], [28].

c) Efficient Network Design: For maximum performance,
architectures can be hand-crafted for low memory and com-
putational footprint [28]–[30]. Recently Neural Architecture
Search has also been used with latency-aware [31]–[33] and
resource-aware search [13], [14], [17], [34]. We analyse these
works in Section III to find that models derived with these
operation agnostic approaches under internal storage and
memory constraints yield sub-optimal accuracy and latency.

d) Frameworks and Kernels: Microcontrollers have a
number of frameworks for DNN inference [13], [35]–[38]. The
frameworks use optimised kernels to efficiently execute oper-
ations in the inference graph [13], [15], [39], [40]. However,
these works either use external or internal memory exclusively
for weights or tensors, yielding sub-optimal accuracy or la-
tency [13], [35]–[37], or utilise platform specific peripherals
which limits portability [38] while others only support a subset
of DNN architectures [39].

In our work, we build on the TinyOps [18] inference
framework which utilises the open-source TensorflowLite-
Micro (TFLiteMicro) [35] with CMSIS-NN [40] kernels. We
adopt a generic model of the MCU which allows portability
across devices. We experiment with ARM® Cortex® M class
devices and utilise external memory interfaces including the
Flexible Memory Controller (FMC) and Octo/Quad Serial Port
Interface (O/QSPI) to supplement the limited internal memory
and storage with SDRAM and NOR Flash respectively as
shown in Figure 2. Further, we utilise the DMA peripheral to
provide data transfers between memories with minimal CPU
intervention.

CPU

SRAM

(<512KB)

Flash

(<2MB)

DMA

FMC

(<64MB)

QSPI

(<64MB)

Internal Memory

External Memory

Interfaces

Fig. 2. Block Diagram of Typical MCU Architecture.

III. DESIGN LIMITATIONS OF INTERNAL MEMORY

We analysed models designed for internal memory and
studied their accuracy, computational complexity (MACs) and
inference latency. Following the setup of prior works, we stud-
ied scalings of mobile models (ProxylessNAS [41], MNASNet
[32], MobileNetV3 [42], EfficientNet [30]) in addition to the
NAS based MCUNetV1/V2 models [13], [17]. When scaling
mobile models, the storage and memory requirement dictated
by the parameter count and tensor sizes were controlled via
the number of filter channels or width of the model and input
resolution respectively. We used 8-bit precision and scaled
down from baseline models by varying the width in increments
of 0.05 from 0.10 to 1.00, and resolution in increments of
16 ranging from 48 to 224. We looked at ARM® Cortex®

M class MCU devices by STMicroelectronics with diverse
internal storage and memory constraints including the L552
(512KB Flash/192KB SRAM), F469 (1MB/256KB), F746
(1MB/320KB) and the H743 (2MB/512KB). A mobile model
scaled to a width of 0.10 and a resolution of 192, is re-
ferred to as {ProxylessNAS/MNASNet/MobileNetV3}-w0.10-
r192. Models derived with the MCUNetV1/V2 algorithms
for any device with 4 or 8-bit precision are referred to as
MCUNet{V1/V2}-{F469/F746}-int{4/8}, e.g. an 8-bit model
derived for the F746 would be MCUNetV1-F746-int8.

A. Below the Pareto Frontier

We determined the pareto frontier for ImageNet classifi-
cation by training scaled variations of mobile models free
from any constraints by varying the width and resolution and
compared it with models derived under internal storage and
memory constraints of the MCU platforms.



IEEE INTERNET OF THINGS JOURNAL, 2023 3

In
te

rn
al

 M
em

o
ry

 

M
o
d
el

s

Point of Diminishing Returns

Proxyless-w0.50-r96

1.3% ↑ Acc 

4M ↓ MACs

(a)

Proxyless-w0.50-r96

1.3% ↑ Acc 

193ms ↓ Lat

Point of Diminishing Returns

In
te

rn
al

 

M
em

o
ry

 

M
o
d
el

s

(b)

Fig. 3. (a) The Accuracy-MACs pareto curve is composed of models with different widths or parameters. The platforms which the ProxylessNAS scalings
were derived for are given in parentheses. (b) The Accuracy-Latency pareto frontier is pushed forward by the proposed TinyOps inference framework which
accelerates inference of models in external memory as described further in Section IV.

3x3 Conv MbInvConv MbInvConv 1x1 Conv

77% Params, 64M MACs 22% Params, 0.16M MACsMCUNetV1-F469-int8

46% Params, 19M MACs 53% Params, 0.38M MACsProxyless-w0.30-r144 (F469)

Fig. 4. MCUNet architectures employ more parameters in compute intensive
MobileInvertedConv modules to achieve higher accuracy at the cost of extra
computation.

Our analysis revealed that models designed within the
constraints fell well below the pareto frontier as shown in
Figure 3a. As expected, we found the constraint on model size
and input resolution imposed by the internal memory design
space limited the achievable accuracy. However, we further
observed the internal memory models to have a significantly
higher computational complexity compared to models on the
pareto frontier achieving the same accuracy. This is explained
by looking at how prior works attempt to achieve maximum
accuracy and observing the range of resolutions that are
optimal for a particular width multiplier imposed by internal
storage constraints. We observed that, when increasing the
resolution for any particular width multiplier, there is an input
resolution till which that width multiplier is optimal. We term
this the point of diminishing returns as increasing the reso-
lution past this point increases the computation significantly
while returning a diminished increase in accuracy. As shown
in Figure 3a, it is sub-optimal to keep on using the width
multiplier past this point as a higher width scaling on the
pareto frontier is able to achieve better accuracy with the
same computation. However, in order to achieve the highest
accuracy, prior works utilise the largest width and highest input
resolution that can be accomodated by internal storage and
memory. For a range of diverse internal memory constraints
of MCU devices, it can be observed that this approach leads
to deployment of scalings situated well past the point of
diminishing returns which fall below the pareto curve.

Similary, we studied the MCUNet [13], [17] family of mod-
els derived via NAS for deployment within internal storage

and memory constraints to find that they also fell short of the
pareto frontier as shown in Figure 3a. The MCUNet framework
achieves higher accuracy by maximising computation (MACs)
in the models which is taken as a proxy for accuracy. As
shown in Figure 4, we found that this is accomplished by
lowering the parameters in the storage intensive classifica-
tion (Fully Connected) layer and reusing the saved internal
storage in compute intensive MobileInvertedConv blocks in
the architectures. Indeed, we found that the change to micro-
architecture significantly increased computation in the model.
However, this approach also returned a diminished increase
in accuracy for the amount of computation involved with the
models falling below the pareto curve.

In either case, we found that the internal memory models
could be outperformed by larger models free from internal
memory size constraints on the pareto frontier. However, these
would require larger external memory for deployment resulting
in high inference latency due to slow memory access, even
though models had low computational complexity as observed
by comparing Figure 3a and 3b. We build on the TinyOps
inference framework [18] to accelerate latency of inference
from external memory while retaining the design flexibility of
the design space. This enables us to advance the pareto curve
as shown in Figure 3b and deploy models from the TinyOps
design space that outperform internal memory models.

B. Sub-Optimal Deployment Latency

We further analysed the models by studying the opera-
tions that composed the model, including convolution (Conv)
and depthwise convolutions (DepConv). We benchmarked the
throughput of the operations in addition to looking at the
distribution of computation across the operations in models
derived via scaling or NAS. For models derived from the
internal memory design space using either approach, we found
that, in addition to achieving limited accuracy with high
computational requirements as discussed in Section III-A, the
computation was focused in inefficient operations leading to
high deployment latency.



IEEE INTERNET OF THINGS JOURNAL, 2023 4

1
 x

 1
 C

o
n

v

K
 x

 K
 D

ep
C

o
n

v

1
 x

 1
 C

o
n

v

R
 x

 R
 x

 C
in

R
 x

 R
 x

 E
 x

 C
in

R
 x

 R
 x

 E
 x

 C
in

R
 x

 R
 x

 C
o

u
t

(a) (b)

Fig. 5. (a) Structure of MobileInvertedConv block. (b) Latency of operations
of varying complexity used in MobileInvertedConv blocks.

While prior approaches use the conventional approach of
scaling to meet memory or computational constraints, we
looked at how scaling different parameters of the model
affected inference latency on MCU devices. We analysed
the effect of uniformly scaling width and resolution on the
distribution of computation in the model to find that scaling
down width skewed the distribution to concentrate compu-
tation in DepConv operations. This is explained by looking
at the structure of the MobileInvertedConv module which is
the building block of state of the art mobile models [13],
[17], [30], [41], [42]. These blocks with varying parameters
are cascaded together to construct the models and comprise
95% of the computation in the network. As shown in Figure
5a, these blocks consist of sequential Conv-DepConv-Conv
operations where the Conv operations with 1x1 kernel size are
used to project representations to a higher or lower number of
channels and the DepConv operations with varying filter sizes
perform feature extraction.

We looked at how computation is scaled in operations within
these blocks when the model is scaled down to meet any
constraint. For some width and resolution multipliers, α, β < 1
the computation can be calculated as below

MACsconv1 = α2 × β2 ×R2EC2
in (1)

MACsdepconv = α× β2 ×R2ECinK
2 (2)

MACsconv2 = α2 × β2 ×R2ECinCout (3)

where R is the input resolution, E is the expansion ratio and
Cin and Cout are the input and output channels respectively
of the block.

It can be observed that lowering the width through a uniform
width multiplier, α, quadratically decreases computation by
α2 in Conv operations, while decreasing only linearly by
α in DepConv operations. This skews the distribution of
computation with a higher percentage of computation per-
formed in DepConvs as shown in Figure 6 where progressively
reducing the width from 1.00 to 0.30 increases computation in
DepConvs from 18% to 29%. On the other hand, we observe
in Equations 1-3 that meeting any particular MAC budget by
lowering resolution by β results in a quadratic reduction in
computation by β2 in either Conv or DepConv operations. This
preserves the distribution of computation across operations as
shown in Figure 6 with a constant 13% in DepConvs with the
remaining 87% carried out in Conv operations.

lower resolutionslower widths lower resolutionslower widths

1.4x 

faster

1.3x 

faster

1.5x

faster

8
2

%

7
8

%

7
1

%

8
7

%

8
7

%

8
7

%

13%

18%

22%

29%

Fig. 6. Computation (MACs) and Latency Distribution of operations in
models of varying complexity derived by scaling down width or resolution.

We benchmarked the throughput of operations (1x1 Conv,
3x3, 5x5 and 7x7 DepConv) of varying complexity sampled
from scaled variations of mobile models. As shown in Figure
5b, we found that DepConv operations are less efficient than
Conv operations, with 3x3 DepConvs being the most efficient
within DepConv operations of different filter sizes. Combined
with the insight that reducing width focuses computation in
DepConvs, we found that lower width scalings have high
inference latency compared to higher width scalings under the
same MAC budget, as shown in Figure 6 (Right). However,
focusing only on internal storage forces the usage of a low
width multiplier leading to high latency in addition to low
accuracy as discussed in Section III-A.

We note that, although our study of the structure of the
MobileInvertedConv block revealed that higher width multi-
pliers would yield lower latency, it would be possible for these
to be sub-optimal when considering accuracy. This can be
observed in Figure 3a and 3b where, for lower accuracy ranges,
the pareto frontier is composed of lower width scalings with
the higher width scaling of 0.75 only being pareto superior
in models using > 52M MACs. As such, a naive approach
that simply selected the highest width would be sub-optimal
and achieving efficient performance for any MAC budget
would require finding the right trade-off between width and
resolution.

We observed a similar limitation of NAS based MCUNet
architectures which lead to high latency. As the NAS algorithm
maximises the computation in the model in an operation
agnostic manner, a significant amount of the computation is
concentrated in 5x5 and 7x7 DepConvs, which we observed
to have low throughput as shown in Figure 5b. This leads to
higher inference latency compared to models with the same
or higher MAC budget which utilise only efficient operations.

C. Discussion

We demonstrated that models derived under internal mem-
ory constraints through conventional scaling or NAS fell below
the pareto frontier. Further, we found that lower width scalings
of mobile models derived through uniform scaling suffered
from high latency due to the structure of the MobileInvert-
edConv module. It is possible the limitation of uniformly



IEEE INTERNET OF THINGS JOURNAL, 2023 5

Application

Interpreter

TinyOps Partitioning Engine

Hardware Abstraction Layer (HAL)

Kernels

Operator APIs

Low Level Drivers (LLD)

Fig. 7. TinyOps partitioning engine transparently integrates with the inter-
preter and low-level kernels and device drivers.

scaling down width yielding high latency may not hold true
for different search spaces. As such, this limitation could
possibly be addressed through search space engineering with
structural modifications to the MobileInvertedConv module
which preserved the distribution of computation in the model
under uniform scaling. Indeed, our work suggests this might
yield better latency. However, this could also have adverse
effects on other dimensions of performance such as accuracy.
Similarly, for NAS based approaches [13], [37], expanding the
search space within the size constraints of internal memory
by including hyper-parameters used by other works [33],
[43] such as dilation factor, stride or network topology,
might lead to discovery of efficient architectures. However,
the representational capacity would still be limited by the
number of parameters which might limit achievable accuracy.
In either case, different search spaces would require extensive
experimentation to evaluate and compare against the pareto
frontier of the mobile search space which has been used by
prior works to demonstrate state-of-the-art performance on a
number of tasks on MCUs [13], [14], [37], [44].

In our work, we make use of insights gained from our study
and use larger external memories to deploy balanced scalings
of the MobileNetV3 model, employing only efficient 1x1 Conv
and 3x3 DepConv operations. As we discuss further in the
next section, we build on the partitioning and overlaying ap-
proach of the TinyOps framework [18] to accelerate inference
from external memory. This allows us to outperform internal
memory models as we demonstrate with our experiments in
Section V. We note that if internal memory sizes were to
increase in the future allowing deployment of pareto optimal
models within internal memory size constraints, the TinyOps
approach would be costlier from a latency perspective due
to overheads of the overlaying approach. However, as we
discuss in Section V-C, internal memory can be expensive to
manufacture, in which case, TinyOps could be used to lower
bill of materials with only a slight latency overhead (1.1x↑)
compared to internal memory. Further, we believe the trend
of increasing model sizes [12] for better performance also
suggests the need for external memory based solutions.

IV. TINYOPS: AN ALTERNATIVE APPROACH FOR DEEP
LEARNING ON MCUS

Our analysis of the internal memory design space revealed
that the constraints on model size lead to deployment with sub-
optimal accuracy and latency. In this section, we explore an

X2a => B1 X2b => B0

AvgPool2a

X2c => B1

AvgPool2b AvgPool2c

S3 S1 S2 S3

Last Part of 

Previous Operation
B1 B0 B1

Y2a => B0

First Part of Next 

Operation

Output, Y1

Y2a
Y2b
Y2cSDRAM Buffer

SRAM Buffer

DMA Copy, SRC => DST

SDRAM Buffer

SRAM Buffer

DMA Copy, SRC => DST

S1

Input, X2

X2a
X2b
X2c

Input, X2

X2a
X2b
X2c

Fig. 8. TinyOps partitioning and overlaying based inference pipeline.

alternative approach for deep learning on MCUs. We propose
relaxing the internal storage and memory constraints by using
larger external memories. This gives us the flexibility to
deploy higher width models from the pareto frontier. However,
the slow access latency of external alternatives becomes a
bottleneck in computation as the CPU stalls while the data
used in computation, such as intermediate tensors and weights,
is fetched from slower external memory. This leads to higher
inference latency, even for models which have lower compu-
tational complexity than internal memory models. To mitigate
the high inference latency, we build on the TinyOps framework
which accelerates inference from external memory. The design
flexibility of the external memory design space coupled with
the TinyOps inference framework allow us to deploy efficient
models with high accuracy and low latency as can be observed
in Figure 3b.

The TinyOps framework utilises a partitioning and DMA
based overlaying engine that seamlessly integrates into the
inference software stack as shown in Figure 7. When an ap-
plication invokes an inference, the interpreter runs through the
inference graph and sequentially invokes the operations (Conv,
DepConv, Add, Pool etc) in the graph. TinyOps executes the
operations by interfacing with the low-level kernels and DMA
through hooks to perform platform independent execution of
the operations. In our work, TinyOps uses the interpreter based
TfLiteMicro, but we note that the layered design does not limit
applicability to other inference frameworks.

A. Execution Pipeline

Prior works [13], [14], [16], [17] use the entirety of internal
storage (Flash) and memory (SRAM) for model parame-
ters and activation tensors. TinyOps uses external memory
(SDRAM) as main memory for data including intermediate
tensors and weights of operations, to relax size constraints
of limited Flash and SRAM (Figure 2). We make use of
two key insights to prevent the CPU waiting on external
memory fetches and accelerate inference of efficient models
in the external memory design space. Firstly, that computation
on a tensor can be divided such that the sub-computation
performed on smaller blocks of the tensor are independent
of each other. Secondly, that the CPU is able to process data



IEEE INTERNET OF THINGS JOURNAL, 2023 6

O
O

M

O
O

M

F469 F746

O
O

M

1.6x
1.3x

2.0x

2.5x

F746

F469

Fig. 9. TinyOps adapts the partitioning strategy according to the available
memory budget when accelerating inference.

while the DMA copies data in parallel. Using these insights,
we first reduce the memory requirement of large models
by partitioning operations in the inference graph into tiny
operations, which sequentially process the smaller independent
blocks or tiny tensors of the input tensor. This allows data
for tiny operations to be fetched from SDRAM into smaller
fast buffers that can be accommodated in SRAM which the
CPU accesses with low latency. The latency of data fetching
from external memory is then overlapped with the computation
performed by the CPU. This is accomplished by offloading
the data fetching to the DMA and using a double buffering
strategy to establish a pipeline between the DMA and CPU at
the tiny operation level where the data copying is performed
by the DMA, while the CPU processes data in SRAM buffers
in parallel. This allows us to efficiently hide the latency of
fetching data from external memory and enables the CPU to
seamlessly process data in external memory with low latency
from fast internal memory.

This is shown in Figure 8 where the input tensor, X2, of the
Average Pooling operation is divided into three tiny operations.
While the CPU processes the first tiny tensor, X2a, in the
SRAM buffer, B1, the DMA copies in the second tiny tensor,
X2b, from SDRAM to B0 in parallel to hide the data copying
latency. After processing the tiny tensor in B1, the CPU frees
the buffer and processes the second tiny tensor, X2b, in B0
which has been readied by the DMA which begins to load
the third tiny tensor, X2c, into the newly freed buffer, B1,
by the CPU and so on. In this manner, the CPU sequentially
executes the tiny operations until the entire operation has been
performed without ever having to wait for data to be fetched
from the slower SDRAM. The tensors stored in HWC (Height-
Width-Channel) format were partitioned in the H dimension
since this allowed the DMA to copy contiguous blocks of data.

TinyOps uses an adaptive partitioning strategy according
to the available memory budget. The size of the fast buffers
on SRAM is determined by the largest tiny operation which is
partitioned to meet the budget. The remaining operations were
then partitioned to fit within the allocated fast buffers. This
minimised overheads of multiple kernel calls, DMA initiali-
sation, cache maintenance and interrupt handling operations.
As shown in Figure 9, for a MobileNetV3-w1.00-r160 model
requiring 4.2MB of storage and 627KB of memory, a memory
budget of 256KB or 320KB for the F469 or F746 devices can
be met while accelerating inference up to 1.6x.

L
at

en
cy

 

(m
s)

S
R

A
M

 U
sa

g
e 

(K
B

)

1184ms (2x↓)
External

TinyOps

2411ms2411ms

Quant ParamsSRAM Saved

84128 86 4 86 4

Tiny Tensors Filters BiasesInternal Latency Gap

1089 841 293 8395

TinyOps 102KB (2.3x↓)102KB (2.3x↓)

230KB
Internal

230KB
Internal

TinyOps 102KB (2.3x↓)

230KB
Internal

Fig. 10. TinyOps overlays frequently accessed data to reduce latency.

B. Overlaying Strategy

To reduce SRAM usage, TinyOps only overlayed frequently
accessed data. This included quantisation parameters in ad-
dition to filters and bias weights to further reduce inference
latency as shown in Figure 10 where the memory usage
is as low as 102KB for a Proxyless-w0.30-r144 model on
the F469 while accelerating inference by 2x compared to
external memory inference. Sparsely accessed data such as
output tensors, which are written to only once for multiple
reads of inputs and weights, were not overlayed as shown
in Figure 8. Similarly, tensor structures and meta-data of the
inference graph were placed in SDRAM. In total, TinyOps
declared seven fast buffers on SRAM, with four used for ping-
pong buffering of tiny tensors, one for biases and two for
quantisation parameters. For tiny input tensors, four buffers
were required to support two-input operations (Add). As two
of these buffers would be unused in one-input parametric oper-
ations (Conv, DepConv), we reused these for overlaying filters
and the Im2Col scratch buffer required by Conv and DepConv
operations. In our work, we modified the buffer allocation
strategy such that any unused memory in the memory budget
was allocated to the buffer reused for filter overlaying. This
allowed overlaying of more filters in the network and reduced
latency up to 10%. Bias and quantisation parameter buffer
sizes were chosen according to the operation with the largest
requirement.

V. EXPERIMENTAL RESULTS

We studied the accuracy, latency and energy efficiency of
models in the internal and TinyOps design space on ImageNet
classification. Experiments were performed on ARM® Cortex®

M class devices using off-the-shelf Discovery and Evaluation
boards by STMicroelectronics which supplemented internal
storage and memory as shown in Table I. The F469 and
F746 were supplemented with 8MB of SDRAM and 8MB
Flash on the FMC and QSPI interface respectively, while
the L552 used 2MB of SRAM on the FMC interface and
a 32GB SD Card for non-volatile storage. Accuracies are
reported with standard post training 8-bit quantisation, unless
stated otherwise. Due to unavailability of latency metrics for
MCUNetV1 8-bit models [13] with the MCUNet inference
framework, these were deployed with TinyOps. Statistics for
MCUNetV1 4-bit models [13] and MCUNetV2 [17] were
taken from the authors’ paper, since models were unavailable.
Power measurements were made with the Qoitech® Otii Arch.



IEEE INTERNET OF THINGS JOURNAL, 2023 7

TABLE I
CORTEX-M BASED OFF-THE-SHELF PLATFORMS USED WITH VARYING SPECIFICATIONS AND CONSTRAINTS.

Platform Architecture Core Clock (MHz) Internal External

D-Cache SRAM (KB) Flash (KB) FMC (KB) O/QSPI (KB)

L552 ARMv8 M33 110 ✗ 192 512 2048 -
F469 ARMv7 M4 180 ✗ 256 1024 8192 8192
F746 ARMv7 M7 216 4KB 320 1024 8192 8192

TABLE II
ACCURACY, LATENCY AND ENERGY PER INFERENCE COMPARISON OF MODELS FROM TINYOPS AND INTERNAL MEMORY DESIGN SPACE

Platform Model Design
Space

MACs
(M)

Params
(M) QAT Acc

(%)
Latency

(ms)
Power
(mW)

Energy
(mJ)

L552 Proxyless-w0.10-r192 Internal 8 0.19 N 27.01 855 65 55.6
MobileNetV3-w0.25-r080 TinyOps 3 0.50 N 30.00 230 145 33.4

F469

Proxyless-w0.30-r144 Internal 21 0.72 N 50.67 1089 290 316
MobileNetV3-w0.50-r112 TinyOps 16 1.33 N 52.37 674 410 276

MCUNetV1-F469-int8 [13] (Repr.) Internal 67 0.73 N 59.47 2980 360 1073
MNASNet-w1.00-r080 TinyOps 48 4.38 N 60.83 2146 435 933

MobileNetV3-w0.75-r128 TinyOps 44 2.49 N 62.58 1442 395 570

MCUNetV1-F469-int4 [13] Internal 135 1.4 Y 62.00 - - -
MCUNetV2-F469 [17] Internal 119 <1 Y 64.90 - - -

MobileNetV3-w1.00-r160 TinyOps 111 3.96 N 68.19 3472 405 1406

F746

Proxyless-w0.30-r176 Internal 32 0.72 N 53.68 686 645 442
MobileNetV3-w0.55-r128 TinyOps 28 1.55 N 58.29 460 805 370

MCUNetV1-F746-int8 [13] (Repr.) Internal 82 0.74 N 61.47 1838 765 1406
MCUNetV1-F746-int4 [13] Internal 170 1.4 Y 63.50 - - -

MNASNet-w1.00-r128 TinyOps 104 4.38 N 68.01 1367 775 1059
MobileNetV3-w1.00-r160 TinyOps 111 3.96 N 68.19 1307 795 1038

A. Accuracy and Latency

Utilising insights gained from our analysis of operation
throughput on MCUs and the pareto frontier, we manually
derived balanced scalings of the MobileNetV3 model from
the TinyOps design space to compare with models designed
for internal memory.

As shown in Table II, the MobileNetV3 scalings out-
performed optimal scalings of a ProxylessNAS model de-
rived for internal memory constraints of the L552, F469
and F746 in addition to the MCUNetV1/2 models derived
via NAS on the F469 and F746. On the F746, we out-
performed MCUNetV1-F746-int8 with 6.4% higher accuracy
and 1.4x lower latency with the MobileNetV3-w1.00-r160
model. We observed that even with 8M and 29M higher
MACs than MNASNet-w1.00-r80 and MCUNetV1-F746-int8
respectively, the MobileNetV3-w1.00-r160 model had lower
latency due to computation in more efficient 1x1 Conv and
3x3 DepConv operations as shown in Figure 11. On the
F469, the MobileNetV3-w0.75-r128 architecture outperformed
MCUNetV1-F469-int8 with 3% higher accuracy and 23M
lower MACs to achieve 2.1x lower inference latency.

As latency metrics for MCUNetV2 and 4-bit MCUNetV1
models were not published, we compared with accuracy and
MACs for these models. As can be observed, on the F469 and
F746, the MobileNetV3-w1.00-r160 scaling achieved 4.7%
and 6.2% higher accuracy with 24M and 49M lower MACs
than MCUNetV1-F469-int4 and MCUNetV1-F746-int4 re-
spectively. Similarly, compared to MCUNetV2-F469-int8, the

MobileNetV3-w1.00-r160 yielded 4% higher accuracy with
8M lower MACs without the need to perform quantisation
aware training (QAT). We note that as MCUNetV2 uses
a NAS algorithm similar to MCUNetV1 to derive models,
which maximises computation in an operation agnostic man-
ner, our study suggests MCUNetV2-F469-int8 would have
significantly higher latency than the MobileNetV3-w1.00-r160
model even under the same MAC budget due to the usage of
inefficient 5x5 and 7x7 DepConv operations similar to the
observation made for MCUNetV1-F746-int8 in Figure 11.

Fig. 11. The MobileNetV3 model only uses efficient 3x3-DepConvs.

We note that the scalings we deploy would not necessarily
be the optimal models in the TinyOps design space. In our
experiments, we manually searched for scaled variations of



IEEE INTERNET OF THINGS JOURNAL, 2023 8

TABLE III
POWER CONSUMPTION OF TINYOPS COMPARED TO INTERNAL AND

EXTERNAL MEMORY DEPLOYMENT

Platform Power (mW) Latency (ms)

Int Ext TinyOps Int Ext TinyOps

L552 65 205 140 855 2963 977
F469 290 435 380 1089 2411 1131
F746 645 770 798 685 1004 772

the MobileNetV3 model in the TinyOps design space via
trial and error. As opposed to a naive approach which might
select a sub-optimal scaling where the width or resolution
might be too high or low, we searched for balanced scalings
close to the pareto frontier guided by heuristics obtained from
our study. On average, this required 3 trials to derive each
model where each trial consisted of training and evaluating the
candidate model. This approach resulted in a high search cost
of 108 GPU hours to derive each model. Additionally, only
modifying the hyper-parameters of width and resolution with
limited trials would not guarantee convergence to the optimal
architecture on the pareto frontier. We believe, further per-
formance gains could be achieved with automated algorithms
utilising weight sharing [13], [32], [33], [41]–[43] mechanisms
to evaluate a larger number of architectures with a lower search
cost. Moreover, other hyper-parameters such as the number
and size of kernels in each layer, depth or network topology
could be included in the search in order to find the optimal
architecture in the TinyOps design space which makes this a
useful avenue to explore in future work.

B. Power Consumption and Energy Efficiency

We compared the power consumption and energy efficiency
of deployment from internal or external memory and the
TinyOps approach.

As can be observed in Table II, models deployed from
the TinyOps design space had up to 2.2x higher power con-
sumption than the internal memory models. However, this was
easily offset by 1.4x to 3.7x lower latency achieved by efficient
scalings of the MobileNetV3 model from the TinyOps design
space to yield lower energy-per-inference on all devices.

To analyse the power consumption of the different memory
configurations, we deployed the same model under the various
configurations on each platform with Proxyless-w0.10-r192,
Proxyless-w0.30-r144 and Proxyless-w0.30-r176 models de-
ployed on the L552, F469 and F746 respectively. As shown
in Table III, we observed that on the L552 and F469, TinyOps
had lower power consumption than external memory inference
even though it used the additional DMA peripheral. This is due
to external memory inference requiring repetitive high energy
reads of filters and tensors from SDRAM for every stride
of convolution in DepConv operations. On the other hand,
TinyOps overlays data from SDRAM to SRAM, requiring only
one read from SDRAM with subsequent reads made from the
low power SRAM. The power saved from reduced SDRAM
reads outweighed the overhead of the DMA resulting in an
overall reduction for TinyOps. However, the same behavior

was not observed on the F746 due to the presence of cache
which reduces SDRAM reads in external memory inference
by providing repetitive low energy data access from itself.
In this case the additional DMA used by TinyOps outweighs
the reduced SDRAM reads in external memory inference for
a higher power consumption. Nevertheless, we observed that
TinyOps lower latency outweighed the 3.5% higher power
consumption, for lower energy-per-inference.

C. Bill of Materials

Contrary to internal memory only deployment approaches,
TinyOps uses external Flash to store the model data with
internal Flash used only for the inference framework code
requiring approximately 100KB. This enables the usage of
cheaper variants of the same MCUs, with less internal Flash
which is expensive to manufacture. We compared the bill
of materials for the internal memory and TinyOps approach
for an ARM® Cortex® M4 deployment scenario to find that
at the time of writing, the cost of using an STM32F469NE
by STMicroelectronics with 320KB of internal flash, supple-
mented with 8MB of external SDRAM and NOR Flash was
actually less than using an STM32F469NI with 2048KB of
internal flash. This would suggest that the TinyOps approach
is competitive when considering cost in addition to being
superior in accuracy, latency and energy efficiency.

VI. CONCLUSIONS

In our study we showed that the constraint of internal
storage and memory leads to deployment of degenerate ar-
chitectures with sub-optimal accuracy and latency. We relaxed
this constraint using cheaper available external memories and
accelerated inference up to 2x using the TinyOps framework.
Using insights from our study, we deployed efficient models
from the TinyOps design space to outperform state-of-the-
art internal memory approaches with up to 3.1-6.7% higher
accuracy and 1.4-2.1x faster inference latency. In future work,
we believe the high search cost of our approach which
manually derived models via trial and error could be reduced
through automated NAS approaches utilising efficient weight
sharing mechanisms. Further performance gains could also be
achieved by including extra hyper-parameters in the search, in
addition to width and resolution, in order to derive the optimal
architecture in the TinyOps design space. Nevertheless, our
work demonstrates the strength of the TinyOps design space,
which suggests it should be studied further for deep learning
applications in TinyML.

ACKNOWLEDGEMENTS

This work was supported by the UK Research and Innova-
tion (UKRI) [EP/S024298/1], the Engineering and Physical
Sciences Research Council (EPSRC) [EP/S030069/1], and
ARM Limited, Cambridge, UK. For the purpose of open
access, the author has applied a Creative Commons Attribu-
tion (CC BY) licence to any Author Accepted Manuscript
version arising. Code and data associated with this paper
is available at https://github.com/sulaimansadiq/TinyOps, and
https://doi.org/10.5258/SOTON/D2850.



IEEE INTERNET OF THINGS JOURNAL, 2023 9

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[2] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[3] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks
for acoustic modeling in speech recognition,” IEEE Signal processing
magazine, vol. 29, 2012.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[6] T. Insights, “Iot connected devices worldwide 2019-2030,” Statista,
2022. [Online]. Available: https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/

[7] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.

[8] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the internet of things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1275–1284, 2018.

[9] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1,
pp. 22–32, 2014.

[10] G. Zazzaro, S. Cuomo, A. Martone, R. V. Montaquila, G. Toraldo,
and L. Pavone, “Eeg signal analysis for epileptic seizures detection
by applying data mining techniques,” IEEE Internet of Things Journal,
vol. 14, p. 100048, 2021.

[11] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-
based deep learning in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4329–4341, 2020.

[12] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and M. Hobbhahn,
“Machine learning model sizes and the parameter gap,” arXiv preprint
arXiv:2207.02852, 2022.

[13] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han et al., “Mcunet: Tiny deep
learning on iot devices,” Advances in Neural Information Processing
Systems, vol. 33, pp. 11 711–11 722, 2020.

[14] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commodity
microcontrollers,” Proceedings of Machine Learning and Systems, vol. 3,
2021.

[15] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed
low-precision cnn library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[16] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” Proceedings of Machine Learning and Systems, vol. 2, pp.
326–335, 2020.

[17] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient
patch-based inference for tiny deep learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 2346–2358, 2021.

[18] S. Sadiq, J. Hare, P. Maji, S. Craske, and G. V. Merrett, “Tinyops:
Imagenet scale deep learning on microcontrollers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 2702–2706.

[19] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” Ad-
vances in neural information processing systems, vol. 28, 2015.

[20] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
International Conference on Learning Representations, 2017.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[22] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And
the bit goes down: Revisiting the quantization of neural networks,”
International Conference on Learning Representations, 2020.

[23] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou,
and A. Joulin, “Training with quantization noise for extreme model
compression,” International Conference on Learning Representations,
2021.

[24] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems, 1990, pp. 598–605.

[25] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations, 2016.

[26] X. Dong and Y. Yang, “Network pruning via transformable architecture
search,” in Advances in Neural Information Processing Systems, 2019,
pp. 760–771.

[27] I. Fedorov, R. Matas, H. Tann, C. Zhou, M. Mattina, and P. Whatmough,
“Udc: Unified dnas for compressible tinyml models for neural processing
units,” Advances in Neural Information Processing Systems, vol. 35, pp.
18 456–18 471, 2022.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[30] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[31] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 734–10 742.

[32] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828.

[33] S. Sadiq, P. Maji, J. Hare, and G. Merrett, “Deff-arts: Differentiable ef-
ficient architecture search,” Advances in Neural Information Processing
Systems, ML for Systems Workshop, 2020.

[34] E. Liberis, Ł. Dudziak, and N. D. Lane, “µnas: Constrained neural
architecture search for microcontrollers,” in Proceedings of the 1st
Workshop on Machine Learning and Systems, 2021, pp. 70–79.

[35] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, 2021.

[36] uTensor, “utensor.” [Online]. Available: https://utensor.github.io/website/
[37] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient

patch-based inference for tiny deep learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 2346–2358, 2021.

[38] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus,” IEEE Transactions on Computers, vol. 70, no. 8,
pp. 1253–1268, 2021.

[39] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “Fann-on-mcu: An
open-source toolkit for energy-efficient neural network inference at the
edge of the internet of things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4403–4417, 2020.

[40] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[41] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” International Conference on Learn-
ing Representations, 2018.

[42] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1314–1324.

[43] S. S. Saha, S. S. Sandha, L. A. Garcia, and M. Srivastava, “Tinyodom:
Hardware-aware efficient neural inertial navigation,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 6, no. 2, pp. 1–32, 2022.

[44] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly,
P. Montino, D. Kanter, S. Ahmed, D. Pau et al., “Mlperf tiny bench-
mark,” arXiv preprint arXiv:2106.07597, 2021.


