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Quasinormal modes, Strong Cosmic Censorship and Instabilities
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Quasinormal modes (QNMs) are the damped vibrations of black hole (BH) spacetimes,
characterising much of the response of a black hole to perturbations. In Chapter 1, we
introduce quasinormal modes, their applications, and ways to compute them numerically
using pseudospectral methods.

In Chapter 2 we study the scalar QNM spectrum of Kerr-Newman. Starting from the
Reissner-Nordström limit, we understand how the spectrum changes as we vary the ratio
of charge to angular momentum, all the way until the Kerr limit. This clarifies the
relationship between the QNM spectra of Reissner-Nordström and Kerr, and highlights
an intricate form of interaction called eigenvalue repulsion.

In asymptotically de Sitter (dS) spacetimes, an important application of quasinor-
mal modes is the strong cosmic censorship (SCC) conjecture. In four dimensions,
Christodoulou’s formulation of SCC is violated by charged BHs (Reissner-Nordström-dS),
but holds for rotating BHs (Kerr-dS). In Chapter 3, we study a higher-dimensional
analogue of Kerr-dS, equal angular momentum Myers-Perry-dS, and show that SCC
is respected in odd d ě 5 dimensions. This suggests that the preservation of SCC in
uncharged rotating black hole backgrounds might be a universal property of Einstein
gravity and not limited to the d “ 4 Kerr-dS background.

Finally, in Chapter 4, we construct the static hairy black holes of Einstein-Maxwell-Scalar
theory in a cavity that confines the scalar field. These hairy black holes are asymptotically
flat, with a scalar condensate floating above the horizon. When they coexist with Reissner-
Nordström BHs, the hairy BHs are thermodynamically preferred, and hence they are
natural candidates for the endpoint of the superradiant and near-horizon instabilities of
the charged black hole bomb system.

http://www.southampton.ac.uk
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Chapter 1

Introduction

Stationary and axisymmetric black holes paint a remarkably simple picture of
General Relativity (GR). This is due to the uniqueness theorems, which state
that Kerr-Newman (KN) [4, 5] is the most general stationary, axisymmetric and
asymptotically-flat electro-vacuum black hole solution of four-dimensional Einstein-
Maxwell theory [6–8] 1. Black holes, being the most extreme objects in the universe,
offer a way to understand the limits of GR as an effective field theory, by theoretically
probing the nature of the black hole interior.

In contrast to the relative simplicity of the Kerr-Newman solution, astrophysical
black holes form as a consequence of gravitational collapse, with a wide range of
possible matter fields, not to mention the presence of other gravitating bodies. This
dynamical perspective forces us to consider phenomena that might be otherwise
overlooked, such as deviations from perfect axisymmetry or dynamical instabilities
which may render a stationary solution physically irrelevant.

The groundbreaking observation of gravitational waves by the LIGO-Virgo col-
laboration in 2015 opened the door to a new era of gravitational physics [11–13].
This first observation was of the inspiral, merger and ringdown of a pair of black
holes. During the ringdown phase, the newly-merged black hole rapidly settles
down to a spacetime well-approximated by a stationary vacuum state, i.e. with the
exterior described by the Kerr solution [14]. The dynamics of the ringdown phase
are dominated by the quasinormal modes (QNMs). These are damped oscillations
that characterise much of how a black hole responds to a generic perturbation.
Because the QNMs are completely determined by the black hole parameters, they

1Alternatively, one can drop the axisymmetry condition, and instead consider black hole
spacetimes which are real analytic [9, 10].
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can be thought of as a fingerprint of a black hole. Black holes are therefore not
just a mathematical curiosity. Observational evidence can be used, for example, to
constrain potential classical modifications to General Relativity, with wide-ranging
cosmological implications [15].

The computation of quasinormal modes is an important ingredient in the analysis
of gravitational wave signals. For example, gravitational wave templates have
recently been constructed to constrain the remnant charge of binary black hole
mergers, using the QNM spectrum of Kerr-Newman [16–18]. It is widely expected
that astrophysical black holes have negligible charge [19–21], but this could allow
a direct verification of the charge neutrality of black holes. Improvements to
detectors, including future detectors such as LISA [22, 23] will enable increasingly
precise measurements of the parameters of a black hole binary system and, by
extension, of General Relativity.

Kerr-Newman is an asymptotically-flat spacetime. However, the accelerating
expansion of the universe [24, 25] suggests that asymptotically de Sitter spacetimes
may be more astrophysically relevant. While the experimentally measured value of
the cosmological constant is very small [26], even the presence of a small cosmological
constant can drastically change the physics. For example, in asymptotically flat
spacetimes, the decay rate of perturbations outside a black hole obeys a power
law at late times [27, 28], while in asymptotically de Sitter spacetimes the decay is
exponential [29, 30]. These asymptotic behaviours have important implications for
the strong cosmic censorship conjecture, which is concerned with the existence of
Cauchy horizons deep inside a black hole, as we will discuss in Chapter 3.

A final motivation for the study of black holes is the AdS/CFT correspondence [31–
33], which provides a correspondence between string theory on an asymptotically
Anti-de Sitter (AdS) spacetime and a dual quantum field theory living on the
boundary of that spacetime. It is a strong/weak coupling duality, in that weakly-
coupled gravitational theories are dual to strongly-coupled quantum field theories.
In particular, this means that the low-energy limit of string theory, supergravity,
is dual to a gauge theory with large ’t Hooft coupling. From this correspondence,
the quasinormal modes of asymptotically AdS spacetimes can be identified with
the poles of the Green’s function of the dual field theory [34]. One can therefore
study strongly-coupled gauge theories by constructing AdS black holes. Some of
the most well-known examples are models of the quark-gluon plasma [35] and high-
temperature superconductors [36–38]. While we do not study asymptotically AdS
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spacetimes explicitly, we will see in Chapter 4 that asymptotically AdS spacetimes
share many common features with other forms of confining potential.

The overarching theme of this thesis is the study of linear perturbations, in particular
quasinormal mode (QNM) perturbations. We study the quasinormal mode spectrum
numerically, whose classification is intrinsically interesting (Chapter 2), but also
has implications for the strong cosmic censorship conjecture (Chapter 3). QNM
perturbations can also tell us about potential instabilities of black hole spacetimes,
which can then evolve to new solutions with scalar hair, which we find in Chapter 4.

For concreteness, consider the four-dimensional Einstein-Maxwell-Scalar action,
with a minimally coupled massless scalar field Φ and cosmological constant Λ:

S “
1

16πGN

ż
ˆ

R ´ 2Λ´
1

2
FabF

ab
´∇aΦ∇aΦ

˙

?
´g d4x, (1.1)

where R is the Ricci scalar and F “ dA is the Maxwell field strength tensor. We
use units where GN “ c “ 1. We will be primarily interested in asymptotically-flat
(Λ “ 0) and de Sitter (Λ ą 0) spacetimes, so we take Λ ě 0. Variation of the
action gives with respect to the metric gab and Maxwell potential A yields the
usual Einstein-Maxwell equations

Rab ´
1

2
pR ´ 2Λqgab “ Tab, ∇aFab “ 0, dF “ 0, (1.2)

with the Maxwell-Scalar stress-energy tensor

Tab ” ∇aΦ∇bΦ´
1

2
gab∇cΦ∇cΦ` Fa

cFbc ´
1

4
gabF

cdFcd. (1.3)

Variation with respect to the scalar field Φ gives the (massless) Klein-Gordon
equation,

∇a∇aΦ “ 0. (1.4)

The scalar field Φ appears quadratically in the stress-energy tensor (1.3). Therefore,
starting with a solution of the Einstein-Maxwell system (with vanishing scalar field),
we can study linear scalar field perturbations by finding solutions of the Klein-
Gordon equation (1.4) on that fixed background spacetime, as the backreaction
induced by scalar field perturbations is second-order. In the asymptotically-flat
limit Λ “ 0, the most general stationary and axisymmetric black hole solution is
Kerr-Newman, most commonly expressed in standard Boyer-Lindquist coordinates
pt, r, θ, ϕq, i.e. time, radial, polar and azimuthal coordinates [4], in which the metric
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and Maxwell potential take the form

ds2 “ ´
∆

Σ

`

dt´ a sin2 θdϕ
˘2

`
Σ

∆
dr2 ` Σdθ2 `

sin2 θ

Σ

“`

r2 ` a2
˘

dϕ´ adt
‰2
,

A “
Qr

Σ

`

dt´ a sin2 θdϕ
˘

, (1.5)

with ∆ “ r2 ´ 2Mr ` a2 `Q2 and Σ “ r2 ` a2 cos2 θ. The Kerr-Newman solution
has three parameters: mass M , charge Q and angular momentum J ” Ma. It
encompasses the Schwarzschild (a “ Q “ 0) [39], Kerr (Q “ 0) [14] and Reissner-
Nordström (a “ 0) [40, 41] black holes as limiting cases. The event and Cauchy
horizons occur at the positive roots of ∆prq, with r “ r` at the event horizon
and r “ r´ at the Cauchy horizon, where r´ ď r`. Extremality occurs when the
horizons coincide r´ “ r`.

It’s worthwhile reviewing some basic facts about the analytic continuation of
the Kerr-Newman metric (1.5), for later. In Boyer-Lindquist coordinates, the
metric (1.5) is analytic in the exterior region r ą r`, but it has a coordinate
singularity at the event horizon r “ r`. However, the metric can be analytically
extended beyond the (future) event horizon and into the interior region r´ ă r ă r`,
by transforming to ingoing Eddington-Finkelstein (EF) coordinates pv, r, x, ϕ1q,
defined by

t “ v ´ r‹ ϕ “ ϕ1
´ Ω‹, (1.6)

r‹ ”

ż

r2 ` a2

∆
dr, Ω‹ ”

ż

a

∆
dr, (1.7)

where r‹ is a tortoise coordinate such that r‹ Ñ ´8 at the event horizon and
r‹ Ñ 8 as r Ñ 8. Similarly, one can define outgoing Eddington-Finklestein
coordinates pu, r, θ, ϕ2q by t “ u` r˚ and ϕ “ ϕ2 ` Ω‹. However, if we were to use
outgoing EF coordinates the extend beyond the event horizon r “ r` we would find
a new region r´ ă r ă r`, the white hole region, which is not the same as the black
hole region found using ingoing EF coordinates. We therefore distinguish between
the future event horizon (defined in ingoing EF coordinates) and the past event
horizon (defined in outgoing EF coordinates). This distinction will be important,
because perturbations which are regular at the future event horizon are not regular
at the past event horizon.

We now want to find solutions of the Klein-Gordon equation (1.4) on the Kerr-
Newman background. Stationarity and axisymmetry of the background allows us
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to decompose the scalar field Φ into Fourier modes in the t and ϕ directions

Φ “ e´iωt`imϕRωℓmprqSωℓmpθq (1.8)

with frequency ω and angular quantum numbers m and ℓ. The Klein-Gordon
equation separates into a pair of coupled ODEs. The radial component can be
expressed as a Schrödinger-type equation

„

´
d

dr2˚
` Vωℓmprq

ȷ

Rωℓmprq “ 0 (1.9)

while the angular equation is the spheroidal harmonic equation, such that Sωℓmpθq
are the oblate spheroidal harmonics, with m and ℓ must be integers satisfying the
constraint 0 ď |m| ď ℓ. The full explicit details will be discussed in Chapter 2.

In order to have a well-posed boundary value problem, we must impose appropriate
boundary conditions on the radial component Rωℓmprq. In particular, we will
impose quasinormal mode boundary conditions. To motivate quasinormal modes,
we first review normal modes. As a toy example, consider the Klein-Gordon
equation (1.4) on 1+1 dimensional Minkowski space p´B2t ` B2rqχ “ 0. After a
Fourier decomposition Φ “ e´iωtχprq, we get the wave equation

χ2
` ω2χ “ 0. (1.10)

After imposing, say, Dirichlet boundary conditions on a finite domain χp0q “

χpLq “ 0 we find the normal modes; the eigenfunctions

χn “ Cn sinpωn rq, ωn “
nπ

L
, n “ 1, 2, . . . (1.11)

Here ωn is a discrete set of real eigenvalues. The eigenfunctions χn form a complete
basis, i.e. we can express any smooth solution as a sum over normal modes
χ “

ř8

n“1 e
´iωntχn. Due to our choice of boundary conditions this system is closed,

i.e. the energy is conserved.

In contrast, quasinormal mode boundary conditions are dissipative. Classically,
the event horizon acts as a one-way membrane, such that only ingoing waves are
allowed. Similarly, one expects that there are no waves coming in from spatial
infinity (or the future cosmological horizon), only outgoing waves. These are the
physical motivations for QNM boundary conditions: Φ must be a purely ingoing
wave at the future event horizon and a purely outgoing wave at spatial infinity
(or the future cosmological horizon) [42–45]. The resulting QNM frequencies ω
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describe damped oscillations, with a negative imaginary part representing the decay
rate, while the real part characterises the oscillation frequency.

A more precise definition for the QNM boundary conditions in asymptotically flat
or de Sitter spacetimes can be given in term of regularity: Rωℓmprq must be regular
at the future event horizon in ingoing Eddington-Finklestein coordinates (1.6),
and regular at the future cosmological horizon (or spatial infinity) in outgoing
Eddington-Finklestein coordinates. To see this, we use the fact that ∆ can be
factorised in terms of the horizon radii ∆ “ pr´ r`qpr´ r´q to explicitly integrate
the tortoise coordinate (1.12)-(1.13):

r‹ “ r `
logpr ´ r`q

2κ`
´

logpr ´ r´q

2κ´
, (1.12)

Ω‹ “
Ωpr`q logpr ´ r`q

2κ`
´

Ωpr´q logpr ´ r´q

2κ´
, (1.13)

where we have neglected the constants of integration, and identified the surface
gravities κ˘ and angular velocities Ωpr˘q of the event horizon (r “ r`) and Cauchy
horizon r “ r´. Starting with a Fourier mode in ingoing EF coordinates (1.6) with
radial dependence REFprq, and transforming to Boyer-Lindquist coordinates, we
find

e´iωv`imϕ
1

REFprq “ e´iωt`imϕe´ipωr‹´mΩ‹qREFprq (1.14)

“ e´iωt`imϕpr ´ r`q
´i

ω´mΩpr`q

2κ` R`prq (1.15)

where R`prq includes both REF and the terms in the tortoise coordinates (1.12)-
(1.13) which are regular at r “ r`. By comparison to the original Fourier decom-
position (1.8) in Boyer-Lindquist coordinates, we see that if R`prq is any function
that is regular at the event horizon r “ r`, then this corresponds to a mode which
is regular in ingoing EF coordinates at the event horizon. In the limit r Ñ 8, the
tortoise coordinate reduces to r‹ Ñ r ` 2M log r (and Ω‹ vanishes), dependent on
only the BH mass. Therefore, QNM boundary conditions for Kerr-Newman are
given by

Rωℓmprq „

$

&

%

pr ´ r`q
´i

ω´mΩpr`q

2κ` R`prq as r Ñ r`,

eiωrr2iωMR8prq as r Ñ 8,
(1.16)

where R`prq is regular at the event horizon r “ r` and R8prq is regular for large
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r Ñ 8 2. For asymptotically de Sitter spacetimes (e.g. Kerr-Newman-de Sitter [46]
or cohomogeneity-one Myers-Perry de Sitter) QNM boundary conditions are given
by

Rωℓmprq „

$

&

%

pr ´ r`q
´i

ω´mΩpr`q

2κ` R`prq as r Ñ r`,

prc ´ rq´i
ω´mΩprcq

2κc Rcprq as r Ñ rc,
(1.17)

where R`prq is regular at the event horizon r “ r` and Rcprq is regular at the
cosmological horizon r “ rc, and κc is the surface gravity there. The above
boundary conditions are only valid in the case of non-degenerate horizons, i.e. a
sub-extremal BH. In the extremal limit r´ Ñ r` both logarithms in the tortoise
coordinate r‹ (and Ω‹) contribute and the QNM boundary conditions need to be
modified accordingly. Quasinormal mode boundary conditions in asymptotically-
AdS black holes are somewhat different, due to the reflective nature of the timelike
boundary, and are typically motivated via the AdS/CFT correspondence. We do
not discuss these here, but refer the reader to [47, 42].

After imposing QNM boundary conditions, the radial and angular ODEs for the
Klein-Gordon equation constitute a coupled eigenvalue problem for the QNM
frequency ω and angular separation constant λ. In black hole spacetimes with
the reflection symmetry pt Ñ ´t, ϕ Ñ ´ϕq, the quasinormal mode frequencies
form complex conjugate pairs [48, 49]. For example, in Kerr-Newman, if tωm, λmu
are a quasinormal mode frequency and angular separation constant (for a given
azimuthal quantum number m), there exists another solution pair t´ω˚

´m, λ
˚
´mu.

This symmetry allows us to consider m ě 0 only, provided we study both signs of
Reω. In the static limit (e.g. Schwarzschild or Reissner-Nordström), QNMs are
symmetric about the imaginary axis, forming pairs pωm,´ω

˚
mq.

An alternative way to define QNMs is by identifying them as the poles of the
Green’s function [50]. To compute the response to a generic perturbation in
the frequency domain, we can consider the Klein-Gordon equation (1.4) with an
additional inhomogeneous source term representing the perturbation. Formally, one
can solve this by constructing the Green’s function for the Klein-Gordon operator
in the frequency domain, and then taking an inverse Laplace transform to get the
time-response [50–52]. In general, there are three contributions to the contour
integral: the residues, a semi-circular contour in the lower half plane, and a branch
cut along the negative imaginary axis. The semi-circle contour corresponds to the
prompt response, the early-time contribution of waves propagating directly from the

2It is common to pull out an additional regular factor r´1 from R8. It is not required, but an
explicit analysis in Kerr-Newman (Chapter 2) shows that the linearly-independent asymptotic
solution which obeys QNM boundary conditions has that additional factor.
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source, which can be shown by taking the limit of vanishing black hole mass. The
sum over the residues is the QNM contribution. These residues are at the simple
poles where the Wronskian between the two linearly independent functions used to
construct the Green’s function vanishes, and the Green’s function becomes singular.
If we ignore the contribution from the prompt response, we simply have the sum
over residues. In the Schwarzschild limit, one can show that, after separating out
the angular dependence, the sum over residues can be written [53, 52]:

Φ „ Re

«

8
ÿ

n“0

Cne
´iωnpt´r‹q

ff

, (1.18)

where the coefficients Cn are defined by the residue at each pole. (The real part
comes from the fact that we are actually summing over pairs of QNMs tω,´ω˚u).
In this way, we can see that, at least at intermediate times, much of the spacetime
dynamics is characterised by a sum over quasinormal modes, like the normal modes
of a closed system. However, we have ignored the other contributions to the Green’s
function. Unlike normal modes, quasinormal modes do not form a complete set
(hence quasi -normal). We can also see this from the fact that, in order for QNMs
to be decaying exponentially in time, they must blow up as we go to earlier times.
More formally, we can see this from the fact that QNMs are not regular at the past
event horizon or past null infinity (or the past cosmological horizon). This follows
from the definition of QNMs. For example, since they regular at the future event
horizon they cannot be regular at the past event horizon. One consequence of this
is that, if we want to include the past event horizon and past null infinity in our
Cauchy surface Σ, we cannot express regular initial data on Σ in terms of QNMs.

Finally, in asymptotically-flat spacetimes the very late-time behaviour is governed
by an inverse-power decay rate, arising as the branch cut contribution to the contour
integral. These are known as late-time tails or Price’s law, as it was first observed
by Price when studying linearised perturbations of Schwarzschild [27, 28, 54, 55]
(see also [56]). In general, the field decays at very late times as Φ „ t´p2ℓ`3q.
Physically, the late-time tails can be associated to the backscattering of waves
off of the background geometry [50, 27]. Therefore, the late-time behaviour of
perturbations is strongly dependent on the spacetime asymptotics. We will see
another manifestation of this in Section 1.2.
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1.1 Three families of quasinormal mode

Asymptotically flat, four-dimensional black holes which admit a Cauchy horizon
(including Kerr-Newman black holes and its Kerr and Reissner-Nordström limits)
have two distinct families of QNMs, namely the photon sphere modes (also known
as damped modes), and the near-horizon modes, (also known as near-extremal or
zero-damped modes). In Chapter 2, we will show that this classification is only
unique in the Reissner-Nordström limit (a “ 0) and Kerr-Newman BHs when the
ratio of angular momentum to mass a{Q is small. For general Kerr-Newman black
holes, or in asymptotically de Sitter black holes, this classification breaks down,
and the QNMs become entangled, via a phenomenon called eigenvalue repulsion. In
that case, the modes are often described by more than one family simultaneously.

The photon sphere (PS) modes (also denoted as damped modes in [57–59]) are
typically described by the well-known eikonal approximation of the quasinormal
mode spectrum, where the angular momentum quantum numbers m and ℓ are
taken to be large and we thus have a null particle limit [60–69, 59, 18]. The eikonal
approximation also provides a geometric interpretation, first presented by Goebel
[60] and Ferrari and Mashhoon [61, 63], in terms of the dynamics of circular null
geodesics in the equatorial plane:

ωPS » mΩ0 ´ i

ˆ

n`
1

2

˙

|λL|, n “ 0, 1, 2, . . . (1.19)

where Ω0 ”
dϕ
dt

is the Keplerian velocity of the photon orbit, λL is the principal
Lyapunov exponent, and n is the overtone number. The principal Lyapunov
exponent λL characterises the instability timescale of the geodesic, i.e. the rate
at which a null geodesic congruence increases its area under infinitesimal radial
deformations. This result coincides with a leading order WKB analysis of the QNM
problem, as first discussed by Schutz and Will [64] and completed for Schwarzschild(-
Tangherlini), RN and Kerr in [70–74]. The PS modes form pairs, called co-rotating
and counter-rotating (also sometimes called prograde and retrograde), in accordance
with the t-ϕ symmetry of QNMs. One mode co-rotates with the horizon (Ω0 ą 0)
while the other orbits in the opposite direction (assuming it does not lie in an
ergoregion). Typically, the co-rotating mode which is dominant, decaying more
slowly (i.e. with smaller | Imω|).

An important property of the leading-order eikonal approximation (1.19) is that
it is isospectral, independent of the spin of the perturbation, so it is valid for
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not just scalar perturbations, but also e.g. gravitational and electromagnetic
perturbations [42, 43] (although higher-order corrections are spin-dependent [74,
75]). Furthermore, while the correspondence (1.19) is only valid for equatorial
modes m “ ℓ, it can be generalised to arbitrary m ‰ ℓ, corresponding to non-
equatorial spherical orbits in the photon sphere [75, 76].

In spacetimes that admit a Cauchy horizon, there is also a second QNM family
– the near-horizon (NH) modes (a.k.a near-extremal or zero-damped modes) [77–
82, 57, 58, 83, 59, 84, 16, 18, 55, 85]. The NH modes are generally suppressed
except very near extremality, and are characterised by a frequency with a vanishing
imaginary part in the extremal limit, with the real part saturating the superradiant
bound ω Ñ mΩpr`q at extremality [86–89]. Near the Reissner-Nordström limit, the
wavefunction is very localised near the event horizon. The NH modes can typically
be captured by a matched asymptotic expansion. That is, we find the ingoing
wavefunction near the event horizon and also find the outgoing wavefunction far
from the horizon, before matching the two in an overlap region where the regimes
of validity of both regions hold [77, 78, 57–59]. Through this calculation one can
highlight the link between the NH modes and the near-horizon geometry of the
extremal spacetime, as we will do in later chapters.

In asymptotically de Sitter spacetimes, a third family of QNMs is present: the de
Sitter (dS) family. In the limit where the mass, charge and angular momentum of
the black hole vanish, the frequency of these modes approaches the QNM frequency
of pure de Sitter space3, i.e.

ωdS “

$

&

%

´i ℓ κc n “ 0,

´ipℓ` n` 1qκc n ‰ 0.
(1.20)

for n “ 0, 1, 2, . . . , where κc is the surface gravity at the cosmological horizon. In
d “ 4, the dS modes have a weak dependence on the black hole parameters [86].
We will show that this is no longer true in higher dimensions.

The three families of QNM described here are by no means an attempt to ex-
haustively describe the QNMs of all possible black hole spacetimes. For example,
accelerating spacetimes such as the C-metric [90–92], which feature an acceleration
horizon, appear to have a family of acceleration modes much like the de Sitter

3Pure de Sitter space does not have an event horizon. Instead, we impose regularity at the
origin.
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modes of RNdS [93], despite being asymptotically-flat4. However, to the best of
our knowledge, all of the QNMs in Kerr-Newman-de Sitter and its subfamilies can
be understood as belonging to one (or more) of the three families [86, 94, 46, 77–
82, 57, 58, 83, 59, 84, 16, 18, 55, 85, 57–59].

Given a QNM in any part of the parameter space of a black hole spacetime, we can
try to classify it as uniquely belonging to a photon sphere, near-horizon or de Sitter
mode, by tracing it to a suitable corner of the parameter space, where it agrees
with one of the analytic approximations. In particular, we could try to define the
photon sphere modes as QNMs whose eigenvalues are continuously connected to
the QNMs of the eikonal limit, the near-horizon modes are those which tend to the
matched asymptotic expansion in the near-extremal limit, and the de Sitter modes
as QNMs continuously connected to the pure dS QNMs in the de Sitter limit. As
we will see in later chapters, such a unique classification is not possible in general
except near the Reissner-Nordström limit, where the modes disentangle.

1.2 Strong cosmic censorship

Predictability is an important requirement of any physical theory. In this section
we review the strong cosmic censorship (SCC) conjecture, which calls into question
the predictability of any spacetime hidden behind a Cauchy horizon. The issue is
best understood in the context of the initial value formulation of General Relativity
[95, 96], where we specify initial data on some partial Cauchy hypersurface Σ,
for example a constant time slice or a pair of null hypersurfaces, and evolve it
according to the Einstein equations. The resulting spacetime pM, gq, the maximal
Cauchy development, is unique and by definition globally-hyperbolic. This is the
shaded region in Fig. 1.1.

Sometimes, it is possible to find a non-trivial extension pM1, g1q of the maximal
Cauchy development. In that case, the boundaries of the maximal Cauchy develop-
ment are known as Cauchy horizons. The Kerr solution provides example of such an
extendible spacetime [97]. Using the ingoing and outgoing Eddington-Finklestein
coordinates defined in (1.6), which are also valid for Kerr in the limit QÑ 0, one
can extend pM, gq beyond the Cauchy horizons, for example beyond the right

4This is because the acceleration generated by the string or strut in these spacetimes effectively
mimics the de Sitter cosmological expansion (for example, the causal structure of the C-metric has
similarities with the one for the Schwarzschild-de Sitter solution, with the cosmological horizon
replaced by the acceleration horizon).
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I
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H
+

CH
+
L

CH +
R

I +

i+

i0

r
=
0

Σ

Fig. 1.1: Causal structure of the exterior region I and interior region II of (sub-
extremal) Kerr (and Kerr-Newman), as well as the extension beyond the right future
Cauchy horizon CH`

R into region III. The maximal future Cauchy development of
initial data on Σ is shaded.

future Cauchy horizon CH`
R, into a new region III shown in Fig. 1.1 5. However,

this extension is not unique, nor is it globally-hyperbolic — region III does not
depend causally on the initial data on Σ. There is in general no physical reason
to assume the extension must be analytic, and if we drop this assumption there
are typically an infinite number of possible smooth extensions beyond CH`

R [89].
In other words, physics is predicted by General Relativity only up to the Cauchy
horizons. This lack of predictability calls into question the physical relevance of
region III, or indeed any extension beyond a Cauchy horizon.

A hint at the resolution to this problem, known as the infinite blueshift instability,
was first noted by Penrose [98]. Consider two observers A and B in region I. A falls
into the black hole and then approaches the Cauchy horizon CH`

R, while B stays
outside, emitting light signals at regular intervals. It takes B an infinite amount of
proper time to “reach” timelike infinity, so they will have emitted an infinite number
of signals, but A will receive all of those signals in the finite amount of proper time
that it takes to reach the Cauchy horizon6. This infinite blueshift effect suggests
that any small perturbation of the spacetime will back-react on the background
fields and cause them to blow up rendering the Cauchy horizon a singular boundary,
such that one could not extend beyond the Cauchy horizon. The strong cosmic

5Typically, we do not need to consider the left Cauchy horizon CH`
L as it will be occluded, at

least partially, by matter in the process of gravitational collapse [98].
6Much recent work has been done in the mathematical community formalising the blueshift

instability, see [99] for an overview.
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censorship conjecture7 posits that, for generic initial data, the maximal Cauchy
development is inextendible beyond the Cauchy horizon as a suitably regular
manifold [101]. A violation of SCC indicates a failure of predictability, since if
one can extend beyond a Cauchy horizon then this new region would not depend
causally on only the initial data specified on Σ.

What is the appropriate notion of regularity that we should require? At least
historically, the research programme of strong cosmic censorship has been as much
about precisely formulating Penrose’s conjecture as actually proving it. One might
hope that the maximal Cauchy development is inextendible as a continuous C0

manifold. Physically, this requirement corresponds to the divergence of tidal forces
at the Cauchy horizon [102]. This is true for extensions beyond the singularity
in Schwarzschild [103]. However, this has been proven false in both Kerr8 [102]
and Reissner-Nordström [105, 56]. We could instead require that the maximal
Cauchy development is inextendible as a C2 manifold, corresponding to a curvature
singularity, as the Ricci tensor includes second derivatives of the metric. This
C2 formulation has been shown to hold for Kerr and Reissner-Nordström [106].
However, a curvature singularity does not necessarily imply that macroscopic
observers are destroyed at the Cauchy horizon [107]. The modern formulation
of strong cosmic censorship, due to Christodoulou, is that the maximal Cauchy
development is inextendible as a weak solution of the Einstein Equations, or
gravitational equations with matter fields [108]. This is the formulation of strong
cosmic censorship that we will be considering.

By allowing extensions which are weak solutions of the Einstein equations, we will
see a sense in that the Einstein equations can be satisfied even if the extension is
not in C2. To motivate this, we return to the example of the wave equation in 1+1
dimensional Minkowski space, with the addition of an inhomogeneous source term
Ipt, rq,

`

´B
2
t ` B

2
r

˘

Φ “ Ipt, rq. (1.21)

If the source term is zero, the most general solution, d’Alembert’s solution [109], is
a sum of arbitrary left-moving and right-moving functions:

Φpt, rq “ fpt` rq ` gpt´ rq. (1.22)
7This is not related to the weak cosmic censorship conjecture, which roughly speaking asserts

that the maximal Cauchy development of generic asymptotically-flat initial data has a complete
future null infinity (i.e. does not contain naked singularities). Despite the nomenclature, the
modern formulations of weak and strong cosmic censorship are in fact independent [100].

8This assumes the stability of the exterior of Kerr, which has been proven in the slowly-rotating
case [104].
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Strictly speaking, f and g must be in C2 for Φ to be a solution, however it certainly
seems reasonable to enlarge the class of functions which we consider solutions to
include discontinuous solutions such as square waves — one propagating to the
right and the other to the left. This kind of discontinuous solution does in fact
occur in nature. The most well-known example of this are shocks in fluids, which
can form dynamically, i.e., from smooth initial data [110]. Gravitational shocks
are expected to exist, however shock solutions Einstein equations do not form
dynamically, except possibly at the boundary of the domain of dependence [89].

To formalise this idea, we multiply the wave equation by an arbitrary test function
ψpt, rq (i.e. smooth, with compact support), and integrate by parts:

0 “

ż

ψp´B
2
tΦ` B

2
rΦ´ Iq dr dt (1.23)

“

ż

“

pBtψqpBtΦq ´ pBrψqpBtΦq ´ Iψ
‰

dr dt. (1.24)

Then, we define weak solution of the wave equation (1.21) to be a function that
satisfies our integral expression (1.24) for all test functions ψ. While we no longer
require Φ to be twice-differentiable, we now have a new requirement: the source
term Ipt, rq must be locally integrable, in the sense that Ipt, rqψ is integrable for
any test function ψ.

When applied to the Einstein equations (possibly coupled to matter fields), an
extension beyond the Cauchy horizon is a weak solution if the Christoffel symbols
are locally square-integrable in some gauge [108]. Meanwhile, for scalar field initial
data, Φ is a weak solution if it is locally square-integrable at the Cauchy horizon,
i.e. in the Sobolev space H1

loc [111, 112].

1.3 The status of strong cosmic censorship

There is growing evidence that the Christodoulou formulation of strong cosmic
censorship is respected9 for asymptotically flat initial data close to Reissner-
Nordström [113–116] and Kerr [117, 118]. Ultimately, this is due to the infinite
blueshift effect described above [119, 27].

9This may not be true for spacetimes which feature an acceleration horizon, such as the
C-metric [93].
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However, for positive cosmological constant (Λ ą 0) there is a competing redshift
associated with the gravitational potential well of asymptotically de Sitter space-
times [120]. As a result of the delicate competition between these two effects, the
decay of generic linear perturbations depends instead on the imaginary part of the
slowest-decaying quasinormal mode [111, 112]:

|Φ´ Φ0| ď Ce´αt (1.25)

where Φ0 and C are constants, and α is the spectral gap, the magnitude of the
imaginary part of the slowest-decaying quasinormal mode. Starting from smooth
initial data on Σ in RNdS or (slowly-rotating) Kerr-de Sitter [121], the regularity
of Φ at the Cauchy horizon r “ r´ is in the Sobolev space H1{2`minpβq´ϵ

loc (for any
ϵ ą 0), where we have defined

β ” ´
Impωq

κ´
(1.26)

and κ´ is the surface gravity at the Cauchy horizon. Also note [94], which argue
that this condition is also valid for Kerr-dS with arbitrary rotation (if we only
consider QNM initial data). To summarize, the Christodoulou formulation of SCC
is respected if there exists a QNM perturbation with β ď 1

2
. In order to prove that

SCC is respected in a specific spacetime (for some fixed mass, charge, etc.), we
just need to find a single QNM with β ď 1

2
. On the other hand, to show that it is

violated, we need to show that every QNM has β ą 1
2
.

In recent years, an exhaustive search of the scalar field and gravito-electric QNM
spectra has established that for initial data close to Reissner-Nordström´de Sitter
(RNdS) there does not always exist a QNM with β ď 1

2
, and therefore SCC is

violated. This occurs in particular for RNdS black holes with large charge to
mass ratio Q{M , i.e. those close to extremality (RNdS) [86, 89, 122]. Meanwhile,
Kerr-dS respects SCC [94]. In particular, it is the photon sphere modes with large
m “ ℓ that enforce SCC throughout the parameter space.

The violation of SCC for initial data close to RNdS is worrying. Charged matter
fields are required in a theory that allows the formation of RNdS black holes
through gravitational collapse, which motivated several studies of a charged scalar
field on RNdS [122–124]. While the addition of charge pushes the region which
violates SCC closer to extremality, SCC is ultimately still violated in sufficiently
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extremal RNdS black holes10. These analyses were accomplished within linear
theory, and it remains an open problem to show that they extend to the full
non-linear theory. Existing non-linear studies are inconclusive, due to difficulties
pushing the evolution to sufficiently late times [125, 126]. However, one would
not expect non-linear effects to rescue SCC in RNdS, since the linear analysis has
shown that every single perturbation remains sufficiently regular at the Cauchy
horizon.

Equally important is an understanding of why Kerr-dS respects SCC. A better
understanding of what feature of the Kerr-dS data may provide insights as to the
kind of initial data that is required for SCC, or which reformulation of SCC is
appropriate. Is this a universal feature of (uncharged) rotating spacetimes, or is
Kerr-dS an isolated exception? As a step towards answering this question, we
study the scalar field QNMs of the higher-dimensional generalisation of Kerr-dS,
Myers-Perry-dS, in Chapter 3, and compare it to higher-dimensional Reissner-
Nordström-de Sitter.

In four-dimensional asymptotically AdS spacetimes, perturbations decay slowly due
to the stable trapping of null geodesics [127], so one would not expect AdS black
holes to violate strong cosmic censorship. However, the 2+1 dimensional BTZ black
hole does not exhibit stable trapping, and severely violates strong cosmic censorship,
not just the Christodoulou formulation but also the Ck formulations for all k [47].
At the level of QNMs, this violation is due to a remarkable coincidence between
the co-rotating quasinormal mode frequencies and the “interior quasinormal mode”
frequencies, which obey QNM-like boundary conditions, but in the interior region.
As a result, only the counter-rotating modes contribute to SCC. This is expected
to be a very special property of the BTZ black hole, related to the fact that linear
perturbations are governed by Hypergeometric equations (i.e. with three regular
singular points) rather than Heun equations. Indeed, it has been shown explicitly
that such a coincidence does not occur in RNdS [128]. It was later shown that
this violation remains even in a fully non-linear gravitational collapse [129]. In the
conclusion, we will discuss ways in which strong cosmic censorship may be saved
in RNdS and BTZ.

10Refs. [123, 124] arrived at the opposite conclusion because these studies did not extend the
analysis sufficiently close to extremality where the violation is finally observed (see associated
discussion in [122]).
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1.4 Instabilities and near-horizon geometries

To discuss the physical relevance of a spacetime, we should ensure that it is free
of dynamical instabilities, or if instabilities are present, we should evaluate their
timescale to see if they are relevant. By an instability, we mean initial data that is
bounded and with compact support that grows exponentially in time. A simpler
problem than studying the full non-linear stability is the linear mode stability, i.e.
determining whether there exist quasinormal mode solutions with frequencies in
the upper half plane Imω ą 0, which will therefore blow up exponentially in time,
indicating instability. In this section we will describe two specific types of instability
that rotating (and charged) black holes can be susceptible to: superradiant and
near-horizon instabilities.

Superradiant scattering is a mechanism by which waves incident on a black hole
are reflected with amplified energy, extracting energy from the black hole. This
occurs in black holes which posses an ergoregion (such as Kerr-Newman), provided
that the wave frequency ω is within the range

0 ă ω ă mΩH ` qµ (1.27)

where ΩH is the angular velocity of the event horizon and µ is the chemical
potential. This is the wave analogue of the Penrose-Christodoulou process [130, 131].
Superradiance can be seen as a consequence of the laws of black hole mechanics, in
particular the area theorem [9], as first shown by Bekenstein [132]. The ratio of
energy δM , angular momentum δJ and charge δQ imparted by a scalar wave of
Fourier form (1.8) is given by [133, 134]

δJ

δM
“
m

ω
,

δQ

δM
“
q

ω
. (1.28)

The first law of black hole mechanics states that, to first order, a small variation
in energy, angular momentum, and charge induces a variation of the horizon area
δAH by κ`

8π
δAH “ δM ´ΩHδJ ´ µδQ [135, 136]. Inserting (1.28) into the first law

and solving for δM yields

δM “
κ`
8π

ω δAH
ω ´mΩH ´ qµ

. (1.29)

Now, the second law tells us that, for matter which satisfies the weak energy
condition, the horizon area never decreases, δAH ě 0 [9]. As a consequence,
waves with a frequency ω within the range (1.27) reduce the black hole mass δM ,
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extracting energy by superradiant amplification. The fraction of energy amplified
by superradiance is usually much less than one percent [137], but by confining the
scalar field near the horizon in a reflective cavity, for example, the repeated process
of reflections and superradiant amplifications can cause an instability to develop.
In uncharged black holes where the chemical potential vanishes µ “ 0, such as
Kerr, this is the rotating black hole bomb setup, designed by Zel’dovich [138] and
Press and Teukolsky [137]. At the other extreme, in the charged non-rotating case
ΩH “ 0, we have the charged black hole bomb, provided the scalar field charge q is
within the bound 0 ă ω ă qµ [132, 139]. Note that in both of these cases we do
not need a literal cavity. The gravitational potential of AdS or a massive bosonic
field can also give rise to an analogous black hole bomb system [140–143].

It turns out that this system is not just susceptible to superradiant instabilities, but
also a second type of instability, which is known as a near-horizon instability due to
the relationship with the near-horizon geometry of black holes. In planar AdS black
holes, this instability (also known as a scalar condensation instability) initiated
the holographic superconductor programme [36–38]. It was later found that this
instability is not limited to asymptotically AdS black holes, or even systems with
confining potentials, but is really a feature of the near-horizon geometry of the
extremal black holes [144–146].

In the near-horizon limit, the geometry of many extremal black holes can be
expressed locally as a product of AdS2 times a compact space [144]. This is true
even if the original spacetime is asymptotically flat or de Sitter. In this limit,
the Klein-Gordon equation on the near-horizon geometry reduces to an effective
scalar field equation on pure AdS2 with a certain effective mass µAdS and charge
qAdS. It is well known that in AdS2 (with radius LAdS), a scalar field perturbation
is normalisable even if its squared mass µ2

AdS is negative, provided that it obeys
the 2-dimensional Breitenlohner-Freedman (BF) bound µ2

AdSL
2
AdS ě ´1

4
[147, 148].

On the other hand, the scalar field on AdS2 is not stable if its mass is below the
2-dimensional BF bound.

However, a violation of the effective AdS2 BF bound of the near-horizon geometry
does not necessarily imply an instability of the scalar field on the full (extremal)
black hole geometry. For asymptotically flat or AdS black holes, a conjecture
by Durkee and Reall [144], later proven by Hollands and Ishibashi [149], gives
a sufficient (but not necessary) condition for this near-horizon AdS2 BF bound
violation to develop into an instability of the extremal black hole. If an instability
is present, one expects that it also extends away from extremality, by continuity.
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Details of the condition for an instability, and the potential to extend the theorem
to include asymptotically de Sitter spacetimes, are given in Chapter 3.

Given a system susceptible to these instabilities, it is natural to wonder what the
endpoint of a time evolution would be. One possibility is that it evolves to a nakedly
singular solution in a finite time, violating the weak cosmic censorship conjecture
(see footnote 7), as occurs for the Gregory-Laflamme instability [150–152]. Another
possibility is that modes with increasingly high energies are excited, moving into
the regime of quantum gravity. However, is often the case that following the time
evolution to its endpoint will reveal a new black hole solution, one that is stable to
the original instability.

The discovery of Hawking radiation cemented the idea that the laws of black hole
mechanics are not just analogous to the laws of thermodynamics [133], but that
black holes are really thermodynamic objects [133, 153, 154], with a temperature
T “ κ`{2π and an entropy proportional to the area of the event horizon S “ AH{4.
Therefore, one can use thermodynamic arguments to try to determine the endpoint
of a black hole instability. We can find candidates for the endpoint of the instability
by constructing solutions (with the same fields and boundary conditions) that are
stable to the original instability, but with a higher entropy for a given energy (and
eventually for a given angular momentum and/or charge).

In Chapter 4, we do exactly this for the charged black hole bomb system. We find
the phase diagram of static solutions of the Einstein-Maxwell-Scalar system with
boundary conditions that confine the scalar field inside the box, including those
with a scalar condensate floating above the horizon, to understand which phase is
thermodynamically preferred.

1.5 Pseudospectral methods

Fundamentally, the numerical computation of quasinormal modes boils down to
the computation of the eigenvalues of a coupled system of differential equations. As
a result there are as many ways to find QNMs as there are ways to find eigenvalues.
We refer the reader to [43, 42] for comprehensive reviews of the numerical methods
traditionally used to compute QNMs. In this thesis we will use pseudospectral
collocation methods, a highly accurate general-purpose method for solving differen-
tial equations, in combination with two complementary ways to reduce non-linear
ODEs/eigenvalue problems to a linear problem. While pseudospectral methods
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have been a mainstay of domains such as fluid dynamics since the 1970s [155], they
have only much more recently been applied to gravitational problems. We will
briefly review these techniques in this section. For further details and examples,
see the review [156] or [157–165].

1.5.1 Pseudospectral collocation

Here, we will give a brief review of pseudospectral collocation methods and a
comparison to finite differences. An excellent introduction to the subject is the
book by Trefethen [155]. Recall that in a (symmetric) finite difference scheme of
order N , we approximate the derivative at each point by the average of the Nth
order Taylor expansion to the left and to the right. For example, for a second-order
method we first expand fpxq as

fpxi`1q “ fpxiq `∆xf 1
pxiq ` p∆xq2f 2

pxiq `Op∆x3q, (1.30)

fpxi´1q “ fpxiq ´∆xf 1
pxiq ` p∆xq2f 2

pxiq `Op∆x3q, (1.31)

where ∆x is the grid spacing. Solving each equation for f 1pxiq, and then taking
the average yields the central finite difference formula

f 1
pxiq “

fpxi`1q ´ fpxi´1q

2∆x
`O

`

∆x2
˘

. (1.32)

To express this as a matrix operator, note that each row i of the derivative matrix
corresponds to f 1px “ xiq. We evaluate fpxq in the right hand side of (1.32)
by substituting in the Kronecker delta fpxiq “ δi j and evaluating the resulting
expression for all i, j. The resulting derivative matrix is

DFD
ij “

1

2∆x

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

. . . . . . . . .

´1 0 1

´1 0 1

´1 0 1
. . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ij

. (1.33)
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Fig. 1.2: The Runge function 3
1`15x2

evaluated at uniformly spaced points (left)
and Chebyshev points (right). The blue curve is a polynomial interpolation. Note
the clustering of the Chebyshev points near the boundaries in the right plot.

Strictly speaking, this derivative matrix is only valid for periodic domains, otherwise
we would have to use one-sided derivatives at the boundaries. However the
Chebyshev derivatives later will be specialised to non-periodic domains, hence
the nomenclature pseudospectral, rather than simply spectral. The fact that the
finite difference matrix DFD is sparse is characteristic of the local nature of finite
differences — we are only using information about the neighbouring grid points.
One could use a finite difference method of extremely high order to get a dense
matrix, but we will see that pseudospectral methods are a more sophisticated and
practical way to achieve a dense matrix that uses information about the whole
grid.

Suppose that fpxq has been evaluated at n grid points xj. In pseudospectral
methods, we fit an pn´1q-th order polynomial ppxq, such that ppxjq “ fpxjq for all
j “ 1, . . . , n. Then, we use the analytically computed derivatives p1pxq to estimate
f 1pxq. As one would expect, this gives us numerically exact results when fpxq is a
polynomial (with enough grid points). For analytic functions we get exponential
convergence in the number of grid points. This rapid convergence for analytic
functions is what makes (pseudo-)spectral methods so useful.

Let’s see how this works in practice. Polynomial interpolation on a uniformly
spaced grid suffers from the Runge phenomenon, where even a smooth function can
have very large and oscillatory interpolation errors at the boundaries, increasing as
the number of grid resolution increases, see Fig. 1.2. Instead, we use points which
cluster at the boundaries and minimise this error, in particular the Chebyshev
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points

xj “ cos

ˆ

jπ

N

˙

, j “ 0, 1, . . . , N (1.34)

which have the range r´1, 1s but can be scaled linearly as necessary. The Chebyshev
points also have the incidental advantage of sampling fpxq more near the boundaries,
which is typically where interesting phenomena occur. For more details about why
these specific points are optimal, see [155]. A set of n points uniquely specifies an
interpolating polynomial ppxq of order n´ 1.

In Lagrange form, the unique interpolating polynomial for fpxq evaluated at each
point x “ xj is

P pxq “
n
ÿ

j“1

fpxjq pjpxq, pjpxq ”
n
ź

k“1
k‰j

x´ xk
xj ´ xk

. (1.35)

Taking the log derivative of each pjpxq and evaluating at x “ xi, the derivative of
the interpolating polynomial is

P 1
pxiq “

n
ÿ

j“1

fpxjq p
1
jpxiq, p1jpxiq “ pjpxiq

n
ÿ

k“1
k‰j

1

xi ´ xk
. (1.36)

As with finite differences, the entries of the derivative matrix can be found by
substituting in the Kronecker delta fpxiq “ δi j for all i, j. This kills the first sum
in P 1pxiq. The entries of the Chebyshev derivative matrix are therefore

Dij ” P 1
pxiq “ pjpxiq

n
ÿ

k“1
k‰j

1

xi ´ xk
. (1.37)

Note that, for practical computation, one can simplify this further to get an explicit
form for the diagonal and non-diagonal entries of Dij that is more numerically
stable, see [155]. The Chebyshev derivative matrix D is dense. We are using
information about all of the points on the grid to compute each Dij and so we
expect this to be much more accurate than a finite difference derivative of low order.
Provided that the function is analytic, we achieve exponential convergence in the
number of grid points. On top of this rather theoretical asymptotic convergence
rate, the practical performance is excellent, see [155, 166] for many examples of
this.

To solve a single homogenous ODE of the form Ly “ 0 numerically, we discretise y
on a grid of Chebyshev points (1.34), replacing derivatives in L with the appropriate
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derivative matrix, with entries given by (1.37). We have then converted the ODE
into a linear system of equations. It is straightforward to generalise this method
to a system of linear homogeneous ODEs. Consider a pair of linear ODEs with
operators L and S acting on x and y. Without loss of generality, we can split the
operators into terms which act on x and y, and then write it as a block matrix
equation

L1x` L2y “ 0

S1x` S2y “ 0
ùñ

«

L1 L2

S1 S2

ff«

x

y

ff

“ 0. (1.38)

Discretising each of the operators blockwise, we have reduced a coupled system of
ODEs to a single matrix equation for rx ysT.

However, to ensure that a solution exists, i.e. the matrix is invertible, we must
impose boundary conditions. To impose Dirichlet or Neumann boundary conditions,
one can simply follow the same discretisation procedure as above, except only
applying it to the relevant row of the matrix operator. For example, to apply
Neumann boundary conditions at x “ 1 we replace the first row of the discretisation
of Ly “ 0 with the first row of the discretisation of y1pxq “ 0.

If we simply need to solve a system of linear ODEs with Dirichlet of Newmann
boundary conditions, we can just solve the resulting matrix equation using e.g.
Mathematica’s LinearSolve, and we are done. Unfortunately, none of the problems
we are interested in here are so simple. We need to solve either coupled systems
of non-linear ODEs, or quadratic eigenvalue problems subject to QNM boundary
conditions. For both of these we need to use some numerical methods to convert
them into a suitable form for pseudospectral discretisation.

We will focus on QNM problems, i.e. quadratic eigenvalue problems, and then
return to non-linear ODEs at the end. To impose QNM boundary conditions
numerically, we take a different approach to that of Dirichlet or Neumann boundary
conditions. We redefine the radial function by factoring out the desired asymptotic
behaviours (1.16) at the two boundaries. In Kerr-Newman, we make the redefinition

Rprq “ ei ω r
´r`
r

¯1´2iωM ´

1´
r`
r

¯´i
ω´mΩpr`q

2κ` χprq. (1.39)

Because pseudospectral collocation methods are only able to converge to smooth
functions, any χprq that is convergent must correspond to an Rprq that satisfies
QNM boundary conditions. A similar procedure can be applied to the angular
equation, where we typically impose regularity at the north and south poles. For
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simplicity we will ignore the angular equation, and focus on the radial part. The
explicit details will be given in the relevant chapter.

After this redefinition, we have to solve an eigenvalue problem, with eigenvalue
ω and eigenfunction χprq. In particular, we have a quadratic eigenvalue problem,
since ω appears up to second order. Let us represent it as the abstract linear
homogeneous ODE Lypxq “ 0. For a quadratic eigenvalue problem, we can group
the terms in L according their power of ω,

L ” ω2Dp2q ´ ωDp1q `Dp0q, (1.40)

for some linear differential operators Dpiq. We now describe two ways to solve this
numerically.

1.5.2 Direct eigenvalue approach

The direct eigenvalue approach is simply the trick of rewriting Ly “ 0 as a system
of equations [166]:

«

Dp0q ωDp2q

0 Dp1q

ff

looooooomooooooon

D̃

«

y

ωy

ff

loomoon

ỹ

“ ωDp1q

«

y

ωy

ff

. (1.41)

The first row is the original equation and the second is identically true. This matrix
equation is now a standard generalised eigenvalue problem D̃ỹ “ ωDp1qỹ. After
discretising the differential operators using pseudospectral method, we can solve
this using any standard eigenvalue solver. We will use Mathematica’s Eigensystem.

One issue with this approach is that discretisation errors result in spurious eigenval-
ues, which are unphysical and must be removed. As the precision or grid resolution
is increased they do not converge to a fixed value, but instead vary rapidly. The
simplest way to filter them out is by solving the eigenvalue problem multiple
times, at different resolutions or precisions, removing any eigenvalues that have
not converged to within some tolerance. For our purposes it is typically sufficient
to use two grid resolutions, one 20 grid points larger than the other, both at the
same numerical precision.
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1.5.3 Newton-Raphson approach

An alternative to the direct eigenvalue method described above is to start with a
nearby seed eigenvalue and eigenvector and use an analogue of Newton-Raphson
iteration to converge on the correct solution. Recall that in a single iteration of
Newton-Raphson, we take a possibly non-linear function fpxq and linearise it

fpxi`1q ´ fpxiq “ f 1
pxiq∆x` . . . (1.42)

where ∆x “ xi`1´xi. Assuming that xi`1 is sufficiently close to a root fpxi`1q » 0,
we can rearrange this to get the Newton-Raphson formula

xi`1 “ xi ´
fpxiq

f 1pxiq
. (1.43)

We can generalise this to solve differential equations Lrys “ 0 by instead taking
the functional derivative11 of L and assuming that Lrypi`1qs » 0,

´Lrypiqs “ δL
δy

rypiqs δy ` . . . (1.44)

where δy “ ypi`1q ´ ypiq. Now consider the quadratic eigenvalue form of L given
in (1.40). To find the eigenvalue, we view ω as an independent variable with its
associated variation. Due to the linearity of L in y its variation with respect to y
is trivial to compute. The linearisation of quadratic eigenvalue problem (1.40) is

´Lrωpiq, ypiqs “ Lrωpiq, ypiqs δy `
BL
Bω

rωpiq, ypiqsδω. (1.45)

The addition of the variable ω means that we need to impose another boundary
condition to get a unique solution, consistent with the fact that the eigenvectors
are unique up to an overall scale factor. To fix the normalisation we impose an
additional boundary condition on the eigenvector. If one can guarantee that the
eigenvector should not vanish at some point x “ x0, the simplest normalisation
to impose is that ypx0q “ 1, which is an additional equation that we linearise by
the same approach as L. Other more flexible normalisations are possible, such as
fixing the normalisation of ypxq using an integral condition, see [166] for a further

11When we say functional derivative, we are referring to the discrete analogue δypxiq

δypxjq
“ δij since

we will eventually discretise ypxq on a grid.
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discussion. The resulting system of equations is
«

Lrωpiq, ypiqs BL
Bω
rωpiq, ypiqs

´δ0i 0

ff«

δy

δω

ff

“ ´

«

Lrωpiq, ypiqs

ypiqpx0q

ff

(1.46)

Starting with a seed pypiq, ωpiqq, we iteratively solve the linear set of equations (1.46),
updating the eigenvalue ωpiq and eigenvector ypiq

ypi`1q
“ ypiq ` δy, ωpi`1q

“ ωpiq
` δω, (1.47)

until the eigenvalue corrections |δωpiq| are sufficiently small. Note that we solve (1.46)
directly, as a linear system, rather than inverting the left hand side, since this is
faster and more accurate in practice [166].

This functional form of Newton-Raphson has the advantage of being much faster
than the direct eigenvalue method at finding a single eigenvalue. The obvious
disadvantage is that it requires a sufficiently close seed to converge. The seed
will typically be eigendata from a nearby point in the parameter space, or from
an analytic approximation. In this case, provided the step size is sufficiently
small, the Newton-Raphson approach guarantees that the new eigenvalue found
is continuously connected to the seed. As we will see, this is particularly useful
for tracking modes from one end of the parameter space to the other in order to
identify them with their limiting behaviour.

While we have described the Newton-Raphson method as a way to solve non-linear
eigenvalue problems, it is also a very powerful way to solve coupled systems of non-
linear ODEs (or PDEs), such as those which arise when trying to find stationary
solutions of the Einstein equations coupled to some form of matter. In fact, we
will use this method in Chapter 4 to solve a system of ODEs that describes static
solutions of the Einstein-Maxwell-Scalar system with a non-vanishing scalar field.
In the next chapter, we use these numerical methods to study the scalar QNM
spectra of Kerr-Newman black holes, which are described by a coupled quadratic
eigenvalue problem.
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Chapter 2

Eigenvalue repulsions in
Kerr-Newman

In this chapter we study the quasinormal (QNM) spectrum of the Kerr-Newman
(KN) black hole [4, 5]. As discussed in the introduction, Kerr-Newman is the
most general stationary, axisymmetric and asymptotically flat electro-vacuum
black hole solution of the Einstein-Maxwell equations [6–8]. In the limiting cases
of Schwarzschild (a “ Q “ 0) [39], Kerr (Q “ 0) [14] and Reissner-Nordström
(a “ 0) [40, 41], the quasinormal mode spectrum has been known for a long
time [167–175, 78, 176, 48, 177–181, 57], since the perturbation equations reduce
to a system of two coupled ordinary differential equations [167–169, 175]. However,
while the theoretical basis for a computation of the QNM spectrum of Kerr-Newman
was set out in the 1980s, when Chandrasekhar reduced the equations governing
gravito-electromagnetic perturbations to a system of two coupled partial differential
equations [176] (see also [182, 18] for a gauge invariant derivation of this system), a
numerical computation of the QNMs remained an open problem for several decades,
due to a lack of further separability.

The gravito-electromagnetic QNM spectrum of Kerr-Newman was finally computed
in [182], but it focused attention on the near-extremal part of the parameter space
most relevant to search for linear mode instabilities (which are not present [182])1.
Recently, efficiency improvements have made a full KN parameter space search
feasible, and these results have been used to construct templates that model existing
gravitational wave data, to constrain the range of remnant charge in a binary
merger [16–18]. In these later studies of KN [16, 18], a surprising phenomenon

1Recent advances towards a proof of stability of the full linear problem, with the assumption
of linear mode stability, have been made in [183].
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´ called eigenvalue repulsion ´ was observed. This phenomenon is common in
some eigenvalue problems of quantum mechanical systems where it is also known
as level repulsion, avoided crossing or Wigner-Teller effect [184, 185]. Typically,
two different QNM families of a black hole can have eigenfrequencies that may
simply cross in the real or imaginary plane (but not in both), but they do not
interact in any way. However, in KN an intricate interaction between the gravito-
electromagnetic ℓ “ m “ 2 modes was observed, where in certain parts of the
parameter space the frequencies of two QNM families approach in the complex
plane very closely, without crossing (i.e. without matching in frequency), before
repelling violently and moving apart again. These repulsions are very strongly
dependent on the black hole parameters pM,a,Qq ´ a relatively minor change
of the black hole parameters can cause the repulsion to be absent ´ and hence
are crucial to understanding the structure of the QNM spectrum in KN and how
the latter bridges the Reissner-Nordstöm and Kerr cases to solve some puzzling
properties of the QNM spectra of the latter two. This full understanding will be
completed only after the present study since scalar modes behave qualitatively
similarly to the gravito-electromagnetic modes but are much easier to explore.

Eigenvalue repulsions have also recently been observed in several black hole
spacetimes, including charged and rotating de Sitter black holes in higher di-
mensions, as we discuss in the next chapter [145, 186]. However, they have not
been observed in studies of (four-dimensional) Schwarzschild, RN or Kerr [167–
175, 78, 176, 48, 177, 178, 180, 181, 57]. In section 2.3.1, we review a first-principles
argument that explains why eigenvalue repulsions are more likely to occur in black
hole families with two or more dimensionless parameters [18].

Despite recent technical advancements, the computation of gravito-electromagnetic
perturbations remains numerically costly. Although gravito-electromagnetic per-
turbations on KN do not separate, scalar (and Dirac) perturbations are separable,
and reduce to a pair of ODEs for the radial and angular components. Thus, in this
chapter, we study the scalar QNM spectra for the full parameter space of KN in
fine detail to better understand the phenomena of eigenvalue repulsions. Typically,
it is the dominant (i.e. slowest decaying) quasinormal mode that is of interest,
however we take advantage of the reduced numerical complexity to also compute
several sub-dominant radial overtones (often denoted by integer n ě 0). This is
necessary for a complete understanding of the QNM spectra, as one consequence
of eigenvalue repulsions is that modes trade dominance in a highly non-trivial way
as we move around the parameter space near extremality. We focus our study on
scalar QNMs with harmonic numbers m “ ℓ “ 2 because these are the dominant
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modes in the gravito-electromagnetic sector and we want to use the scalar field as
a proxy for the latter case, but we also study the ground state scalar QNMs with
m “ ℓ “ 0 because they are the dominant scalar modes, and provide an example
where eigenvalue repulsions are not present (here ℓ is the wave quantum number
that is related to the number of nodes in the angular eigenfunction along the polar
direction and m is the azimuthal quantum number).

As discussed in section 1.1, there are two families of QNMs present in Reissner-
Nordström, namely the photon sphere (PS) modes (also denoted as damped modes
in [57–59]) and near-horizon (NH) modes (a.k.a near-extremal or zero-damped
modes) [77–82, 57, 58, 83, 59, 84, 16, 18, 55, 85].

The photon sphere modes can be captured in the eikonal limit, i.e. the leading-
order WKB approximation where |m| “ ℓ Ñ 8. As can be seen from the PS
mode formula (1.19), the real part is Op|m|q and the imaginary part is Op1q. In
section 2.2 we perform a WKB expansion, beyond the eikonal result, by a further
three orders in Op|m|q, significantly improving the accuracy for the small values of
|m| and ℓ that one typically considers. To the best of our knowledge, this extension
has never been done for the QNMs of KN although it is a standard higher-order
WKB analysis first discussed in the context of QNMs by Will and Guinn [187] and
reduces to the higher-order WKB results of [70–73] in the Schwarzschild, RN and
Kerr limits.

We capture the NH modes by performing a matched asymptotic expansion (MAE)
that is similar to the one performed in [77, 78, 57–59]. We first solve for the
eigenfunction near the horizon, then for the eigenfunction far from the horizon,
before matching the two in the overlap region where both eigenfunctions overlap.
As pointed out in [59], the RN PS modes (a.k.a. damped modes in [59]) are very
well known in the literature, starting with the WKB analysis of [72]. However, the
existence of the RN NH modes (a.k.a. zero-damped modes in [59]) seem to have
been missed till the work of [59] in spite of the seminal work of Teukolsky and
Press [77] already suggesting that such a family might or should be present in any
black hole with an extremal configuration. To the best of our knowledge, the scalar
field NH QNMs of RN are first computed exactly (within numerical accuracy) here
(see Fig. 2.6); the gravito-electromagnetic NH QNMs of RN were computed in [59].

Given a QNM in any part of the parameter space of RN, we can uniquely classify
it (but would not need to) as either a photon sphere mode or a near-horizon mode
by tracing it to the extremal limit, where it agrees with either the WKB or MAE
approximation of the PS or NH modes of RN. As we add angular momentum to the
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system (while simultaneously decreasing the charge, so that the black hole remains
subextremal) and move along the KN space to approach the Kerr configuration, the
situation is more complicated. Depending on the harmonic wave numbers m and ℓ,
the two QNM families may interact in some part of the parameter space. Namely,
the curves describing the imaginary part of the two frequencies can merge and
bifurcate again (but in a different way) to form QNM families that can no longer
be clearly identified as PS or NH modes, since they are often well approximated
by both the WKB and the near-horizon matched asymptotic expansion (possibly
with a higher radial overtone). Whether this is the case or not depends on the
angular momentum quantum numbers m and ℓ of the perturbation. The precise
set of values of m and ℓ for which the NH modes are an independent family of the
PS modes have been partially studied previously in [58, 69, 57]. To complement
this analysis and get a deeper understanding of this transition, we will do a first-
principles analysis (later explored in more detail in Chapter 3) that finds that the
boundary between the two behaviours can be approximately determined by finding
the case where modes start violating the effective AdS2 Breitenlöhner-Freedman
mass bound that characterizes scalar perturbations of the near-horizon geometry
of extremal Kerr-Newman.

We then focus our detailed discussion on two important representatives cases:
m “ ℓ “ 2, for which the PS and NH modes get entangled and lose their original
independence (that they had in the RN limit), and m “ ℓ “ 0 for which both families
remain independent and clearly distinguishable as we span the KN parameter space.
The m “ ℓ “ 2 case (as a representative element of its class) is particularly
interesting since the two families of QNM that exist in the RN limit, unlike in the
ℓ “ m “ 0 case, become a single one in the Kerr limit (that we can denote as a
combined PS-NH family, with its radial overtones); see Fig. 2.15. Thus the KN
spectra and its eigenvalue repulsions will help us understand a long puzzling fact.
Namely, for example when ℓ “ m “ 2, how can it be that we start with two distinct
QNM families of damped and zero-damped modes (and their tower of overtones)
in RN (Fig. 2.6) and end up with a single QNM family of zero damped modes (and
its tower of overtones) in Kerr (Fig. 2.15)? (This is to be contrasted, e.g. with the
m “ ℓ “ 0 case where we start with two QNM families in RN and end up with the
same two QNM families in Kerr; see Fig. 2.19.)

In more detail, the aim of this chapter is to connect the RN and Kerr QNM spectra
explicitly, while navigating through the eigenvalue repulsions that settle in the
way. Starting with the two QNM families in RN, we track how they change as
we increase the rotation and/or vary the charge, until we reach either the Kerr
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limit or the extremal limit of Kerr-Newman. While the PS and NH modes are
unambiguously discernible in the RN limit, as stated above, these distinctions
are often blurred by eigenvalue repulsions as we turn on angular momentum. We
will study the KN QNM spectra with a focus on the m “ ℓ “ 2 modes which
are most closely analogous to the gravito-electromagnetic modes in [16, 18] (most
likely because m “ ℓ “ 2 then equals the spin of gravitational perturbations) but
also the m “ ℓ “ 0 modes since these are the dominant spin-0 modes. Overall,
our study is complementary to [57–59, 55, 85] and it offers a fresh perspective of
the RN/KN/Kerr QNM spectra, identifies and studies the features of eigenvalue
repulsions and helps understanding the Kerr QNM spectra when coming from the
RN QNM spectra.

The plan of this chapter is as follows. In the next section we introduce a novel
“polar parameterisation” of the Kerr-Newman parameter space, which has the
advantage of allowing us to smoothly transition between the RN and Kerr limits
while always keeping at the same ‘distance’ from extremality. We also formu-
late the scalar QNM eigenvalue problem including its boundary conditions. In
section 2.2, we first review the well-known eikonal limit of the QNM problem in
Kerr-Newman (section 2.2.1.1), which is universal to any perturbation spin and
defines the photon sphere family of modes. We then proceed beyond this leading
WKB order and derive a high-order WKB expansion of the scalar field QNM
spectrum (section 2.2.1.2), which is novel and necessarily more accurate for finite m
(in a wide neighbourhood about the Reissner-Nordström and Kerr solutions) than
the eikonal approximation. We also perform a near-horizon matched asymptotic
expansion that identifies the near-horizon family of modes (section 2.2.2). In sec-
tion 2.3, after reviewing a first-principles analysis of the phenomenon of eigenvalue
repulsion (section 2.3.1), we compute the exact m “ ℓ “ 2 spectra of KN QNMs
(using numerical methods), focusing on the near-extremal region where eigenvalue
repulsions often blur the distinction between the photon sphere and near-horizon
QNM families (section 2.3.2). We then discuss the full KN spectrum, for both
m “ ℓ “ 2 and m “ ℓ “ 0 modes, in section 2.4.
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2.1 Klein-Gordon equation in the Kerr-Newman

background

2.1.1 KN black hole and its polar parameterization

The Kerr-Newman black hole was briefly reviewed in the introduction. Here we
provide the explicit details necessary for a study of the QNM spectra. Recall
that, as was given in (1.5), the metric and Maxwell potential in Boyer-Lindquist
coordinates pt, r, θ, ϕq take the form

ds2 “ ´
∆

Σ

`

dt´ a sin2 θdϕ
˘2

`
Σ

∆
dr2 ` Σdθ2 `

sin2 θ

Σ

“`

r2 ` a2
˘

dϕ´ adt
‰2
,

A “
Qr

Σ

`

dt´ a sin2 θdϕ
˘

, (2.1)

with ∆ “ r2 ´ 2Mr` a2 `Q2 and Σ “ r2 ` a2 cos2 θ. We will find it convenient to
work with the angular coordinate x “ cos θ with range x P r´1, 1s.

The roots of the function ∆prq correspond to the inner pr´q and outer pr`q horizons,
r´ ď r`. We can solve ∆pr`q “ 0 with respect to M to find that

M “
r2` ` a2 `Q2

2r`
. (2.2)

Moreover, the system has a scaling symmetry that allows one to write all physical
quantities in units of r` (orM).2 Thus the KN black hole is effectively a 2-parameter
family of solutions that we can parametrize by the dimensionless quantities

α “
a

r`
, Q̃ “

Q

r`
. (2.3)

The outer event horizon (r “ r`) is a Killing horizon generated by the Killing
vector K “ Bt ` ΩHBϕ, with angular velocity ΩH and temperature TH given by

Ω̃H ” ΩHr` “
α

1` α2
, T̃H ” THr` “

1

4π

1´ α2 ´ Q̃2

1` α2
. (2.4)

2The scaling symmetry is tt, r, θ, ϕu Ñ tλt, λr, θ, ϕu and tr`, a,Qu Ñ tλ r`, λ a, λQu which
rescales the metric and Maxwell potential as gab Ñ λ2 gab and Aa Ñ λAa but leaves the equations
of motion invariant (since the affine connection Γc

ab, and the Riemann (Ra
bcd), Ricci (Rab) and

energy-momentum (Tab) tensors are left invariant).
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If r´ “ r`, i.e. α “ αext “
b

1´ Q̃2, the KN BH has a regular extremal (“ext”)
configuration with T ext

H “ 0, and maximum angular velocity Ω̃ext
H “ αext{p1`α

2
extq.

Finally, for our purposes, we will find it very enlightening to parametrize the KN
black hole by “polar” parameters. For that, we first define the parameter Rpσq as:

σ “ 1´
r´
r`

“ 1´ α2
´ Q̃2 , R “

?
1´ σ , (2.5)

and we then introduce the polar parameterisation

α “ R sinΘ , Q̃ “ R cosΘ . (2.6)

This parameterisation pR,Θq has the property that R is an off-extremality radial
measure (since it vanishes in the Schwarzschild limit and attains its maximum
value of R “ 1 at extremality), while the polar parameter Θ ranges between the
Reissner-Nordström solution (where Θ “ 0 and thus α “ 0) and the Kerr solution
(where Θ “ π{2 and thus Q̃ “ 0). So, with this parameterisation we will be able to
follow a family of KN black holes that starts at the Reissner-Nordström solution
(Θ “ 0) and evolves in Θ towards the Kerr solution (Θ “ π{2) while staying always
at fixed distance from extremality (i.e. at fixed R).

2.1.2 Klein-Gordon equation and boundary conditions of

the problem

We are interested in studying massless scalar field perturbations in the KN back-
ground which are described by the Klein-Gordon equation lΦ “ 0. Since Bt and Bϕ

are Killing vectors of the KN background we can perform a Fourier decomposition of
the modes along these directions, which introduces the frequency ω and azimuthal
quantum number m P Z. We make the same separability ansatz as before (1.8),
except using x “ cos θ for the polar variable,

Φ “ e´iωteimϕRprqSpxq . (2.7)

In this case the Klein-Gordon equation separates into a set of radial and angular
ODEs:

d

dr

ˆ

∆
dR

dr

˙

`

«

rpr2 ` a2qω ´mas
2

∆
` 2maω ´ a2ω2

´ λ

ff

R “ 0, (2.8a)
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d

dx

ˆ

p1´ x2q
dS

dx

˙

`

ˆ

´a2ω2
p1´ x2q ´

m2

1´ x2
` a2ω2

` λ

˙

S “ 0, (2.8b)

where λ is the separation constant of the problem.

The angular equation (2.8b) is a standard oblate spheroidal harmonic equation,
namely rp1´ x2qS 1s

1
`

”

γ2 p1´ x2q ´ m2

1´x2
` Λ

ı

S “ 0 with γ ” i a ω and Λ ”

λ ` a2ω2, whose regular solutions are given by the oblate spheroidal harmonics
S “ Smℓ pγ;xq. Here, ℓ is a non-negative integer that essentially gives the number
of zeros of the eigenfunction along the polar angle and regularity at the north
and south poles (x “ ˘1) requires that m is an integer that obeys the constraint
|m| ď ℓ.

To solve the coupled ODEs (2.8a)-(2.8b), we need to impose the QNM bound-
ary conditions for an asymptotically-flat spacetime (1.16). A Frobenius analysis
of (2.8a) yields the two independent asymptotic solutions for large r:

R
ˇ

ˇ

8
» Aoute

i ω r
´r`
r

¯1´i ω
r`
pr2``a2`Q2q

p1` ¨ ¨ ¨ q`Aine
´i ω r

´r`
r

¯1`i ω
r`
pr2``a2`Q2q

p1` ¨ ¨ ¨ q ,

(2.9)
where Aout and Ain are two arbitrary amplitudes. QNM boundary conditions
require that only outgoing waves are permitted. By comparison to (1.16) we see
that we must set Ain ” 0.

At the event horizon, a Frobenius analysis yields the expansion

R
ˇ

ˇ

H
»Bin pr ´ r`q

´i
ω´mΩH
4πTH p1` ¨ ¨ ¨ q ` Bout pr ´ r`q

i
ω´mΩH
4πTH p1` ¨ ¨ ¨ q ,

where Bin and Bout are two arbitrary amplitudes, and ΩH , TH are defined in (2.4).
We want to keep only the solution that is regular in ingoing Eddington-Finkelstein
coordinates (1.6), i.e. that excludes outgoing waves across the future event horizon,
and by comparison to (1.16) this requires that we set Bout ” 0. These two boundary
conditions can be automatically imposed if we redefine the radial function as

R “ ei ω r
´r`
r

¯1´i ω
r`
pr2``a2`Q2q ´

1´
r`
r

¯´i
ω´mΩH
4πTH χprq (2.10)

and search for eigenfunctions χprq that are smooth everywhere in the outer domain
of communications.
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Similarly, we impose regularity on the angular eigenfunction solutions to (2.8b) at
the North and South poles px “ ˘1q by the redefinition

S “ p1´ x2q
|m|

2 Y pxq (2.11)

and then solve for smooth eigenfunctions Y pxq. After inserting the field redefini-
tions (2.10) and (2.11) into (2.8a)-(2.8b), we have a coupled eigenvalue problem
that is quadratic in ω and linear in λ. To solve this numerically, we first discretise
the system using pseudospectral collocation methods and then use the Newton-
Raphson method, as described in section 1.5, to march an appropriate seed from
one part of the parameter space to another. The numerical results in this chapter
are accurate to at least the eighth decimal place.

2.2 Two families of QNM: photon sphere and near-

horizon modes

In subsection 2.2.1.1, we review the well-known eikonal limit of the QNM problem
in Kerr-Newman, which is independent of the perturbation spin and defines the
photon sphere family of modes. Then, in subsection 2.2.1.2 we go beyond this
leading WKB order and derive a high-order WKB expansion of the scalar field
QNM spectrum, which is novel and necessarily more accurate for finite m (in a wide
neighbourhood about the RN and Kerr solutions) than the eikonal approximation.
Finally, in subsection 2.2.2, we introduce a near-horizon matched asymptotic
expansion that identifies the near-horizon family of modes.

2.2.1 WKB expansion of photon sphere modes

2.2.1.1 Photon sphere modes in the eikonal limit (the leading WKB
result)

We will study the eikonal limit of modes with ℓ “ m or ℓ “ ´m and denote the
associated frequency by ωeikn

PS . The final analytical formula for these frequencies
is strictly valid in the WKB limit ℓ “ |m| Ñ 8. That is, it only captures
the leading behaviour of a WKB expansion in 1{m with ℓ “ |m| Ñ 8. This
analysis is independent of the spin of the perturbation and was already performed
previously in several references in the literature, either for the KN background or
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its limiting solutions (Kerr, Reissner-Nordström or Schwarzschild), see e.g. [60–
63, 65–69, 59, 18]. We review it here because we want to compare our numerical
results with the eikonal limit (to identify the nature of some of the modes), and
more importantly, in the next subsection we will extend this WKB expansion to
higher-orders in a 1{m expansion, so it is good to have a self-contained analysis of
the leading term at hand.

The geodesic equation that describes the motion of pointlike particles around a
KN BH leads to a set of quadratures. This may be an unexpected result given that
KN only possesses two Killing fields K “ B{Bt and ξ “ B{Bϕ, seemingly one short
of leading to an integrable system. There is however another conserved quantity ´

the Carter constant ´ associated to a Killing tensor Kab, which rescues the day
[176].

The Hamilton-Jacobi equation [176] provides a quick way to identify the integrable
structure of the system:

BS

Bxµ
BS

Bxν
gµν “ 0 , (2.12)

with S being denoted as the principal function. The motion of null particles is
obtained noting that, according to Hamilton-Jacobi’s theory, the particle momenta
can be obtained from the principal function as

BS

Bxµ
” pµ and pµ “

dxµ

dτ
, (2.13)

where τ is an affine parameter. To proceed, we take a separation ansatz of the
form (using x “ cos θ where θ is the polar angle)

S “ ´e t` j ϕ`Rprq `Xpxq , (2.14)

with the constants e and j being the conserved charges associated with the Killing
fields K and ξ 3 through

e ” ´Kµ 9xµ and j ” ξµ 9xµ , (2.15)

where the dot ( 9 ) describes the derivative w.r.t. the affine parameter τ . With
(2.14), the Hamilton-Jacobi equation (2.12) for null geodesics yields coupled ODEs
for Rprq and Xpxq (the prime p1q describes a derivative w.r.t. the argument, r or

3For massive particles, these coincide with the energy and angular momentum of the particle,
but for massless particles e and j have no physical meaning since they can be rescaled. The ratio
j{e, however, is invariant under such rescalings.
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x, respectively)

∆2R12
´
“

e
`

r2 ` a2
˘

´ aj
‰2

`∆
“

Q` pj ´ aeq2
‰

“ 0 , (2.16)

X 12
´

pj ´ aeq2 `Q
1´ x2

`
rae p1´ x2q ´ js

2

p1´ x2q2
“ 0 , (2.17)

where Q is Carter’s separation constant. Additionally, from (2.13), i.e. 9xµ “ gµν BS
Bxµ

,
one has

9t “
pr2 ` a2q re pr2 ` a2q ´ ajs ` a∆ rj ´ ae p1´ x2qs

∆ pr2 ` a2x2q
,

9ϕ “
p1´ x2q a re pr2 ` a2q ´ ajs `∆ rj ´ ae p1´ x2qs

∆ p1´ x2q pr2 ` a2x2q
. (2.18)

We want null geodesics whose behaviour matches that of large ℓ “ |m| QNMs, i.e.
geodesics confined to the equatorial plane x “ 0. It follows from (2.17) that such
geodesics exist only if at τ “ 0 one has Xp0q “ 9Xp0q “ 0 and Q “ 0. Introducing
the geodesic impact parameter

b ”
j

e
, (2.19)

the equation (2.16) governing the radial motion can be rewritten as

9r2 “ V pr; bq , (2.20)

where the potential is

V pr; bq “
j2

b2

ˆ

1`
a2 ´ b2

r2
`

2Mpb´ aq2

r3
´
Q2pb´ aq2

r4

˙

. (2.21)

We now want to find the photon sphere (the region where null particles are trapped
on unstable circular orbits), i.e. the values of r “ rs and b “ bs, such that

V prs; bsq “ 0 and BrV pr; bq|r“rs,b“bs “ 0. (2.22)

The first equation allows to find

bsprsq “
r2s
a

∆prsq ` a pQ2 ´ 2Mrsq

r2s ´ 2Mrs `Q2
, (2.23)
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Fig. 2.1: The radii r˘s (with r`s ě r´s ě r`) of the two unstable circular orbits
in the equatorial plane of the KN black hole that ultimately yield the co-rotating
m “ ℓ (in the r´s case) and the counter-rotating m “ ´ℓ (in the r`s case) PS QNM
frequencies in the eikonal limit.

which is then inserted in the second equation of (2.22) to get (after algebraic
manipulations) a fourth order polynomial equation for rs:

4
”

r2s ` 2a
´

a

∆prsq ` a
¯ı2

´

ˆ

3Mrs `

c

9M2r2s ´ 8Q2
”

r2s ` 2a
´

a

∆prsq ` a
¯ı

˙2

“ 0 ,

(2.24)
where ∆prq is defined below (2.1) and we are interested in solutions with rs ą r`.
Alternatively, (2.22) can be solved to get the black hole parameters M and Q that
have circular orbits with radius rs and impact parameter bs, namely

M “
rs pb

2
s ´ a2 ´ 2r2sq

pbs ´ aq2
, Q “

rs
a

b2s ´ a2 ´ 3r2s
a

pbs ´ aq 2
. (2.25)

This system has two real roots rs larger than r`, in correspondence with the two
PS modes: the co-rotating one (with m “ ℓ) which is in correspondence with the
eikonal orbit with radius rs “ r´s and bs ą 0 (and that has the lowest |Im ω̃|, as we
will see) and the counter-rotating mode with m “ ´ℓ that maps to the orbit with
radius rs “ r`s and bs ă 0, with r`s ě r´s ě r`. The two real roots r˘s larger than
r` are displayed in Fig. 2.1. In the RN Θ “ arctan pa{Qq “ 0 or Schwarzschild
R “ 0 (i.e. a “ 0 “ Q) limits, one has r`s “ r´s , and at extremality (R “ 1, i.e.

α “ αext “

b

1´ Q̃2q the co-rotating orbit radius equals the event horizon radius,
r´s “ r`, when Θ ě π{6 » 0.52.
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Finally, we can compute the orbital angular velocity (a.k.a. Kepler frequency) of
the null circular photon orbit, which is simply given by

Ω0 ”
9ϕ

9t
“

1

bs
, (2.26)

where we used (2.18) evaluated at r “ rs and b “ bs. Moreover, we can also
compute the largest Lyapunov exponent λL, measured in units of t, associated with
infinitesimal fluctuations around photon orbits with rpτq “ rs. This can be obtained
by perturbing the geodesic equation (2.20) with the potential (2.21) evaluated on
an orbit with impact parameter b “ bs and setting rpτq “ rs ` δrpτq. We find that
small deviations from the orbit decay exponentially in time as δr „ e´λLt with
Lyapunov exponent given by

λL “

d

1

2

V 2pr; bq

9tpτq2

ˇ

ˇ

ˇ

ˇ

r“rs,b“bs

“
1

bsr2s

d

pr2s ` a2 ´ absq
2
p6r2s ` a2 ´ b2sq

pbs ´ aq2
. (2.27)

where a prime p1q denotes a derivative with respect to r. We finally obtain the
approximate spectrum of the photon sphere family of QNMs in the leading WKB
limit ℓ “ |m| Ñ 8 using the PS mode correspondence (1.19):

ωeikn
PS » mΩ0 ´ i

ˆ

n`
1

2

˙

λL

»
m

bs
´ i

n` 1{2

bsr2s

|r2s ` a2 ´ abs|

|bs ´ a|

a

6r2s ` a2 ´ b2s , (2.28)

where n “ 0, 1, 2, . . . is the radial overtone. The frequency ωeikn
PS describes the

eikonal approximation for the PS modes. This expression is blind to the spin
of the perturbation, i.e. it is the same for scalar and gravito-electromagnetic
perturbations (at higher order in the 1{m expansion, the result does depend on
the spin; see the next subsection for the scalar field case in KN and the WKB spin
dependence for Kerr in [73]).

Strictly speaking, (2.28) is valid only in the geometric optics limit ℓ “ |m| Ñ 8,
with corrections to Im ω̃ and Re ω̃ being of order O p|m|q and O p1q, respectively.
However, in practice we find that it is already a good approximation for ℓ “ m “ 2

in a wide window of the KN parameter space centred around the Kerr and Reissner-
Nordström limiting solutions. In the next subsection we do a higher-order WKB
expansion that finds the corrections to the leading eikonal result (2.28).
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2.2.1.2 Photon sphere modes in a WKB expansion: beyond the eikonal
limit

The eikonal limit of the previous subsection was first studied by Goebel [60] and
Ferrari and Mashhoon [61–63]. Naturally, this eikonal limit is the leading order
result of a WKB expansion in 1{m in the limit m " 1 initiated by Schutz and Will
[64] and completed for Schwarzschild, RN and Kerr in [70–73]. In this subsection,
we extend the WKB expansion of KN QNMs (which is also valid for the sub-families
of this black hole) to higher orders to capture the next-to-leading order WKB
contributions to the photon sphere QNM frequencies. We will only consider modes
with large ℓ “ m ą 0. To the best of our knowledge, this extension has never been
done for the QNMs of KN although it is a standard higher-order WKB analysis
first discussed in the context of QNMs by Will and Guinn [187], and reduces
to the higher-order WKB results of [70–73] in the Schwarzschild, RN and Kerr
limits. Unlike the leading eikonal WKB result, the next-to-leading order WKB
corrections depend on the spin of the perturbation. Our analysis is valid for spin-0
perturbations.

Consider first the angular equation (2.8b) for the oblate spheroidal harmonics
Spxq. To leading order in 1{m (and for modes with ℓ “ m) the leading WKB
solution that is regular at x “ ˘1 is given by Spxq “ p1´ x2qm{2 with eigenvalue
λ “ ℓpℓ ` 1q. At higher WKB order, the angular eigenfunction and the angular
eigenvalue receive p1{mqk corrections (with integer k ą 0). To find them we assume
the WKB ansatz for these quantities,

Spxq “ p1´ x2q
m
2

ˆ

1`
S1pxq

m
`

S2pxq

m2
`

S3pxq

m3

˙

`O
`

1{m4
˘

, (2.29a)

λ “ ℓpℓ` 1q `
λ1
m

`
λ2
m2

`O
`

1{m3
˘

, (2.29b)

and we solve the angular equation (2.8b) order by order in a small 1{m series
expansion to find the WKB coefficients:

S1pxq “
1

4
a2ω2x2, S2pxq “

1

32
a2ω2x2

`

a2ω2x2 ´ 12
˘

,

S3pxq “
1

384
a2ω2x2

`

a4ω4x4 ` 24a2ω2
`

1´ 2x2
˘

` 216
˘

; (2.30a)

λ1 “ ´
1

2
a2ω2, λ2 “

3

4
a2ω2 ; (2.30b)

where the coefficients λ1 and λ2 were chosen to be such that S2pxq and S3pxq are
everywhere regular (i.e. the choices made eliminate lnpxq divergences at x “ 0 at
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each order).

Next, we want to solve the radial equation (2.8a) also in a 1{m expansion to obtain
the higher-order corrections to the leading order solution obtained in the previous
subsection. For that, we insert (2.25) and the expansion for λ of (2.29b) and
(2.30b) into (2.8a) and we assume the WKB ansatzë for the radial eigenfunction
and eigenfrequency

Rprq “ e´mχprq
ˆ

Q0prq `
Q1prq

m
`
Q2prq

m2
`O

`

1{m3
˘

˙

,

ω “
m

bs
` ω0 `

ω1

m
`
ω2

m2
`O

`

1{m3
˘

, (2.31)

where the leading order contribution (m{bs) to the frequency is the one we already
determined in the eikonal limit (2.28). Inserting these WKB ansatzë into the
radial equation (2.8a) we can solve the latter order by order in a small 1{m series
expansion. At each order, the requirement that the radial equation must be
valid, in particular at r “ rs, yields a condition that allows one to determine the
eigenfrequency correction ω0,1,2. Then, before proceeding to the next order, we
just need to find the equation of motion for the eigenfunction’s correction χ and
Q0,1,2 (but not the solution itself) to use it at next order. At the end of the day,
the WKB frequency coefficients of (2.31) are given as a function of pa, rs, bsq by:

ω0 “ ´
r2s ` a2 ´ abs
4b2sr

2
spbs ´ aq

´

a2 ´ 2b2s ` 2ibs
a

6r2s ` a2 ´ b2s

¯

, (2.32a)

ω1 “
r2s ` a2 ´ abs

32b3sr
4
spa´ bsq3 p6r2s ` a2 ´ b2sq

2

„

2a11 ´ 10a10bs ` a9
`

8b2s ` 26r2s
˘

` 3a8
`

20b3s ´ 37bsr
2
s

˘

` a7
`

92b2sr
2
s ´ 110b4s ` 96r4s

˘

` a6
`

486b3sr
2
s ´ 50b5s ´ 396bsr

4
s

˘

` 2a5
`

´443b4sr
2
s ` 204b2sr

4
s ` 98b6s ` 36r6s

˘

´ 3a4
`

29b5sr
2
s ´ 356b3sr

4
s ` 16b7s ` 180bsr

6
s

˘

` a3
`

864b6sr
2
s ´ 1976b4sr

4
s ` 864b2sr

6
s ´ 96b8s

˘

` 4a2
`

´84b7sr
2
s ` 112b5sr

4
s ` 77b3sr

6
s ` 12b9s

˘

´ 8a
`

6b8sr
2
s ´ 41b6sr

4
s ` 74b4sr

6
s

˘

` 4
`

50b3sr
8
s ´ 37b5sr

6
s ` 6b7sr

4
s

˘

` 4iabs
a

6r2s ` a2 ´ b2s

ˆ

a8 ´ 8a7bs ` a6
`

12b2s ` 13r2s
˘

` a5
`

14b3s ´ 61bsr
2
s

˘

` a4
`

77b2sr
2
s ´ 37b4s ` 48r4s

˘

` a3
`

49b3sr
2
s ` 6b5s ´ 150bsr

4
s

˘

` 6a2
`

´ 23b4sr
2
s ` 29b2sr

4
s ` 4b6s

` 6r6s
˘

´ 12a
`

´4b5sr
2
s ` b3sr

4
s ` b7s ` 6bsr

6
s

˘

` 12b2sr
2
s

`

´5b2sr
2
s ` b4s ` 6r4s

˘

˙ȷ

,

(2.32b)

ω2 “
r2s ` a2 ´ abs

128b4sr
6
spa´ bsq5 p6r2s ` a2 ´ b2sq

5

„

2a22 ´ 20bsa
21
`
`

74b2s ` 64r2s
˘

a20

´ 2
`

32b3s ` 301r2sbs
˘

a19 `
`

´670b4s ` 2128r2sb
2
s ` 842r4s

˘

a18
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`
`

2428b5s ´ 2028r2sb
3
s ´ 7530r4sbs

˘

a17 `
`

´654b6s ´ 15920r2sb
4
s ` 25383r4sb

2
s ` 5820r6s

˘

a16

´ 2
`

4616b7s ´ 30185r2sb
5
s ` 12927r4sb

3
s ` 25290r6sbs

˘

a15

`
`

11710b8s ´ 31432r2sb
6
s ´ 147595r4sb

4
s ` 164382r6sb

2
s ` 22320r8s

˘

a14

` 4
`

2857b9s ´ 44084r2sb
7
s ` 146495r4sb

5
s ´ 44532r6sb

3
s ´ 49140r8sbs

˘

a13

`
`

´28802b10s ` 266496r2sb
8
s ´ 443136r4sb

6
s ´ 680476r6sb

4
s ` 631512r8sb

2
s ` 45792r10s

˘

a12

` 2
`

736b11s ` 58709r2sb
9
s ´ 599046r4sb

7
s ` 1440568r6sb

5
s ´ 368712r8sb

3
s ´ 220320r10s bs

˘

a11

` 2
`

15131b12s ´ 233552r2sb
10
s ` 1092082r4sb

8
s ´ 1409730r6sb

6
s ´ 799010r8sb

4
s ` 719064r10s b

2
s

` 22032r12s
˘

a10 ´ 2
`

7590b13s ´ 73778r2sb
11
s ´ 30543r4sb

9
s ` 1715704r6sb

7
s ´ 3849468r8sb

5
s

` 907200r10s b
3
s ` 260496r12s bs

˘

a9 `
`

´ 13338b14s ` 307472r2sb
12
s ´ 2463177r4sb

10
s

` 8094764r6sb
8
s ´ 9116984r8sb

6
s ´ 1532896r10s b

4
s ` 1714608r12s b

2
s ` 15552r14s

˘

a8

` 2
`

6216b15s ´ 114257r2sb
13
s ` 673253r4sb

11
s ´ 1173570r6sb

9
s ´ 1560404r8sb

7
s ` 5369000r10s b

5
s

´ 1108080r12s b
3
s ´ 116640r14s bs

˘

a7 ` b2s
`

552b14s ´ 42248r2sb
12
s ` 713245r4sb

10
s ´ 4681810r6sb

8
s

` 13463880r8sb
6
s ´ 14621120r10s b

4
s ` 208752r12s b

2
s ` 692064r14s

˘

a6 ´ 8b3s
`

408b14s ´ 10395r2sb
12
s

` 99510r4sb
10
s ´ 438984r6sb

8
s ` 844913r8sb

6
s ´ 278048r10s b

4
s ´ 823092r12s b

2
s ` 93312r14s

˘

a5

` 2b4s
`

432b14s ´ 9776r2sb
12
s ` 66617r4sb

10
s ´ 64822r6sb

8
s ´ 985532r8sb

6
s ` 4000144r10s b

4
s

´ 4892832r12s b
2
s ` 362016r14s

˘

a4 ´ 8b5sr
2
s

`

128b12s ´ 4260r2sb
10
s ` 45727r4sb

8
s ´ 217699r6sb

6
s

` 473398r8sb
4
s ´ 318564r10s b

2
s ´ 203688r12s

˘

a3 ` 4b4sr
2
s

`

24b14s ´ 740r2sb
12
s ` 5834r4sb

10
s

´ 5685r6sb
8
s ´ 107628r8sb

6
s ` 462432r10s b

4
s ´ 612144r12s b

2
s ` 82512r14s

˘

a2

´ 32b5sr
4
s

`

3b12s ´ 97r2sb
10
s ` 1068r4sb

8
s ´ 5289r6sb

6
s ` 11814r8sb

4
s ´ 7884r10s b

2
s ´ 5400r12s

˘

a

` 8b6sr
6
s

`

b2s ´ 6r2s
˘3 `

6b4s ´ 37r2sb
2
s ` 50r4s

˘

` 2ibs
a

6r2s ` a2 ´ b2s

ˆ

2a20 ´ 26bsa
19
`
`

153b2s ` 64r2s
˘

a18 ´
`

362b3s ` 727r2sbs
˘

a17

´
`

271b4s ´ 3772r2sb
2
s ´ 842r4s

˘

a16 `
`

2556b5s ´ 8769r2sb
3
s ´ 8399r4sbs

˘

a15 ´
`

2426b6s

` 3010r2sb
4
s ´ 37394r4sb

2
s ´ 5820r6s

˘

a14 ´ 2
`

2366b7s ´ 24551r2sb
5
s ` 41584r4sb

3
s ` 25845r6sbs

˘

a13

` 2
`

4566b8s ´ 28560r2sb
6
s ` 1424r4sb

4
s ` 98757r6sb

2
s ` 11160r8s

˘

a12

` 2
`

619b9s ´ 28977r2sb
7
s ` 171002r4sb

5
s ´ 207154r6sb

3
s ´ 90900r8sbs

˘

a11

´
`

12035b10s ´ 147852r2sb
8
s ` 472290r4sb

6
s ´ 157566r6sb

4
s ´ 616644r8sb

2
s ´ 45792r10s

˘

a10

`
`

5094b11s ´ 28091r2sb
9
s ´ 173950r4sb

7
s ` 1099064r6sb

5
s ´ 1224580r8sb

3
s ´ 362016r10s bs

˘

a9

`
`

6369b12s ´ 123188r2sb
10
s ` 773952r4sb

8
s ´ 1781082r6sb

6
s ` 819180r8sb

4
s ` 1149336r10s b

2
s

` 44064r12s
˘

a8 `
`

´ 5400b13s ` 82355r2sb
11
s ´ 350365r4sb

9
s ` 158096r6sb

7
s ` 1637020r8sb

5
s

´ 2178848r10s b
3
s ´ 371952r12s bs

˘

a7 ´ 2
`

246b14s ´ 11611r2sb
12
s ` 150842r4sb

10
s ´ 760087r6sb

8
s

` 1586638r8sb
6
s ´ 921032r10s b

4
s ´ 581256r12s b

2
s ´ 7776r14s

˘

a6 ` 2
`

816b15s ´ 18214r2sb
13
s

` 144727r4sb
11
s ´ 492003r6sb

9
s ` 583154r8sb

7
s ` 416552r10s b

5
s ´ 1057824r12s b

3
s ´ 73872r14s bs

˘

a5
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´
`

432b16s ´ 8456r2sb
14
s ` 42434r4sb

12
s ` 38464r6sb

10
s ´ 855632r8sb

8
s ` 2340904r10s b

6
s

´ 1895226r12s b
4
s ´ 435456r14s b

2
s

˘

a4 ` 4b3sr
2
s

`

128b12s ´ 3906r2sb
10
s ` 35243r4sb

8
s ´ 136975r6sb

6
s

` 224308r8sb
4
s ´ 44484r10s b

2
s ´ 188352r12s

˘

a3 ´ 4b4sr
2
s

`

12b12s ´ 343r2sb
10
s ` 1990r4sb

8
s

` 1678r6sb
6
s ´ 48290r8sb

4
s ` 153429r10s b

2
s ´ 159738r12s

˘

a2

` 8b3sr
4
s

`

6b12s ´ 212r2sb
10
s ` 2109r4sb

8
s ´ 9354r6sb

6
s ` 19398r8sb

4
s ´ 13632r10s b

2
s ´ 5400r12s

˘

a

` 2b4sr
8
s

`

146b8s ´ 2044r2sb
6
s ` 11133r4sb

4
s ´ 28212r6sb

2
s ` 28212r8s

˘

˙ȷ

. (2.32c)

We can immediately compare the WKB result (2.31)-(2.32), which is obtained
by directly solving the radial Klein-Gordon equation and is valid for the first
radial overtone n “ 0, with the eikonal result (2.28), which is obtained solving the
geodesic equation for a point particle. We see that the leading WKB frequency
(which is Opmq{Op1q for the real/imaginary part of the frequency) indeed agrees
with the eikonal frequency, thus confirming the validity of the latter. On the other
hand, the WKB result (2.31)-(2.32) now finds the next-to-leading order corrections
in the frequency up to Op1{m2q.

The WKB result (2.31)-(2.32) describes the first radial overtone, n “ 0. In the
simplest scenario, one expects that the overtone dependence (2.28) of the eikonal
result [64] extends to the higher-order WKB corrections. This expectation is
supported by the comparison with our numerical data: we find that the WKB
frequencies of higher overtones are well approximated by

ωWKB “
m

bs
` Repω0q ` p2n` 1q

´

i Impω0q `
ω1

m
`
ω2

m2
`O

`

1{m3
˘

¯

, (2.33)

with ω0,1,2 given by (2.32), and radial overtone n “ 0, 1, 2, . . .. We have split the
ω0 correction into real and imaginary parts, which is consistent with the eikonal
result (2.28), since the real part Repω0q is a sub-leading correction not present
in (2.28). To use this formula, recall that given a KN black hole with parameters
pM,Q, aq we can find rs solving (2.24) and then bs is given by (2.23). Further
recall that we can use the polar parameterisation (2.6) to express the rotation and
charge of the KN black hole in terms of pR,Θq.

Naturally, the WKB result ωWKB in (2.31)-(2.32) with corrections up to Op1{m2q

represents a considerable improvement over the (leading order WKB) eikonal
approximation ωeikn

PS in (2.28). This is best illustrated in Figs. 2.2 and 2.3. Here
we plot the numerical PS frequency (orange points) for a KN family with R “ 0.5

(Fig. 2.2) and R “ 0.99 (Fig. 2.3) as Θ “ arctan a
Q

ranges from the Reissner-
Nordström black hole (Θ “ 0) to the Kerr solution (Θ “ π{2). We compare this
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Fig. 2.2: Comparing the eikonal prediction ωeikn
PS (dotted gray line) with the WKB

result ωWKB (dashed black line) and with the actual numerical frequencies (orange
points) for co-rotating PS modes with m “ ℓ “ 2, n “ 0 in a KN black hole family
with fixed R “ 0.5. Left panel: Imaginary part of the frequency as a function
of Θ. Right panel: Real part of the frequency measured with respect to the
superradiant bound mΩH as a function of Θ.
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Fig. 2.3: Comparing the eikonal prediction ωeikn
PS (dotted gray line) with the WKB

result ωWKB (dashed black line) and with the actual numerical frequencies (orange
points) for co-rotating PS modes with m “ ℓ “ 2, n “ 0 in a KN black hole family
with fixed R “ 0.99. Left panel: Imaginary part of the frequency as a function
of Θ. Right panel: Real part of the frequency measured with respect to the
superradiant bound mΩH as a function of Θ.

exact numerical result with the WKB result ωWKB in (2.31)-(2.32) (dashed black
line) and with the eikonal approximation ωeikn

PS in (2.28) (dotted gray line). We see
that the WKB prediction is an excellent approximation for any Θ for values of R
that are not too close to extremality (Fig. 2.2). Moreover, even for values of R close
to extremality (Fig. 2.3), the WKB prediction is still an excellent approximation in
a wide neighbourhood around Θ “ 0 and again in a large vicinity around Θ “ π{2.
On the other hand, in both plots, one sees that the eikonal approximation is a
less good approximation (as expected, since it is strictly valid only in the limit
ℓ “ mÑ 8).

In the extremal limit R Ñ 1, the imaginary part of the (co-rotating) eikonal
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approximation ωeikn
PS vanishes when Θ ě Θeik

‹ with Θeik
‹ ” π{6 » 0.52, since the

orbit radius reaches the event horizon r´s Ñ r` (see Fig. 2.1). This occurs because
the peak of the eikonal effective Schrödinger potential reaches the event horizon
rs “ r`, as previously mentioned in [59]. However, going beyond the eikonal
approximation, this is not the case for the numerical frequencies computed at finite
m, and this is reflected by the higher-order WKB corrections (2.33) which have a
non-zero imaginary part when Θ Á π{6 in the extremal limit (accordingly, from
Fig. 2.3 it is also clear that the dashed black and dotted gray lines are distinct near
Θ „ π{6). However, for sufficiently large Θ, the higher-order WKB approximation
still predicts that PS modes have vanishing imaginary part and Reω Ñ mΩext

H

at extremality. This happens for Θ ě ΘWKB
‹ with ΘWKB

‹ ą Θeik
‹ ” π{6. However,

later ´ see in particular the discussion of Figs. 2.7-2.12 ´ we will find that it is not
entirely clear whether the PS modes do approach Imω Ñ 0 and Reω Ñ mΩext

H for
large Θ at extremality (although it is probably the case that they indeed do so).
On the other hand, we will find that the near-horizon QNM family is very well
described by (2.33) close to extremality.

2.2.2 Near-extremal QNM frequencies: a matched asymp-

totic expansion

Near extremality, the scalar wavefunctions of relevant classes of modes about KN
(this is the case e.g. form “ ℓ “ 2 modes when Θ is small, but not for the m “ ℓ “ 0

modes at any Θ; see Fig. 2.20 for the latter case) are very localized near the horizon
and quickly decay away from it, at least near the RN limit. This suggests that we
might be able to analytically study the problem within perturbation theory, with
the expansion parameter being the off-extremality quantity σ introduced in (2.5)
[77–82, 57, 58, 83, 59, 84, 16, 18]. This turns out to be indeed possible if we resort
to a matched asymptotic expansion (MAE) whereby we split the spacetime into a
near-region (where the wavefunction is mainly localized) and a far region (where
the wavefunction is considerably smaller). The near-region is defined as r

r`
´ 1 ! 1

and the wavefunction must be regular in this region. In particular it must be
regular in ingoing Eddington-Finkelstein coordinates at the event horizon r “ r`.
On the other hand, the far-region covers the region r

r`
´ 1 " σ and the associated

wavefunction must satisfy the outgoing boundary condition at r Ñ `8. The two
solutions must then be simultaneously valid ´ and thus the free parameters of the
two regions must be matched ´ in the matching region σ ! r

r`
´ 1 ! 1. The latter

is guaranteed to exist since the expansion parameter is small, σ ! 1. In each of
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these regions we find that the radial Klein-Gordon simplifies considerably and can
be solved analytically.

We can now formulate and perform the matched asymptotic expansion in detail. As
stated above, the expansion parameter of our perturbation theory is the dimension-
less off-extremality quantity σ “ 1´ r´

r`
defined in (2.5). At extremality (σ “ 0), we

numerically find that the modes with slowest decay rate always approach Imω “ 0

and Reω “ mΩext
H .4 Therefore, onwards we assume that the eigenfrequency we

search for has an expansion in σ about this superradiant bound:

ω̃ “ mΩ̃ext
H ` σ δω̃ `Opσ2

q , (2.34)

where ω̃ “ ω r`, δω̃ “ δω r`, and our task is to find δω̃. In (2.34) and onwards, Ω̃H

and α always refer to their extremal values although we will drop the super/sub-
scripts ‘ext’ (present in (2.34)) for notational simplicity. By now, it is clear that it’s
useful to parameterize the background using the inner and event horizon locations,
r˘. For that, recall that ∆ “ r2´2Mr`a2`Q2 which can be equivalently written
as ∆ “ pr ´ r´qpr ´ r`q. Equating these two expressions and their derivatives we
can express M and Q as a function of pr´, r`, aq:

M “
1

2
pr´ ` r`q , Q “

a

r´r` ´ a2 . (2.35)

We will insert these relations in the radial Klein-Gordon equation.

Consider first the far-region, r
r`

´ 1 " σ. It is then natural to redefine the radial
coordinate as

y “
r

r`
´ 1 , (2.36)

in which case the far-region is simply defined as the region y " σ. Inserting (2.36),
(2.35) and (2.34) into the radial equation (2.8a) one finds that, to leading order in
a σ expansion about extremality, it reduces to

y2R2
pyq ` 2yR1

pyq `
”

m2Ω̃2
H

`

6` α2
` 4y ` y2

˘

´ λ
ı

Rpyq » 0. (2.37)

4In several studies of perturbations of RN, Kerr, KN [77–82, 57, 58, 83, 59, 84, 16, 18] and
even de Sitter black holes [188, 165, 189], it was also found that there are near-horizon modes that
saturate the superradiant bound ω “ mΩH at extremality. This happens for bosonic perturbations
with spin s, not only for s “ 0. Our analysis here is very similar to the one presented in [59] for
s “ 0 (the MAE analysis of NH gravito-electromagnetic modes is considerably more involved
than the s “ 0 case [18]).
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Introducing a new radial coordinate ȳ and a redefinition of the radial function,

ȳ “ 2 imΩ̃H y , R “ e´imΩ̃Hyy´
1
2
`i δK (2.38)

where

δ “

c

p6` α2qm2Ω̃2
H ´

1

4
´ λ , (2.39)

we find that (2.37) is a standard Kummer equation, ȳK2pȳq`pb´ȳqK 1pȳq´aKpȳq “

0 with
a “

1

2
` i

´

2mΩ̃H ` δ
¯

, b “ 1` 2iδ . (2.40)

Its most general solution is a sum of two independent functions, 1F1pa; b; ȳq and
ȳ1´b

1F1pa ´ b ` 1; 2 ´ b; ȳq where 1F1 is the Kummer confluent hypergeometric
function (a.k.a. of the first kind) [190]5. Thus, the most general solution of the
far-region equation (2.37) is

R “ A1e
´imΩ̃Hyy´

1
2
`i δ

1F1

´

a; b; 2imΩ̃H y
¯

`A2e
´imΩ̃Hyy´

1
2
´i δ

1F1

´

a´ b` 1; 2´ b; 2imΩ̃H y
¯

, (2.41)

for arbitrary integration constants A1 and A2. Asymptotically, this solution behaves
as

R
ˇ

ˇ

yÑ8
» e´imΩ̃Hyy´1´2imΩ̃H

ˆ

A1
p´2imΩ̃Hq

´ 1
2
´ipδ`2mΩ̃HqΓp2iδ ` 1q

Γ
´

1
2
´ ip2mΩ̃H ´ δq

¯

`A2
p´2imΩ̃Hq

´ 1
2
´ip2mΩ̃H´δqΓp1´ 2iδq

Γ
´

1
2
´ ipδ ` 2mΩ̃Hq

¯

˙

`eimΩ̃Hyy´1`2imΩ̃H

ˆ

A1
p2imΩ̃Hq

´ 1
2
`ip2mΩ̃H´δqΓp2iδ ` 1q

Γ
´

1
2
` ipδ ` 2mΩ̃Hq

¯

`A2
p2imΩ̃Hq

´ 1
2
`ipδ`2mΩ̃HqΓp1´ 2iδq

Γ
´

1
2
` ip2mΩ̃H ´ δq

¯

˙

. (2.42)

The first contribution (proportional to e´imΩ̃Hy) represents an ingoing wave while
the second (proportional to e`imΩ̃Hy) describes an outgoing wave. For the QNM
problem we want to impose boundary conditions in the asymptotic region that

5There is a third solution Upa, b, yq, known as the confluent hypergeometric function of the
second kind, that is sometimes also used as one of the two independent solutions. It can be
written as a linear combination of the two independent solutions that we use as Upa, b, yq “

π
sinpπbq

´

1F1pa;b;yq
pb´1q!pa´bq! ´

1F1pa´b`1;2´b;yq
pa´1q!p1´bq! y1´b

¯

[190].
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keep only the outgoing waves. This fixes A1 to be

A1 “ A2e
δrπ`2i lnp2mΩ̃Hqs

Γp´2iδqΓ
´

1
2
´ ip2mΩ̃H ´ δq

¯

Γp2iδqΓ
´

1
2
´ ip2mΩ̃H ` δq

¯ . (2.43)

For the matching with the near-region, we will need the small y behaviour of the
far-region solution (2.42) with the boundary condition (2.43):

Rfar

ˇ

ˇ

y!1
» A2

¨

˝y´
1
2
´i δ

` y´
1
2
`i δeπδp2mΩ̃Hq

2iδ
Γp´2iδqΓ

´

1
2
´ ip2mΩ̃H ´ δq

¯

Γp2iδqΓ
´

1
2
´ ip2mΩ̃H ` δq

¯

˛

‚.(2.44)

Consider now the near-region 0 ď y ! 1. This time we should proceed cautiously
when doing the perturbative expansion in σ ! 1 since this small expansion pa-
rameter can now be of similar order as the radial coordinate y. This is closely
connected with the fact that the far-region solution breaks down when y{σ „ Op1q.
This suggests that to proceed with the near-region analysis we should define a new
radial coordinate as6

z “
y

σ
“

r ´ r`
r` ´ r´

, (2.45)

The near-region now corresponds to 0 ď z ! σ´1. So, in the near-region we
simultaneously zoom in around the horizon and approach extremality. Inserting
(2.45), (2.35) and (2.34) into the radial equation (2.8a) one finds that (again to
leading order in a σ expansion about extremality) it reduces to

zp1`zqR2
pzq`p1`2zqR1

pzq`

¨

˚

˝

´

2mΩ̃Hz ` p1` α2q δω̃
¯2

zp1` zq
`
`

2` α2
˘

m2Ω̃2
H ´ λ

˛

‹

‚

Rpzq » 0.

(2.46)
Introducing a new radial coordinate z̄ and a redefinition of the radial function,

z̄ “ ´z , R “ z̄´i p1`α
2qδω̃

p1´ z̄qi r2mΩ̃H´p1`α2qδω̃sF, (2.47)

we find that (2.46) reduces to a standard hypergeometric equation, p1´ z̄qz̄F 2pz̄q`

rc´ z̄pa` ` a´ ` 1qsF 1pz̄q ´ a`a´F pz̄q “ 0 with

a˘ “
1

2
` i

”

2mΩ̃H ´ 2p1` α2
qδω̃ ˘ δ

ı

, c “ 1´ 2 ip1` α2
qδω̃ , (2.48)

6At the heart of the matching expansion procedure, note that a factor of σ (the expansion
parameter!) is absorbed in the new near-region radial coordinate.
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and δ defined in (2.39). Its most general solution is a sum of two hypergeometric
functions, F “ C̄1 2F1pa`, a´; c; z̄q` C̄2z̄

1´c
2F1pa`´ c`1, a´´ c`1; 2´ c; z̄q [190]

(for an arbitrary integration constants C̄1, C̄2), but regularity at the horizon in
Eddington-Finkelstein coordinates requires that we eliminate the solution that is
outgoing at the event horizon. So we set C̄2 ” 0. Thus, the solution of (2.46) that
describes ingoing waves at the event horizon is

R “ C1z
´i p1`α2qδω̃

p1` zqi r2mΩ̃H´p1`α2qδω̃s
2F1pa`, a´; c;´zq (2.49)

for arbitrary constant C1. Later, to match the near-region solution (2.49) with the
far-region one, we will need the large z “ y

σ
behaviour of (2.49) which is given by

Rnear

ˇ

ˇ

z"1
» C1y

´ 1
2
´iδ

σ
1
2
`iδΓp´2iδqΓ

´

1´ 2ip1` α2qδω̃
¯

Γ
´

1
2
´ 2imΩ̃H ´ iδ

¯

Γ
´

1
2
´ 2i p1` α2q δω̃ ` 2imΩ̃H ´ iδ

¯

`C1y
´ 1

2
`iδ σ

1
2
´iδΓp2iδqΓ p1´ 2i p1` α2q δω̃q

Γ
´

1
2
´ 2imΩ̃H ` iδ

¯

Γ
´

1
2
´ 2i p1` α2q δω̃ ` 2imΩ̃H ` iδ

¯ .(2.50)

In the near-region we have used the horizon boundary condition to fix one of the
two amplitudes of the most general solution. Similarly, in the far-region we have
used the asymptotic boundary condition to fix one of the two amplitudes of the
most general far-region solution. In each of the regions we are left with a free
integration constant, C1 in the far-region and A2 in the near-region. These are
now fixed in the matching region σ ! r

r`
´ 1 ! 1 by requiring that the small radius

expansion (2.44) of the far-region matches with the large radius expansion (2.50)
of the near-region. Concretely, matching first the coefficients of y´

1
2
´iδ of (2.44)

and (2.50) requires that

A2 “ C1
σ

1
2
`iδΓp´2iδqΓ p1´ 2i p1` α2q δω̃q

Γ
´

1
2
´ ip2mΩ̃H ` δq

¯

Γ
´

1
2
` ir2mΩ̃H ´ δ ´ 2 p1` α2q δω̃s

¯ . (2.51)

We can now insert this relation into (2.44) and the final matching, this time of
the coefficients of y´

1
2
`iδ of (2.44) and (2.50), requires that the following condition

holds

β Γ

ˆ

1

2
`

2imα

1` α2
´ 2i

`

1` α2
˘

δω̃ ´ iδ

˙

´ 1 “ 0 (2.52)

with β “ σ´2iδ
e´πδ

`

2αm
1`α2

˘´2iδ
Γp2iδq2Γ

`

1
2
´ 2imα

1`α2 ´ iδ
˘2

Γp´2iδq2Γ
`

1
2
´ 2imα

1`α2 ` iδ
˘2

Γ
`

1
2
` 2imα

1`α2 ´ 2i p1` α2q δω̃ ` iδ
˘

.
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Here, we make the important observation that σ ! 1 and thus β9 σ´2iδ is generally
a very small number, β ! 1. In these conditions, (2.52) can be obeyed is if the
gamma function multiplying β is very large i.e. if the frequency correction δω̃ is
such that the argument of the gamma function is near one of its poles. Recalling
that Γp´pq Ñ `8 when p is a non-negative integer, the matching condition (2.52)
quantizes the frequency correction as

δω̃ »
mα

p1` α2q
2 ´

δ

2 p1` α2q
´

i
`

p` 1
2

˘

2 p1` α2q
, p “ 0, 1, 2, ¨ ¨ ¨ (2.53)

Inserting this quantization into (2.34), we conclude that QNMs that approach
ω̃ “ mΩ̃ext

H at extremality should have a frequency that is well approximated near
extremality by7

ω̃MAE “
mα

1` α2
`σ

˜

mα

p1` α2q
2 ´

1

2 p1` α2q

d

m2α2p6` α2q

p1` α2q
2 ´

1

4
´ λ´

i
`

p` 1
2

˘

2 p1` α2q

¸

`O
`

σ2
˘

,

(2.54)
where p “ 0, 1, 2, ¨ ¨ ¨ is the radial overtone of the mode. To compare with our
numerical results generated using the polar parameterisation (2.5)-(2.6), we should
now replace σ “ 1´R2 and α “ R sinΘ in (2.54). This approximation should be
good for R » 1 and any 0 ď Θ ď π

2
.

Note that if we wish, we can convert (2.54) into units of M by multiplying (2.54)
by M{r` (since ωM “ ω̃M{r`) and expanding it in terms of σ while keeping
terms only up to Opσq (since all our analysis is valid only up to this order). The
near-horizon modes (a.k.a. zero damped [57–59] or near-extremal modes) and a
matched asymptotic analysis of such modes similar to the one above that leads
to their frequencies near-extremality have already been considered for RN, Kerr
and KN for several bosonic fields in [77–82, 57, 58, 83, 59, 84, 16, 18]. In the
appropriate limits, our frequency (2.54) reduces to the expressions presented in
this literature.

In Fig. 2.4 we compare the matched asymptotic expansion ω̃MAE (dot-dashed
magenta curve) to the exact NH modes (blue diamond curve) of KN for R “ 0.993

as we go from RN (a “ 0, i.e. Θ “ 0) to Kerr (Q “ 0, i.e. Θ “ π{2). For most
values of Θ ” arctanpa{Qq, ω̃MAE is an excellent approximation. There is a sharp
change in the behaviour of the matched asymptotic expansion at Θ „ 0.881, which
turns out to be an important feature of this approximation, and is only present for

7Note that, as discussed below (2.8b), the eigenvalue λ is related to the eigenvalue Λ of the
standard oblate spheroidal equation by λ “ Λ´ α2ω̃2 and, in the near-horizon analysis of this
subsection, one has ω̃ “ mΩ̃ext

H “ mα{p1` α2q.
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Fig. 2.4: The NH (blue diamonds) family of QNMs with m “ ℓ “ 2, n “ 0 for a
KN family with R “ 0.993. We also display the near-extremal frequency ω̃MAE for
p “ 0 (dot-dashed magenta line). Left panel: Imaginary part of the frequency as
a function of Θ. Right panel: Real part of the frequency measured with respect
to the superradiant bound mΩH as a function of Θ.

certain values of the azimuthal quantum numbers m and ℓ, as already noted in
[57–59, 16, 18].

To understand this feature of the matched asymptotic expansion better, in Fig. 2.5
we plot the imaginary (left panel) and real (right panel) parts of the matched
asymptotic expansion ω̃MAE, for several values of m “ ℓ “ 0, 1, 2, 5 (yellow, blue,
green, red). For m “ ℓ ě 2, as the cases m “ ℓ “ 2 and m “ ℓ “ 5 in Fig. 2.5
illustrate, this sharp change in behaviour is present, but not for m “ ℓ “ 0 or
m “ ℓ “ 1. This change occurs at a critical value Θc, indicated by dashed lines,
which is the value of Θ at which the argument of the square root in (2.54) changes
sign, or equivalently when δ2 changes sign, where δ is defined by (2.39): δ2 is
negative when Θ ă Θc and positive when Θ ą Θc.

It is important to note that the matched asymptotic expansion we performed
captures any modes that approach the superradiant bound ω Ñ mΩH (with
vanishing imaginary part) in the extremal limit, regardless of whether they are
associated to ‘NH’ or ‘PS’ modes in the RN limit (or any other mode classification
we choose). In particular, we will find ‘PS modes’ that approach the superradiant
bound, and when this occurs the matched asymptotic expansion frequency ω̃MAE

provides an excellent approximation near extremality, even for small values of m
and ℓ where the WKB expansion (2.33) might fail to give a good approximation
(see the last three plots of the later Fig. 2.7).

In the eikonal limit (mÑ 8) and at extremality, one finds that Θc|mÑ8 Ñ π{6 »

0.524. Interestingly, we can see that this value is in agreement with the eikonal
expectation that the PS modes have vanishing imaginary part in the near-extremal
limit when Θ ě Θeik

‹ (where Θeik
‹ ” π{6 was introduced in the last paragraph of
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Fig. 2.5: Imaginary (left) and real (right) parts of the matched asymptotic
expansion ω̃MAE given by (2.54), for KN families with R ě 0.8, with m “ ℓ “ 0, 1
(yellow, blue surfaces) and m “ ℓ “ 2, 5 (green, red surfaces). In the latter two
cases, representative of when m “ ℓ ě 2, there are two regions with distinct
behaviours demarcated by a critical value Θc indicated by a dashed line.

section 2.2.1.2 and in the discussion of Fig. 2.1). However, as discussed in the
same paragraph, this is no longer the case once we include the higher-order WKB
corrections (2.33) since this frequency approaches ω “ mΩH at extremality only for
Θ ě ΘWKB

‹ with ΘWKB
‹ ą Θeik

‹ . The expectation is that if we extend the large m
WKB analysis of section 2.2.1.2 beyond third order Opm´3q to increasingly higher
orders (so that it progressively more accurately describes small m modes), one
would observe ΘWKB

‹ approaching Θc „ 0.881 from below. Conversely, we have
observed that as m “ ℓ increases, the associated Θc approaches ΘWKB

‹ .

For gravito-electromagnetic perturbations in KN [18], there is a separation constant
λ2 which plays the role of δ2, and there it was shown that the vanishing of λ2
provides a very good indication of the point where PS modes want to reach vanishing
imaginary part in the extremal limit [18]. For the scalar field case, the sign of δ2

has been shown to at least roughly correspond to whether there are one or two
families [59] in the extremal limit, however, establishing whether the sign of δ2

is a sharp criteria for KN in the scalar field case was not previously studied in
detail. Later, when discussing Figs. 2.7´2.14, we will find that 1) PS modes do
attempt to approach Imω Ñ 0 and Reω Ñ mΩext

H for large Θ at extremality,
and 2) NH modes always start at Imω Ñ 0 and Reω Ñ mΩext

H at extremality
for any value of Θ. Proceeding with caution, the critical values Θeik

‹ and ΘWKB
‹

that emerge from the eikonal/WKB analysis and Θc that emerges from the near-
horizon analysis are to be seen only as rough reference values signalling where
one expects some change in the qualitative behaviour of the QNM spectra. They
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are rough references because these quantities emerge from WKB or near-horizon
analytical considerations that are just approximation analyses, but also because
these expectations can be subverted by eigenvalue repulsions in KN (which are not
present in the RN or Kerr limits), as we discuss next.

2.3 Eigenvalue repulsions

2.3.1 Eigenvalue or level repulsion, avoided crossing or Wigner-

Teller effect

Eigenvalue repulsions are ubiquitous in eigenvalue problems, for both classical
and quantum mechanical systems, where it goes by the name level repulsion,
avoided crossing or theWigner-Teller effect [184, 185]. For example, in solid state
physics eigenvalue repulsion is responsible for the energy gap between different
energy bands of simple lattice models [191]. However, this phenomenon has only
recently been observed or, at least, correctly understood/identified as such in the
QNM spectra of black holes. In this section, we give a brief discussion of this
phenomenon using the analogy of a two-level system, and explain why one only
expects eigenvalue repulsions to occur in the QNM spectra of black hole families
with two or more dimensionless parameters (e.g. in Kerr-Newman) but not in
black holes parametrised by a single dimensionless parameter (e.g. RN or Kerr).
We ask the reader to see section 4.1 of [18] for a more thorough treatment of the
argument sketched here.

As an example, let us consider L0 to be an operator schematically representing the
eigenvalue problem L0ψ “ ω ψ given by (2.8a)-(2.8b) subject to QNM boundary
conditions, for some fixed value of Θ, e.g. RN pΘ “ 0q. We select two eigenfunctions
ψ1, ψ2 whose associated eigenvalues ω1 and ω2 are distinct but very close in the
complex plane. For example, ω1 could be the dominant PS eigenvalue and ω2 the
dominant NH eigenvalue for some specific RN BH, which never coincide in the
complex plane for any value of R (as discussed later in Fig. 2.6).

Now, we perturb the operator, L “ L0`K, by turning on angular momentum, Θ ą

0, and ask how the eigenvalues change. We make the zeroth-order approximation
that the perturbed eigenfunctions ψ̄ are a linear combination of the unperturbed
basis, ψ̄ “ c1ψ1`c2ψ2, which leads to the perturbed eigenvalue problem pL0`Kqψ̄ “
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ω̄ ψ̄. The matrix representing this eigenvalue problem can then be written as
«

ω1 `K11 K12

K21 ω2 `K22

ff

(2.55)

where Kij are the matrix elements of K in the tψ1, ψ2u basis, defined with respect
to some suitable inner product, and the eigenvalues ω̄˘ of this perturbed equation
are given by

ω̄˘ “
ω̃1 ` ω̃2

2
˘

c

pω̃1 ´ ω̃2q
2

4
`K12K21 , (2.56)

where ω̃i ” ωi ´Kii (no Einstein summation over i). The perturbed eigenvalues
ω̄˘ can only cross if the argument of the square root vanishes, i.e. if and only if

pω̃1 ´ ω̃2q
2

4
`K12K21 “ 0. (2.57)

This complex condition gives rise to two real conditions, which both need to
be satisfied for an eigenvalue crossing. In general, the matrix elements of the
perturbed operator Kij will depend on the N real black hole parameters. With
the exception of some symmetry that reduces the number of conditions required,
we thus expect that eigenvalue crossing can only occur on an N ´ 2 dimensional
subspace. KN is parameterized by two dimensionless parameters tR,Θu, and hence
eigenvalue crossing (in the complex plane) can only occur at isolated points in the
parameter space. This simple argument might explain why eigenvalue repulsions
have been observed in Kerr-Newman [16, 18], Reissner-Nordström-de Sitter [145]
and Myers-Perry-de Sitter (Chapter 3), or accelerating spacetimes [186], but not
in RN, Kerr or Schwarzschild [167–175, 78, 176, 48, 177, 178, 180, 181, 57]. It
is also important to note that the above analysis leaves room for the following
scenario. If the background system has a parameter space with a boundary (e.g. the
1-dimensional extremal boundary in the KN black hole case or the 0-dimensional
extremal endpoint in the Kerr and RN cases), two eigenvalue families might be
able to meet in the complex plane at this extremal boundary (or at a portion of it
if 1-dimensional). This is not an eigenvalue crossing in the complex plane (since it
occurs at a boundary) and thus is not ruled out by the above analysis; instead it is
a special case where two eigenvalue families meet and terminate at a boundary of
the parameter space.

Having understood (in section 2.2) that the QNM spectra of KN has two families
of modes (PS and NH) and that KN is a 2-dimensional parameter family of black
holes, we might now expect the existence of one point (or, at most, a few isolated
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points) in the KN parameter space where we might see the PS and NH modes
trying to approach each other in the frequency complex plane. What might this
point be? Well, from the matched asymptotic analysis of section 2.2.2 we know
that NH modes always start at Imω Ñ 0 and Reω Ñ mΩext

H at extremality for
any value of Θ and there is an associated critical point tR,Θcu „ t1, 0.881u.8

On the other hand, the eikonal and WKB analyses of section 2.2.1, suggest that
PS modes want to approach Imω Ñ 0 and Reω Ñ mΩext

H at extremality for
Θ ě ΘWKB

‹ with ΘWKB
‹ ą Θeik

‹ ” π{6 » 0.524 which singles out the special point
tR,ΘWKB

‹ u. The expectation is that if we extend the large m WKB analysis of
section 2.2.1 to increasingly higher orders so that it progressively describes the
small m modes more accurately, one would observe ΘWKB

‹ approaching Θc from
below. Onwards, for simplicity, let us thus denote this point simply as Θ‹ „ 0.881.
Given the restrictions on eigenvalue crossings argued previously, and the special
point Θ‹ given by our analytic predictions, there are thus three possibilities for the
Kerr-Newman QNM spectra:

1. In one of the simplest scenarios, the PS and NH modes have the same
frequency at a single point. If so, the MAE and WKB results suggest that
this point should be at R “ 1 and around Θ “ Θ‹ „ 0.881.

2. However, since R “ 1 happens to be at the 1-dimensional extremal boundary
of the KN parameter space, there is also room to actually have both the
PS and NH eigenfrequencies meeting and terminating with Imω Ñ 0 and
Reω Ñ mΩext

H , not only at the single point tR,Θ‹u but actually along the
portion of the extremal boundary parametrised by R “ 1 and Θ‹ ď Θ ď π{2.
In fact, we will see that this situation certainly occurs for modes within
the same family of QNM: all the overtones of the NH modes (the exact
numerical frequencies) meet with Reω “ mΩH and Imω “ 0 at extremality
for RN, Kerr and KN. Therefore, it seems reasonable that two distinct
families of QNMs (namely, the PS and NH modes) might also meet and
terminate along a 1-parameter portion of the extremal KN boundary (R “ 1

and Θ‹ ď Θ ď π{2), perhaps with the appearance of eigenvalue repulsions
near-extremality when they do or attempt to do so.

3. The final scenario, that cannot be excluded, is that the PS and NH eigenvalues
never coincide, not even at tR,Θ‹u.

8Recall that the quantity Θc was introduced in the last paragraph of section 2.2.2 (when
discussing the cusps in Figs. 2.4 and 2.5), and that Θeik

‹ and ΘWKB
‹ ě Θeik

‹ were introduced in
the discussion of Fig. 2.1 in the last paragraph of section 2.2.1.2.
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What ends up happening in the KN QNM spectra? This question will be addressed
in the next section. We will do a detailed numerical search of the m “ ℓ “ 2 PS
and NH frequencies, some of which will be displayed in Figs. 2.6´2.15. From this
analysis, we will conclude that: 1) NH modes indeed exist and always approach
Imω Ñ 0 and Reω Ñ mΩext

H at extremality, and 2) PS modes indeed seem to
be strongly willing to approach Imω Ñ 0 and Reω Ñ mΩext

H at extremality for
Θ ą Θ‹. However, intricate eigenvalue repulsions will typically kick in close to
extremality and for Θ Á Θ‹ (as a rough indication) which will break the monotony
of the system that was present for smaller values of R and/or Θ.

2.3.2 Eigenvalue repulsions in the scalar field QNMs of KN

The quasinormal mode spectra of the Kerr-Newman black hole has two families
of mode. In the Reissner-Nordström (RN) limit (i.e. a “ 0 or Θ “ 0) we can
undoubtedly associate one of these families to the photon sphere (PS) modes and
the other to the near-horizon (NH) modes. This is because when Θ “ 0, the
PS family is well approximated by ω̃WKB in (2.33), while the NH family is well
described by ω̃MAE in (2.54).

This is illustrated in Fig. 2.6, where we plot the n “ 0 (orange disks) and n “ 1

(red disks) PS QNM frequencies as well as ω̃WKB given by the black (n “ 0) and
gray (n “ 1) dashed lines. We see that the latter higher-order WKB curves are
on top of the numerical PS curves, indicating that (2.33) provides an excellent
approximation for the PS family of RN QNMs and its overtones, and allows one to
identify them in the RN limit. Additionally, in Fig. 2.6 we also plot the n “ 0, 1, 2, 3

(blue, dark-green, brown and green diamonds) NH QNM frequencies and ω̃MAE

(magenta and red dot-dashed and dashed lines). We see that the latter matched
asymptotic expansions approximate the NH frequencies of RN very well when we
are close to extremality (i.e. as R Ñ 1). This clearly identifies the NH family of
QNMs and their overtones in the RN limit. As pointed out in [59], the PS modes
(a.k.a. damped modes in [59]) of RN are very well known in the literature, starting
with the WKB analysis of [72]. However, the existence of the NH modes (a.k.a.
zero-damped modes in [59]) in RN seems to have been missed until the work of [59],
in spite of the seminal work of Teukolsky and Press [77] and Detweiler [78] already
suggesting that such family might be present in any black hole with an extremal
configuration. Our PS frequencies in Fig. 2.6 agree with those first computed in
[72, 192–195]. On the other hand, the NH QNM spectrum in Fig. 2.6 agrees with
the data obtained in [59] (see its figures 9 and 10).
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Fig. 2.6: The first few overtone PS and NH families of QNMs with m “ ℓ “ 2
for the Reissner-Nordström black hole (i.e. the KN black hole with Θ “ 0 and
thus Q{r` “ R, a “ 0). The orange (red) disk curve is the n “ 0 (n “ 1) PS
family, while the blue, dark-green, brown and green diamond curves are the NH
families with n “ 0, n “ 1, n “ 2 and n “ 3, respectively. Left panel: the main
plot displays the imaginary part of the dimensionless frequency as a function of
R. On the other hand the inset plot displays the real part of the frequency of
the n “ 0 and n “ 1 PS families (all the NH families have Reω “ 0 in the RN
limit). The black (gray) dashed line that is almost on the top of the n “ 0 (n “ 1)
PS numerical curve is the analytical WKB approximation ω̃WKB given by (2.33).
Right panel: Zoom of the left panel in the near-extremal region (i.e. around
R „ 1 where the NH families approach Im ω̃ Ñ 0 as R Ñ 1). This time we also
show, as dot-dashed or dashed lines, the near-extremal approximation ω̃MAE as
from (2.54) for p “ 0, 1, 2, 3. We see that the latter approximate the NH frequencies
very well when we are close to extremality R „ 1, as expected. (The counterpart
of this figure for the Kerr case is displayed in Fig. 2.15).

One final property of the RN QNM spectra that is worth observing in the context
of the eigenvalue repulsions discussed in section 2.3.1 is the fact that the several NH
overtone frequencies do meet and terminate with ω “ 0 at the extremal RN point
R “ 1 “ Q{r`. So we clearly can have different modes meeting and terminating
at the boundary of the RN parameter space.

We will lock the color code of Fig. 2.6 for the rest of the figures of this chapter, since
this settles a nomenclature to frame our discussions (this rule will not be respected
only in Fig. 2.12). That is to say, in all our figures (except Fig. 2.12) we will always
use orange and red disks to represent the KN QNM families that continuously
connect to the RN n “ 0 and n “ 1 PS families of Fig. 2.6, respectively, when
Θ Ñ 0. Similarly, in all our figures we will always use the blue, dark-green, brown
and green diamonds to represent the KN QNM families that continuously connect
to the RN n “ 0, 1, 2, 3 NH families of Fig. 2.6, respectively, when Θ Ñ 0. Moreover,
to keep the discussion fluid (but, unfortunately, often misleadingly), we will keep
denoting these modes as the PS and NH families. However, we will find that,
generically, this sharp distinction between the PS and NH families only holds in (a
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neighbourhood of) the Reissner-Nordström limit (i.e. for small a{r` or small Θ)
and is often lost as Θ grows and approaches the Kerr limit (Q “ 0 i.e. Θ “ π{2).
So much that at a certain point it will be more appropriate to denote the different
KN QNM families as ‘PS-NH’ families and their overtones, rather than separate
PS or NH families.

To illustrate how the PS and NH families of RN QNM evolve when we extend
them to the KN case, we plot the imaginary part (Fig. 2.7) and real part (Fig. 2.8)
of the KN QNM frequencies as a function of Θ “ arctan pa{Qq for the PS (orange
disks) and the NH (blue diamonds) families of QNM with m “ ℓ “ 2, n “ 0 for a
series of KN families with fixed R. Recall ´ see (2.5)-(2.6) ´ that R is a ‘radial’
parameter that effectively measures the distance away from extremality, with the
extremal KN family being described by R “ 1 (and the Schwarzschild solution
by R “ 0). In Figs. 2.7´2.8 we have selected six KN families at constant R that
illustrate a key feature of the QNM spectra as we progressively move away from
extremality. These values are R “ 0.993, R “ 0.992, R “ 0.991, R “ 0.990,
R “ 0.985 and R “ 0.980 (please find this value on the top of each plot). For
each plot, we increase Θ to follow the m “ ℓ “ 2, n “ 0 PS and NH QNM families
from their RN limit (Θ “ 0), shown in Fig. 2.6, all the way up to their Kerr limit
(Θ “ π{2), which will be shown in later Fig. 2.15.

The most relevant property of the system is found in Fig. 2.7, which plots the
imaginary part. We see that for R À 0.991 the blue diamond NH family has smaller
|Im ω̃| than the orange disk PS family for all values of Θ. However, at R „ 0.991

(middle-left plot; see in particular the zoom in the inset plot) we see that both the
NH and PS curves develop a cusp around Θ „ 0.7 where the two families approach
arbitrarily close. (Hereafter, we denote the piece of the curve to the left/right of
this cusp as the ‘old left/right branches ’ of the PS or NH family). For slightly
smaller values of R the ‘old left/right’ branches of the NH curve break, and the
same happens for the ‘old left/right branches’ of the PS curve. In particular, for
R „ 0.990 (middle-right plot; see in particular the zoom in the inset plot) we
see that the ‘old NH left branch’ is now smoothly merged with the ‘old PS right
branch’, and a similar trade-off occurs with the other two branches, i.e. the ‘old
PS left branch’ is now smoothly merged with the ‘old NH right branch’. That
is to say, in the small window 0.991 Á R Á 0.990 the identification of the PS
and NH families is no longer clean but fuzzy. Up to the point where it becomes
more appropriate to consider the two families of QNMs displayed in Fig. 2.7 as
two ‘merged PS-NH’ mode families that intersect each other by simple crossovers
(the Im ω̃ curves but not the real part) for values R ă 0.990, as illustrated in the
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Fig. 2.7: Imaginary part of the frequency as a function of Θ “ arctan pa{Qq

for the PS (orange disks) and the NH (blue diamonds) families of QNMs with
m “ ℓ “ 2, n “ 0 for a KN family with, following the lexicographic order, R “ 0.993,
R “ 0.992, R “ 0.991, R “ 0.990, R “ 0.985 and R “ 0.980. We also display the
WKB result ω̃WKB (dashed black line) and the near-extremal frequency ω̃MAE for
p “ 0 (dot-dashed magenta line) and p “ 1 (dotted dark magenta line).

two bottom plots of Fig. 2.7 for R “ 0.985 (bottom-left panel) and for R “ 0.980

(bottom-right panel). The non-trivial interaction between the imaginary part of
the m “ ℓ “ 2, n “ 0 NH and PS QNM families is a consequence of the eigenvalue
repulsion phenomenon reviewed in the previous section. Eigenvalue repulsions were
previously identified in [18] for gravito-electromagnetic perturbations of KN, and
we see here that they are also present in the scalar field QNM spectra. The polar
parametrisation adopted here for the KN black hole is particularly useful to study
this phenomenon.
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Fig. 2.8: This series of figures is for the same cases reported in Fig. 2.7 but this
time we plot the real part of the frequency as a function of Θ for the PS (orange
disks) and the NH (blue diamonds) families of QNMs with m “ ℓ “ 2, n “ 0
for a KN family with, following the lexicographic order, R “ 0.993, R “ 0.992,
R “ 0.991, R “ 0.990, R “ 0.985 and R “ 0.980. We also display the WKB
result ω̃WKB (dashed black line) and the near-extremal frequency ω̃MAE for p “ 0
(dot-dashed magenta line) and p “ 1 (dotted dark magenta line). In the inset plots,
we still show the real part of the frequency but this time measured with respect to
the superradiant bound mΩH .

Three important observations are still in order. First, note that for small values
of Θ, and for any value of R, it is true that the two families of QNM can be
unequivocally traced back to the PS and NH QNM families of the RN black hole
when Θ Ñ 0. It is only at intermediate values of Θ (roughly, Θ Á 0.5, say) that
the two curves approximate and develop cusps (for 0.992 Á R Á 0.990) and finally
break/merge to form the two ‘PS-NH’ curves (for R À 0.990).
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Secondly, notice that the formation of cusps and the associated breakup/merge
process between two branches of the old PS and NH families (described above)
only occurs at the level of the imaginary part of the frequencies. Indeed, in Fig. 2.8
we analyse the evolution of the real part of the frequency as a function of Θ for the
same fixed values of R as those displayed in Fig. 2.7 and we conclude that nothing
special occurs to the real part of the frequency as R decreases. In particular there
is no formation of cusps or breakups/mergers in the range 0.992 Á R Á 0.990. As
discussed in section 2.3.1, this is consistent with the fact that for a 2-parameter
family of black holes (KN in our case), two eigenvalues can coincide only at a
isolated point (or a discrete set of isolated points) in the parameter space (where
the analogue of the two conditions (2.57) are satisfied). Elsewhere, except possibly
at a portion of the extremal KN boundary where the modes terminate, the real and
imaginary part of the frequency of one family of QNMs cannot be simultaneously
the same as those of another QNM family. If we are to summarize our key findings
in a single sentence, our numerical data strongly suggests that PS and NH modes
can meet and terminate at the portion of the extremal boundary described by
R “ 1 and Θ‹ À Θ ď π{2 (with Θ‹ „ 0.881), but we find no eigenvalue crossing
anywhere else away from extremality. Interestingly, the repulsions around the
portion of the extremal boundary where the PS and NH modes do (or do attempt
to) meet and terminate creates ripple effects relatively far away that can produce
intricate interactions between the imaginary part of the frequency of modes of two
QNM families like those observed in Fig. 2.7 that could not be anticipated before
doing the actual computation. (We will analyse key aspects of this discussion in
more detail later when we discuss Fig. 2.12).

There is a third observation that emerges from Figs. 2.7´2.8 which is crucial to
interpret the nature of the QNM families. In the plots of these figures we also show
the higher-order WKB frequency ω̃WKB (dashed black line) as given by (2.33) with
p “ 0, and the near-horizon frequency ω̃MAE of (2.54) for p “ 0 (dot-dashed magenta
line) and p “ 1 (dotted dark magenta line). For small Θ, and independently of
the value of R, ω̃WKB approximates the orange disk PS curve well; moreover, (2.54)
with p “ 0 is an excellent approximation for the blue diamond NH curve. This is
what we expect from the discussions of sections 2.2.1 and 2.2.2. In particular, we
used these criteria to unambiguously identify the PS and NH families of modes
in the RN limit (Θ Ñ 0). The situation is however much more intricate in the
opposite Kerr limit (Θ “ π{2). To start with, for R Á 0.991 (see e.g. the first
three plots of Figs. 2.7´2.8 for R “ 0.993, 0.992, 0.991), the black-dashed ω̃WKB

describes the orange PS modes well for small Θ, but (and this comes as a surprise)
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it fails to do so at large Θ! Instead, at large Θ, ω̃WKB describes the blue NH family
very well (in particular, in the Kerr limit Θ Ñ π{2)! This is a first indication
that the clean criterion used to classify and distinguish PS and NH families in the
RN limit becomes absolutely misleading as we approach the Kerr limit. On the
other hand, without surprise, in this range R Á 0.991 the dot-dashed magenta
ω̃MAE (with p “ 0) is an excellent approximation to the blue NH family for all
0 ď Θ ď π{2. However, ω̃MAE coincides with ω̃WKB for large Θ! This is a second
indication that the RN criteria for the PS/NH distinction does not extend to the
Kerr limit. Still in the range R Á 0.991 we have yet another surprise: for large
Θ, the orange PS family, that is not well approximated by ω̃WKB, is instead well
described by ω̃MAE . . . with p “ 1 (dotted dark magenta line)!! So not only is the
orange PS curve not well described by the eikonal/WKB approximation, but it
is instead well described by a higher overtone MAE frequency: this orange disk
family starts at Θ “ 0 as a n “ 0 family but terminates at Θ “ π{2 with radial
overtone n “ 1!9 Summarizing, for R Á 0.991, the mode we naively called the
ground state NH family (in the RN limit) is simultaneously described by p “ 0

ω̃WKB and p “ 0 ω̃MAE at large Θ, while the mode we naively called the ground
state PS family (in the RN limit) is described by p “ 1 ω̃MAE (and p “ 1 ω̃WKB)
at large Θ. The three conclusive facts above confirm that the criteria used to
classify and distinguish QNM families in the RN limit cannot be extended without
contradictions/inconsistencies to high values of Θ and, in particular, to the Kerr
limit. The PS/NH classification at the RN limit remains valid for small values
of Θ but gets absolutely misleading at high values of Θ. Up to the point that it
should be dropped because it simply cannot be formulated in equal terms in the
Kerr limit.

If not already sufficiently intricate, another level of complexity is added when
we move to the region 0.991 Á R Á 0.990 where the phenomenon of eigenvalue
repulsion occurs, as already described in detail previously. Moving further away
from extremality, for R ď 0.990, the modes that previously repelled now simply
cross (i.e. the imaginary part of the frequency crosses but not the real part) as we
increase Θ. One now finds that it is the orange disk mode ´ that we initially (in the
RN limit) called the PS family ´ that is simultaneously described by p “ 0 ω̃WKB

and p “ 0 ω̃MAE at large Θ (this is possible because the original PS modes approach
Im ω̃ “ 0 at extremality for large Θ)! And the blue diamond curve that was initially
(i.e. at the RN limit) denoted as the ground state NH family is the one that is
now well approximated by ω̃MAE with p “ 1 (not p “ 0) at large Θ! Altogether,

9Note that here we are not including discussions of the p “ 1 ω̃WKB. This will be discussed in
Figs. 2.13´2.14.
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Fig. 2.9: Imaginary part of the frequency as a function of Θ “ arctan pa{Qq for
the PS (orange disks) and the n “ 0, 1, 2, 3 NH (blue, dark-green, brown, green
diamonds) families of QNM with m “ ℓ “ 2 for a KN family with R “ 0.993,
R “ 0.990, R “ 0.985, R “ 0.980, R “ 0.975 and R “ 0.970 (following the
lexicographic order). We also display the WKB result ω̃WKB (dashed black line) and
the near-extremal frequency ω̃MAE for p “ 0, 1, 2, 3 (dot-dashed magenta, dotted
dark magenta, dot-dashed purple, dotted pink, dot-dashed pink lines, respectively).

and with hindsight, it would have been more appropriate to denote all the QNM
families simply as an entangled ‘PS-NH’ family and its radial overtones, with the
photon sphere and near-horizon nature of the modes unequivocally disentangling
only for small values of Θ as one approaches the Reissner-Nordström limit.

In Figs. 2.7´2.8 we have only displayed the ground state modes, i.e. the first
overtone (n “ 0) of the PS family and the first overtone (n “ 0) of the NH family (as
we unambiguously classify them in the RN limit). To further explore the properties
of our system, in Fig. 2.9 we display the n “ 0 PS (orange disks) and n “ 0 NH
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(blue diamonds) curves that were already presented in Fig. 2.7 but, this time,
we additionally display the n “ 1, 2, 3 NH (dark-green, brown, green diamonds)
families of QNM with m “ ℓ “ 2 for a KN family with R “ 0.993, R “ 0.990,
R “ 0.985, R “ 0.980, R “ 0.975 and R “ 0.970 (following the lexicographic
order). Moreover, we also display the p “ 0 WKB result ω̃WKB (dashed black line)
and the near-extremal frequency ω̃MAE for p “ 0, 1, 2, 3 (dot-dashed magenta, dotted
dark magenta, dot-dashed purple, dotted pink, dot-dashed pink lines, respectively).
As pointed out above when discussing Fig. 2.7, we see that for R ď 0.990, the blue
diamond curve is well approximated by ω̃MAE with p “ 0 for small Θ and then by
ω̃MAE with p “ 1 for large Θ. A similar behavior is found in the higher overtone
NH families. Indeed, near extremality, i.e. for large R, the n “ 1, 2, 3 NH curves
are well described by ω̃MAE with p “ 1, 2, 3 for small Θ but, for large Θ, then are
instead well described by ω̃MAE with p “ 2, 3, 4. That is to say, the family that at
RN is described by the MAE result with overtone p turns out to become, at large
Θ, well approximated by the MAE result with overtone p` 1!

So far we have focused our attention in the parameter region R ď 0.993. But
we might also ask what happens when we approach extremality (R “ 1) even
further. This question is addressed in Figs. 2.10-2.11 (where the latter plots are
to be seen as a continuation of the former) which describes what happens for
0.993 ă R ď 0.999, namely for R “ 0.9940, 0.9950, 0.9955, 0.9960, 0.9965, 0.9970

(Fig. 2.10) and R “ 0.9975, 0.9980, 0.9985, 0.9990 (Fig. 2.11); note that unlike in
the previous figures here we are increasing R as we move along the lexicographic
order. We see that further eigenvalue repulsions happen. Indeed, when moving
from R “ 0.9950 (top-right panel of Fig. 2.10) to R “ 0.9955 (middle-left panel),
one notes an eigenvalue repulsion between the n “ 0 PS family (orange curve) and
the n “ 1 NH family (dark-green curve). Then, when moving from R “ 0.9965

(bottom-left panel of Fig. 2.10) to R “ 0.9970 (bottom-right panel), one observes
an eigenvalue repulsion between the n “ 0 PS family (orange curve) and the n “ 2

NH family (brown curve). Continuing our analysis now in Fig. 2.11, when moving
from R “ 0.9975 (top-left panel of Fig. 2.11) to R “ 0.9980 (top-right panel), we
see a further eigenvalue repulsion this time between the n “ 0 PS family (orange
curve) and the n “ 3 NH family (green curve). Finally, we see clear evidence
that a series of further eigenvalue repulsions keep happening at an increasingly
higher rate (in the sense that small increments R produce more repulsions) as we
further approach R “ 1. Indeed, in the bottom panel of Fig. 2.11 we find that at
R “ 0.9985, for large Θ, the n “ 0 PS curve is now below the n “ 5 NH curve and
then, at R “ 0.9990, for large Θ, the n “ 0 PS curve is now below the n “ 8 NH
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Fig. 2.10: Imaginary part of the frequency as a function of Θ “ arctan pa{Qq for
the n “ 0 PS (orange disks) and the n “ 0, 1, 2, 3, 4, ¨ ¨ ¨ , 16 NH (blue, dark-green,
brown, green and, for n ě 4, dark-blue diamonds) families of QNM with m “ ℓ “ 2
for a KN family with R “ 0.9940, R “ 0.9950, R “ 0.9955 and R “ 0.9960,
R “ 0.9965 and R “ 0.9970 (following the lexicographic order). We also display
the WKB result ω̃WKB for n “ 0 (dashed black line). (This series of plots continues
in Fig. 2.11 for larger R).

curve. This overwhelmingly suggests that as R Ñ 1, there is a (possibly infinite)
cascade of eigenvalue repulsions where, for large Θ, the n “ 0 PS curve gets below
the n-th overtone NH curve for an increasingly higher value of n (possibly with
nÑ 8).

Altogether, from the analyses of Figs. 2.7-2.11 there is a fundamental property
that emerges and that should be further highlighted and discussed. The orange



66 Chapter 2. Eigenvalue repulsions in Kerr-Newman

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.020

-0.015

-0.010

-0.005

0.000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.015

-0.010

-0.005

0.000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

Fig. 2.11: Continuation of Fig. 2.10, this time for KN families with R “ 0.9975,
R “ 0.9980, R “ 0.9985 and R “ 0.9990 (following the lexicographic order).

n “ 0 photon sphere mode (as we identify it in the RN limit and trace forward
for higher values of Θ) seems to be trying to reach Re ω̃ “ mΩ̃ext

H and Im ω̃ “ 0 at
extremality and for sufficiently large Θ — note that the scale of the vertical axis
is changing between Figs 2.7-2.11. This would be in line with the WKB analysis
(and its NH limit) which predicts that PS modes should indeed have this behaviour
as R Ñ 1 and for Θ ě Θ‹ Á ΘWKB

‹ ą π{6 (see the dashed WKB line in previous
figures), where Θ‹ was introduced in the second to last paragraph of section 2.3.1
(recall also footnote 8). But the second KN family of QNMs ´ namely the NH
family ´ already sits at Re ω̃ “ mΩ̃ext

H and Im ω̃ “ 0 at extremality (and for any
value of 0 ď Θ ď π{2, not only for Θ‹ ď Θ ď π{2). So, making contact with
the three possible scenarios enumerated in the end of section 2.3.1, our numerical
data seems to be suggesting that in the KN QNM spectra there are no eigenvalue
crossings in isolated non-extremal points of the parameter space. Instead, we are
seeing evidence that two families of eigenvalues (the PS and NH modes as we
identify them in the RN limit and their overtones) can meet and terminate along a
continuous portion of the KN extremal boundary (very much like several QNM
overtones already meet and terminate at the extremal endpoint of the RN and Kerr
black holes). To gather more evidence in favour of this scenario, it is thus worthy to
analyse in more detail how the PS modes (attempt to) force their pathway towards
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Fig. 2.12: Information about the real (left) and imaginary (right) parts of the
photon sphere (PS) frequency as a function of Θ for several fixed values of R.
Namely, in the top panels ones has curves for 0.90 ď R ď 0.999 (top-left) or for
0.90 ď R ď 0.99 (top-right); see exact values of R and associated color code in
the legends of the plots. On the other hand, in the bottom panels we focus our
attention closer to extremality, in the region 0.990 ď R ď 0.999.

ω̃ “ mΩ̃ext
H at extremality. For that we collect some of the data of Figs. 2.7-2.11 in

a single plot where we show the evolution of the PS mode frequency as a function
of Θ for several fixed values of R. This is done in Fig. 2.12. In the top panels
we show the evolution of the PS family when we are not too close to extremality,
namely for 0.90 ď R ď 0.99 (in intervals of 0.01); the same monotonic behaviour
is observed in the evolution for smaller values of R but we do not show it here (see
later Fig. 2.16 with the full phase space). On the other hand, in the bottom panels
we plot the same quantities but this time for families of KN black holes that are
even closer to extremality in the region 0.990 ď R ď 0.999, namely we plot several
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curves with constant R from 0.990-0.995 in intervals of 0.001 and 0.996-0.999 in
intervals of 0.0005 (see legends in the plots). In the right panels of Fig. 2.12 we plot
the imaginary part of the frequency, Im ω̃, as a function of Θ. On the other hand,
in the left panels, instead of simply plotting the real part of the frequency, we
plot Re ω̃ ´mΩ̃ext

H where Ω̃ext
H is the extremal value (R “ 1) of the frequency for a

given Θ as given by (2.4)-(2.6): Ω̃ext
H “ αext{p1` α2

extq “ sinΘ{p1` sin2 Θq. This
quantity has the advantage that it vanishes when Re ω̃ Ñ mΩ̃ext

H at extremality.

From the top panels of Fig. 2.12 we see that the PS frequency indeed attempts
to approach Re ω̃ “ mΩ̃ext

H and Im ω̃ “ 0 for Θ ą Θ‹ as we keep decreasing the
distance to extremity (i.e. as we approach R “ 1 from below), where Θ‹ is roughly
around 0.8 (doing a rough extrapolation of the R “ 0.999 curve all the way up
to Im ω̃ “ 0). But around R „ 0.99, the system ‘realizes’ that the PS modes
are dangerously approaching the NH modes and eigenvalues repulsions (reported
in Figs. 2.7-2.11) kick in. In more detail, for R ą 0.9, the bottom-left panel of
Fig. 2.12 shows that, interestingly, the real part of the PS frequencies still keeps
monotonically approaching mΩ̃ext

H as R increases from 0.990 to 0.999 following a
pattern that seems to be blind to any worries of level repulsion. But, perhaps to
avoid eigenvalue crossing in the complex plane as R Ñ 1, the Im ω̃ (see bottom-
right panel) reacts and starts ‘oscillating’ in R, i.e. for R Á 0.990 one finds that
|Im ω̃| no longer decreases monotonically towards zero with increasing R. Instead,
for a small increment of R (and fixed Θ), sometimes |Im ω̃| decreases and other
times it increases in such a way that in practice (for the values of R ď 0.999

that we computed), for Θ ą Θ‹, it stays in between the top orange disk curve
(with R “ 0.990) and the bottom black square curve (with R “ 0.991). This is
eigenvalue repulsion in action at its best.

What happens if we approach even further extremality, i.e. if we plunge into the
region 0.999 ă R ď 1? We have not attempted to explore this region. To put
into context, in the Kerr limit, the line of constant R “ a{r` “ 0.999 already
corresponds, in mass units, to a{M » 0.999999. So we have not attempted to
increase this value even further since it becomes very costly computationally.
Furthermore, whether the PS modes do or do not reach Imω Ñ 0 and Reω Ñ

mΩext
H at extremality for Θ ě Θ‹ » 0.881 is a lesser question, since even if it

does, it does so with an |Im ω̃| that is always larger than (or equal to) the |Im ω̃|

of the NH modes (i.e. they approach at smaller rate) and thus they are not the
dominant modes in this region of the parameter space. It should however be
noticed that, in the QNM spectra of Kerr, [58] report the existence of modes
whose |Im ω̃| has ‘damped oscillations’ in R and approaches zero at extremality
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(see the discussion of figure 3 of [58]). Moreover, similar damped oscillations of
Im ω̃ as extremality is approached was observed in the (charged) scalar field QNM
spectra of Reissner-Nordström-de Sitter [189] (see discussion of figures 9-12 of
[189]; especially the latter). So we cannot exclude the possibility (also very much
suggested by the WKB analysis of section 2.2.1) that the ‘oscillations’ observed
in the bottom-right plot of Fig. 2.12 persist all the way to extremality with an
exponential decay envelope (sufficiently close to extremality) such that the curves
ultimately hit Imω Ñ 0 and Reω Ñ mΩext

H at extremality (R “ 1) for Θ ą Θ‹. It
is very tempting to claim it is the case and we believe it is for the above reasons. If
so, the PS and NH modes meet and terminate, with Imω Ñ 0 and Reω Ñ mΩext

H ,
at extremality R “ 1 for Θ ą Θ‹ (this is the third possibility enumerated in the
end of our discussion of section 2.3.1). A similar behaviour was observed for the
gravito-electromagnetic modes of KN [16, 18].

For completeness, we may now ask whether the eigenvalue repulsions observed in
Figs. 2.7-2.12 between the n “ 0 PS (orange disks) and NH families also extend to
the higher PS overtones, namely for n “ 1 (or higher). The answer is yes, and in
fact the eigenvalue repulsions in the n “ 1 PS family are already very visible further
away from extremality. In detail, we address this question in Figs. 2.13´2.14, where
the latter plots are to be seen as a continuation of the former. In particular, Fig. 2.13
displays the cases R “ 0.975, R “ 0.970, R “ 0.965, R “ 0.960, R “ 0.955 and
R “ 0.950 (following the lexicographic order) and then Fig. 2.14 continues this
series of plots to even smaller values of R for the values R “ 0.940, R “ 0.935,
R “ 0.930, R “ 0.925, R “ 0.920 and R “ 0.915.10 In these figures we always plot
the imaginary part of the frequency as a function of Θ for the m “ ℓ “ 2 modes,
and we display the n “ 0 (orange disks) and n “ 1 (red disks) PS families together
with the n “ 0, 1, 2, 3 NH (blue, dark-green, brown and green diamonds) families of
QNMs. Moreover, we also plot the higher-order WKB frequency ω̃WKB ´ as given
by (2.33) ´ with p “ 0 (dashed black line) and with p “ 1 (dashed gray line), and
the near-extremal frequency ω̃MAE ´ as given by (2.54) ´ for p “ 0, 1, 2, 3 (dot-
dashed magenta, dotted dark magenta, dot-dashed purple, dotted pink, dot-dashed
pink lines, respectively). We conclude that a series of eigenvalue repulsions (with
characteristic cusp formation followed by breakup/merge of distinct branches),
similar to those described in Fig. 2.7, do occur, namely between:

10 Recall that the color code was introduced in Fig. 2.6 for the RN case (Θ “ 0). Then we
locked this color code and, at fixed R, we increase Θ to follow each QNM family from its RN
limit (Θ “ 0) until its Kerr limit (Θ “ π{2). Further recall that the nomenclature PS/NH refers
to the nature of the modes in the RN limit.
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Fig. 2.13: Imaginary part of the frequency as a function of Θ “ arctan pa{Qq for
the n “ 0 PS (orange disks), n “ 1 PS (dark-red disks; not present in Figs. 2.7´2.9)
and the n “ 0, 1, 2, 3 NH (blue, dark-green, brown and green diamonds) families of
QNMs with m “ ℓ “ 2 for a KN family with R “ 0.975, R “ 0.970, R “ 0.965,
R “ 0.960, R “ 0.955 and R “ 0.950 (following the lexicographic order). We also
display the WKB result ω̃WKB for n “ 0, 1 (dashed black and dashed gray lines,
respectively) and the near-extremal frequency ω̃MAE for p “ 0, 1, 2, 3 (dot-dashed
magenta, dotted dark magenta, dot-dashed purple, dotted pink, dot-dashed pink
lines, respectively). (This series of plots continues in Fig. 2.14 for smaller R).

‚ The n “ 1 PS red curve and n “ 3 NH green curve (0.975 Á R Á 0.970 in
Fig. 2.13).

‚ The n “ 1 PS red curve and n “ 2 NH brown curve (0.965 Á R Á 0.960 in
Fig. 2.13).

‚ The n “ 1 PS red curve and n “ 1 NH dark-green curve (0.955 Á R Á 0.950 in
Fig. 2.13).
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Fig. 2.14: This series of plots continues the one started in Fig. 2.13 but this time
for R “ 0.940, R “ 0.935, R “ 0.930, R “ 0.925, R “ 0.920 and R “ 0.915
(following the lexicographic order).

‚ The n “ 1 PS red curve and n “ 0 NH blue curve (0.935 Á R Á 0.930 in
Fig. 2.14).

This shows that the eigenvalue repulsion phenomena observed in Figs. 2.7´2.8 for
the n “ 0 PS and n “ 0 NH families is not unique. Instead, it is a common feature
for other overtones.

We started our discussion of the KN QNM spectra with the RN limit (Θ “ 0; see
Fig. 2.6). It is thus enlightening to terminate our journey with a discussion of the
‘opposite’ Kerr limit (Θ “ π{2). Therefore, in Fig. 2.15 we display the m “ ℓ “ 2

QNM spectra for the Kerr black hole. In the top panel, we show the two families
with the lowest |Im ω̃| for the full range 0 ď R ď 1. These are families that, except
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Fig. 2.15: The first few overtone PS-NH families of QNMs with m “ ℓ “ 2 for
the Kerr black hole (i.e. the KN black hole with Θ “ π{2 and thus a{r` “ R).
The orange ‚ and red b are points that connect smoothly, when we decrease Θ
from Θ “ π{2 down to Θ “ 0, to the n “ 0 and n “ 1 PS family of the RN black
hole, while the blue ˛, dark-green ■, brown ▲, green İ and gray ˝ points connect
smoothly to the NH families of the RN black hole with n “ 0, 1, 2, 3, 4, respectively.
Top panel: the main plot displays the imaginary part of the dimensionless
frequency as a function of R. On the other hand, the inset plot displays the real
part of the frequency. The black (gray) dashed line that is almost on the top of the
orange ‚ and red b numerical points are the analytical WKB approximation ω̃WKB

given by (2.33) with p “ 0, 1. Bottom panel: Zoom of the left panel in the near-
extremal region (i.e. around R „ 1) where all the overtone NH families approach
Im ω̃ Ñ 0 as R Ñ 1. This time we also show, as dotted magenta/purple lines, the
near-extremal approximation ω̃MAE as can be read from (2.54) for p “ 0, 1, 2, 3, 4, 5.
We see that the latter approximate the ‘PS-NH’ frequencies very well when we are
close to extremality (i.e. as R Ñ 1), as expected. (The counterpart to this figure
for the RN case is displayed in Fig. 2.6).
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in a small neighbourhood around extremality (R “ 1), are smoothly connected to
the n “ 0 and n “ 1 PS families in the RN limit. However, for the same reasons
discussed above for KN, in the special Kerr case (Θ “ π{2) it is still true that it
is more appropriate to denote the modes of Fig. 2.15 as the n “ 0 PS-NH family
(orange ‚ curve) and an n “ 1 PS-NH family (red b curve). Indeed, on one hand,
for the full range of R these families are very well approximated by the high order
WKB approximation ω̃WKB, namely by (2.33) with p “ 0 (black dashed line on top
of orange ‚ curve) and with p “ 1 (gray dashed line almost on top of the red b

curve). This seems to support the idea that these are photon sphere modes. On
the other hand, this classification is challenged by what happens near extremality
(R Ñ 1). Indeed, note that in the bottom panel of Fig. 2.15 we also display the
magenta dot-dashed lines that are the analytical MAE approximation ω̃MAE given
by (2.54) with p “ 0 and p “ 1 (and with p “ 2, 3, 4, 5). We see that, sufficiently
close to extremality, this MAE approximation is also on top of the orange ‚ and
the red b curves of the top panel. So, from this perspective, we could instead say
that the orange ‚ and red b curves (as best identified in the top panel) are NH
families. Altogether, since near-extremality of Kerr (or of KN for large Θ, as shown
previously) the orange ‚ and red b curves are simultaneously well described by
ω̃WKB and ω̃MAE, it is more appropriate (as advocated previously) to denote these
modes as a single ‘PS-NH’ family of QNMs with several overtones n “ 0, 1, ¨ ¨ ¨ ,
all of which approach (the higher overtones with higher slope) Im ω̃ “ 0 and
Re ω̃ “ Ω̃ext

H at extremality. In the top panel of Fig. 2.15, in addition to the first
two overtone families with n “ 0, 1, we also present the next four overtones with
n “ 2, 3, 4, 5 but, in these cases, we just show the curves near extremality for
R Á 0.85. These extra four overtone curves are also simultaneously well described
by ω̃WKB and ω̃MAE (with p ě 2). The n “ 0 and n “ 1 ‘PS-NH’ curves in Fig. 2.15
agree with the frequencies of the ℓ “ m “ 2 scalar field QNMs first computed in
figures 3 and 4 of [179] and also reproduced previously in figures 7 and 8 of [180]
(the higher overtones in Fig. 2.15 also agree with [180]; recall that we convert our
units ωr` into ωM using (2.2)).

This observation that in the Kerr black hole the PS and NH families lose their
individual identity and merge into a single ‘PS-NH’ family and its overtones is
better illustrated if we focus our attention in the near-extremal region. We do this
in the bottom panel of Fig. 2.15, by zooming into the region R Á 0.91 of the top
panel. In this plot we identify the first 6 overtone families of the top panel using
the color code convention of the RN QNMs described in footnote 10. Looking
into the details that are not clear in the top panel, we first notice that the n “ 0
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overtone (top curve) is essentially filled with orange ‚ except for R ě 0.991 where
it is instead continued with blue ˛. So this Kerr n “ 0 PS-NH curve ´ that is
simultaneously well described by ω̃WKB (black dashed line) and ω̃MAE (magenta
dotted line) ´ can be seen has being formed out of solutions (points) that connect
smoothly to either the PS and NH families in the RN limit (Θ “ 0). Similarly, the
n “ 1 PS-NH overtone curve (second from top) is filled with red b (which are n “ 1

PS modes in RN), blue ˛ (which are n “ 0 NH modes in RN), orange ‚ (that are
n “ 0 PS modes when traced back to RN) and finally a few dark-green ■ (that are
n “ 1 NH modes in RN) points. Comparing these first two curves on the bottom
panel, we identify the trade-off that occurs at 0.990 À R À 0.991: see the few
blue ˛ that are on the n “ 0 ‘PS-NH’ curve (that is otherwise dominated by the
orange ‚) and the few orange ‚ points in the n “ 1 ‘PS-NH’ curve. This is nothing
but the eigenvalue repulsion already documented in detail (for KN including the
Θ “ π{2 case) in Fig. 2.7. Indeed, the transitions between the orange ‚ and the
blue ˛ branches in Fig. 2.15 map to the cusp formation and consequent mergers of
‘old left/right’ branches of Fig. 2.7.

Moreover, as we move along the sequence of curves that describe the n “ 1, 2, 3, 4, 5

‘PS-NH’ families, we also clearly identify the eigenvalue repulsions between the
red b modes, i.e. the n “ 1 PS modes in the RN limit, and the n “ 0, 1, 2, 3, 4

NH modes in the RN limit described, respectively, by the blue ˛, dark-green ■,
brown ▲, green İ and gray ˝ points. This series of eigenvalue repulsions were
already identified and studied in detail in the discussions of Figs. 2.13´2.14. For
example, the trade-off between the red b and blue ˛ around R „ 0.93 when we
move from the n “ 1 to the n “ 2 ‘PS-NH’ curves is in a one-to-one correspondence
with the cusp/merger observed in the transition between the plots of R “ 0.0935

and R “ 0.0930 of Fig. 2.14. As another example, the trade-off between the red b

and dark-green ■ around R „ 0.95 when we move from the n “ 2 to the n “ 3

‘PS-NH’ curves is in a one-to-one correspondence with the cusp/merger observed in
the transition between the plots of R “ 0.0955 and R “ 0.0950 of Fig. 2.13. And
the trade-off between the red b and brown ▲ around R „ 0.965 when we move
from the n “ 3 to the n “ 4 ‘PS-NH’ curves is in a one-to-one correspondence with
the cusp/merger observed in the transition between the plots of R “ 0.0965 and
R “ 0.0960 of Fig. 2.13.11

11The following observations might further help interpreting the bottom panel of Fig. 2.15. In
this plot, let us fix our attention at constant R “ 0.92: we identify the orange ‚, red b and
blue ˛ that are observed at Θ “ π{2 (Kerr limit) in the bottom-left plot of Fig. 2.14. As another
example, consider now R “ 0.94 in Fig. 2.15: we identify the orange ‚, blue ˛, red b and
dark-green ■ also seen at Θ “ π{2 in the top-left plot of Fig 2.14. As a final example, consider
this time R “ 0.97 in Fig. 2.15: we identify the orange ‚, blue ˛, dark-green ■, brown ▲, red b
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An important feature that emerges from Fig. 2.15 is that one could say the families
denoted as n “ 0 and n “ 1 PS modes in RN limit are completely ‘swallowed’ by
near-horizon modes in the extremal Kerr limit, and we simply have the entangled
‘PS-NH’ curves (describing several overtones) shown in the bottom panel of Fig. 2.15.
Another property of the Kerr QNM spectra worth mentioning in the context of the
eigenvalue repulsion discussion of section 2.3.1 is the fact that the several overtone
PS-NH frequencies do meet and terminate with Imω Ñ 0 and Reω Ñ mΩext

H at
the extremal Kerr point R “ 1 “ a{r`. So we clearly can have different modes
meeting and terminating at the boundary of the Kerr parameter space.

As a conclusion or reflection to settle ideas after the above detailed discussions,
it is perhaps enlightening to again observe the m “ ℓ “ 2 QNM spectra of the
Θ “ 0 RN black hole (Fig. 2.6) and its counterpart in the Θ “ π{2 Kerr black hole
(Fig. 2.15), keeping in mind the color code nomenclature fixed in footnote 10. In
the RN case, the PS families and the NH families extend all the way to extremality
while preserving their individual identity. However, eigenvalue repulsions entangle
the PS and NH modes as we turn on angular momentum, so that by the time we
reach the Kerr case we instead have the ‘PS-NH’ family of modes and their radial
overtones.

2.4 QNM spectra of scalar field perturbations in

Kerr-Newman

In the previous section we focused our attention on the region of KN parameter
space relevant to eigenvalue repulsions (typically the near-extremal region for large
Θ). For completeness, we now discuss the QNM spectra for the whole pR,Θq

parameter space of KN, for both m “ ℓ “ 2 and, this time, also m “ ℓ “ 0 scalar
field modes. Recall that the m “ ℓ “ 2 QNM spectra is important because it
should and does capture properties (e.g. eigenvalue repulsions) that are in common
with the gravito-electromagnetic perturbations of KN [182, 17, 16, 18]. On the
other hand, the m “ ℓ “ 0 QNM spectra is relevant because these angular quantum
numbers match the spin 0 of the scalar field.

and green İ that are observed at Θ “ π{2 in the top-right plot of Fig 2.13. This exercise further
helps understanding how several overtones of what we call PS and NH families of the RN QNM
spectra (Θ “ 0; see Fig. 2.6) entangle between each other as Θ increases to collectively generate,
in an intricate combination, the single ‘PS-NH’ QNMs (and its overtones) of the Kerr black hole
when one reaches Θ “ π{2.
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Fig. 2.16: Dominant m “ ℓ “ 2 QNMs of the KN black hole parametrised by the
‘polar’ parameters pR,Θq. The orange (blue) surface describes the QNM family
that reduces to the n “ 0 PS (NH) modes in the RN limit. The light brown curve
at R “ 1 has RepωMq “ mΩH and Imω “ 0. Left panel: Imaginary part of the
dimensionless frequency (in mass units) as a function of tR,Θu. Right panel:
Real part of the dimensionless frequency as a function of tR,Θu. In both panels
we only display the NH modes for 0.875 ď R ď 1 (since they plunge very deeply to
very negative values of Im pωMq for smaller values of R).

As discussed previously, we choose to parametrize the KN family using the ‘polar’
quantities tR,Θu, such that the dimensionless rotation α and charge Q̃ are given
by (2.6), i.e. α “ R sinΘ and Q̃ “ R cosΘ. Thus, Θ ranges from the Reissner-
Nordström solution (Θ “ 0) to the Kerr solution (Θ “ π{2). On the other hand,
R is an off-extremality measure, such that extremality of KN (and hence RN and
Kerr) is at R “ 1, while R “ 0 describes the Schwarzschild BH.

2.4.1 The QNM spectra of m “ ℓ “ 2 modes

In Fig. 2.16 we consider the full parameter space (R P r0, 1s and Θ P r0, π{2s) of
the KN black hole and we plot the two ℓ “ m “ 2 modes that can dominate the
spectra (i.e. that can have the smallest |ImpωMq|) in some region of the phase
space.

In Fig. 2.16 and all figures of this section we choose to provide the dimensionless
frequency in units of the mass (ωM), because this is the standard unit in astrophys-
ical studies.12 Still following the color convention of footnote 10, the orange surface

12The intricate properties of the spectra due to the eigenvalue repulsions are however best seen
if we use units of r`. This is the reason we used this unit in previous figures. To convert ωr`
into ωM we use (2.2).
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Fig. 2.17: In addition to the two surfaces (orange and blue) already presented in
Fig. 2.16, we also display the red family of modes that connect to the n “ 1 PS
family of modes in the RN limit, and the dark-green surface which describes the
modes that connect to the n “ 1 NH family in the RN limit.

is the family of modes that connects to the n “ 0 PS family of modes in the RN
limit, and is typically well approximated by the high order WKB approximation
ω̃WKB, namely by (2.33) with p “ 0. On the other hand, the blue surface describes
the modes that connect to the n “ 0 NH family in the RN limit, and is typically
well approximated by the MAE frequency ω̃MAE given by (2.54) with p “ 0. The
light brown curve at R “ 1 in Fig. 2.16 has Imω “ 0 and Reω “ mΩH . As already
concluded from the analysis of Figs. 2.7 and 2.9, Fig. 2.16 clearly shows that the
orange family is the dominant mode (i.e. it has smaller |ImpωMq|) in most of
the parameter space except in a small neighbourhood around extremality R „ 1

where the blue family dominates. Note that the Θ “ 0 plane of Fig. 2.16 is the
RN spectrum shown in Fig. 2.6, and the Θ “ π{2 plane of Fig. 2.16 is the Kerr
spectrum of Fig. 2.15 (after converting units ωr` Ñ ωM and keeping only the
orange and blue modes of those earlier figures). Finally, several planes at constant
R of Fig. 2.16 can be found in previous figures, e.g. in Figs. 2.7´2.8.

For completeness, in Fig. 2.17 we again display the two QNM families of Fig. 2.16,
but this time we also add the next two subdominant modes. Namely, the red family
of modes that connects to the n “ 1 PS family of modes in the RN limit and that
is typically well approximated by the high order WKB approximation ω̃WKB with
p “ 1, and the dark-green surface which describes the modes that connect to the
n “ 1 NH family in the RN limit and which is typically well approximated by the
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MAE frequency ω̃MAE with p “ 1.13

Concluding, the scalar field m “ ℓ “ 2 QNM spectra is qualitatively similar to
that of gravito-electromagnetic perturbations of KN [16, 18]. For example, this is
evident when we compare the scalar field Fig. 2.17 with the gravito-electromagnetic
Fig. 15 of [18]. The intricate properties associated to eigenvalue repulsions are
also similar for the two sectors of perturbations. However, since the scalar field
perturbations are described by a single pair of radial/angular ODEs (instead of a
coupled pair of PDEs), and using the polar parametrisation of the KN parameter
space introduced in this chapter, we were able to explore fine-tuned details of the
eigenvalue repulsions that were not so easy to extract in the gravito-electromagnetic
case of [16, 18].

A comparison between our findings and those of [59], where the scalar QNM spectra
of KN was also analysed and the existence of two families of QNMs was extensively
discussed, is in order. Overall, our study is complementary to the one of [59] (see
also [57, 58, 85, 196]), but it offers a fresh perspective of the RN/KN/Kerr QNM
spectra, identifies and studies the features of eigenvalue repulsions, and helps to
clarify the Kerr QNM spectra from the perspective of the RN QNM spectra. For
each pair tℓ,mu of quantum numbers, Refs. [57–59] define the quantity µ “ m

ℓ`1{2
.

Furthermore, these references analyse the properties of the Schrödinger potential
of the system in the eikonal limit, namely its maximum and whether it is located
outside the event horizon. From this analysis, [57–59] conclude that there a
separatrix curve µ “ µcpãq Á 0.74 (where the lower bound holds in the Kerr limit)
such that the qualitative behaviour of the QNM spectra is distinct depending on
whether tℓ,mu are such that µ À µcpãq or µ Á µcpãq. In Appendix A, we provide
a complementary first-principles analysis that (also) identifies this separatrix curve
µcpãq (and agrees with the one found in [57–59]). In our analysis we use the fact
that the near-horizon geometry of the extremal KN black hole (NHEKN) is a
spacetime similar to AdS2 ˆ S2 (remaining a solution of the Einstein equation).
This NHEKN geometry has an SLp2, Rq ˆ Up1q isometry group, where the Up1q
is inherited from the axisymmetry of the KN solution and the SLp2, Rq extends
the KN time-translation symmetry. The Klein-Gordon equation in this NHEKN
geometry (which can be equivalently obtained taking the near-horizon limit of the
Klein-Gordon equation of the extremal KN) naturally reduces to the equation for
a scalar field in AdS2 with an effective mass that depends on tℓ,mu. In AdS2, the

13Again, the planes Θ “ 0 and Θ “ π{2 in Fig. 2.17 are given by the RN and Kerr plots
displayed in Fig. 2.6 and Fig. 2.15, respectively (after unit conversion), and several planes at
constant R of Fig. 2.17 can be found in previous figures, namely in Figs. 2.13´2.14.
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scalar field mass must be higher than the 2-dimensional Breitenlöhner-Freedman
(BF) bound for the solutions to have finite energy [197, 198]. This AdS2 BF bound
turns out to define the separatrix boundary µ “ µcpãq ´ see in particular Table A.1
and (A.11) ´ that is essentially the same 1-parameter curve that was found in [57–
59] by looking at the location of the maxima of the eikonal Schrödinger potential of
the KN Klein-Gordon problem. These two criteria are in close numerical agreement
despite the fact that µcpãq is strictly-speaking only valid in the eikonal limit (as
discussed further in Appendix A). We will revisit this connection to the near-horizon
geometry again later, in Chapter 3, where we find a BF bound violation of the
near-horizon geometry is an (approximate) indication of whether strong cosmic
censorship is respected in Myers-Perry de Sitter spacetimes, as it indicates the
near-extremal behaviour of the merged PS-NH modes.

As stated above, [57–59] found that the qualitative behaviour of the QNM spectra
is significantly different depending whether tℓ,mu are such that µ À µcpãq or
µ Á µcpãq which is closely related with whether the near-horizon quantity δ2

defined in (2.39), i.e. the argument of the square root in (2.54), is negative or
positive. Our results confirm this is the case. In particular, for the ℓ “ m “ 2

modes (µ “ 0.8) we are discussing in this section, one is in the regime µ À µcpãq for
Θ ă Θ‹ and µ Á µcpãq for Θ ě Θ‹ (where recall that Θ‹ » 0.881). For µ Á µcpãq,
[57–59] find that the QNM spectra has only zero-damped modes (ZDMs), i.e.
modes whose imaginary part of the frequency approaches zero at extremality
(R Ñ 1). Essentially, this is consistent with our analysis for Θ ě Θ‹ if, very close
to extremality, the PS modes indeed approach ω̃ “ mΩ̃ext

H (please see detailed
discussion of the bottom panels of Fig. 2.12 that we do not repeat here) as do the
NH modes. We would however emphasize that for Θ ě Θ‹ (i.e. µ Á µcpãq) there
are not one but two families of modes that have a distinct origin when we trace
them back to the RN case (as we discuss next). On the other hand, for smaller
Θ ă Θ‹, in agreement with [59], we find that the system has (in the nomenclature
of [57–59]) both ZDMs and damped modes (DMs) that approach a finite Im ω̃ at
extremality) as summarized in the top panel of Fig. 2.12 and in Figs. 2.7-2.11. We
emphasize that these DMs are the PS modes that become ZDMs for Θ ą Θ‹. This
and the differences between the two regimes µ À µcpãq and µ Á µcpãq are clearly
observed in Figs. 2.16-2.17: in short, the NH surfaces always end in the extremal
brown line, while the PS modes do not do so for Θ ă Θ‹.

One should also provide an important clarification that helps bridge our findings
with those of [57–59] and avoid an apparent inconsistency. In regimes µ À µcpãq

where there are both ZDMs and DMs, [57–59] state that far away from extremality
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the system only has a DM family which exists all the way till extremality. But, at
a critical value of R, these references state that the DM family ‘bifurcates’ into
two branches: one continues to describe DMs till extremality while the other only
exists above this critical R and describes ZDMs. We find that this is because
[57–59] effectively considered modes that have not only fixed tℓ,mu but also fixed
overtone p. On the other hand, by construction, in our analysis we always fix
tℓ,mu (but not the overtone p) and, starting from the PS and NH modes at
the RN limit (Θ “ 0), we follow these modes as Θ grows till reaching the Kerr
limit (Θ “ π{2). This is a continuous process where no bifurcations are observed
(although we have eigenvalue repulsions with the associated cusp formations and
break/trade-off/merge of branches). That is to say, at each fixed Θ we always have
two modes, below and above any possible critical R. However, the fact that we
do not observe bifurcations in our analysis is not inconsistent with the analysis
of [57–59, 85, 196]. The key observation here is that the overtone number p of
the continuous curves/surfaces we follow effectively changes as we march in Θ

when eigenvalue repulsions kick in. For example (among many others described
previously), the overtone of the orange PS and blue NH curves in Fig. 2.7 change
when making the transition R “ 0.991 Ñ R “ 0.990 (middle panels). If we insist
on fixing our attention on modes with fixed overtone, we would interpret some
results as being a ‘bifurcation’ in an Imω vs Θ plot and this was the approach
followed in [57–59]. We do not do so and thus, instead of a bifurcation, we do
observe two surfaces intersecting or crossing in an Imω vs tΘ,Ru plot (or two
curves crossing in a Imω vs Θ plot); note that it is only Imω, but not Reω, that
coincides along the crossing.

2.4.2 The QNM spectra of m “ ℓ “ 0 modes

The focus of this chapter so far has been the m “ ℓ “ 2 QNMs due to their close
analogy with the gravito-electromagnetic perturbations computed in [16, 18, 182].
However, for completeness, in this section we consider QNMs with m “ ℓ “ 0 since
these quantum numbers match the spin of the scalar field perturbations. Moreover,
these modes are important as they dominate the m “ ℓ “ 2 modes (i.e. they have
smaller |ImpωMq|) in certain regions of the parameter space.

Perturbations with m “ 0 have an enhanced tÑ ´t symmetry, so QNM frequencies
form pairs tω,´ω˚u. When m “ 0, the WKB approximation ω̃WKB in (2.33) is not
valid (for obvious reasons since it is an expansion at large m), however the matched
asymptotic expansion ω̃MAE (2.54) remains a very good approximation provided
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Fig. 2.18: The frequency of the slowest-decaying PS (orange disk) and NH (blue
disk) QNMs with m “ ℓ “ 0 for the whole parameter space tR,Θu of KN. Left
panel: The imaginary parts of the frequency. With the exception of the Kerr and
RN limits, only the NH modes down to R “ 0.94 were found, due to computational
limitations. The blue surface represents the extrapolation of the points found
until the intersection with the PS modes. Right panel: The real part of the PS
frequencies. The NH frequencies always have zero real part.

we are close to extremality, and simplifies as follows. When m “ 0, the angular
equation (2.8b) at extremality can be solved exactly, with the angular eigenvalue
λ
pm“0q
ext “ ℓpℓ` 1q, where ℓ “ 0, 1, 2, . . . denotes the number of zeros of the angular

eigenfunction, as usual. The MAE frequency (2.54) simplifies to

ω̃
pm“0q
MAE “ ´

ipℓ` p` 1q

2p1` α2q
σ `Opσ2

q, p “ 0, 1, 2, . . . . (2.58)

This frequency is purely imaginary, for all Θ “ arctanpa{Qq, in contrast to the
m “ l “ 2 case. Since the PS frequencies remain complex (as we will discuss
later), this hints at a major difference between the m “ ℓ “ 2 and m “ ℓ “ 0

QNM spectra: in the latter there are no eigenvalue repulsions. Consequently, for
m “ ℓ “ 0 we can always unambiguously identify the photon sphere (PS) and
near-horizon (NH) modes in the full parameter space of KN (not only in the RN
limit). These properties can be seen in Fig. 2.18 where we display the spectrum
of KN QNMs with m “ ℓ “ 0 for all pR,Θq. We have found the full spectrum
of the PS modes (orange disks), however the NH modes (blue disks) have proven
to be much more difficult to find numerically, and we have only computed those
down to R “ 0.94, except in the RN (Θ “ 0) and Kerr (Θ “ π{2) limits. For
intermediate values of Θ, the blue surface in the left panel of Fig. 2.18 represents
the extrapolation of the NH data till the point they intersect with the PS modes
and become subdominant.

For clarity, the QNM spectra in the special RN (Θ “ 0) and Kerr (Θ “ π{2)
limits are displayed in Fig. 2.19, as well as the matched asymptotic expansion
frequency approximation (2.58). For Kerr (RN), the PS modes are orange triangles
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Fig. 2.19: The frequency of the slowest-decaying PS and NH QNMs in the
RN (Θ “ 0) and Kerr (Θ “ π{2) limits. For Kerr (RN), the PS modes are
orange triangles (brown squares) and the NH modes are light blue disks (dark
blue pentagons). Left panel: The imaginary parts of the frequency. The dashed
magenta and dotted purple lines emerging from R “ 1 describe the matched
asymptotic expansion ω̃

pm“l“0q
MAE (2.58) for p “ 0 and p “ 1, respectively. Right

panel: The real part of the PS frequencies for Kerr and RN. The NH modes always
have zero real part.

(brown squares) and the NH modes are light blue disks (dark blue pentagons),
with the matched asymptotic expansion ω̃

pm“ℓ“0q
MAE of (2.58) with p “ 0 represented

by a dashed magenta (dotted purple) line. Note that the QNM spectra only
depends weakly on Θ, most likely because these are axisymmetric perturbations,
and therefore are not significantly affected by the angular momentum of KN. In
the RN case, our PS frequencies (brown squares) in Fig. 2.19 agree with those first
computed in [72, 192–195]. On the other hand, to the best of our knowledge, the
RN NH QNM spectrum (dark blue pentagons) is first computed exactly (within
numerical accuracy) in Fig. 2.19 (their existence is predicted in [59]; see however
the discussion in the next paragraph). In the Kerr case, our PS frequencies (orange
triangles) in Fig. 2.19 agree with those first computed in [73, 180] (see figure 6 of
[180]). On the other hand, as far as we know, the Kerr NH spectrum (light blue
disks) is first computed exactly (within numerical accuracy) in Fig. 2.19 (their
existence follows from the analysis of [48, 57, 58]).

In agreement with the matched asymptotic expansion ω̃
pm“0q
MAE in (2.58), the real

part of the NH modes is zero. In contrast, the PS modes are always complex with
|RepωMq| ą 0.11 across the full parameter space. Therefore, there is no single
point in the KN parameter space where the PS and NH frequencies can coincide
(not even at extremality), strongly suggesting that the associated phenomenon of
eigenvalue repulsion should also be absent. Indeed, unlike the m “ ℓ “ 2 case, for
the m “ ℓ “ 0 modes we find no evidence of the presence of eigenvalue repulsions in
the spectra. In particular, the PS family never develops cusps or intricate features
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Fig. 2.20: Typical eigenfunctions χprq of KN QNMs with m “ ℓ “ 0. χprq is the
redefined radial function as in (2.10). Left panel: NH eigenfunctions for R “ 0.95
(purple) and R “ 0.99 (blue) at Θ “ π{4. The dominant NH eigenfunctions are
purely real, peaked at the horizon radius r “ r`, with no zeros. Right panel:
Real part (solid lines) and imaginary part (dashed lines) of the PS eigenfunctions
for R “ 0.8 (brown) and R “ 0.99 (orange). The PS eigenfunctions are complex
with non-zero support at large r, and the number of zeros depends on the distance
to extremality.

that could be a sign of eigenvalue repulsions: the imaginary part of the frequency
always increases monotonically with R and Θ (this is the reason we found no need
to push our numerics further to find more NH modes than those in Fig. 2.18).

Given the lack of eigenvalue repulsions, we can unambiguously identify NH modes
throughout the KN parameter space, by tracing them to the extremal limit R Ñ 1

where we can compare them to the matched asymptotic expansion (2.58) (see the
left panel of Fig. 2.19), unlike the m “ ℓ “ 2 modes. A similar phenomenon occurs
in other black hole spacetimes, such as higher-dimensional Kerr-dS (Myers-Perry-
dS) that we study in the next chapter, where eigenvalue repulsions between the PS
and NH modes occur when m ‰ 0, but not for m “ 0.

The two QNM families can also be distinguished by their eigenfunctions. In
Fig. 2.20 we plot the eigenfunctions χprq as defined by (2.10) for the dominant
NH modes (left panel) and PS modes (right panel) at a representative value of
Θ “ π{4. The eigenfunctions of the NH modes are purely real (blue and purple
curves for R “ 0.95 and 0.99, respectively, at Θ “ π{4), peaking at the horizon
radius r “ r`, and becoming increasingly peaked as we approach extremality
R Ñ 1. Furthermore, the eigenfunctions of the dominant NH modes do not have
any zeros. In contrast with the NH modes, the PS modes (orange and brown curves
for R “ 0.8 and 0.99, respectively, for Θ “ π{4 in right panel of Fig. 2.20) have
both real and imaginary parts. Far away from extremality the PS eigenfunction
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is nearly flat, with no zeroes, but becomes oscillatory, with the number of zero
crossings increasing the closer we approach extremality.14

Compared to the m “ ℓ “ 2 modes, the PS family of m “ ℓ “ 0 modes is always
subdominant, i.e. with larger | Imω| than the corresponding PS QNM at any point
in the KN parameter space. On the other hand, at least near extremality, the NH
modes with m “ ℓ “ 0 dominate modes with m “ ℓ “ 2. However, the difference
in imaginary part between the two shrinks as R decreases.

As in the previous subsection, it is appropriate to make contact between our findings
and those of [57–59]. In terms of the quantity µcpãq introduced in the discussion
below Fig. 2.17 of subsection 2.4.1 (and originally in [57–59]), the ℓ “ m “ 0

modes satisfy the condition µ ă µcpãq in the whole range of tR,Θu. Refs. [57–59]
do not present results for the scalar ℓ “ m “ 0 Kerr or RN modes displayed in
Fig. 2.19, but do discuss in detail other cases (including with spin s “ 1, 2 in the
Dudley-Finley approximation) in the same class µ ă µcpãq. As explained in the last
paragraph of subsection 2.4.1, Refs. [57–59] fix not only tℓ,mu but also the overtone
p when describing/interpreting their results (unlike in our analysis). Consequently,
[57–59] describe cases like the one in Figs. 2.18-2.19 as a ‘bifurcation’ happening in
the Imω plot along a RpΘq line (or at a point Rc in the Kerr or RN case) close
to extremality, while in our analysis (where we do not constrain the overtone to
be fixed” we see that there is simply a “crossing” of two surfaces (or curves in the
RN/Kerr limits) that intersect along the curve RpΘq (or along a point in RN/Kerr);
note that it is only Imω, but not Reω, that coincides along the “crossing”. Thus the
two analyses are consistent and not contradictory once we identify the conditions
underlying the selected choice of language. The compatibility of our findings and
those of [57–59] is further confirmed when we analyse the results (for a gravitational
mode with ℓ “ 2 and m “ 1 that fits in the µ ă µcpãq class) of figure 8 of [58],
which reproduces figure 3.b of [48] (the latter was the first instance where the
simultaneous existence of zero-damped and damped modes was observed).

14On the other hand, when m “ ℓ “ 2, the NH modes acquire an imaginary part, but otherwise
the NH and PS eigenfunctions are qualitatively similar to those in Fig. 2.20 in the Kerr and RN
limits. However, due to the eigenvalue repulsions, they can smoothly transition from one type to
another as we vary Θ, such that the NH-type eigenfunctions in the RN limit become PS-type in
the Kerr limit, and vice versa. Essentially, in the regions of the parameter space where eigenvalue
repulsions occur, we cannot use the eigenfunctions to distinguish the nature of the modes.
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Chapter 3

Strong cosmic censorship in
higher-dimensions

In asymptotically-flat spacetimes, there is growing evidence that strong cosmic
censorship is respected for initial data close to Reissner-Nordström [113–116] and
Kerr [117, 118]. Ultimately, this is due to the well-known infinite blueshift effect
near the Cauchy horizon and the associated Price law [119, 27]. However, for
positive cosmological constant (Λ ą 0) there is a competing redshift associated
with the gravitational potential well of asymptotically de Sitter spacetimes. As a
result of the delicate competition between these two effects, the decay of generic
linear perturbations depends on the magnitude of the imaginary part of the slowest-
decaying quasinormal mode (QNM) of the system [111, 112]. Indeed, in recent years,
a large body of work indicates that initial data close to Reissner-Nordström´de
Sitter (RNdS) violates SCC [86, 89, 122]1 2, while Kerr-dS does not [94].

Perhaps the strongest motivation to study SCC for initial data close to Reissner-
Nordström´dS is the fact that, in many respects, the RNdS black hole appears to
be a (much simpler) toy model for initial data close to Kerr-dS. Thus it might come
as a surprise that SCC is violated for initial data close to RNdS but not for initial
data close to Kerr-dS. However, there is an important distinction between the
two, which is best fleshed out if we recall the parallel between the two spacetimes.
In particular, charged scalar fields of mass µ and charge q around a Reissner-
Nordström-dS black hole have been shown to lead to a violation of SCC for any

1See Sections 1.2-1.3 for more details on this, in particular regarding the charged scalar field.
2In the conclusion (Chapter 5), we discuss potential ways in that SCC in RNdS can be rescued,

including the effect of quantum corrections and and the “rough formulation” of strong cosmic
censorship.
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finite value of q [122]. If, however, we take (the rather unphysical limit) q Ñ `8,
these violations disappear altogether [122]. For Kerr-dS, the analog of q is the
azimuthal quantum number m, which counts the number of nodes of the scalar
perturbation along the direction of rotation. However, unlike RNdS, for Kerr-dS
we are forced to consider initial data with arbitrarily large m, and it is this data
that ends up saving SCC in Kerr-dS.

It remains, however, a mystery as to why the quasinormal mode spectrum of
Kerr-dS black holes at large m behaves just so as to save SCC. It could have been
that the large m behaviour was such that SCC would still be violated: it just so
happens that, after a long calculation, it is not! One might then wonder whether
this is a result one can derive for a large class of rotating black holes, perhaps by
studying the universal properties of rotating near-horizon geometries. Whatever
the mechanism might be, it appears to depend on the details of the near-horizon
geometry. However, it has been argued in [199, 200] that initial data close to
Kerr-Newman-dS black holes will generically violate SCC if the black hole charge
is large enough. This shows, to some extent, that not all rotating black holes
necessarily preserve SCC and that preserving SCC cannot be a universal property
of all rotating near-horizon geometries.

In this chapter, instead of turning on charge, we change yet another dial: the
spacetime dimension d. As a first step in this direction, it was shown that scalar
field perturbations of RNdS in d “ 5, 6 violate SCC (much alike in the d “ 4

case), with the expectation that this conclusion does not change in even higher
dimensions [201]. RNdS black holes have, however, been shown to be unstable
in dimensions d ě 6 [202–204, 145]. As a second step, here we consider scalar
field perturbations of Myers-Perry´de Sitter (MPdS), i.e. the higher-dimensional
extension of the Kerr-de Sitter solution. For simplicity, we restrict our analysis to
odd d spacetime dimensions and to black holes with equal angular momentum. In
this case the resulting line element is cohomogeneity-1, i.e. it depends non-trivially
on only the radial coordinate. We will find that Christodoulou’s formulation of
SCC holds in cohomogeneity-1 MPdS, very much like in the d “ 4 Kerr-dS case.
The generic considerations of [205] further indicate that this result extends to other,
perhaps all, MPdS solutions. Together with [201] we thus have strong evidence in
favour of the following universal result for perturbations excited by scalar fields: for
arbitrary spacetime dimensions in de Sitter, Christodoulou’s formulation of SCC
holds in dynamically stable, vacuum, rotating black hole solutions of the Einstein
equations, but can be violated if charged matter is included. We note, however,
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that the leading WKB behaviour is spin independent, and thus the result quoted
above could indeed also be true for gravitational perturbations.

As stated above, the question of SCC in de Sitter backgrounds is intimately linked
to quasinormal modes [206–209, 111, 210, 211], so we naturally also take the
opportunity to discuss some aspects of the QNM spectra of MPdS. In particular,
we want to identify all possible families of QNMs in MPdS (for a given set of
relevant wave quantum numbers) and, ultimately, the family with the slowest
decaying QNM at each point in the 2-parameter space of MPdS. For that we
resort to a numerical computation of the QNM spectra in the full parameter space
(using the pseudospectral collocation methods described in Section 1.5) but also to
analytical analyses (in the appropriate corners of the parameter space) to elucidate
the physical origin of each family.

In the previous chapter, we found that asymptotically flat, four-dimensional space-
times which admit a Cauchy horizon (the Kerr-Newman family and its Kerr and
Reissner-Nordström limits) have two distinct families of QNMs: the photon sphere
(PS) modes and near-horizon (NH) modes. Both the PS and NH modes are also
present in rotating asymptotically de Sitter black holes in higher dimensions. We
will verify (by direct comparison with the numerical results) that the PS mode
correspondence (1.19) described in Section 1.1 still holds in rotating black holes
in higher dimensions. To capture the NH modes with an analytic approximation,
we perform a matched asymptotic expansion similar to that of Kerr-Newman, but
with a slight variation. We find the eigenfunction near the horizon as before, but
then match it with a vanishing wavefunction solution far from the horizon. We will
highlight the link between the NH modes we find and the near-horizon geometry
of the extremal spacetime.

In asymptotically de Sitter spacetimes, unlike in the Λ “ 0 case, there is a third
family of QNM modes: the de Sitter (dS) family. The frequency of these modes
approaches the QNM mode frequency of pure de Sitter space in the limit where
the mass and the angular momentum of MPdS vanish. In d “ 4, dS modes have a
weak dependence on the black hole parameters. We will find that this is no longer
true in higher dimensions.

In cohomogeneity-1 Myers-Perry-de Sitter, axisymmetric mode perturbations (i.e.
with azimuthal quantum number m “ 0) feature all three families. However, for
m ‰ 0, we will find that the PS and NH modes will typically (but not always) merge
into a single family. This family generally dominates, i.e. has more slowly decaying
modes than the dS family. As a result, we will be able to use both our eikonal and
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near-horizon approximations in tandem to study SCC. No less interestingly, we
also find that in certain regions of the parameter space some of these families will
exhibit eigenvalue repulsions, similar to those observed for the scalar QNMs of Kerr-
Newman in the previous chapter, and for gravito-electromagnetic perturbations of
Kerr-Newman in [212]. However, there the eigenvalue repulsions occurred between
the NH and PS modes, while in MPdS the interactions primarily occur between
the NH and dS modes.

The plan of this chapter is as follows. In Section 3.1 we review the main properties of
cohomogeneity-1 Myers-Perry-de Sitter black holes. We use separation of variables
to study the Klein-Gordon equation for scalar fields in this background, and
describe the numerical scheme used to solve for the scalar field perturbations. In
Section 3.2, we derive analytic approximations for the three families of QNM ´

dS, PS and NH ´ that can be present in MPdS for regions of the parameter space
that are susceptible to such analytical approximations. For completeness, and
because the QNMs show significant dependence on the spacetime dimension, we
study the QNM spectra of higher-dimensional Schwarzschild-de Sitter black holes
in Section 3.3. Then, in Section 3.4, we describe important features of the MPdS
QNM spectra, after comparing our numerical results with the aforementioned
analytical approximations. Finally, in Section 3.5 we tackle the question of whether
or not strong cosmic censorship holds in cohomogeneity-1 MPdS black holes. Some
details of the NH modes are deferred to Appendix B and we discuss the numerical
convergence of our results in Appendix C.

3.1 Scalar perturbations of cohomogeneity-1 Myers-

Perry´de Sitter

3.1.1 Cohomogeneity-1 Myers-Perry´de Sitter black holes

The Myers-Perry black hole is a stationary and axisymmetric spacetime in d ě 4

dimensions, parametrised by a mass parameter M and angular momentum param-
eters ai in each of the n “

X

d´1
2

\

rotational planes [213]. For general ai this black
hole has the isometry group Rˆ Up1qn. However, in the equal angular momenta
case ai “ a and in odd dimensions (only), the symmetry is enhanced to Rˆ Upnq.
Consequently, the resulting metric is cohomogeneity-1 , i.e. it depends non-trivially
on only the radial coordinate. This is in contrast to Kerr (and even-dimensional
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Myers-Perry with or without equal angular momenta) which has non-trivial angular
dependence. Thus, cohomogeneity-1 Myers-Perry black holes are easier to study
than Kerr.

Myers-Perry can be generalised to include a cosmological constant Λ. This so-
lution was first found in d “ 5 (the Hawking-Hunter-Taylor black hole [214]),
and generalized later to arbitrary dimensions [215, 216], and they retain all the
symmetries discussed above in the Λ “ 0 case. We will focus on the equal angular
momenta Myers-Perry´de Sitter spacetime in odd dimensions, d “ 2N ` 3, where
N ě 1 is an integer, abbreviating it to simply MPdS when unambiguous. In
Boyer-Lindquist-like (BL) coordinates3 xa “ pt, r, ψ, xiq, the metric can be written
as [217]

ds2 “ ´
fprq

hprq
dt2 `

1

fprq
dr2 ` r2hprq

´

dψ `A´ Ωprq dt
¯2

` r2dΣ2 (3.1)

where

fprq “ 1´
r2

L2
´

2M

r2N

ˆ

1`
a2

L2

˙

`
2Ma2

r2N`2
, (3.2)

hprq “ 1`
2Ma2

r2N`2
, Ωprq “

2Ma

r2N`2hprq
, (3.3)

with L being the de Sitter radius, and we have expressed the sphere S2N`1 as a
fibration (parametrised by ψ) over CPN , with Fubini-Study metric dΣ2 “ ĝijdx

idxj ,
where the latin indices run over the CPN coordinates 1, . . . , 2N . The volume element
is

?
´g “ r2N`1

?
ĝ. The one-form A “ Aidx

i is a local potential for the Kähler
form J on CPN , i.e. dA “ 2J . In the N “ 1 case, CP1 is isomorphic to S2, so we
can introduce the standard spherical polar coordinates px1, x2q “ pθ, ϕq, with

ĝ “
1

4

`

dθ2 ` sin2 θ dϕ2
˘

, A “
1

2
cos θ dϕ. (3.4)

See Appendix B of [218] for an explicit construction of ĝij and A for N ą 1.

We assume that the mass parameter M is positive, and we can also assume that
the angular momentum a ě 0 without loss of generality due to the t´ψ symmetry.
The positive real roots of fprq define the horizon radii. From Descartes’ rule of
signs, we can show that fprq has either three or one positive real roots, counted
with multiplicity. Since asymptotically de Sitter black holes must have at least

3These are related to the unified Boyer-Lindquist coordinates of [215, 216] by the transforma-
tions r2 Ñ pr2 ` a2q

`

1` a2{L2
˘´1 and M ÑMp1` a2{L2qN`2.
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Fig. 3.1: Left panel: Parameter space of equal angular momenta Myers-Perry´de
Sitter in terms of the dimensionless variables (y`, y´), and the relevant limits.
Right panel: Globally hyperbolic portion of non-extremal MPdS with Cauchy
surface Σ, and its analytic extension beyond the right Cauchy horizon CH`

R. The
event horizon H` and cosmological horizon H`

c are also shown.

two roots, we require that fprq has a single zero at each of the three positive real
roots r´ ď r` ď rc, which define the Cauchy horizon (r´), event horizon (r`)
and cosmological horizon (rc). This requirement restricts the parameter space
pM,a, Lq. Since fprq is negative in the limit r Ñ 8, we see that fprq is positive
for r´ ă r ă r` and negative for r` ă r ă rc. The surface gravity at each horizon
ri P tr´, r`, rcu is

κi ”
|f 1priq|

2rihpriq
. (3.5)

We can express L, M and a in terms of r´, r`, rc using the three conditions
fpriq “ 0. The Einstein equations are invariant under the scaling g Ñ λ2g and
L Ñ λL, with λ P R, which we can use to construct dimensionless quantities in
units of rc. For example,

y´ ”
r´
rc
, y` ”

r`
rc
, α ”

a

rc
. (3.6)

It follows that the MPdS black hole is a 2-parameter solution. We can choose,
as we will often do, to parametrise the MPdS solution using the dimensionless
parameters py`, y´q where y` P r0, 1s and 0 ď y´ ď y`. This parameter space is
plotted in the left panel of Fig. 3.1, with the relevant limits indicated. Extremality
occurs when y´ Ñ y`, at which κ` and κ´ vanish, i.e. the black hole has vanishing
temperature.
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Alternatively, for d “ 5, we will sometimes instead parametrise MPdS using py`, αq

where 0 ď α ď αext (αext is the value of α at extremality). We will find it useful to
do so because it emphasises the relationship with Kerr-dS. In d “ 5 we can express
y´ in terms of py`, αq using4

y2´ “ ´
1` y2`

2
`

1

2

d

p1´ y`q2 ´
4y4`

α2 ´ y2`p1´ α2q
, pd “ 5q (3.7)

and the extremal value of the rotation parameter (for which the temperature of
the event horizon vanishes) is given by

αd“5
ext “

y`
a

1` 2y2`
?
2p1` y2`q

. (3.8)

Let us now describe the causal structure of cohomogeneity-1 MPdS black holes in
odd d. The relevant piece of its Penrose diagram is shown in the right panel of
Fig. 3.1. Region I is the exterior region described by the metric (3.1) with r` ă

r ă rc. We define ingoing Eddington-Finklestein (EF) coordinates pv, r, ψ1, xiq,

dv “ dt`

a

hprq

fprq
dr, dψ1

“ dψ ` Ωprq

a

hprq

fprq
dr, (3.9)

in terms of which the metric is

ds2 “ ´
fprq

hprq
dv2 `

2
a

hprq
dv dr ` r2hprq pdψ1

`A´ Ωprq dvq
2
` r2dΣ2. (3.10)

This is regular at the future event horizon H`, and the metric in region I can be
analytically continued to region II where r´ ă r ă r`. Converting to outgoing
Eddington-Finklestein coordinates (u, r, ψ2, xi),

du “ dt´

a

hprq

fprq
dr, dψ2

“ dψ ´ Ωprq

a

hprq

fprq
dr, (3.11)

the metric is the same as (3.10) with the usual change of sign dv dr Ñ ´du dr, and
we can use these coordinates to analytically continue beyond the Cauchy horizon
into region III where r ă r´. The causal structure is the same as Kerr-de Sitter
(Kerr-dS) and Reissner-Nordström-de Sitter (RNdS). There is also a left Cauchy
horizon CH`

L , however in the context of gravitational collapse it is occluded by the
matter region, so we do not consider it here.

4Similar relations to (3.7) and (3.8) hold for arbitrary odd d but it is not enlightening to
explicitly display them here.
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3.1.2 Klein-Gordon equation in MPdS

We want to study massive scalar field perturbations, with mass µ, on a fixed MPdS
background (3.1), which are governed by the Klein-Gordon equation

∇a∇aΦ´ µ2Φ “ 0. (3.12)

In the context of strong cosmic censorship, the scalar field has been found to
be a good proxy for linearised gravitational perturbations in both RNdS and
Kerr-dS [94, 86, 89]. To study linear mode perturbations, we make the following
separation ansatz in BL coordinates (3.1),

Φ “ e´iωt`imψRprqY pxiq, (3.13)

which introduces the frequency ω and azimuthal quantum number m of the pertur-
bation. Using this ansatz, the Klein-Gordon equation separates, with the angular
eigenfunction Y pxiq satisfying a charged Laplace equation on CPN with charge m
and with eigenvalue λ,

pD2
` λqY pxiq “ 0, D ” ∇̂´ imA, (3.14)

where ∇̂ is the covariant derivative on CPN . The eigenfunctions Y pxiq were studied
in [219], and regularity requires that the eigenvalues are quantised as [219]

λ “ lpl ` 2Nq ´m2, l “ 2k ` |m|, k “ 0, 1, 2, . . . (3.15)

Here l labels the total angular momentum of the mode. The radial equation reduces
to

R2
prq`

ˆ

1` 2N

r
`
f 1

f

˙

R1
prq`

1

f

ˆ

h

f
pω ´mΩq2 ´

λ

r2
´
m2

r2h
´ µ2

˙

Rprq “ 0.

(3.16)

We will need to solve this eigenvalue equation to find the eigenfrequencies ω

of the system. For that, we require that Φ obeys QNM boundary conditions,
namely Φ must be regular in ingoing coordinates (3.9) at the future event horizon
H` and regular in outgoing coordinates (3.11) at the cosmological horizon H`

c .
In BL coordinates (3.1), this translates to the requirement that the the radial
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eigenfunction must behave as

Rprq „

$

&

%

pr ´ r`q
´i

ω´mΩpr`q

2κ` R̂p`q as r Ñ r` ,

prc ´ rq´i
ω´mΩprcq

2κc R̂pcq as r Ñ rc ,
(3.17)

for some functions R̂p`q and R̂pcq that are smooth at r` and rc, respectively. These
boundary conditions turn out to be the same as four-dimensional de Sitter black
holes (1.17), i.e. there is no dimensional dependence.

3.1.3 Numerical setup

To prepare the radial Klein-Gordon equation (3.16) to be solved numerically, we
redefine Rprq so that the only solutions which are regular at the boundaries are
those which obey QNM boundary conditions (3.17), hence the only solutions that
converge numerically are QNMs. A Frobenius analysis5 at r “ r` yields solutions
of the form

R
ˇ

ˇ

r“r`
„ c1 pr ´ r`q

´i
ω´mΩpr`q

2κ` R̂p1,`q ` c2 pr ´ r`q
i
ω´mΩpr`q

2κ` R̂p2,`q, (3.18)

for some constants ci and functions R̂pi,`q which are analytic at r`. Similarly, at
the cosmological horizon,

R
ˇ

ˇ

r“rc
„ c11 prc ´ rqi

ω´mΩprcq
2κc R̂p1,cq ` c12 prc ´ rq´i

ω´mΩprcq
2κc R̂p2,cq , (3.19)

where R̂pi,cq are analytic at rc. The first term in (3.18) and the second term in (3.19)
obey the QNM boundary conditions (3.17), but not the other two. So we have to
eliminate the latter. For that we make the redefinition

Rprq “ pr ´ r`q
´i

ω´mΩpr`q

2κ` prc ´ rq´i
ω´mΩprcq

κc Qprq , (3.20)

such that Rprq obeys QNM boundary conditions (3.17) at both boundaries if Qprq

is analytic (i.e. the singular solutions are never captured by the numerical function
Qprq which is necessarily analytic). We also introduce the compact dimensionless
radial coordinate

y “
r ´ r`
rc ´ r`

(3.21)

such that the event horizon is at y “ 0 and the cosmological horizon is at y “ 1.
Finally, we perform a Taylor expansion of the resulting ODE at each boundary,

5A similar Frobenius analysis is discussed in detail in section 3.5.
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to get Dirichlet and Robin boundary conditions at y “ 0 and y “ 1, respectively,
which we impose at the matrix level after discretisation. These are purely for
numerical convenience, to guard against zero cancellation at the boundaries, and
do not change the resulting solution, since they follow directly from the equations
of motion. A detailed discussion of this type of derived boundary condition can
be found in [166]. The explicit expression for the final ODE fully prepared for
numerical evaluation is long and unenlightening, so we do not write it here.

Working now with dimensionless quantities, as defined in (3.6), the resulting ODE
is a quadratic eigenvalue problem in the frequency ω̃ “ ω rc, i.e. the coefficients
depend quadratically on ω̃. To solve this numerically, we use the direct eigenvalue
method when we want to find the full spectrum, and the Newton-Raphson method
to reach numerically difficult regions. Both were described in Section 1.5.

3.2 Quasinormal mode families of Myers-Perry´de

Sitter

Ideally, the first step in classifying the QNM spectra is to identify some corner
or window of the parameter space where we can find analytic expressions for the
frequencies (in some approximation). This can help identify the physical nature
of the modes and eventually already hint at the existence of different families of
QNMs, and it can further be used to test the numerical results. In this section we
derive approximations in the de Sitter (aÑ 0, r` Ñ 0), eikonal (m “ l Ñ 8) and
near-extremal limit (r´ Ñ r`).

3.2.1 de Sitter modes

When aÑ 0, r` Ñ 0, the MPdS black hole reduces to the pure de Sitter spacetime.
Scalar perturbations in this background, i.e. the pure de Sitter (dS) modes, must
be regular at the origin and at the cosmological horizon. The d-dimensional dS
modes have been studied previously [220]. In d “ 2N ` 3 dimensions, the pure dS
modes have the frequency spectrum

ωdS rc “ ´i pl ` 2nq, (for all d) (3.22)

ωeven
dS rc “ ´i

”

l ` 2pn`N ` 1q
ı

, (even d only) (3.23)
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for radial overtone n “ 0, 1, 2, . . .. In odd dimension d, N is an integer, and so the
second set of modes ωeven

dS is a subset of the first. However, in even dimensions
d, N is a half integer and thus the second mode set (3.23) is distinct from the
first described by (3.22). This property of dS modes plays an important role in
the mode spectrum of Schwarzschild-de Sitter and MPdS, as we will discuss, in
particular, in Section 3.3.

3.2.2 Photon sphere modes

When a de Sitter spacetime possesses an event horizon, there is another family of
QNMs, the photon sphere (PS) modes, reviewed in Section 1.1. The nomenclature
derives from the fact that, in the eikonal limit |m| “ l Ñ 8, the frequencies of
these modes (which exist for any l,m) are related to the properties of unstable
circular photon orbits of the background by the PS correspondence (1.19). In
four dimensions this correspondence is well studied, both numerically and analyti-
cally [221–224, 94, 86, 89]. In higher dimensions this is not as well documented6.
We will verify that this correspondence also holds for cohomogeneity-1 MPdS black
holes.

We use the Lagrangian formalism, solving directly for null geodesics which are
independent of the CPN coordinates, but only rotate in the fiber direction ψ. For
example, in the N “ 1 (d “ 5) case, this corresponds to geodesics with 9θ “ 9ϕ “ 0 in
the pθ, ϕq coordinates of (3.4). For all N , the Lagrangian describing such geodesics
is

L “ ´
fprq

2hprq
9t2 `

1

2fprq
9r2 `

r2hprq

2

´

9ψ ´ Ωprq 9t
¯2

(3.24)

where the dot indicates a derivative with respect to the affine parameter τ of the
null geodesic and the background functions f, h,Ω are defined in (3.2)-(3.3). We
can associate a conserved energy E and angular momentum Lψ to translations in
the t and ψ Killing directions, respectively:

E ”
f

h
9t` ΩLψ, Lψ ” r2hp 9ψ ´ Ω 9tq. (3.25)

6This correspondence has been derived explicitly for static spacetimes in arbitrary dimen-
sions [74], but this was not generalised to rotating spacetimes.
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Substituting these into the Lagrangian and noting that null geodesics have L “ 0,
we arrive at the radial Schrödinger equation with potential Veff:

9r2 ` Veffprq “ 0, Veffprq ” Lψ
2f

ˆ

1

r2h
´
h

f

`

b´1
´ Ω

˘2

˙

(3.26)

where we have defined the impact parameter b ” Lψ
E

. Unstable circular orbits have
Veffpr0q “ V 1

effpr0q “ 0. First solving V 1
effpr0q “ 0 gives two possible values for the

impact parameter

b˘ “
a
a

2pN ` 1qM
a

2pN ` 1qM ˘ rN0
. (3.27)

Substituting this back into the effective potential and now requiring Veffpr0q “ 0,
we find that the orbit radii r0 are the (relevant) roots of a polynomial of order
2pN ` 1q:

L2r20

”

2pN ` 1qM ` rN0 pr
N
0 ˘ 2

a

2pN ` 1qMq

ı

“ 2a2M
”

NL2
´ pN ` 1qr20

ı

(3.28)

with the ˘ sign corresponding to the signs of b˘. For N “ 1 this is a quartic
polynomial, which we can solve explicitly, but for N ą 1 we can only find the orbit
radii r0 numerically.7 We find that only two solutions have r` ă r0 ă rc, with the
physical solution corresponding to the minus sign in (3.28) and thus to b´. The
imaginary part of the photon sphere modes (1.19) is proportional to the principal
Lyapunov exponent, which characterises the instability time scale of the geodesic.
It can be computed from the second derivative of the effective potential [74]

λL “

c

´
V 2

effprq

2 9t2

ˇ

ˇ

ˇ

ˇ

r“rc

(3.29)

and the real part is proportional to the angular velocity of the null orbit, Ω0 “

dψ
dt

“
9ψ
9t
, which can be computed from (3.25). Explicitly, these two quantities are

given by

Ω0 “
1

b´
, λL “

?
2N

|b´|

ˇ

ˇ

ˇ

ˇ

1`
a pb´q2

r2c pN ` 1qpa´ b´q

ˇ

ˇ

ˇ

ˇ

. (3.30)

Note that expressions involving the black hole parameters pM,a, Lq can be written
in terms of py`, y´q using (B.1) in Appendix B. The solution to (3.28) with the
larger angular velocity Ω0 (i.e. larger real part) corresponds to the corotating
PS modes, while the other with smaller Ω0 describes the counter-rotating PS

7Note that using (3.27) and (3.28) we can express the mass and AdS radius in terms of
the orbit parameters as M “

pb˘
q
2r2N0

2pN`1qpa´b˘q2
and L “ r0

b

N`1
N´pb˘q´2pN`1qr20

, which are useful to
simplify our final expressions.
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modes. The corotating modes have smaller r0, i.e. are closer to the event horizon,
and so intuitively they are less stable, with smaller λL. Indeed, the corotating
modes always dominate, i.e. they have smaller | Impωq| than their counter-rotating
partner.

In Section 3.5, we will verify that the eikonal approximation (1.19) and (3.30), al-
though strictly valid in the limit |m| “ l Ñ 8, also gives a very good approximation
for the PS modes even when |m| “ l is of Op1q.

3.2.3 Near-horizon geometry and near-horizon modes

There is another limit where we can compute QNMs using analytical methods.
Indeed, near-extremal black holes typically have a set of modes known as near-
horizon (NH) modes. This nomenclature follows from the fact that these NH
modes characteristically have a wavefunction that is highly localised around the
event horizon (when near extremality), and they have frequencies approaching
Impωq Ñ 0 and Repωq Ñ mΩpr`q in the strict extremal limit. In subsection 3.2.3.3,
we will use a matched asymptotic expansion method to analytically capture these
NH modes, whereby we match the solution of the Klein-Gordon equation in the
near-horizon region of near-extremal MPdS with a trivial solution in the far-region.

Before deriving the near-horizon modes, we do a small digression in subsections
3.2.3.1´3.2.3.2, and we find the near-horizon geometry of extremal MPdS and the
associated effective AdS2 Breitenlöhner-Freedman (BF) bound. The motivation to
do so is twofold. Firstly, the BF bound naturally appears in the expressions for the
NH frequencies and it will ultimately provide a criterion to find QNMs that preserve
strong cosmic censorship. Moreover, for completeness, we take the opportunity
to discuss and test a theorem about instabilities arising from perturbations of
near-horizon geometries [144, 149] that is relevant in the context of our study.

Let us review some details about the near-horizon geometry that were briefly
discussed in Section 1.4. In the near-horizon limit, the geometry of extremal black
holes, including MPdS, can be expressed locally as a product of AdS2 times a
compact space [144], even though MPdS is asymptotically de Sitter. In this limit,
the Klein-Gordon equation in the near-horizon geometry reduces to an effective
scalar field equation on pure AdS2 space with a certain effective mass µeff and charge
qAdS. It is well known that in AdS2 (with radius LAdS), a scalar field perturbation
is normalisable even if its squared mass µ2

AdS is negative, provided that it obeys
the 2-dimensional BF bound µ2

AdSL
2
AdS ě ´1

4
[147, 148]. On the other hand, the
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scalar field on AdS2 is not stable if its mass is below the 2-dimensional BF bound.
However, a violation of the effective AdS2 BF bound of the near-horizon geometry
of extreme MPdS does not necessarily imply an instability of the scalar field on
the full d-dimensional MPdS black hole geometry.

For asymptotically flat or AdS black holes, a conjecture by Durkee and Reall [144]
(proven by Hollands and Ishibashi in [149]) states that a sufficient (but not neces-
sary) condition for this near-horizon AdS2 BF bound violation to develop into an
instability of the extremal black hole is that the unstable mode preserves a certain
symmetry already present in the background geometry. In the case of rotating black
holes, this is that the perturbation is axisymmetric, m “ 0. Assuming there is such
an instability, one expects that it also extends away from extremality, by continuity.
For Myers-Perry-AdS, near-horizon instabilities triggered by a violation of the near-
horizon AdS2 BF bound have been studied in detail in [217, 144]. Strictly speaking,
the proof established in [149] only applies to asymptotically flat or AdS black holes,
but is somehow trivial to extend the proof in the asymptotically flat context to
black holes living in the static patch of dS. Indeed, in [149], slices that extend from
H` to I` were considered and appropriate boundary conditions were given so that
the canonical energy of [225] obeys a certain balance equation that plays a crucial
role in the proof. Such a balance equation can still be obtained in the context of
black holes living in the static patch of dS by imposing boundary conditions on H`

c

that are similar to those imposed on H`. If one further restricts to perturbations
that preserve axisymmetry, the desired result follows.8 Recent numerical results
seem to corroborate the previous extension and show that an effective AdS2 BF
bound violation explains the instability of d ě 6 Reissner-Nordström´de Sitter
black holes [146] so it is worthwhile to check whether m “ 0 modes in MPdS can
lead to a violation of the 2-dimensional BF bound, and eventually to an instability
in MPdS (in subsection 3.2.3.2 we will find that this is not the case).

3.2.3.1 Near-horizon geometry of MPdS

To find the near-horizon geometry of the extremal MPdS black hole, we start
with (3.10) at extremality r´ “ r`, where fprq has a double root r “ r´ “ r`, and
zoom into the horizon by the coordinate transformations

r Ñ r` ` ϵR, tÑ
T̃

ϵ
, ψ Ñ Ψ` Ωpr`q

T̃

ϵ
. (3.31)

8We thank S. Hollands for discussions on this point.
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Taking the limit ϵÑ 0, i.e. keeping only the leading contribution of an expansion
in small ϵ, we obtain the near-horizon geometry

ds2 “ ´
f

2

pr`q

2hpr`q
R2 dT̃

2
`

2

f 2
pr`q

dR2

R2
`r2`hpr`q

´

dΨ`A´RΩ1
pr`q dT̃

¯2

`r2` dΣ
2.

(3.32)
We can make the AdS2 structure more explicit by a further change of coordinates,
similarly to [144]. We define the constants

L2
AdS ”

2

f 2pr`q

ˇ

ˇ

ˇ

ˇ

ext

, Ω̃ ” Ω1
pr`q

a

hpr`q

ˇ

ˇ

ˇ

ˇ

ext

, (3.33)

and rescale the time coordinate T̃ Ñ L2
AdS

a

hpr`qT , to get the near-horizon
geometry in pT,R,Ψ, xiq coordinates

ds2 “ L2
AdS

ˆ

´R2 dT 2
`
dR2

R2

˙

` r2`hpr`q
´

dΨ`A´R Ω̃L2
AdS dT

¯2

` r2` dΣ
2 .

(3.34)
This near-horizon geometry is still a solution of the d-dimensional Einstein-dS
equations. On the other hand, the AdS2 part parametrised by pT,Rq satisfies the
2-dimensional Einstein-AdS equations with R “ ´2L´2

AdS.

3.2.3.2 Perturbations of the near-horizon geometry and the AdS2 BF
bound

Linear mode solutions of the Klein-Gordon equation on the near-horizon geome-
try (3.34), with the Fourier decomposition Φ “ e´iωT`imΨχpRq, must satisfy the
ODE

R2 χ2
` 2Rχ1

´

«

pω2 ´mΩ̃L2
AdSRq

2

R2
´ L2

AdS

ˆ

µ2
`

λ

r2`
`

m2

r2`hpr`q

˙

ff

χ “ 0. (3.35)

We can write this as a massive charged Klein-Gordon equation on pure AdS2,

´

∇̃´ iqAdSApRq
¯2

Φ “ L2
AdS

ˆ

µ2
`

λ

r2`
`

m2

r2`hpr`q

˙

Φ, ApRq “ ´RdT ,

(3.36)
if we make the identification qAdS “ ´mL2

AdSΩ̃. Here ∇̃ is the covariant derivative
on pure AdS2 associated to the metric

ds2AdS2
“ L2

AdS

ˆ

´R2 dT 2
`
dR2

R2

˙

, (3.37)
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and ∇̃´ iqAdSApRq is the gauge covariant derivative of a scalar field with effective
charge qAdS in the AdS2 background with a homogeneous electric field ApRq. The
latter descends from the dT dΨ component of the metric in the original near-horizon
solution (3.34).

Asymptotically, as R Ñ 8, the solutions of (3.35) behave as χ „ R´∆˘ where the
2-dimensional conformal dimensions ∆˘ are

∆˘ “
1

2
˘

1

2

a

1` 4µeff
2L2

AdS, µeff
2
” µ2

`
λ

r2`
`

m2

r2`hpr`q
´ L2

AdSm
2Ω̃2. (3.38)

In order for such solutions to not oscillate at infinity (i.e. to be normalisable; with
finite energy), we require that ∆˘ is real. This requirement defines the AdS2 BF
bound of the near-horizon geometry:

µeff
2L2

AdS ě ´
1

4
. (3.39)

In summary, by taking the near-horizon limit of extreme MPdS, we have found
the effective near-horizon AdS2 radius LAdS, charge qAdS and mass µeff , which are
explicitly given in terms of pN, y`q by:

L2
AdS “

r2cy
2
`

2pN ` 1q

1´ y2N`2
` p2´ y2` `Np1´ y2`qq

Np1´ y2`qp1` y2N`2
` q ´ 2y2`p1´ y2N` q

, (3.40)

qAdS “
L2

AdS

r2c

2m

y2`

d

Np1´ y2`q ´ y2`p1´ y2N` q

p1´ y2`qp1´ y2N`2
` q

, (3.41)

µeff
2
“ µ2

`
1

r2c

ˆ

λ

y2`
´
m2

y2`

N

N ` 1

1´ y2N`2
` p2´ y2` `Np1´ y2`qq

Np1´ y2`qp1` y2N`2
` q ´ 2y2`p1´ y2N` q

˙

. (3.42)

In the UV region of the full geometry, excitations in asymptotically d-dimensional
dS spacetimes have finite energy (i.e. are stable) if and only if µ ě 0. However, in
the IR region, these can correspond to an effective mass µeff in the near-horizon
region, as defined in (3.38) and (3.42), that violates the AdS2 BF bound (3.39) of
the near-horizon geometry. Since µeff

2 is minimised when µ “ 0, we will restrict
considerations to the massless scalar field µ “ 0 on MPdS from now on.

For the axisymmetric modes m “ 0 the effective mass (3.38) is always non-negative,
and hence there is no AdS2 BF bound violation (that could be relevant to the
previously discussed theorem about near-horizon instabilities [144, 149]). Since
that theorem provides a sufficient but not necessary condition for instability, we
cannot make any conclusions about the stability of MPdS, but we indeed do not
find any instabilities when m “ 0.
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We will also be interested in modes with non-zero m, which can violate the BF
bound (3.39). Of particular interest will be the behaviour in the eikonal limit
where m “ l is large. Recall that, analogously to the spherical harmonics, the
CPN angular eigenvalues λ of (3.14) can be labeled by m and l, with |m| ď l. For
a fixed m, one can show that µeff

2 is minimised when l “ |m|, i.e. a BF bound
violation will first occur for the maximally corotating modes. Furthermore, the
BF bound can always be violated for sufficiently large m “ l. Recall that in
this m ‰ 0 case the background symmetry is not preserved, and it follows from
the analysis of Durkee-Reall and Hollands-Ishibashi [144, 149] that a violation of
the AdS2 BF bound says nothing about the existence of eventual instabilities in
the full MPdS geometry. Yet, one might expect that a BF bound violation can
signal some transition boundary of the physical properties of the system. Indeed,
in the previous chapter, for Kerr-Newman, we found that this was indeed the
case, where a BF bound violation indicated the critical ratio of charge to angular
momentum a{Q at which the PS and NH modes merge to form a single family
in the near-extremal limit. We will see that a similar behaviour occurs in MPdS
(with some differences), as we will see in the discussion of the results of Fig. 3.12
and Table 3.1 of section 3.5.

3.2.3.3 Near-horizon modes

To find the near-horizon (NH) modes in an off-extremality expansion, we use a
matched asymptotic expansion, which is motivated by the following considerations.
From our numerical results we find that close to extremality, where r´ Ñ r`, NH
eigenfunctions are very much localized near the event horizon and very quickly
decay as we move away from it towards the cosmological horizon. To obtain a
good analytical approximation that well describes the NH mode solutions of the
Klein-Gordon equation we can then split the spacetime into a near-region, localized
around the horizon, and a far-region, that extends all the way up to the cosmological
horizon. In the near-region, a double series expansion of the Klein-Gordon equation
around the extremal black hole and, simultaneously, about the event horizon yields
an hypergeometric equation which we can solve analytically to find the near-region
eigenfunction. We then match this solution with the far-region eigenfunction
which, from the above observations and in a “poor-man” approximation, can be
taken to be approximately the trivial vanishing solution to leading order in the
expansion. The matching and boundary conditions fix the amplitudes of the
eigenfunctions and quantise the frequency of the NH modes. To validate our
matched asymptotic expansion and to simultaneously identify the NH modes, we
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compare this analytical expression for the frequency with the numerical data. In
the literature there are systems where a similar strategy proved to be very useful
and successful [89, 226, 122, 227].

The explicit derivation presented here is for N “ 1 (for clarity of the presentation),
but the approach generalises, and the main result that we present in the end is
valid for all N . We start by defining

σ “ 1´
r´
r`
, x “ 1´

r

r`
, z “ x σ . (3.43)

Small σ corresponds to taking the near-extremal limit, while small x “ z{σ

corresponds to a zoom into the horizon (note that x ď 0 and z ď 0). We will
take the σ Ñ 0 limit while holding z fixed to zoom in the near-extremal solution
around the horizon. To zeroth order in the σ-expansion, we look for modes (the NH
modes) whose frequency at extremality is purely real and satisfies the superradiant
bound, ω “ mΩpr`q|ext. This suggests that (3.43) should be accompanied by the
σ-expansion in the frequency,

ω “ mΩpr`q
ˇ

ˇ

ext
` σ δω , (3.44)

where we will have to determine the next-to-leading order frequency correction
δω. Inserting (3.43)´(3.44) into the (massless) Klein-Gordon equation (3.16) and
taking the limit σ Ñ 0 while holding z fixed, we can show that the leading order
contribution of the expansion is a hypergeometric equation for χpzq if we perform
the field redefinition

Rpzq “ zAp1´ zqBχpzq (3.45)

where A and B are given by

A “ ´i

˜

m
a

1` y2`p1` 3y2` ` 4y4`q

8p1` 2y2`qp1´ y4`q
`
y`

a

p1` y2`qp1` 2y2`q

2
?
2p1´ y2`q

δω̃

¸

, (3.46)

B “ i

˜

mp1` 3y2`qp3` 4y2`q

8
a

1` y2`p1` 2y2`qp1´ y2`q
´
y`

a

p1` y2`qp1` 2y2`q

2
?
2p1´ y2`q

δω̃

¸

, (3.47)

where we have introduced the dimensionless frequency correction δω̃ ” rc δω. In
these conditions, the general solution of the system is a sum of hypergeometric
functions 2F1 [228]:

χpzq “ Cp1q 2 F1pa`, a´, c; zq `Cp2qz
1´c

2 F1pa` ´ c` 1, a´ ´ c` 1, 2´ c; zq, (3.48)
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for some constants Cp1q and Cp2q, and the coefficients a˘ and c are expressed in
terms of the effective mass µeff and AdS2 radius LAdS given in (3.40)-(3.42), as well
as y` and m as:

a˘ “
1

2
˘

1

2

b

1` 4µ2
effLAdS

2
`
im

a

1` y2`p1` 4y2`q

4p1´ y2`qp1` 2y2`q
´
iy`

a

p1` y2`qp1` 2y2`q
?
2p1´ y2`q

δω̃,

c “ 1´
im

a

1` y2`p1` 3y2` ` 4y4`q

4
a

1` y2`p1´ y2`qp1` 2y2`q
´
iy`

a

1` 3y2` ` 2y4`
?
2p1´ y2`q

δω̃. (3.49)

Using 2 F1pα, β, γ, 0q “ 1, the leading order behaviour of Rpzq near the event
horizon z “ 0 is

R
ˇ

ˇ

zÑ0´
» Cp1q z

A
` Cp2q z

´A. (3.50)

The first (second) term describes an ingoing (outgoing) wave at the event horizon
z “ 0. We want the solution that is regular in ingoing Eddington-Finklestein
coordinates (3.9) so we set Cp2q “ 0 in (3.48).

Formally, we should now find the far-region wavefunction in some approximation
(tailored to an analytical treatment) that is valid far from the event horizon all the
way up to the cosmological horizon, and match it with the near-horizon solution
to find the QNMs, as we did for Kerr-Newman in Chapter 2. In MPdS, it turns
out that it is difficult to solve the far-region equations analytically, so we will take
the simpler heuristic approach of matching the near-region eigenfunction with a
vanishing far-region wavefunction, motivated by our observation that the near-
horizon modes are highly peaked near the horizon. In spite of being a “poor-man”
matched asymptotic expansion, we will find à posteriori that this simple analysis
yields an approximation that agrees extremely well with our numerics. The edge
of the near-horizon region where the matching is done is at z Ñ ´8. Using the
following relationship between the coefficients,

A`B ´ a˘ “ ´
1

2
¯

1

2

a

1` 4µeff
2L2

AdS, (3.51)

we can expand the near-region hypergeometric function for large negative z, to get

R
ˇ

ˇ

|z|"1
» p´zq´

1
2
´ 1

2

?
1`4µeff2L2

AdS
Γpa´ ´ a`qΓpcq

Γpc´ a`qΓpa´q

` p´zq´
1
2
` 1

2

?
1`4µeff2L2

AdS
Γpa` ´ a´qΓpcq

Γpc´ a´qΓpa`q
.

(3.52)

Thus, the behaviour of the two contributions depends on the real part of each
exponent. The expression

a

1` 4µeff
2L2

AdS is always either positive or imaginary,
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and so the first term in (3.52) always vanishes far away from the event horizon.
When µeff

2L2
AdS ě 0 the second term diverges as |z| grows large. Since we want

to match the large radius expansion (3.52) of the near-region with a vanishing
far-region wavefunction, we must require that the coefficient of the second term
vanishes identically. This happens if one of the arguments of the gamma functions
in the denominator is a non-positive integer since Γp´nq “ 8, n P N0. That
is to say, we require a` “ ´n, for n “ 0, 1, 2, . . . which gives a quantisation
condition for δω̃. Namely, for N “ 1, the frequency of the NH modes should be
well approximated by

ω
pN“1q
NH rc »

m

y`
a

2p1` 2y2`q
´ i

1´ y2`

y`
a

2p1` y2`qp1` 2y2`q

«

i
mp1` 4y2`q

a

1` y2`
2p1´ y2`qp1` 2y2`q

` 1` 2n`

d

1´
m2p1` 2y`q2

2p1´ y2`qp1` 2y2`q
`
λp1` 2y2`q

1´ y2`

ff

σ `O
`

σ2
˘

.

(3.53)

Note that σ “ 1 ´ y´{y` can be expressed in terms of py`, αq using (3.7). The
calculation so far is strictly valid for N “ 1 but it generalizes mutatis mutandis for
all N . At the end of the day, for any d “ 2N ` 3, the frequency of the NH modes
can be written as

ωNH » mΩpr`q|ext`

„

mΩp1q ´
i

2

ˆ

1` 2n` 2iqAdS `

b

1` 4µeff
2LAdS

2

˙

κp1q

ȷ

σ`O
`

σ2
˘

(3.54)
where we have defined the first-order coefficients of the Taylor expansion of Ωpr`q
and κ`:

Ωp1q ”
dΩpr`q

dσ

ˇ

ˇ

ˇ

ˇ

σ“0

, κp1q ”
dκ`
dσ

ˇ

ˇ

ˇ

ˇ

σ“0

. (3.55)

Explicit expressions for Ωp1q and κp1q as a function of N and y` are given in (B.3) of
Appendix B. Apart from the angular velocity and surface gravity, ωNH only depends
on the black hole parameters via the effective mass µeff , charge qAdS and AdS2

radius LAdS which characterize the near-horizon geometry and its perturbations. In
general, ωNH is complex, but in the axisymmetric case m “ 0, qAdS vanishes and the
BF bound (3.39) is never violated, so the resulting modes are purely imaginary:

ω
pm“0q
NH rc » ´

i

2

ˆ

1` 2n`

b

1` 4µeff
2LAdS

2

˙

κp1q σ `O
`

σ2
˘

. (3.56)

This expression is again valid for all N .
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In the next section, we will use (3.54) to help identify the NH family of QNMs,
and simultaneously (3.54) will verify some of our numerical results.

3.3 Quasinormal modes of higher-dimensional Schwarzschild-

de Sitter

To discuss strong cosmic censorship in equal angular momenta MPdS black holes, it
is necessary to carefully study the quasinormal mode spectra, and we will highlight
the main features in Section 3.4. However, even before studying the QNMs of
the MPdS, we have to start with the QNM spectra of its non-rotating limit, the
Schwarzschild-dS black hole, to understand which features of the QNM spectra
originate from a change in dimension. Since there are no detailed studies of the
QNMs of higher-dimensional Schwarzschild-dS in the literature, we highlight some
key properties here. In this section (only) we will also consider even dimensions,
as the Schwarzschild-dS QNM spectra differs substantially for even and odd di-
mensions. We do not aim to present the full QNM spectra of Schwarzschild-dS for
all dimensions, but just the main features that we have identified and that seem
worth highlighting. In particular, those that help us further understand features of
the MPdS spectra.

Taking the limit aÑ 0 of the MPdS metric (3.1), we recover the metric for d “ 5

Schwarzschild-dS, with a CP1 angular part that is isomorphic to a 2-sphere S2:

ds2 “ ´fprqdt2 `
1

fprq
dr2 ` r2pdψ `

1

2
cos θ dϕq2 `

r2

4
pdθ2 ` sin2 θ dϕ2

q, (3.57)

fprq “ 1´
2M

r2
´
r2

L2
. (3.58)

Note that due to spherical symmetry we can label perturbations by the total
angular momentum l alone, using λ “ lpl ` 2Nq ´ m2 from equation (3.15) to
eliminate the explicit dependence on m. In general, there are two distinct mode
families in Schwarzschild-dS. These are the de Sitter (dS) modes, which reduce
to (3.22)-(3.23) in the limit y` Ñ 0, and the photon sphere (PS) modes, which are
well approximated by (1.19) in the eikonal limit |m| “ l Ñ 8. Schwarzschild-dS
has no extremal limit and thus there are no near-horizon (NH) modes in its QNM
spectra.

Taking the limit aÑ 0 of the effective potential for null geodesics in MPdS (3.26)
and setting N “ 1, the solutions to Veffpr0q “ V 1

effpr0q “ 0 are r0 “ 2
?
M and
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Fig. 3.2: QNM spectrum for d “ 4 (left) and d “ 5 (right) Schwarzschild-dS with
m “ l “ 0 (several radial overtones n “ 0, 1, 2, 3, 4, 5, . . . are displayed). There are
purely imaginary dS modes (red) and complex PS modes (blue). The modes of
pure dS space (3.22)-(3.23) are indicated by black diamonds at r` “ 0. In d “ 5
(right panel) the pure dS frequencies are degenerate, but the dS curves split as
r`{rc increases above zero, while they are always non-degenerate in d “ 4 (left
panel). The points A,B,C indicate three mode crossings/mergers plotted in detail
in Fig. 3.3.

b˘ “ ˘2L
`

L2

2M
´ 4

˘´1{2. The corresponding eikonal approximation (1.19) to the PS
modes is therefore

ωPS rc »
y2` ´ 1

2y`
a

1` y2`

„

˘l ` i
?
2

ˆ

n`
1

2

˙ȷ

. (3.59)

One can also derive an approximation for the modes in the Nariai limit y` Ñ 1 (see
e.g. the supplementary material in [86]), but we will not do this here, since there
is no extra family of QNMs associated to it: the Nariai analysis simply captures
the PS family.

The d “ 5 QNM spectra are shown in Fig. 3.2 for d “ 4 (left panel) and d “ 5

(right panel) Schwarzschild-dS with m “ l “ 0.9 There are dS modes with
purely imaginary frequencies (red curves with increasing radial overtone n “

0, 1, 2, 3, 4, 5, . . . from top to bottom), whose eigenvalues are smoothly connected to
the frequencies of pure de Sitter space (3.23)-(3.22) (indicated by black diamonds)
in the limit r` Ñ 0. There also exist PS modes with complex frequencies (blue
curves with increasing radial overtone n “ 0, 1, 2, 3, 4, 5, . . . from top-left to bottom-
right), which we have identified by marching each QNM to m “ l “ 20, where they
are in excellent agreement with the eikonal approximation (3.59).

9It becomes very difficult to find the full quasinormal mode spectrum as we approach the two
limits of the parameter space: de Sitter (r` “ 0) and Nariai (r` “ rc), so some modes have not
been resolved in those limits, although they certainly do exist.
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(a) Mode crossing at A
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(b) Close merger at B
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(c) Mode merger at C

Fig. 3.3: Imaginary (top panel) and real (bottom panel) parts of the l “ m “ 0
QNM frequency spectra of the d “ 5 Schwarzschild-dS black hole of the right panel
of Fig. 3.2, but this time zoomed-in around the regions A, B and C identified in
Fig. 3.2. The red/yellow/brown modes are purely imaginary frequency dS modes
and the blue/purple pentagon curves describe complex frequency PS modes. The
inset plot in the middle-bottom figure (b) is an enlarged plot at the merge region
to show that it is a very short-lived merge rather than a crossing.

Comparing the left (d “ 4) and right (d “ 5) panels of Fig. 3.2, the main difference
going from d “ 4 to d “ 5 can be found in the dS curves. To start with, in
d “ 4 we have roughly two times more dS curves than in d “ 5, in agreement
with the discussion of (3.23)-(3.22). Indeed, in the r` Ñ 0 limit, all negative
imaginary integers (except ´i) are frequencies of pure dS spacetime in d “ 4 but,
in d “ 5, the frequencies of pure dS are given only by the even negative integers.
The next difference occurs when we let r`{rc increase. For d “ 4, there is a single
curve departing from each overtone of pure dS, but in d “ 5 two intertwining
curves emerge as r`{rc increases (except the N “ 0, 1 dS modes). This can be
partially explained by the degeneracy of the pure de Sitter modes (3.22-3.23). In
odd dimensions d “ 2N ` 3, the pN ` 1q-th pure de Sitter mode (counting the zero
mode) and higher overtones are degenerate and these degenerate modes split as we
move away from pure de Sitter. However, this intertwining behaviour of the dS
modes appears to be unique to d “ 5 (and not shared by the d “ 7, 9, 11, . . . case).

To better understand the intertwining structure of d “ 5 Schwarzschild-dS, the
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three regions A, B and C in the right panel of Fig. 3.2 are enlarged in Fig. 3.3.
The dS modes are represented by orange triangles and/or red squares, while the
PS modes are described by the blue or purple pentagons. At region A (top-left
panel) both dS modes merely cross each other and the PS mode. The PS modes
have a real part that dips to a finite value at the crossing (bottom-left panel), but
don’t become purely imaginary (the dS modes always have frequencies with zero
real part). Increasing y` to region B (middle panels), the real part of the PS mode
drops to zero (bottom-middle panel), and the orange triangle dS curve merges
with the PS curve (middle panels). The red square dS curve passes through the
other two without interaction (top-middle panel) Further increasing y` till region
C (right panels), we see two bifurcation points (with 3 curves departing from each
one). Looking at the imaginary part (top-right panel) of Fig 3.3c, the PS mode
in the bottom-left splits (at the first bifurcation point) into the orange triangle
dS curve and a new ‘bridge’ mode (brown circles bridging the two bifurcation
points in the right panels) with purely imaginary frequencies. This bridge mode
then extends up and to the right till the second bifurcation point where the other
branches of the orange triangle dS and PS curves also meet. Again, the red square
dS curve passes through the other two without interaction. Similar bridge modes
were observed in the QNM spectra of Reissner-Nordstöm´dS black holes in higher
dimensions [146].

Let us now consider what happens when d ą 5. In Fig. 3.4 we plot the QNM
spectra of Schwarzschild-dS in dimensions d “ 6, 7, 8, 9 for l “ m “ 0. The several
overtones of the PS curves (blue squares) have a qualitative behaviour similar to
that found in d “ 4 and d “ 5 of Fig. 3.2. Moreover, the even-dimensional results
are qualitatively similar to d “ 4 (left panel of Fig. 3.2) for both the PS and dS
modes. In d “ 7, the degenerate dS modes still split as r`{rc increases above zero
and tend to develop a wavy shape, however they do not have the same intertwining
behaviour observed in d “ 5 (right panel of Fig. 3.2). In fact, we do not observe
intertwining behaviour between two dS curves in any other dimension other than
d “ 5, at least up to d “ 11. The behaviour of the dS modes in d “ 5 is thus very
unique.

In d “ 9 and higher, we find some exceptional modes which do not have the
standard characteristics of dS or PS modes, as can be seen in the d “ 9 plot in
the bottom-right panel of Fig. 3.4. The red and blue curves still describe the same
families as before: purely imaginary dS modes and complex frequency PS modes,
respectively. However, the purple/magenta and orange/brown modes do not fit the
standard classification. The purple/magenta modes are PS modes with complex
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Fig. 3.4: QNM spectrum of Schwarzschild-dS in d “ 6, 7, 8, 9 dimensions, with
l “ m “ 0. Red modes are purely imaginary dS modes and the blue modes
are complex PS modes. The orange/brown modes are purely imaginary but not
connected directly to the dS limit when r` Ñ 0. The purple/magenta modes are
PS modes with complex frequency that do not vanish in the Nariai limit r` Ñ rc.
The pure dS frequencies at r` “ 0 are indicated by black diamonds. These are
exceptional modes in the sense that we do not observe similar modes for d ă 9 at
least in the first few radial overtones.
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Fig. 3.5: Marching the QNM spectra of Fig. 3.4 from m “ l “ 0 all the way up to
m “ l “ 3 for fixed y` “ 0.7. The points C1 and C2 are those already present in
the bottom-right panel of Fig. 3.4 (see vertical grey line). The red modes are the
usual purely imaginary dS modes and the blue modes are PS modes with complex
frequency (we have tracked them up to m “ l “ 20 to compare with the eikonal
limit of PS modes). The orange curves starting at C1 and C2 have purely imaginary
frequency and join at point D. For higher m, the magenta curve starting at D
has complex frequencies and it is a PS mode in the sense that for larger l “ m it
agrees well with the eikonal approximation.
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frequency (see discussion of Fig. 3.5 below), but unlike the other PS modes, they
do not have a standard PS behaviour at small y` or a vanishing imaginary part in
the Nariai limit, r`{rc Ñ 1. Instead, these frequencies behave like those of pure
dS space as r`{rc grows large. For example, the magenta curve splits at A into
a pair of imaginary modes (orange) which behave much like dS modes, with a
non-vanishing ω in the Nariai limit. The magenta and purple modes appear to
have different behaviours in the limit r` Ñ 0. The magenta mode is suppressed
(i.e. |Impωrcq| becomes large as y` decreases), while the purple mode appears to
tend towards the pure dS frequency, with Impω rcq “ ´8i. However, this region is
difficult to resolve to the left of point B. To further clarify the properties of the
exceptional families that pass though points A,C1 and A,C2 in Fig. 3.5 we do the
following exercise. We fix y` “ 0.7, which is described by the vertical grey line in
bottom-right panel of Fig. 3.4 when l “ m “ 0. In particular, in the exceptional
orange curves this selects points C1 and C2 with l “ m “ 0. Then, in Fig. 3.5,
we run a code that marches over m “ l from m “ l “ 0 (where C1 and C2 lay)
all the way up to l “ m “ 3. We see that in this path, the two orange curves
starting at C1 and C2 merge at point D into a single magenta curve that then
extends to m “ l “ 3 and beyond (not shown). Extending this plot even further
to, say, m “ l “ 20 we can compare it with the eikonal limit of the PS modes and
conclude that the magenta curve is a high overtone PS mode (like the blue curves
in Fig. 3.4 and Fig. 3.5). So as l increases the curves AC1 and AC2 of Fig. 3.4 are
connected to PS modes, although for l “ m “ 0 they do not have the standard
Impωq Ñ 0 behaviour as y` Ñ 0. This illustrates how intricate the QNM spectra
of Schwarzschild-dS can become for higher overtones, especially for large d.

The quasinormal mode spectrum of other asymptotically dS spacetimes (e.g MPdS
or Reissner-Nordstöm´dS) will similarly contain modes which defy the standard
classification in higher dimensions, as confirmed in the Reissner-Nordstöm´dS
study of [146]. One might wonder why this is not visible in studies of SCC for
higher-dimensional RNdS [201]. In the context of strong cosmic censorship, the
n “ 1 mode is the dominant dS mode. This is the only mode which is not paired,
and it has a much weaker dependence on the black hole parameters. Indeed, all of
the effects we have described are present only for subdominant modes, and so are
not relevant for SCC.
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3.4 Quasinormal mode spectra of equal angular

momenta MPdS

Having now discussed the QNM spectra of higher-dimensional Schwarzschild-de
Sitter, we are now ready to turn on angular momentum and consider Myers-Perry-de
Sitter. In Section 3.2 we used analytical methods, strictly valid in certain windows
of the black hole or angular harmonic parameters, to identify three possible families
of quasinormal modes: the de Sitter (dS), photon sphere (PS) and near-horizon
(NH) QNM families. Strictly speaking, we do not know if these 3 families are distinct
or whether e.g. two of them describe the same family that happens to be captured
by two distinct analytical analysis in different “corners” of the parameter space.
In this section (and in section 3.5) we do a numerical search of the quasinormal
modes of MPdS black holes. This numerical scan of the QNMs is done completely
independently of our analytic approximations. However, after collecting the data
we compare our numerical results with the analytical approximations of Section
3.2, in the regime of parameters where the analytical approximations are valid, to
identify the origin of each family of QNMs that we find.

In the previous chapter, we found that in Kerr-Newman black holes there is
only a sharp distinction between the PS and NH modes in certain regions of the
parameter space, in particular near the Reissner-Nordström limit. Elsewhere, the
distinction between the two families is much less clear due to eigenvalue repulsions.
In particular, this means that we can have e.g. PS surfaces that, when approaching
the NH surface, ‘break’ into two branches and each one of the two branches then
merges smoothly with what was (in other regions) a NH branch (the NH surface
itself also breaks into two pieces). Instead of ending with one PS and one NH family
of modes we have what we can call two ‘combined PS-NH’ families (describing
different overtones) with a frequency gap between them. In this study of the
QNM spectra of MPdS, we also observe eigenvalue repulsions, similar to those in
Kerr-Newman, although not just between the PS and NH families but also between
the dS and NH modes.

It is not our aim to do a detailed study of QNMs of MPdS, since we just need
to identify the modes that enforce SCC in MPdS, and this only requires finding
a dominant QNM family that does the job. Instead, we present a selection of
results that illustrate the key features of MPdS QNMs. Recall, from the discussions
in Section 3.1, that the MPdS black hole is a 2-parameter solution and we can
take these two parameters to be either py`, y´q or be py`, αq ” pr`, aq{rc (where
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Fig. 3.6: QNM spectrum for d “ 5 MPdS with m “ l “ 0 and y` “ 0.1 (left),
0.2 (middle) and 0.4 (right). The red triangle curve is the dS mode (with n “ 0).
In the limit py` Ñ 0, a Ñ 0q these reduce to the QNMs of pure dS space (3.22),
indicated by a black diamond. The blue square curves are the complex PS modes
(with n “ 0; we also show the PS curve with n “ 1 in the right panel). The
orange/brown/black circle curves are the n “ 0, 1, 2 harmonics of the NH modes,
respectively, with analytic approximations (3.53) given by solid lines. Eigenvalue
repulsions occur at A1, A2, A

1
2 and further subdominant modes (not shown). The

complex purple mode at B does not fit into any of the three families: it simply
provides a “bridge” between two points where, at each one, 3 curves bifurcate from.

0 ď α ď αext, with αext being the value of α at extremality). Typically we will
display 2-dimensional plots where we plot the frequency as a function of one of the
parameters while keeping the second black hole parameter fixed. Altogether, our
selection of plots allows us to infer how the complete 3-dimensional plot py`, α, ω rcq
looks like.

Let us start with the axisymmetric m “ l “ 0 modes in d “ 5 MPdS, displayed in
Fig. 3.6. For small y` “ 0.1 (left panel) we identify 3 distinct QNM families: the
dS (red triangle curve), PS (blue square curve) and NH (orange and brown circles)
families. The PS family has complex frequencies. In the NH case, we display not
only the curve with radial overtone n “ 0 (orange disks) but also the family with
n “ 1 (brown circles), and they all have purely imaginary frequencies (for m “ 0).
The dS red triangle curve (with purely imaginary frequencies) approaches the pure
(y` “ 0) dS normal mode (3.23) when α Ñ 0 (black diamond). On the other hand
the n “ 0 (orange) and n “ 1 (brown) circle NH curves match very well with the
NH analytic approximation (3.53) (described by the solid lines) which are valid
near extremality α{αext À 1.

Still in Fig. 3.6, as we increase y` to 0.2 (middle panel), the dS modes clearly
merge with the NH modes as α approaches extremality. This first occurs near A1,
between the n “ 0 dS and n “ 0 NH modes, leaving a gap region in the eigenvalue
spectrum of the ‘old’ n “ 0 NH curve (by ‘old’ we mean w.r.t. the left panel). To
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the right of A1 we see that a small branch of the ‘old’ n “ 0 dS curve now provides
a bridge that connects the bottom section of the ‘old’ n “ 0 NH curve (on the
left/bottom) with the top/right half of the ‘old’ n “ 1 NH curve. Then, for even
larger α we see that around A2 there is a branch of the ‘old’ n “ 0 dS curve that
now provides a bridge between a branch of the ‘old’ n “ 1 NH mode (on the left)
and a branch of the ‘old’ n “ 2 NH mode (on the right). In fact, similar bridges
continue to exist (although not displayed) as we approach α Ñ αext between the
‘old’ n and n ` 1 NH overtones, not just the n “ 0 Ñ n “ 1 and n “ 1 Ñ n “ 2

overtones that are displayed. Altogether, these features are characteristic of the
phenomenon of eigenvalue repulsion, and Fig. 3.6 illustrates how intricate this
phenomenon can be.

The spectra become even more intricate when y` increases further, e.g. at y` “ 0.4

(right panel of Fig. 3.6). Indeed, we find that in region B the n “ 0 dS mode (red
triangles to the left of B) merges with the ‘old’ n “ 0 NH mode (orange circles
below B) and, at the very same point, a small purple bridge bifurcates and extends
to the right and up till a new point where 3 lines merge again: this time it is the
purple bridge, and the other ‘halves’ of the ‘old’ n “ 0 NH (orange circles) and the
‘old’ n “ 0 dS curve (red triangles). For larger α, the latter then merges with the
‘old’ n “ 1 NH family (much like the middle panel). Note that all of this occurs in
a region where one also finds the n “ 1 PS curve (blue square curve on the bottom)
that seems to go through crossovers without significant interaction. Again, we see
how eigenvalue repulsions can make the spectra very elaborate.

To start discussing the modes with m ą 0 it is important to first recall that when
m “ l “ 0, the NH frequencies are purely imaginary while the PS frequencies
are complex, so they clearly form two distinct families of QNM, as was seen in
Fig. 3.6. However, for m ‰ 0, the PS modes with m “ l split into corotating and
counter-rotating modes, as first discussed in the eikonal limit in section 3.2.2. As
in the eikonal limit, the counter-rotating mode always has a frequency with smaller
imaginary part than the corotating PS mode for a given overtone n.10 Remarkably,
we find that when m ‰ 0, typically (with an exception to this rule discussed below)
the corotating PS modes turn out to merge with the NH modes and they form a
single unified family (plus its overtones) that we can denote as the ‘PS-NH’ family.
This is very similar to what we found in Kerr-Newman, most closely analogous to
the Kerr limit, but with some important differences. See also [212] for a discussion

10Note that the t´ψ symmetry of MPdS means that we need only consider modes with m ě 0,
as long as we study both signs of Repωq. When a “ 0 this enhances to a tÑ ´t symmetry and
the QNM frequencies form pairs of tω,´ω˚u.
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Fig. 3.7: QNM spectrum for d “ 5 MPdS with m “ l “ 2. Typically, the
corotating PS and NH modes (blue circles, diamonds, squares and pentagons)
have merged to become a single PS-NH family: in all plots we display the first 4
overtones of this unified family. The only exception is the blue circle curve in the
top of the left panel which describes a n “ 0 corotating PS mode, not a PS-NH
mode since it is not captured by a NH analysis. The top panel is for y` “ 0.2
and the frequency is normalized in units of rc. In this top panel we also display
the counter-rotating PS QNMs (magenta triangle curve), and the dS modes (red
circles). The corotating and counter-rotating eikonal approximations (1.19) are
described by the the solid green and purple lines, respectively. For reference, the
pure dS frequency (3.22) with y` “ a “ 0 is represented by the black diamond.
The bottom panels are normalised in units of κ` to differentiate the near-extremal
behaviour of the different overtones n “ 0, 1, 2, 3 of the PS-NH family with y` “ 0.2
(left), y` “ 0.4 (middle) and y` “ 0.6 (right). The NH approximation (3.53) at
a “ aext (for n “ 0, 1, 2, 3 from top to bottom) are represented by the orange disks
in the bottom panels. (In the bottom panel the dS modes and counter-rotating PS
modes are not shown).
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of eigenvalue repulsions in the gravito-electromagnetic QNMs of Kerr-Newman.
To illustrate the unification of the corotating PS and NH modes, we plot the
frequency spectra for d “ 5 MPdS with m “ l “ 2 and y` “ 0.2, in the top panel
of Fig. 3.7. The four blue curves with circles, diamonds, squares and pentagons are
the corotating PS modes with radial overtone n “ 0, 1, 2, 3 (from left/top to right).
As expected, this classification is consistent with the eikonal analytical result ωWKB

obtained in (1.19) which is represented by the solid green curves for n “ 0, 1, 2, 3.
The magenta triangle curve is the n “ 0 counter-rotating PS curve and it is also
well approximated by the counter-rotating eikonal frequency ωWKB of (1.19) (solid
purple curve). Finally, the red square curve in the top panel of Fig. 3.7 is the
n “ 0 dS QNM family, clearly identified by the fact that it approaches the pure dS
frequency (3.22) when aÑ 0 (black diamond).

An important property of the top panel of Fig. 3.7 is the fact that there are no extra
curves which we could associate to a third independent family11. We only have the
dS family and the unified ‘PS-NH’ family (and their overtones); the PS and NH
modes do not exist separately. This is because, unlike the m “ l “ 0 case in Fig. 3.6,
the NH modes at extremality (i.e. at a “ aext) or nearby ´ as unambiguously
identified by the analytical approximation ωNH in (3.54) ´ can always be traced
back to a corotating PS mode when we move away from extremality. Indeed, the
blue PS-NH curves in Fig. 3.7 (top and bottom panels) are simultaneously well
approximated by ωWKB in (1.19) and, near-extremality, by ωNH of (3.54). This is
better seen in the bottom-left panel of Fig. 3.7 for y` “ 0.2. Here we choose a
different normalization for the frequency: we plot the dimensionless frequency in
units of the surface gravity κ`. We make this choice because at extremality both
ωNH and κ` go to zero but their ratio is finite (and changes with n). Therefore,
these properties help identifying the NH approximation ωNH of (3.54) (orange
disks at a{aext “ 1 for n “ 0, 1, 2, 3)12. We indeed see that, typically, the unified
PS-NH blue curves terminate at extremality at the NH orange disks and, away
from extremality, are also well approximated by the solid green corotating PS line
described by ωWKB in (1.19). Still in the bottom panel of Fig. 3.7 we see that these
conclusions also hold for y` “ 0.4 (middle panel) and y` “ 0.6 (right panel) and
actually for all other values of y` (not shown).

11We emphasise that we did an exhaustive direct numerical search for eigenvalues using
Mathematica’s built-in routine Eigensystem (as described in Section 1.5) but we found no other
frequencies besides the ones that are displayed in Fig. 3.7 (in the range shown and excluding
even higher overtones n ě 4). That is, we found no third family of QNMs besides the two main
families (dS and unified PS-NH) displayed in the top panel of Fig. 3.7.

12Note that, since we are plotting ω{κ`, the first-order accurate approximation (3.53) only
gives us the value of ωNH{κ` at extremality, and not away from it.



116 Chapter 3. Strong cosmic censorship in higher-dimensions

A second important property that is observed in the plots of Fig. 3.7 is that there
is an “exception to the rule” described in the previous two paragraphs. Namely,
for small y` À 0.3, e.g. y` “ 0.2 in the top and bottom-left panels, we see that
the n “ 0 corotating PS mode is the only solution that is not also captured by the
NH description. Indeed, as seen on the top panel, the n “ 0 corotating PS curve
(unlike for n ě 1) does not have Impωrcq Ñ 0 (neither does it have Repωq Ñ mΩ|ext,
although this is not shown) as extremality is approached. Instead Impωrcq goes to a
finite value as aÑ aext. This is better seen in the bottom-left panel, since the n “ 0

corotating PS curve plunges into Impωq{κ` Ñ ´8 as aÑ aext because κ` Ñ 0 in
this limit but Impωq is finite. In particular, this means that this particular mode,
and only this one (and only for small y`), is not described by ωNH with n “ 0

in (3.54). This also means that near extremality (see regions C in top panel or
C 1 in bottom-left panel) the n “ 0 corotating PS mode trades dominance with
the n “ 1 corotating PS mode. Indeed, from α “ 0 all the way up to a critical
α near-extremality, the n “ 0 corotating PS QNM is the one with the smallest
|Impωrcq|, but above this critical α and all the way to extremality, it is instead
the n “ 1 corotating PS QNM that has the smallest |Impωrcq|. An interesting
property that follows from the previous one is that the n “ 0 NH approximation
ωNH of (3.54) actually describes the extremal limit of the n “ 1 (not n “ 0) PS
curve: see orange disk nearby point C 1 in bottom-left panel. Similarly, the n “ 1, 2

NH approximation ωNH describes the extremal limit of the n “ 2, 3 (not n “ 1, 2)
unified PS-NH curves, respectively. Interestingly this “exception to the rule” ceases
to hold for larger values of y` namely for y` Á 0.3: see e.g. the cases y` “ 0.4

(middle panel) and y` “ 0.6 (right panel) of Fig. 3.7. That is, in these cases, we
have unified PS-NH curves, with ωNH (with overtone n) describing the extremal
limit of the blue curves (with the same overtone n), and the n “ 0 PS-NH QNM is
the one that dominates the spectra for all values of a{aext.

Note that, as Fig. 3.7 illustrates, the eikonal approximation ωWKB of (1.19) (solid
green curves), although strictly valid only for |m| “ l Ñ 8, is nevertheless already a
good approximation for m “ l “ 2 as long as we are away from extremality. However
the PS-NH family is no longer well approximated by the eikonal approximation
in the near-extremal limit, although the approximation gets better even in this
region as y` increases. Close to extremality, the PS-NH frequencies are better
approximated by ωNH in (3.54) (orange disks in Fig. 3.7). In fact, we can find the
difference between the analytical NH prediction (3.54) and the eikonal prediction
(1.19) exactly at extremality. Interestingly, we find that the value of y` at which
this difference vanishes turns out to be given by the value of y` that saturates
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Fig. 3.8: PS modes (blue circles) merging with the n “ 0 NH mode (orange circles)
as m “ l increases, in d “ 5 MPdS with y` “ 0.6. The n “ 1 NH mode (brown
circles) merges later, by m » 0.125. The inset figures are enlargements of the
merging region. The NH approximations (3.53) for the n “ 0 and n “ 1 overtones
are indicated by solid orange and brown lines, respectively. The dS modes and
counter-rotating PS modes are not shown in these plots.

the AdS2 BF bound of the near-horizon geometry, 1` 4µeff
2L2

AdS “ 0, where µeff

is given by (3.42). For pN “ 1,m “ l “ 2q, the AdS2 BF bound is saturated at
y` „ 0.54. We postpone a detailed discussion of this observation to section 3.5.

The fact that the PS and NH modes typically merge in a single PS-NH family for
m ą 0 in MPdS might be considered puzzling. How can it be that for m “ 0 the
system has three distinct QNM families (dS, PS and NH) and for m ą 0 there
are typically only two (dS and PS-NH)? We can address and settle this question
with the following strategy. Regularity of the CPN harmonics requires that the
angular eigenvalues λ are given by (3.14) with integer m. But nothing prevents us
from doing an exercise where we search numerically for the eigenfrequencies of the
problem when the value of m is not an integer. This would simply describe the
eigenfrequencies of singular modes which are physically irrelevant. But we can learn
important lessons from this academic exercise: we start with the PS and NH modes
of m “ 0 (displayed e.g. in Fig. 3.6) and see how these curves evolve as we increase
m incrementally. We do this in Fig. 3.8 for d “ 5 MPdS with y` “ 0.6. In the left
panel we display the spectra for m “ 0.031. In this case, the n “ 0 corotating PS
family (blue circles), the n “ 0 NH family (orange circles) and the n “ 1 NH family
(brown circles) are still very much distinct families as in the m “ 0 case of Fig. 3.6
(we do not show the dS modes in Fig. 3.8). However, as we increase m, the n “ 0

PS curve breaks into two branches, and the same happens to the n “ 0 NH curve.
This is clearly seen e.g. in the middle panel of Fig. 3.8 for m “ 0.042. And the
left-branch of the ‘old’ (w.r.t. the left panel) n “ 0 PS curve merges smoothly with
the upper-branch of the ‘old’ n “ 0 NH curve at point D1, while the lower-branch
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of the ‘old’ n “ 0 NH curve merges smoothly with the right-branch of the ‘old’
n “ 0 PS curve at the point D2. Effectively, the PS and NH families loose their
individual identities and the two ‘old’ PS and NH curves become two PS-NH curves
with a eigenfrequency gap D1D2 appearing between the two new PS-NH curves.
This is nothing but another manifestation of the eigenvalue repulsion phenomenon
observed in Fig. 3.6. As m keeps increasing, the gap D1D2 keeps increasing and
similar breakups, merges and gaps will keep happening between the n “ 0 PS curve
and ‘old’ NH curves with overtone n ě 1 as suggested in the right panel of Fig. 3.8
for m “ 0.05. For example, although not shown, the breakout/merger between
the n “ 0 PS curve and the n “ 1 NH curve occurs for m » 0.125, as the region
E in the right panel already suggests will happen. After this exercise, we finally
understand why for m “ 0 we have three families of QNMs but only two families
for m ą 0. Once we reach m “ 1 all of the sub-dominant PS and NH modes (at
least those with n “ 0, 1, 2, 3) will have merged in the same fashion and we get the
homogeneous picture previously presented for m “ 2 in the bottom-right panel
of Fig. 3.7. There is a striking similarity to the eigenvalue repulsions observed in
Kerr-Newman, compare for example with Fig. 1 of [212] 13. It seems likely that the
underlying mechanism is the same.

Although we have focused our discussion on d “ 5 black holes in this section,
similar properties occur for higher spacetime dimensions d. However, there are also
differences, some of which can be traced back to the fact that the QNM spectrum
of Schwarzschild-dS black holes (i.e. the limit a “ 0) changes when d increases,
especially when d changes from odd to even, as discussed in Section 3.3.

3.5 Strong cosmic censorship in MPdS. Discussion

of the results

We are finally ready to discuss strong cosmic censorship in cohomogeneity-1 Myers-
Perry´de Sitter black holes. The Christodoulou formulation of strong cosmic
censorship states that the maximal Cauchy development cannot be extended
beyond the Cauchy horizon as a weak solution of the Einstein equations or matter
fields [108]. For the scalar field, this translates to the requirement that the
scalar field is not in the Sobolev space H1

loc near the Cauchy horizon. In four
13Ref. [212] is the study of gravito-electromagnetic QNMs of Kerr Newman. The eigenvalue

repulsion behaviour is essentially the same as the scalar QNMs of Chapter 2, but the parameteri-
sation Q{r` in that figure is more closely analogous to a{aext used here.
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dimensional de Sitter black holes, it has been shown that the decay rate of generic
linear perturbations is governed by the imaginary part of the slowest-decaying
quasinormal mode, relative to the surface gravity κ´ at the Cauchy horizon [121].

In terms of β “ Impωq{κ´ defined in (1.26) of section 1.3, it was shown for RNdS
and (slowly-rotating) Kerr-dS in [121] that the scalar field is in H1

loc if β ą 1
2

(see also [94] regarding Kerr-dS with arbitrary rotation). We will now argue that
the requirement is the same for MPdS. Consider a quasinormal mode defined in
region I (see the left panel of Fig. 3.1),

Φ “ e´iωteimψY pxiqR̃prq. (3.60)

Changing to ingoing EF coordinates (3.9), the metric is regular at the event horizon
H` and Φ can be analytically continued into region II of Fig. 3.1. Then, using
(3.11) to change to outgoing EF coordinates pv, r, ψ2, xiq, which are regular at the
Cauchy horizon CH`, we get

Φ “ e´iωveimψ
2

Y pxiqRprq, (3.61)

where Rprq includes the original contribution R̃prq from region I but has additional
factors from the coordinate transformations. In outgoing EF coordinates, the
massless radial equation (3.16) reads

R2
prq `

˜

2N ` 1

r
`

2i
?
h

f
pω ´mΩq `

f 1

f

¸

R1
prq

´
1

f

„

m2

r2h
`
λ

r2
´

i

r2N`1
Br

´

r2N`1
?
h pω ´mΩq

¯

ȷ

Rprq “ 0. (3.62)

This equation has regular singular points at the roots of fprq, i.e. at the horizon
radii. In particular, we know from section 3.1 that fprq has a single zero at r “ r´,
so we can factor fprq as fprq “ pr ´ r´q∆prq. The remaining terms in (3.62),
including ∆, are all analytic and non-zero at r´. Hence, we can perform a Frobenius
expansion around r “ r´. Fuch’s theorem [228] asserts that there exists a solution
with a non-zero radius of convergence

Rprq “ A R̂p1qprq ` B pr ´ r´q
sR̂p2qprq, (3.63)

for some constants A and B, where R̂p1,2qprq are analytic and non-zero at r “ r´,
and s ” ipω ´mΩ´q{κ´ is the non-trivial solution of the indicial equation. Φ is in
the Sobolev space H1

loc if Rprq and its first derivative are locally square integrable.
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Fig. 3.9: Plot of minpβq for the full spectrum of quasinormal modes of d “ 5
MPdS with m “ l “ 10 as computed by numerically solving the eigenvalue problem.
There are two families of modes, the PS-NH modes and the dS modes. We find
that the PS-NH modes are dominant for the entire parameter space, since the dS
modes are suppressed for large m “ l. The dashed black line represents extremality
r´ Ñ r`. One finds that minpβq ă 1{2 for the whole parameter space.

Since R̂piq are analytic, the only relevant factor is pr ´ r´q
s, which is locally square

integrable if and only if Rep2sq ą ´1. In terms of β, we can write this condition as
β ą 1

2
. In other words, to prove that Christodoulou’s formulation of strong cosmic

censorship is respected, we ‘just’ need to show that, for the whole parameter space,
at least one family of QNMs is not in H1

loc, i.e. there exists a QNM family with
β ď 1

2
.

In the eikonal limit |m| “ l Ñ 8, the quasinormal mode spectrum is dominated by
the PS family of modes (actually, the PS-NH modes, following the findings of the
previous section), which are well approximated by ωWKB, as defined in (1.19). We
first check that the corresponding βWKB computed using (1.26) satisfies βWKB ă 1

2
.

This result per se should establish that Christodoulou’s SCC is preserved in equal
angular momenta MPdS since we would have found a QNM family with β ď 1{2 in
the whole range of the parameter space. However, to make such a strong claim we
must ensure that the eikonal approximation is really valid, i.e. we have to compare
it with the exact numerical frequencies, a task that can be completed only at finite
m. From the previous section we already know that the eikonal approximation
is reasonably good when extrapolated to finite m but here it is fundamental that
we find a family that has exactly β ď 1{2 everywhere. So, in practice, we need
to numerically compute the dominant QNMs of MPdS at finite m for the whole
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parameter space and check that there is indeed at least one m for which β ď 1{2

everywhere. In this process, we will have the opportunity to further quantify how
good the eikonal approximation (1.19) is when extrapolated to finite m. Moreover,
we want to complete this exercise for several dimensions d to find whether there is
a critical dimension where the validity of SCC could change.

Recall that we have corotating and counter-rotating PS modes, including in the
eikonal limit, but the norm of the imaginary part of the frequency of the corotating
modes is always smaller than the counter-rotating ones (for a given overtone). So
we just need to consider the corotating PS modes (i.e., typically, the corotating
PS-NH modes). Inserting ωWKB, as read from (1.19) and (3.30), and the surface
gravity κ´, as computed from (3.5), into (1.26) we can compute βWKB for any odd
spacetime dimension d. We find that, just as in Kerr-dS [94], βWKB is bounded
less than 1

2
away from extremality, only approaching βWKB “ 1

2
at extremality.

It turns out that, across the range of dimensions we tested (d ď 15), βWKB is
a non-increasing function of the dimension, i.e. for every point py`, y´q in the
parameter space, βWKBpy`, y´; dq ď βWKBpy`, y´; d ` 2q. Hence we expect that
βWKB ď 1

2
also holds true for d ą 15. However, this conclusion does not necessarily

extend to the exact PS or PS-NH modes at finite m near-extremality, because the
eikonal result fails to be a good approximation in the near-extremal regime for
small m (more below).

After this simple but enlightening and encouraging eikonal exercise, we should now
confirm that the exact numerical solutions of the eigenvalue problem indeed yield
β ď 1{2, at least for a sufficiently high m “ l family of QNMs. We start by doing
this for l “ m “ 10 and for the whole parameter space py`, αq of d “ 5 MPdS (with
the parameter space discretised into about 2700 points). As discussed in section 3.4,
when m ą 0 the individual PS and NH families that exist for m “ 0 typically
lose their identity (except for small values of y` if m “ l is small) and become
a single PS-NH family for each radial overtone n. Here, since we are working in
the eikonal limit m “ l Ñ 8, we are only interested in the PS-NH family with
the lowest overtone (since it has smaller β), and this family of modes dominates
for the entire parameter space over the second QNM family of the system (the
dS family). The smallest value of β at each point of the phase space is plotted
in Fig. 3.9. The closest we approach extremality in this plot is α{αext “ 0.99 or
r´{r` “ 0.98. All the points tested have β ă 1

2
, with a maximum of β » 0.488.

Hence, we conclude that for l “ m “ 10 one has β ă 1{2, as predicted by the
eikonal approximation. To quantify the accuracy of the WKB approximation
when extrapolated to such a finite m, we compute ∆WKB ”

βWKB´β
1
2
´β

, where βWKB
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Fig. 3.10: β for the dominant QNMs near extremality in d “ 5 MPdS with
m “ l “ 10 (left panel) and d “ 11 with m “ l “ 30 (right panel), compared to
the eikonal approximation (1.19) of the PS modes (solid lines). The horizontal red
dashed line indicates β “ 1

2 . In both plots, the closest we approach extremality is
r´{r` “ 0.9995.

is the eikonal approximation (1.19) and β is the numerical value. We find that
´0.07 ă ∆WKB ă 10´11 for d “ 5, i.e. up to numerical accuracy the true value of
β is never larger than that of the eikonal approximation βWKB.

However, to claim that β ď 1{2 for the whole parameter space we should still
stretch our numerical analysis even closer to extremality, i.e. even closer than
what we do in Fig. 3.9 where we have reached ‘only’ α{αext “ 0.99 or r´{r` “ 0.98.
For that we can focus our attention on lines of constant y` “ r`{rc and push the
numerical collection of data as close as possible to extremality where r´ “ r`. We
do this for d “ 5 and m “ l “ 10 in the left panel of Fig. 3.10 for several lines of
constant 0 ă y` ă 1 identified in the legend14. We also display, as solid lines, the
eikonal approximation βWKB as read from (1.19). We conclude that all solutions
approach β “ 1{2 from below as extremality is approached. Moreover, we also
find that the eikonal approximation very well describes this approach even for a
relatively small value such as m “ 10 (note that the approximation is better for
large y`).

We find similar results when we repeat the analysis but this time for d “ 7, 9, 11,
although we need to pick families with higher m “ l as d increases to still have
β ď 1{2 everywhere (for reasons explained below). As an example, in the right
panel of Fig. 3.10 we present the results for m “ l “ 30 in d “ 11.

14A convergence test is given in Appendix C for the d “ 5 case at r´ “ 0.9995 r`.



3.5. Strong cosmic censorship in MPdS. Discussion of the results 123

Altogether, we conclude that there is at least one family of m “ l QNMs for
which the spectral gap satisfies the condition β ď 1{2 in the whole parameter
space of MPdS for odd d ď 11 (and most probably also above). It follows that
Christodoulou’s formulation of strong cosmic censorship holds for equal angular
momenta d ą 4 MPdS black holes, very much alike in the d “ 4 Kerr-dS case [94].
This is the main result of this chapter.

As the above discussions indicate, it is very easy to find that β ă 1{2 away from
extremality; however it is much more difficult to stretch the numerical code to
prove that we have β ď 1{2 all the way up to extremality. However, even without
resorting to a numerical analysis, we can establish analytically that there are modes
that have β ď 1{2 in the whole parameter space if m “ l is sufficiently large, for
any d. While doing so, we can also find a criterion that tells us how large m “ l

needs to be (for a given d) to have a family of QNMs that approach β “ 1{2

at extremality. We discuss how this can be done in the rest of this section. As
emphasized previously, for m ‰ 0 and sufficiently large y`, the PS and NH modes do
not exist as separate families; instead they combine to form what we call the PS-NH
family. This means that the PS-NH QNMs are simultaneously well approximated
by the eikonal approximation ωWKB in (1.19) and by the NH approximation ωNH

of (3.54). The eikonal approximation (1.19) is a good approximation as long as
we are far away from extremality but it deviates from the exact result as we
approach extremality and this deviation gets higher for small y` and higher d.
On the other hand ´ and this is a key observation for our purposes ´ the NH
approximation (3.54) becomes more and more accurate as we approach extremality
and this is precisely the region where we want to have a solid proof that β does not
exceed 1{2 for at least a family of modes. Thus, using the fact that qAdS defined
in (3.41) is real, it follows from (3.54) and (1.26) that, for all d “ 2N ` 3, βNH is
given by

βNH »
1

2
`

1

2
Re

´

a

1` 4µeff
2L2

AdS

¯

. (3.64)

Based on this near-horizon approximation, the PS-NH modes will have β ą 1
2

at
extremality unless the near-horizon AdS2 BF bound is violated. Conversely, to
have β ď 1{2 (at and away from extremality) and thus a family of modes that
enforce SCC, one must violate the AdS2 BF bound. For a MPdS BH of fixed y`

and dimension d “ 2N ` 3, the violation of the AdS2 BF bound can occur if m is
above a critical value mcrit. More concretely, choosing l “ m and using LAdS and
µeff as given in (3.42), we find that in order to have an AdS2 BF bound violation,
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Fig. 3.11: Critical value mcrit given by (3.65) above which we have a BF bound
violation. mcrit is plotted as a function of dimension d for a range of fixed y`.

we must have m ą mcrit where

mcrit “
pN ` 1q

`?
2`

?
N ` 2

˘

?
2N

2y2`
`

y2N` ´ 1
˘

´N
`

y2` ´ 1
˘

py2N`2
` ` 1q

1´ pN ` 2qy2N`2
` ` pN ` 1qy2N`4

`

, (3.65)

which, for a fixed dimension, has a finite maximum given by

maxpmcritq “
N ` 1
?
2

´?
2`

?
N ` 2

¯

. (3.66)

We plot mcrit as a function of the dimension d for several values of y` in Fig. 3.11.
Note that mcrit increases for higher dimensions, and smaller y`. For example, for
d “ 5 one has mcrit „ 5 but for d “ 11 one has mcrit „ 13 (or even higher if
y` Ñ 0). Coming back to Fig. 3.10 this explains why for d “ 5 it was sufficient to
look at m “ l “ 10 modes to attain β ď 1{2 everywhere, but for d “ 11 we had to
use a higher m “ l “ 30 to obtain modes with β ď 1{2 everywhere.

To illustrate how mcrit and the associated AdS2 BF bound violation is closely (but
not sharply) related to modes with β ď 1

2
near extremality, we give β for the

dominant QNM at r´{r` “ 0.99 in Table 3.1, while varying both m “ l and the
dimension d, for y` “ 0.25 (left table) and y` “ 0.75 (right table). We conclude
that AdS2 BF bound violation is a necessary (but not sufficient) condition for
β ď 1

2
near extremality. Indeed, modes that violate the AdS2 BF bound are those

below the zigzag line m “ mcrit in Table. 3.1, and we see that these modes with
m ą mcrit typically have β ď 1

2
. However, this is not always the case: some modes

with m just above mcrit can still have β ą 1
2
. Once β crosses below 1

2
, there is a

sharp change in behaviour (in the sense that increasing m produces very small
changes in the value of β) and all of the modes with larger m are approaching 1

2

from below.



3.5. Strong cosmic censorship in MPdS. Discussion of the results 125

dimension d

m 5 7 9 11 13 15

0 0.99 0.99 0.99 0.99 0.99 0.99
2 1.34 1.18 1.11 1.07 1.05 1.02
4 0.54 1.13 1.13 1.10 1.07 1.06
6 0.49 0.63 1.05 1.09 1.08 1.07
8 0.49 0.49 0.73 1.02 1.06 1.06
10 0.49 0.49 0.54 0.81 1.01 1.05
12 0.49 0.49 0.49 0.61 0.87 1.00
14 0.49 0.48 0.48 0.52 0.68 0.91
16 0.49 0.48 0.48 0.48 0.57 0.76
18 0.49 0.48 0.48 0.48 0.51 0.63
20 0.49 0.48 0.48 0.48 0.49 0.56

dimension d

m 5 7 9 11 13 15

0 0.96 0.96 0.96 0.97 0.97 0.97
2 0.48 0.50 0.72 1.00 1.05 1.05
4 0.48 0.47 0.47 0.52 0.67 0.88
6 0.48 0.47 0.47 0.47 0.49 0.57
8 0.48 0.47 0.47 0.47 0.47 0.48
10 0.48 0.47 0.47 0.47 0.47 0.46
12 0.48 0.47 0.47 0.47 0.47 0.46
14 0.48 0.47 0.47 0.47 0.47 0.46
16 0.48 0.47 0.47 0.47 0.47 0.46
18 0.48 0.47 0.47 0.47 0.47 0.46
20 0.48 0.47 0.47 0.47 0.47 0.46

Table 3.1: β for the dominant QNM of MPdS at r´{r` “ 0.99 (i.e. at 99% of
extremality) and y` “ 0.25 (left) and y` “ 0.75 (right), for a range of m “ l and
dimensions d. The zigzag line describes the boundary m “ mcrit as given by (3.65).
Modes above this line (i.e. those with smaller m) respect the AdS2 BF bound;
below it the BF bound is violated. Bold values have β ą 1

2 and the others have
β ď 1

2 .
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Fig. 3.12: Left panel: Dominant QNMs (PS-NH modes) near extremality for
d “ 11 MPdS with y` “ 0.25, for varying m “ l. The black dashed line is the
eikonal approximation βWKB. The black disk and black square at r´{r` “ 1 are
βNH for m “ 12 and m ą 12, respectively, as given by (3.64). The BF bound is
saturated at m » 12.4 so βNH “ 1

2 for m ě 13. Right panel: β as a function of m
for d “ 11 MPdS with y` “ 0.25 and r´ “ 0.9995 r`. For large m, β converges
to a value with β ă 1

2 (see the inset plot, which is an enlargement), however β
oscillates around this value for smaller m.
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We now analyse what happens when we approach extremality even closer, namely
as close as r´{r` “ 0.9998. As an illustrative example, we do this in Fig. 3.12 for
a d “ 11 (N “ 4) MPdS black hole with y` “ 0.25, for which mcrit » 12.4. For
modes with m ă mcrit, e.g. the blue curve m “ 12 in Fig. 3.12, there is no BF
violation and accordingly we have β ą 1

2
at extremality (note that the near-horizon

approximation (3.64) is highly accurate in this case: see black disk βNE pm “ 12q in
the plot). For m ą mcrit the situation is more complicated. For m slightly above
mcrit, e.g. for the m “ 14 green curve in the left panel of Fig. 3.12, we find that
the behaviour of βpr´{r`q is not monotonic; β can first reach a maximum above
1
2

before decreasing below 1
2

at extremality. However, when m is well above mcrit

e.g. for the m “ 20 red curve in the left panel of Fig. 3.12, the modes have β ď 1
2

everywhere as they approach extremality. To understand this non-monotonicity
better, in the right panel of Fig. 3.12 we fix the distance to extremality to be
close to the minimum we reached, namely r´{r` “ 0.9995 and we plot β as a
function of m for d “ 11 MPdS with y` “ 0.25. We see that β oscillates around
1
2

for moderate values of m but ultimately converges to a value below 1
2

as m
grows large. Interestingly, but not perhaps not surprisingly (since the underlying
physics is similar), a similar behaviour is observed in the discussion of SCC for
a charged scalar field in Reissner-Nordström-dS when we plot β as a function of
the scalar field charge (which is the analogue of m in charged system); see Fig. 9
of [122]). Just like in [122], we could probably try to capture the behaviour of
βpmq using a WKB expansion at large m with the oscillations around β “ 1{2 only
captured after including non-perturbative contributions to the analysis via a Borel
resummation (i.e. a resurgence analysis) of the WKB expansion.

To conclude, we summarize our main SCC results. MPdS black holes with m ą 0

typically have two families of QNMs: the dS and PS-NH families. For sufficiently
large m, the latter always has smaller |Impωq| than the dS family so the PS-NH
modes are the ones relevant for strong cosmic censorship. We found that there
is at least one family of m “ l QNMs for which the spectral gap satisfies the
condition β ď 1{2 in the whole parameter space of MPdS for odd d ď 11 (and most
probably even higher dimensions). It follows that Christodoulou’s formulation of
strong cosmic censorship holds for equal angular momenta d ą 4 MPdS black holes,
very much like in the d “ 4 Kerr-dS case [94]. This is the main result. For each
dimension d “ 2N ` 3 we found a (necessary but not sufficient) criterion, based on
the violation of the AdS2 BF bound associated to the near-horizon geometry of
the extremal MPdS, to find how large m “ l needs to be to ensure that we have
at least one family of PS-NH modes with β ď 1{2 everywhere. Strictly speaking,
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our numerical analysis covered only the range 0.1 ď y` ď 0.9 and 0 ď a{aext À 1

of the 2-dimensional parameter space of MPdS. So it seems that we missed cases
near the endpoints of y` P r0, 1s. However, we have complemented our numerical
analysis with an (approximate) analytic analysis that covers the corners of the
phase space which are not easy to explore numerically. Namely, we used the
eikonal approximation (1.19) and the NH approximation (3.64)-(3.65). We have
only discussed SCC in equal angular momenta MPdS black holes in odd spacetime
dimensions d. However, the generic considerations of [205] further indicate that
this result extends to other, perhaps all, MPdS solutions. Together with [201] we
thus have strong evidence that for arbitrary spacetime dimensions in de Sitter
and for scalar induced perturbations, Christodoulou’s formulation of SCC holds in
dynamically stable, vacuum, rotating black hole solutions of the Einstein equations,
but can be violated in the presence of charged matter. We stress, however, that the
leading eikonal behaviour is spin independent, and thus the result quoted above
could indeed also be true for gravitational perturbations.
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Chapter 4

Phase diagram of the charged black
hole bomb

The black hole bomb setup was designed by Zel’dovich [138] and Press and Teukol-
sky [137] (see also [229]) very much in the aftermath of having understood the
mathematical theory of black hole perturbations around a Kerr black hole. It
emerged naturally from the fact that superradiant scattering unavoidably occurs in
rotating black holes with angular velocity Ω, as discussed in section 1.4. For a Kerr
black hole, if a scalar wave with frequency ω and azimuthal number m satisfying
ω ă mΩ is trapped near the horizon by the potential of a box (for example), the
multiple superradiant amplifications and reflections can lead to an instability. The
wave keeps extracting energy and angular momentum from the black hole interior
and these accumulate between the horizon and the cavity. Press and Teukolsky
assumed that this build up of radiation pressure would raise to levels that could no
longer be supported by the box and the latter would eventually break apart. But
the black hole bomb system does not necessarily need to have such a dreadful end.
Actually, more often than not, a black hole instability is a pathway to find new
solutions that are stable to the original instability, have more entropy (for given
energy and angular momentum) and are thus natural candidates for the endpoint
or metastable states of the instability time evolution. This is certainly the case for
superradiant fields trapped by the AdS gravitational potential [230–235] or massive
fields in asymptotically flat black holes [236]. So we can expect the same in the
original black hole bomb system.

Motivated by these considerations, we would like to find the full phase diagram of
solutions that can exist in the original black hole bomb system. By this, we mean
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to find all possible stationary solutions of the theory with boundary conditions
that confine the scalar field inside the box. These would be the non-linear version
of the floating solutions in equilibrium that are described in [137]. This certainly
requires solving PDEs. Therefore, here we start by considering a simpler system
that still has a superradiant scalar field trapped inside a box but those properties
can be found by simply solving ODEs. This is possible if we first place a Reissner-
Nordström black hole (RN BH) with chemical potential µ inside a box and then
perturb it with a scalar field with charge q and frequency ω. As long as ω ă qµ,
a superradiant instability will also develop leading to the charged version of the
black hole bomb system [139]. We thus want to find the phase diagram of static
solutions of this system, including those with a scalar condensate floating above the
horizon. The latter hairy solutions might have higher entropy than the original RN
BH for a given energy and charge where they coexist. If so they would be a natural
candidate for the endpoint of the charged black hole bomb instability, as long as
we check that we can build boxes ´ with an Israel stress tensor [237–240] that
satisfies the relevant energy conditions [241] ´ that holds the internal radiation
pressure without breaking apart. This will further guarantee that we can insert
this boxed system in an exterior Reissner-Nordström background, as required by
Birkhoff’s theorem [242, 243].

Looking into the details of this programme we immediately find new physics. Indeed,
a linear perturbation analysis of the Klein-Gordon equation on an RN BH finds
that the system is not only unstable to superradiance but also to a near-horizon
instability, discussed in Section 1.4. In this context, it is also known as a scalar
condensation instability, and it was originally found by Gubser [244] in planar AdS
backgrounds (in a study that initiated the superconductor holographic programme),
see e.g. [162, 163, 245]. The superradiant and near-horizon instabilities are typically
entangled for generic RN BHs but there are two corners of the phase space where
they disentangle and reveal their origin. Indeed, extremal RN BHs with arbitrarily
small horizon radius only have a superradiant instability since the near-horizon
instability is suppressed as inverse powers of the horizon radius. In the opposite
corner, RN BHs with a horizon radius close to the box radius only have a near
horizon instability.

Analysing the setup of the black hole bomb system leads to the observation that
the theory also has horizonless solutions if we remove the RN BH but leave the
scalar field inside a box with a Maxwell field. Indeed, we can certainly perturb
a Klein-Gordon field in a cavity and the frequencies that can fit inside it will be
naturally quantized and real. This suggests that, within perturbation theory, we can
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then back-react this linear solution to higher orders where it will source non-trivial
gravito-electric fields that are regular inside (and outside) the box [246]. These
are the boson stars of the theory, also known as solitons (depending on the chosen
Up1q gauge; see e.g. [247] for a review on boson stars). This perturbative analysis
is bound to capture only small mass/charge boson stars. But a full numerical
nonlinear analysis can identify the whole phase space of boson stars [248]. This
analysis further reveals that the phase diagram of boson stars is quite elaborate,
with distinct boson star families. In particular, it finds that the phase diagram of
solitons depends non-trivially on a total of four critical scalar field charges. Two of
them can be anticipated using simple heuristic arguments on the aforementioned
superradiant and near-horizon instabilities, but the two others only emerge after
solving the non-linear equations of motion.

Coming back to our main subject of study, an RN BH placed inside a box is also
the starting point to discuss and find the hairy BHs of the theory. The latter have a
scalar condensate floating above the horizon that is balanced against gravitational
collapse by electric repulsion. A box with appropriate Israel junction conditions
and stress tensor [237–240] should be able to confine the scalar condensate in
its interior, and it should then be possible to place the whole boxed system in a
background whose exterior solution is the RN solution. Here, we confirm that this
is indeed the case and we find the full phase diagram of static solutions of the
charged black hole bomb system. It turns out that the aforementioned four critical
scalar electric charges play a relevant role also in the phase diagram of hairy BHs.
Indeed, this diagram is qualitatively distinct depending on which one of the four
available windows of critical charges the scalar charge q falls into. Ultimately, the
reason for this dependence follows from the fact ´ that we will establish´ that all
hairy BHs that have a zero horizon radius limit choose to terminate on the boson
star of the theory (which is fully specified once q is given), in the sense that the zero
entropy hairy BHs have the same (Brown-York [249] quasilocal) mass and charge
as the boson star. In our system, this materializes the idea that, often, small hairy
BHs can be thought of as a small BH (RN or Kerr BH) placed on top of a boson
star, as long as they have the same thermodynamic potential (chemical potential
or angular velocity) to have the two constituents in thermodynamic equilibrium.

One of the four hairy BH families that we find here was already identified in the
perturbative analysis of [246]. This is the only family of hairy BHs that extends
to arbitrarily small mass and charge, thus making it prone to be captured by the
perturbative analysis about an empty box with an electric field. But the other
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three families and their intricate properties cannot be captured by such a theory
because they are not perturbatively connected to the zero mass/charge solution.

Perhaps the most important property of the hairy BHs of the charged black hole
bomb is that, when both coexist, they always have higher entropy than the RN BH
that has the same mass and charge. Therefore, we will conclude that hairy BHs
are always the preferred thermodynamic phase of the theory in the microcanonical
ensemble.

Very much like black holes confined in a box can be the a starting point to discuss
certain aspects of black hole thermodynamics [250–256] they should also be useful
to understand generic superradiant systems where distinct (including perhaps some
astrophysical) potential barriers confine fields [137]. These two are related since
the hairy solutions describe non-linear systems where the central solution is in
thermodynamic equilibrium with the floating scalar radiation. In particular, we
can expect that hairy solutions of the charged black hole bomb provide a toy model
with some universal features for the phase diagram of other confined unstable
systems. Actually, we find that the present phase diagram shares many common
features with the phase diagram of superradiant hairy blacks holes in global anti-de
Sitter [257–259, 163, 260–263].

The plan of this chapter is as follows. In section 4.1 we summarize in two figures
the main properties of the phase diagram of hairy black holes and boson stars.
In section 4.2 we formulate the exact setup of our system. The discussion only
includes aspects that guarantee that our exposition is self-contained and more
details can be found in [246]. In section 4.3 we explicitly construct the hairy black
hole solutions in the four relevant windows of scalar charge that, together with
the boson star study of [248], allow us to arrive to the conclusions summarized in
section 4.1. Finally, in section 4.4 we explain how data of the hairy solution inside
the box can be used to find the Israel stress tensor of the cavity surface layer and
be matched with the exterior Reissner-Nordstöm solution.

4.1 Summary of phase diagram of boson stars and

BHs in a cavity

Einstein´Maxwell´Scalar theory, with boundary conditions such that the scalar
field is confined inside a box of radius L in an asymptotically flat background, is
fully specified once we fix the mass and charge q of the scalar field. We consider
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massless scalar fields with dimensionless electric charge e “ qL (the system has
a scaling symmetry that allows us to measure all physical, i.e. dimensionless,
quantities in units of L). By Birkhoff’s theorem [242, 243] 1, outside the cavity the
hairy solutions we search for are necessarily described by the RN solution. Thus, we
just need to find the hairy solutions inside the box and then confirm that the Israel
junctions conditions required to confine the scalar condensate inside the cavity,
while having an exterior RN solution, correspond to an Israel energy-momentum
stress tensor (proportional to the extrinsic curvature jump across the box layer
[237–240]) that is physical, i.e. that satisfies relevant energy conditions [241].

Since the solution outside the box is described by the RN solution, we cannot use
the Arnowitt-Deser-Misner (ADM) mass M and charge Q [264] to differentiate the
several solutions of the theory. However, we can use the Brown-York quasilocal
mass M and charge Q [249], computed at the box location and normalized in
units of L, and associated phase diagram Q-M to display and distinguish the
solutions of the theory. These quasilocal quantities obey their own first law of
thermodynamics that is used to (further) check the results. In the quasilocal phase
diagram, the extremal RN 1-parameter family of BHs (with horizon inside the
box) provides a natural reference to frame our discussions. In particular, because
distinct solutions often pile-up in certain regions of the phase diagram, for clarity
we will find it useful to plot ∆M{L vs Q{L where ∆M “ M ´M

ˇ

ˇ

extRN
is the

mass difference between the hairy solution and the extremal RN that has the same
Q{L. Therefore, in this phase diagram Q-∆M, the horizontal line with ∆M “ 0

represents the extremal RN BH solution. Its horizon at R` fits inside the box of
radius L if R` ď 1 (which corresponds to Q{L ď 2´1{2) and non-extremal RN BHs
exist above this line. However, horizons of non-extremal RN BHs fit inside the box
(R` ď 1) if and only if their quasilocal charges are to the left of the red dashed
line that we will display in our Q-∆M diagrams. Actually, it turns out that this
line also represents the maximal quasilocal charge that hairy solutions enclosed in
the box can have.

We find that the spectrum of hairy black holes and boson stars of the theory
is qualitatively distinct depending on whether e is smaller or bigger than four
critical scalar field charges — eNH, eγ, ec and eS — which obey the relations
0 ă eNH ă eγ ă ec ă eS.

1Birkhoff’s theorem for Einstein-Maxwell theory states that the unique spherically symmetric
solution of the Einstein-Maxwell equations with non-constant area radius function r (in the gauge
(4.2)) is the Reissner-Nordström solution. If r is constant then the theorem does not apply since
one has the Bertotti-Robinson (AdS2 ˆ S2) solution.
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Two of these critical charges, eNH and eS, can be identified simply studying lin-
ear scalar field perturbations about an RN BH in a box. Such RN BHs can
be parametrised by the chemical potential µ and dimensionless horizon radius
R` “ r`{L. These parameters are constrained to the intervals 0 ď µ ď µext (with
the upper bound being the extremal configuration) and 0 ă R` ď 1. Boxed RN
BHs become unstable ´ the black hole bomb system ´ if e is above the instability
onset charge eonsetpµ,R`q. Instead of displaying eonsetpµ,R`q, it proves to be more
clear to display the 2-dimensional plot eonsetpR`q for fixed values of µ. A sketch of
this plot is given in the left panel of Fig. 4.1 (which reproduces the exact results in
Fig. 2 of [245]). The minimal onset charge is attained for extremal RN black holes
(µ “ µext): this is the orange curve that connects points p0, eSq and p1, eNHq. For
completeness, in the left panel of Fig. 4.1 we also sketch the onset charge curves
(green dashed) for two non-extremal RN BHs at fixed µ ă µext. Naturally, this
onset charge increases as we move away from extremality. Moreover, we see that
the (extremal) minimal onset curve terminates at two critical charges that, actually,
can be computed analytically:

‚ e “ eNH “ 1
2
?
2
„ 0.354. This is the charge above which scalar fields can trigger

a violation of the near horizon AdS2 Breitenlöhner-Freedman (BF) bound
[197, 244, 162, 163] of the extremal RN black hole whose horizon radius
approaches, from below, the box radius. For details on how to derive this
critical charge please refer to Section III.B of [245].

‚ e “ eS “
π?
2
„ 2.221. This is the critical charge above which scalar fields can

drive arbitrarily small RN BHs unstable via superradiance. For a detailed
analysis that leads to this critical charge, please see Section III.A of [246].

The system has two other critical charges, eγ and ec, that are uncovered when we
do a detailed scan of the boson stars (a.k.a. solitons) of the theory. This task
was completed in detail in the companion paper [248]. A phase diagram that
summarizes the relevant properties for the present study is displayed in the right
panel of Fig. 4.1 [248]. Note that it stores in a single plot the solitons for different
theories, i.e. for several distinct values of e. Two families of ground state boson
stars (i.e. with smallest energy for a given charge) where found in [248]. One is
the main or perturbative boson star family which can be found within perturbation
theory if we back-react a normal mode of a Minkowski cavity to higher orders. In
the right panel of Fig. 4.1, these are the solitons that are continuously connected
to pQ,∆Mq “ p0, 0q. The other one is the secondary or non-perturbative soliton
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Fig. 4.1: Left panel: Sketch of the scalar field electric charge eonset “ qL|onset as
a function of the horizon radius R` “ r`{L of RN BHs in a box (sketched from
Fig. 2 of [245]). The orange curve in the bottom ´ that starts at pR`, eq “ p0, eSq

and terminates at pR`, eq “ p1, eNHq ´ describes the minimal onset charge (which
occurs at extremality, µ “ µext). That is, (non-)extremal RN BHs can be unstable
if an only if e is higher than the one identified by this orange onset curve. On the
other hand, if we pick an RN family with constant µ ă µext, for instability, we need
e to be higher than the associated green dashed line epR`q|const µ also shown. In
particular, we see that if we chose a charge in the range eNH ď e ď eS, RN BHs are
unstable if and only if they are between the orange minimal onset curve and the
horizontal line to the right of point P (gold diamond). Right panel: a survey of
boson stars for different values of e, for e ě eγ [248]. For a given e P reγ , ecr we have
the main (perturbatively connected to p0, 0q) and secondary (non-perturbative)
solitons (which only exist in the region bounded by the auxiliary grey dashed closed
curve acβcγ). The secondary soliton curve with e just above eγ is close to the point
γ, while the soliton with e “ 1.854, just below ec, is the magenta curve (very close
to acβc). Note that the gap in Q{L between the main soliton and the secondary
one starts very large at e “ eγ but then decreases and goes to zero precisely at
e “ ec.

family. In Fig. 4.1, these are the solitons that exist only above a critical Q and
terminate at the red dashed line. The main/perturbative soliton family exists for
any value of e ą 0 (the system has a symmetry that allows us to consider only
e ą 0). However, the secondary/non-perturbative soliton only exists for scalar field
charges that are in the window eγ ď e ă ec. These are the solitons enclosed in the
region acβcγ (i.e. inside the auxiliary grey dashed closed line with these vertices).
They only exist above eγ „ 1.13 (see point γ) and below ec » 1.854˘ 0.0005 (see
line acβc just below the magenta line). Below eγ the non-perturbative solitons do
not exist because they no longer fit inside the box. Above ec, the gap between the
two soliton families ceases to exist, i.e. the non-perturbative soliton merges with
the perturbative soliton, and the ground state boson stars of the theory extend
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from the origin all the away to the red dashed line (see e.g. the red diamond curve
with e “ 2 or the blue circle curve with e “ 2.3 in Fig. 4.1). Summarizing, the
main/perturbative soliton has a Chandrasekhar limit for 0 ă e ă ec but extends
from the origin all the way to the red dashed line for e ě ec. On the other hand,
the ground state secondary/non-perturbative soliton only exists in the window
eγ ď e ă ec.

In the following sections we will find the hairy black holes of the Einstein–Maxwell–
Klein-Gordon theory. We will conclude that, whenever the hairy black holes have
a zero horizon radius limit, they terminate on a soliton. Accordingly, the phase
diagram of solutions depends on the above four critical scalar field charges. Our
main findings are summarized in the phase diagram sketches of Fig. 4.2 and the
properties of these phase diagrams depend on the following 5 windows of scalar
charge e:

1. e ă eNH “ 1
2
?
2
„ 0.354. From the left panel of Fig. 4.1, one concludes that

RN is stable for e ă eNH and thus no hairy BHs exist. The only non-trivial
solutions of the theory are the RN BH and the main/perturbative boson star
which has a Chandrasekhar limit (see details in [248]).

2. eNH ď e ă eγ „ 1.13. The phase diagram Q-∆M of solutions for this window
is sketched in the top-left panel of Fig. 4.2. The only boson star of the theory
is the main/perturbative family OABC ¨ ¨ ¨ (already present for e ă eNH) with
its Chandrasekhar limit A and a series of cusps A,B,C, ¨ ¨ ¨ and associated
zig-zagged branches whose properties were studied in detail in [248]. As the
left panel of Fig. 4.1 indicates, RN BHs are now unstable for sufficiently
large R` (i.e. Q) if sufficiently close to extremality (see diamond point P
and region bounded by the horizontal line to the right of P and the minimal
onset curve). The onset of the instability translates into the yellow curve
Pα in the top-left panel of Fig. 4.2 and RN BHs below this onset curve Pα
(and above the extremal horizontal straight line OPα) are unstable. Hairy
BHs exist inside the region bounded by the closed curve Pαβ. They merge
with RN BHs at the onset Pα of the instability and they extend for lower
masses all the way down to the blue dashed line Pβ where they terminate
at finite entropy and zero temperature because the Kretschmann curvature
at the horizon blows up. They are also constrained to be to the left of the
red dashed line αβ because the horizon of the hairy BH must fit inside the
cavity with unit normalized radius. Note that for this window of e there is
no dialogue between the hairy boson star and the hairy BH families.
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Fig. 4.2: Sketch of the quasilocal phase diagram for black holes and solitons and
as we span relevant windows of scalar field charge e. The critical charges are such
that 0 ă eNH ă eγ ă ec ă eS. The quantity ∆M is the quasilocal mass difference
between a given solution and an extremal RN BH that has the same quasilocal
charge Q{L. Hence the orange line at ∆M “ 0 describes the extremal RN solution
that must have Q{L ď 2´1{2 to fit inside the box. The red dashed line represents
the maximal quasilocal charge of solutions that can fit inside the box. It intersects
the extremal RN line at Q{L “ 2´1{2. Non-extremal RN BHs confined in the
box have ∆M ą 0 and fill the triangular region bounded by Q “ 0 and by the
orange and red dashed lines (not shown completely). The main soliton family is
always given by black curves that start at O. The secondary soliton family is given
either by magenta or purple curves. Hairy black holes exist in the region Pαβ
enclosed by the yellow merger line Pα (between hairy and RN BHs), the blue
curve Pβ where the curvature grows large and the red line αβ. Top-left panel:
case eNH ă e ă eγ . Top-right panel: eγ ď e ă ec. Bottom-left panel: case
ec ď e ă eS. Bottom-right panel: case e ě eS.

A representative example of a black hole bomb system with a charge e “ 1

in this window eNH ď e ă eγ will be discussed in detail in section 4.3.1 and
Fig. 4.3.

3. eγ ď e ă ec » 1.854 ˘ 0.0005. The phase diagram Q-∆M of solutions
for this window is sketched in the top-right panel of Fig. 4.2. Besides
the main/perturbative family OABC ¨ ¨ ¨ of boson stars (black line), the
system now has the secondary/non-perturbative family βabc ¨ ¨ ¨ of boson
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stars (magenta line) and there is a gap Aa between these two families.
Precisely at eγ, this gap Aa is the largest and the non-perturbative boson
star family reduces to a single point β on top of the red-dashed line (i.e. it
coincides with point γ in right panel of Fig. 4.1). As e grows beyond eγ , the
gap Aa decreases and it vanishes precisely at e “ ec where the two ground
state soliton families merge into a single one (for details of this merger please
see [248]).

As before, hairy BHs exist in the region enclosed by the closed line Pαβ
with the yellow curve Pα being again the instability onset curve where the
scalar condensate vanishes and hairy BHs merge with the RN BH family.
As before, the hairy BHs also extend for smaller masses all the way down
to the singular blue dashed line Pβ where the Kretschmann curvature at
the horizon diverges. But this time, this singular curve Pβ ” P ‹ β splits
into two segments. Hairy BHs terminating in the trench P‹ do so at finite
entropy and zero temperature, as all the hairy BHs with e ă ec. However,
hairy BHs terminating at the trench ‹β do so at zero entropy and infinite
temperature. In such a way that in the Q-∆M phase diagram, this hairy BH
trench ‹β coincides with the secondary/non-perturbative soliton (magenta
line between ‹ and β). In this sense, we can say that hairy BHs with large
charge (Q ě Q‹) terminate on the non-perturbative soliton. This point ‹

coincides with β in the limit eÑ eγ and it diverges away from β as e moves
away from eγ towards ec.

A representative example of a black hole bomb system with a charge e “ 1.85

in this window eγ ď e ă ec will be discussed in detail in section 4.3.2 and
Figs. 4.4´4.6.

4. ec ď e ă eS “ π?
2
„ 2.221. The phase diagram Q-∆M of solutions for

this window is sketched in the bottom-left panel of Fig. 4.2. At e “ ec the
perturbative and non-perturbative boson star families merge and for e ě ec

the boson star ground state is always the perturbative family Oβ (black
curve) that extends from the origin to the red dashed line. There is also
a secondary family of boson stars ¨ ¨ ¨CBbc ¨ ¨ ¨ (purple curve) but it is not
the ground state family and it plays no role in the description of hairy BHs.
Therefore we do not discuss it further (see [248] for details).

Hairy BHs exist inside the closed line Pαβ. Again, the yellow curve Pα is
the instability onset curve where hairy BHs merge with the RN BH family.
The hairy BHs extend for smaller masses all the way down to the singular
blue dashed line P ‹ β where the Kretschmann curvature at the horizon
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diverges. Hairy BHs terminating in the trench P‹ do so at finite entropy and
zero temperature, while hairy BHs terminating at the trench ‹β do so at zero
entropy and infinite temperature. In the Q-∆M phase diagram, this hairy
BH trench ‹β coincides with the perturbative soliton (black line between ‹

and β). In this sense, hairy BHs with large charge (Q ě Q‹) terminate on
the perturbative soliton. As e increases above ec, points P and ‹ move to
the left of the phase diagram, i.e. to lower values of Q and they approach
the origin O as eÑ eS.

A representative example of a black hole bomb system with a charge e “ 2

in this window ec ď e ă eS will be discussed in detail in section 4.3.3 and
Figs. 4.7´4.9.

5. e ě eS. The phase diagram Q-∆M of solutions for this window is sketched
in the bottom-right panel of Fig. 4.2. Precisely at eS, the slope d∆M{dQ
of the main/ perturbative boson star family (black curve Oβ) vanishes at
the origin and for e ě eS, perturbative boson stars always have ∆M ă 0.
Not less importantly, at and above eS, all extremal RN BHs are unstable,
i.e. point P seen in the plots for e ă eS hits the origin O. Consequently,
hairy BHs now exist for all values of Q (that can fit inside the cavity), i.e.
in the 2-dimensional region with boundary Oαβ. And, for any Q, hairy BHs
bifurcate from RN at the instability onset Oα (yellow curve) and extend
for smaller masses till they terminate ´ with zero entropy, and divergent
temperature and Kretschmann curvature ´ along a curve (blue dashed line)
that coincides with the boson star curve Oβ (black curve).

A representative example of a black hole bomb system with a charge e “

2.3 in this window e ě eS will be discussed in detail in section 4.3.4 and
Figs. 4.10´4.12.

Independently of e, a universal property of hairy BHs is that, when they coexist
with boxed RN BHs, they always have higher entropy than the boxed RN BH with
the same quasilocal mass and charge. That is to say, in the phase space region
where they exist, hairy BHs are always the dominant phase in microcanonical
ensemble. Moreover, hairy BHs are stable to the superradiant mode that drives the
boxed RN BH unstable. It follows from these observations and the second law of
thermodynamics (Section 1.4) that the endpoint of the superradiant/near horizon
instability of the boxed RN BH, when we do a time evolution at constant mass
and charge, should be a hairy BH. It would be interesting to confirm this doing
time evolutions along the lines of those done in [265–267].
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The present work can be seen as the final study of a sequel of works on the charged
black hole bomb system. Ref. [245] started by studying the linear superradiant
and near-horizon instabilities of the boxed RN BH. This identified the zero-mode
and growth rates of these instabilities. The hairy boson stars and hairy BHs
were found within perturbation theory in [246]. As expected, this perturbative
analysis is valid only for small condensate amplitudes and small horizon radius
and thus it is able to capture only small energy/charge hairy solutions. Therefore,
for the solitons, the perturbative analysis can capture the main or perturbative
boson star family at small mass/charge. But it misses: 1) the existence of the
Chandrasekhar limit and cusps of this family, 2) the existence of the secondary or
non-perturbative boson star family, and 3) it misses the existence of two important
critical charges eγ and ec where the non-perturbative soliton starts existing and
merges with the perturbative family. These properties were only identified once the
Einstein´Maxwell´Klein-Gordon equation was solved fully non-linearly in [248].
On the other hand, the perturbative analysis of [246] also finds the hairy BHs that,
for e ě eS, are perturbatively connected to a Minkowski spacetime with a cavity.
By construction, these perturbative hairy BHs reduce, in the zero horizon radius
limit, to the boson star of the theory. However, the perturbative analysis of [246]
says nothing about the hairy BHs of the theory when e ă eS. In this chapter, we
fill this gap.

In the introduction we already mentioned that the potential barrier that confines
the scalar condensate in our boxed or black hole bomb system might be a good
toy model for other systems with potential barriers that provide confinement. In
particular, we find that the phase diagram of hairy boson stars and BHs in the
black hole bomb system is qualitatively similar to the one found for asymptotically
anti-de Sitter solitons [257–259, 163, 260–263]. In this latter case, the AdS bound-
ary conditions act as a natural gravitational box with radius inversely proportional
to the cosmological length that provides bound states. In this sense, our work also
complements and completes previous AdS studies since the existence range of the
secondary/non-perturbative boson star family, its merger with the main/pertur-
bative soliton at e “ ec, and the fact that hairy BHs can also terminate on this
soliton family for eγ ď e ă ec was not established in detail in [257–259, 163, 260].
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4.2 Setting up the black hole bomb boundary value

problem

The setup of our problem was already discussed in the perturbative analysis of the
problem in [246]. Here, to have a self-contained exposition, we discuss only the
key aspects needed to formulate the problem and the strategy to compute physical
quantities without ambiguities. We ask the reader to see [246] for details.

4.2.1 Einstein-Maxwell gravity with a confined scalar field

We consider the action for Einstein´Maxwell´Klein-Gordon theory, as in Section 1,
but now with a (massive) charged scalar field:

S “
1

16πGN

ż

d4x
?
g

ˆ

R´
1

2
FµνF

µν
´ 2DµϕpD

µϕq: `m2ϕϕ:

˙

, (4.1)

where R is the Ricci scalar, A is the Maxwell gauge potential, F “ dA, Dµ “

∇µ ´ iqAµ is the gauge covariant derivative of the system, and ϕ is a complex
scalar field with mass m and charge q. We consider only massless scalar fields,
although it is certainly possible to extend our analysis to m ą 0.

We want to find the black hole solutions of (4.1) that are static, spherically
symmetric and asymptotically flat. Up1q gauge transformations allow us to work
with a real scalar field and a gauge potential that vanishes at the horizon. Further
choosing the Schwarzschild gauge, an ansatz with the desired symmetries is then

ds2 “ ´fprqdt2 ` gprqdr2 ` r2dΩ2
2,

Aµdx
µ
“ Aprqdt, ϕ “ ϕ:

“ ϕprq,

(4.2)

with dΩ2
2 being the metric for the unit 2-sphere (expressed in terms of the polar

and azimuthal angles x “ cos θ and φ). The scalar field is forced to be confined
inside a box of radius L. The system then has a scaling symmetry that allows us
to normalize coordinates (T “ t{L,R “ r{L) and thermodynamic quantities in
units of L, and place the box at radius R “ 1 [246].

In these conditions, the equations of motion that follow from (4.1) can be found
in [246]. These are a set of three ordinary differential equations for the fields
fpRq, ApRq and ϕpRq, and an algebraic equation that expresses gpRq as a function
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of the other 3 fields and their first derivatives. Well-posedness of the boundary value
problem requires that we give boundary conditions at the horizon and asymptotic
boundary of our spacetime. Additionally, we must specify Israel junction conditions
at the timelike hypersurface Σ “ R ´ 1 “ 0 where the box is located. Again, our
hairy BHs have vanishing scalar field at and outside this box, ϕpR ě 1q “ 0.

The horizon, with radius R “ R` “
r`
L

is the locus fpR`q “ 0. We have three
second order ODEs and thus there are six free parameters when we do a Taylor
expansion about the horizon. Regularity demands Dirichlet boundary conditions
that set three of these parameters to zero. We are thus left with only three constants
f0, A0, ϕ0 (say) such that the regular fields have the Taylor expansion around the
origin:

fpR`q “ f0pR ´R`q `OppR ´R`q
2
q,

ApR`q “ A0pR ´R`q `OppR ´R`q
2
q,

ϕpR`q “ ϕ0 `OppR ´R`q
2
q.

(4.3)

Consider now the asymptotic boundary of our spacetime, R Ñ 8. The scalar field
vanishes outside the box, ϕ “ 0, and the equations of motion have the solution:
f outpRq “ cf ´

M0

R
`

ρ2

2R2 , A
out
t pRq “ cA `

ρ
R

and goutpRq “ cf{f
outpRq (onwards,

the superscript out represents fields outside the cavity). Here, cf ,M0, cA and ρ are
arbitrary parameters, i.e. we have an asymptotically flat solution for any value of
these constants. However, the theory has a second scaling symmetry (e “ qL)

tT,R, x, φu Ñ tλ2T,R, x, φu, te, R`u Ñ te, R`u,

tf, g, At, φu Ñ tλ´2
2 f, g, λ´1

2 At, φu,
(4.4)

that we use to set cf “ 1 so that f |rÑ8 “ 1 (and gout “ 1{f out) [246]. Outside the
box the solution to the equations of motion is then

f outpRq
ˇ

ˇ

Rě1
“ 1´

M0

R
`

ρ2

2R2
, Aoutt pRq

ˇ

ˇ

Rě1
“ cA `

ρ

R
, ϕoutpRq

ˇ

ˇ

Rě1
“ 0 .

(4.5)
As required by Birkhoff’s theorem for the Einstein-Maxwell theory [242, 243], this
is the Reissner-Nordström (RN) solution. The leftover free constants in (4.5),
M0, cA, ρ, will be determined only after we have the solution inside the cavity and
specify the Israel junctions conditions at the latter.

Some of the parameters in (4.5) are related to the ADM conserved charges [264].
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Indeed, the dimensionless ADM mass and electric charge of the system are (GN ”

1):2

M{L “ lim
RÑ8

R2f 1pRq

2
a

fpRqgpRq
“
M0

2
, Q{L “ lim

RÑ8

R2A1
tpRq

2fpRqgpRq
“ ´

ρ

2
. (4.6)

These ADM conserved charges measured at the asymptotic boundary include the
contribution from the energy-momentum content of the cavity that confines the
scalar hair. In the next subsection we discuss the properties of this box.

In these conditions, hairy BHs of the theory are a 2-parameter family of solutions
that we can take to be the horizon radius R` and the value of the (interior)
derivative of the scalar field at the box, ϵ ” ϕ1 in

ˇ

ˇ

R“1´
.

As mentioned in section 4.1, it follows from Birkhoff’s theorem that in the asymp-
totic region our solutions are necessarily described by the RN solution. Therefore,
the ADM mass M and charge Q cannot be used to distinguish the several solutions
of the theory. It is thus natural to instead use the Brown-York quasilocal mass M
and charge Q, measured at the box, to display our solutions in a phase diagram of
the theory [249]. From section II.C of [246], the Brown-York quasilocal mass and
charge contained inside a 2-sphere with radius R “ 1 are (GN ” 1)3

M{L “ R

˜

1´
1

a

gpRq

¸

ˇ

ˇ

ˇ

R“1
, Q{L “

R2A1
tpRq

2
a

gpRqfpRq

ˇ

ˇ

ˇ

R“1
. (4.7)

The thermodynamic description of our solutions is complete after defining the
chemical potential, temperature and entropy:

µ “ Ap1q ´ ApR`q , THL “ lim
RÑR`

f 1pRq

4π
a

fpRqgpRq
, S{L2

“ πR2
`, (4.8)

where we work in the gauge ApR`q “ 0. These quantities must satisfy the quasilocal
form of the first law of thermodynamics:

dM “ TH dS ` µ dQ, (4.9)

which is used to check our solutions.
2Note that the Maxwell term in action (4.1) is 1

2F
2, not the perhaps more common F 2 term.

It follows that the extremal RN BH satisfies the ADM relation M “
?
2|Q|, instead of M “ |Q|

that holds when the Maxwell term in the action is F 2. Extremal RN BHs have µ “
?
2 where µ

is the chemical potential of the BH, and RN BHs exist for 0 ă µ ď
?
2.

3The Brown-York quasilocal quantities reduce to the ADM ones when we evaluate the former
at RÑ 8.
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As explained before, for reference we will often compare the hairy families of solu-
tions against extremal RN BHs. RN BHs confined in a cavity can be parametrised
by the horizon radius R` and the chemical potential µ, and their quasilocal mass
and charge are [246]

M{L
ˇ

ˇ

RN
“ 1´

?
2p1´R`q

a

2´ p2´ µ2qR`

, Q{L
ˇ

ˇ

RN
“

µR`
?
2
a

2´ p2´ µ2qR`

. (4.10)

where 0 ă R` ď 1 (for the horizon to be confined inside the box) and 0 ď µ ď

µext, with extremality reached at µext “
?
2. Note that at extremality one has

M{L “ R` and Q{L “ R`{
?
2. On the other hand, for any µ, when R` “ 1 one

has M{L “ 1 and Q{L “ 2´1{2.

4.2.2 Description of the box: Israel junction conditions and

stress tensor

So far, we discussed the boundary conditions at the horizon and asymptotic
boundaries. However, hairy BHs are solutions that join an interior spacetime
(R ă 1; with superscript in) with the known RN exterior background (4.5) (R ą 1;
with superscript out). So, in practice we simply need to find the interior solution.
For that, we need to integrate our equations of motion in the domain R P rR`, 1s.
Therefore, we must specify appropriate conditions at the outer boundary of our
integration domain, i.e. at R “ 1. Next, we detail the procedures required to do
this.

At and outside the box, i.e. for R ě 1, the scalar field must vanish. However,
its derivative when approaching the cavity from inside, i.e. as R Ñ 1´, is finite
(except for the trivial RN solution) and we will label this quantity ϵ:4

ϕin
ˇ

ˇ

R“1
“ ϕout

ˇ

ˇ

R“1
“ 0, ϕoutpRq “ 0, ϕ1 in

ˇ

ˇ

R“1
” ϵ. (4.11)

That is, inside the box the scalar field is forced to have the Taylor expansion
ϕ
ˇ

ˇ

R“1´
“ ϵpR ´ 1q ` O ppR ´ 1q2q. We are forcing a jump in the derivative of

the scalar field normal to the cavity timelike hypersurface Σ. This can be done
only if we further impose junction conditions at Σ on the gravito-electric fields as
discussed next.

4Our theory has the symmetry ϕÑ ´ϕ so we can focus our attention only on the case ϵ ą 0.
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The box is the timelike hypersurface Σ “ R ´ 1 “ 0. It has outward unit normal
nµ “ BµΣ{|BΣ| (nµnµ “ 1) and coordinates ξa “ pτ, θ, φq. An observer in the
interior of Σ measures the time T inpτq “ τ and the induced line element and gauge
1-form at Σ are

ds2|Σin “ hinab dξ
adξb “ ´f in|R“1dτ

2
` dΩ2

2 ,

At|Σin “ aina dξ
a
“ Aint |R“1dτ , (4.12)

where hinab is the induced metric in Σ and aina is the induced gauge potential
in Σ. Meanwhile, from the perspective of an observer outside the cavity, Σ is
parametrically described by R “ 1 and T outpτq “ Nτ (so, N is a reparametrisation
freedom parameter) so that the induced line element and gauge 1-form for this
observer are

ds2|Σout “ houtab dξadξb “ ´N2f out|R“1dτ
2
` dΩ2

2 ,

At|Σout “ aouta dξa “ NAoutt |R“1dτ , (4.13)

Ideally, we would like to have a smooth crossing of Σ, whereby the induced
gravitational hab and gauge aa fields and their normal derivatives are continuous
across Σ. That is to say, the Israel junction conditions should be obeyed [237–240]:

aina
ˇ

ˇ

R“1
“ aouta

ˇ

ˇ

R“1
, (4.14a)

hinab
ˇ

ˇ

R“1
“ houtab

ˇ

ˇ

R“1
; (4.14b)

f inaR
ˇ

ˇ

R“1
“ f outaR

ˇ

ˇ

R“1
, (4.14c)

Kin
ab

ˇ

ˇ

R“1
“ Kout

ab

ˇ

ˇ

R“1
; (4.14d)

where hab “ gab ´ nanb is the induced metric at Σ and Kab “ h µ
a h

ν
b ∇µnν is the

extrinsic curvature.

In the absence of the scalar condensate, we can set N “ 1 and all the junction
conditions (4.14) are satisfied. However, our hairy solutions are continuous but not
differentiable at R “ 1: they satisfy the conditions (4.14a)-(4.14c) but not (4.14d).
Since the extrinsic curvature condition is violated, our hairy solutions are singular
at Σ. But this singularity simply signals the presence of a Lanczos-Darmois-Israel
surface stress tensor Sab at the hypersurface layer proportional to the difference of
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the extrinsic curvature across the hypersurface [237–240]:

Sab “ ´
1

8π

´

rKabs ´ rKshab

¯

, (4.15)

where K is the trace of the extrinsic curvature and rKabs ” Kout
ab

ˇ

ˇ

R“1
´Kin

ab

ˇ

ˇ

R“1
.

This surface tensor is the pull-back of the energy-momentum tensor integrated
over a small region around the hypersurface Σ, i.e. it is obtained integrating
the appropriate Gauss-Codazzi equation [237–240, 268]. It is also given by the
jump across Σ of the Brown-York surface tensor [249] (see also discussion in
[246]). Essentially, (4.15) describes the energy-momentum tensor of the cavity (the
“internal structure” of the box) that is needed to confine the scalar field. Since the
two Maxwell junction conditions (4.14a)-(4.14b) are satisfied, our hairy solutions
will have a surface layer with no electric charge.

The strategy to find the hairy BHs of the theory can now be outlined. The hairy
solution inside the box is found integrating numerically the coupled system of
three ODEs in the domain R P rR`, 1s. This is done while imposing the boundary
conditions (4.3) at the horizon and, at the box, we impose ϕp1´q “ 0 and use
the scaling symmetry (4.4) to set fp1´q “ 1. After this task, we can compute
the quasilocal charges (4.7) and the other thermodynamic quantities (4.8) of the
system. To find the solution in the full domain R P rR`,8s we impose the three
junction conditions (4.14a)-(4.14c) at the box to match the interior solution with
the outer solution (described by the RN solution (4.5)). This operation finds
the parameters M0, CA, ρ in (4.5) as a function of the reparametrisation freedom
parameter N introduced in (4.13). The Israel stress tensor Sba is just a function
of N and, if ϕin ‰ 0, we cannot choose N to kill all the components of Sba (there
are two non-vanishing components, Stt and Sθθ “ Sφφ ). In this process, we have
arbitrary freedom to choose N . This simply reflects the freedom we have to select
the energy-momentum content of the box needed to confine the scalar condensate.
We should however, make a selection that respects some or all the energy conditions
[241]. Once this choice is made, we can finally compute the ADM mass and charge
(4.6) of the hairy solution which, necessarily, includes the contribution from the
box.

4.2.3 Numerical scheme

The hairy BHs we seek are a 2-parameter family of solutions, that we can take to
be the horizon radius R` and the scalar field amplitude ϵ ” ϕ1pR “ 1q as defined in
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(4.11). In practice, we set up a two dimensional discrete grid where we march our
solutions along these two parameters. In other words, we give R` and ϵ as inputs
of our numerical code, and in the end of the day we read the horizon parameters
f0, A0, ϕ0 in (4.3), and the values of the derivative of f and the value of A and its
derivative at the box, R “ 1. Typically, we start near the merger with the RN BH
where a good seed (approximation) for the Newton-Raphson method we use is the
RN BH itself but with a small perturbation that also excites the scalar field.

We find it convenient to introduce a new radial coordinate

y “
R ´R`

1´R`

(4.16)

so that the event horizon is at y “ 0 and the box at y “ 1. The equations of
motion now depend explicitly on R`.

Moreover, we also find useful to redefine the fields as

f “ y q1pyq, A “ y q2pyq, ϕ “ ´p1´ yq q3pyq (4.17)

which automatically imposes the boundary conditions (4.3) at the horizon. We now
use the scaling symmetry (4.4) to set fp1´q “ 1 and introduce the scalar amplitude
(4.11) at the box. This can be done through imposing the boundary conditions

q1p1q “ 1, q3p1q “ ϵ. (4.18)

The other boundary conditions for q1,2,3 are derived boundary conditions in the
sense that they follow directly from evaluating the equations of motion at the
boundaries y “ 0 and y “ 1 [156]. Under these conditions, the hairy BHs are
described by smooth functions q1,2,3 that we search for numerically.

To solve our boundary value problem numerically, we use the standard Newton-
Raphson algorithm with pseudospectral collocation, as described in Section 1.5.
Since we are using pseudospectral methods, and our functions are analytic, our
results have exponential convergence with the number of grid points. We check
this is indeed the case, and the thermodynamic quantities that we display have,
typically, 8 decimal digit accuracy. We further use the quasilocal first law (4.9)
(typically, obeyed within an error smaller than 10´3%) to check our solutions.
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4.3 Phase diagram of the charged black hole bomb

system

The properties of the hairy black holes of the charged black hole bomb system are
closely linked to the superradiant/near-horizon instability of RN black holes5, so
we first highlight some features of this instability to provide the context needed to
interpret the hairy black hole phase diagram (see [245] for details).

In the left panel of Fig. 4.1 we sketch (from [245]) the scalar field instability
onset charge eonset “ qonsetL as a function of R` for three families of RN black
holes with constant chemical potential µ, i.e. the minimum scalar charge needed
for a black hole with pR`, µq to be unstable. We can see that the near-horizon
charge eNH is a lower bound for an RN instability, i.e. caged RN BHs are always
stable when e ă eNH. Correspondingly, we also find no hairy black holes when
e ă eNH. At the other end, all extremal RN black holes, no matter their R`, are
unstable at or above the superradiant charge eS. In between these two critical
charges eNH ă e ă eS we have a window of horizon radii R` P rR`|P , 1s within
which sufficiently near-extremal RN black holes are unstable. In equivalent words,
for eNH ă e ă eS, extremal RN BHs are unstable for quasilocal charges in the
range Q{L P rpQ{Lq|P , 2

´ 1
2 s. In the upcoming phase diagrams we will indicate the

instability onset curve as a yellow curve Pα and, when applicable, we will also use
a gold diamond point P to identify the minimum charge for instability. The onset
curve starts at point P where it intersects the extremal RN curve and terminates
at point α with Q{L “ 2´

1
2 (i.e. R` “ 1) where it intersects again the extremal

RN curve.

In all our plots M and Q are the Brown-York quasilocal mass and charge (4.7)
of the system, measured at the location of the box. Different solutions tend
to pile-up in certain regions of the Q-M diagram (as illustrated in Fig. 4.10).
Thus, the distinction between different solutions becomes clearer if we use instead
∆M “ M´M

ˇ

ˇ

extRN
which is the quasilocal mass difference of a hairy solution

with an extremal RN that has the same quasilocal charge Q. Thus, in our Q-∆M
plots, the horizontal orange line Oα with ∆M “ 0 describes the extremal RN
BH. It is constrained to have Q{L ď 2´

1
2 (point α) in order to fit inside the box

(this extremal line will be represented by a dark red line in the 3-dimensional plots
Q-∆M-S).

5For a general RN black hole the superradiant and near-horizon instabilities are entangled, so
we will simply refer to an RN instability, regardless of the origin.
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From the RN quasilocal charges (4.10), in the quasilocal Q´M plot, the region
that represents RN BHs with horizon radius inside the box is the triangular surface
bounded by the lines Q “ 0, M “

?
2Q and M{L “ 1. Therefore, in the Q´∆M

plane, non-extremal RN BHs with R` ď 1 are those inside the triangular region
bounded by Q “ 0, ∆M “ 0 and ∆M{L “ 1 ´

?
2Q{L. The boundary Q “ 0

describes the Schwarzschild limit, ∆M “ 0 is the extremal RN boundary and the
latter curve is

pQ{L,∆M{Lq “
`

L´1Q
ˇ

ˇ

extRN
, 1´ L´1M

ˇ

ˇ

extRN

˘

“

ˆ

R`
?
2
, 1´R`

˙

(4.19)

where M
ˇ

ˇ

extRN
and Q

ˇ

ˇ

extRN
are given by (4.10) with µ “ µext “

?
2. The red

dashed line in the forthcoming Q´∆M plots is this parametric curve (4.19) with
R` allowed to take also values above 1. Indeed, it turns out that the most charged
solutions we find approach this dashed red line (4.19) (in the limit where scalar
condensate amplitude approaches infinity). In this sense, for a given quasilocal
mass (smaller than 1), this red dashed line (4.19) represents the maximal quasilocal
charge that confined solutions can have, with or without scalar hair.

As discussed in our summary of results (section 4.1), the charged black hole bomb
system has a total of four critical scalar field charges. Besides eNH “ 1

2
?
2
„ 0.354

and eS “ π?
2
„ 2.221 discussed above, the two others are eγ „ 1.13 and ec „

1.8545 ˘ 0.0005. Accordingly, the phase diagram of hairy boson stars and hairy
black holes depends on the value of e compared to these four fundamental critical
charges of the system. Thus, in the next subsections, we describe the properties of
hairy solutions in the following four windows of scalar field charge: 1) eNH ď e ă eγ ,
2) eγ ď e ď ec, 3) ec ď e ă eS, and 4) e ě eS. For concreteness, we will display
results for a representative value of e for each one of these windows, namely: 1)
e “ 1 (section 4.3.1), 2) e “ 1.85 (section 4.3.2), 3) e “ 2 (section 4.3.3), and 4)
e “ 2.3 (section 4.3.4). Altogether, these results (and others not presented) will
allow us to extract the conclusions summarized in section 4.1.

4.3.1 Phase diagram for eNH ď e ă eγ

The left panel of Fig. 4.3 is the phase diagram Q-∆M for e “ 1, representative of
the range eNH ď e ă eγ. The black disk curve describes the only family of boson
stars of the theory for this (range of) e which is the main/perturbative family. This
corresponds to the black curve OABC ¨ ¨ ¨ (already present for e ă eNH) with its
Chandrasekhar limit A and a series of cusps A,B,C, ¨ ¨ ¨ and associated zig-zagged
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Fig. 4.3: Phase diagrams for Einstein-Maxwell theory with a scalar field charge
e “ 1 (eNH ď e ă eγ) in a Minkowski box. Left panel: Quasilocal mass difference
∆M{L as a function of the quasilocal charge Q{L. The black disk curve is the
main/perturbative soliton family, the orange line is the extremal RN BH (RN
black holes exist above it), and the blue circles describe hairy black holes. The
yellow curve is the superradiant onset curve of RN (just above but very close to
the extremal RN curve with the two merging at P and α). It agrees with the
hairy solutions in the limit where these have ϵ “ 0 (no scalar condensate) and thus
merge with RN family. The red dashed line with negative slope signals solutions
with ∆M{L “ 1 ´

?
2Q{L i.e. black holes with horizon radius R` “ 1 (above

this value they do not fit inside the cavity). Right panel: Dimensionless entropy
S{L2 as a function of the quasilocal charge and mass difference. RN BHs are the
two parameter red surface with extremality described by the 1-parameter curve
∆M “ 0 (dark red). The instability onset is described by the yellow curve (very
close to extremality) and RN between these two curves are unstable. When they
coexist with RN BHs, for a given pQ,Mq{L, hairy BHs (blue dots) always have
more entropy than RN, i.e. they dominate the microcanonical ensemble. For
eNH ď e ă eγ , hairy BHs terminate at an extremal BH (i.e. with zero temperature)
and finite entropy (and divergent horizon curvature). The soliton (black dots) with
zero entropy is also shown.

branches sketched in the top-left panel of Fig. 4.2. The properties of this boson
star were already studied in much detail in [248] so we do not expand further. Our
interest here are the hairy BHs.

The horizontal orange curve OPα with ∆M “ 0 is the extremal RN BH family
with Q{L ď 2´

1
2 and boxed non-extremal BHs exist above this line and to the left

of the red dashed line (4.19) to fit inside the cavity, as detailed above. The yellow
curve Pα, that intersects and terminates at the extremal RN curve precisely at P
and α, describes the instability onset curve of RN BHs as computed using linear
analysis in [245]. It coincides with the merger line of hairy BHs with RN BHs, as it
had to. Indeed, recall that hairy BHs can be parametrised by their horizon radius
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R` and the scalar field amplitude ϵ. When ϵ “ 0 we recover the 1-parameter family
Pα of RN BHs at the onset of the instability. RN BHs are unstable below this
onset curve Pα all the way down to the horizontal extremal line also labeled Pα.
This region is extremely small for this value of e but it will be wider as e increases.

Hairy BHs (blue circles) exist inside the closed line Pαβ. That is, they exist below
the onset curve Pα and to the left of the red αβ dashed line (4.19), all the way
down till they reach a line Pβ where the Kretschmann curvature scalar evaluated
at the horizon K|H “ RabcdR

abcd
ˇ

ˇ

R`
grows large without bound. This occurs at

finite R` and thus at finite entropy S{L2 “ πR2
`, and the temperature vanishes

along this boundary curve Pβ. The entropy is however not constant along this
singular extremal boundary curve (in practice, the last curve we plot has R` “ 0.1

but it should extend a bit further down in the region close to αβ). We typically
find that lines of constant R` extend all the way to the red αβ dashed line (4.19),
but the latter is only reached in the limit ϵÑ 8. This makes it harder to extend
our solution to regions even closer to αβ (a fixed step in ϵ corresponds to an
increasingly smaller progression in Q as αβ is approached). Hairy BHs do not exist
for Q ă Q|P , in agreement with the linear analysis of the left panel of Fig. 4.1,
and there is clearly no relation between the hairy BHs and the boson star of the
theory when e “ 1 and, more generically, for eNH ď e ă eγ.

Because point P does not coincide with the origin O, hairy BHs with eNH ď e ă eγ

were not found in the perturbative analysis of [246]. Indeed, this perturbative
analysis only captures hairy BHs that have small mass and charge.

The right panel of Fig. 4.3 plots the same phase diagram as the left panel but
this time with the entropy S{L2 on the extra vertical axis. The latter is the
appropriate thermodynamic potential to discuss the preferred thermal phases of
the microcanonical ensemble: for a given quasilocal mass M{L and charge Q{L

fixed, the dominant phase is the one with the largest entropy. The red surface
represents (a subset6) of RN BHs, both stable and unstable with the boundary line
of stability being again the yellow dotted curve, here very close to the extremal
RN BH (dark red with ∆M “ 0). In the S “ 0 plane we find the perturbative
boson star (black curve). The blue dots fill the 2-dimensional surface that describe
hairy BHs (which merge with RN along the yellow line). Again we see (not very
clearly but it will be more clear for higher e) that hairy BHs coexist with RN black
holes in the region between the onset and extremal RN curves. In this case, we

6We just plot the portion of the RN surface with ∆M ă 0.085 that covers the region where
the boson star also exists.
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Fig. 4.4: Phase diagram for Einstein theory with a scalar field charge e “ 1.85
(eγ ď e ă ec) in a Minkowski box. The blue circles describe hairy black holes, the
black disk (magenta circle) curve is the soliton main (secondary) family, and the
orange line is the extremal RN BH (non-extremal RN BHs exist above it). The
yellow curve is the superradiant onset curve of RN. As it could not be otherwise, it
agrees with the hairy solutions in the limit where these have ϵ “ 0 and thus merge
with RN family. The dashed vertical line is at Q “ 2´1{2 which is the maximum
local charge that an extremal RN BH can have while fitting inside a box with radius
R “ 1. The red dashed line (4.19) describes the boundary for black holes that can
fit inside the cavity with radius R “ 1. The green solid square labeled with a star
(‹) has pQ‹,M‹,∆M‹q „ p0.545, 0.678,´0.093q. The auxiliary blue dotted curve
P ‹ β in the bottom describes the line where hairy BHs terminate with unbounded
horizon curvature. Hairy BHs that terminate in the trench P‹ of this auxiliary
curve do so at finite entropy and vanishing temperature. On the other hand, hairy
BHs that terminate in the trench segment ‹β (that coincides with magenta soliton
line) do so at zero entropy and large (possibly infinite) temperature.

find that hairy black holes always have a larger entropy than the corresponding
RN BHs with same M{L and Q{L. So they are the thermodynamically preferred
phase in the microcanonical ensemble.

Hence, it follows from the second law of thermodynamics that hairy BHs with
pQ,Mq between the RN onset and extremality curves are natural candidates for
the endpoint of the RN superradiant/near-horizon instability when we do a time
evolution of the instability where we preserve the mass and charge of the system.

4.3.2 Phase diagram for eγ ď e ă ec

In Fig. 4.4 we display the phase diagram when e “ 1.85, which is representative
of the range eγ ď e ă ec that we sketched in the top-right panel of Fig. 4.2. As a
first observation we note that, besides the main or perturbative boson star family
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Fig. 4.5: Kretschmann curvature at the horizon (left panel) and temperature (right
panel) as a function of the entropy (S{L2 “ πR2

`) for several hairy BH families
with constant scalar amplitude ϵ and scalar field charge e “ 1.85 (eγ ď e ă ec).

(black curve) already present for e ă eγ , the diagram now also has the magenta line
that starts at finite Q, passes though point ‹, and terminates at point β on the
red dashed line. This is the secondary or non-perturbative family of boson stars.
On its left side, this family has itself a series of cusps and zig-zagged secondary
branches denoted as B,C, ¨ ¨ ¨ in the sketch of the top-right panel of Fig. 4.2 (not
displayed in Fig. 4.4). These details are not relevant here, and we ask the reader to
see [248] for an exhaustive study of boson stars’ properties. It is however important
to emphasize that this secondary/non-perturbative family exists (as a ground state
family) only for eγ ď e ă ec, thus explaining the origin of the critical charges eγ
and ec. At e “ ec the magenta line of Fig. 4.4 merges with the black line (see
section 4.3.3). On the other hand, as we decrease e below ec one finds that the
gap ∆Q between the black and magenta families increases, and the “length” of
the magenta line decreases because the left endpoint of this curve approaches
β. It keeps doing so till it only exists on a very small neighbourhood of the red
dashed line and, at e “ eγ, this line shrinks to the single point β. Below eγ, the
non-perturbative family ceases to exist (as seen in section 4.3.1). Essentially
because it no longer fits inside the cavity. This discussion is better illustrated
in the right panel of Fig. 4.1: 1) if we collect all non-perturbative solitons in a
single plot, we find that they exist only in the window eγ ď e ă ec and they
fill the area bounded by the auxiliary dashed lines acβcγ; 2) very close to ec the
non-perturbative soliton is almost on top of the auxiliary curve acβc; and 3) on the
opposite end, as eÑ eγ , the perturbative soliton line shrinks to the point γ on the
red dashed line.
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Fig. 4.6: Entropy as a function of the quasilocal charge and mass difference for
Einstein theory with a scalar field charge e “ 1.85 (eγ ď e ă ec) in a Minkowski
box. The red surface represents RN BHs in the range 0 ď ∆M ă 0.02 (they extend
for higher ∆M) with the dark red line with ∆M “ 0 being the extremal RN BH
family. The yellow line describes the merger line between RN BHs and hairy BHs,
and RN BHs between this line and the dark red extremal line are unstable. The
blue disks describe hairy BHs and the black (magenta) lines with S “ 0 describe
the main (secondary) soliton family. When they coexist with RN BHs, for a given
pQ,Mq{L, hairy BHs always have more entropy than RN, i.e. they dominate the
microcanonical ensemble.

What are the consequences of these boson star discussions for the hairy BHs?
Hairy BHs with e “ 1.85 are the blue circles in Fig. 4.4. As before, they exist
in the area bounded by Pαβ, where Pα is the merger yellow line with RN BHs
and coincides with the instability onset curve of [245], and αβ is a segment of
the red dashed line (4.19). Starting at the onset curve Pα and moving down,
e.g. along constant Q lines, we find that hairy BHs terminate at the line Pβ

(or P ‹ β). This is the blue dashed line in Fig. 4.4 which describes hairy BHs
with minimum entropy/horizon radius for a given charge. Along this line, the
Kretschmann curvature scalar evaluated at the horizon K|H grows very large (most
probably, K|H Ñ 8). To illustrate this, in the left panel of Fig. 4.5 we plot K|H

as a function of the entropy S{L2 “ πR2
` as we approach the line Pβ (at small S)

along curves of constant scalar amplitude ϵ (shown in the legends). Indeed, for
small S{L2 the curvature is growing very large.
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So far the phase diagram of hairy BHs looks similar to the one for eNH ď e ă eγ

(section 4.3.1). However, for eγ ď e ă ec we now find that the way hairy BHs
terminate along the singular curve differs substantially depending on whether it ends
to the left or to the right of the green square point ‹ in Fig. 4.4 (with Q‹{L » 0.545

for e “ 1.85). When the hairy BHs terminate along P‹, they do so at finite
entropy and vanishing temperature. On the other hand, hairy BHs that terminate
along ‹β do so at vanishing entropy and large (possibly infinite) temperature. To
illustrate this, in the right panel of Fig. 4.5 we plot the temperature TL as a
function of the entropy S{L2 “ πR2

` as we follow hairy BH families that approach
the singular line Pβ at (different; see legends) constant scalar amplitude ϵ. Point ‹
has pQ‹,∆M‹q „ p0.545,´0.093q which corresponds to pR`, ϵq

ˇ

ˇ

‹
“ p0, 1.55˘ 0.05q.

Hairy BHs with ϵ ă ϵ‹ terminate at P‹, while hairy BHs with ϵ ą ϵ‹ end at ‹β.
The right panel of Fig. 4.5 indeed shows that hairy BHs with ϵ ă ϵ‹ approach P‹
at finite S{L2 and with TLÑ 0 (like all hairy BHs of section 4.3.1), while those
with ϵ ą ϵ‹ approach ‹β with S Ñ 0 and TLÑ 8.

Another important conclusion that emerges from Fig. 4.4, is that hairy BHs which
have a zero horizon radius limit terminate precisely along the segment ‹β of the
secondary/non-perturbative soliton family. This means that hairy BHs terminate
with the same Q and M as the non-perturbative soliton (but the gravito-electric
and scalar fields of the two solutions are different). On the other hand, those that
end at P‹ do so in a manner that is very similar to the way the hairy BHs with
eNH ď e ă eγ terminate (section 4.3.1).

We find that the critical charge Q‹peq decreases as e grows from eγ till ec. As
explained when discussing the right plot of Fig. 4.1, the non-perturbative soliton
line shrinks to the point β when eÑ eγ . Thus, our expectation is that the critical
charge Q‹ also reaches Q

ˇ

ˇ

β
when eÑ e`γ . That is to say, we expect that hairy black

holes are connected to the non-perturbative soliton as soon as it exists. However,
determining numerically Q‹ in this limit is very difficult, since hairy BHs near β
have very large values of ϵ.

The hairy BHs with eγ ď e ă ec we find were not captured by the perturbative
analysis of [246] because they do not extend to arbitrarily small mass and charge.

In Fig. 4.6, we plot the thermodynamic potential of the microcanonical ensemble
´ the entropy S{L2 ´ as a function of Q and ∆M. In the S “ 0 plane we find
the perturbative boson star (black curve) and, for larger Q and after a gap, the
non-perturbative boson star (magenta curve). As before, the red surface describes
the RN BH family parametrised by R` and µ as in (4.10) and with S{L2 “ πR2

`. It
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Fig. 4.7: Phase diagram for Einstein theory with a scalar field charge e “ 2
(ec ď e ă eS) in a Minkowski box. As before, the blue circles describe hairy black
holes, the black disk curve is the soliton main family, and the orange line is the
extremal RN BH (RN black holes exist above it). The gray and red dashed curves
have the same interpretation as in Fig. 4.4. The green solid square labeled with a
star (‹) has pQ‹,M‹,∆M‹q „ p0.466, 0.659,´0.0886q. The auxiliary blue dotted
curve P ‹ β in the bottom describes the line where hairy BHs terminate with
unbounded horizon curvature. Hairy BHs that terminate in the trench P‹ of this
auxiliary curve have zero temperature (T “ 0) and finite entropy S{L “ πR2

`.
On the other hand, hairy BHs that terminate in the trench segment ‹β (that
coincides with the black soliton line) have zero entropy and large (possibly infinite)
temperature. Note that these ‹β terminal hairy BHs have the same pQ,∆Mq as
the main soliton family with Q ą Q‹.

terminates at the dark red extremal curve with ∆M “ 0. We only plot the portion
of the RN surface with ∆M ă 0.02 that covers the region where the perturbative
boson star also exists. Unstable RN BHs are those between the instability onset
(yellow dotted curve) and the extremal RN dark red curve. The blue dots fill the
2-dimensional surface that describes hairy BHs. It merges with RN BHs along the
yellow dotted curve and then extends to lower ∆M with an entropy that is always
larger the the RN BH with the same Q and M (when they coexist). Therefore, hairy
BHs are the thermodynamically dominant phase in the microcanonical ensemble.
Consequently, from the second law of thermodynamics, hairy BHs with pQ,Mq

between the RN onset and extremality curves are candidates for the endpoint of
the RN superradiant/near-horizon instability when in a time evolution of the RN
instability at constant mass and charge.
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Fig. 4.8: Kretschmann curvature at the horizon (left panel) and temperature
(right panel) as a function of the entropy (S{L2 “ πR2

`) for hairy BH families with
fixed ϵ and scalar field charge e “ 2 (ec ď e ă eS).

4.3.3 Phase diagram for ec ď e ă eS

In Fig. 4.7 we give the phase diagram for e “ 2. This is the case we choose
to illustrate the solution spectra in the range eγ ď e ă ec that we sketched in
the bottom-left panel of Fig. 4.2. Comparing with the diagram of Fig. 4.4 we
immediately notice that the magenta line representing the non-perturbative soliton
family is no longer present in Fig. 4.7. This is because at e “ ec, the perturbative
and non-perturbative boson star families (i.e. the black and magenta lines of
Fig. 4.4) merge and for e ě ec the main or perturbative boson star family no longer
has a Chandrasekhar mass limit and now extends from the origin O all the way
to β in the red dashed line. This merger at ec occurs in an interesting elaborated
manner. In particular, going back to top-right sketch of Fig. 4.2, at e “ ec the
secondary zig-zagged branches ¨ ¨ ¨CBA of the perturbative (black) soliton also
merge with the secondary zig-zagged branches abc ¨ ¨ ¨ of the non-perturbative
(magenta) soliton. As a consequence, for e ě ec there is also a secondary soliton
¨ ¨ ¨CBbc ¨ ¨ ¨ (purple line in bottom-left of Fig. 4.2) that has higher energy than the
perturbative (black) soliton Pβ. This secondary family is not displayed in Fig. 4.7
because it plays no role on the discussion of hairy BHs of the theory. The reader
can find a detailed discussion of soliton’s properties across the transition at e “ ec

in [248].

Since the colour code and associated labeling in Fig. 4.7 is the same as in Figs. 4.3
and 4.4 we can now immediately discuss the hairy BHs. Again they exist in the
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area enclosed by Pαβ filled with the blue circles. They merge with the RN family
along the yellow dotted line Pα when the scalar condensate vanishes, which agrees
with the RN instability curve found in [245]. The hairy BHs then exist all the way
down to the blue dashed line Pβ (or P ‹ β) which, for a given charge, identifies the
hairy BH that has minimum entropy/horizon radius. The Kretschmann curvature
evaluated at the horizon K|H diverges. For a given charge, Pβ identifies the hairy
BHs with minimum entropy/horizon radius and K|H grows very large along it.
This is confirmed in the left panel of Fig. 4.8: as we approach Pβ (at small S)
along lines of of constant scalar amplitude ϵ (identified in the legends), K|H is
growing very large.

Point ‹ with charge Q‹ » 0.466 describes a transition point. Hairy BHs that end
to the left of this point along P‹ do so at finite S with T Ñ 0. However, one has
S Ñ 0 and T Ñ 8 when the hairy BHs terminate along ‹β with Q ą Q‹. This
is confirmed in the right panel of Fig. 4.8 where we plot the temperature TL as
a function of the entropy S{L2 “ πR2

` as we follow different families of constant
scalar amplitude hairy BHs that approach the singular line Pβ. Point ‹ has
pQ‹,∆M‹q „ p0.466,´0.0886q which corresponds to pR`, ϵq

ˇ

ˇ

‹
“ p0, 1.175˘ 0.005q.

Hairy BHs with ϵ ă ϵ‹ have Q ă Q‹ and terminate at P‹, while hairy BHs with
ϵ ą ϵ‹ have Q ą Q‹ and end at ‹β.

From Fig. 4.7 and the right panel of Fig. 4.8, it should not go without notice that
the hairy BHs that have a zero horizon radius limit terminate along the trench ‹β

of the perturbative soliton family. That is, when the hairy BHs have zero entropy,
they have the same charge Q and mass M as the perturbative soliton. In a nutshell,
hairy BHs with ec ď e ă eS have a behaviour that is qualitatively similar to those
of eγ ď e ă ec (section 4.3.2). However, the zero entropy BHs now terminate on
top of the perturbative soliton in the Q-M phase diagram instead of ending on
the non-perturbative soliton (which is now an excited solution ¨ ¨ ¨CBbc ¨ ¨ ¨ in the
bottom-left panel of Fig. 4.2). We also find that the critical charge Q‹peq decreases
and approaches QP as e grows from ec to eS. Moreover, we find that Q‹ Ñ QP Ñ 0

as eÑ eS.

Fig. 4.9, displays the phase diagram of the microcanonical ensemble for e “ 2:
the entropy S{L2 as a function of Q and ∆M. The colour code of this diagram
is the same as Fig. 4.6. Because e is bigger than the cases considered before, we
see that the region between the onset yellow curve and the extremal RN dark red
curve where RN BHs are unstable is now quite visible. Again we find that the
hairy BHs (blue circles) that bifurcate from the yellow onset curve always have
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Fig. 4.9: Entropy as a function of the quasilocal charge and mass difference for
Einstein theory with a scalar field charge e “ 2 (ec ď e ă eS) in a Minkowski
box. When they coexist with RN BHs, for a given pQ,Mq{L, hairy BHs always
have more entropy than RN, i.e. they dominate the microcanonical ensemble.
For ec ď e ă eS, when Q ą Q‹peq, hairy BHs have a zero entropy limit where
they coincide with the soliton (black disk) curve in the sense that they have the
same pQ,Mq{L as the soliton (the temperature and horizon curvature diverges).
However, when 0 ă Q ă Q‹peq, hairy BHs terminate at an extremal BH (i.e. with
zero temperature) and finite entropy (and divergent horizon curvature) along a line
that does not coincide with the black disk one for the soliton.

higher entropy that the RN BHs with the same pQ{L,M{Lq when they coexist. It
follows that also for ec ď e ă eS, hairy BHs are the preferred thermodynamic phase
in the microcanonical ensemble. As expected from Fig. 4.7, for Q ě Q‹ » 0.466,
the hairy BHs terminate with zero entropy on top of the perturbative boson star
(black curve).

It is natural to expect that the hairy BHs we find should be the endpoint of the
RN instability if we perturb an RN BH in the unstable region (where they always
coexist with hairy BHs) and do a time evolution at constant charge and mass.
The system would evolve to a final configuration that is stable against the original
perturbation while respecting the second law of thermodynamics. Finally note that
the hairy BHs with ec ď e ă eS described in this section were not studied in the
perturbative analysis of [246] because the latter can only capture solutions that
have a zero mass and charge limit.
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Fig. 4.10: Phase diagram for Einstein theory with a scalar field charge e “ 2.3
(e ą eS) in a Minkowski box. In the left panel we have the Q-M phase diagram:
we see that the solutions pile up and this is why we have instead been plotting
the phase diagram Q-∆M (right panel). The blue circles describe hairy black
holes, the black disk curve is the perturbative soliton family and the orange line
is the extremal RN BH (RN black holes exist above it). The yellow curve is the
superradiant onset curve of RN. As it could not be otherwise, it agrees with the
hairy solutions in the limit where these have ϵ “ 0 and thus merge with RN family.
The gray and red dashed curves have the same interpretation as in Fig. 4.4. For
e ą eS, the zero entropy limit of the hairy BH is the soliton (black disk curve) in
the sense that they have the same pQ,Mq{L as the soliton.

4.3.4 Phase diagram for e ě eS

The critical charge e “ eS “
π?
2
„ 2.221 is special for two main (related) reasons.

First, it is the minimal charge above which scalar fields can drive arbitrarily small
extremal RN BHs unstable via superradiance, as observed in the instability onset
charge plot of the left panel of Fig. 4.1. Indeed, the extremal onset curve eonsetpR`q

reaches e “ eS as R` Ñ 0. The value of eS can be predicted analytically as done in
Section III.A of [246]. For e ą eS, we can also have near-extremal BHs unstable for
arbitrarily small R` or, equivalently, for arbitrarily small mass and charge.

This scalar charge eS is also special because at e “ eS the slope of the perturbative
soliton at the origin vanishes, i.e. δ∆M

δQ

ˇ

ˇ

Q“0
“ 0. For e ă eS, this slope is positive

and we always have (some) perturbative solitons with higher quasilocal mass than
the extremal RN (for sufficiently small Q). On the other hand, for e ą eS the slope
is always negative, δ∆M

δQ

ˇ

ˇ

Q“0
ă 0, and thus perturbative solitons never coexist with

RN BHs.
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Fig. 4.11: Comparing the exact numerical results (blue circles) with the perturba-
tive analytical predictions (4.20)-(4.21) (green curve) for a family of black holes
with constant R` “ 0.05 and e “ 2.3. As expected, the perturbative analysis
matches the exact results only for small R` and small ϵ (i.e. close to the origin
and in the neighbourhood of the merger, yellow diamond, line which has ϵ “ 0).
That is to say, for the R` “ 0.05 family shown, good agreement occurs for small
Q, say Q À 0.2.

Ultimately as a consequence of these two properties, two important changes occur
in the phase diagram of Fig. 4.7 as we follow its evolution across eS and land on
Fig. 4.10. First, the minimal charge for instability ´ that we have been denoting
as QP ´ approaches zero as eÑ e´S and QP “ 0 for e ě eS. This is illustrated in
Fig. 4.10 for the case e “ 2.3. Second, we find that the hairy BHs (blue circles
inside Oαβ) now always terminate on top of the perturbative boson star (black line
Oβ) as we move down, e.g. at constant Q, from the onset curve Oα. That is to say,
one also has Q‹ “ 0 for e ě eS. As hairy BHs approach this perturbative soliton
curve, the Kretschmann curvature at the horizon, the entropy and temperature
have the same behaviour as the one observed in Fig. 4.4 for BHs terminating along
‹β: K|H Ñ 8, S Ñ 0 and T Ñ 8.

Since for e ě eS the hairy BHs exist all the way down to pQ,Mq Ñ p0, 0q one might
expect that their properties can be captured by a perturbative analysis (to higher
orders) around Minkowski space with gauge field in a box. This is indeed the case
and such analysis was performed in [246]. This is a double expansion perturbation
theory with the expansion parameters being the horizon radius R` and the scalar
amplitude ϵ. Of course, here one assumes that R` ! 1 and ϵ ! 1 which translates
into Q ! 1 and M ! 1. The analysis of [246] culminates with explicit expansions
for the thermodynamic quantities of the hairy BHs, which are listed in (5.27) of
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[246]. In particular, the expansion for the quasilocal mass and charge are:

M{L “

«

R`

4

ˆ

π2

e2
` 2

˙

`
R2

`

32e4

˜

π4
´

8rCip2πq ´ γ ´ lnp2πqs ` 5
¯

` 4
`

e2 ` π2
˘

e2

¸

`OpR3
`q

ff

` ϵ2

«

1

2
`

R`

12πe2

˜

9π3
”

γ ´ Cip2πq ´ 2` lnp2πq
ı

`
`

8π2 ´ 3e2
˘

”

2Sip2πq ´ Sip4πq
ı

¸

`OpR2
`q

ff

` ϵ4

«

15π2 ´ 6e2 ` 16π
“

Sip4πq ´ 2Sip2πq
‰

24π2
`OpR`q

ff

`Opϵ6q,

(4.20)

Q{L “

«

πR`

2e
`
R2

`

8e3

˜

π3
´

2rCip2πq ´ γ ´ lnp2πqs ` 1
¯

` 2πe2

¸

`OpR3
`q

ff

` ϵ2

«

e

2π

`
R`

12π2e

˜

12π3
´

γ ´ Cip2πq ` lnp2πq ´
7

4

¯

`
`

8π2 ´ 3e2
˘ “

2Sip2πq ´ Sip4πq
‰

¸

`OpR2
`q

ff

´ ϵ4

«

e
``

8π2 ´ e2
˘

p2Sip2πq ´ Sip4πqq ` 4πe2 ´ 8π3
˘

8π4
`OpR`q

ff

`Opϵ6q, (4.21)

where Cipxq “ ´
ş8

x
cos z
z
dz and Sipxq “

şx

0
sin z
z
dz are the cosine and sine integral

functions, respectively, and γ „ 0.577216 is Euler’s constant. This perturbation
scheme assumes that R` and ϵ do not have a hierarchy of scales. When R` “ 0,
(4.20)-(4.21) reduces to the soliton thermodynamics and, when ϵ “ 0, (4.20)-(4.21)
yields the expansion of the caged RN BH thermodynamics. In [246] it was argued
that (4.20)-(4.21) should provide a good approximation (as monitored by the first
law) for ϵ À 0.1, R` À 0.1. Now that we have the exact (numerical) results for the
hairy BHs in all their domain of existence we can use (4.20)-(4.21) to further check
our numerics while, simultaneously, testing the regime of validity of (4.20)-(4.21) .
As an example of this exercise, in Fig. 4.11 we compare the perturbative prediction
(4.20)-(4.21) ´ the green curve´ to our exact numerical results (blue circles) for
the 1-parameter family of hairy BHs with R` “ 0.05 parametrised by ϵ (with ϵ “ 0

at the merger with RN; the yellow curve). As expected, we observe good agreement
for Q À 0.2, say. Of course, the fact that the perturbative analysis does not differ
much from the exact results for higher values of Q is to be seen as accidental; the
perturbative is certainly not valid for such high charges.

As in the previous cases, we end our discussion of the e ě eS case with the plot of
Fig. 4.12 of the entropy as a function of the charge and mass. The colour coding
is the same as in previous cases so it suffices to emphasize that again the hairy
BHs (blue circles) are the preferred phase in the microcanonical ensemble. Indeed,
in the region between the onset yellow curve and the extremal RN dark red curve
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Fig. 4.12: Entropy as a function of the quasilocal charge and mass difference
for Einstein theory with a scalar field charge e “ 2.3 (e ą eS) in a Minkowski
box. When they coexist with RN BHs, for a given pQ,Mq{L, hairy BHs always
have more entropy than RN, i.e. they dominate the microcanonical ensemble. For
e ą eS, the zero entropy limit of the hairy BH is the soliton (black disk curve) in
the sense that they have the same pQ,Mq{L as the soliton (the temperature and
horizon curvature diverges).

with ∆M “ 0 where they coexist with (unstable) RN BHs, hairy BHs always have
higher dimensionless entropy for a given charge Q{L and mass M{L. It further
follows from the second law, that the unstable RN BHs should evolve in time
towards the hairy BH we find with the same Q{L and M{L.

4.4 Discussion and junction conditions

Recapping what we did so far, we integrated the equations of motion in the domain
R P rR`, 1s subject to regular boundary conditions at horizon and vanishing scalar
field at the box. This is all we need to get the quasilocal phase diagrams of the
previous section. But the description of the solution is only complete once we give
the full solution all the way up to the asymptotically flat boundary.

Studies of scalar fields confined in a Minkowski cavity are already available in the
literature: 1) at the linear level [269–279], 2) within a higher order perturbative
analysis of the elliptic problem [245, 246], 3) as a nonlinear elliptic problem (without
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having asymptotically flat boundary conditions [280–282] or without matching
with the exterior solution [283]), and 4) as an initial-value problem [265–267].
However, with the exception of the perturbative analysis of [246], the properties
of the “internal structure” of the cavity required to confine the scalar field and its
contribution to the ADM mass and charge that ultimately describe, by Birkhoff’s
theorem, the exterior RN solution are not discussed.

However, having the interior solution, we can compute the Lanczos-Darmois-Israel
surface stress tensor (4.15) that describes the energy-momentum of the box Σ. We
impose the three Israel junction conditions (4.14a)-(4.14c) on the gravito-electric
fields on the surface layer Σ. The fields f, At, ϕ are then continuous across Σ and
the component of the electric field orthogonal to Σ is also C0 across Σ. The latter
means that we can confine the charged scalar condensate without needing to have a
surface electric charge density on Σ. The three conditions (4.14a)-(4.14c) permit us
to match the interior and exterior solutions, i.e. they fix the parameters M0, cA, ρ

in (4.5) as a function of the reparametrisation freedom parameter N introduced in
(4.13):

M0 “
1

N2

ˆ

1´
A1
tp1q

2

2

˙

´ 1, cA “
A1
tp1q ` A1p1q

N
, ρ “ ´

A1
tp1q

N
. (4.22)

Effectively, these conditions fix the exterior RN solution as a function of the
interior solution and of the box’s energy-momentum. Not surprisingly, we have
a 1-parameter freedom (N) to choose the box content that is able to confine the
scalar condensate. Several cavities can do the job.

Ideally, we would fix N requiring that the gravitational field is not only C0 but
also differentiable across the box. That is, the fourth junction condition (4.14d)
would also be obeyed and thus the extrinsic curvature

Kt
t “ ´

f 1pRq

2fpRq
a

gpRq
, Ki

j “
1

R
?
g
δij , pi, jq “ pθ, φq, (4.23)

would also be continuous across the box. But, except when ϕpRq “ 0, no choice of
N allows us to simultaneously set rKt

t s “ 0 and rKi
i s “ 0. All we can do is to fix

N requiring that rKt
t s “ 0 (at the expense of having rKi

i s ‰ 0) or vice-versa, or
any other combination.

A choice of N fixes the energy density and pressure of the box since its stress tensor
can be written in the perfect fluid form, Spaqpbq “ Eupaqupbq ` Pphpaqpbq ` upaqupbqq,



4.4. Discussion and junction conditions 165

with u “ f´1{2Bt and local energy density E and pressure P given by

E “ ´Stt , P “ Sxx “ Sϕϕ . (4.24)

We are further constrained to make a choice such that relevant energy conditions
are obeyed. Ultimately, failing these would mean that we cannot build the necessary
box with the available materials. Different versions of these energy conditions read
pi “ θ, φq [241]:

Weak energy condition: E ě 0 ^ E ` Pi ě 0 ; (4.25)

Strong energy condition: E ` Pi ě 0 ^ E `

2
ÿ

i“1

Pi ě 0 ; (4.26)

Null energy condition: E ` Pi ě 0 ; (4.27)

Dominant energy condition: E ` |Pi| ě 0 . (4.28)

We have experimented with different choices of N and found that are many selections
that indeed satisfy (4.25) (and equally many others that don’t). An example of
this exercise is given in [248] for the boson star case. Given that there seems to be
no preferred choice, we do not do a further aleatory illustration here. Instead, we
approach the problem from an experimental perspective. That is to say, in practice,
we are given a cavity (that obeys the energy conditions or else it could not have
been built with available materials). In principle, we can identify its stress tensor
and hence compute N . We then insert this into the Israel matching conditions
(4.22) to find the exact RN exterior solution and, in particular, the asymptotic
ADM charges. We end up with an asymptotically flat static black hole solution
(or boson star [248]) that is regular everywhere except across the box (where the
extrinsic curvature has a discontinuity) and that describes confined scalar radiation
floating above the horizon and in thermodynamic equilibrium with it.
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Chapter 5

Conclusion and outlook

In Reissner-Nordström, it is well known that there are two families of quasinormal
mode — photon sphere (PS) and near-horizon (NH) modes. They can be unam-
biguously distinguished by following the eigenvalues to the near-extremal limit
where they agree with either a WKB expansion or a matched asymptotic expansion.
In Chapter 2 we found the full scalar field QNM spectra of Kerr-Newman black
holes, focusing on perturbations with angular quantum numbers m “ ℓ “ 2. We
found that, surprisingly, it is no longer possible to uniquely classify the PS and NH
modes away from the RN limit, as they strongly interact via eigenvalue repulsions.
This phenomenon is very sensitive to the black hole parameters, meaning that the
QNM spectra of Kerr-Newman is much more complicated than RN or Kerr, despite
being composed of the same mode families.

By the time we have marched all the way to the Kerr limit, it is better to think
of the modes as entangled PS-NH modes, since they are well-described by both
approximations. However, if we trace the modes in Kerr back to the RN limit, we
see that the original RN PS mode is nestled in between the NH modes. It remains
an open question as to whether this mode has vanishing imaginary part in the
extremal limit (like the other NH modes) or tends to a non-zero limit. Ultimately,
this will likely only be resolved by an explicit computation of the QNM spectra of
extremal Kerr(-Newman).

In Chapter 3, we studied the scalar QNM spectra of asymptotically de Sitter
black holes in higher dimensions. In the simplest example, Schwarzschild-de Sitter,
we observe that the de Sitter modes have highly non-trivial behaviour in higher
dimensions, especially in d “ 5. Beyond that, we find the QNM spectrum of
cohomogeneity-one Myers-Perry de Sitter. Much like Kerr (and Kerr-dS), the PS
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modes are merged with the NH modes (except for one PS mode overtone that is
subdominant near extremality). The PS modes with large m “ ℓ dominate the
spectrum, enforcing strong cosmic censorship (SCC) in d “ 5, 7, 9, 11, and likely
all odd dimensions.

One of the broad conclusions of Chapter 3 is that the SCC behaviours of Kerr-dS
and RNdS are not unique to those spacetimes, but are more likely general features
of charged and rotating black holes in any dimension. Astrophysical black holes
are expected to have negligible charge [19–21], and thus one could argue that
weakly-charged Kerr-Newman-de Sitter (KNdS) is a more realistic form of initial
data than RNdS. There is evidence to suggest that initial data close to KNdS
does violate SCC, at least for some parts of the parameter space [284]. One would
expect a type of phase transition in the pa,Qq parameter space between the two
regimes, and this may yield insights about what kind of fields and initial data
we should consider to rescue SCC. In future work, we try to find this transition
boundary explicitly [46].

Nevertheless, any violation of SCC with well-behaved initial data such as RNdS or
slowly-rotating KNdS is cause for concern. This prompts the question of whether
the Christodoulou formulation is in fact the most appropriate formulation of strong
cosmic censorship. In all of our SCC discussions we assumed smooth initial data.
But given that we allow non-smooth solutions of the Einstein equations, it seems
reasonable to also allow non-smooth initial data. This “rough formulation” of
strong cosmic censorship is respected in RNdS (and BTZ), since the solution at
the Cauchy horizon is, generically, rougher than the initial data [47, 285] (also see
the discussion in [89]).

General Relativity is an effective field theory, so perhaps it is too much to require
predictability beyond the Cauchy horizons — it’s still unclear how much of the
black hole interior we should take seriously. However, the theory of quantum
gravity that replaces it must be predictable. As a stepping stone, we can consider
semi-classical corrections. These indeed appear to rescue SCC in RNdS, since the
semi-classical stress tensor diverges at the Cauchy horizon [89, 286–288].

The BTZ black hole severely violates SCC [47], and this is expected to be a rather
special result, as discussed in Section 1.3. Further corroborating this is the fact
that the semi-classical result above does not save SCC in the case of BTZ [286].
However, a braneworld construction of a BTZ black hole that incorporates the
exact quantum backreaction was found in [289, 290]. Since the classical bulk of this
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construction is similar to Kerr-AdS4, it is argued that the next-to-leading order
backreaction will enforce SCC in BTZ.

The classical violation of SCC in BTZ only occurs for sufficiently extremal BTZ
black holes, so one would expect to see some parameter-dependent signature of the
change in regularity of the bulk field to be reflected in the boundary theory, for
example in the two-point function. There are a number of studies in this direction
which try to probe the Cauchy horizon holographically [291, 292]. The two-point
function used for the rotating BTZ black hole has been computed in Euclidean
signature, and does not appear to have any pathological behaviour. However, it
seems likely one would instead need to use the real-time formalism [293, 294] to
probe the Lorentzian bulk behind the event horizon. This formalism has so far
only been applied to static BTZ black holes.

In Chapter 4 we found the phase diagram of static solutions of the Einstein-Maxwell-
Scalar system, confined to a cavity that forces the scalar field to vanish at and
outside a shell of fixed radius. In addition to RN black holes, we also found hairy
black holes, with scalar hair floating above the horizon. Furthermore, we found
that the stress energy tensor of the shell that is required by the Israel junction
conditions can be made to obey appropriate energy conditions.

In other words, we have established that the configuration originally envisioned
(in the rotating case) by Zel’dovich [138], Press-Teukolsky [137] and [250–255]
using linear considerations indeed exists as a non-linear equilibrium solution of the
Einstein-Maxwell-Scalar equations. We further established that this is the thermal
phase that dominates the microcanonical ensemble. It should be possible to extend
the current analysis to the rotating BH bomb system.

The hairy BHs we find are stable to the RN instabilities (since they merge with
RN precisely at the onset of the original instability; see also [280, 281]) and have
higher entropy than the RN BHs. It follows from this and the second law of
thermodynamics that the charged black hole bomb does not need to break apart:
in a time evolution at fixed energy and charge, the unstable RN BH should simply
evolve towards the hairy BH we find. It would be interesting to confirm this,
performing a time evolution along the lines of those performed in [265–267], in the
precise setup we described.

No less interestingly, Minkowski space in a box (i.e. no horizon) with a scalar
perturbation is itself non-linearly unstable to the formation of a BH for arbitrarily
small amplitudes [295], very much alike pure global AdS [296–302, 232]. The
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weakly turbulent phenomenon is responsible for this instability [296–300, 303–305].
It would be interesting to study this non-linear instability when the scalar field is
charged. Unlike the neutral case, for certain windows of charge and energy, there
are now two possible families of BHs and not just the RN one. Therefore a time
evolution of the non-linear instability along the lines of [298, 301, 302, 295, 306–
309, 232] should lead in some cases to gravitational collapse into an RN BH and
into a hairy BH in other cases. There will also be a wide range of cases in which
no black hole forms at all.
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Appendix A

Near-horizon geometry of
Kerr-Newman

In Chapter 2 we studied the scalar QNM spectra of the ℓ “ m “ 2 and ℓ “ m “ 0

modes of Kerr-Newman. These are representative elements of the two distinct
classes or sectors of QNM that KN can have. As discussed in [57–59], these two
classes of QNM can be (within a very good approximation) identified analysing
the sign of the quantity δ2 ´ defined in (2.39) ´ that appears naturally in the
near-horizon analysis of modes. Concretely, for the QNM sector with δ2 ă 0 (e.g.
the ℓ “ m “ 0 modes), the QNM spectra has two independent and clearly distinct
families of modes ´ PS and NH modes ´ in the entire parameter space of KN.
On the other hand, the QNM sector with δ2 ą 0 (e.g. the ℓ “ m “ 2 modes) is
such that sufficiently close to extremality and for high Θ one can state that there
is a single PS-NH family of QNMs and its overtones (although for small Θ one
might still say that the PS and NH families are present and clearly distinguishable).
Thus, the condition δ2pm, ℓ,Θq “ 0, which depends on tm, ℓ,Θu, provides a good
approximation for the boundary that separates the two QNM sectors. In certain
points of Chapter 2, we used the equivalent notion of a critical value Θcpm, ℓq at
which δ2 “ 0. Furthermore, in the literature other critical quantities such as µc, F0

and J (all defined later) are used to describe this boundary [57, 58, 310, 311, 59].
In this appendix, we attempt to clarify the relationship between the plethora
of critical quantities, and provide a complementary first-principles identification
of this boundary in terms of the effective AdS2 Breitenlöhner-Freedman (BF)
bound [197, 198] on the near-horizon extremal Kerr-Newman (NHEKN) geometry.
The analysis presented here is quite similar to that of Myers-Perry-de Sitter in
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Chapter 3. This section is self-contained, but see Section 3.2.3 for further details
and motivation of the near-horizon geometry.

To find the near-horizon geometry, we take the Kerr-Newman metric (2.1) at
extremality, and zoom into the horizon by first making the coordinate and gauge
transformations

r Ñ r` ` pr2` ` a2qϵ ρ, tÑ
τ

ϵ
, ϕÑ ψ ` Ωext

H

τ

ϵ
,

AÑ A`
r`Q

r2` ` a2
dτ

ϵ
, (A.1)

where Ωext
H “ a

r2``a2

ˇ

ˇ

ˇ

ext
. The near-horizon limit is then given by the limit ϵ Ñ 0.

The ϕ-transformation ensures that the coordinates pτ, ρ, θ, ψq co-rotate with the
horizon, and the gauge transformation of A is required for the near-horizon limit
to yield a finite gauge field. Using the fact that at extremality ∆ has a double root,
∆|r` „ pr ´ r`q

2, the resulting near-horizon (NHEKN) geometry is

ds2 “ Σpr`, θq

ˆ

´ρ2dτ 2 `
dρ2

ρ2

˙

`
pr2` ` a2q2 sinpθq2

Σpr`, θq
pdψ ` 2r`ΩHρdτq

2
` Σpr`, θqdθ

2,

A “ Q

„

ρdτ ´
r`

Σpr`, θq

`

2r`ρdτ ` a sin2 θdψ
˘

ȷ

, (A.2)

where Σpr`, θq ” r2` ` a2 cos2 θ. This is still a solution of 4-dimensional Einstein-
Maxwell theory (with zero cosmological constant). The τ ´ ρ part of this metric
describes the 2-dimensional anti-de Sitter (AdS2) spacetime, a solution of the
vacuum Einstein equations with a negative cosmological constant, with Ricci scalar
Rp2q “ ´2{Σpr`, θq, and hence AdS2 radius L2

AdS “ Σpr`, θq. The geometry is much
like AdS2ˆS

2, being exactly AdS2ˆS
2 in the RN limit a “ 0, or e.g. when θ “ 0 or

θ “ π. The isometry group SLp2, RqˆUp1q of this near-horizon or throat geometry
was first described in [312], and has been studied extensively in the context of
the Kerr/CFT correspondence [313], which has since been extended to include
Kerr-Newman. See [314] for a review of NHEKN and its CFT interpretation.

We now want to find the Klein-Gordon equation on NHEKN. This can be done
in two equivalent ways, either by directly computing the Klein-Gordon equation
on the near-horizon geometry (A.2), or by taking the near-horizon limits (A.1)
of the Klein-Gordon equation (2.8a)-(2.8b) on the full KN geometry. We take
the latter approach. First, note that in order to preserve the form of the Fourier
ansatz e´iωt`imϕ, all finite frequencies must approach the superradiant frequency
in the near-horizon limit, ω Ñ mΩH ` ϵ ω̂. Applying this, and the near-horizon
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transformations (A.1) to (2.8a)-(2.8b), we get the radial and angular ODEs for the
Klein-Gordon equation on NHEKN,

d

dρ

ˆ

ρ2
dR

dρ

˙

`

„

p2r2` ` a2qm2Ω2
H `

1

ρ2
pω̂ ` 2mr`ρΩHq

2
´ λ

ȷ

Rpρq “ 0, (A.3a)

d

dx

ˆ

p1´ x2q
dS

dx

˙

`

„

m2

x2 ´ 1
` pamΩH xq

2
` λ

ȷ

Spxq “ 0, (A.3b)

where recall that x “ cos θ and λ is the separation constant of the problem. Note
that the angular equation (A.3b) is still the oblate spheroidal harmonic equation,
but it does not contain the eigenfrequency ω̂ since in the near-horizon limit (and
at leading order) the original frequency ω has been replaced by the superradiant
frequency ω Ñ mΩH . In the limits m “ 0 or a “ 0 the angular component of
the Klein-Gordon equation can be solved exactly, since the eigenvalues are simply
those of the spherical harmonics λ “ ℓpℓ ` 1q, but otherwise we can solve the
NHEKN angular equation (A.3b) numerically, using the same redefinition (2.11)
as the angular equation (2.8b) on the full KN geometry.

What is the interpretation of the radial part (A.3a) of the NHEKN Klein-Gordon
equation? Using the standard Fourier decomposition Φ “ e´iω̂τ`imψRpρq, we can
rewrite the near-horizon radial equation (A.3a) as a Klein-Gordon equation for a
massive charged scalar field on AdS2,

´

∇̂´ iqeffAeff

¯2

Φ “ L´2
AdS

“

λ´m2
pa2 ` 2r2`qΩ

2
H

‰

Φ, qeff ” ´2mr`ΩH (A.4)

where ∇̂´ iqeffAeff is the gauge covariant derivative of pure AdS2 with a homoge-
neous electric field:

ds2AdS2
“ L2

AdS

ˆ

´ρ2dτ 2 `
dρ2

ρ2

˙

, Aeff “ ´ρ dτ. (A.5)

In other words, starting with a massless and uncharged scalar field and taking
the near-horizon limit (A.1), the scalar field acquires an effective mass and charge
from the perspective of the near-horizon geometry, where the charge arises as a
consequence of the horizon rotation ΩH .

In pure AdS2, it is well known that massive scalar field perturbations are nor-
malisable even if their squared mass ξ2 is negative, provided it is above the
Breitenlöhner-Freedman (BF) bound: ξ2L2

AdS ě ´1
4

[197, 198]. On the other hand,
if the mass is below the BF bound, the scalar field perturbation is not stable. A
similar argument applies to the NHEKN geometry. The asymptotic behaviour of a
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solution of the near-horizon radial equation (A.3a) is R|ρÑ8 „ ρ∆˘ , where ∆˘ are
the 2-dimensional conformal scaling dimensions

∆˘ “
1

2

ˆ

´1˘
b

1` 4ξ2effL
2
AdS

˙

, ξ2effL
2
AdS ” λ´ p6r2` ` a2qm2Ω2

H (A.6)

“ λ´m2 sin
2 Θ

`

6` sin2 Θ
˘

`

1` sin2 Θ
˘2 .

(A.7)

These solutions do not oscillate at large ρ (i.e. they are normalisable, with finite
energy) provided that

ξ2effL
2
AdS ě ´

1

4
. (A.8)

This defines the effective BF bound for NHEKN1. Note that while the effective
AdS2 length scale LAdS is a function of θ (and consequently so is the mass ξeff), the
physically relevant quantity is the dimensionless mass ξeffLAdS which is independent
of θ.

The quantity δ2 “ p6r2` ` a2qm2Ω2
H ´ 1

4
´ λ was defined in (2.39) in the context of

the matched asymptotic expansion of the NH modes ω̃MAE of (2.54). As discussed
at the end of section 2.2.2, the sign of δ2 indicates two distinct types of behaviour
of the matched asymptotic expansion of the NH modes, since it determines whether
δ gives a real or imaginary contribution to ω̃MAE. By studying the numerical QNM
spectrum, it has also been observed that the sign of δ2 approximately corresponds
to the phase boundary of the families of QNMs (i.e. whether there are one or two
distinct families): see [57–59] and the discussion in section 2.4.1.

Complementing the analysis of [57–59] we add that from the perspective of the
NHEKN geometry, we see that δ2 is related to the effective near-horizon mass by

1` 4ξ2effL
2
AdS “ ´4δ2. (A.9)

Therefore, we conclude that the sign of δ2 effectively indicates whether the effective
AdS2 BF bound of the near-horizon geometry is violated or not. Namely, one has
δ2 ď 0 when the BF bound (A.8) is respected and δ2 ą 0 when the BF bound is
violated. In the RN limit (Θ “ 0), the BF bound is always respected. However,
as we move to the Kerr limit (Θ “ π{2), perturbations with certain combinations
of the angular quantum numbers tm, ℓu violate the BF bound. Concretely, in

1Note that an instability of the near-horizon geometry does not necessarily imply an instability
of the full extremal KN geometry, see Section 3.2.3 and [144, 225] for a detailed discussion about
this point regarding Kerr.
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azimuthal number m

ℓ 2 3 4 5 6 7 8 9 10

2 0.88
3 - 0.71
4 - - 0.66
5 - - - 0.62
6 - - - 1.00 0.60
7 - - - - 0.88 0.59
8 - - - - - 0.80 0.59
9 - - - - - - 0.75 0.58
10 - - - - - - 1.10 0.71 0.57

Table A.1: The critical value Θ‹ of Θ “ arctanpa{Qq above which the effective
AdS2 BF bound (A.8) in KN is violated, for a range of values of the angular
quantum numbers tm, ℓu. Dashed entries indicate that the BF bound is respected
for all Θ. Perturbations with ℓ ă 2 respect the BF bound for all Θ and so are not
displayed.

Table A.1 we display the critical value Θ‹ of Θ “ arctanpa{Qq above which the BF
bound (A.8) is violated (and thus δ2 ą 0), while the values of tm, ℓu which always
respect the BF bound, for all Θ, are indicated by a dash. In the former case, there
are two families of QNMs (the NH and PS modes) for 0 ď Θ ă Θ‹ and a single
‘NH-PS’ family for Θ‹ ă Θ ď π{2, while in the latter case there are two clearly
distinct families of PS and NH modes for any Θ. For example, the m “ ℓ “ 2 entry
is Θ‹ „ 0.881 as discussed in section 2.2.2: for 0 ď Θ ă 0.881 there are two distinct
families (PS and NH) of QNMs but for 0.881 ă Θ ď π{2 there is a single ‘NH-PS’
family (and its overtones). Our results are consistent with previous discussions in
the Kerr limit; e.g. compare our Table A.1 with Fig. 1 in [57], which computed
the phase boundary in Kerr numerically, by searching the QNM spectrum for each
pair of quantum numbers tm, ℓu.

In Kerr, at extremality, one can transform the radial part of the Klein-Gordon
equation to a Schrödinger-type equation with a real potential (under the assumption
that the frequencies approach the superradiant bound ω Ñ mΩH), and determine
the location of the peak of the effective potential [57]. A critical quantity F0

was defined such that the effective potential has a peak outside the horizon when
F2

0 ą 0. F2
0 differs from the Kerr limit of δ2 by 1{4. In [59] it was argued that the

generalisation of F0 to Kerr-Newman is a quantity J 2, which again differs from δ2

by a quarter
J 2

“ δ2 ` 1{4. (A.10)
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By comparison with (A.9) we see that J is essentially the near-horizon effective
mass, J 2 “ ´ξ2effL

2
AdS. Hence the criteria J 2 “ 0 is the point at which the

near-horizon mass ξeff vanishes, while the condition δ2 “ 0 is when the effective
mass ξ2eff decreases even further and violates the BF bound. Thus our BF bound
analysis explains the physical relevance of the two quantities δ2 and J 2 introduced
in [57–59] and why they differ by 1{4.

In the eikonal limit, we can parameterize the phase boundary or separatrix curve
between the two QNM behaviours by just two parameters tµ,Θu, where µ ” m

ℓ`1{2

is called the inclination parameter [57–59]. By considering the location of the
peak of the WKB potential2 in the eikonal limit pℓ` 1

2
q " 1, a criterion for a peak

to exist outside the event horizon was given in [59] (see also [310, 311]):

µ2
ď µ2

c , µ2
c ”

1

2

˜

3`
12´

a

136` 56pa{Mq2 ` pa{Mq4

pa{Mq2

¸

, (A.11)

and it was also shown that the exact numerical phase boundary is well-described
by µ “ µc. The inclination parameter µ is bounded by 0 ď µ2 ď 1. Setting µc “ 1,
corresponding to equatorial modes |m| “ ℓ, in the eikonal prediction (A.11) yields
the criteria that a{M “ 1{2, or Θ “ π{6. As expected, this is the eikonal (m “ ℓ)
critical value Θeik

‹ “ π{6 at which the PS modes have vanishing imaginary part in
the extremal limit, as discussed in section 2.3.1. The criteria µ2 ď µ2

c that one gets
from considering the location of the peak of the WKB potential can also be found
by taking the eikonal limit of the BF bound criteria (A.8) in the eikonal limit, as
we now show. In [59, 69], in addition to the eikonal approximation pℓ` 1

2
q " 1, a

further approximation was made for the angular eigenvalues of (A.3b):

λ „

ˆ

ℓ`
1

2

˙2

`
1

2

„

´1`
m2

pℓ` 1{2q2

ȷ

m2a2Ω2
H . (A.12)

Inserting this into the BF bound criteria (A.8), and solving for µ, we find that the
leading-order eikonal condition for the BF bound to be respected is equivalent to the
eikonal condition (A.11) above. The criteria for the vanishing of the near-horizon
mass ξ2effL2

AdS (or equivalently the vanishing of J 2) also yields the same µc (A.11)
in the eikonal limit, since the factor of 1

4
is sub-leading.

Strictly speaking, the eikonal condition µ2 ď µ2
c in (A.11) is only valid in the eikonal

limit pℓ` 1
2
q " 1, whereas the BF bound criteria (A.8) has no such restriction (both

2Note that this is different to the WKB expansion derived in section 2.2.1.2, as we allow the
possibility that m ‰ ℓ here.
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are derived in the near-extremal limit). However, in practice the two criteria are in
very close agreement even for small ℓ. For example, even as low as m “ ℓ “ 2, the
eikonal prediction is Θ|µ“µc “ 0.876 for the m “ l “ 2 modes, versus Θ‹ “ 0.881 for
the BF bound criteria — see Table A.1. Given that these are both only considered
to be approximate criteria we use them interchangeably in Chapter 2.

The computation of the near-horizon geometry in this appendix generalises naturally
to other spacetimes, even those which are not asymptotically flat. For example, in
Chapter 3, a violation of the near-horizon BF bound was found to a necessary (but
not sufficient) condition for strong cosmic censorship to be respected in Myers-Perry
de Sitter, and this is intimately related to the fact that for sufficiently large |m| “ ℓ

there is only a single family of modes (just like in Kerr and KN).
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Appendix B

Near-horizon QNMs of MPdS:
explicit expressions

In Section 3.2.3.3 we employed a matched asymptotic expansion procedure to find
an analytic expression for the frequencies ωNH of the near-horizon (NH) modes
which very well approximate the associated numerical frequencies of the system
near-extremality. This ωNH is given by (3.54)-(3.55) and in this appendix we provide
the explicit expression for the quantities Ωp1q and κp1q that appear in (3.55). Note
that, for all N , we can express the black hole parameters pa,M,Lq in terms of the
dimensionless horizon radii py`, y´q by

a2

r2c
“

y2´y
2
`

p1´ y2´qp1´ y2`qp1´ y2N`2
´ qp1´ y2N`2

` qpy2` ´ y2´qpy
2N`2
` ´ y2N`2

´ q

ˆ

"

p1´ y2`qppy
4N`4
´ ` 1qy2N` py2` ´ y2´q ´ p1´ y2´qpy

4N`4
´ ` y4N`4

` qq

` y2N´ p´y4´py
2N`2
` ` 1q2 ` 2y4´py

4
` ` 1qy2N` ` p1´ y2N`2

` q
2
py2´ ´ p1´ y2´qy

2
`qq

*

,

M

r2Nc
“

p1´ y2´qp1´ y2`qpy
2
` ´ y2´qp1´ y2N`2

´ qp1´ y2N`2
` qpy2N`2

` ´ y2N`2
´ q

2py2` ´ y2´ ´ p1´ y2´qy
2N`4
` ` p1´ y2`qy

2N`4
´ q2

,

L2

r2c
“
y2´ ´ y2` ` p1´ y2´qy

2N`4
` ´ p1´ y2`qy

2N`4
´

y2´ ´ y2` ` p1´ y2´qy
2N`2
` ´ p1´ y2`qy

2N`2
´

. (B.1)

The near-horizon modes, as previously derived in Section 3.2.3.3 and written
in (3.54), can be written for all N as

ωNH “ mΩpr`q|ext `

"

mΩp1q ´
i

2

ˆ

1` 2n` 2iqAdS `

b

1` 4µeff
2LAdS

2

˙

κp1q

*

σ,

(B.2)
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where qAdS, µeff and LAdS are given by (3.40)-(3.42). The terms Ωp1q and κp1q are
the first-order coefficients of the Taylor expansions of Ωpr`q and κ` in the near-
extremal parameter σ “ 1 ´ y´{y`, as previously defined in (3.43). Explicitly,
these are given by

κp1q ”
dκ`
dσ

ˇ

ˇ

ˇ

ˇ

σ“0

“
1

rcy`

?
1`Np2y2`p´1` y2N` q ´Np´1` y2`qp1` y2`2N

` qq
b

p1´ y2`qp1´ y2`2N
` q

b

1` y2`2N
` p´2` y2` `Np´1` y2`qq

,

(B.3)

Ωp1q ”
dΩpr`q

dσ

ˇ

ˇ

ˇ

ˇ

σ“0

“
1

rc

2y2`p1´ y2N` q ´Np1´ y2`qp1` y2`2N
` q

2y`p1´ y2`qp1´ y2`2N
` q

ˆ
1` y4`4N

` p3` 2N ´ 2p1`Nqy2`q ´ y2`2N
` p3´ pN ´ p1`Nqy2`q

2q

p1´ y2`2N
` p2`N ´ p1`Nqy2`qq

3{2
a

p1`NqpNp1´ y2`q ´ y2`p1´ y2N` qq
,

(B.4)

and Ωpr`q at extremality is given by

Ωpr`q|ext “
1

rcy`

d

Np1´ y2`q ´ y2`p1´ y2N` q

p1`Nqp1` y2`2N
` p´2` y2` `Np´1` y2`qqq

. (B.5)
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Appendix C

Numerical convergence tests for
MPdS

We use pseudospectral collocation methods to generate our numerical data, and
thus our numerical results should (and do) have exponential convergence as the
number of points used to discretise the numerical grid increases (see e.g [166]). All
of our numerical results have converged with an error that is not higher than 10´8.
To illustrate our numerical error analysis, a convergence test is given in Fig. C.1
for d “ 5 MPdS at r´ “ 0.9995 r`, with m “ l “ 10. To test convergence, we
recompute these modes with increasing grid resolution and precision (increasing
the precision proportionally to the resolution), up to presolution, precisionq “

1600 1700 1800 1900

10-5

10-50

10-40

10-30

10-20

10-10

Fig. C.1: Convergence of β for d “ 5 MPdS with m “ l “ 10 and r´ “ 0.9995 r`,
as displayed in Fig. 3.10. These modes were computed at presolution, precisionq “
p1600, 500q. The precision is scaled linearly with the grid resolution, i.e. a maximum
presolution, precisionq “ p2000, 625q which is used to compute the reference value
βref .
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p2000, 625q. This maximum value is used to compute βref . The maximum error
|β ´ βref | is „ 10´8.2, as expected.
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