Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front
Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front
The southwest Atlantic gyre connects several distinct water masses, which means that this oceanic region is characterized by a complex frontal system and enhanced water mass modification. Despite its significance, the distribution and variability of vertical mixing rates have yet to be determined for this system. Specifically, potential conditioning of mixing rates by frontal structures, in this location and elsewhere, is poorly understood. Here, we analyze vertical seismic (i.e., acoustic) sections from a three-dimensional survey that straddles a major front along the northern portion of the Brazil-Falkland Confluence. Hydrographic analyses constrain the structure and properties of water masses. By spectrally analyzing seismic reflectivity, we calculate spatial and temporal distributions of the dissipation rate of turbulent kinetic energy, ε, of diapycnal mixing rate, K, and of vertical diffusive heat flux, FH. We show that estimates of ε, K, and FH are elevated compared to regional and global mean values. Notably, cross-sectional mean estimates vary little over a 6 week period whilst smaller scale thermohaline structures appear to have a spatially localized effect upon ε, K, and FH. In contrast, a mesoscale front modifies ε and K to a depth of 1 km, across a region of O(100) km. This front clearly enhances mixing rates, both adjacent to its surface outcrop and beneath the mixed layer, whilst also locally suppressing ε and K to a depth of 1 km. As a result, estimates of FH increase by a factor of two in the vicinity of the surface outcrop of the front. Our results yield estimates of ε, K and FH that can be attributed to identifiable thermohaline structures and they show that fronts can play a significant role in water mass modification to depths of 1 km.
Gunn, Kathryn L.
5952c101-ecf3-4b62-b817-86007cdc8ce4
Dickinson, Alex
2b6005a5-3168-4173-a861-ca736ec1cd3e
White, N.J.
eb4ecd52-ad8f-49e8-9292-6770215e7ae4
Caulfield, Colm-cille P.
6b898276-f8b9-4f3a-8e02-9240c7acf2e0
Gunn, Kathryn L.
5952c101-ecf3-4b62-b817-86007cdc8ce4
Dickinson, Alex
2b6005a5-3168-4173-a861-ca736ec1cd3e
White, N.J.
eb4ecd52-ad8f-49e8-9292-6770215e7ae4
Caulfield, Colm-cille P.
6b898276-f8b9-4f3a-8e02-9240c7acf2e0
Gunn, Kathryn L., Dickinson, Alex, White, N.J. and Caulfield, Colm-cille P.
(2021)
Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front.
Frontiers in Marine Science, 8, [697179].
(doi:10.3389/fmars.2021.697179).
Abstract
The southwest Atlantic gyre connects several distinct water masses, which means that this oceanic region is characterized by a complex frontal system and enhanced water mass modification. Despite its significance, the distribution and variability of vertical mixing rates have yet to be determined for this system. Specifically, potential conditioning of mixing rates by frontal structures, in this location and elsewhere, is poorly understood. Here, we analyze vertical seismic (i.e., acoustic) sections from a three-dimensional survey that straddles a major front along the northern portion of the Brazil-Falkland Confluence. Hydrographic analyses constrain the structure and properties of water masses. By spectrally analyzing seismic reflectivity, we calculate spatial and temporal distributions of the dissipation rate of turbulent kinetic energy, ε, of diapycnal mixing rate, K, and of vertical diffusive heat flux, FH. We show that estimates of ε, K, and FH are elevated compared to regional and global mean values. Notably, cross-sectional mean estimates vary little over a 6 week period whilst smaller scale thermohaline structures appear to have a spatially localized effect upon ε, K, and FH. In contrast, a mesoscale front modifies ε and K to a depth of 1 km, across a region of O(100) km. This front clearly enhances mixing rates, both adjacent to its surface outcrop and beneath the mixed layer, whilst also locally suppressing ε and K to a depth of 1 km. As a result, estimates of FH increase by a factor of two in the vicinity of the surface outcrop of the front. Our results yield estimates of ε, K and FH that can be attributed to identifiable thermohaline structures and they show that fronts can play a significant role in water mass modification to depths of 1 km.
Text
fmars-08-697179
- Version of Record
More information
Accepted/In Press date: 2 September 2021
e-pub ahead of print date: 5 October 2021
Identifiers
Local EPrints ID: 484006
URI: http://eprints.soton.ac.uk/id/eprint/484006
ISSN: 2296-7745
PURE UUID: 2ab867ba-4b8e-4477-848d-41baa6f740c5
Catalogue record
Date deposited: 08 Nov 2023 18:23
Last modified: 18 Mar 2024 04:16
Export record
Altmetrics
Contributors
Author:
Kathryn L. Gunn
Author:
Alex Dickinson
Author:
N.J. White
Author:
Colm-cille P. Caulfield
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics