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Abstract
University of Southampton

Faculty of Social Sciences

Social Statistics and Demography

Thesis for the degree of Doctor of Philosophy

Statistical Estimation and Inference with Aggregated and Displaced Georeferenced Data

by Md Jamal Hossain

The thesis addresses the problem of statistical inference for data affected by geocoordinate random displace-
ment or a combination of aggregation and random displacement, which is often used to preserve respondents’
confidentiality. However, the distortion induced in the location of the observations may compromise the
validity of location-dependent estimates. This thesis explores various situations where such trade-offs may
arise, including: 1) population density estimation, 2) estimation of health and demographic indicators for
lower geographical domains, 3) regression analyses involving lower geographical domains (e.g., within
the context of multilevel models), and 4) regression analyses incorporating spatial covariates calculated or
linked from external data sources based on geocoordinates.

A measurement error model (MEM) is developed for the case of random displacement or aggregation. It is
demonstrated under the Demographic and Health Survey (DHS) random displacement process by devising a
new probability distribution for the displaced coordinates. Two methods, Kernel Density Estimation-based
(KDE) and External Data-based Classification (EDC), are proposed within the MEM framework to approxi-
mate the conditional distribution of the true coordinates given the ones subject to displacement. Additionally,
a novel method, KDE-ED, that combines KDE and EDC is proposed to address both aggregation and random
displacement issues in approximating the conditional distribution of true coordinates. The KDEmethod uses
kernel density estimates for approximating the unknown marginal distribution of true location coordinates
and is implemented using the Stochastic Expectation-Maximization (SEM) algorithm. The EDC approxi-
mates the marginal distribution of true coordinates using external data sources and implements estimation
through numerical integration.

The MEM and the two proposed KDE and EDCmethods are used to address all four location-dependent sta-
tistical estimation issues mentioned. The KDE and EDC can be directly used to estimate population densities
or domain parameter estimates accounting for random displacement or both aggregation and displacement
errors. Apart from the EDC (or KDE)-based algorithm, a new method incorporating a parametric Bootstrap
Bias correction (BC) is proposed to obtain improved estimates of the parameters in the linear mixed model,
correcting misplacement error due to random displacement. Furthermore, the EDC (or KDE) can be used
under regression calibration (EDC-RC) to improve the estimation of spatial covariate effects in a linear re-
gression model under random displacement. An alternative estimator using only a non-parametric Bootstrap
Bias correction over the usual OLS estimators is also proposed for the latter situation. The performance of
all estimators developed, as well as the variance estimators proposed for them, is assessed via simulation
exercises and illustrated using real data from the 2011 Bangladesh DHS.
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Chapter 1

Introduction

1.1 Background of the research and problem statement

The thesis addresses the problem of obtaining accurate statistical estimates and inferences with

aggregated and randomly displaced georeferenced data. Georeferenced data collected through

various register systems or surveys are extensively used in spatial data analysis and statistical

modelling. The Demographic and Health Survey (DHS) is an example of a widely-used survey

that collects georeferenced data. Researchers use the nationally representative georeferenced

population-based DHS dataset to examine geographic variations and inequalities in wealth

(poverty), health condition, and access to resources within nations to achieve Sustainable

Development Goals (SDGs) (Burgert et al., 2018). However, it is essential to ensure the confiden-

tiality of respondents while making georeferenced data accessible to analysts, researchers, and

policymakers.

One way of preserving register data or survey respondents’ confidentiality involves introducing

measurement errors to location coordinates through aggregation and random displacement pro-

cesses, such as the DHS random Enumeration Area (EA) displacement process, described in the

literature review Chapter 2 of this thesis. An EA is a small geographical area of the country with

100-300 households. Nevertheless, the aggregation and random displacement process can intro-

duce measurement errors in the resulting data or estimates that depend on location. Therefore, it

is crucial to investigate the impact of the aggregation and displacement error on the estimates and

then use appropriate statistical methods accounting for the measurement error to derive better esti-

mates. In particular, two questions need to be addressed: a) what is the impact of aggregation and

displacement on statistical estimation and inference? and b) can we derive precise and consistent

1



estimates accounting for the measurement error caused by the aggregation and displacement?

As aforementioned, various statistical analyses of aggregated and randomly displaced location

data can be affected, for example, density estimates of the data. The precision and smoothness

of the density estimates of observations depend on the availability of the exact coordinates of

observations. The aggregation concentrates data at the centroid of the EA if the centroid is used as

the reference point, while the random displacement moves the original location from one place to

another. Therefore, the density estimates of observations under aggregation and displacement may

be biased and differ from the true estimates. To the best of our knowledge, past studies (for example,

Groß et al., 2017, 2020) attempted to obtain corrected density estimates of data affected by only

aggregation error under a measurement error model and did not consider the random displacement

or the more complex aggregation and random displacement problem.

Furthermore, estimates of health and demographic indicators at the sub-national level based on sur-

vey data are crucial for targeting interventions and making policies. In particular, most low-income

countries have decentralised provision and funding of public services, including health and nutri-

tion. However, routine (and survey) data representative of administrative units relevant to service

provision/delivery are unavailable. Survey estimates derived, for example, using geospatial mod-

elling used by the United Nations and national governments to monitor subnational development

indicators tend to use approaches not accounting for displaced EAs, potentially resulting in a mis-

direction of resources and funding at subnational levels. Specifically, any estimates at an adminis-

trative level lower than the random displacement designated administrative boundary (referred to

as a domain) may be biased due to the random displacement process. This is because an EA can

be placed outside of its original domain area due to the random displacement process, referred to

as an EA misplacement. Previous studies in the literature have paid less attention to the domain

estimates under a misplacement error caused by the random displacement process. Thus, in this

thesis, we aim to explore the impact of the random point displacement on estimates at lower admin

levels (domain) and develop methods under a measurement error model for displaced coordinates,

considering any additional information available to improve the estimates.

In the case of analytical inference, if a random EA displaced coordinates are used to link variables

from different data sources, for instance, one of which is a response variable available at DHS

EA points, and another is a covariate available at the disaggregated level of the geography from

a different survey, then the regression coefficient estimates may be biased (Warren et al., 2016b;

Wilson and Wakefield, 2021). A covariate derived from the true location coordinate is hereafter

called a spatial covariate. An example is the distance from the EA centroid to the country’s nearest
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health facility. Measurement errors can arise when calculating such spatial covariates (e.g., dis-

tance or environmental condition), using displaced location coordinate. A regression model with

measurement error in variables (covariates) can result in biased estimates of its regression coeffi-

cients (Aigner, 1973; Carroll et al., 2006, section 3.2; Grace, 2017, section 2.2). Past studies, for

example, Warren et al. (2016b) worked on correctly linking variables from different data sources

under the DHS random displacement, and Warren et al. (2016a); Perez-Heydrich et al. (2016);

Grace et al. (2019) attempted to obtain estimates of spatial covariates by correcting the displace-

ment error. The methodological details of these studies are discussed and reviewed in Chapter

2. Most of the studies used the likely true locations, which were obtained by displacing the ob-

served displaced coordinates using the random displacement process, in their estimation methods

in different ways to correct the displacement error. Enhanced location-dependent estimates can

be achieved by generating more likely true locations using all available information. Therefore,

this thesis aims to develop a measurement error model to generate more likely true locations us-

ing additional information from external data sources, which are likely to be associated with the

distribution of the unknown true locations.

Multilevel models are used to analyze grouped observations or when a survey shows a hierarchical

data structure, such as the case with the Demographic and Health Surveys (DHS). Random effects

in multilevel models are specified at the group level to capture the grouping structure of observa-

tions. For instance, the groups can be defined as the EAs or administrative units of the country in

the DHS data. When the random effects in mixed models are specified at below the random dis-

placement restricted administrative units, such as the sub-district level or admin 3 of the country,

where EAs can be misplaced or mixed among sub-districts due to a random displacement process,

the estimates of multilevel model parameters, especially the random variance components, and

associated model-based estimates of finite population parameters (e.g., group/sub-district means)

may be biased. When random effects are specified at progressively lower administrative levels,

the potential for misplaced EAs increases, leading to greater bias in estimates. Thus, in situations

with high misplacement errors, failing to account for this error can result in misleading inferences.

To the best of our knowledge, previous studies did not consider this problem. This thesis aims to

contribute by addressing these gaps in the literature by developing bias-corrected methods of the

linear mixed model parameters.

1.1.1 Research objectives

The specific research objectives of this thesis are:
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i. To develop measurement error models and estimation methods for the aggregated and ran-

domly displaced georeferenced data.

ii. To develop methods for accurate estimation of population density of interest and health

and demographic indicators at lower geographical levels accounting for aggregation and

displacement errors.

iii. To develop methods for estimating fixed effects and variance components in mixed mod-

els and estimating variances of the model parameters estimates accounting for the random

displacement processes.

iv. To propose methods for correcting bias in the estimates of spatial covariate effects within

a linear regression model under random displacement, and to estimate the variances of the

model parameter estimates under the proposed methods.

1.2 Data sources

The thesis evaluates the proposed methods and demonstrates their practical applications using data

from various sources. To illustrate the methodology, simulation data and real survey data are used.

The simulation data is generated to reflect different real survey and census data characteristics.

To provide a complete understanding of the data and characteristics used in the thesis, they are

discussed in detail below:

1.2.1 Bangladesh demographic and health survey (BDHS) data

The 2011 BDHS (NIPORT, 2013) publicly available data is used in this thesis to show the ap-

plication of the proposed methods under the random displacement process. The survey includes

Enumeration Area (EA) centroids that have been displaced to protect respondents’ confidentiality

and enable researchers to explore spatial variations at disaggregated geographical levels. The na-

tionally representative survey data was collected using a two stage stratified sample that covered

all 7 divisions (admin-1), 64 districts (admin-2), and 396 (out of 544) Upazilas (admin-3) of the

country.

Following the BDHS 2011 documentation (NIPORT, 2013), the survey utilised the list of enumera-

tion areas (EAs) prepared for the Bangladesh Population and Housing Census 2011 as its sampling

frame. The Bangladesh Bureau of Statistics (BBS) created EAs that, on average, comprised ap-

proximately 120 households each. Details about the creation of EAs are described in section 1.2.3.

However, during the first stage of sampling, 600 EAs, also known as clusters, were chosen, with
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the probability proportional to the number of households within each EA. These EAs were strat-

ified by division (admin 1) and rural-urban classification, with 393 EAs in rural regions and 207

EAs in urban regions. In the next stage, a sample of 30 households was selected systematically

from each EA, based on the order in the initial household listing. The chosen households were

likely to be dispersed throughout the entire EA. Then, the entire sample was georeferenced at the

centre of the corresponding EA.

While EAs are generally designed to focus on population count rather than geographic size (mea-

sured in square meters), their specific sizes can vary based on population density and whether

the area is urban or rural. For example, an EA in an urban area such as Dhaka, the capital of

Bangladesh, might be considerably smaller in size than an EA located in a more rural region of

the country. However, to preserve the confidentiality of respondents, all EA coordinates in the

2011 survey are displaced using the DHS displacement algorithm, which is described in section

3.2.1, before being provided to data analysts. The DHS displacement process involves a random

direction and a random distance. Displacement distances, determined by population density, vary

between urban and rural areas. Specifically, within a given circle with a radius equal to the maxi-

mum displacement distance, urban locations are displaced by 0-2 kilometres, while rural locations

are displaced by 0-5 kilometres. Furthermore, 1% of rural locations are randomly displaced by

0-10 kilometres. Notably, these urban-rural distance parameters remain consistent across all DHS

surveys (Burgert et al., 2013). Nevertheless, data analysts are not informed about which rural lo-

cations undergo this 0-10 kilometre displacement. The EA displacement is constrained within the

district (admin 2) boundaries. Consequently, in the case of the BDHS 2011, the displaced EA co-

ordinates may be wrongly positioned at lower administrative levels in Bangladesh, for example,

the upazila level (admin 3). It is worth noting that only the displaced EA centroid coordinates are

available in the survey GPS data.

By mapping the displaced EA coordinates to their respective geographical regions, we can deter-

mine the corresponding upazila identifiers. However, due to the use of displaced coordinates, these

identifiers may not be accurate if the EA coordinates are misplaced. These are hereafter referred

to as “displaced upazila IDs”. Although the true EA coordinates are not provided in the GPS data,

the correct upazila identifiers (known as upazila IDs, distinct from coordinates) for each EA and

household are available in the BDHS 2011 survey data. This inclusion was not continued in sur-

veys after 2011. These identifiers are hereafter referred to as “true upazila IDs”. These true upazila

IDs can be used to validate any estimates at the upazila level under the DHS random displacement.

To illustrate the performance of the proposed methods using real survey data, the thesis aims to
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estimate poverty, i.e., the proportion of poor households at the upazila level in Bangladesh, using

the 2011 BDHS Wealth Index (WI) data. This is discussed in Chapter 3. The WI is an asset-based

indicator of people’s living standards and is an alternative measure of poverty (Falkingham and

Namazie, 2002, section 4.1). In this thesis, a household is considered relatively poor if its wealth

index falls below the 40th percentile of the wealth indices for all surveyed households.

1.2.2 WorldPop gridded population count data

The population count at a finer spatial resolution may be more closely associated with the un-

known distribution of the true coordinates of units, e.g., households or Enumeration Areas (EA).

Additionally, following the 2011 BDHS documentation, sampled EAs were selected with a prob-

ability proportional to the 2011 census EA size (i.e. the number of households) (NIPORT, 2013).

This suggests that the gridded population count may be a good predictor for selecting the likely

true EA points from the correct administrative units. Although the population count for the true po-

tential location data is not always available, estimates can be sourced from the WorldPop database

that provides annual gridded 100m x 100m population counts for each country (Bondarenko et al.,

2020). In this thesis, to apply the proposed method, we consider the WorldPop gridded population

counts as fixed, assuming they are measured without error.

The WorldPop top down disaggregation method uses a two-step dasymetric mapping technique

to estimate population counts at a higher spatial resolution than is available from admin units

(Sorichetta et al., 2015; Stevens et al., 2015). First, a weighting layer is computed using the random

forest machine learning algorithm based on the relationship between population count and high-

resolution geospatial covariates, such as lights at night, building locations and road networks at the

administrative level. In the second step, the weighting layer is used to dis-aggregate projected cen-

sus totals and estimate population counts for smaller areas, such as 100m grid cells. The population

density for each grid is calculated by dividing the gridded population count by the corresponding

gridded area (Leasure et al., 2021; Lazar et al., 2021).

Two different types of estimation are adopted by the top-down disaggregation method: uncon-

strained estimation across all land grid squares worldwide and constrained estimation within areas

identified as containing built settlements using satellite-derived building footprint data. In addition

to building footprint data, a water mask is also used to identify areas that are unlikely to contain

residential populations. The constrained approach achieves a more precise population distribution

as it avoids predicting small population numbers in areas that are likely uninhabited but accurately

mapped with settlements or buildings (Stevens et al., 2015).
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1.2.3 Bangladesh population and housing census data

Some characteristics of the 2011 Bangladesh Population and Housing Census (hereafter, it is re-

ferred to as the 2011 census) and the 2011 BDHS EAs are used to generate the model-based sim-

ulated data, which is described in Chapter 4 of this thesis and used to evaluate the performance

of the proposed methods. In particular, as discussed in Section 1.2.1, the true coordinates of the

2011 BDHS EAs are not available. Also, as a sampling frame, the survey used the list of EAs pre-

pared for the 2011 census. The list of the 2011 census EAs with their number of households is also

not available. Thus, we generate EA population data using the WorldPop 100m x 100m gridded

population counts following the same principles used to create the 2011 census EAs, which are

discussed below:

According to the documentation of the 2011 Bangladesh census (BBS, 2014), Bangladesh was di-

vided into 296,718 EAs, the lowest unit in the census. On average, each EA consisting of approxi-

mately 120 households. Intermediate administrative levels, such as Mauza and Mahalla (admin-5)

maps, were used to delineate EAs and ensure proper identification, with Mauza being the low-

est rural geographic unit and Mahalla being the lowest urban geographic unit. Population counts

for Mauza and Mahalla were published in the National census 2011 report, and the maps can be

compiled based on publicly available information from the 2011 census report (BBS, 2014) or the

Bangladesh Bureau of Statistics website (http://www.bbs.gov.bd/), the download link is here.

Mauzas with more than 120 households were divided into two or more EAs, while EAs with fewer

than 80 households were merged with other adjacent smaller EAs. One or more EAs were also

created in urban areas by dividing Mahallas.

1.3 Contributions of the thesis

The thesis addresses the problem of obtaining accurate statistical estimates and inferences using

georeferenced data that has either been randomly displaced or aggregated and randomly displaced

to preserve respondents’ confidentiality, resulting in measurement errors in location-dependent es-

timates. Therefore, in the case of only random displacement, a key contribution is that we develop

a measurement error model (MEM) under the DHS random displacement process, followed by the

development of the new probability distribution for the random displacement, which can be poten-

tially extended to other forms of random displacement processes. This is described in Chapter 3.

We propose two estimation methods for the MEM to obtain density estimates and domain param-

eter estimates by drawing likely true location coordinates. The first method is based on Kernel
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Density Estimates (KDE) as the marginal distribution of the true location data. The estimation is

implemented using the Stochastic Expectation-Maximization (SEM) algorithm. Additionally, we

derive the bandwidth of the KDE as part of the estimation process, which simplifies implementa-

tion and works with any bandwidth selection method, making it highly flexible. As an alternative

to the KDE-based method, a second method called External Data Classification (EDC)-based is

proposed, which approximates the unknown underlying distribution of true location data using

additional information from external data sources. The estimation of the EDC-based method is

implemented through numerical integration, and both methods are described in Chapter 3.

Also, under both aggregation and random displacement, another key contribution of this thesis is

that a method combining KDE and EDC, called KDE-ED, is proposed to obtain density estimates

and estimates of the domain parameters by developing a MEM. This is also discussed in Chapter 3.

The proposed methods’ performance is compared to competing approaches in controlled settings

through simulation studies and a real survey data application.

The next contribution is described in Chapter 4, where we develop the framework of the linear

mixed model under the random displacement process. The proposed model is fitted by an algo-

rithm under the EDC method, which is developed under the measurement error model by bringing

additional information from different external sources. We also propose a methodology for estimat-

ing the linear mixedmodel’s parameters, fixed effects and variance components, using a parametric

bootstrap bias correction (BC) under random displacement. In addition to the point estimates, we

develop variance estimation of the fixed and variance component parameters estimates under the

proposed EDC and BC methods. Finally, a model-based simulation is used to assess the perfor-

mance of the proposed methods for fitting the linear mixed model and obtaining estimates of the

model parameters, and the model-based group means under random displacement.

The final contribution of this thesis is that we develop the theory and methods for estimating the

effects of spatial covariates in a linear regression model under the random displacement process.

The model considers two types of spatial covariates: distance-based and linking area-level covari-

ates. This is described in Chapter 5. We propose two methods to fit the model. The first method

is the proposed EDC under regression calibration (EDC-RC) method that uses additional informa-

tion from external data sources and estimates the expected values of the spatial covariates. We also

develop a bootstrap bias correction method for correcting the bias of the estimates of the spatial

covariate parameters of the linear regression model under the random displacement process. Apart

from the point estimates, we develop variance estimation for the model parameter estimates under

the proposed EDC-RC and BC methods. This is implemented using model-based bootstrapping
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under repeated random displacement. A model-based simulation study is conducted to assess the

performance of the proposed methods.

1.4 Ethics approval

The Ethics Committee has approved the use of the dataset (Submission ID: 61348).

1.5 Thesis outline

This thesis is divided into six chapters, starting with a literature review in Chapter 2. It examines

the primary areas of research of this thesis, including the protection of respondents’ confidential-

ity through aggregation and displacement of geo-referenced data and measurement error models.

The literature review also focuses on density estimation with aggregated and random displaced

data, spatial statistics, mixed models, regression with spatial covariates and bootstrap bias correc-

tion under random displacement. Recent developments and challenges in statistical estimation and

inference with aggregated and displaced location data are discussed, along with possible method-

ological extensions.

Chapter 3 is devoted to developing the measurement error model for randomly displaced georef-

erenced data. It also describes the proposed estimation method for obtaining density and domain

parameter estimates correcting for displacement error based on Multivariate Kernel Density Esti-

mates (KDE). Also, an alternative method based on external data sources is presented to approxi-

mate the distribution of the unknown true locations. The chapter also presents a proposed method

for obtaining density and domain parameter estimates accounting for aggregation and displace-

ment errors. Simulation designs for analysing population (also, known as register) data under only

displacement and both aggregation and displacement are outlined, followed by a discussion of the

findings. The chapter concludes with a demonstration of the proposed method using real data and

a discussion of the results.

The proposed linear mixed model framework under the random displacement process is described

in Chapter 4. This chapter also contains methods for model fitting and variance estimation of the

model parameter estimates using the EDC method, accounting for uncertainty due to displacement

error. The chapter also includes the proposed bootstrap bias correction (BC) method to obtain

bias-corrected estimates of the linear mixed model parameters under displacement. The variance

estimation of the estimates of the linearmixedmodel parameters under the BCmethod is developed,

accounting for random displacement errors. The chapter includes model-based simulation studies
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to evaluate the impact of the DHS EA displacement on the linear mixed model estimation and

the performance of the proposed methods. Finally, the chapter concludes with a discussion of the

simulation study results.

Chapter 5 describes the theory and methods for estimating the effects of spatial covariates in the

linear regression model under random displacement. The proposed methodology based on EDC

under regression calibration for estimating the expected spatial covariate values is discussed. The

chapter also includes a bootstrap bias correction method for correcting the bias of the estimates

of the spatial covariate parameters of the linear regression model under the random displacement

process. In addition to the point estimates, variance estimation for the estimates of the model

parameters is developed under the proposed EDC-RC and BC methods. The proposed methods

are evaluated through a model-based simulation study, and the results are presented and discussed.

Finally, Chapter 6 briefly summarises the thesis and outlines potential directions for future re-

search.
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Chapter 2

Literature review

2.1 Introduction

This chapter provides an overview of the preservation of respondents’ confidentiality through ag-

gregation and displacement of geo-referenced data andmeasurement error models. We first discuss

recent developments and problems in statistical estimation and inference with aggregated and dis-

placed location data to motivate the methods, and then, their possible methodological extensions

are reviewed.

2.2 Confidentiality preservation via aggregation and displacement

Collecting census or survey respondents’ household location data is essential for various research

and policy purposes, such as understanding mobility patterns, access to services, and health out-

comes (Wasfi et al., 2013; Galea and Vaughan, 2019; Bruzelius and Shutes, 2022). However,

releasing this exact georeferenced data presents a risk to privacy and confidentiality because iden-

tities associated with these locations can be identified through reverse geocoding. It may uncover

sensitive information about individuals and households, including their whereabouts, vulnerabili-

ties and activities (Hundepool et al., 2010; Vayena et al., 2015). To address the disclosure risks of

georeferenced data, it is crucial to implement measures that preserve confidentiality and protect

privacy, such as obtaining informed consent, anonymising the data, and storing it securely (Hun-

depool et al., 2010; Vayena et al., 2015). Under ethical guidelines and relevant data protection

legislation, the geoprivacy of respondents must be protected to ensure that individuals cannot be

identified from the released locational information (Kwan et al., 2004; Boulos et al., 2009; Dupriez

and Boyko, 2010).
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Respondents’ confidentiality can be preserved by geo-masking the location coordinates before

releasing the data to the researchers. Geo-masking is the process of altering the georeferenced data

to reduce the likelihood of identifying individuals when the data is released, while still maintaining

the relationship between the location and the occurrence of the phenomena (Allshouse et al., 2010;

Hundepool et al., 2012, section 1.2). Aggregation and random displacement of location coordinates

of individuals or households are standard and widely used geo-masking techniques by different

surveys and censuses of a country to preserve the confidentiality of respondents.

2.2.1 Aggregation

Aggregation is a geo-masking technique that involves grouping respondents’ household coordi-

nates together and placing them in the centre of an Enumeration Area (EA) or administrative area,

such as postal code, neighbourhood, or district. By aggregating the data in this way, the precise

location of each respondent’s household is obscured, which helps protect the respondents’ privacy.

Rounding is a kind of aggregation method, also known as grid masking, that involves rounding or

truncating the coordinates of data points to a specified number of digits or decimal places (Burgert

et al., 2013). This results in the data being concentrated on a grid of points (Groß et al., 2017). The

range of likely geographical or aggregation error relies on the number of digits; for example, if the

coordinates of data points are rounded to three decimal places, each point will be located at the

intersection of a grid with intervals of 0.001 units (Burgert et al., 2013). Rounding is commonly

used in geographic information systems (GIS) and other spatial analysis applications to protect the

privacy of individuals (Ajayakumar et al., 2019). Many surveys or censuses conducted by differ-

ent countries collect households’ location coordinates and apply aggregation techniques to protect

privacy before releasing the data. For instance, according to the documentation (Statistics Canada,

2011), the Canadian Community Health Survey (CCHS) executed by Statistics Canada collects

data on healthcare utilisation, health condition and health determinants of the Canadian popula-

tion. It also collects georeferenced data, i.e., geographic coordinates for each respondent’s house-

hold. In order to protect respondent privacy, geographic coordinates are aggregated into larger

geographic areas, such as health regions, to ensure that no individual or household can be identi-

fied from the survey data (Wang et al., 2020). Some other examples of the surveys that endorse

the aggregation approach are the International Household Survey Network (IHSN) conducted in

low-and middle-income countries, UNICEF’s Multiple Indicator Cluster Surveys (MICS) and De-

mographic Surveillance System (DSS) conducted by the United States Centers for Disease Control

and Prevention (CDC) (for details, see Burgert et al., 2013). The geographic aggregation method

is also used by the Demographic Health Surveys (DHS) in their first step of disclosure control,
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where all household locations within an EA are aggregated and placed at the centroid of the EA

(Burgert et al., 2013). Although this reduces the disclosure risk, aggregation induces a loss in data

resolution and decreases the performance of spatial pattern detection (Cassa et al., 2006; Hampton

et al., 2010). This is a trade-off when using geographic aggregation to preserve respondent confi-

dentiality and protect privacy. Therefore, appropriate statistical methods or modelling approaches

need to be considered to account for the loss of data resolution caused by aggregation. We discuss

the existing approaches that account for aggregation errors in estimation and any potential further

developments in sections 2.3- 2.4.

2.2.2 Random displacement

Random displacement of the respondent or household location coordinates is a geo-masking tech-

nique to preserve respondents’ confidentiality and protect privacy. The random displacement pro-

cess displaces the geographic location of an individual or household, typically involving two com-

ponents: a random distance and a random direction (Allshouse et al., 2010; Seidl et al., 2016).

The random distance is drawn based on a probability distribution, such as a uniform distribution or

a normal distribution (in which case, it is referred to as a Gaussian random displacement), and rep-

resents the distance that the household will be displaced from its original location. The random di-

rection (or angle) is also generated from a probability distribution, e.g., a uniform distribution. The

combination of these two components results in a randomly displaced location for the household

(Allshouse et al., 2010; Burgert et al., 2013). Typically, the maximum distance for displacement is

determined by considering the density of the local population. This is because when the population

density is higher, a smaller distance is needed to preserve the confidentiality of respondents (Zand-

bergen, 2014). Consequently, confidentiality preservation for respondents in urban EAs requires

a smaller displacement distance than that needed for rural EAs.

The displaced location is selected randomly from all potential locations that share similar geo-

graphic features, such as residential areas within a pre-specified boundary circle. This process,

known as location swapping (Zhang et al., 2017), ensures that the original location is not relocated

to uninhabitable areas, for example, large bodies of water. Also, when a displaced location is ran-

domly chosen within a range of minimum and maximum displacement distances, the approach is

known as Donut displacement (Hampton et al., 2010). The term originates from the ‘donut-shaped’

region that is formed between a smaller circle (with a minimum radius) and a larger circle (with a

maximum radius) around the original location. This ensures that the displaced location is not too

close or too far from the original location.

13



The random displacement method (the random direction and a random distance) is commonly used

by many surveys to protect the confidentiality of survey respondents while preserving the spatial

distribution of the data. For example, the World Bank’s Living Standard Indicator Survey (LSIS)

and the Demographic and Health Surveys (DHS) program conducted by the ICF international use

the random displacement process. Within the DHS program, displacement is conducted by ran-

domly selecting a direction uniformly distributed between 0 and 2𝜋, along with a random distance

that follows a uniform distribution between 0 and the maximum distance (Karra et al., 2020). The

maximum distance is chosen based on the population density of the EA’s location (Chao and Col-

well, 2017). In particular, urban locations are displaced 0-2 kilometres while rural locations are

displaced 0-5 kilometres with 1% of rural ones randomly displaced 0-10 kilometres. All DHS sur-

veys consistently use the same distance parameters for urban and rural areas (Perez-Heydrich et al.,

2013). Hereafter, this is referred to as the DHS random displacement process. We have discussed

in detail and developed the probability distribution of the DHS random displaced coordinates in

Sections 3.2.1 - 3.2.3. To protect respondent confidentiality and mitigate disclosure risk, DHS

randomly displaces EA centroids before releasing them to data analysts. This reflects a deliberate

trade-off with the precision of location-dependent estimates. The challenges introduced by this

lack of precise data aim to enhance the accuracy of estimates without increasing disclosure risk.

The location coordinates of households are aggregated and randomly displaced in many surveys,

such as the DHS, to preserve respondent confidentiality. However, the aggregation and displace-

ment process can induce measurement error in the resulting data or estimates that depend on loca-

tion. Therefore, it is crucial to investigate the impact of the aggregation and displacement error on

the estimates and then use appropriate statistical methods accounting for the measurement error to

derive better estimates. In particular, two questions need to be addressed: a) what is the impact

of aggregation and displacement on statistical estimation and inference? and b) can we derive

precise and consistent estimates accounting for the measurement error caused by the aggregation

and displacement? We discuss this, review relevant literature, and explore further methodological

development in the following sections.

2.3 Measurement error models

Ignoring the error in the georeferenced data due to displacement or aggregation may lead to flawed

inference and a misleading conclusion. As the true locations are aggregated or displaced, any

location-dependent measures or estimates will contain in measurement error. In such a situation,

measurement error models are used to account for the measurement error in the geographic co-
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ordinates (Gleser, 1991; Carroll et al., 2006). Measurement error models are used to model the

relationship between the true location coordinates and the displaced (or aggregated) location coor-

dinates. Two types of measurement error models are widely used, the classical measurement error

model and the non-classical or Berkson measurement error model. A measurement error is consid-

ered classical if it is independent of the unobserved true location data; otherwise, it is non-classical

(Buonaccorsi, 2010, section 1.4.1; Carroll et al., 2006, section 2.2.2; Deffner et al., 2018). In par-

ticular, let {𝑌1, 𝑌2, ⋯ , 𝑌𝑁} denote the set of observed outcomes measured at the true household

locations {𝑇1, 𝑇2, ⋯ , 𝑇𝑁}. To preserve the respondents’ confidentiality, only the displaced set of
household locations {𝑊1, 𝑊2, ⋯ , 𝑊𝑁} associated with the outcomes are available. Now, the non-
classical or Berkson measurement error model can be expressed as 𝑇𝑘 = 𝑊𝑘+𝑒⋆

𝑘, 𝑘 = 1, 2, ⋯ , 𝑁
where 𝑒⋆

𝑘 is a random noise. This noise is independent of the observed location 𝑊𝑘, but it depends

on the true location 𝑇𝑘. This implies that the error may vary based on the actual location’s posi-

tion, potentially due to issues, such as imprecise measurement equipment (Wilson and Wakefield,

2021). For instance, when the original location is in a region with complex geography, e.g., moun-

tainous areas, obtaining an accurate record of the location becomes challenging. In such scenarios,

the observed or measured location might experience errors stemming from the terrain or signal

interference. This results in discrepancies between the observed and the true location coordinates.

Many past studies have addressed these positional error concerns within the context of a Berkson

measurement error model (Fanshawe and Diggle, 2011; Gabrosek and Cressie, 2002). Consider-

ing that the processes of displacement and aggregation are independent of the true locations within

urban or rural areas, we do not classify this as a Berkson type of error, as explained below.

In contrast, the classical measurement error model can be expressed as 𝑊𝑘 = 𝑇𝑘 + 𝑒𝑘, 𝑘 =
1, 2, ⋯ , 𝑁 , where 𝑒𝑘 is a random noise that is independent of the unobserved true location 𝑇𝑘.

Classical measurement errors may arise due to a random displacement process, for instance, the

DHS randomdisplacement process, where the randomnoise 𝑒𝑘 is generated through a displacement

mechanism independent of the true location coordinates within rural or urban areas. This noise is

then added to the true location coordinates to generate the displaced locations. More specifically,

if we assume that: 1) the distribution of the random error 𝑒𝑘 is known, and 2) within each location

type (urban or rural), the error term 𝑒𝑘 is independent of the true location 𝑇𝑘, then we can consider

the DHS random displacement process as a classical type of error. We have discussed it in detail

in Section 3.2 of Chapter 3 of this thesis. Previous studies that have obtained statistical estimates

accounting for displacement error under the classical measurement error model are outlined in

Sections 2.4 - 2.7.
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When using survey data along with location coordinates of households, researchers target to obtain

different spatial statistics depending on the policy needs. For example, they may need to obtain

area-specific density estimates of sub-populations, sub-national level estimates of means of a vari-

able of interest, e.g., income, or the estimate of the impact of the distance between a survey EA

and the nearest health facility to study the health outcomes. However, to preserve respondent con-

fidentiality, the true location coordinates of individuals or households are aggregated or displaced,

and only the aggregated or displaced data is provided to the data analysts. This introduces mea-

surement error, and suitable statistical methods are required to obtain estimates accounting for the

aggregation and displacement error, depending on the nature of the statistical estimation problem.

In the following sections of this chapter, we review the relevant literature and discuss different

statistical estimation problems and their potential methodological extensions to address the mea-

surement error induced by aggregation and displacement.

2.4 Density estimation with both aggregated and randomly displaced

data

Precise estimates of area-specific densities of target sub-populations of interest, for instance, poor

households, obtained through a survey or register data, can help identify poor household hotspots

and develop policies and interventions to combat poverty in these areas. Density estimation

through kernel methods has received much practical attention in the literature. Kernel density

estimation (KDE) is a popular non-parametric method used to estimate the probability density

function of a random variable based on observed data. One of its significant features is its ability

to produce smooth density estimates, effectively visualizing data distributions (Duong, 2007).

While KDE has applications across fields, such as statistics, data science, and machine learning,

it is also prominently used in georeference-based point pattern analyses. For instance, in health

geography and disease mapping, KDE plays a role in the identification of Enumeration Areas

(EAs) (Fotheringham and Zhan, 1996; Rushton and Lolonis, 1996). For an overview, for example,

see Simonoff and Simonoff (1996).

The univariate KDE is used when we observe a single random variable based on a set of observa-

tions. On the other hand, the bivariate KDEmethod is used to estimate the joint probability density

function of two random variables. For instance, when we observe spatial (continuous) coordinates

(latitude and longitude) for each observation, such as poor household, the bivariate KDE can be

used to estimate the density of the joint distribution of the latitude and longitude coordinates. This
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can provide a better insight into the spatial distribution of the data, such as poor households, by

creating a density map showing the areas where poverty is most prevalent. We further discuss

this and define mathematically the bivariate KDE of the joint distribution of spatial coordinates of

observations in Section 3.3.

The selection of bandwidth, also known as a smoothing parameter, is essential for the performance

of a bivariate kernel density estimator. In particular, the bandwidth parameter is a tuning parameter

which controls the degree of smoothing in the density estimate. Thus, optimal values of bandwidth

parameters need to be chosen. Larger values of the bandwidth parameters may lead to over smooth-

ing the data, while small values lead to under smoothing. In bivariate kernel density estimation for

estimating density of the distribution of spatial coordinates of observations, which is one of our

interests in this thesis, there are different methods available to choose the values of the bandwidth

parameters. Some commonly used methods are rule-of-thumb, and plug-in or cross-validation

methods (Wand and Jones, 1994). One simple and easy to use rule-of-thumbmethod is Silverman’s

rule of thumb method (Dehnad, 1987). In Silverman’s rule, the bandwidth parameter values are de-

termined by using the sample size and the number of dimensions, which is two in case of bivariate

density estimation (for details, see Dehnad, 1987). Another rule-of-thumb method is Scott’s rule

(Scott, 2015, section 6.2). The rule-of-thumb methods are simple and computationally efficient,

but not appropriate to provide the best estimate in all cases. Cross-validation or plug-inmethods are

more sophisticated and provide more accurate estimates than the rule-of-thumb methods, but are

computationally intensive. Wand and Jones (1994) described the selection of the bandwidth in the

multivariate situation by using a plug-in estimator. In the plug-in or cross-validation method, the

data are divided into training and validation sets. The strategy is to choose the bandwidth param-

eter that minimises a cross-validation criterion, for instance, the asymptotic root-mean integrated

squared error (RMISE) or the leave-one-out cross-validation (LOOCV) criterion (Silverman, 2018,

section 2.4).

Apart from selecting the optimal values of the bandwidth parameters, the precision and smoothness

of the density estimates of observations depend on the availability of the exact coordinates of

observations. When data is contaminated with aggregation or rounding error, it can result in a

spiky density that deviates from the density of the actual location data (Groß et al., 2017, 2020).

Detailed spatial information about the distribution of the true data is lost when the true coordinates

are aggregated to a coarser resolution level, leading to bias in density estimates. A higher level of

aggregation error leads to more biased density estimates (Groß et al., 2017, 2020).

Scott and Sheather (1985) used naive methods that ignore the rounding error to estimate the den-
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sity. Several studies (Härdle and Scott, 1990; Scott, 1985; Minnotte, 1998; Silverman, 1982;Wand,

1994) have proposed using the weighted averages rounded points (WARPing) to estimate kernel

density accounting for rounding error. If the data are aggregated into a coarser level, such a method

becomes less efficient, as the approximation becomes gradually worse as the level of aggregation

increases. In the univariate case, Wang and Wertelecki (2013) developed a parametric and a non-

parametric KDE for data with rounding errors. A recent work by Groß et al. (2017), developed a

methodology for deriving multivariate non-parametric kernel density estimates of sub-populations

of interest in the presence of rounding error under a measurement error model. In particular, Groß

et al. (2017) formulated a measurement error model for rounded coordinates that we describe be-

low:

We first define the notations. Let 𝑇𝑗𝑘 = (𝑇𝑗𝑘1, 𝑇𝑗𝑘2) represent the true coordinates of the observa-
tion, such as the longitude and latitude of the 𝑘th (𝑘 = 1, ⋯ , 𝑁𝑗) unit, which can be a household
or individual e.g., poor household/people, in the 𝑗th (𝑗 = 1, ⋯ , 𝑅) EA. In this context, we are
dealing with a bivariate variable. Let 𝑓(𝑇 ⋆) denote the unknown density of the true (continuous)
coordinates of the observations at a specific point 𝑇 ⋆ = (𝑇 ⋆

1 , 𝑇 ⋆
2 ), where 𝑇 ⋆

1 and 𝑇 ⋆
2 indicate the

longitude and latitude, respectively. However, the true coordinates 𝑇𝑗𝑘 are not available to the data

analysts. In cases of only aggregation (or rounding), it is assumed that all households within the

𝑗th EA are located at its centroid, represented by 𝑇𝑗 = (𝑇𝑗1, 𝑇𝑗2) for 𝑗 = 1, ⋯ , 𝑅. Throughout the

thesis, when considering both aggregation and random displacement, the aggregated and displaced

coordinate of the 𝑗th EA is denoted by 𝑊𝑗 = (𝑊𝑗1, 𝑊𝑗2).

Under only aggregation, instead of the true coordinates 𝑇𝑗𝑘, data analysts have access only to

the rounded (or aggregated) coordinates 𝑇𝑗 = (𝑇𝑗1, 𝑇𝑗2) for 𝑗 = 1, ⋯ , 𝑅. As a result, density

estimation using 𝑇𝑗 may lead to spiky estimates depending on the degree of the rounding error. To

draw pseudo-samples of the unknown 𝑇𝑗𝑘 and assuming that the rounding process is known, Groß

et al. (2017) formulated the conditional distribution of 𝑇𝑗𝑘 given 𝑇𝑗 using Bayes rule, expressed

as:

𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗) ∝ 𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘)𝑓(𝑇𝑗𝑘), (2.1)

where 𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) is the conditional distribution of the rounded coordinates given the true coordi-
nates of the observations. This distribution can be defined based on the type of EA geography used,

such as a square grid. Considering a square grid with side length denoted by 𝛾, the distribution
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𝑓(𝑇𝑗 ∣ 𝑇𝑘) is given by:

𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) =
⎧{
⎨{⎩

1 for 𝑇𝑗𝑘𝜖[𝑇𝑗1 − 𝛾
2 , 𝑇𝑗1 + 𝛾

2 ] × [𝑇𝑗2 − 𝛾
2 , 𝑇𝑗2 + 𝛾

2 ],

0 otherwise.
(2.2)

Since both the true data 𝑇𝑗𝑘 and 𝑓(𝑇𝑗𝑘) are initially unknown, Groß et al. (2017) proposed a

Stochastic Expectation-Maximization (SEM) algorithm for estimation. This algorithm uses an ini-

tial estimate of 𝑓(𝑇 ⋆) based on 𝑇𝑗, followed by alternating simulations of 𝑇𝑗𝑘 from 𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗)
and re-estimation of 𝑓(𝑇𝑗𝑘) until convergence is reached. This is considered as a modified ver-
sion of the expectation-maximization (EM) algorithm (Dempster et al., 1977). The reason for

using the SEM algorithm over the classical EM algorithm is that in the classical EM algorithm,

the conditional-expectation of 𝑇𝑗𝑘 given 𝑇𝑗 is computed analytically in the E-step, which leads to

spiky density estimates as the data are concentrated around the grid centroid due to rounding. The

estimator proposed by Groß et al. (2017) allowed the estimation of the bandwidth matrix within

the density estimation framework. We refer to the publication by Groß et al. (2017) for the compu-

tational details of the proposed method and further details. In the case of aggregated coordinates of

observations at the centroid of the higher-level administrative area, Groß et al. (2020) extended the

methodology of Groß et al. (2017) by replacing the distribution of 𝑇𝑗 given 𝑇𝑗𝑘 under aggregation.

In particular, Groß et al. (2017) generated the simulated coordinates of 𝑇𝑗𝑘 from the conditional dis-

tribution of 𝑇𝑗𝑘 given 𝑇𝑗 using kernel density estimates under aggregation and dis-aggregated the

cases from the higher to lower (or non-hierarchical) administrative geography. Using simulation

studies, Groß et al. (2020) showed that the proposed SEM algorithm-basedmethod outperforms the

naive method that assumes a uniform distribution of the units in the grids instead of re-estimating

the densities.

Under random displacement of spatial coordinates, the density estimates that ignore the displace-

ment error may be inaccurate and biased. The random displacement process moves the original

location from one place to another, which may alter the original spatial pattern. Shi et al. (2009)

investigated the spatial pattern by creating kernel density surfaces with random displaced location

data under a series of bandwidths and found that the density surfaces of the true points and the

displaced points differ significantly in the case of lower bandwidth. Moreover, the spatial pattern

changes more when a greater maximum displacement distance is applied to the true coordinates.

However, it is not possible to use directly the method proposed by either Groß et al. (2017) under

rounding or Groß et al. (2020) under geographical aggregation to estimate the kernel density ac-
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counting for displacement error- it requires methodological extensions. The main reasons for this

are a) the aggregation or rounding process is deterministic, while the displacement process with

varying maximum displacement distances for geographical regions is stochastic, and b) the condi-

tional distribution of aggregation or rounding error is uniform, which is not the case regarding the

random displacement algorithm- involves a random distance and a random angle. Moreover, we

can draw better inferences for disclosure preservation under the random displacement process than

the deterministic rounding or aggregation process. This is because the random displacement pro-

cess incorporates the statistical property of randomness. Therefore, the possible methodological

extensions for multivariate KDE under the random displacement process are described in Section

3.3, which is one of the novel contributions to the literature of this thesis.

Both aggregation and random displacement are sometimes applied to the true coordinates to pro-

tect respondents’ privacy in the survey data. For instance, in the DHS, the household locations

data within the same EA are first aggregated to a single coordinate, such as the EA centroid. Next,

the EA centroid coordinates are displaced using the DHS displacement algorithm. So, only the ag-

gregated and then displaced EA centroid coordinates are provided to researchers. The aggregation

and displacement processes induce measurement error in spatial data and that may alter the original

spatial pattern (Hampton et al., 2010). Therefore, the kernel density estimates under aggregation

and displacement may be biased and differ from the true estimates. To the best of our knowledge,

previous studies did not attempt to obtain kernel density estimates by correcting the aggregation

and displacement errors under a measurement error model. Therefore, we aim to propose a method

to obtain kernel density estimates of the joint distribution of the spatial coordinates of observations

accounting for aggregation and displacement error in Section 3.5. This makes a significant and

original contribution to the existing literature.

2.5 Spatial statistics under random displacement

Apart from the density estimates of the sub-populations of interest, the random displacement pro-

cess may affect any other location-dependent or spatial measures of the variables of interest, which

may be used in further statistical analyses. For example, distance calculations to the nearest points

of interest, e.g., in health facility, or the evaluation of environmental conditions by using displaced

coordinates may differ from the results based on the true coordinates. Previous studies (for in-

stance, Feldacker et al., 2010; Lohela et al., 2012) ignored this displacement error and calculated

spatial variables, e.g., the distance from a DHS EA location to the nearest resource location. These

types of statistical measures of variables can potentially be inaccurate since calculating distances
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using displaced locations results in measurement errors (Warren et al., 2016a).

The effect of the EA point random displacement on spatial analyses was studied by (Gething et al.,

2015). Gething et al. (2015) used 100 randomly displaced sets of EA location data obtained by

applying the DHS random displacement process to the real EA location data to assess the displace-

ment effect on analyses, including several socioeconomic indicators of interest. The impact of

displacement on the spatial correlation among data points, environmental covariate relationships

and model-derived interpolated surfaces was explored. In the case of the spatial correlation, for

each displaced dataset, the empirical variogram was calculated, and then they were combined and

compared to the non-displaced variogram. A little effect on the spatial correlation was found.

Nevertheless, some differences were found in the relationship between the outcomes and spatial

covariates (e.g., population density, human settlement density, distance to the road), which were

extracted at the EA centroids. In particular, models with spatial covariates values extracted using

displaced EA centroids have a lower predictive power (𝑅2) than those that used true EA centroids,

especially for the case with covariates, which have a strong relationship with the outcomes based on

true EA centroids. Moreover, differences to some extent in the model-derived predicted surfaces

were observed when using displaced EA coordinates compared to the true EA coordinates.

According to work by Perez-Heydrich et al. (2016) and Gething et al. (2015), the DHS has sug-

gested guidelines to address potential bias in extracting spatial covariate values at the EA centroid

resulting from the random displacement process. In particular, the guideline involves using the

average value of the covariate in grid cells within a fixed buffer (maximum displacement distance)

of the displaced EA centroid in analyses. However, a simple average of the grid cell values indi-

cates that all points within a maximum displacement buffer were considered equally likely to be

the true EA point. This is not the case in the DHS random displacement process, which we discuss

in section 3.2 by deriving the conditional distribution of the displaced coordinates given the true

coordinates.

A recent study by Grace et al. (2019) proposed a method to address potential errors in generating

environmental and contextual variables at the DHS EA centroids due to the random displacement

process using remotely sensed imagery. In particular, the study suggests selecting a settlement

(such as housing structures) near the DHS displaced EA point and measuring the environmental

conditions around it, which is the likely true point, using a buffer smaller than the DHS maximum

displacement distance. It was found that using a smaller buffer around the settlement produces less

error in estimates compared to the buffer with the DHSmaximum displacement distance around the

displaced point. The main challenge with this method is finding suitable settlements (for instance,
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road networks, housing structures, and path networks) that are dependent on the availability of

high-quality images, which can be time-consuming. Nevertheless, the authors hypothesised that

a short, precise buffer around a wrong settlement provides a more accurate measure of the truth

than a big buffer around the displaced point. This is because even though the settlement utilised to

provide contextual information may not be the original DHS EA, it is a neighbour of the EA, and

neighbouring settlements are usually more similar.

Estimates of demographic and health indicators at the sub-national level based on survey data are

crucial for targeting interventions and making policies. However, any estimates at an administra-

tive level lower than the displacement designated administrative boundary (referred to as a domain)

may be biased due to the random displacement process. This is because an EA can be placed out-

side of its original domain area due to the random displacement process, referred to as an EA

misplacement. Previous studies in the literature have paid less attention to the domain estimates

under a misplacement error caused by the random displacement process. The study by Wilson

et al. (2020) aimed to obtain estimates of some commonly used health indicators at the district

level (admin 2) in Malawi accounting for the DHS EA displacement error. To address the dis-

placement error, the method by Wilson et al. (2020) calculated the proportion of points generated

by displacing the displaced point, which falls within each district boundary intersected with the

maximum distance displacement buffer around the displaced point. District estimates of the health

indicators were obtained by assigning a) a single district with the greatest likelihood to an EA, b)

multiple districts in proportion to their likelihoods, and c) using the naive method that ignores the

displacement error. It was found that the district estimates by each method approximate the true

estimates (not affected by the displacement process) by comparing the results using confidence

intervals and the concordance correlation coefficient. Thus, to obtain district estimates, Wilson

et al. (2020) recommended using the simplest naive method that ignores the misplacement error

due to the random displacement process. Nevertheless, the inference may differ for the estimates

at a level lower than the district level, as more misplacement errors are expected due to the ran-

dom displacement process. In chapter 3, this thesis aims to address this literature gap by obtaining

estimates of interest at a lower administrative level under the different intensities of displacement

error.

Researchers are often interested in linking variables (such as poverty levels, population density,

and socioeconomic indicators) available at the domain level from an external data source to the

EA by using the displaced EA centroids. However, when the EA is misplaced due to the random

displacement process, there is a chance for inaccurate variable assignment to the EA, which could
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affect the subsequent statistical analysis. Furthermore, the likelihood of EA misplacement errors

and variable mis-assignment errors increases when linked with smaller administrative boundaries

or geographies. Several studies (for example, those conducted by Balk et al., 2004, Pande et al.

(2008), and Feldacker et al. (2010)) have assigned domain variables to the DHS EA centroid while

ignoring the misplacement error due to the random displacement process. In order to reduce errors

associated with assigning domain variables to the DHS EA, Warren et al. (2016b) suggested a

method called the maximum probability covariate (MPC). This method involves calculating the

probabilities for each unique domain value within the displacement buffer around the displaced

EA centroid, and then assigning the most probable domain to the DHS EA. In particular, Warren

et al. (2016b) estimated the domain probabilities by calculating the proportion of likely true points

within each domain boundary intersecting with the displacement buffer. The likely true points were

generated by displacing the displaced coordinates using the DHS displacement mechanism, i.e.,

through the conditional distribution of displaced coordinates given the true coordinates expressed

by 𝑓(𝑊𝑘 ∣ 𝑇𝑘) in (3.4). However, Warren et al. (2016b) did not present the mathematical form

of 𝑓(𝑊𝑘 ∣ 𝑇𝑘), which is one of the contributions of this thesis. In addition, Warren et al. (2016b)

did not consider 𝑓(𝑇𝑘) in their process and allowed all points within a buffer to be possible true
points, but the points in large water bodies e.g., sea, lake and uninhabited areas cannot be possible

true locations and have a selection probability equal to 0 (Figure 3.5). Also, the MPC selection

method is not a complete solution and can result in biased estimates when the correct domain

value is selected with a probability of less than 1. Another drawback of this method is that the

domain value assigned to an EA point is deterministic, meaning that only themost probable domain

is assigned to the EA location as the correct domain. Therefore, it is possible that the true EA

point may belong to another domain when the probability of the selected domain value is less

than 1. Moreover, the underlying distribution of true locations, denoted as 𝑓(𝑇𝑘), may play an
essential role in improving the accuracy of domain selection probabilities, especially if it is related

to the potential true locations. Therefore, this thesis aims to explore possible extensions of the

method proposed by Warren et al. (2016b) by incorporating additional information about 𝑓(𝑇𝑘)
from external data sources. We provide a detailed description of our approach in Section 3.4 of

Chapter 3.

2.6 Mixed models under random displacement

Multilevel models, also known as mixed effects models or hierarchical linear models, are a type of

statistical model used to analyze data with a hierarchical or clustered structure (Melamed andVuolo,
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2019). In a multilevel model, the observations are grouped into different levels, each representing

a separate analysis unit. For example, in a study of individuals in different Enumeration Areas

(EAs) based on the Demographic and Health Surveys (DHS), where individuals are nested within

the EAs, and EAs are nested within the administrative boundaries of the country. This hierarchical

structure highlights the necessity of employing multilevel regression modelling to account for the

nested nature of the data and obtain accurate results (Islam, 2005; Alom et al., 2012; Imam et al.,

2018; Bhuiyan et al., 2020). Moreover, when individuals’ responses over time are correlated, as

in longitudinal studies, multilevel modelling is used to analyze the data. Multilevel models allow

for the estimation of both within-group and between-group effects. Specifically, the error variance

is partitioned into a between-group component (representing the variance of the EA-level errors)

and a within-group component (representing the variance of the individual-level errors). These

models can account for the similarity of observations within each group, which may differ from

observations in other groups.

In multilevel models, there are two types of effects: random and fixed. The fixed effects help

estimate the overall relationship between the independent and outcome variables using data from

all groups in the analysis. On the other hand, the random effects allow for modelling the variability

between groups and accounting for differences in the data due to group-level factors. In particular,

random effects vary across groups and are specific to each group in the analysis. They represent a

particular group’s deviation from the independent variable’s overall average effect on the outcome

variable. Also, random effects are estimated using mainly data from the relevant groups in the

analysis (see, for an overview of multilevel modelling Leyland and Goldstein, 2001; Leyland and

Groenewegen, 2020, chapter 3; Fielding et al., 2003; Gelman and Hill, 2006, part 2A).

The random effects in multilevel models are specified at the group level to capture the grouping

structure of observations. For example, in the DHS data, these groups can be defined by EAs or

the country’s administrative units. Without exact or accurate information on observation groups,

observations can be mixed or misclassified among groups, compromising the precision of group-

level variation estimates. The term exact refers to information obtained based on true location

coordinates of observations, which may be unknown to the data analysts and displaced to preserve

the respondents’ confidentiality. In the case of DHS data, the true DHS EA centroids are displaced

within the designated higher administrative boundary, e.g., admin 2 the district of the country, using

the random displacement mechanism and only displaced EA centroid coordinates along with the

survey EA identifiers are given in the survey data (Burgert et al., 2013). Therefore, displacement

is not an issue for the use of multilevel models for the DHS data with the random effect specified
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at the EA level (for example, see Kasaye et al., 2019; Ogbo et al., 2018; Gidado, 2012) or at the

displacement-restricted higher administrative level (for instance, see Smith and Shively, 2019; Das

et al., 2020a).

However, if the random effect in the mixed models is specified at below the displacement restricted

administrative level, such as the sub-district level of the country, where EAs can be misplaced due

to a random displacement process, the estimates of multilevel model parameters, especially the ran-

dom variance components, and associated model-based estimates of finite population parameters

(e.g., group/sub-district means) may be biased. A few studies have used DHS data to fit multilevel

models with random effects specified at the sub-district level (for instance, Das et al., 2019a,b,

2020b), ignoring the DHS EA misplacement error uncertainty in the estimation methods. These

naive estimates ignoring the misplacement error may mislead the inferences. This emphasises the

need to investigate the effect of misplacement due to random displacement on the estimation of

multilevel models, e.g., the linear mixed model (LMM) and hence, to develop methods for model

fitting and uncertainty estimation of the estimates accounting for misplacement error. This thesis

aims to contribute by addressing these gaps in the literature. We have discussed this and proposed

methods in Chapter 4.

2.7 Regression with spatial covariates under random displacement

Researchers are often interested in examining how spatial covariates, e.g., the distance from the

Enumeration Area (EA) centroid to the nearest health facility of the country, affect the outcome of

interest in regression models. For example, Feldacker et al. (2010) studied whether HIV infection

in rural Malawi is related to the distance from the Demographic and Health Survey (DHS) EA cen-

troid to major roads, health clinics and major cities. The DHS true EA coordinates are not available

to the data analysts and are displaced using the displacement algorithm to protect the respondents’

confidentiality. Therefore, the statistical analyses with a spatial covariate that is constructed us-

ing the randomly displaced location can potentially be inaccurate, and the random displacement

process induces a measurement error in covariate problems in regression models, e.g., a linear

regression. In previous studies, for example, those by Feldacker et al. (2010) and Lohela et al.

(2012), randomly displaced EA locations were used to calculate spatial covariates (e.g., distance)

at the EA points, ignoring the displacement error and investigating how these spatial covariates

influenced the outcome of interest at the EA level.

Ameasurement error in a covariate in a regressionmodel leads to a biased estimate of its coefficient
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(Aigner, 1973; Carroll et al., 2006). In order to form the problem mathematically, let 𝑇𝑘 denote

the true location coordinates of the 𝑘th (𝑘 = 1, ⋯ , 𝑁) unit. The unit of the analysis can be

the individual, household or Enumeration Area (EA). The true value 𝑇𝑘 that can be represented

as 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2), where 𝑇𝑘1 and 𝑇𝑘2 denote the exact geographical longitude and latitude

coordinates of the 𝑘th unit. Let 𝑋1𝑘(𝑇𝑘) be the value of a spatial covariate which is constructed or
measured based on the true location coordinates 𝑇𝑘. We aim to estimate a relationship described

by a linear regression model formulated as follows:

𝑦𝑘 = 𝛽0 + 𝛽1𝑋1𝑘(𝑇𝑘) + 𝜀𝑘, (2.3)

where 𝑦𝑘 is the outcome, 𝛽0 is the unknown intercept, 𝛽1 is the unknown coefficient of the spatial

covariate 𝑋1𝑘(𝑇𝑘), and 𝜀𝑘 is a random-error term which is independent of 𝑋1𝑘(𝑇𝑘). In what fol-
lows, we suppose, for simplicity, that the random errors 𝜀𝑘 in (2.3) are independent and identically

distributed with mean 0 and constant variance 𝜎2
𝜀 . The unknown parameters of the model (2.3) are

denoted by 𝜃 = (𝛽0, 𝛽1, 𝜎2
𝜀). The true spatial covariate values 𝑋1𝑘(𝑇𝑘) in (2.3) are unknown to

the data analysts, as the true coordinates 𝑇𝑘 are unknown. Only the displaced (contaminated by

measurement error) coordinates denoted by 𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2) are available to data analysts. Let
𝑋1𝑘(𝑊𝑘) be the value of a spatial covariate which is constructed based on 𝑊𝑘. Therefore, the use

of 𝑋1𝑘(𝑊𝑘) instead of 𝑋1𝑘(𝑇𝑘) in the model (2.3) can be considered a measurement error in the
covariate problem, and the regression model can be expressed as follows:

𝑦𝑘 = 𝛽0 + 𝛽1𝑋1𝑘(𝑊𝑘) + 𝜀𝑘. (2.4)

When fitting the model (2.4) using ordinary least squares (OLS) and obtaining the estimated model

parameters denoted by ̂𝜃 = ( ̂𝛽0, ̂𝛽1, �̂�2
𝜀), these naive estimates of the model parameters, partic-

ularly the estimates of the regression coefficient 𝛽1, will be biased due to random displacement

(Carroll et al., 2006; Warren et al., 2016a; Karra et al., 2020).

Various methods have been proposed in the literature to deal with the general issue of measurement

errors in covariates, including maximum likelihoodmethods (Rabe-Hesketh et al., 2003), Bayesian

Markov chain Monte Carlo algorithms (Goldstein and Shlomo, 2020) and regression calibration

(Hardin et al., 2003; Spiegelman et al., 1997). In particular, the regression calibration (RC) ap-

proach replaces the spatial covariate values measured with errors by their expected values given

the displaced locations to obtain unbiased and consistent estimates (Carroll et al., 2006; Karra et al.,

2020).
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Studies by Warren et al. (2016a) and Karra et al. (2020) focused on the subsequent statistical anal-

ysis of interest that includes the distance covariates and the potential impact of the EA location dis-

placement on the bias of the resulting distance covariate parameter estimates. Warren et al. (2016a)

claimed that the given (observed) distance covariate 𝑋1𝑘(𝑊𝑘) follows the classical measurement
error model (MEM) form as proposed by Carroll et al. (2006) and is represented as follows:

𝑋1𝑘(𝑊𝑘) = 𝑋1𝑘(𝑇𝑘) + 𝑢𝑘, (2.5)

where 𝑢𝑘 is the random measurement error. It was assumed that 𝑢𝑘 is independent and identically

distributed for each EA location scenario (e.g., urban or rural) and follows a normal distribution

with 𝐸(𝑢𝑘) = 0 and Var(𝑢𝑘) = 𝜎2
𝑢. Then, Warren et al. (2016a) applied the standard RC method

(Carroll and Stefanski, 1990) to estimate the expected value of𝑋1𝑘(𝑇𝑘) given𝑋1𝑘(𝑊𝑘) expressed
as

𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑋1𝑘(𝑊𝑘)} = 𝜇𝑡 + 𝜎2
𝑡

𝜎2
𝑡 + 𝜎2𝑢

[𝑋1𝑘(𝑊𝑘) − 𝜇𝑡], (2.6)

where 𝜇𝑡 = 𝐸 {𝑋1𝑘(𝑇𝑘)} and 𝜎2
𝑡 = Var {𝑋1𝑘(𝑇𝑘)} and 𝜎2

𝑢 = Var(𝑢𝑘) in (2.5). As

the values of 𝑋1𝑘(𝑇𝑘) are unknown, 𝜇𝑡, 𝜎2
𝑡 and 𝜎2

𝑢 are unknown and need to be esti-

mated. The estimates of 𝜇𝑡 and 𝜎2
𝑡 are obtained by calculating ̂𝜇𝑡 = 1

𝑛 ∑𝑛
𝑘=1 𝑋1𝑘(𝑊𝑘)

and �̂�2
𝑡 = 1

𝑛−1 ∑𝑛
𝑘=1 {𝑋1𝑘(𝑊𝑘) − ̂𝜇𝑡}

2 − �̂�2
𝑢. The �̂�2

𝑢 is computed based on a set of validation

data that are obtained by displacing the displaced coordinates 𝑊𝑘 under the DHS displacement

process (for details, see Warren et al., 2016a). Finally, the unknown 𝑋1𝑘(𝑇𝑘) in the model (2.3)
were replaced by the estimates of their expected values from (2.6), and the model was fitted using

the standard least square method to obtain the estimates of the model parameters. The results were

compared to the naive method that ignores the displacement error. However, the assumptions

of independent and normal distribution for 𝑢𝑘 in (2.5) were criticised in the work of Karra et al.

(2020), Arbia et al. (2015) and Elkies et al. (2015), questioning their validity under the random

displacement process.

As an alternative to the Warren et al. (2016a) method, Karra et al. (2020) eliminated the normality

assumption and estimated the conditionally expected distance 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑋1𝑘(𝑊𝑘)} in (2.6)

based on a numerical integration by drawing sample locations over all possible true locations within

the maximum distance displacement buffer around the displacement point. In particular, the likely

true locations were drawn from the conditional distribution of true coordinates given the displaced

coordinates, which can be expressed as 𝑓(𝑇𝑘 ∣ 𝑊𝑘) ∝ 𝑓(𝑊𝑘 ∣ 𝑇𝑘)𝑓(𝑇𝑘). Karra et al. (2020)
compared the performance of their method for correcting the bias of the distance covariate esti-
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mates over the naive method that ignores the displacement error through a simulation study. It can

be noted that the Karra et al. (2020) method’s performance was not assessed by applying the exact

DHS random displacement process, which allows varying displacement parameters for rural and

urban locations, with the displacement being restricted within a designated administrative bound-

ary. However, in the simulation study by Karra et al. (2020), the form of the distribution of 𝑓(𝑇𝑘)
in the model was not essential as the coordinates of population observations were generated based

a uniform distribution. While Karra et al. (2020) applied their proposed method to real data from

a project survey with known true household coordinates and sourced 𝑓(𝑇𝑘) from the WorldPop

unconstrained population density map, the methodology for obtaining 𝑓(𝑇𝑘) was not explicitly
detailed. This lack of detail could pose challenges for external researchers aiming to replicate the

method. In addition, Karra et al. (2020) method did not consider any boundary corrections, for

example, the points in large water bodies e.g., sea, lake and uninhabited areas cannot be possible

true locations and have a selection probability equal to 0 (Figure 3.5). Therefore, to improve the

selection probabilities for likely true locations, the underlying distribution of true locations can

be approximated by using available information (e.g., population density, designated administra-

tive boundary restriction, rural urban boundaries, boundary corrections for non-settlement places)

from different external data sources. We have discussed this and developed a flexible framework

in Section 3.4 for approximating the distribution using information from multiple external sources

that improve the selection probabilities for likely true locations. We have used this framework to

propose a method in Section 5.2.1 for estimating the effect of spatial covariates under the random

displacement process.

2.8 Bootstrap bias correction under random displacement

As discussed in Sections 2.6 and 2.7, the estimates of location-dependent model parameters, specif-

ically a) random variance components in multilevel models when the random effect is specified

below the random displacement restricted administrative level and b) regression coefficients for

spatial covariates in regression models, are biased under the random displacement process. There-

fore, an attempt can also be made to obtain the estimates of the bias, followed by developing a

bias-corrected estimator of the model parameters. In particular, one could potentially think about

bootstrap bias correction methods under the random displacement process. To the best of our

knowledge, none of the previous studies attempted to use a bootstrap bias correction method for

correcting the bias of the model parameters under the random displacement process.

The bootstrap technique is a resampling method that samples with replacement from the original
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sample and is used to estimate the bias of a (biased) estimator. Modern computers have allowed

statisticians to use bootstrapping as a powerful tool for making statistical inferences and estimating

the accuracy of sample statistics concerning the population parameter (Higgins, 2004, section 8.1;

Chen, 2018, p. 10). Bootstrapping is an application of the plug-in principle, which involves using

the sample to estimate parameters for the population (Efron and Tibshirani, 1992, p.35). In the case

of bootstrapping, the existing sample data is treated as if it were the population, and samples are

taken out of the existing dataset as if to sample from the population (Efron and Tibshirani, 1992,

p.139). This approach enables researchers to estimate the distribution of the statistic of interest

and to obtain valuable information about the sampling variability of the statistic (Higgins, 2004).

In the context of the linear regression model parameters under random displacement, the bootstrap

technique involves repeatedly resampling the original dataset with replacement according to the

model (2.4). The observed (displaced) points are then displaced using the random displacement

algorithm to generate bootstrap samples. The model parameters are estimated using the same

method as in the original sample dataset for each model-based bootstrap sample dataset. The

difference between the average estimates over bootstrap samples and the estimates from the (given)

original sample provides an estimate of the bias in the original estimates (for an overview, see

section 10.2 of Efron and Tibshirani (1992)].

Regarding the bias of the model parameters under displacement, the bootstrap bias estimation

method should work to satisfy the two important assumptions. The first assumption is that the

functional form of the underlying model, e.g., the linear regression model (2.3) is appropriate to the

data. The second butmost crucial assumption is that themagnitude of the bias of the naive estimates

that ignore the displacement error of the model parameters under displacement is the same as the

magnitude of the bias of the estimates under bootstrap samples and repeated displacement process

to the displaced locations.

The bootstrap samples are generated under the linear regression model given in Equation (2.4)

using the naive estimates ̂𝜃 that ignore the displacement error. Regarding the generation of model-
based bootstrap samples, either a parametric or non-parametric bootstrap approach can be used

(Efron and Tibshirani, 1992, p. 297). Depending on the model assumptions, we have described the

process of generating a parametric bootstrap sample under the linear mixed model in Section 4.3

and a non-parametric bootstrap sample under the linear regression model in Section 5.2.2. When

a parametric distribution of the random error, such as the one assumed in the linear mixed model,

is used, the bootstrap random errors can be generated under the assumed distribution. We have

discussed this process in Section 4.3. In the case of the non-parametric bootstrap, the bootstrapped
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random errors (residuals) of the model are obtained by resampling with replacement from the es-

timated random errors of the model in Equation (2.4). Although this approach does not assume

a parametric distribution of the model errors, it implicitly assumes that the functional form of the

underlying model is appropriate for the data. In particular, the model errors are assumed to be in-

dependent and have constant variance. However, under the linear regression model (2.4), for each

bootstrap sample 𝑏; 𝑏 = 1, 2, ⋯ , 𝐵, we estimate the model parameters using the samemethod as in

the original sample and denote the resulting estimate as ̂𝜃∗𝑏. Next, we calculate the bootstrap bias

estimate by taking the difference between the average of the bootstrap estimates and the naive es-

timate: B̂ias ( ̂𝜃, 𝜃) = ∑𝐵
𝑏=1

̂𝜃∗𝑏/𝐵 − ̂𝜃. Finally, we obtain the bootstrap bias-corrected estimator
by subtracting the estimated bias from the naive estimate: ̂𝜃cor = ̂𝜃 − B̂ias ( ̂𝜃, 𝜃). To implement
the bootstrap bias correction method, a large number of bootstrap samples 𝐵 are typically needed

to obtain a stable estimate of the bias. Specifically, the number of bootstrap samples required for

accurate estimation depends on the size and complexity of the dataset, as well as the available

computing and processing power. Efron (1979) suggests that a value between 200 and 500 boot-

strap samples is generally sufficient for most applications. Nevertheless, with modern computing

capabilities, many researchers use 1000 or more bootstrap samples to improve the accuracy of the

estimates.
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Chapter 3

Density and domain parameter

estimation under displaced and

aggregated geo-referenced data

3.1 Introduction

The aggregation and displacement of location coordinates induce measurement errors in data,

which may alter the original spatial pattern. Moreover, a location coordinate can be misplaced

when it is displaced outside of its original domain boundary. A domain is an administrative unit

whose geographical boundary is nested within the displacement-restricted administrative boundary.

Ignoring aggregation and displacement errors may lead to inaccurate density and domain (parame-

ter) estimates. Therefore, in this chapter, we aim to develop methods to obtain 1) density estimates

corresponding to the distribution of the location data and 2) estimates of the domain parameters

under a measurement error model. We illustrate the theory using the DHS aggregation and random

displacement process; however, other aggregation and random displacement processes can be used,

such as the ones described in Section 2.2 of the literature review. In this chapter, first, we focus

on the issue of the random displacement of location coordinates. Next, we focus on the combined

aggregation and displacement issue.

The organisation of this chapter is as follows. In Section 3.2, we formally state the random dis-

placement problem and propose a measurement error model, followed by developing the target

probability distribution of the unknown true coordinates given the displaced coordinates. Section

3.3 describes the proposed estimation method based on Multivariate Kernel Density Estimates
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(KDE) as the marginal distribution of the true location data, accounting for displacement error

to obtain density estimates and domain parameters estimates. An alternative to the KDE-based

method, which is based on external data sources to approximate the underlying distribution of the

true location data, is presented in Section 3.4. Section 3.5 presents the proposed method to obtain

density and domain parameter estimates accounting for both aggregation and random displacement

errors. Section 3.6 outlines simulation designs for analysing register data under a) only displace-

ment and b) both aggregation and displacement and then discusses the findings of the simulation

study. Section 3.7 shows the application of the proposed method under displacement using real

data, and finally, we conclude with a discussion in Section 3.8.

3.2 A measurement error model for randomly displaced data

Let 𝑇𝑘 denote the true location coordinates of the 𝑘th (𝑘 = 1, ⋯ , 𝑁) unit. The unit of analysis can
be the individual, household or Enumeration Area (EA). The true value 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2), where
𝑇𝑘1 and 𝑇𝑘2 denote the exact geographical longitude and latitude coordinates of the 𝑘th unit, which
is lost due to the displacement. Therefore, only the displaced (contaminated by measurement error)

coordinates 𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2) are observed. This can be expressed as

𝑊𝑘 = 𝑇𝑘 + 𝑒𝑘, (3.1)

where 𝑒𝑘 = (𝑒𝑘1, 𝑒𝑘2) is a random noise or error term added to the true location by the displace-

ment process. As a result, the points move to other locations from their original locations, and may

even cross the administrative boundaries of a country e.g., upazilas in Bangladesh which are lower

than the displacement restricted higher administrative boundaries.

The true location 𝑇𝑘 is unknown. Under the assumptions that 1) the distribution of the random

error 𝑒𝑘 is known, and 2) within a location type (urban or rural), the error term 𝑒𝑘 is independent

of the true location 𝑇𝑘, we can consider the model (3.1) to be a classical measurement error model.

The 𝑇𝑘’s in the model (3.1) might be either random variables or fixed quantities. The measurement

error is called structural in the first case, whereas this is defined as functional in the second case

(Arima and Polettini, 2019; Ybarra and Lohr, 2008). In our case, for a given unit 𝑘, the true location
𝑇𝑘 will be considered a fixed quantity but unknown. Therefore, model (3.1) is considered to be a

functional measurement error model.

For location point displacement, the measurement error means displacement error. Also, the
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discretised nature of disaggregated domain assignment to the unit using displaced coordinates

may lead to domain misclassification error. For example, the displaced unit may be misplaced

at the lower administrative level. Therefore, in this case, the measurement error model (3.1)

can be defined in terms of the misclassification probabilities for each domain e.g., upazila. The

misclassification probabilities are unknown. However, these probabilities can be estimated

through simulated location coordinates from the location displacement probability model defined

as

𝑓(𝑊𝑘 ∣ 𝑇𝑘), 𝑘 = 1, ⋯ , 𝑁, (3.2)

which is the conditional distribution of the displaced coordinates given the true coordinates. 𝑇𝑘 is

fixed but unknown, and the distribution of the displacement random component 𝑒𝑘 in (3.1) is used

to develop the distribution 𝑓(𝑊𝑘 ∣ 𝑇𝑘) in (3.2). This distribution will be derived analytically later
in this section and is a key novel contribution in this chapter.

To derive 𝑓(𝑊𝑘 ∣ 𝑇𝑘), in this thesis, we consider the most popular and frequently used DHS

displacement process involving a random distance and a random angle. However, this can be ex-

tended to other displacement error processes, for example, the Gaussian Displacement process. In

sub-section 3.2.1, we discuss the DHS random displacement process. Sub-section 3.2.2 explores

the distribution of the displaced coordinates given the true coordinates using simulation. The prob-

ability distribution of the displaced coordinates given the true coordinates is derived in sub-section

3.2.3. Finally, we present the target probability distribution of the unknown true coordinates given

the displaced coordinates in sub-section 3.2.4.

3.2.1 The DHS displacement process

The displaced coordinates are generated by applying the DHS displacement algorithm (Burgert

et al., 2013) to the original coordinates. Each true location is displaced independently. The steps

in the DHS location data displacement are as follows:

1) Generate a random direction (angle) which is uniformly distributed between 0 and 2𝜋 that

is 2𝜋𝜐1, where 𝜐1 ∼ Uniform(0, 1).

2) Generate a random distance which is uniformly selected between 0 and 𝛿km that is 𝛿𝜐2,

where 𝜐2 ∼ Uniform(0, 1) and the maximum displaced distance, 𝛿 = 2km for urban lo-

cations and 𝛿 = 5km for rural locations with 1% of rural locations randomly being given

𝛿 = 10km distance.
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3) Generate the 𝑥Offset and 𝑦Offset for 𝑇𝑘 by combining steps 1 and 2 as follows: 𝑥Offset:
𝑒𝑘1 = 𝑠𝑖𝑛(2𝜋𝜐1) × 𝛿𝜐2 and 𝑦Offset: 𝑒𝑘2 = 𝑐𝑜𝑠(2𝜋𝜐1) × 𝛿𝜐2, where the error term

𝑒𝑘 = (𝑒𝑘1, 𝑒𝑘2) is the Offset or Circular ‘Error’.

4) The new location is generated by adding the offsets to the actual coordinates, resulting in

a new latitude and longitude for the location, as expressed below: 𝑊𝑘1 = 𝑇𝑘1 + 𝑒𝑘1 and

𝑊𝑘2 = 𝑇𝑘2 + 𝑒𝑘2.

5) The newly generated location is examined to guarantee its placement within the designated

restricted higher administrative boundaries. In the case of Bangladesh, displaced locations

must not cross district boundaries (Admin 2), but they can cross lower administrative bound-

aries, e.g., upazila. If it does not fall within the designated higher boundaries, a new displaced

location is generated by repeating Steps 1-4. However, the displaced location is not limited

to areas outside of large water bodies such as lakes, rivers, and oceans.

We observe that the generation of offsets is a crucial component of the DHS displacement pro-

cess, which is later added to the true coordinates to obtain the displaced coordinates. We want to

highlight the similarities between the way used to generate these offsets and the well-known Box-

Muller algorithm (Muller and Muller, 1958) for generating observations from a bivariate normal

distribution, using two independent uniformly distributed random variables 𝜐1 and 𝜐2. Indeed, if

the DHS used 𝑒𝑘1 = 𝑠𝑖𝑛(2𝜋𝜐1) × 𝛿√−2 ln 𝜐2 and 𝑒𝑘2 = 𝑐𝑜𝑠(2𝜋𝜐1) × 𝛿√−2 ln 𝜐2 instead

of 𝑒𝑘1 = 𝑠𝑖𝑛(2𝜋𝜐1) × 𝛿𝜐2 and 𝑒𝑘2 = 𝑐𝑜𝑠(2𝜋𝜐1) × 𝛿𝜐2, the resulting offsets would have been

normally distributed, centered around the original point.

3.2.2 Exploring the distribution of the displaced coordinates by simulation

Before working on theoretical developments, we use simulation to explore the distribution of the

displaced coordinates. Suppose we have a true point at latitude 0 and longitude 0, denoted as

𝑇 = (0, 0). The coordinates (latitude and longitude) in the simulated data set are then displaced
using the DHS random displacement algorithm without any restrictions for administrative units. In

urban areas, the coordinates are displaced with a maximum distance of 2km, while in rural areas,

the coordinates are displaced by 5km, with an additional random displacement of 10km for 1% of

the rural locations.

Figure 3.1 shows histograms representing the distribution of displacement distances and the dis-

placed coordinates 𝑥offset and 𝑦offset for urban locations. The figure also demonstrates the lo-
cation of the 5,000 displaced coordinates along with the original coordinate. The distribution of

34



Figure 3.1: Simulated distributions of urban displaced points and distances from circle centre
(0,0); 5000 displaced points, and 2000m buffer (average displaced distance = 998m, range = (1.3m-
1999.2m)).

distances for urban locations appears largely uniform, while the distribution of offsets (represent-

ing random noise or errors) is approximately symmetric. The distribution of displacement random

errors is non-uniform over the circle.

Figure 3.2 presents histograms indicating the distribution of displacement distances and the dis-

placed coordinates 𝑥offset and 𝑦offset for rural locations, using a simulated dataset of 5,000 co-
ordinates. Also, the figure shows the spatial structure of these displaced coordinates around the

true rural location coordinate. The distribution of distances for rural locations demonstrates a

relatively uniform pattern within the 5-kilometre buffer. Only a few coordinates (50 points) are

scattered within the 10-kilometre buffer. Among these 50 points, only 22 fall between the 5-10km

boundaries. Furthermore, the distribution of offsets (representing errors) exhibits an approximate

symmetry.

3.2.3 Probability distribution of displaced coordinates given the true coordinates

The DHS displacement process is independent from each true location to location. Therefore, we

develop the distribution of the displaced coordinates for a particular location, namely unit 𝑘 and

its two-dimensional offset/error, and displaced coordinates can be written from (3.1) as follows:
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Figure 3.2: Simulated distributions of rural displaced points and distances from circle centre (0,0);
5000 displaced points, 5000m and 10000m buffers (average displaced distance = 2524m, Range =
(3m, 9965m)).

𝑊𝑘1 = 𝑇𝑘1 +𝑒𝑘1 and 𝑊𝑘2 = 𝑇𝑘2 +𝑒𝑘2, where, 𝑊𝑘1 and 𝑊𝑘2 are displaced 𝑥 and 𝑦 coordinates,
𝑇𝑘1 and 𝑇𝑘2 are true 𝑥 and 𝑦 coordinates. Also, 𝑒𝑘1 and 𝑒𝑘2 are 𝑥Offset and 𝑦Offset or circular
errors expressed as follows: 𝑥Offset: 𝑒𝑘1 = 𝑠𝑖𝑛(2𝜋𝜐1) × 𝛿𝜐2 and 𝑦Offset: 𝑒𝑘2 = 𝑐𝑜𝑠(2𝜋𝜐1) ×
𝛿𝜐2, where 𝜐1, 𝜐2 ∼ Uniform(0, 1) and 𝛿 is the maximum displaced distance. Therefore, 2𝜋𝜐1

and 𝛿𝜐2 are the random angle and random distance over the interval (0, 2𝜋) and (0, 𝛿) respectively.

At first, we develop the distribution of the random error term or offset (𝑒𝑘1, 𝑒𝑘2). Next, we con-
sider that the true coordinates (𝑇𝑘1, 𝑇𝑘2) are given, and develop the distribution of the displaced
coordinates (𝑊𝑘1, 𝑊𝑘2).

Let 𝑓𝜐1,𝜐2
(𝜐1, 𝜐2) be the joint distribution of the random variables 𝜐1 and 𝜐2, which are uniformly

distributed over (0,1), and it can be expressed as 𝑓𝜐1,𝜐2
(𝜐1, 𝜐2) = 1 when 0 < 𝜐1 < 1 and

0 < 𝜐2 < 1, and 0 otherwise. The joint distribution of 𝑒𝑘1 and 𝑒𝑘2 is denoted as 𝑓𝑒𝑘1,𝑒𝑘2
(𝑒𝑘1, 𝑒𝑘2),

and it is derived through the transformation of variables from 𝜐 = (𝜐1, 𝜐2) to 𝑒𝑘 = (𝑒𝑘1, 𝑒𝑘2).

Let 𝑔1 and 𝑔2 represent transformation functions, expressed as 𝑔1(𝜐1, 𝜐2) = 𝑒𝑘1 = 𝑠𝑖𝑛(2𝜋𝜐1) ×
𝛿𝜐2 and 𝑔2(𝜐1, 𝜐2) = 𝑒𝑘2 = 𝑐𝑜𝑠(2𝜋𝜐1) × 𝛿𝜐2 respectively. Also, 𝑔−1

1 and 𝑔−1
2 represent the

respective inverse transformations for 𝑔1 and 𝑔2, mapping 𝑒𝑘1 and 𝑒𝑘2 back to 𝜐1 and 𝜐2.
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The joint distribution of 𝑒𝑘1 and 𝑒𝑘2 is given by

𝑓𝑒𝑘1,𝑒𝑘2
(𝑒𝑘1, 𝑒𝑘2) = 𝑓𝜐1,𝜐2

(𝑔−1
1 (𝑒𝑘1, 𝑒𝑘2), 𝑔−1

2 (𝑒𝑘1, 𝑒𝑘2)) × ∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣

= 1 × ∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣

= ∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣

where ∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣ is the determinant of the Jacobian matrix of the inverse transformation, which
is calculated using the partial derivatives of the inverse functions 𝑔−1

1 and 𝑔−1
2 with respect to 𝑒𝑘1

and 𝑒𝑘2, and expressed as follows:

∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣ = ∣𝜕(𝑔−1
1 , 𝑔−1

2 )
𝜕(𝑒𝑘1, 𝑒𝑘2) ∣ = ∣

𝜕𝑔−1
1

𝜕𝑒𝑘1
𝜕𝑔−1

1
𝜕𝑒𝑘2

𝜕𝑔−1
2

𝜕𝑒𝑘1
𝜕𝑔−1

2
𝜕𝑒𝑘2

∣

Figure 3.3: Sketch of the transformation of 𝑣 onto 𝑒𝑘 for 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) = (0, 0)𝑚 and distance
= 2000m.

From Figure 3.3, we note that 𝜐 = (𝜐1, 𝜐2) are all pairs of points over (0,1) and transformed pairs
of points 𝑒𝑘 = (𝑒𝑘1, 𝑒𝑘2) are over (−𝛿, 𝛿) bounded within the circle. The transformation can

generate the same pair of values (𝑒𝑘1, 𝑒𝑘2) with different signs for (𝜐1, 𝜐2). As an illustration, let
𝛿 = 1 then (𝜐1, 𝜐2) = (1

8 , 1) → (𝑒𝑘1, 𝑒𝑘2) = (0.7, 0.7), and (𝜐1, 𝜐2) = (3
8 , 1) → (𝑒𝑘1, 𝑒𝑘2) =

(0.7, −0.7). For the transformation 𝜐 → 𝑒𝑘, each point in 𝜐 will correspond to just one point in

𝑒𝑘 and the reverse is true. Therefore, the transformation is one-to-one.

The domain of the function 𝑓𝑒𝑘1,𝑒𝑘2
(𝑒𝑘1, 𝑒𝑘2) is a bounded set of all points within a circle of the

radius 𝛿 with a centre at the origin in the (𝑒𝑘1, 𝑒𝑘2) plane in Figure 3.3 and can be expressed as
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dom(𝑓𝑒𝑘1,𝑒𝑘2
(𝑒𝑘1, 𝑒𝑘2)) = {(𝑒𝑘1, 𝑒𝑘2)|0 < (𝑒2

𝑘1 + 𝑒2
𝑘2) < 𝛿2}.

Now, we are going to calculate ∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣ as follows:
𝑒𝑘1
𝑒𝑘2

= 𝑡𝑎𝑛(2𝜋𝜐1) ⇒ 𝜐1 = 𝑔−1
1 (𝑒𝑘1, 𝑒𝑘2) = 1

2𝜋𝑎𝑟𝑐𝑡𝑎𝑛(𝑒𝑘1
𝑒𝑘2

) and 𝑒2
𝑘1 + 𝑒2

𝑘2 = 𝛿2𝜐2
2 ⇒ 𝜐2 =

𝑔−1
2 (𝑒𝑘1, 𝑒𝑘2) = (𝑒2

𝑘1+𝑒2
𝑘2)

1
2

𝛿

We obtain the partial derivatives as follows: 𝜕𝑔−1
1

𝑒𝑘1
= 1

2𝜋 × 1
1+( 𝑒𝑘1

𝑒𝑘2
)

2 × 1
𝑒𝑘2

= 1
2𝜋

𝑒𝑘2
𝑒2

𝑘1+𝑒2
𝑘2

and

𝜕𝑔−1
1

𝑒𝑘2
= 1

2𝜋 × 1
1+( 𝑒𝑘1

𝑒𝑘2
)

2 × −𝑒𝑘1
𝑒2

𝑘2
= 1

2𝜋
−𝑒𝑘1

𝑒2
𝑘1+𝑒2

𝑘2
.

𝜕𝑔−1
2

𝜕𝑒𝑘1
= 1

𝛿 × 1
2(𝑒2

𝑘1+𝑒2
𝑘2)

1
2

×2𝑒𝑘1 = 𝑒𝑘1

𝛿(𝑒2
𝑘1+𝑒2

𝑘2)
1
2
and 𝜕𝑔−1

2
𝜕𝑒𝑘2

= 1
𝛿 × 1

2(𝑒2
𝑘1+𝑒2

𝑘2)
1
2

×2𝑒𝑘2 = 𝑒𝑘2

𝛿(𝑒2
𝑘1+𝑒2

𝑘2)
1
2
.

Now,

∣𝐽(𝑔−1
1 , 𝑔−1

2 )∣ = ∣
𝜕𝑔−1

1
𝜕𝑒𝑘1

𝜕𝑔−1
1

𝜕𝑒𝑘2
𝜕𝑔−1

2
𝜕𝑒𝑘1

𝜕𝑔−1
2

𝜕𝑒𝑘2

∣ =
∣
∣∣
∣

1
2𝜋

𝑒𝑘2
𝑒2

𝑘1+𝑒2
𝑘2

1
2𝜋

−𝑒𝑘1
𝑒2

𝑘1+𝑒2
𝑘2

𝑒𝑘1

𝛿(𝑒2
𝑘1+𝑒2

𝑘2)
1
2

𝑒𝑘2

𝛿(𝑒2
𝑘1+𝑒2

𝑘2)
1
2

∣
∣∣
∣
= 1

2𝜋𝛿(𝑒2
𝑘1 + 𝑒2

𝑘2)
1
2

Using the determinant of the Jacobian transformation, the joint distribution of 𝑒𝑘1 and 𝑒𝑘2 is ex-

pressed as follows:

𝑓𝑒𝑘1,𝑒𝑘2
(𝑒𝑘1, 𝑒𝑘2) =

⎧{
⎨{⎩

1
2𝜋𝛿(𝑒2

𝑘1+𝑒2
𝑘2)

1
2

, {(𝑒𝑘1, 𝑒𝑘2) ∶ 0 < (𝑒2
𝑘1 + 𝑒2

𝑘2)
1
2 < 𝛿}

0 otherwise
(3.3)

Our goal is to obtain the joint distribution of displaced coordinates (𝑊𝑘1, 𝑊𝑘2) given the true
coordinates (𝑇𝑘1, 𝑇𝑘2). Therefore, using the distribution of the random error or offset in (3.3),

we eventually develop the distribution for the displaced coordinates. To recall, we have 𝑊𝑘1 =
𝑇𝑘1 + 𝑒𝑘1 and 𝑊𝑘2 = 𝑇𝑘2 + 𝑒𝑘2. This implies that the generated random error is added to the

true coordinates to obtain the displaced coordinates. Also, from these equations, we can write

𝑒𝑘1 = 𝑊𝑘1 − 𝑇𝑘1 and 𝑒𝑘2 = 𝑊𝑘2 − 𝑇𝑘2. This transformation is also one-to-one and is presented

in Figure 3.4.

Therefore, conditional on 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2), developing the distribution of displaced coordinates
𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2) using the distribution of 𝑒𝑘 = (𝑒𝑘1, 𝑒𝑘2) from (3.3) is straightforward. The

joint distribution of (𝑊𝑘1, 𝑊𝑘2) given (𝑇𝑘1, 𝑇𝑘2) is given by
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Figure 3.4: Sketch of the transformation of 𝑒𝑘 onto 𝑊𝑘 for 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) = (8000, 8000)𝑚
and distance = 2000m.

𝑓 {(𝑊𝑘1, 𝑊𝑘2) ∣ (𝑇𝑘1, 𝑇𝑘2)}

=
⎧{
⎨{⎩

1
2𝜋𝛿{(𝑊𝑘1−𝑇𝑘1)2+(𝑊𝑘2−𝑇𝑘2)2}

1
2

, {(𝑊𝑘1, 𝑊𝑘2) ∶ 0 < {(𝑊𝑘1 − 𝑇𝑘1)2 + (𝑊𝑘2 − 𝑇𝑘2)2}
1
2 < 𝛿}

0 otherwise

Hence, the above probability distribution of the displaced coordinates given the true coordinates

can be expressed as follows:

𝑓(𝑊𝑘|𝑇𝑘) = {2𝜋𝛿dist(𝑊𝑘, 𝑇𝑘)}−1 𝐼(0 < dist(𝑊𝑘, 𝑇𝑘) ≤ 𝛿), (3.4)

where dist(𝑊𝑘, 𝑇𝑘) = √(𝑊𝑘1 − 𝑇𝑘1)2 + (𝑊𝑘2 − 𝑇𝑘2)2 is the Euclidean distance between the

displaced location 𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2) and true location 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) and 𝐼(.) is an indicator
function.

3.2.4 Development of the distribution of the true coordinates given the displaced

coordinates

Our target is to reconstruct the unknown distribution of 𝑓(𝑇𝑘 ∣ 𝑊𝑘) and using Bayes rule this can
be expressed as follows:

𝑓(𝑇𝑘 ∣ 𝑊𝑘) ∝ 𝑓(𝑊𝑘 ∣ 𝑇𝑘)𝑓(𝑇𝑘). (3.5)
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Using (3.4) we can express the above unknown distribution 𝑓(𝑇𝑘|𝑊𝑘) as

𝑓(𝑇𝑘|𝑊𝑘) ∝ {2𝜋𝛿dist(𝑊𝑘, 𝑇𝑘)}−1 𝐼(0 < dist(𝑊𝑘, 𝑇𝑘) ≤ 𝛿)𝑓(𝑇𝑘). (3.6)

Now, regarding the second term on the right hand side of (3.6), since𝑇𝑘 is also unobserved here, the

distribution of the true location data, 𝑓(𝑇𝑘) is unknown. If we knew it, we could generate pseudo

samples of the unobserved true data given the observed data using the conditional distribution in

(3.6).

In this situation, a non-parametric Multivariate Kernel Density Estimation (KDE) can be used to

estimate the density corresponding to the spatial distribution of the unobserved true coordinates

𝑓(𝑇𝑘). Also, as true coordinates are unobserved, the target conditional distribution 𝑓(𝑇𝑘|𝑊𝑘)
in (3.6) can be used to obtain kernel density estimates. This is implemented using the Stochas-

tic Expectation-Maximization (SEM) algorithm. The details are described in Section 3.3 below.

However, if the underlying probability distribution of the true location data is known or can be

approximated through external data e.g., WorldPop gridded population density, this can be incor-

porated into the estimation. In that case, an alternative to the KDE method, external data based

estimation method will be described in Section 3.4.

3.3 Multivariate KDE in the presence of DHS displacement error

In this section, we propose a method of multivariate density estimation for estimating 𝑓(𝑇𝑘) ac-
counting for the DHS random displacement error under the measurement error model in (3.6),

followed by the estimation of domain parameters. This method is an extension of the proposed

method by Groß et al. (2017), which is used for estimating a multivariate kernel density in the

presence of a deterministic rounding (or aggregation) error. Notice that the method by Groß et al.

(2017) is not directly applicable in the case of the DHS random displacement process that we ex-

tensively discussed in Chapter 2. To remind the reader, there are two primary reasons for this.

First, the aggregation or rounding process is deterministic, whereas the DHS displacement process

is stochastic. The later process has varying maximum displacement distances for urban and rural

areas. Second, the conditional distribution of the aggregation or rounding error is uniform. This

is not the case for the DHS random displacement algorithm. We have developed its probability

distribution in section 3.2.3.

Multivariate KDE, which is a non-parametric approach, plays a significant role in estimating the
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joint probability distribution of more than one continuous variable. Let 𝑇 = {𝑇1 … , 𝑇𝑁} de-

note the true (continuous) coordinates of the observations, such as longitude and latitude, with

𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) where 𝑘 = 1, … , 𝑁 . In that case, we would have a multivariate (bi-variate) vari-

able. Let 𝑓(𝑇 ⋆
𝑞𝑠) be the unknown density corresponding to the distribution of the true (continuous)

coordinates of the observations 𝑇 = {𝑇1 … , 𝑇𝑁}. The continuous surface of all possible true
coordinates are discretized into a finite set of points indexed by 𝑞 and 𝑠, each ranging from 1 to 𝐿.
Specifically, the grid point 𝑇 ⋆

𝑞𝑠 = (𝑇 ⋆
𝑞1, 𝑇 ⋆

𝑠2) represents one such discretized coordinate. In order
to estimate the density 𝑓(𝑇 ⋆

𝑞𝑠), a multivariate kernel density estimator is used, which is given as
follows:

̂𝑓𝐻(𝑇 ⋆
𝑞𝑠) = 1

𝑁|𝐻|1/2

𝑁
∑
𝑘=1

𝐾 {𝐻−1/2(𝑇 ⋆
𝑞𝑠 − 𝑇𝑘)} , (3.7)

where, 𝐾 {.} represents a multivariate kernel function, 𝐻 indicates a symmetric positive definite

bandwidth matrix, and |.| represents the determinant. The selection of the bandwidth, known as
a smoothing parameter, plays a crucial role in determining the performance of a kernel density

estimator. Choosing an appropriate value for the bandwidth is essential, as excessively small or

large values are not desirable. When the bandwidth,𝐻 , is too small, the resulting estimates exhibit

spikiness due to under-smoothing. On the other hand, larger values of 𝐻 lead to over-smoothing

of the estimates. We have mentioned different approaches for bandwidth selection in Chapter 2.

In this work, we adopt an approach described by Wand and Jones (1994), where the bandwidth

selection in the multivariate situation is achieved using a plug-in estimator. The typical strategy

involves selecting 𝐻 by minimising the asymptotic root mean integrated squared error (RMISE)

through the use of plug-in or cross-validation techniques (Silverman, 2018, section 2.4).

Instead of 𝑇 , only the randomly displaced (contaminated by measurement error) coordinates of
the observations 𝑊 = {𝑊1 … , 𝑊𝑁} are available, where 𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2). However, the
displacement of true points may alter the original spatial pattern. Hence, the density estimates of

the observations using a naive density estimator that discards the displacement error by substituting

the true values 𝑇𝑘 with the displaced values 𝑊𝑘 in equation (3.7) may not be close to the density

of the true data.

However, we still target to estimate the density 𝑓𝐻(𝑇 ⋆
𝑞𝑠) by using only the observed displaced

values 𝑊 under the measurement error model 𝑓(𝑇 |𝑊) ∝ 𝑓(𝑊|𝑇 )𝑓(𝑇 ), where 𝑓(𝑊|𝑇 ) =
∏𝑁

𝑘=1 𝑓(𝑊𝑘|𝑇𝑘) and 𝑓(𝑇 ) = ∏𝑁
𝑘=1 𝑓(𝑇𝑘). The true coordinates are displaced independently for

each location. Therefore, we estimate 𝑓(𝑇 |𝑊) under the assumption of factorising the density for

41



each independent location. Following the equation (3.6), we can write

𝑓(𝑇𝑘 = 𝑇 ⋆
𝑞𝑠|𝑊𝑘) ∝ {2𝜋𝛿dist(𝑊𝑘, 𝑇 ⋆

𝑞𝑠)}−1 𝐼(0 < dist(𝑊𝑘, 𝑇 ⋆
𝑞𝑠) ≤ 𝛿)𝑓(𝑇𝑘 = 𝑇 ⋆

𝑞𝑠), (3.8)

where 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑞𝑠) is evaluated at grid point 𝑇 ⋆

𝑞𝑠 defined earlier.

Since the true data 𝑇 and consequently 𝑓(𝑇 ) = ∏𝑁
𝑘=1 𝑓(𝑇𝑘) are initially unknown, Groß et al.

(2017) proposed a Stochastic Expectation-Maximization (SEM) algorithm for estimation. This al-

gorithm utilizes an initial estimate of 𝑓𝐻(𝑇 ⋆
𝑞𝑠) based on 𝑊 , followed by alternating simulations

of 𝑇 from 𝑓(𝑇 |𝑊) and re-estimation of 𝑓(𝑇 ) until convergence is achieved. This can be con-
sidered as a modified version of the expectation-maximization (EM) algorithm (Dempster et al.,

1977; Groß et al., 2017). In this thesis, we extend the Groß et al. (2017) procedure for the case

of the DHS random displacement. We present the exact implementation of the algorithm in the

following subsection.

3.3.1 Estimation using the SEM algorithm

𝑇𝑘 are repeatedly drawn from 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑞𝑠|𝑊𝑘) followed by estimation of 𝑓(𝑇𝑘 = 𝑇 ⋆

𝑞𝑠), by em-
ploying a multivariate kernel density estimator on the 𝑇𝑘. The computational steps of the algorithm

are described below:

• Step 1: Generate an evenly spaced fine grid 𝐺 = 𝑇 ⋆
𝑞1 × 𝑇 ⋆

𝑠2 for 𝑞 = 1, … , 𝐿
and 𝑠 = 1, … , 𝐿, with grid size 𝐿, grid width 𝐿𝑔1 = max𝑘(𝑊𝑘1)−min𝑘(𝑊𝑘1)+2𝛿

𝐿−1 , 𝐿𝑔2 =
max𝑘(𝑊𝑘2)−min𝑘(𝑊𝑘2)+2𝛿

𝐿−1 ; 𝑇 ⋆
𝑞1 = {min𝑘(𝑊𝑘1) − 𝛿,min𝑘(𝑊𝑘1) − 𝛿 + 𝐿𝑔1, ⋯ ,max𝑘(𝑊𝑘1) + 𝛿},

also 𝑇 ⋆
𝑠2 = {min𝑘(𝑊𝑘2) − 𝛿,min𝑘(𝑊𝑘2) − 𝛿 + 𝐿𝑔2, ⋯ ,max𝑘(𝑊𝑘2) + 𝛿}

where 𝑘 = 1, … , 𝑁 and 𝛿 denotes the displacement parameter (distance) that is introduced
in the DHS displacement process in subsection 3.2.1.

• Step 2: Obtain a pilot estimate ̂𝑓𝐻(𝑇 ⋆
𝑞𝑠) of 𝑓𝐻(𝑇 ⋆

𝑞𝑠) using the displaced data 𝑊 with an

initial bandwidth matrix

𝐻(0) = ⎛⎜
⎝

𝑙 0
0 𝑙

⎞⎟
⎠

,

where 𝑙 takes a value that is sufficiently large, such as twice the range of the observation
coordinates.

• Step 3 (S-step): For 𝑘 = 1, 2, … , 𝑁 , a pseudo-sample 𝑇 ⋆
𝑘 = (𝑇 ⋆

𝑘1, 𝑇 ⋆
𝑘2) of the unknown true

points 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) is selected by sampling from the conditional distribution 𝑓(𝑇𝑘 =
𝑇 ⋆

𝑞𝑠|𝑊𝑘) in (3.8). In this step, the estimation of the conditional distribution of displaced
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coordinates 𝑓(𝑊𝑘|𝑇𝑘) in (3.8) is restricted to the circular region centered around 𝑊𝑘 =
(𝑊𝑘1, 𝑊𝑘2), i.e., 0 < √(𝑊𝑘1 − 𝑇 ⋆

𝑞1)2 + (𝑊𝑘2 − 𝑇 ⋆
𝑠2)2 ≤ 𝛿, and is also confined within

the designated higher administrative boundaries (e.g., a district or admin 2 of the country).

This implies that any coordinates falling outside of both the circular buffer and the designated

administrative boundary will have a 0 probability of being selected as the true coordinates.

• Step 4 (M-step): Obtain the estimated bandwidth matrix𝐻 by using the multivariate plug-in

estimator of Wand and Jones (1994) and re-compute the bivariate kernel density ̂𝑓𝐻(𝑇 ⋆
𝑞𝑠)

using the pseudo-sample points from Step 3. Alternative bandwidth selection techniques

can also be considered. When the goal is to estimate the density and the estimation includes

regions with large water bodies, such as seas, applying boundary corrections is crucial: elim-

inate points in water and rescale land points to preserve accurate density representation.

• Step 5: Repeat Steps 3-4 for a total of 𝐴1 (burn-in iterations) + 𝐴2 (sample iterations).

• Step 6: Exclude the 𝐴1 burn-in density estimates and calculate the final density estimate

of 𝑓𝐻(𝑇 ⋆
𝑞𝑠) by taking the average of the remaining 𝐴2 density estimates ̂𝑓𝐻(𝑇 ⋆

𝑞𝑠). Larger
values for𝐴1 and𝐴2, such as𝐴1 = 20, and𝐴2 = 200, enhance the accuracy in realizing the
unknown true coordinates of observations and subsequently improve the density estimates

by accounting for random displacement errors. The sensitivity of the results to different

combinations of𝐴1 and𝐴2 can be assessed by evaluating the quality of the density estimates

using measures, such as the RIMSE, as defined in (3.27).

3.3.2 Domain estimation using randomly displaced data

As we stated, our next aim is to develop a method to obtain estimates of the domain (e.g., upazila)

parameters of interest accounting for misplacement uncertainty due to random displacement. Al-

though the random displacement process is restricted within a higher administrative boundary ,e.g.,

district (admin 2) in Bangladesh, the displaced points can cross any administrative boundary, for

instance, upazila (admin 3) in Bangladesh, which is lower than the restricted boundary. As we

mentioned earlier, in this thesis, we consider upazila as the target domain. Therefore, when ob-

taining any (direct) estimates at the upazila level using georeferenced household location data and

spatial overlaid polygon regions, the random displacement of household locations can result in mis-

classification or misassignment of households to the correct upazila boundaries, especially when

the true household location is displaced outside of its associated polygon region. The probability

of misclassifying a point to an administrative boundary (polygon) feature depends on the size and

shape of the overlaid feature. Larger polygon regions generally have a lower chance of incorrect
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assignment. Also, the true point certainly lies within a buffer surrounding the displaced point, with

a radius equal to the maximum displacement distance (e.g., 5km). This buffer is referred to as the

displacement buffer. Moreover, if the displacement buffer falls completely within an administra-

tive (upazila) boundary, there is no chance of misclassification i.e., the point is always classified

to the correct upazila with a probability equal to 1. On the other hand, if the displacement buffer

intersects with an administrative boundary, the point is known as a potentially misplaced point. In

that case, the true point lies within one of these intersecting administrative areas. The chance of

originating from one admin boundary is not proportional to the intersecting boundary area with the

displacement buffer because it depends on the random displacement process, and the distribution

of random displaced points is not uniform (Figure 3.1). For instance, if most of the likely true

points from an upazila within the displacement buffer have a short distance from the displaced

point, then the upazila will be correctly assigned to the household location with a high probability.

Therefore, we propose a domain estimator taking into account the misplacement uncertainty under

the measurement error model (3.8), which is described as follows:

Let 𝑈 be the population of units e.g., households in the country and the units denoted by 𝑘 =
1 … , 𝑁 . These units are grouped in domains 𝑖 = 1, … , 𝑀 , such that each unit belongs to one

and only one domain and they add up to the population i.e., ∪𝑀
𝑖=1𝑈𝑖 = 𝑈 , where 𝑈𝑖 denotes the

𝑖th domain population. Associated to unit 𝑘, we have the data vector 𝐷𝑘 = (𝑌𝑘, 𝑇𝑘), where 𝑌𝑘

denotes a variable measured at the true location 𝑇𝑘, for instance, household income (or whether

the household is poor), and 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) are the true coordinates of the 𝑘th unit.

We are interested in estimating a parameter defined for domain 𝑈𝑖 e.g., the proportion of poor

households expressed as

̄𝑌𝑖 = ∑𝑈 𝑌𝑘𝐼𝑖(𝑇𝑘)
∑𝑈 𝐼𝑖(𝑇𝑘) , 𝑖 = 1, … , 𝑀; 𝑘 = 1, … , 𝑁, (3.9)

where 𝐼𝑖(𝑇𝑘) = 1 if 𝑇𝑘 ∈ 𝑈𝑖, otherwise it takes value 0.

This task would be straightforward if we had knowledge of the coordinates 𝑇𝑘 for all units. Unfor-

tunately, as a way to reduce the disclosure risk, the coordinates 𝑇𝑘 have been displaced to location

𝑊𝑘 using the random mechanism explained in subsection 3.2.1, and only the coordinates 𝑊𝑘 are

available to the data analysts. Even in the case of having data for the whole population of units (no

sampling), using a similar expansion to (3.9) with 𝑊𝑘 in place of 𝑇𝑘 may lead to bias in estimates

whenever the displaced 𝑊𝑘 belongs to a different domain than 𝑇𝑘 (misplacement).

Although the displacement mechanism is random and independent of 𝑌𝑘, it is possible to use the
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displaced coordinates 𝑊𝑘 to inform about the true location of the household via the distribution

𝑓(𝑇𝑘|𝑊𝑘). However, we still aim to estimate the parameter ̄𝑌𝑖 using the values 𝑊𝑘 accounting

for misplacement uncertainty via 𝑓(𝑇𝑘 ∣ 𝑊𝑘) in (3.6) that corrects for misplacement error. In
particular, we can generate pseudo samples of the unobserved true data given the observed data

from 𝑓(𝑇𝑘 ∣ 𝑊𝑘) but we need to estimate 𝑓(𝑇𝑘). In that case, we propose an estimator of ̄𝑌𝑖 using

pseudo samples 𝑇 ⋆
𝑘 of the true unknown points 𝑇𝑘 drawn by using the proposed kernel density

based SEM algorithm that we presented in subsection 3.3.1. Notice that one obtains simulated co-

ordinates for each unit as a by-product of the routine. The proposed domain estimator is expressed

as

̂̄𝑌 𝑖(KDE) =
∑𝑈 𝑌𝑘𝐼𝑖(𝑇 ⋆

𝑘(KDE))
∑𝑈 𝐼𝑖(𝑇 ⋆

𝑘(KDE))
, 𝑖 = 1, … , 𝑀; 𝑘 = 1, … , 𝑁, (3.10)

where 𝐼𝑖(𝑇 ⋆
𝑘(KDE)) = 1 if 𝑇 ⋆

𝑘(KDE) belongs to the domain 𝑖, otherwise it takes value 0.

Iterative samples of true location data out of all possible true locations are needed for a better

understanding of the true location. Therefore, for each complete set of simulated coordinates 𝑇 ⋆
𝑘 =

(𝑇 ⋆
𝑘1, 𝑇 ⋆

𝑘2), 𝑘 = 1, 2, … , 𝑁 from Step 3 in the proposed SEM algorithm in 3.3.1, obtain the

domain parameter estimates ̂̄𝑌 𝑖(KDE) in (3.10) and obtain the final estimate by taking an average

of estimates over 𝐴2 samples.

Now, in the case of sample data, let 𝑠 ⊂ 𝑈 be a sample of units (𝑘 = 1 … , 𝑛) selected according
to a given sampling design. Let 𝑠𝑖 = 𝑠 ∩ 𝑈𝑖 denote the sampled units in (small) domain 𝑖(𝑖 =
1, … , 𝑚) and let 𝜋𝑘 = 𝑃(𝑘 ∈ 𝑠) denote the inclusion probabilities, and 𝑏𝑘 denote the sampling

weights, which are calculated as the inverse of the inclusion probabilities. By using sampling

weights and pseudo-samples of true coordinates, and following the process described by Walter

et al. (2022), we can express the estimators corresponding to ̄𝑌𝑖 in (3.9) and ̂̄𝑌 𝑖(KDE) in (3.10)

using sample data 𝑠 as follows:

̂̄𝑌𝑖
𝑠

= ∑𝑠 𝑌𝑘𝑏𝑘𝐼𝑖(𝑇𝑘)
∑𝑠 𝑏𝑘𝐼𝑖(𝑇𝑘) , 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝑛, (3.11)

̂̄𝑌
𝑠
𝑖(KDE) =

∑𝑠 𝑌𝑘𝑏𝑘𝐼𝑖(𝑇 ⋆
𝑘(KDE))

∑𝑠 𝑏𝑘𝐼𝑖(𝑇 ⋆
𝑘(KDE))

, 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝑛, (3.12)

where 𝑏𝑘 are the sampling weights.

The KDE estimator, used to estimate density, may not work well when applied to a sample. Specif-
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ically, using a sample to estimate 𝑓(𝑇𝑘) may produce a spike density when a sample has a sort of
aggregation. For example, when a household represents, e.g., 20 households, according to sam-

pling weights, they may be expected to be distributed throughout the EA rather than geographically

centred in it. Furthermore, the method cannot differentiate between the absence of sample data and

the absence of population. Also, under the random displacement process, false in-sample and out-

of-sample domains can arise. A false in-sample domain refers to a domain that gains EAs due to

the displacement process, even though originally no EAs were sampled from that domain. Con-

versely, a false out-of-sample domain means that all of the sampled EAs from that domain are lost

due to the random displacement process. However, the method may work under certain sampling

designs that cover the entire population area, such as a simple random sample over the whole area

or a geographically stratified sample. On the other hand, it may work badly in the presence of

multistage sampling, as entire areas would not be selected.

3.4 External data based estimationmethod in the presence of random

displacement error

In Section 3.3, we proposed an estimation method for drawing likely pseudo-samples of true co-

ordinates under the measurement error model in (3.6), where we used kernel density estimates as

the marginal distribution of the true location data. The target of the estimation remains the same

as before. However, the underlying distribution of true location data can be approximated using

available information from external data sources. The information may be useful for drawing the

best possible true locations. Therefore, in this section, we aim to propose an estimation method

for drawing likely pseudo-samples of true coordinates from the model by using external data for

approximating the distribution of the true location data. As our primary interest, in this section,

we focus only on domain parameter estimates accounting for misplacement error due to the dis-

placement process. The method we are proposing here has similarities with the method proposed

by Warren et al. (2016b) which we described in detail in Chapter 2. As a reminder to the reader,

Warren et al. (2016b) generated the likely true coordinates by displacing the displaced coordinates

using the DHS displacement mechanism i.e., through the distribution 𝑓(𝑊𝑘 ∣ 𝑇𝑘) in (3.4). How-
ever, Warren et al. (2016b) did not present the mathematical form of 𝑓(𝑊𝑘 ∣ 𝑇𝑘) which is one of
the contributions of this thesis. In addition, Warren et al. (2016b) did not consider 𝑓(𝑇𝑘) in their
model and allowed all points within a buffer to be possible true points, but the points in large water

bodies e.g., sea, lake and uninhabited areas, such as large green or forest lands, cannot be possi-

ble true locations and have a selection probability equal to 0 (Figure 3.5). Therefore, we extend
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the method of Warren et al. (2016b) by bringing additional information for 𝑓(𝑇𝑘) from external

data sources. Hereafter, we refer to the proposed method as the external data based classification

(EDC) method. Specifically, in the proposed EDC method, we use our developed target distribu-

tion 𝑓(𝑇𝑘 ∣ 𝑊𝑘) in (3.6). Another distinct feature of the proposed method is that it accounts for the
uncertainty of all probable domains where the true location point may belong. In contrast, in the

method by Warren et al. (2016b), only the most probable domain was picked and assigned to the

EA location as the correct domain. We describe the proposed method using appropriate notations

as follows:

Following equation (3.6), we can express the unknown conditional distribution 𝑓(𝑇𝑘 ∣ 𝑊𝑘) as

𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘𝑞 ∣ 𝑊𝑘) ∝ [2𝜋𝛿dist(𝑊𝑘, 𝑇 ⋆

𝑘𝑞)]−1𝐼(0 < dist(𝑊𝑘, 𝑇 ⋆
𝑘𝑞) ≤ 𝛿)𝑓(𝑇𝑘 = 𝑇 ⋆

𝑘𝑞), (3.13)

where 𝑇 ⋆
𝑘𝑞 denotes the 𝑞th (𝑞 = 1, 2, ⋯ , 𝑄𝑘) potential true location for the 𝑘th household within

the displacement buffer around the 𝑊𝑘, and 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘𝑞) is the distribution of the potential true

locations 𝑇 ⋆
𝑘𝑞. Although the 𝑇𝑘 is continuous, we estimate 𝑓(𝑇𝑘 = 𝑇 ⋆

𝑘𝑞) based on a discrete

approximation using external grid centroids described below.

The distribution of the potential true locations,𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘𝑞) is unknown. This underlying distribu-

tion can be approximated by using available information from different external data sources. The

information may be useful for classifying the households to correct domains with higher classifica-

tion probabilities. Therefore, we choose the information carefully and their possible relations with

the correct domains/locations are presented in Figure 3.5 and justified below:

1) Population density: The household population density may be a good predictor for selecting

the likely true points from the correct domain within the displacement buffer. Moreover,

in some cases, there may be a direct relationship between the population density and true

locations. For example, as we have discussed in detail in Chapter 1, in the 2011 BDHS, 600

true Enumeration Area (EA) centroid locations were selected with probability proportional

to the 2011 census EA size (number of households) (NIPORT, 2013). While this thesis does

not directly address the probability proportional to size (PPS) sampling approach, the effect

of unequal probability selection is inherently reflected when using household population

density to estimate 𝑓(𝑇𝑘). Thus, locations with higher population densities are more likely
to be potential true locations. The population density of the true potential location data is

not known. However, these population densities can be approximated by using alternative

sources of population data. For example, theWorldPop database which produces the gridded
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Figure 3.5: Schematic of a hypothetical scenario where a rural household location coordinate is
misclassified to an administrative unit (upazila) due to the random displacement (where building
shape refers to building footprints obtained through satellite imagery).

population density estimates for each country (Bondarenko et al., 2020). Therefore, in this

work, we use the 100m× 100m boundary corrected gridded population density 2020 data of

Bangladesh from WorldPop. We have discussed the WorldPop gridded population density

estimation method in Chapter 1. To remind the reader, the gridded population densities

for a given country are estimated using Random Forests machine learning methods, which

incorporate survey/census and remote sensing data, such as the Lights at Night (LAN) data.

The method employs a top-down approach to disaggregate administrative unit-based census

and projection counts to grid cell-based counts, using geospatial datasets such as building

footprint data and high-resolution road networks.

2) Designated admin boundary restriction: As the true points are displaced within a higher

administrative boundary e.g., admin 2 (district) in Bangladesh, the displaced points can not

cross their original district boundaries. Therefore, the points outside the original district

boundary of the true household within the displacement buffer are given 0 probability of

being selected as the true likely locations.

3) Rural Urban boundaries: The DHS random displacement process is not restricted within

the rural urban locations. Therefore, it is possible that a household that originated from a

rural location can be displaced to an urban location and vice versa. However, if we know

a) whether the household (or EA) locations are originally from urban or rural areas, as is
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the case with the DHS e.g., the 2011 BDHS and b) the rural/urban boundaries of a country,

this additional information can be used while selecting the likely true household location

within the displacement buffer around the displaced point. In the case of Bangladesh, the

rural/urban boundaries information can be obtained from the population census data that we

discussed in detail in Chapter 1.

4) Boundary corrections for non-settlement places: True household locations can not be in

uninhabited places. However, the DHS random displacement process is not restricted to in-

habited places only. Therefore, it is possible that the true household points can be displaced

to uninhabited places e.g., large green or forest areas or in large water bodies such as the

sea, lakes etc. For instance, we see by creating a map of the 2011 BDHS displaced EA

coordinates that some EA coordinates were displaced to non-settlement places. Thus, in or-

der to select the likely true household locations through the proposed method, any points in

uninhabited places within the displacement buffer are given 0 probability of being selected.

We implement these boundary corrections in the proposed method by using the boundary

corrected gridded population data from WorldPop which we discussed in Chapter 1. World-

Pop produces the boundary corrected gridded population by using remote sensing data based

higher resolution satellite images for the settlement places and/or building footprints.

Therefore, using the above information which is available from different external data sources, the

distribution of potential true locations 𝑓 (𝑇𝑘 = 𝑇 ⋆
𝑘𝑞) can be approximated as follows:

̂𝑓 (𝑇𝑘 = 𝑇 ⋆
𝑘𝑞) =

𝑁𝑘𝑞 × 𝐼DRA(𝑇 ⋆
𝑘𝑞) × 𝐼UR(𝑇 ⋆

𝑘𝑞) × 𝐼NS(𝑇 ⋆
𝑘𝑞)

∑𝑞[𝑁𝑘𝑞 × 𝐼DRA(𝑇 ⋆
𝑘𝑞) × 𝐼UR(𝑇 ⋆

𝑘𝑞) × 𝐼NS(𝑇 ⋆
𝑘𝑞)] , 𝑞 = 1, 2, ⋯ , 𝑄𝑘, (3.14)

where 𝑁𝑘𝑞 is the number of people at location 𝑇 ⋆
𝑘𝑞; 𝐼DRA(𝑇 ⋆

𝑘𝑞) = 1 if 𝑇 ⋆
𝑘𝑞 falls within the displace-

ment restricted administrative boundaries, otherwise it takes value 0; 𝐼UR(𝑇 ⋆
𝑘𝑞) = 1 if 𝑇 ⋆

𝑘𝑞 falls in

the same region (either urban or rural) from which the household (or EA) point actually originated,

otherwise it takes value 0, and 𝐼NS(𝑇 ⋆
𝑘𝑞) = 1 if 𝑇 ⋆

𝑘𝑞 does not fall in the non-settlement places e.g.,

a large water body, forest area etc, otherwise it takes value 0.

3.4.1 Estimation

It is not possible to obtain the target conditional distribution of the true data 𝑓(𝑇𝑘|𝑊𝑘) in (3.13)
analytically. As the true location 𝑇𝑘 is unobserved, we can use numerical integration for estima-

tion. In particular, we draw Monte Carlo samples of potential true locations using (3.13) given the

observed/displaced locations. This works by replacing the unobserved true point 𝑇𝑘 in the target
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distribution by generating pseudo-samples of the unobserved true point given the observed data

and then, obtaining estimates of the target parameters e.g., domain means/proportions ̂̄𝑌𝑖 with the

updated (new) location samples. The process is repeated a large number of times and we take the

average of the estimates. However, the domain mean estimates converge when the proportions of

the realizations (pseudo-sample points) within a domain converge. Studies byWarren et al. (2016b)

and Wilson et al. (2020) recommended drawing a large number of samples for better realizations

of the true location. The computational steps of the algorithm for the external data based proposed

method are described below:

• Step 1: For each household 𝑘 = 1, 2, … , 𝑁 take the WorldPop grid of points

(𝑇 ⋆
𝑘𝑞1, 𝑇 ⋆

𝑘𝑞2), 𝑞 = 1, 2, … , 𝑄𝑘 around (𝑊𝑘1, 𝑊𝑘2) of width 2𝛿 that covers the com-

plete (𝑇𝑘1, 𝑇𝑘2) space, where 𝛿 is the maximum displacement distance.

• Step 2: For each household 𝑘 = 1, 2, … , 𝑁 pseudo-samples 𝑇 ⋆
𝑘 = (𝑇 ⋆

𝑘1, 𝑇 ⋆
𝑘2) of the

true unknown points 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2) are drawn from 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘𝑞|𝑊𝑘) in (3.13) with

̂𝑓 (𝑇𝑘 = 𝑇 ⋆
𝑘𝑞) = 𝑁𝑘𝑞×𝐼DRA(𝑇 ⋆

𝑘𝑞)×𝐼UR(𝑇 ⋆
𝑘𝑞)×𝐼NS(𝑇 ⋆

𝑘𝑞)
∑𝑞[𝑁𝑘𝑞×𝐼DRA(𝑇 ⋆

𝑘𝑞)×𝐼UR(𝑇 ⋆
𝑘𝑞)×𝐼NS(𝑇 ⋆

𝑘𝑞)] , 𝑞 = 1, 2, ⋯ , 𝑄𝑘 in (3.14).

• Step 3: For 𝑖 = 1, 2, … , 𝑀 and 𝑘 = 1, 2, … , 𝑁 assign domain 𝑖 to the sample house-

hold points 𝑇 ⋆
𝑘 from Step 2 that is, let Area𝑖(.) be a domain assignment function such that

Area𝑖(𝑇 ⋆
𝑘 ) = 𝑖 if the point 𝑇 ⋆

𝑘 belongs to domain (or area) 𝑖.

• Step 4: Iterate Steps 2-3 𝐵1 + 𝐵2 times with 𝐵1 = 200 (large number of iterations) and

𝐵2 = 20 (additional iterations).

• Step 5: In order to set the convergence criteria, let ̂𝑃𝑘𝑖 = 𝑃(Area𝑖(𝑇𝑘 = 𝑇 ⋆
𝑘 ) = 𝑖|𝑊𝑘) be

the estimated domain membership probabilities for the 𝑘th household based on the pseudo-
samples of the true location data𝑇 ⋆

𝑘 , where Area𝑖(.) is a domain assignment function defined
in Step 3. If the buffer around 𝑊𝑘 does not intersect with any domain boundary (i.e., non-

misplaced location), there is no need for iteration. However, a large number of iterations

should be done over all possible domain boundaries that intersect with the displacement

buffer. Thus, compute the domain membership probabilities for the 𝑘th household ̂𝑃𝑘𝑖
(𝐵1)

and ̂𝑃𝑘𝑖
(𝐵1+𝐵2)

by using the 𝐵1 and (𝐵1 + 𝐵2) iterative sample steps respectively, where
∑𝑀

𝑖=1
̂𝑃𝑘𝑖

(𝐵1) = 1 and ∑𝑀
𝑖=1

̂𝑃𝑘𝑖
(𝐵1+𝐵2) = 1.

• Step 6: If | ̂𝑃𝑘𝑖
(𝐵1+𝐵2) − ̂𝑃𝑘𝑖

(𝐵1)| < 𝜔, where 𝜔 is a vector of small quantities, the domain

membership probabilities ̂𝑃𝑘𝑖
(𝐵1)

have converged. Alternatively, we can create trace plots

for the probabilities of domain membership to see whether the two estimates, ̂𝑃𝑘𝑖
(𝐵1+𝐵2)

and ̂𝑃𝑘𝑖
(𝐵1)

, are reasonably close. If they are, then we can consider that the algorithm has
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converged. Otherwise, return to Step 2 and repeat the subsequent steps, increasing 𝐵1 by a

predefined amount (e.g., 𝐵1 = 𝐵1 +20), while retaining the constant value 𝐵2 = 20, until
the convergence criteria are met.

• Step 7: For each household 𝑘 = 1, 2, … , 𝑁 select domains 𝑖 by sampling from the domain

membership probability distribution ̂𝑃𝑘𝑖
(𝐵1); 𝑖 = 1, 2, … , 𝑀 in Step 6.

• Step 8: For each complete set of selected domains from Step 7, obtain the domain parameter

estimates ̂̄𝑌𝑖, (𝑖 = 1, 2, … , 𝑀) expressed in Subsection 3.3.2.

• Step 9: Repeat Steps 7 and 8 𝐵3 = 100 times and obtain the final estimates by averaging

the derived 𝐵3 estimates.

3.5 Estimation under aggregation and displacement errors

Suppose that to preserve the confidentiality of respondents, the population (e.g., register or cen-

sus) data release policy uses two types of protection. First, the household location data within each

Enumeration Area (EA) is aggregated at the centroid of the EA. Next, the EA centroid coordinates

are displaced using a displacement algorithm, e.g., the DHS random displacement algorithm dis-

cussed in Subsection 3.2.1. So, only displaced EA centroid coordinates are provided to researchers.

Notice that, as in the DHS, the aggregation of coordinates is restricted to the boundaries of the tar-

get domain. This domain level determines where we aim to obtain estimates for the indicator of

interest. However, the aggregation and displacement processes induce measurement errors in data,

which may alter the original spatial pattern. In particular, the aggregation concentrates the data

into a single location, and the data can be misplaced when the EA is displaced outside of its orig-

inal domain boundary. Disregarding the measurement error may result in incorrect density and

domain parameter estimates. To the best of our knowledge, previous studies did not attempt to

obtain estimates by taking into account the uncertainty due to both aggregation and displacement.

Therefore, in this section, we aim to propose a method to obtain a) density estimates corresponding

to the distribution of the true (continuous) coordinates of the observations (e.g., household or poor

household) and b) estimates of the domain parameters under a measurement error model account-

ing for both aggregation and displacement errors. This is one of the key novel contributions in this

chapter.
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3.5.1 Multivariate KDE in the presence of aggregation and displacement errors

In this subsection, we propose a method for multivariate density estimation accounting for both

aggregation and displacement errors. Let 𝑈 be a population of observations spread over space.

Let, 𝑇𝑗𝑘 = (𝑇𝑗𝑘1, 𝑇𝑗𝑘2) be the true coordinates, such as longitude and latitude of the 𝑘th (𝑘 =
1, ⋯ , 𝑁𝑗) unit, which can be household or individual e.g., poor household/people, in the 𝑗th (𝑗 =
1, ⋯ , 𝑅) EA. In that case, we would have a multivariate (bi-variate) variable. Let 𝑓(𝑇 ⋆

𝑞𝑠) be
the unknown density corresponding to the distribution of the true (continuous) coordinates of the

observations 𝑇 = (𝑇11, … , 𝑇1𝑁1
, … , 𝑇𝑅1, … , 𝑇𝑅𝑁𝑅

), where 𝑇 ⋆
𝑞𝑠 = (𝑇 ⋆

𝑞1, 𝑇 ⋆
𝑠2) for 𝑞 = 1, ⋯ , 𝐿

and 𝑠 = 1, ⋯ , 𝐿 denote the grid points that cover the complete 𝑇𝑗𝑘 = (𝑇𝑗𝑘1, 𝑇𝑗𝑘2) space i.e.,
all possible true locations and 𝐿 is the grid size, denoting the equal length of sequences of points

on both axes. In order to estimate the density 𝑓(𝑇 ⋆
𝑞𝑠), a multivariate kernel density estimator is

utilised. This estimator is represented by the following equation:

̂𝑓𝐻(𝑇 ⋆
𝑞𝑠) = 1

𝑁|𝐻|1/2 ∑
𝑈

𝐾 {𝐻−1/2(𝑇 ⋆
𝑞𝑠 − 𝑇𝑗𝑘)} , (3.15)

where 𝐾 {.} indicates a multivariate kernel function, 𝐻 denotes a symmetric positive definite

bandwidth matrix and |.| represents the determinant. The selection of the bandwidth, a critical

smoothing parameter, significantly impacts the performance of a kernel density estimator. We

have discussed the bandwidth selection approaches in Section 3.3.

To preserve the confidentiality of respondents, the true location coordinates 𝑇𝑗𝑘 are first subjected

to an aggregation process and subsequently to a random displacement. As a result, data analysts

only have access to these aggregated and displaced coordinates. To describe this process mathe-

matically, we define specific notations. Under only aggregation, it is assumed that all households

are aggregated to the center of the 𝑗th EA, sharing its centroid coordinate. This is denoted by

𝑇𝑗 = (𝑇𝑗1, 𝑇𝑗2), where 𝑇𝑗1 and 𝑇𝑗2 represent the geographical longitude and latitude coordinates

of the EA centroid, respectively. We should clearly note that 𝑇𝑗𝑘 represents the true coordinates,

whereas 𝑇𝑗 denotes the aggregated centroid coordinates. However, these aggregated EA centroid

coordinates are lost due to subsequent displacement. Specifically, the random displacement pro-

cess is applied to 𝑇𝑗. Consequently, data analysts can only observe the coordinates that are both

aggregated and displaced (affected by measurement error) represented by 𝑊𝑗 = (𝑊𝑗1, 𝑊𝑗2). Us-
ing a naive kernel density estimator that disregards the measurement error and substitutes the true

values 𝑇𝑗𝑘 with the displaced values𝑊𝑗 in equation (3.15) can result in a density with abrupt peaks

(referred to as “spiky”) that deviates from the density of the actual data.
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We assume that the aggregation and displacement processes are known. Therefore, we can formu-

late a measurement error model for aggregated and randomly displaced coordinates. In particular,

the conditional distribution of true coordinates 𝑇𝑗𝑘 given the aggregated and displaced coordinates

𝑇𝑗 and 𝑊𝑗 can be expressed as follows:

𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗, 𝑊𝑗) ∝ 𝑓(𝑊𝑗 ∣ 𝑇𝑗𝑘, 𝑇𝑗)𝑓(𝑇𝑗𝑘|𝑇𝑗)𝑓(𝑇𝑗)

∝ 𝑓(𝑊𝑗 ∣ 𝑇𝑗)𝑓(𝑇𝑗)𝑓(𝑇𝑗𝑘|𝑇𝑗)

∝ 𝑓(𝑇𝑗𝑘|𝑇𝑗)𝑓(𝑇𝑗 ∣ 𝑊𝑗),

(3.16)

where𝑊𝑗 is independent of 𝑇𝑗𝑘 conditional on 𝑇𝑗 and 𝑓(𝑇𝑗 ∣ 𝑊𝑗) ∝ 𝑓(𝑊𝑗 ∣ 𝑇𝑗)𝑓(𝑇𝑗), which we
can write based on the conditional distribution of true coordinates given the displaced coordinates

in (3.5). The first part of the right hand side of equation (3.16) indicates the aggregation issue and

the last part indicates the displacement issue.

Under EA displacement, following (3.5) and (3.6) that we developed in Section 3.2, the conditional

distribution of the unknown EA coordinates 𝑇𝑗 given the displaced EA coordinates 𝑊𝑗 can be

expressed as follows:

𝑓(𝑇𝑗 ∣ 𝑊𝑗) ∝ 𝑓(𝑊𝑗 ∣ 𝑇𝑗)𝑓(𝑇𝑗)

∝ [2𝜋𝛿dist(𝑊𝑗, 𝑇 ⋆
𝑗𝑞)]−1𝐼(0 < dist(𝑊𝑗, 𝑇 ⋆

𝑗𝑞) ≤ 𝛿)𝑓(𝑇𝑗 = 𝑇 ⋆
𝑗𝑞),

(3.17)

where 𝛿 is the maximum displaced distance, 𝑇 ⋆
𝑗𝑞 = (𝑇 ⋆

𝑗𝑞1, 𝑇 ⋆
𝑗𝑞2) is the 𝑞th (𝑞 = 1, 2, ⋯ , 𝑄𝑗)

potential true location for the 𝑗th EA within the displacement buffer around the 𝑊𝑗,

dist(𝑊𝑗, 𝑇 ⋆
𝑗𝑞) = √(𝑊𝑗1 − 𝑇 ⋆

𝑗𝑞1)2 + (𝑊𝑗2 − 𝑇 ⋆
𝑗𝑞2)2 is the Euclidean distance between the

displaced location 𝑊𝑗 = (𝑊𝑗1, 𝑊𝑗2) and true possible location 𝑇 ⋆
𝑗𝑞 = (𝑇 ⋆

𝑗𝑞1, 𝑇 ⋆
𝑗𝑞2), 𝐼(.) is an

indicator function, and 𝑓(𝑇𝑗 = 𝑇 ⋆
𝑗𝑞) is the distribution of the potential true locations.

However, the true location 𝑇𝑗 in (3.17) is unobserved and also, the distribution of the true loca-

tion data, 𝑓(𝑇𝑗 = 𝑇 ⋆
𝑗𝑞) is unknown. This underlying distribution can be approximated by using

available information from different external data sources. Using the available information (e.g.,

population density, designated administrative boundary restriction, rural urban boundaries, bound-

ary corrections for non-settlement places) that we discussed in detail in Section 3.4, the distribution

of potential true locations 𝑓 (𝑇𝑗 = 𝑇 ⋆
𝑗𝑞) can be approximated as follows:

̂𝑓 (𝑇𝑗 = 𝑇 ⋆
𝑗𝑞) = 𝑁𝑗𝑞 × 𝐼DRA(𝑇 ⋆

𝑗𝑞) × 𝐼UR(𝑇 ⋆
𝑗𝑞) × 𝐼NS(𝑇 ⋆

𝑗𝑞)
∑𝑞[𝑁𝑗𝑞 × 𝐼DRA(𝑇 ⋆

𝑗𝑞) × 𝐼UR(𝑇 ⋆
𝑗𝑞) × 𝐼NS(𝑇 ⋆

𝑗𝑞)] , 𝑞 = 1, 2, ⋯ , 𝑄𝑗, (3.18)
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where 𝑁𝑗𝑞 is the number of people at location 𝑇 ⋆
𝑗𝑞; 𝐼DRA(𝑇 ⋆

𝑗𝑞) = 1 if 𝑇 ⋆
𝑗𝑞 falls within the displace-

ment restricted administrative boundaries, otherwise it takes value 0; 𝐼UR(𝑇 ⋆
𝑗𝑞) = 1 if 𝑇 ⋆

𝑗𝑞 falls in

the same region (either urban or rural) from which the EA centroid actually originated, otherwise

it takes value 0, and 𝐼NS(𝑇 ⋆
𝑗𝑞) = 1 if 𝑇 ⋆

𝑗𝑞 does not fall in the non-settlement places e.g., a large

water body, forest area etc, otherwise it takes value 0.

Now, under only aggregation, following Groß et al. (2017), the conditional distribution of the

unknown true coordinates 𝑇𝑗𝑘 given the aggregated coordinates 𝑇𝑗 can be expressed as follows:

𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗) ∝ 𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘)𝑓(𝑇𝑗𝑘), (3.19)

where 𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) is the conditional distribution of the aggregated coordinates given the true coor-
dinates of the observations. This distribution can be defined on the basis of the type of geography

of EA used such as administrative boundary (e.g., mauza-admin 5 in Bangladesh) or a square grid.

If for simplicity we consider a square grid with a side length denoted by 𝛾 as the geography of the

EA, the distribution 𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) can be expressed as follows:

𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) =
⎧{
⎨{⎩

1 for 𝑇𝑗𝑘 𝜖[𝑇𝑗1 − 𝛾
2 , 𝑇𝑗1 + 𝛾

2 ] × [𝑇𝑗2 − 𝛾
2 , 𝑇𝑗2 + 𝛾

2 ],

0 otherwise.
(3.20)

In the case of the administrative boundary (e.g., mauza-admin 5 in Bangladesh) as the geography

of the EA, the above distribution is expressed as follows:

𝑓(𝑇𝑗 ∣ 𝑇𝑗𝑘) =
⎧{
⎨{⎩

1 for 𝑇𝑗𝑘 𝜖 Boundary(𝑇𝑗),

0 otherwise.
(3.21)

As the true data 𝑇𝑗𝑘 and hence, 𝑓(𝑇𝑗𝑘) is initially unknown, Groß et al. (2017) proposed a Stochas-
tic Expectation-Maximization (SEM) algorithm for estimation. The algorithm employs an ini-

tial estimation of 𝑓𝐻(𝑇 ⋆
𝑞𝑠) based on the 𝑇𝑗 values, followed by iterative simulations of 𝑇𝑗𝑘 from

𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗) and subsequent re-estimation of 𝑓(𝑇𝑗𝑘) until convergence is achieved. This approach
can be seen as a variation of the expectation-maximization (EM) algorithm (Dempster et al., 1977).

However, under both aggregation and displacement, the aggregated coordinates 𝑇𝑗 are unknown.

Therefore, the Groß et al. (2017) method cannot be used. A methodological extension is required

to deal with the problems of aggregation and displacement. Thus, under both aggregation and
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displacement, for estimating the density ̂𝑓𝐻(𝑇 ⋆
𝑞𝑠) we propose an estimation method by using the

equation in (3.16) through the above two conditional distributions (3.17) and (3.19) simultane-

ously. We want to clearly state that the boundaries of the EA geography at which the data has been

aggregated should be available in order to use the method.

3.5.1.1 Estimation using the SEM algorithm under aggregation and displacement

The computational steps of the algorithm for the proposed method are described below:

• Step 1: For each EA 𝑗 = 1, 2, … , 𝑅 take the WorldPop grid of points (𝑇 ⋆
𝑗𝑞1, 𝑇 ⋆

𝑗𝑞2), (𝑞 =
1, 2, ⋯ , 𝑄𝑗) around (𝑊𝑗1, 𝑊𝑗2) of width 2𝛿 that covers the complete (𝑇𝑗1, 𝑇𝑗2) space,

where 𝛿 is the maximum displacement distance.

• Step 2: For each EA 𝑗 = 1, 2, … , 𝑅 pseudo-samples 𝑇 ⋆
𝑗 = (𝑇 ⋆

𝑗1, 𝑇 ⋆
𝑗2) of the unknown

points 𝑇𝑗 = (𝑇𝑗1, 𝑇𝑗2) are drawn from 𝑓(𝑇𝑗|𝑊𝑗) in (3.17) with ̂𝑓 (𝑇𝑗 = 𝑇 ⋆
𝑗𝑞) =

𝑁𝑗𝑞×𝐼DRA(𝑇 ⋆
𝑗𝑞)×𝐼UR(𝑇 ⋆

𝑗𝑞)×𝐼NS(𝑇 ⋆
𝑗𝑞)

∑𝑞[𝑁𝑗𝑞×𝐼DRA(𝑇 ⋆
𝑗𝑞)×𝐼UR(𝑇 ⋆

𝑗𝑞)×𝐼NS(𝑇 ⋆
𝑗𝑞)] , 𝑞 = 1, 2, ⋯ , 𝑄𝑗, in (3.18).

• Step 3: Obtain a pilot estimate ̂𝑓𝐻(𝑇 ⋆
𝑞𝑠) of 𝑓𝐻(𝑇 ⋆

𝑞𝑠) in (3.15) using the sample aggregated
data set of coordinates 𝑇 ⋆

𝑗 (𝑗 = 1, ⋯ , 𝑅) from Step 2 with an initial bandwidth matrix

𝐻(0) = ⎛⎜
⎝

𝑙 0
0 𝑙

⎞⎟
⎠

,

where 𝑙 takes a value that is sufficiently large, such as twice the range of the observation
coordinates and 𝑇 ⋆

𝑞𝑠 = (𝑇 ⋆
𝑞1, 𝑇 ⋆

𝑠2) for 𝑞 = 1, ⋯ , 𝐿 and 𝑠 = 1, ⋯ , 𝐿 denote the grid points

that covers the complete 𝑇𝑗𝑘 = (𝑇𝑗𝑘1, 𝑇𝑗𝑘2) space i.e., all possible true locations and 𝐿 is

the grid size. The generation process of these grid points is presented in sub-section 3.3.1.

• Step 4 (S-step): For 𝑗 = 1, 2, … , 𝑅 pseudo-samples 𝑇 ⋆
𝑗𝑘 = (𝑇 ⋆

𝑗𝑘1, 𝑇 ⋆
𝑗𝑘2) of the true un-

known points 𝑇𝑗𝑘 = (𝑇𝑗𝑘1, 𝑇𝑗𝑘2) are selected by sampling from the conditional distribution

𝑓(𝑇𝑗𝑘|𝑇𝑗 = 𝑇 ⋆
𝑗 ) in (3.19). This conditional distribution corresponds to the current density

estimate restricted to the EA boundary e.g., the square grid around the centre of 𝑇 ⋆
𝑗 .

• Step 5 (M-step): Estimate the bandwidth matrix 𝐻 by using the multivariate plug-in es-

timator proposed by Wand and Jones (1994) and re-compute the bivariate kernel density
̂𝑓𝐻(𝑇 ⋆

𝑞𝑠) using the pseudo-samples generated in Step 4. Alternatively, other bandwidth se-
lection methods can also be applied.

• Step 6: Repeat Steps 4-5 for a total of 𝐶1 (burn-in iterations) + 𝐶2 (additional iterations).
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• Step 7: Exclude the 𝐶1 burn-in density estimates and calculate the density estimate of

𝑓𝐻(𝑇 ⋆
𝑞𝑠) by taking the average of the remaining 𝐶2 density estimates ̂𝑓𝐻(𝑇 ⋆

𝑞𝑠).

• Step 8: Repeat Steps 2-7,𝐶3 times and calculate the final density estimate by taking average

over 𝐶3 estimates. Larger values for 𝐶1, 𝐶2, and 𝐶3 —for example, 𝐶1 = 5, 𝐶2 = 20,
and 𝐶3 = 100—enhance the realization of the unknown true coordinates of observations

and subsequently improve the density estimates, accounting for both aggregation and dis-

placement errors. The sensitivity of the results to different combinations of 𝐶1, 𝐶2, and 𝐶3

can be assessed by evaluating the quality of the density estimates, such as the RIMSE of the

density estimates defined in (3.27).

3.5.2 Domain estimation using aggregated and randomly displaced coordinates

Our next aim is to develop a method to obtain estimates of the domain (e.g., upazila) parameters

of interest accounting for misplacement uncertainty due to aggregation and random displacement

errors. Following the description in sub-section 3.3.2 and the equation (3.9), a parameter of interest

defined for domain 𝑈𝑖 e.g., the proportion of poor households is expressed as

̄𝑌𝑖 = ∑𝑈 𝑌𝑗𝑘𝐼𝑖(𝑇𝑗𝑘)
∑𝑈 𝐼𝑖(𝑇𝑗𝑘) , 𝑖 = 1, … , 𝑀; 𝑘 = 1, … , 𝑁𝑗; 𝑗 = 1, … , 𝑅, (3.22)

where 𝑌𝑗𝑘 denotes a variable measured at the 𝑘th unit in the 𝑗th EA level and 𝐼𝑖(𝑇𝑗𝑘) = 1 if

𝑇𝑗𝑘 ∈ 𝑈𝑖, otherwise it takes value 0.

Using a similar expansion to (3.22) with 𝑊𝑗 in place of 𝑇𝑗𝑘 may lead to bias in domain estimates

whenever the aggregated and displaced𝑊𝑗 is misplaced i.e., belongs to a different domain than𝑇𝑗𝑘.

However, we aim to estimate the parameter ̄𝑌𝑖 using the values 𝑊𝑘 accounting for misplacement

uncertainty via 𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗, 𝑊𝑗) in (3.16) that corrects for misplacement error. In particular, we can
generate pseudo samples of the unobserved true data given the observed data from 𝑓(𝑇𝑗𝑘 ∣ 𝑇𝑗, 𝑊𝑗)
but we need to estimate 𝑓(𝑇𝑗) and 𝑓(𝑇𝑗𝑘). In that case, we propose an estimator of ̄𝑌𝑖 using pseudo

samples 𝑇 ⋆
𝑗𝑘 of the true unknown points 𝑇𝑗𝑘 drawn by using the proposed SEM algorithm that we

presented in subsection 3.5.1.1. The proposed domain estimator is expressed as

̂̄𝑌 𝑖 =
∑𝑈 𝑌𝑗𝑘𝐼𝑖(𝑇 ⋆

𝑗𝑘)
∑𝑈 𝐼𝑖(𝑇 ⋆

𝑗𝑘) , 𝑖 = 1, … , 𝑀; 𝑘 = 1, … , 𝑁𝑗; 𝑗 = 1, … , 𝑅, (3.23)

where 𝐼𝑖(𝑇 ⋆
𝑗𝑘) = 1 if 𝑇 ⋆

𝑗𝑘 belongs to the domain 𝑖, otherwise it takes value 0.

Iterative samples of true location data out of all possible true locations are needed for a better un-
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derstanding of the true location. Therefore, for each complete set of sample coordinates 𝑇 ⋆
𝑗𝑘 =

(𝑇 ⋆
𝑗𝑘1, 𝑇 ⋆

𝑗𝑘2), from Step 4 in the proposed SEM algorithm in 3.5.1.1, we obtain the domain param-

eter estimates ̂̄𝑌 𝑖 in (3.23) and obtain the final estimate by taking an average of estimates over

𝐶2 × 𝐶3 samples.

3.6 Simulation study

This empirical study aims to evaluate the performance of the proposed methods. Specifically, in

section 3.6.1, we focus on the effects of random displacement. Here, we assess the performance

of two proposed methods: KDE and EDC (detailed in sections 3.3 and 3.4, respectively), the

method by Warren et al. (2016b), and a naive method that disregards displacement errors when

estimating the upazila proportions of poor households. We use the method byWarren et al. (2016b)

to select the most probable domain (upazila) for each household. Hereafter, this is referred to as

the Most Probable Domain (MPD) method. Subsequently, in section 3.6.2, we move our focus to

both aggregation and displacement of household coordinates. We evaluate the performance of our

proposed external data and kernel density-based (KDE-ED) method, described in section 3.5. This

is compared against a naive method that ignores both aggregation and displacement errors when

estimating 1) upazila proportions of poor households, and 2) the density of the poor households.

These methods under 1) only displacement and 2) aggregation and displacement can be applied

in the case of both population/register and sample data. In the case of register data, we assessed

the impact of 1) displacement and 2) aggregation and displacement errors on density and upazila

proportion estimates using repeated displaced data and aggregated and displaced data, respectively.

In this simulation study, to compare the performance of the methods, we compute quality measures

such as bias, RMSE of the estimates by using only the (simulated) register data under the geography

of Bangladesh.

3.6.1 Analysis of simulated register data under the displacement of household co-

ordinates

In this simulation study, we aim to assess the performance of the proposed KDE and EDC estima-

tors for domain proportions compared with the MPD and the naive estimators under the displace-

ment of household locations. We generate a population of household locations (geo-coordinates)

from the 100𝑚 × 100𝑚 gridded population raster fromWorldPop that estimates the population of

Bangladesh, adjusted using the 2011 census population, where each grid cell represents the num-

ber of people per pixel. We described the WorldPop data in detail in Chapter 1. The constrained

57



population raster in Bangladesh for 2020 can be downloaded from WorldPop (Bondarenko et al.

(2020)). First, we calculate the number of households for each grid by dividing the grid cell pop-

ulation by 4.4, which is the average household size according to the 2011 Bangladesh population

census. While average household sizes vary across divisions (admin 1) from 4.1 to 5.5, we use

the overall country average for simplicity. Moreover, as this empirical study mainly evaluates the

impact of random displacement of all household coordinates, little variations in household size

likely have insignificant effects on the assessment.

Next, we select households’ locations randomly from each WorldPop grid cell. Since the number

of households in the country is large, instead of the whole geography of Bangladesh, we select the

district Khulna of Bangladesh with 14 upazilas and generate 20k household coordinates randomly

within WorldPop grid cells by determining the sample number of households for each grid propor-

tionally to the population number of households. We note that the total number of people in the

district of Khulna is about two million, according to theWorldPop. We determine whether a house-

hold falls in the rural or urban area by using the rural and urban boundaries from the Bangladesh

2011 population census. For each household in the population/register data, as a variable of interest,

we generate whether a household is poor. We aim to estimate the proportion of poor households

for each upazila. For this simulation study, we generate data (poor or non-poor) for the house-

holds within each upazila by sampling from the Binomial distribution with parameters equal to the

estimated upazila proportions which have been produced using the Elbers,Lanjouw, and Lanjouw

(ELL) poverty mapping method (Faizuddin et al., 2012). The summary statistics of the upazila

proportions of poor households based on the simulated population is given in Table 3.1.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.180 0.344 0.383 0.376 0.412 0.499

Table 3.1: Summary statistics of the upazila proportions of poor households using the simulated
population.

We consider the selected 20k household coordinates as the true household coordinates. Then, the

displaced household coordinates are generated by applying the DHS displacement algorithm (Burg-

ert et al., 2013) to the true household coordinates. In particular, data are displaced within the

restricted district boundary by using the maximum displaced distance in line with the DHS dis-

placed mechanism that is 2km for urban households, and 5km for rural households with 1% of

rural households being randomly allocated 10km maximum distance. While the specific 1% of ru-

ral households is unknown to analysts, this small proportion introduces limited uncertainty. This

potential impact can be addressed by replicating the DHS displacement mechanism, as incorpo-
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rated in our proposed methods. However, only displaced household coordinates are provided to

the data analysts. The true and displaced household locations are presented in Figure 3.6. Due to

the random displacement, the original locations move to different locations which leads to change

in the spatial pattern of the data.

Figure 3.6: Spatial distribution of the (a) true household coordinates and (b) displaced household
coordinates.

We obtain the estimates of upazila population proportions of poor households by using the proposed

KDE and EDC estimators, the MPD estimator and the naive estimator that ignores the misplace-

ment error due to the displacement process. In the case of upazila proportion estimates, the KDE

based estimator uses the kernel density corresponding to the distribution of household (continu-

ous) coordinates. For density estimation, we employ a Bivariate Gaussian Kernel along with the

plug-in bandwidth selection method proposed by Wand and Jones (1994). This is implemented by

using the R functions Hpi (bandwidth selector) and kde (kernel density estimation) provided by

the ks package Duong et al. (2022). However, the impact of household locations misplacement

on the estimates of upazila proportions is assessed by obtaining the estimates under the repeated

displaced data. In particular, the following four estimators for upazila proportions are evaluated in

this simulation study:

i) naive Estimator for upazila proportion that ignores the household misplacement error due to

the displacement process.

ii) KDE based Estimator for upazila proportion, the proposed SEM estimator with 𝐴1 = 20
burn-in iterations, 𝐴2 = 200 sample iterations and grid size 𝐿 = 400. Under this proposed
method, to estimate the kernel density of the distribution of unknown true coordinates, we

employ varying values of burn-in iterations 𝐴1 and sample iterations 𝐴2 to investigate their

59



impact on the results. Larger values of 𝐴1 and 𝐴2 enhance the precision in estimates, al-

lowing for improved realization of the unknown true coordinates. However, employing a

setting of 𝐴1 = 20 and 𝐴2 = 200 establishes a balance between achieving consistency in

estimates and optimising computational time under random displacement.

iii) EDC based Estimator for upazila proportion, the proposed external data based estimator,

iterated with 𝐵1 = 200 pseudo-samples and 𝐵2 = 20 additional sample steps using the

WorldPop grid points and additional information from external data. Larger pseudo-samples,

𝐵1, of unknown true locations yield better realizations of the true coordinates and, conse-

quently, more accurate predicted domain membership probabilities. We have checked that

the results with 𝐵1 = 200 are reasonably close to those obtained using additional samples,

𝐵2 = 20. Therefore, it is recommended to use at least 𝐵1 = 200 pseudo-samples under

random displacement.

iv) MPD Estimator for upazila proportion, the MPC method proposed by Warren et al. (2016b)

which we described in Chapter 2. We apply this method for the most probable domain

assignment to household locations and obtain the upazila proportion estimates.

The simulation steps (generating the displaced data and obtaining the estimates of upazila propor-

tions) are independently repeated 200 times. We compare the performance of the naive, the MPD,

theKDE and the EDC estimators for upazila proportion by computing the Root-Mean-Square-Error

(RMSE), Bias, and Absolute Bias (AB) for the 𝑖th (𝑖 = 1, ⋯ , 𝑀) upazila proportion estimate over
𝐵 = 200 replications as follows:

RMSE𝑖 = √∑𝐵
𝑏=1( ̂̄𝑌 𝑏𝑖 − ̄𝑌𝑖)2

𝐵 (3.24)

Bias𝑖 = ∑𝐵
𝑏=1( ̂̄𝑌 𝑏𝑖 − ̄𝑌𝑖)

𝐵 (3.25)

AB𝑖 = ∑𝐵
𝑏=1 ∣ ̂̄𝑌 𝑏𝑖 − ̄𝑌𝑖 ∣

𝐵 (3.26)

where ̂̄𝑌 𝑏𝑖 represents the estimated proportion in upazila 𝑖 using any of the aforementionedmethods
under random displacement, while ̄𝑌𝑖 represents the true proportion for upazila 𝑖 in replication
round 𝑏.
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3.6.1.1 Results and discussion under random displacement using register data

We present and discuss the simulation study results for the MPD method, the proposed methods

KDE and EDC and the naive method under random displacement. The 200 displaced data sets of

household coordinates are used to obtain the estimated proportions of poor households for𝑀 = 14
upazilas and their Biases, Absolute Biases (ABs) and RMSEs.

The summary statistics of the absolute biases of the estimated upazila proportions of poor house-

holds over 200 replications for each estimator under displacement of household coordinates are

given in Table 3.2. We observe that the two proposed methods, KDE and EDC, have lower abso-

lute bias than the MPD and the naive method that ignores the misplacement error. For instance,

the mean absolute biases for the estimates using the proposed KDE and EDC estimators are lower

than those of the naive and MPD estimators across the 14 upazilas. Although the MPD estimator

has a marginally larger mean absolute bias over the 14 upazilas than the naive estimator, it has a

slightly smaller median absolute bias than the naive estimator. However, among the two proposed

methods, the external data-based EDC estimator performs best in terms of lower absolute bias.

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
naive 0.0037 0.0080 0.0142 0.0181 0.0208 0.0743
KDE 0.0023 0.0059 0.0082 0.0169 0.0194 0.0699
EDC 0.0017 0.0045 0.0068 0.0135 0.0153 0.0544
MPD 0.0034 0.0074 0.0137 0.0189 0.0202 0.0790

Table 3.2: Summary statistics of the absolute biases of the estimated upazila proportions of poor
households over 200 replications for each estimator under displacement of household coordinates.

In order to assess the performance of the two proposed KDE and EDC estimators in terms of vari-

ability, the statistics for the distribution of the RMSEs of the estimated upazila proportions of poor

households over 200 replications for each estimator are given in Table 3.3. We see that the pro-

posed estimators have lower RMSEs of the estimates compared with the other two approaches. For

example, the EDC estimator has the lowest mean RMSE of the estimated proportion over 14 upazi-

las, followed by the KDE, naive, and MPD estimators in that order. Also, among these estimators,

the EDC estimator has the lowest 25th percentile of the RMSE values for the upazila estimates, fol-

lowed by the KDE, MPD, and naive estimators. Moreover, the maximum and the minimum values

are also improved using the EDC estimator compared with the naive estimates, which show a large

RMSE.We notice that overall the MPD and the naive methods perform similarly. The EDC estima-

tor, which uses additional information from external data, clearly outperforms the other estimators

regarding lower RMSE. However, if we had more uncertainty measurements for the external data

sources, the KDE might perform better than the EDC. Also, while RMSE incorporates both bias
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and variability, our observations suggest that the patterns in RMSEmight be influenced by the bias

of the estimates.

In summary, these results in the considered simulation scenario indicate that the proposed KDE

and EDC-based approaches give a considerable advantage, for lower RMSE, over the two other

methods one of which is a simple naive approach that ignores the misplacement error. Specifically,

the EDC method provides an improvement of approximately 30% in mean RMSE over the naive

method (reduction from 0.0210 to 0.0147).

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
naive 0.0047 0.0103 0.0176 0.0210 0.0238 0.0762
KDE 0.0028 0.0066 0.0103 0.0182 0.0207 0.0706
EDC 0.0020 0.0052 0.0087 0.0147 0.0167 0.0551
MPD 0.0040 0.0089 0.0159 0.0217 0.0241 0.0805

Table 3.3: Summary statistics of the RMSEs of the estimated upazila proportions of poor house-
holds over 200 replications for each estimator under displacement of household coordinates.

Nevertheless, as the proposed estimators may yield improved estimates in certain upazila propor-

tions while not in others, upazila-level measures of bias and RMSE are also necessary to explore

the accuracy and precision of the estimates within each upazila. Figures 3.7-3.8 show that the

biases and absolute biases of the estimates of upazila proportions of poor households over 200

replications for each method: the naive, the MPD, the two proposed KDE and EDC methods. A

closer inspection of the results reveals that the KDE estimates’ absolute bias is less than the naive

estimates’ absolute bias in 9 upazilas out of 14 (64.3%). Also, for 12 upazilas out of 14 (85.7%)

the EDC estimates’ absolute bias is less than the naive estimates’ absolute bias. On the other hand,

the naive estimates’ absolute bias is less than the MPD estimates’ absolute bias in 8 upazilas out

of 14 (57.1%).

Estimates for some upazilas using the naive method are more biased, primarily for two reasons.

Firstly, these upazilas are more affected by misplacement errors, and secondly, they have smaller

areas in terms of square kilometres. As shown in Figure 3.8(a-c), upazilas with smaller areas have

higher misplacement errors, resulting in a greater absolute bias in the estimates when using the

naive method that ignores misplacement errors. In contrast, the proposed EDC method corrects

the bias of these estimates compared to other methods, particularly for upazilas with small areas.

As an example, for upazila 1 in Figures 3.7-3.8(a) or upazila 10 in Figures 3.7-3.8(b), which has

the smallest size in square kilometers, the proposed methods outperform the naive method by cor-

recting the bias in estimate. When misplacement errors are minimal, all methods perform similarly,

as expected. We note that misplacement errors depend not only on the area of the upazila but also
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on the shape of the upazila and whether people live close to the boundary. However, we observe

notably poor performance in the proposed methods for upazila 9, as indicated in Figures 3.7-3.8(a),

or upazila 14 as shown in Figures 3.7-3.8(b). Although this upazila is moderate in area size and

has the highest percentage of misplaced households, the proposed methods demonstrate a larger

bias than the naive method. This exceptional performance could be due to the complex shape

of this upazila and the intersections of the displacement buffer with multiple upazila boundaries.

Specifically, the maximum buffer around the displaced household coordinates within this upazila

intersects with many upazila boundaries, introducing additional uncertainty when the proposed

methods attempt to correct bias in the estimates.

Figure 3.7: Plot of the biases of the estimated upazila proportions of poor households over 200
replications for each estimator under displacement of household coordinates. The areas are sorted
by square kilometres.

Figure 3.8: (a-b) Plot of the ABs of estimated upazila proportions of poor households over 200
replications, for each estimator, under displacement of household coordinates. These are sorted
by area (in square kilometres) and misplacement level. (c) presents the relationship between the
percentage of the total upazila area covered and the share of misplaced households for each upazila.
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Figure 3.9 illustrates the upazila-level RMSE for the four estimates. The empirical RMSE of the

KDE estimates decreases in 11 out of the 14 upazilas compared to the RMSE of the naive estimates.

In comparison, the RMSE of the EDC estimates is lower than that of the naive estimates in 12 out

of the 14 upazilas. In the case of the MPD method, 50% (7 out of 14) upazilas have lower RMSE

than the naive method. Therefore, the proposed methods outperform the naive method for lower

empirical RMSE of the estimates. Also, regarding the performance of the methods in terms of

RMSE, taking into account the size of the upazila area and misplacement error, we have similar

observations to those we observe in the case of absolute bias.

Overall, in the given simulation scenario, the empirical study indicates that the proposed KDE

and EDC estimators improve the upazila estimates in terms of both bias and variability for most

upazilas, especially when there is more misplacement of household locations. However, the naive

estimator is preferable for upazilas with minimal misplacement of household locations.

Figure 3.9: Plot of the RMSEs of the estimated upazila proportions of poor households over 200
replications for each estimator under displacement of household coordinates.

64



3.6.2 Analysis of simulated register data under aggregation and displacement of

household coordinates

The purpose of this empirical study is to evaluate the performance of the proposed method (KDE-

ED) over the naive method under both aggregation and displacement of household coordinates by

computing quality measures for the estimated 1) upazila proportions of poor households and 2)

densities of the poor households. Following the same process described in subsection 3.6.1, we

generate the simulated register data. In particular, we calculate the number of households for each

grid by dividing the grid cell population by 4.4 and select households’ locations randomly from

each WorldPop grid cell. In this section, we randomly selected approximately 525k household

locations from 14 upazilas, in contrast to the 20k households chosen for only displacement in

section 3.6.1. This increase is due to computational constraints related to the number of displaced

locations. Under both aggregation and displacement, this number decreases to the number of EAs,

since household locations are aggregated at the EA level prior to displacing EA points. The effect

of aggregation on density estimation is influenced by the number of households: the greater the

number of households, the more pronounced the aggregation effects (Groß et al., 2017). Therefore,

in this empirical study, we use a sizable, constant number of households to evaluate the combined

impact of aggregation and random displacement errors. For each of these 525k households, we

generated binary values indicating whether a household is categorised as poor or non-poor. The

summary statistics of upazila proportions of poor households based on the simulated population is

given in Table 3.4.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.211 0.354 0.381 0.385 0.418 0.514

Table 3.4: Summary statistics of upazila proportions of poor households from the simulated popu-
lation.

The generated about 525k household coordinates are treated as the true household coordinates.

We determine whether a household falls in the rural or urban area by using the rural and urban

boundaries from the Bangladesh 2011 population census. Also, we consider both irregular and

simple shapes as the geography of EAs. In particular, in this study, we consider mauza (admin 5

of Bangladesh) and a square grid (with side length denoted by 𝛾) as the geography of EAs. The
extent of the aggregation error within a mauza boundary under a register data is fixed. However, in

the case of a square grid, as the side length increases, the extent of aggregation error also increases.

In order to protect respondents’ confidentiality, first, the household coordinates within an EA are

aggregated to the EA centroid (i.e., the centroid of the mauza/square grid). Next, the EA centroid
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Figure 3.10: Spatial distribution of the (a) true household coordinates, (b) aggregated EA (mauza)
centroid coordinates, and (c) displacement of aggregated EA centroid data by applying DHS dis-
placement algorithm with 5000m maximum displaced distance.

coordinates are displaced using the DHS random displacement algorithm that uses a random di-

rection and random distance which is denoted by 𝛿 = 2000𝑚, 4000𝑚 etc. Therefore, only the

displaced EA centroid coordinates are provided to researchers. In this study, we examine the abil-

ity of the proposed KDE-ED method to correct measurement error under various scenarios for the

intensity of the aggregation and displacement error processes. The intensity of the aggregation er-

ror depends on the size of the EA geography, while the intensity of the displacement error depends

on the maximum displacement. As described in Chapter 1, EAs are typically constructed with

a focus on counting populations, usually encompassing between 100 to 300 households, rather

than on geographic size (measured in square meters). Due to this, their specific sizes can vary

based on population density; for instance, areas with higher populations tend to have smaller ge-

ography of EAs. Furthermore, households in adjacent areas, rather than distant ones, may be

grouped to form an EA, facilitating easier access for enumerators. Considering these factors, this

empirical study, for the sake of simplicity, assumes that the geography of the EA is smaller than

the maximum displacement buffer. However, we do consider varying EA geography sizes and

displacement distances to examine the intensification of the aggregation and displacement errors

more thoroughly. In particular, we consider the following scenarios: (I) 𝛾 = 1000𝑚, 𝛿 = 2000𝑚,

(II) 𝛾 = 1000𝑚, 𝛿 = 4000𝑚, (III) 𝛾 = 3000𝑚, 𝛿 = 4000𝑚, (IV) 𝛾 = 4000𝑚, 𝛿 = 5000𝑚.

The true household coordinates, aggregated and displaced household coordinates under mauza and

square grid are presented in Figures 3.10-3.11. We observe that the household coordinates are con-

centrated at the centroid of the mauza or the square grid and its original spatial pattern has been

changed due to aggregation and displacement processes. Moreover, the household coordinates

can be misplaced if they are moved at locations other than their original upazila geography. In

our simulation setting, when a mauza is used as EA geography, misplacement can occur only due
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to displacement, not the aggregation process. This is because aggregation is confined within up-

azila boundaries since the geography of a mauza is nested within the upazila boundary. On the

other hand, when a square grid is used as an EA, the household coordinates may be misplaced

at the upazila level due to both aggregation and displacement processes, as neither aggregation

nor displacement is restricted within the upazila boundary. Therefore, we obtain upazila propor-

tion estimates by using the proposed KDE-ED method under both aggregation and displacement,

specifically in instances where the aggregation process is restricted within upazila boundaries, as

occurs when a mauza is used as the EA geography.

Figure 3.11: Spatial distribution of the (a) true household coordinates, (b) aggregated EA centroid
coordinates (square grid: 4000m X 4000m), and (c) displacement of aggregated EA centroid data
by applying DHS displacement algorithm with 5000m maximum displaced distance.

We estimate 1) upazila proportions of poor households and 2) the density of the population of poor

households by using the proposed KDE-EDmethod and the naive method that ignores aggregation

and displacement errors. In the algorithm for the proposed KDE-ED method, as outlined in Sec-

tion 3.5.1.1, using larger values for 𝐶1, 𝐶2, and 𝐶3 improves the realization of the unknown true

coordinates of observations and subsequently enhances the consistency of estimates—such as up-

azila proportion—by accounting for both aggregation and displacement errors. We have examined

that the setting 𝐶1 = 5, 𝐶2 = 20 and 𝐶3 = 100 iterations offers a favorable balance between

achieving consistent results and managing computational costs, accounting for both aggregation

and displacement errors. The impact of aggregation and displacement errors on the density esti-

mates and upazila proportion estimates is assessed by obtaining the estimates under the repeated

aggregation and displacement of population household coordinates. Although detailed in Section

3.5, we restate here to prevent any confusion that, for the observational unit, we consider only poor

households to obtain density estimates. In other words, we use the coordinates of poor households

as input observations to estimate the population density of poor households.

We evaluate the performance of the density estimators: the naive or the proposed by using the
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root mean integrated squared error (RMISE) of the density estimates. The RMISE is estimated by

approximating it with a Riemann sum over a finely spaced grid that is evenly distributed, and it

can be expressed as follows:

RMISE{ ̂𝑓(𝑇 ⋆)} = √𝐸 [∫{𝑓(𝑇 ⋆) − ̂𝑓(𝑇 ⋆)}2𝑑𝑇 ⋆] ≈
√√√
⎷

[ 1
𝑚𝑔

𝑚𝑔

∑
𝑙=1

{𝑓(𝑔𝑙) − ̂𝑓(𝑔𝑙)}2𝐿2
𝑔1],
(3.27)

where 𝑚𝑔 is the number of grid points 𝑔𝑙 and 𝐿𝑔1 is the grid width.

We employ a Bivariate Gaussian Kernel and the plug-in bandwidth selector approach suggested

by Wand and Jones (1994) to estimate the density using the proposed estimator and the naive

estimator that ignores aggregation and displacement errors. We derive the ‘true’ density from

the original, undistorted data using a similar Bivariate Gaussian kernel and plug-in bandwidth

selector for comparison and evaluation. This derived ‘true’ density serves as a benchmark in our

evaluations, representing the true values against which the performances of the proposed and naive

estimators are assessed.

The simulation steps (generating the aggregated and displaced data and obtaining the estimates)

are independently repeated 200 times. We compare the performance of the naive and the KDE-ED

estimator by computing the RMSE, Bias, and Absolute Bias (AB) for the upazila estimates and

the mean RMISE of the density estimates over 𝐵 = 200 replications under both aggregation and

random displacement by using equations (3.24)-(3.27).

3.6.2.1 Results and discussion under aggregation and displacement using register data

We present and discuss the results of the empirical study for the proposed KDE-EDmethod and the

naive method. Firstly, we present the results of the estimates for the proportion of poor households

in each upazila, and secondly, we present the results of the density estimates for poor households.

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
naive 0.0030 0.0072 0.0103 0.0128 0.0179 0.0325

KDE-ED 0.0017 0.0052 0.0072 0.0111 0.0132 0.0378

Table 3.5: Summary statistics of the absolute biases of the estimated upazila proportions of poor
households over 200 replications for each estimator under aggregation and displacement of house-
hold coordinates with mauza geography.

The summary statistics of the absolute biases of the estimated upazila proportions of poor house-

holds over 200 replications for each estimator under aggregation and displacement of household

coordinates with the mauza scenario are given in Table 3.5. We observe that the proposed method
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(KDE-ED) has a lower absolute bias than that of the naive method that ignores aggregation and

displacement errors. For example, the proposed KDE-ED estimator has the smallest mean and

median absolute biases for the estimates of the 14 upazilas compared to the naive estimator. Also,

Figures 3.12-3.13 show that most of the upazila estimates by using the proposed method have

lower bias than the naive method. Therefore, in the simulation scenario under consideration, the

presented KDE-ED method offers a significant advantage over the naive method that disregards

misplacement errors due to aggregation and random displacement processes.

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
naive 0.0048 0.0099 0.0137 0.0162 0.0222 0.0404

KDE-ED 0.0024 0.0062 0.0088 0.0123 0.0145 0.0395

Table 3.6: Summary statistics of the RMSEs of the estimated upazila proportions of poor house-
holds over 200 replications for each estimator under aggregation and displacement of household
coordinates with mauza geography.

To evaluate the performance of the proposed KDE-ED estimator in terms of variability, summary

statistics of the RMSEs of the estimated proportions of poor households over 200 replications

for each estimator under aggregation and displacement of household coordinates with the mauza

scenario are given in Table 3.6. As this table shows, the proposed estimator outperformed the naive

approach, indicating lower RMSE values for the estimates. Additionally, the KDE-ED estimator

demonstrated better performance than the naive estimator across various summary statistics such as

mean, 75th percentile, maximum and minimum values of RMSEs. This indicates that the KDE-ED

estimator produces more accurate and precise estimates than the naive estimator, thus representing

a better choice for upazila estimates under aggregation and displacement.

Figure 3.12: Plot of the biases of the estimated upazila proportions of poor households over 200
replications for each estimator under aggregation and displacement household coordinates with the
mauza scenario.

We observe from Figure 3.14 that most of the upazila estimates using the proposed method have

lower RMSE than the naive method. Therefore, these results in the simulation scenario under
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consideration indicate that the proposed KDE-ED method gives a notable advantage, for lower

RMSE, over the naive method that ignores the misplacement error due to aggregation and random

displacement processes.

Figure 3.13: Plot of the ABs of the estimated upazila proportions of poor households over 200
replications for each estimator under aggregation and displacement household coordinates with
the mauza scenario.

Figure 3.14: Plot of the RMSEs of the estimated upazila proportions of poor households over 200
replications for each estimator under aggregation and displacement household coordinates with the
mauza scenario.

We now present and discuss the results of the density estimates of poor households from analysing

the register data under aggregation and displacement using the naive and the proposed KDE-ED

estimator. Under various scenarios with a grid for the intensity of the aggregation and displacement

error processes, we investigate the ability of the proposed KDE-ED estimator to provide more

precise estimates than the naive estimator that ignores the aggregation and displacement errors.

Table 3.7 presents mean RMISEs of the estimates of the density of the population of poor house-

holds over 200 replications by the naive and the proposed density estimators and for various sce-

narios of aggregation and displacement errors. It is apparent that the overall structure of the density

estimates is well reflected by the KDE-ED method. For scenario I, which involved small aggrega-

tion and displacement errors, the mean RMISE of the density estimates is about two times higher
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for the naive method compared to the KDE-ED method, averaged over the 200 replications. This

indicates that in the case of small measurement errors, the proposedmethod performs slightly better

than the naive method. As the measurement error increases, the proposed KDE-ED method out-

performs the naive method in estimating the density of poor households. For example, in scenario

IV with large aggregation and displacement errors, the mean RMISE value of the density estimates

is about four times higher for the naive method than the KDE-ED method, averaged over the 200

replications. While the naive estimator ignores the aggregation and displacement errors, the pro-

posed KDE-ED estimator corrects these errors and demonstrates better performance, particularly

for large grid sizes and displacement distances.

Scenario I II III IV
Estimator 𝛾 = 1000, 𝛿 = 2000 𝛾 = 1000, 𝛿 = 4000 𝛾 = 3000, 𝛿 = 4000 𝛾 = 4000, 𝛿 = 5000
naive 3.19 5.44 12.24 25.04

KDE-ED 1.70 1.89 3.39 6.45

Table 3.7: Register data: Mean RMISE (Results ×10−8) for the naive and proposed multivariate
kernel density estimators for various aggregation and displacement parameters with grids.

Figures 3.15-3.16 provide a visual comparison of the density of poor households and contour plots

for each estimator under various levels of aggregation and displacement of household coordinates.

The contour plots represent the relative density of poor households in each region, with higher

numbers indicating higher density. For example, a ‘50’ signifies a higher concentration of poor

households compared to a ‘25’. Notably, the proposed KDE-ED estimator can accurately capture

and preserve the underlying structure of the density for different aggregation and displacement

levels. This contrasts the naive estimator, which fails to capture the same structure and exhibits

a more scattered and less distinct density pattern. In particular, scenario IV, with large aggrega-

tion and displacement errors, presents a challenging case for density estimation where the data is

strongly anonymised. In this scenario, the proposed estimator is able to generate a clear and recog-

nisable density shape that reflects the underlying distribution of poor households. In contrast, the

naive estimator produces density estimates that are less reliable and less accurate, failing to cap-

ture the same density structure that is present in the underlying population. Overall, these results

indicate that the proposed KDE-ED estimator is a preferred method for estimating the density of

poor households, especially under large aggregation and displacement errors.

71



Figure 3.15: Density of poor households under both aggregation and displacement errors for each
estimator with grids.
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Figure 3.16: Contour plots of the density of poor households under both aggregation and displace-
ment errors for each estimator with grids.
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3.7 Application of the proposed method under EA displacement us-

ing the 2011 BDHS data

In order to apply the proposed method, we use the 2011 BDHS data at the household level and

the GPS data for the 600 EAs, of which 393 are from rural areas, and 207 are from urban areas.

To protect the confidentiality of respondents, the households’ location data within the same EA

were aggregated to a single coordinate, the EA centroid. Then, the EA centroids were displaced

by applying the DHS random displacement algorithm. The boundary map of the 2011 BDHS

EAs is not available to data analysts. As discussed in Section 1.2.1, EAs are generally designed

to focus on population count (on average 120 households per EA) rather than geographic size;

therefore, their specific sizes (measured in square meters) can vary based on population density

and whether they are in an urban or rural area. Hence, the EA size varies but is unknown to data

analysts. The boundary of an EA should be available to apply the proposed KDE-ED method, as

discussed in Section 3.5, to address both aggregation and random displacement errors. However,

in the 2011 BDHS, except for random displacement, the aggregation of EAs does not impact any

upazila (admin 3 of Bangladesh) level estimation of indicators, such as poverty, since an EA is

a lower geographical unit than upazila, and aggregation is constrained within upazila boundaries.

Estimates, such as density estimates, at finer levels below the EA geography might be influenced

by both aggregation and random displacement. In such cases, the proposed KDE-ED method can

be applied by approximating EA size or geography; however, this requires further investigation

into the effects of EA size approximation errors on the results. In this section, we aim to apply

the proposed method to obtain upazila-level estimates of interest, discussed below, using the 2011

BDHS data, accounting for the EA random displacement errors. In particular, the centroids of

the 600 EAs, selected with probability proportional to Bangladesh Census 2011 EA’s household

numbers, are available to data analysts but are displaced. Therefore, we apply the proposed EDC

method, developed in Section 3.4, under only the displacement of EAs.

The true EA centroid coordinates were displaced within the designated admin 2 (district of

Bangladesh) area by applying the DHS displacement algorithm that we described in detail in

subsection 3.2.1. The urban EAs were displaced 0-2 kilometres, while rural EAs were displaced

0-5 kilometres with 1% of rural EAs being randomly displaced 0-10 kilometres. As a result, in

the case of the BDHS 2011, the displaced EA coordinates may be misplaced at the lower admin

level of Bangladesh e.g., at the upazila level (admin 3). Therefore, any estimates e.g., means or

proportions at the upazila level may be biased using the displaced EA coordinates.
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By mapping the displaced EA coordinates, the upazila identifiers corresponding to the EAs can

be determined. These are subsequently referred to as the displaced upazila IDs. The 2011 BDHS

data includes true upazila IDs corresponding to the EAs, even though the true EA coordinates

are unknown. However, these true upazila IDs are not included in BDHS data sets after 2011,

potentially due to concerns that releasing the true upazila ID might increase the risk of disclosure.

These true upazila IDs can be used to validate any estimates at the upazila level. If the displaced

upazila ID matches the true upazila ID for an EA, then the EA is considered a true non-misplaced

EA. In contrast, if they do not match, the EA is considered a true misplaced EA. Additionally, if

the displacement buffer around a displaced EA coordinate intersects with an upazila boundary, the

EA is considered as a potentially misplaced EA.

We obtain upazila poverty estimates using the 2011 BDHS data by applying the proposed EDC

method, the MPD method, and the naive method which ignores the misplacement error due to

the EA displacement. Although the proposed KDE method could be used in this context, our

assessment through an empirical study in Section 3.6.1 shows that the proposed EDC method

performs better than the KDE method. Therefore, we do not use the proposed KDE method in

this application. In particular, as the variable of our interest, we consider the number of poorer

households for each EA. A household has been considered relatively poor if its wealth index is

below the 40th percentile of the wealth indices of the survey households that we described in

detail in the data description section of Chapter 1. In addition to the estimated upazila proportions

of poor households, in this section, we also compare the performance of the methods under only

EA displacement in terms of correct upazila classification probabilities for the 2011 BDHS EAs. In

particular, by applying the following three methods, we obtain the estimated upazila poverty along

with classification probabilities for each EA using the 2011 BDHS displaced EA coordinates:

a) The naive method that ignores the EA misplacement error due to the displacement process.

With this method, true misplaced EAs are always classified into correct upazilas with prob-

ability 0, while correct upazila classification probabilities for true non-misplaced EAs are

always equal to 1. Therefore, this approach always assigns true misplaced EAs to the wrong

upazilas.

b) The proposed EDC method that accounts for the EA misplacement uncertainty to estimate

upazila classification probabilities for each EA. The method iterated with 𝐵1 = 200 Monte

Carlo samples and 𝐵2 = 20 additional sample steps using the WorldPop grid points and

additional information from external data. We described this external data based method in

the methodology section 3.4.
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c) The MPD method proposed by Warren et al. (2016b). In order to take into account the mis-

placement uncertainty, this method obtains the estimated upazila classification probabilities

for each EA by displacing the displaced EA coordinates and then selecting the most probable

upazila as the correct one for each EA. However, this approach can produce biased estimates

if the correct upazila is chosen with a probability of less than 1.

3.7.1 Results and discussion

This section first gives a summary of the EA misplacement statistics. Next, we present and discuss

the results for the correct upazila classification probabilities for EAs that are obtained by applying

the three methods: the MPD, the proposed EDC method and the naive method that ignores the

misplacement error due to the displacement process. Finally, the estimated upazila proportions of

relatively poor households for each method are presented and compared to the upazila estimates

produced based on the 2011 BDHS data that are not affected by the displacement process.

We now present and discuss findings from an exploratory analysis of the 2011 BDHS data. By

constructing displacement buffers around the centroid of the EA displaced coordinates, we find

that about 44% (266 out of 600) of the EAs are potentially misplaced i.e., those EA displacement

buffers intersect with an upazila boundary. Note that all three methods always perform equally

well in classifying an EA into the correct upazila if the displacement buffer falls entirely within the

boundaries of an upazila. To see how EA misplacement varies by geographic region (rural/urban),

the distribution of only potentially misplaced EAs by true misplacement and geographic region

is presented in Table 3.8. Among the potentially misplaced EAs, about 31% (83 out of 266) of

EAs are true misplaced. To remind the reader, in this thesis, a true misplaced EA means that the

displaced upazila ID and the true upazila ID for that EA are different. There were 393 rural EAs

and 207 urban EAs in the 2011 BDHS, as described in 1.2.1. We observe that rural EAs are more

likely to be potentially misplaced than urban EAs, for instance, 48.3% (190 out of 393) for rural and

36.7% (76 out of 207) for urban. This is because the maximum displacement distance was higher

for rural EAs than for urban EAs. However, among the potentially misplaced EAs, the percentage

of the true misplaced EAs is higher for the urban area (40.8%) than the rural area (27.6%).

Non-misplaced Misplaced Total
Rural 138 (0.726) 52 (0.276) 190 (1.000)
Urban 45 (0.592) 31 (0.408) 76 (1.000)
Total 183 (0.688) 83 (0.312) 266 (1.000)

Table 3.8: Distribution of only potentially misplaced EAs by true misplacement and urban/rural.
Proportions are given in parentheses.
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Table 3.9 shows the distributions of EAs by the number of upazila intersects with the displacement

buffer and a) misplacement, and b) rural-urban respectively. We observe that about 5% (12 out of

266) of the potentially misplaced EAs buffers intersect with more than four upazilas and most of

them are true misplaced (8 out of the 12). For urban areas, 12 EAs whose buffers intersect with

more than four upazilas compared with none for rural areas.

The DHS displacement process is not restricted within the rural/urban area boundaries. Therefore,

it is possible that an EA that originated from a rural area can be placed to an urban area due to

the EA displacement process and vice versa. Table 3.10 presents that 6% of EAs (22 out of 393)

originally from rural areas are displaced to urban areas. On the other hand, 25% (52 out of 207) of

urban EAs are moved to rural locations due to the displacement process.

Number of upazila intersects 1 2 3 4 5 6 7 8 9
Non-misplaced 334 140 36 3 2 1 1 0 0
Misplaced 0 54 15 6 3 3 0 1 1
Rural 203 155 33 2 0 0 0 0 0
Urban 131 39 18 7 5 4 1 1 1

Table 3.9: Distributions of EAs by the number of upazila intersects with the displacement buffer
and a) misplacement, and b) rural-urban.

True vs. displaced Rural Urban Total
Rural 371 (0.94) 22 (0.06) 393 (1.00)
Urban 52 (0.25) 155 (0.75) 207 (1.00)

Table 3.10: Distribution of true rural-urban EAs by displaced rural-urban EAs. The proportions
are given in parentheses.

We obtain the estimated upazila classification probabilities for each EA by applying the MPD

method, the proposed EDC method and the naive method. From these upazila classification proba-

bilities for each EA, we can separate the correct upazila classification probability as the true upazila

IDs for EAs are given in the 2011 BDHS data. As described in Section 1.2.1, the maximum dis-

placement distance differs for rural/urban EAs (e.g., 2km for urban, 5km for rural), with 1% of

rural locations randomly displaced up to 10km. Data analysts are not informed which rural EAs

undergo this extended displacement, but our proposed methods account for this additional uncer-

tainty. The summary statistics of the estimated correct upazila classification probabilities by using

the EDC, MPD and naive methods for all potentially misplaced EAs and their different categories,

such as true misplaced EAs and rural/urban EAs, are given in Table 3.11. We see that the proposed

EDC method is better than the naive method for all categories except for the true non-misplaced

category. This is because the true non-misplaced EAs are always classified to the correct upazilas

with probability 1. However, it is unknown to the data analysts which EAs are true non-misplaced.
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We also observe that the proposed EDC method outperforms the MPD method in terms of having

higher correct upazila classification probabilities for all categories. For example, the proposed

EDC method has a higher mean for correct upazila classification probabilities over true misplaced

EAs than the MPD method. This indicates that the additional information for the underlying prob-

ability distribution of true locations from external data sources improves the classification of EAs

into correct upazilas with higher probabilities. We also see that true non-misplaced EAs are clas-

sified correctly with higher probabilities compared to true misplaced EAs. Another observation is

that the probability of correct upazila classification is higher for rural EAs than for urban EAs.

Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.
All EDC 0.020 0.590 0.865 0.749 0.968 1.000

MPD 0.001 0.556 0.804 0.716 0.944 1.000
naive 0.000 0.000 1.000 0.688 1.000 1.000

Non-misplaced EDC 0.044 0.748 0.922 0.841 0.976 0.998
MPD 0.014 0.728 0.879 0.823 0.957 0.998
naive 1.000 1.000 1.000 1.000 1.000 1.000

Misplaced EDC 0.020 0.296 0.526 0.546 0.795 1.000
MPD 0.001 0.216 0.400 0.443 0.624 1.000
naive 0.000 0.000 0.000 0.000 0.000 0.000

Rural EDC 0.028 0.630 0.877 0.776 0.974 1.000
MPD 0.027 0.611 0.830 0.743 0.949 1.000
naive 0.000 0.000 1.000 0.726 1.000 1.000

Urban EDC 0.020 0.501 0.727 0.683 0.947 1.000
MPD 0.001 0.405 0.678 0.638 0.912 1.000
naive 0.000 0.000 1.000 0.592 1.000 1.000

Rural Misplaced EDC 0.028 0.302 0.533 0.566 0.797 1.000
MPD 0.027 0.217 0.404 0.437 0.611 1.000
naive 0.000 0.000 0.000 0.000 0.000 0.000

Urban Misplaced EDC 0.020 0.231 0.502 0.513 0.727 1.000
MPD 0.001 0.216 0.384 0.455 0.681 1.000
naive 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.11: Summary statistics of the correct upazila classification probabilities over all potentially
misplaced EAs using the proposed EDC, the MPD and the naive methods.

Figure 3.17 shows the performance of the two methods: the proposed EDC and the MPD for all

potentially misplaced EAs and only for EAs whose buffers intersect with up to 4 upazilas under

different categories A-G. For all scenarios, the proposed EDCmethod, which uses additional infor-

mation from external data, clearly outperforms the MPD method in terms of higher classification

probabilities. Also, the results reveal that the proposed method performs better for EAs whose

buffers intersect with up to 4 upazilas. Also, excluding the EAs for those buffers that intersect

with more than 4 upazilas the overall performance of the rural and urban EAs are approximately

the same. This is because only the urban EAs buffers intersected with more than 4 upazilas. More-
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over, in order to assess the proposed EDC method’s performance from another aspect, Figure 3.18

represents the boxplot of the estimated correct upazila classification probabilities for a) true mis-

placed b) true non-misplaced and c) all potentially misplaced EAs by the number of intersected

upazilas. For all scenarios a-c, we observe that the correct upazila classification probabilities are

much smaller for EAs with more than 4 intersected upazilas. This indicates that the proposed EDC

method performs better at accurately classifying EAs whose buffers intersect with up to 4 upazilas,

but its performance reduces for intersections involving more than 4 upazilas. However, excluding

the 12 EAs whose buffers intersect with more than 4 upazilas results in 10 additional false-out-

of-sample upazilas (as defined in 3.3.2) from the 395 true in-sample upazilas in the 2011 BDHS.

Furthermore, 8 of those 12 EAs are truly misplaced.

Figure 3.17: Boxplot of the correct upazila classification probabilities using the EDC, MPD and
naive methods (left: (a) all potentially misplaced EAs, right: (b) only 2-4 intersected upazilas,
Category: A: overall, B: non-misplaced, C: misplaced, D: rural, E: urban, F: rural misplaced, G:
urban misplaced). The asterisk (*) is used as a marker to represent the mean probabilities for each
method and category.

In summary, in the case of true misplaced EAs, the naive method has the correct upazila classifica-

tion probabilities equal to 0 i.e., the EAs are consistently misclassified. On the other hand, for most

of the EAs, the proposed EDC method has higher correct upazila classification probabilities than

the MPD method. Therefore, the proposed EDC method is always preferred over the naive and

MPDmethods. Regarding the true non-misplaced EAs, the proposed EDCmethod performs better

than the MPD method for most EAs in terms of higher correct classification probability. However,

the naive method always performs perfectly by classifying true non-misplaced EAs into correct

upazilas. Therefore, the proposed EDC method is always preferred in the case of true misplaced

EAs, while the naive method should be used for true non-misplaced EAs. However, in reality, it

is unknown to the data analysts which EAs are truly misplaced. It is possible to identify the EAs

that are potentially misplaced. The naive method correctly classifies the potentially misplaced EAs
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Figure 3.18: Boxplot of the correct upazila classification probabilities using the EDC method ((a)
true misplaced, (b) true non-misplaced and (c) all potentially misplaced EAs).

with a probability of either 0 or 1. On the other hand, most of the EAs are classified with fairly

high probabilities by the proposed EDC method. Also, some EAs, especially for those buffers that

intersect with more than 4 upazilas, are correctly classified with very small probabilities. Note

that EAs whose displacement buffers fall only within an upazila boundary are always classified

into correct upazilas by all three methods: the naive, the MPD and the EDC. The average correct

upazila classification probabilities over all potentially misplaced EAs is larger than the other two

methods. In summary, the proposed EDC method should be preferred over the naive and MPD

methods for correctly classifying the 2011 BDHS displaced EAs.

3.7.1.1 Poverty estimates at upazila level of Bangladesh

In this application, we obtain the upazila estimates of relatively poor households by using theMPD,

the proposed EDC and the naive method that ignores the misplacement error due to the random

displacement process. In addition, the upazila proportions estimates are obtained using the true

upazila identifier for each EA that is available in the 2011 BDHS data. We use these true upazila

estimates that are not affected by the displacement process as the validation estimates.

Estimated upazila proportions using the three methods are presented in Figure 3.19 against valida-
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tion estimates for the 395 true in-sample upazilas, which are available only for the 2011 BDHS.We

observe that the upazila estimates using the proposed EDC method are closer to the true upazila

estimates than the upazila estimates obtained by the other two methods: the MPD, which picks the

most likely upazila for each EA, and the naive that ignores the misplacement error. For example,

the correlation coefficients between the upazila estimates generated by the naive, EDC, and MPD

methods, and the validation (true) estimates are 0.867, 0.962, and 0.884, respectively. Moreover,

it is apparent from Figure 3.19(a) that 36 false-out-of-sample upazilas are created by the DHS dis-

placement process, and the naive method cannot provide estimates for those 36 upazilas. Although

the MPD method can provide estimates for some false-out-of-sample upazilas by picking up the

most likely upazila for each EA, it creates some new false-out-of-sample upazilas for which this

method provides no estimates. Whilst, the proposed EDC method can produce estimates for all

those 36 false-out-of-sample upazilas, and the estimates are reasonably close to the validation es-

timates (Figure 3.19(b)). We note that while the EDC method is capable of producing estimates

for all out-of-sample upazilas that were falsely created by the displacement process, it may also in-

troduce some additional false-in-sample upazilas beyond the 395 true sample upazilas in the 2011

survey due to the correction process involving the creation of a buffer around the displaced EA

centroid. This result can be explained by the fact that in the case of the proposed EDC method,

all upazilas, of which only one is correct but unknown to the data analysts, are selected within the

displacement buffer according to the upazila classification probabilities for each EA. This implies

that the higher the probability of correct upazila classification, the closer the upazila estimates will

be to the validation upazila estimates. We have assessed that the proposed EDC method, which

uses additional information from external data sources, has an overall higher correct upazila clas-

sification probability than the MPD and naive methods. Also, the correlation results presented

above suggest that the EDC method has the highest degree of accuracy and precision in estimating

upazila proportions, as it achieves the highest correlation coefficient compared to the Naive and

MPD methods. In summary, the results of this application using the 2011 BDHS data suggest that

the proposed EDC method is preferred to the MPD and naive methods.
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Figure 3.19: Plot of the estimated upazila proportions of poor households by the naive, the EDC and
theMPDmethod against the upazila estimates obtained using the undisplaced (true) data (Blue dots:
true-in-sample upazilas; Red dots: False-out-of-sample upazilas created due to the displacement
process; Green dots: new false-out-of-sample upazilas created through the correcting process by
using the MPD method). The figure demonstrates only the actual 395 sampled upazilas from the
2011 BDHS, and we exclude any false-in-sample upazilas originating from any methods.

3.8 Concluding remarks

This chapter presents the proposed estimators for obtaining density estimates of observations of

coordinates and estimates of domain parameters by correctingmeasurement errors using data under

two situations: a) only the DHS random displacement process and b) the aggregated and random

displacement process. We first consider the random displacement issue, followed by the combined

aggregation and random displacement problem.

Regarding the random displacement, the true location coordinates of observations are not avail-

able; they are randomly displaced before being released to data analysts to preserve respondent

confidentiality. For instance, to protect respondent confidentiality and mitigate disclosure risk,

DHS stopped releasing true EA centroids, reflecting a deliberate trade-off with the precision of

location-dependent estimates. Therefore, in this chapter, our proposed methods attempt to address

the analytical challenges arising from this lack of precise data, aiming to enhance the accuracy of

estimates without compromising disclosure control risk. It is crucial to note that the DHS random

displacement process remains consistent across all its surveys, with identical urban-rural distance

parameters (Burgert et al., 2013). This uniformity ensures that our developed approach can be

applied to any DHS survey. In particular, we introduce a measurement error model tailored to the

DHS random displacement process, which can be potentially extended to other forms of random
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displacement processes. Subsequently, we develop a new probability distribution for the DHS

random displacement, representing a key contribution of this chapter.

We propose two estimation methods for the measurement error model to obtain density estimates

and domain parameter estimates by drawing likely true location coordinates. The first method is

based on the Kernel Density Estimates (KDE) as the marginal distribution of the true location data,

and the estimation is implemented using the Stochastic Expectation-Maximization (SEM) algo-

rithm. The proposed KDE-based method accounts for random displacement error while deriving

its bandwidth as part of the estimation process, similar to the method used by Groß et al. (2017),

which accounts for rounding error instead. As a result, the proposed method automatically selects

an optimal bandwidth based on the data for each iteration without selecting an appropriate band-

width beforehand. This makes it easy to implement, and the method can work with any bandwidth

selection method, making it highly flexible. Also, we have observed that the grid size does not im-

pact density estimation when dealing with random displacement. However, it is necessary to use a

sufficiently large grid size (e.g., 400) to cover all possible true locations within the buffers around

the displaced coordinates. Kernel density estimates are useful in approximating the marginal dis-

tribution of unknown true location coordinates with register/population data. It may not perform

well when sampling is involved because the method cannot distinguish between the absence of

sample data and the absence of population. Additionally, the random displacement process can

create false in-sample and out-of-sample domains. Nevertheless, the method may still work under

certain sampling designs that cover the entire population area, such as a simple random sample

over the entire area.

The second method is the External Data Classification (EDC)-based method, which approximates

the unknown underlying distribution of true location data as an alternative to the KDE-based

method. The estimation of this EDC-based method is implemented through numerical integra-

tion. In the proposed estimation algorithm, it is recommended to use at least 200 pseudo-sample

iterations of unknown true location coordinates to achieve better realizations in the estimates, ac-

counting for random displacement errors. The EDC method is expected to improve the estimates

over the KDE-based method as it is developed using additional information from external data

sources, which are more likely to be associated with the underlying distribution of true location

data. The EDC method works better than the KDE method by approximating the marginal dis-

tribution of the true location coordinates more accurately, using external data sources. However,

this is subject to the availability and up-to-date-ness of the external data sources. Besides register

data, the EDC method can better approximate the underlying distribution of true locations than the
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KDE method in the case of survey data, such as the 2011 BDHS, where there is a clear connection

between the true EA and population density of household distribution. Specifically, the sampled

DHS EAs were selected with a probability proportional to the census EA size, i.e., the number of

households.

We compare the performance of the two proposed KDE and EDC methods, the Most Probable Do-

main (MPD) method by Warren et al. (2016b) and the naive method that ignores the displacement

error using simulated register data. The simulated register data for household location coordinates

are generated from the gridded population raster of 100m× 100m size fromWorldPop, which esti-

mates the population of Bangladesh adjusted using the 2011 census population. In this raster, each

grid cell represents the number of people per pixel. It is worth noting that in our simulation study,

we use external data sources, such as the WorldPop gridded population count, to generate the sim-

ulated true location data. Therefore, there is no issue with the quality or representativeness of the

external data source in the empirical study. However, in real situations, the quality and up-to-date-

ness of such external data sources should be assessed. We demonstrate the usefulness of external

data sources, such as WorldPop, to approximate the underlying distribution of true EA locations

using only a single set of displaced EA coordinates from the 2011 BDHS. Moreover, a sensitivity

analysis could be conducted in future research by introducing slight errors to the simulated true

household location data.

In the empirical study with simulated register data, the proposed KDE and EDC methods can cor-

rect to some extent the bias in the domain (upazila) estimates of the proportion of poor households

under misplacement errors due to the random displacement process. Moreover, the proposed esti-

mators have lower RMSEs of the upazila estimates than the naive and MPD estimators. Notably,

upazilas with smaller areas in terms of square kilometres have higher misplacement errors, result-

ing in greater bias and variability in the estimates when using the naive method that ignores mis-

placement errors. In contrast, the proposed EDC method outperforms other methods by correcting

misplacement errors, particularly for upazilas with small areas. However, when the misplacement

errors are low, all methods perform similarly. In such cases, the naive method should be chosen for

its simplicity. It is worth mentioning that misplacement errors depend not only on the area of the

upazila but also on the shape of the upazila and whether people live closer to the boundary. Since

the data analysts do not know which location units are true misplaced, all the corrected methods -

the MPD, KDE, and EDC - introduce additional errors for true non-misplaced units. Therefore, fu-

ture research could be done to estimate the expected number of misplaced units within each upazila

using the displaced coordinates. This would be helpful to identify whether the proposed methods
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work for obtaining precise upazila estimates by correcting the misplacement error. Although the

MPD, KDE, and EDC methods introduce some bias in upazila estimates for true non-misplaced

EAs, which are unknown to the data analysts, in the simulation study, the proposed EDC method

produces very high correct upazila classification probabilities for non-misplaced units. Further-

more, the naive method always classifies misplaced units into the wrong upazilas, whereas the

proposed EDC method can accurately classify them into the correct upazilas to some extent. We

also observe that the correct upazila classification probabilities are much higher for displaced loca-

tion units whose buffers intersect up to 4 upazilas. Therefore, overall, the proposed EDCmethod is

preferred over the other methods - KDE, MPD, and the naive that ignores the misplacement error

due to the displacement process.

We apply the proposed method under displacement using the real survey data. In particular, we ob-

tain upazila poverty estimates using the 2011 BDHS data by applying the proposed EDC method,

the MPD method, and the naive method that ignores the misplacement error due to the DHS ran-

dom displacement process. Based on our empirical assessment in Section 3.6.1, which showed

superior performance of the proposed EDC method over the KDE method, we do not use the KDE

method in subsequent applications. We observe that the upazila estimates using the proposed EDC

method are closer to the true upazila estimates than the upazila estimates obtained by the other two

methods: the MPD, which picks the most likely upazila for each EA, and the naive that ignores

the misplacement error. Furthermore, the random displacement process creates some false out-of-

sample upazilas. While the MPD method can correct the false out-of-sample problem for a few

upazilas by picking the most likely upazila for each EA, it creates new false out-of-sample and in-

sample upazilas. On the other hand, the proposed EDC and KDE methods can produce estimates

for all out-of-sample upazilas that are falsely created by the displacement process. This result can

be explained by the fact that in the case of the proposed EDC and KDE methods, all upazilas,

of which only one is correct but unknown to the data analysts, are selected within the displace-

ment buffer according to the upazila classification probabilities for each EA. However, the EDC

and KDE methods may also introduce additional false in-sample upazilas beyond the true sample

upazilas in the survey due to the correction process involving the creation of a buffer around the

displaced EA centroid.

Regarding the aggregation and random displacement process, the aggregation concentrates data

at the centroid of the enumeration area (EA), while the random displacement moves the original

location from one place to another. Previous studies, to the best of our knowledge, did not consider

the uncertainty arising from both aggregation and random displacement. Therefore, we propose

85



a novel method, called the external data and kernel density-based (KDE-ED) method, to obtain

density and domain parameter estimates that correct for both aggregation and random displacement

errors under a measurement error model. This is another important contribution in this chapter.

The simulation study results suggest that the proposed KDE-ED method outperforms the naive

method that ignores the aggregation and displacement errors, with lower bias and RMSE of the

upazila estimates. Additionally, for the density estimates of poor households, the proposed KDE-

EDmethod has a lower RMISE than the naive method. The proposed method can also preserve the

underlying structure of the density for various aggregation and displacement levels. Therefore, the

KDE-ED estimator is a preferredmethod for estimating the density of poor households, particularly

under large aggregation and displacement errors.
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Chapter 4

Linear mixed models under random

displacement

4.1 Introduction

Multilevel models are statistical models designed to handle clustered or nested data, which are

relevant in the context of surveys, for example, the Demographic and Health Surveys (DHS). The

DHS is a two-stage stratified surveywith a hierarchical data structure. Individuals are nestedwithin

Enumeration Areas (EAs), also known as clusters or primary sampling units (PSUs), and EAs

are nested within the administrative boundaries of the country. The presence of this hierarchical

structure highlights the necessity of using multilevel regression modelling (Islam, 2005; Alom

et al., 2012; Imam et al., 2018; Bhuiyan et al., 2020).

Clustering occurs when observations within the same group or cluster demonstrate greater simi-

larity than in other groups. Ignoring clustering can lead to incorrect standard errors, resulting in

inaccurate inferences (Fielding et al., 2003). Multilevel models can account for the potential influ-

ence of cluster-level factors on individual-level outcomes, making them a useful tool for analysing

observations which belong to groups or in cases where a hierarchical data structure exists in the

survey.

Multilevel models can be used for both analytical inference and group prediction. Analytical infer-

ence involves testing hypotheses and making statistical inferences about the relationships between

outcome and predictor variables at different levels of hierarchy. In contrast, group prediction in-

volves using the model to predict outcomes for groups of individuals and obtain group means.
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In multilevel models, random effects are specified at the group level to capture the inherent group-

ing structure of observations. For precise estimates of group-level variations, it is essential to have

accurate information about the groups of observations, ideally based on their true location coordi-

nates. However, in many situations, such as with DHS data, these actual coordinates may remain

undisclosed to analysts and are randomly displaced to protect respondent confidentiality. Specifi-

cally, in the DHS data, true EA centroids are displaced but restricted to admin 2 boundaries (e.g.,

corresponding to a district in a country) using the DHS random displacement mechanism. Data

users are provided only with these displaced EA centroid coordinates and the associated survey

EA identifiers (Burgert et al., 2013). As discussed in detail in Section 2.6, while the displacement

is not a problem when using multilevel models with random effects specified at the EA level or

a displacement-restricted higher administrative level, challenges arise when random effects are

specified at levels below the displacement-restricted boundaries, such as the admin 3 (sub-district)

level. In such cases, the displacement process can lead to misplacement of observations, caus-

ing mixing among groups. This can result in biased estimates of random variance components

in multilevel models and associated model-based estimates of finite population parameters, such

as group/sub-district means. As reviewed in Chapter 2, some studies (e.g., Das et al., 2019a,b,

2020b) have fitted multilevel models with random effects specified at the sub-district level using

DHS data, disregarding the uncertainty due to EA misplacement, which could lead to misleading

inferences.

The impact of EA misplacement errors due to displacement intensifies as we move to lower ad-

ministrative levels of a country. For example, a unit at the admin 4 level might experience more

misplaced EAs in comparison to a unit at the admin 3 level. Consequently, specifying random

effects at the admin 4 level can lead to more biased estimates of random variance components in

multilevel models than if they were specified at the admin 3 level. The magnitude of such biases

may directly correlate with the degree of misplacement error introduced by the random displace-

ment process. In scenarios with a high degree of misplacement error, the proposed methodologies

can significantly reduce bias in estimates, offering improved results for users. Therefore, it is essen-

tial to research the effect of misplacement error due to random displacement on multilevel model

estimation, such as the linear mixed model (LMM), and develop methods accounting for misplace-

ment error in model fitting and uncertainty estimation of the estimates of the model parameters.

This chapter aims to contribute to addressing this gap in the literature.

Improved estimates of the parameters of the linear mixed model and associated model-based group

means by correcting the misplacement error can be obtained when the DHS EA is assigned to the
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correct group with a high probability. From this perspective, the proposed methods under displace-

ment, for example, the external data-based classification (EDC)method, can be used to select likely

true EA locations that belong to the correct groups with higher probabilities. Following an exten-

sive literature review in Chapter 2, we developed the EDCmethod under a functional measurement

error model in section 3.4 and assessed its performance over the candidate methods through a simu-

lation study. In particular, the purpose of the EDC method is to obtain the likely true unknown EA

locations given the displaced locations by using the developed conditional distribution of displaced

coordinates and the underlying unknown marginal distribution of the true locations. We proposed

a flexible framework for approximating the true location distribution using additional information

from multiple external sources that improve the probabilities for assigning EAs into the correct

groups. Therefore, we expect the EDC-based linear mixed model estimator to perform better than

the naive estimator by drawing more likely true unknown locations to obtain improved estimates of

the model parameters and group means under displacement. In this chapter, we discuss the linear

mixed model fitting under the proposed EDC method and the variance estimation of model param-

eter estimates. We evaluate the performance of the proposed methods for both point and variance

estimates under the EDC using a model-based simulation study.

When the estimates of the linear mixed model parameters, especially the variance components, are

biased under the misplacement due to a random displacement process, an attempt can also be made

to obtain the estimates of the bias and hence, to develop a bias-corrected estimator of the model pa-

rameters. In particular, one could potentially think about bootstrap bias correction methods for the

linear mixed model parameters under displacement. To the best of our knowledge, none of the pre-

vious studies attempted to use a bootstrap bias correction method under the random displacement

process. The general idea of the bootstrap bias estimation technique is that it estimates the bias of

a biased estimator under repeated bootstrap samples from the original representative sample of the

population (for details, see Efron and Tibshirani, 1992, section 10.2). Regarding the bias of the

linear mixed model parameters under displacement, the bootstrap bias correction method should

work to satisfy the two crucial assumptions. The first assumption is that the functional form of

the underlying model, e.g., the linear mixed model is appropriate to the data. The second but most

important assumption is that the magnitude of the bias of the naive estimates of the model param-

eters under displacement is the same as the magnitude of the bias of the estimates under bootstrap

samples and repeated displacement process to the displaced locations. The bootstrap samples are

generated under the model using the model parameters’ estimates based on the given (observed)

displaced data. Given these two assumptions are satisfied, the bootstrap bias correction method
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can obtain unbiased estimates of the model parameters under displacement. Therefore, this chapter

also aims to develop a method for the parametric bootstrap bias correction for correcting the bias

of the linear mixed model parameters, especially the variance components under the misplacement

due to the DHS displacement process. Hereafter, this is referred to as the Bootstrap bias correction

(BC) method. We assess the performance of the BC method over the EDC and naive methods

through a model-based simulation study.

The BC method should effectively correct the bias of global (model) parameters, and it may not

work for the associated model-based finite population parameters, e.g., group means under random

displacement. This is because the assumption of bootstrapping regarding the magnitude of the

bias of predicted group means under random displacement may not be satisfied. One potential

reason for this is that the bootstrap samples are generated under the model estimates and repeated

displacement process to the displaced locations by creating buffers around them. This results in

additional bias in the estimates for groups with displaced locations that are truly non-misplaced,

which is unknown to the data analysts. In contrast, the random displacement process does not

affect naive estimates of means for groups with non-misplaced locations. Therefore, when bias

correction is applied to the naive estimates that involve non-misplaced units, it brings additional

uncertainty. Additionally, due to random displacement, there may be a mixing of groups within the

buffer around the true and displaced locations, potentially affecting the estimates of group means.

In that case, the EDC method should be preferred to the BC method for estimating group means

under misplacement due to displacement. We explore this in this chapter.

The chapter is organised as follows. Section 4.2 describes the linear mixed model under the EA

displacement process and proposes methods for a) model fitting and b) variance estimation of

the model parameters estimates under the EDC method accounting for the uncertainty due to the

displacement error. In Section 4.3, we develop the Bootstrap bias correction (BC) method for

obtaining bias-corrected estimates of the linear mixed model parameters under displacement and

variance estimation method of model parameters estimates under the BC. Model-based simulation

studies by bringing some characteristics of the DHS EA are conducted in Section 4.4 to assess the

impact of the DHS EA displacement on the linear mixed model estimation and the performance of

the proposed EDC and BC methods. We claim the BC method works well for correcting the bias

of the model parameters, while the EDC method is for the group means. In Section 4.5, we discuss

the simulation study results. Finally, we conclude with a discussion in Section 4.6.
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4.2 Development of a framework of LMMs under random displace-

ment

The linear mixed model (in a matrix notation) is described as follows

𝑦 = 𝑋𝛽 + 𝑍(𝑇 )𝑢 + 𝜀; 𝑢 ∼ 𝑁 (0, 𝜎2
𝑢𝐼𝑚) and 𝜀 ∼ 𝑁 (0, 𝜎2

𝜀𝐼𝑛) , (4.1)

where 𝑦 is a 𝑛 × 1 vector of responses, 𝑋 is a 𝑛 × 𝑝 known design matrix for the fixed effects,

𝛽 is a 𝑝 × 1 parameter vector of fixed effects, 𝑍 (𝑇 ) = [𝑍1(𝑇 ), ⋯ , 𝑍𝑚(𝑇 )], where 𝑍𝑖(𝑇 ) is a
𝑛 × 𝑞𝑖 design matrix for the random effects specified to group 𝑖 (𝑖 = 1, ⋯ , 𝑚) based on 𝑛 × 2
true location coordinates vector 𝑇 where the responses are measured and it can be household or

EA centroid locations, 𝑢 = [𝑢1, ⋯ , 𝑢𝑚] is a 𝑞 × 1 parameter vector of random effects where 𝑢𝑖

is a 𝑞𝑖 × 1 vector such that 𝑞 = ∑𝑚
𝑖=1 𝑞𝑖, and 𝜀 is a 𝑛 × 1 vector of random errors. The unknown

true parameters of the linear mixed model (4.1) include 𝜃 = (𝛽, 𝜎2
𝑢, 𝜎2

𝜀).

For the above linear mixed effect model (4.1), the vector of true location coordinates 𝑇 is unknown

and can be treated as missing while only the vector of displaced location coordinates𝑊 is observed.

Also, the random effects 𝑢 are treated as missing data. Therefore, we take the complete dataset to

be 𝑦⋆ = {𝑦, 𝑢, 𝑍(𝑇 ), 𝑊} where {𝑦, 𝑊} is the observed dataset.

Under the proposed model, the joint distribution of the data is factorised as follows,

𝑓(𝑦⋆; 𝜃) = 𝑓(𝑦, 𝑢 ∣ 𝑍(𝑇 ), 𝑊)𝑓(𝑇 , 𝑊)

= 𝑓(𝑦, 𝑢 ∣ 𝑍(𝑇 ))𝑓(𝑊 ∣ 𝑇 )𝑓(𝑇 ),
(4.2)

where, conditionally on𝑇 , the joint distribution of (𝑦, 𝑢) and𝑍 (𝑇 ) do not depend on𝑊 . Although

the displacement mechanism is random and independent of the outcome 𝑦, it is possible to use
the displaced coordinates 𝑊 to inform about true location of observations given the relationship

between 𝑊 and 𝑇 .

The first component on the right hand side (second line) of (4.2) defines the outcome model. The

second component defines the error model for 𝑊 given the true coordinates and the third term de-

fines the marginal distribution of the unknown true coordinates. The last two terms together define

the conditional distribution of the true locations 𝑇 given the displaced locations𝑊 . We developed

this conditional distribution 𝑓(𝑇 ∣ 𝑊) in Section 3.2.4. To recall, 𝑓(𝑇 = 𝑇 ⋆|𝑊) ∝ 𝑓(𝑊|𝑇 =
𝑇 ⋆)𝑓(𝑇 = 𝑇 ⋆) where 𝑇 ⋆ is the vector of possible true locations. Utilizing this formulation we
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can draw pseudo-samples (imputations) of 𝑇 from 𝑓(𝑇 = 𝑇 ⋆|𝑊) using the estimation methods,
e.g., the external data-based classification (EDC) under displacement to construct the design ma-

trix 𝑍(𝑇 = 𝑇 ⋆) in (4.1). The proposed EDC method, which we developed in Section 3.4 under

a functional measurement error model by using additional information (e.g., population density,

designated administrative boundary restriction, rural urban boundaries, boundary corrections for

non-settlement places) from external sources. Given the superior performance of the proposed

EDC method over the proposed KDE method, as demonstrated in our empirical assessment in

Section 3.6.1, we do not use the KDE method in subsequent applications.

4.2.1 Estimation

As the vector of true locations 𝑇 is unknown, we can draw pseudo-samples 𝑇 ⋆ of 𝑇 using the

EDC method and construct the unknown design matrix for the random effect 𝑢 which is denoted

by𝑍(𝑇 = 𝑇 ⋆). Therefore, fixing𝑇 = 𝑇 ⋆, one can fit the linearmixedmodel described by the first

part on the right hand side of (4.2) and obtain estimated model parameters ̂𝜃 = ( ̂𝛽, �̂�2
𝑢, �̂�2

𝜀). Also,
we obtain 𝐸(𝑦 ∣ 𝑢, 𝑇 = 𝑇 ⋆) = 𝑋 ̂𝛽 + 𝑍(𝑇 = 𝑇 ⋆)�̂�, where �̂� = �̂�2

𝑢𝑍′(𝑇 = 𝑇 ⋆)Σ̂−1
𝑦 (𝑦 − 𝑋 ̂𝛽)

is the empirical best linear unbiased predictor (EBLUP) of the random effect 𝑢 and Σ̂𝑦 = 𝑍(𝑇 =
𝑇 ⋆)𝑍′(𝑇 = 𝑇 ⋆)�̂�2

𝑢 + �̂�2
𝜀𝐼𝑛 is the estimated covariance matrix of 𝑦.

In particular, we use the Stochastic Expectation-Maximisation (SEM) algorithm that works by re-

placing the un-observed true point 𝑇 in the complete data likelihood by drawing pseudo-samples of

the un-observed true point given the observed data using the proposed EDCmethod under displace-

ment (S-step) and then maximises the (complete) data likelihood for the updated (new) location

samples and obtains the model parameter estimates and group means in the M-step. The process

is repeated many times and we take the average of the estimates. Studies by Warren et al. (2016b)

and Wilson et al. (2020) recommended drawing a large number of samples for better realizations

of the true location. The computational steps of the algorithm are given as follows:

• Step 1: Generate pseudo-samples 𝑇 ⋆ of the true location coordinates 𝑇 from the conditional

distribution 𝑓(𝑇 = 𝑇 ⋆|𝑊) using the proposed EDC method under displacement described

in Section 3.4.

• Step 2: Construct the design matrix 𝑍(𝑇 = 𝑇 ⋆) using the pseudo-samples 𝑇 ⋆ of the

true location coordinates 𝑇 from Step 1 and fit the linear mixed model (4.1) to obtain

the estimates ̂𝜃 = ( ̂𝛽, �̂�2
𝑢, �̂�2

𝜀) and the random effects �̂� for each group 𝑖. Hence, obtain
𝐸(𝑦 ∣ 𝑢, 𝑇 = 𝑇 ⋆) = 𝑋 ̂𝛽 + 𝑍(𝑇 = 𝑇 ⋆)�̂� for each group 𝑖. The parameters are estimated
using restricted maximum likelihood (REML) and using the empirical best linear unbiased
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predictor (EBLUP) for 𝑢.

• Step 3: Iterate Steps 1-2 𝐵1 + 𝐵2 times, with 𝐵1 = 300 (large number of iterations) and

𝐵2 = 20 (additional iterations).

• Step 4: Obtain the estimates ̂𝜃(𝐵1) and ̂𝜃(𝐵1+𝐵2) by averaging the derived𝐵1 and (𝐵1+𝐵2)
estimates respectively. We then do trace plots for the average estimates to see if the two

estimates, ̂𝜃(𝐵1+𝐵2) and ̂𝜃(𝐵1), are reasonably close. If they are, the algorithm converges.

Otherwise, return to Step 1 and proceed through the subsequent steps, incrementing 𝐵1 by a

predetermined amount (for instance, 𝐵1 = 𝐵1 + 20), while maintaining the constant value
𝐵2 = 20, until the algorithm converges.

By using the design matrix 𝑍 (𝑊) directly instead of 𝑍 (𝑇 ), based on the displaced location coor-
dinates vector 𝑊 in the model (4.1), the estimates of 𝜃 = (𝛽, 𝜎2

𝑢, 𝜎2
𝜀) are considered as the naive

estimates that ignore the DHS displacement uncertainty.

4.2.2 Variance estimation of parameter estimates under the EDC method

In addition to point estimates, we are also interested in estimating the variances of the mixed model

parameter estimates under displacement. To do so, we propose to use the law of iterated variances

or total variance (see for details, Blitzstein andHwang, 2019, section 9.5), conditional on the design

matrix 𝑍(𝑇 = 𝑇 ⋆). The variance decomposition equation is expressed as:

𝑉 ( ̂𝜃) = 𝐸𝑍(𝑇 ⋆)[𝑉 ( ̂𝜃 ∣ 𝑍(𝑇 ⋆))] + 𝑉𝑍(𝑇 ⋆)[𝐸( ̂𝜃 ∣ 𝑍(𝑇 ⋆))]. (4.3)

The first component on the right hand side of (4.3) defines the expected value of the conditional

variances of the estimated parameter given the design matrix 𝑍(𝑇 = 𝑇 ⋆), where 𝑇 ⋆ is the vector

of possible true locations obtained using the proposed EDC method under displacement described

in Section 3.4. The second component defines the variance of the conditional expected values of

the estimated parameter given the design matrix 𝑍(𝑇 = 𝑇 ⋆).

In order to compute the total variance of the model parameters estimates, for each set of pseudo-

samples of true locations 𝑇 ⋆, we construct the design matrix 𝑍(𝑇 = 𝑇 ⋆) and hence, fit the linear
mixed model (4.1) to obtain the estimates of the model parameters and their variances. The process

is repeated a large number of times and we calculate the average of the variances of the estimated

parameter and the variance of the parameter estimates, which gives the first and second components

on the right hand side of (4.3), respectively.
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4.3 Development of Bootstrap bias correction method under random

displacement

The vector of true location coordinates 𝑇 is unknown to the data analysts, and only the vector

of displaced coordinates 𝑊 is available. Therefore, instead of 𝑍 (𝑇 ) we use directly the design
matrix 𝑍 (𝑊) based on the displaced EA coordinate vector 𝑊 in the linear mixed model (4.1).

This is written as

𝑦 = 𝑋𝛽 + 𝑍(𝑊)𝑢 + 𝜀. (4.4)

If we fit the model (4.4) to the displaced data vector (𝑦, 𝑋, 𝑊) and obtain the estimated parame-
ters ̂𝜃 = ( ̂𝛽, �̂�2

𝑢, �̂�2
𝜀) by using the restricted maximum likelihood (REML), these naive estimates

of the linear mixed model parameters, especially the variance components, and the model-based

finite population parameter, e.g., mean, are biased under the misplacement due to the random dis-

placement of EA locations. So, we can attempt to obtain the bias estimates under displacement

and develop a bias-corrected estimator of the parameters. In particular, we can use a bootstrapping

technique to estimate the bias. The general idea of the simple but powerful bootstrap bias esti-

mation method is that it can estimate the bias of the (biased) estimator through bootstrap samples

generated by repeating the sampling and displacement processes to the displaced data. For details

about the bootstrap bias estimate, see Efron and Tibshirani (1992), section 10.2.

Regarding the bias of the linear mixed model parameters under displacement, the bootstrap bias

correction method should work to satisfy the two important assumptions. We first assume that the

functional form of the linear mixed model (4.1) is appropriate to the data. Next, we assume that

the magnitude of the bias of the naive estimates of the model parameters under displacement is the

same as the magnitude of the bias of the estimates under bootstrap samples and repeated displace-

ment process to the displaced locations. We generate the bootstrap samples under the model (4.4)

using the naive estimates ̂𝜃. If these assumptions are satisfied, the bootstrap bias correction (BC)
method can obtain unbiased estimates of the model parameters under displacement. We claim that

the BC method should work for correcting the bias of the global (model) parameters, and it may

not work for the associated model-based finite population parameters, such as group means under

displacement. This is because our second assumption of the bootstrapping regarding the magni-

tude of the bias of the predicted group means under displacement may not be satisfied. We have

discussed some potential reasons for this in Section 4.1. In that case, the EDC method should be

preferred to the BC method for estimating group means under misplacement. We explore this in

Sections 4.4-4.5 under model-based simulation. We describe the proposed parametric bootstrap
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bias correction (BC) method for correcting the bias of the linear mixed model parameters under

displacement as follows: The bias of the naive estimates ( ̂𝜃) of the model parameters (𝜃) is given
by Bias ( ̂𝜃, 𝜃) = 𝐸 ( ̂𝜃)−𝜃. This bias is unknown to us, as we do not know the true model param-

eters (𝜃). We obtain estimates of the bias by using the 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) model-based bootstrap
samples and displaced sets of EA coordinates which are obtained by applying the displacement

process to the displaced (observed) EA coordinates. These model-based bootstrap samples using

the naive estimates ̂𝜃 = ( ̂𝛽, �̂�2
𝑢, �̂�2

𝜀) are obtained from the following model

𝑦∗𝑏 = 𝑋 ̂𝛽 + 𝑍 (𝑊) 𝑢∗𝑏 + 𝜀∗𝑏, (4.5)

where, 𝑢∗𝑏 ∼ 𝑁 (0, �̂�2
𝑢𝐼𝑚) and 𝜀∗𝑏 ∼ 𝑁 (0, �̂�2

𝜀𝐼𝑛). Also, let the 𝑊 ∗𝑏 denote the set of 𝐵
displaced EA coordinates which are obtained by displacing the given displaced (observed) EA co-

ordinates𝑊 using the DHS displacement algorithm. Next, we obtain the bootstrap estimates of the

parameters denoted by ̂𝜃∗𝑏; 𝑏 = 1, 2, ⋯ , 𝐵 using the bootstrap samples data vector (𝑦∗𝑏, 𝑋, 𝑊 ∗𝑏).
Then, the bootstrap estimate of the bias is obtained by computing

B̂ias ( ̂𝜃, 𝜃) =
𝐵

∑
𝑏=1

̂𝜃∗𝑏/𝐵 − ̂𝜃. (4.6)

Finally, the bootstrap bias corrected (BC) estimator is defined as

̂𝜃cor = ̂𝜃 − B̂ias ( ̂𝜃, 𝜃) . (4.7)

4.3.1 Variance estimation of parameter estimates under the BC method

We want to obtain the estimated variance of the bootstrap bias corrected estimates in (4.7) of the

linear mixed model parameters accounting for random displacement error. The variance of the BC

estimator ( ̂𝜃cor) can be expressed in terms of the variance and covariances of the naive estimator
( ̂𝜃) and the bootstrap bias estimator, B̂ias ( ̂𝜃, 𝜃) in (4.6) as follows:

𝑉 ( ̂𝜃cor) = 𝑉 ( ̂𝜃) + 𝑉 (B̂ias ( ̂𝜃, 𝜃)) − 2 × Cov ( ̂𝜃, B̂ias ( ̂𝜃, 𝜃)) . (4.8)

It would be challenging to obtain the covariance between the naive and bootstrap bias estimates

based on a single level of 𝐵 bootstrap samples described in Section 4.3. In that case, a double

bootstrapping can be used to obtain the estimated variance of the BC estimator. In double boot-
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strapping, we use two rounds of bootstrap sampling. To describe the process in general terms, in

the first round, we take 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) bootstrap samples from the original sample. In

the second round, we take 𝐶 (𝑐 = 1, 2, ⋯ , 𝐶) bootstrap samples from each of the 𝐵 bootstrap

samples obtained in the first round and obtain a bias-corrected estimate based on the 𝐶 bootstrap

samples. This results in a total of𝐵×𝐶 bootstrap samples. So, it can be computationally intensive,

but it would be a useful technique to obtain a more accurate estimate of the variance of the boot-

strap bias-corrected estimator. However, we use model-based bootstrap samples under repeated

displacement to account for displacement error, as described in Section 4.3. The computational

details for obtaining the variance estimates of the BC estimator under a double bootstrapping are

given below:

Round 1: Take 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) bootstrap samples under the model (4.5) using naive es-
timates ̂𝜃 = ( ̂𝛽, �̂�2

𝑢, �̂�2
𝜀), which are obtained by fitting the model (4.4) to the displaced data

(𝑦, 𝑋, 𝑊). Next, obtain 𝐵 displaced sets of EA coordinates, denoted as 𝑊 ∗𝑏; 𝑏 = 1, 2, ⋯ , 𝐵, by

displacing the given displaced EA coordinates 𝑊 using the DHS displacement algorithm. Then,

the first round 𝐵 bootstrap samples data are represented as (𝑦∗𝑏, 𝑋, 𝑊 ∗𝑏).

Round 2: Take 𝐶 (𝑐 = 1, 2, ⋯ , 𝐶) bootstrap samples from each of the 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵)
bootstrap samples obtained in the first round and obtain the bias-corrected model parameter esti-

mates based on the 𝐶 bootstrap samples. We describe this below:

1) for each 𝑏 = 1, 2, ⋯ , 𝐵, we obtain estimates of the model parameters denoted by ̂𝜃∗𝑏 =
( ̂𝛽∗𝑏, �̂�2∗𝑏

𝑢 , �̂�2∗𝑏
𝜀 ) using the first round bootstrap samples data (𝑦∗𝑏, 𝑋, 𝑊 ∗𝑏).

2) we obtain 𝐶 bootstrap samples using estimates ̂𝜃∗𝑏 under the following model:

𝑦∗𝑐 = 𝑋 ̂𝛽∗𝑏 + 𝑍 (𝑊 ∗𝑏) 𝑢∗𝑐 + 𝜀∗𝑐, (4.9)

where, 𝑢∗𝑐 ∼ 𝑁 (0, �̂�2∗𝑏
𝑢 𝐼𝑚) and 𝜀∗𝑐 ∼ 𝑁 (0, �̂�2∗𝑏

𝜀 𝐼𝑛).

3) we obtain 𝐶 displaced sets of EA coordinates, denoted as 𝑊 ∗𝑐; 𝑐 = 1, 2, ⋯ , 𝐶 , by displacing

the given displaced EA coordinates 𝑊 ∗𝑏 using the DHS displacement algorithm. Therefore, the

second round 𝐶 bootstrap samples data are represented as (𝑦∗𝑐, 𝑋, 𝑊 ∗𝑐).

4) by using the second round bootstrap samples data (𝑦∗𝑐, 𝑋, 𝑊 ∗𝑐), we obtain the estimates of the
model parameters denoted by ̂𝜃∗𝑐; 𝑐 = 1, 2, ⋯ , 𝐶 . We use these second round bootstrap samples-
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based model parameter estimates to obtain the estimate of the bias of ̂𝜃∗𝑏 defined as

B̂ias ( ̂𝜃∗𝑏, 𝜃) =
𝐶

∑
𝑐=1

̂𝜃∗𝑐/𝐶 − ̂𝜃∗𝑏. (4.10)

5) for each 𝑏 = 1, 2, ⋯ , 𝐵, we obtain the bootstrap bias corrected estimates as

̂𝜃∗𝑏
cor = ̂𝜃∗𝑏 − B̂ias ( ̂𝜃∗𝑏, 𝜃) . (4.11)

6) by using the above 𝐵 bias-corrected estimates, we calculate the variance of the BC estimator

as follows:

̂𝑉 ( ̂𝜃cor) =
𝐵

∑
𝑏=1

( ̂𝜃∗𝑏
cor − ̄̂𝜃

∗
cor)

2
/𝐵, (4.12)

where ̄ ̂𝜃
∗
cor is the average of the estimates ̂𝜃∗𝑏

cor over 𝐵 first round bootstrap samples. It can be noted

that the estimated variance ̂𝑉 ( ̂𝜃cor) is the sample variance of the bootstrap distribution of ̂𝜃cor over
𝐵 samples.

4.4 Model-based simulation

This section aims to assess the ability of the proposed EDC and BC methods to account for mis-

placement error uncertainty due to the DHS displacement process under a model-based simulation

using the geography of Bangladesh with 544 upazilas (admin 3). Hence, to provide improved es-

timates of the linear mixed model parameters and upazila means compared to naive estimates that

ignore the misplacement error. In particular, we evaluate the EDC, BC and naive methods using

simulated data generated under the linear mixed model. The model-based simulation enables a con-

trolled empirical evaluation of our proposed methods for both point and variance estimates. The

naive method that ignores the misplacement error produces biased estimates of the linear mixed

model parameters, especially the variance components, and upazila means under misplacement

due to the displacement process. We investigate the effect of the misplacement error on the naive

estimates under two distinct scenarios for the intensity of the displacement process. The proposed

EDC method is developed under the functional measurement error model by bringing additional

information from different external sources to approximate the marginal distribution of the true

locations. Therefore, we aim to show that the proposed EDC method for point estimates of model

parameters and upazila means performs better than the naive method. We also aim to show that the
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BC method produces unbiased estimates of the global (model) parameters satisfying the assump-

tions on the model form and the magnitude of the bias under displacement and performs better

than the EDC and naive methods. In contrast, for estimating upazila means, the EDC method is

preferred to the other two methods.

We generate the model-based simulated data by incorporating certain characteristics from the 2011

Bangladesh Demographic and Health Survey (BDHS) EAs. The true coordinates of the 2011

BDHS EAs are not available. According to the documentation of the BDHS 2011 (NIPORT, 2013),

as a sampling frame, the survey used the list of EAs prepared for the Bangladesh Population and

Housing Census 2011. The list of the 2011 census EAs with their number of households is also

not available. Thus, to generate true coordinates, we create a sampling frame, the list of EAs with

their number of households, as close as possible to the 2011 BDHS sampling frame by using the

WorldPop population data. In particular, for this simulation study, we generate the true EA coor-

dinates using the WorldPop gridded population following the same principles of the 2011 BDHS

EAs selected from the 2011 census EAs. We discussed the principles in Chapter 1.

We create EAs by aggregating the WorldPop gridded population. In particular, we use the 100𝑚×
100𝑚 gridded population raster from WorldPop that estimates the population of Bangladesh, ad-

justed using the 2011 census population, where each grid cell represents the population count per

pixel. The constrained population raster in Bangladesh for 2020 can be downloaded from World-

Pop (Bondarenko et al., 2020).

At first, we identify whether the worldPop grid cells fall into rural or urban regions by using the

rural-urban boundaries from theBangladesh 2011 census. According to the 2011 census, therewere

296,718 EAs, and their location coordinates and the information on the proportion of rural/urban

EAs are not available. We find about 16% of the WorldPop grid cells were from urban areas.

Therefore, for this simulation study, we generate 16% of the total EAs from the urban grid cells

and the rest of the EAs from the rural grid cells. Next, the number of rural and urban EAs for each

upazila is determined proportionally to the number of rural and urban grid cells for each upazila

in the WorldPop population raster. Then, following the 2011 census EA generation principles

(BBS, 2011), we use the mauza geography to calculate population per mauza using the WorldPop

grid cells population. In order to find the number of households, we divide the mauza’s total

population by 4.4, which is the average number of household members according to the 2011

census of Bangladesh. After that, we merge smaller mauzas or divide larger mauzas to build the

EAs, making sure to respect the upazila geography, i.e., notmergingmauzas from different upazilas.

In some cases, a whole EA is a mauza. Mauzas having more than 200 households are divided into
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two or more EAs. Also, mauzas having less than 70 households were merged with other adjacent

smaller mauzas/EAs. Following this way, the boundary of the EAs are createdwith irregular shapes

and we place the EA’s total population approximately at the centre of the EA. Finally, we create

274,150 EAs. For this empirical study, we consider the list of these created EAs along with their

population as the sampling frame of the survey EAs, the primary sampling units (PSUs). The

sampling frame contains information about the coordinates of the centroid of the EAs, type of

residence (rural or urban), upazila IDs and the number of households. An upazila is divided into

rural and urban strata. The summary statistics of the EAs’ number of households are given in Table

4.1. Notice that the average number of households per EA is about 130 with a standard deviation

equal to 38.6 households which is consistent with that of the 2011 census.

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
57.0 94.0 138.0 130.5 157.0 250.0 38.6

Table 4.1: Summary statistics of the EAs number of households.

Figure 4.1: Spatial distribution of the true EA coordinates (left) and displaced EA coordinates
(right) at upazila level of Bangladesh.

Following the 2011 BDHS EA selection process, we draw a sample of 1050 EAs with probability

proportional to the EA population stratified by the upazila and by the rural urban areas within the

upazila. In particular, we use the R package sampling (Tillé and Matei, 2022) and the systematic

sampling method for PPS sampling without replacement to draw samples of EAs with probability

proportional to the number of households. We note that one EA is selected from each stratum.

Therefore, each upazila has two sampled EAs unless it has only a rural/urban region. Under this

simulation design, the 1050 selected EA coordinates are considered as the true EA coordinates and

the EA sample is fixed, see Figure 4.1 (left) for true EA locations. We consider 30 households for
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each EA, and the households within an EA have the same coordinates as the EA centroid coordinate

as the 2011 BDHS, i.e., households are georeferenced at the centre of the EA. It should be noted

that in this simulation study, the issue of aggregating households is being ignored. Therefore, the

total number of households is 𝑛 = 31, 500 which is spread over 𝑚 = 544 upazilas of Bangladesh.
The upazila-specific number of households ranges from 30 to 60. We generate outcomes for each

household under the linear mixed model (4.1) with an explanatory variable defined as:

𝑦 = 1𝛽0 + 𝛽1𝑋1 + 𝑍(𝑇 )𝑢 + 𝜀; 𝑢 ∼ 𝑁 (0, 𝜎2
𝑢𝐼𝑚) and 𝜀 ∼ 𝑁 (0, 𝜎2

𝜀𝐼𝑛),

where 𝑍 (𝑇 ) is 31, 500 × 544 known design matrix for the random effects using the 1050 true

EA coordinates 𝑇 , the vector of 1’s is represented by ‘1’ and 𝑋1 is the fixed and known covariate

that we generate from a uniform distribution with a minimum of 1 and maximum of 8, i.e., 𝑋1 ∼
Uniform(𝑛, min = 1, max = 8).

The simulated data generation steps are as follows:

1) Generate 𝑢 ∼ 𝑁(𝑚, mean = 0, 𝜎2
𝑢 = 5)

2) Generate 𝜀 ∼ 𝑁(𝑛, mean = 0, 𝜎2
𝜀 = 25)

3) Generate 𝑦 = 1𝛽0 +𝛽1𝑋1 +𝑍(𝑇 )𝑢+𝜀,where 𝛽0 = 35 and 𝛽1 = 2.85. It is noted that the
coefficient of determination 𝑅2 = 0.53 for the simple linear regression of 𝑦 on 𝑋1. Also,

the intra-class correlation coefficient is 0.167, which is consistent with the 2011 BDHS data.

4) Create the true dataset (𝑦, 𝑋1, 𝑍(𝑇 )) and the displaced dataset (𝑦, 𝑋1, 𝑍(𝑊)),

where 𝑍(𝑊) is constructed based on the displaced coordinates generated by applying the DHS
displacement algorithm to the true EA coordinates under two different displacement scenarios.

Under scenario A (DHS scenario) data are displaced by using the maximum displaced distance

in line with the DHS displaced distance parameters, which is 2km for urban EA points, and 5km

for rural points with 1% of rural points being randomly allocated 10km maximum distance, see

Figure 4.1 (right) for displaced EA locations. Further, to assess the influence of a more intensive

displacement (higher displacement distance) which will intensify the misplacement issue, under

scenario B, data are displaced by using the maximum displaced distance of 5km for urban points,

and 10km for rural points with 1% of rural points being allocated 15km maximum distance.

We calculate the misplacement statistics for both Scenarios A and B using a single set of displace-

ment coordinates, creating displacement buffers around the centroid of the EA displaced coor-

dinates. We check whether the EA displacement buffers intersect with an upazila boundary, in-

dicative of potential misplacements. Additionally, we identify the EAs that are truly misplaced,

wherein the displaced upazila ID varies from the actual upazila ID. This simulation study deter-
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mines the displaced and actual upazila ID for each EA based on their respective displaced and true

EA coordinates. In Scenario A, of the 1050 EAs investigated, approximately 41% are potentially

misplaced, and around 30% of these are demonstrated as truly misplaced. Conversely, Scenario B

shows a higher misplacement rate, with approximately 49% of the EAs potentially misplaced and

around 33% of these confirmed as truly misplaced.

The simulation steps (generation of the true outcomes under the model and displaced datasets,

and the estimates) are independently repeated 300 times. Under the repeated displacement, we

compare the effectiveness of the naive, the EDC and the BC estimators in the linear mixed model

based estimates by computing the Root-Mean-Square-Error (RMSE), Relative Bias in Percent (RB)

and the Absolute Relative Bias in Percent (ARB) for the 𝑖th (𝑖 = 1, ⋯ , 𝑚) upazila mean estimate
over 𝐿 = 300 simulations as follows:

RMSE𝑖 = √∑𝐿
𝑙=1( ̂̄𝑌 𝑙𝑖 − ̄𝑌𝑙𝑖)2

𝐿 (4.13)

RB𝑖 =
∑𝐿

𝑙=1( ̂̄𝑌 𝑙𝑖− ̄𝑌𝑙𝑖̄𝑌𝑙𝑖
)

𝐿 × 100 (4.14)

ARB𝑖 =
∑𝐿

𝑙=1(∣ ̂̄𝑌 𝑙𝑖− ̄𝑌𝑙𝑖̄𝑌𝑙𝑖
∣)

𝐿 × 100, (4.15)

where ̂̄𝑌 𝑙𝑖 represents the estimated mean in upazila 𝑖 using any of the aforementioned methods,
while ̄𝑌𝑙𝑖 represents the true mean for upazila 𝑖 in simulation round 𝑙.

Also, under the repeated displacement, we compare the usefulness of the naive, the EDC and the

BC methods by computing the RMSE and the Bias for the estimates of the linear mixed model

parameters over 𝐿 = 300 simulations as follows:

RMSE( ̂𝜃) = √∑𝐿
𝑙=1( ̂𝜃𝑙 − 𝜃)2

𝐿 (4.16)

Bias( ̂𝜃) = ∑𝐿
𝑙=1( ̂𝜃𝑙 − 𝜃)

𝐿 (4.17)

where ̂𝜃𝑙 is the estimates of the linear mixed model parameters using any of the aforementioned
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methods in simulation round 𝑙 and 𝜃 defines the true value of the parameter.

To implement the model-based simulation, we useR (R Core Team, 2022). We fit the linear mixed

model to the data and obtained the parameters estimates using the package lme4 (Bates et al., 2015).

4.5 Results and discussion

In this section, we present and discuss the model-based simulation study results. Section 4.5.1

reports and discusses the results of the effect of the displacement process on the estimates of the

linear mixedmodel parameters, and upazila means under two displacement scenarios, A and B. The

results on the performance of the proposed EDC and BC methods for estimating the linear mixed

model parameters and upazila means under displacement are presented and discussed in Section

4.5.2. Finally, Section 4.5.3 reports the results of the estimated variance of the linear mixed model

parameters estimates using the proposed estimators under the EDC and BC methods.

4.5.1 Assessing the effect of displacement on the LMM estimation

The 300 simulated data sets and the EA coordinates under the displacement scenarios of no mis-

placement, low (A) and high (B) displacement intensities are used to fit the linear mixed model

and to obtain the upazila level mean estimates and their RMSEs, RBs and ARBs. Also, we have

calculated the summary statistics of the distribution of the estimated model parameters. The results

are presented in Figures 4.2-4.4.

Figure 4.2: Plot of the distribution of the estimated parameters a) regression intercept, b) regression
slope, c) random effect variance and d) error variance of the LMM using the naive estimator over
the 300 simulation runs for the displacement scenarios A and B.
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We start with a focus on the empirical assessment of the displacement effects on the estimates

of the LMM parameters using the naive method that ignores the displacement error. Figure 4.2

shows distribution of the estimated parameters of the linear mixed model using the naive estimator

over the 300 simulation runs for the displacement scenarios A and B. In this empirical study, the

true values of the parameters considered are 𝛽0 = 35, 𝛽1 = 2.85, 𝜎2
𝑢 = 5 and 𝜎2

𝜀 = 25 respec-

tively. We observe that the naive estimates of the variance component parameters, i.e., the random

effect variance and the error variance are biased under displacement scenarios A and B, and the

magnitude of the bias increases as the maximum displacement distance increases. In contrast, as

expected, the estimates of the random effect variance and the error variance are not biased under

the scenario of no misplacement (true data) of EAs due to the displacement process. For exam-

ple, the expected values of the random effect variance estimator over 300 simulation runs for the

no, low, and high misplacement error due to the displacement process are 4.983, 4.566 and 4.345

respectively, while the true parameter value is 5.0. The bias in the variance components can be

explained by a wrong classification of EAs, which leads to mixing observations from different

groups. This makes the groups less homogeneous and less distinctive, resulting in lower random

effect variance and higher error variance. However, the total variance remains unchanged. The

results in the considered simulation scenario indicate that the fixed effect regression coefficients

are not affected by the displacement process and are relatively close to their parameter values.

This is because the measure of the fixed covariate values is not dependent on the EA coordinates.

Moreover, although the estimates of the variance components are involved in the computation pro-

cess to estimate fixed effect parameters using generalised least squares (GLS), their presence in

both numerator and denominator may neutralise the effect of the biased estimates of the variance

components under displacement.

We also observe that the random displacement process affects the estimated standard errors of the

fixed effect and random effect parameters of the LMM (Figure 4.3). When the maximum displace-

ment distance increases, the variation of the regression intercept and the random effect variance

parameter estimates reduces compared to the variance estimates under no misplacement (true data)

due to the displacement process. In contrast, the variation increases for the regression slope and

error variance estimates when the maximum displacement distance increases. This is because the

point estimates of the variance components are affected by the displacement process; thus, as ex-

pected, their variance estimates are also affected. In contrast, although the point estimates of the

fixed effect parameters are not affected by the displacement process, their variance estimates are

affected because the variance estimation involves the point estimates of the variance components

103



Figure 4.3: Plot of the distribution of the estimated standard errors (SE) of the LMM parameters
a) regression intercept, b) regression slope, c) random effect variance and d) error variance using
the naive estimator over the 300 simulation runs for the displacement scenarios A and B.

that are biased under displacement.

Figure 4.4: Plot of the distributions of the (a) RMSEs and (b) ARBs of the estimated upazila means
using the naive estimator over the 300 simulation runs for the displacement scenarios A and B.

We now focus on the results for the assessment of the displacement effects on the upazila means

estimates. Figure 4.4(a) presents the distribution of the RMSEs of the estimated upazila means

using the naive estimator over the 300 simulation runs for the displacement scenarios A and B.

These results indicate larger RMSEs of the estimates as the intensity of displacement increases.

For example, the averages of RMSE’s of the estimated mean over 544 upazilas for the no, low and

high displacement errors are 0.1911, 0.6724 and 0.9382 respectively. Also, to assess the impact

of the EA misplacement on the bias of the upazila mean estimates, the distribution of the ARBs

of the estimated 544 upazila means using the naive estimator for each displacement scenario are
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presented in Figure 4.4(b). Like the RMSE’s, the results show that the naive upazila mean estimates

have higher biases as the displacement error increases. For example, the averages of ARBs of the

estimated mean over 544 upazilas for the no, low and high displacement error are 0.3207, 0.9287

and 1.3409 respectively.

4.5.2 Evaluation of the performance of the proposed methods

This section focuses on the simulation study results for evaluating the performance of the proposed

EDC and BC methods for the point estimates of the LMM parameters and upazila means correct-

ing for displacement error over the naive method that ignores the displacement error. Overall, we

aim to see that the proposed BC method outperforms the EDC and naive methods for estimating

the LMM parameters under displacement. We also expect that for the estimates of upazila means,

the proposed EDC method is preferred to the two competing BC and naive methods, as we have

explained some potential reasons in Section 4.1. To remind the reader, the BC method may not

work for correcting the bias of the estimates of upazila means due to possible issues related to the

bootstrapping assumptions presented in the methodology Section 4.3. Two likely reasons are: first,

creating a buffer around truly non-misplaced EAs unknown to the data analysts may introduce ad-

ditional uncertainty in the estimates of upazila means. Second, due to random displacement, there

may be a mixing of groups within the buffer around the true and displaced locations, potentially

affecting the estimates of group means. In this section, the results for each method are produced

based on 300 simulation runs. Moreover, for each simulation, the results of the EDC based method

are produced based on 300 pseudo-samples (imputations) of the true EA coordinates.

We first report and discuss the results of the point estimates of the LMM parameters using the BC,

EDC and naive methods. Also, to validate the results by these methods, we present the results of

the point estimates using non-misplaced (true) data. To see the complete picture of the distribu-

tion of the point estimates, the density curves of the estimated regression parameters and variance

component parameters of the linear mixed model for the naive, EDC and BC estimators over 300

simulations for displacement scenarios A and B are presented in Figure 4.5. We observe from Fig-

ure 4.5(a-d) that the overall shape of the distributions of fixed effect parameters estimates using the

naive, EDC and BC methods is very similar to the distribution using non-misplaced data for each

displacement scenario. Also, the summary statistics, e.g., median, of the estimates of regression

coefficients over 300 simulation runs using the naive, EDC and BC methods are approximately

equal to their validated estimates (Figure 4.6(a-d)). For each method, the expected value of the

regression parameters estimates over 300 simulation runs is approximately equal to the parameter
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Figure 4.5: Density curves of the estimated parameters of the linear mixedmodel for each estimator
over the 300 simulation runs for the displacement scenario A and B. For EDC based estimator, the
parameter estimates are averaged over 300 pseudo-samples of the true EA coordinates for each
simulation. The vertical dotted lines indicate the mean estimates for each estimator.
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value. Therefore, as anticipated, all three methods perform on the same level for the point estimates

of the fixed effect coefficients for each displacement scenario, as the estimates are not affected by

the displacement process.

However, the estimates of the variance component parameters, especially the random effect vari-

ance, are affected by the displacement. Figure 4.5(e-h) shows the density curves of the estimates

of the variance components for three methods over 300 simulation runs for displacement scenarios

A and B. As expected, the expected value of the estimates of the random effect variance using

non-misplaced data is very close to the true value of 5.0. Also, the distribution of the estimates

is symmetrical around the true value (Figure 4.6(e-h)). The estimate of random effect variance

based on the displaced location data using the naive method is biased downwards. The mean of

the estimates over 300 simulations is well below the true value, and this difference increases as

the intensity of the displacement error increases. For each displacement scenario, the proposed

EDC-based estimate of the random effect variance has a lower bias than the naive estimates. For

example, under displacement scenario A, the average random effect variances are 4.566 and 4.660

for the naive and EDC estimators. Thus, the EDC-based estimator can correct the bias of the ran-

dom effect variance estimates to some extent and is preferred to the naive estimator. Finally, the

mean of the estimates of the random effect variance applying the BC method is again close to

the true value of 5.0 for each displacement scenario. Also, the distribution of the estimates of the

random effect variance is moderately symmetrical around the parameter (true) value. Therefore,

the BC method outperforms the EDC and naive methods and can correct the bias of the estimates

under displacement very well.

The estimate of the error variance using the naive method is biased upwards for each displacement

scenario. The BC method can produce an approximately unbiased estimate by correcting the bias.

For example, the mean of the error variance estimates over 300 simulations using the naive, EDC

and BC methods are 25.58, 25.44 and 25.04. This indicates that the mean of the estimates using

the BC method is very close to the true value of 25.0. Thus, in terms of lower bias, the BC method

outperforms both the EDC and naive methods.

We have also examined the variability of the estimates of the linear mixed model parameters using

the naive, EDC, and BC methods (Table 4.2). For displacement scenarios A and B, the RMSEs of

the fixed effect parameter estimates (regression intercept and slope) are about the same for each

method. This is because the random displacement process does not affect the fixed effect param-

eters, as we observed earlier. On the other hand, regarding the estimates of variance components,

the naive method has the largest RMSEs of the estimates. In contrast, the proposed EDC and
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Figure 4.6: Plot of the distribution of the estimated parameters (a-b: regression intercept, c-d:
regression slope, e-f: random effect variance, g-h: error variance) of the linear mixed model for
each method over the 300 simulation runs for the displacement scenario A and B. For EDC based
estimator, these parameter estimates are averaged over 300 pseudo-samples of true EA coordinates
for each simulation.

BC methods have much smaller RMSEs of the estimates under both displacement scenarios. Fur-

thermore, the BC method has a smaller RMSE of the estimates of the variance components than

the EDC method. For example, under displacement scenario A, the RMSEs of the random effect

variance parameter estimates are 0.543, 0.462, and 0.348 using the naive, EDC, and BC methods,

respectively. Similarly, under displacement scenario B, the RMSEs of the estimates of the ran-

dom effect variance parameter are 0.732, 0.645, and 0.317 using the naive, EDC, and BC methods,

respectively. Therefore, the proposed methods, especially the BC method, outperform the naive

method in terms of a lower RMSE for estimating the variance components of the linear mixed

model under random displacement.

Scenario A Scenario B
Parameter No misplace naive EDC BC No misplace naive EDC BC
𝛽0 0.126 0.127 0.126 0.114 0.127 0.131 0.128 0.116
𝛽1 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.014
𝜎2

𝑢 0.330 0.543 0.462 0.348 0.355 0.732 0.645 0.317
𝜎2

𝜀 0.213 0.622 0.493 0.237 0.192 0.946 0.829 0.268

Table 4.2: RMSE of the linear mixed model parameter estimates over the 300 simulation runs for
each estimator for scenarios A and B.

We report the results of the upazila mean estimates using the naive, EDC and BC methods and
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evaluate the performance of the three methods in terms of bias and RMSE of the point estimates.

In order to compare the methods with respect to the bias of the upazila mean estimates under

the linear mixed model, the upazila true means are plotted against the expected estimates for each

estimator under the displacement scenarios A and B in Figure 4.7. The EDC-based estimator under

the DHS displacement process has a lower bias than the naive and BC estimators.

Figure 4.7: Plot of the upazila true means against the expected estimates for each estimator: under
displacement scenario-A [b) naive, c) EDC and d) BC] and under displacement scenario-B [e)
naive, f) EDC and g) BC].

Figure 4.8: Plot of the distribution of the ARBs and the RMSEs of the upazila mean estimates for
each method based on the linear mixed model over the 300 simulation runs for the displacement
scenarios A and B.

Figure 4.8(a-b) shows the distribution of the Absolute Relative Biases (ARBs) of the upazila mean

estimates for each method based on the linear mixed model over the 300 simulation runs for the dis-

placement scenario A and B. We observe that the EDC estimator has lower bias than the naive and

BC estimators. For example, under displacement Scenario A, the average ARBs are 0.9287, 0.7369

and 3.386 for the naive, EDC and BC estimators respectively. For scenario B, the average ARBs
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are 1.3409, 1.1720 and 3.556 for the naive, EDC and BC estimators respectively. These results

indicate that the proposed EDC method under the DHS displacement process gives a considerable

advantage over the BC and the simple naive approach that ignores the DHS EA displacement error.

The BC method performs worse than the naive method. Figure 4.9 represents ARBs of the esti-

mated upazila means using the linear mixedmodel for each estimator under displacement scenarios

A and B. Closer inspection of the results as shown in Figure 4.9 reveals that for 84% of upazilas,

the ARB of the EDC estimator is lower than that of the naive estimator. However, we observe

that specific upazilas, notably those between 160-190, show higher ARBs of the estimated means

for each method, even with non-misplaced data. This elevated behaviour occurs because these

upazilas have fewer households. This situation arises when only one EA is selected, yielding only

30 households from upazilas that are exclusively rural or urban. In contrast, upazilas comprising

both rural and urban areas contain 60 households when two EAs are selected.

In order to compare the three methods in terms of variability, the distribution of the RMSEs of the

estimated upazila means using the linear mixed model for each method over 300 simulations for

two displacement Scenarios A and B is presented in Figure 4.8(c-d). For Scenario A, averaged

over the 300 simulations, the mean RMSEs over the 544 upazilas for the naive, the EDC and the

BC estimators are 0.6724, 0.4642 and 2.041 respectively. This shows that the EDC estimator has

a lower average RMSE than the naive and BC methods. However, the BC method performs worse

than the naive method. Also, to visually inspect the results over 544 upazilas, RMSEs of the naive,

EDC and BC estimators based on the linear mixed model are presented in Figure 4.10. We observe

that for 92% upazilas, the RMSE of the EDC estimator is lower than that of the naive estimator.

Thus, the EDC based method outperforms the naive method in terms of lower variability. In the

case of large-displacement error with scenario B, averaged over the 300 simulations, the mean

RMSEs over the 544 upazilas for the naive, the EDC and the BC estimators are 0.9382, 0.7327

and 2.153 respectively. Therefore, for such an extreme displacement scenario, the EDC based

estimator under the DHS displacement process outperforms the naive estimator. In contrast, the

BC method performs worse than the naive and EDC methods.
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Figure 4.9: Plot of the ARBs of the estimated upazila means using the linear mixed model for each
estimator under displacement scenarios A and B. Horizontal lines indicate the average ARB for
each estimator.
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Figure 4.10: Plot of the RMSEs of the estimated upazila means using the linear mixed model for
each estimator under displacement scenarios A and B. Horizontal lines indicate the average RMSE
for each estimator.
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4.5.3 Variance estimation of the model parameters estimates under the proposed

methods

In this section, we present the simulation study results of the variance estimates for the linear

mixed model parameter using the proposed variance estimation methods under the EDC and BC

estimators, which we have developed in Sections 4.2.2 - 4.3.1. To obtain the estimated variance of

the model parameter estimates using the EDC, we propose using the law of total variance formula

conditional on the design matrix for the random effects under random displacement. Regarding

estimating the variance of the model parameter estimates under the BC method, we use a model-

based double bootstrapping technique under repeated random displacement.

We evaluate the effectiveness of the proposed variance estimation methods by comparing the aver-

age estimated variances and the empirical variance of the point estimates of the model parameters

over 300 simulation runs. The empirical variance is obtained by calculating the variance of the

point estimates of the model parameters over 300 simulation runs using the proposed EDC and

BC methods. We also report the results of the estimated variance and the empirical variance of the

point estimates obtained using the naive method, which ignores the misplacement error due to the

random displacement process.

Figure 4.11: Density curves of the estimated variance of the parameter estimates (regression inter-
cept (a), regression slope (b), random effect variance (c), and error variance (d)) of the LMM for
the BC, EDC and naive estimators over 300 simulation runs. The vertical dotted line indicates the
mean of the variance estimates for each estimator.
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Figure 4.11 shows the density curves of the estimated variances of the point estimates of the LMM

parameters for the BC, EDC and naive estimators over 300 simulations. The shape of the distri-

bution of variance estimates using the proposed BC and EDC-based estimator under the random

displacement process looks symmetric. Table 4.3 presents the average estimated variances and the

empirical variance of the linear mixed model parameters estimates over 300 simulations for the BC,

EDC and naive methods. The average estimated variances are reported for the regression intercept

( ̂𝑉 ( ̂𝛽0)), the slope ( ̂𝑉 ( ̂𝛽1)), the variance of the random intercept ( ̂𝑉 (�̂�2
𝑢)), and the variance of the

error term ( ̂𝑉 (�̂�2
𝜀)). The empirical variances are also given in brackets. Ratios of estimated to

empirical variances are provided below each set of estimators.

Estimator ̂𝑉 ( ̂𝛽0) ̂𝑉 ( ̂𝛽1) ̂𝑉 (�̂�2
𝑢) ̂𝑉 (�̂�2

𝜀)
BC 0.01362 (0.01403) 0.000200 (0.000185) 0.10462 (0.11018) 0.04726 (0.05120)

0.971 1.081 0.950 0.923
EDC 0.01358 (0.01604) 0.000200 (0.000196) 0.09985 (0.09864) 0.04349 (0.04879)

0.847 1.020 1.012 0.891
naive 0.01358 (0.01624) 0.000201 (0.000199) 0.09705 (0.10675) 0.04213 (0.05661)

0.836 1.010 0.909 0.744

Table 4.3: The average of the estimated variances and the empirical variance of the linear mixed
model parameters estimates using the BC, EDC and naive methods over 300 simulation runs for the
displacement scenario A. Empirical variances are given within the brackets. Ratios of estimated
to empirical are provided below each set of estimators.

Regarding the variance estimation, the average estimated variances of the fixed effect parameters

(regression intercept and slope) are similar for all three methods. However, for the variance com-

ponents (random effect variance and error variance), which are affected by misplacement errors,

the proposed BC and EDCmethods have slightly larger estimated variances than the naive method.

Furthermore, the BC method has slightly larger estimated variances than the EDC method for the

variance components.

We also compare the average estimated variances with the empirical variances for each method.

The results indicate that the average estimated variances of the BC and EDC methods align fairly

closelywith the empirical variances for linearmixedmodel parameter estimates, particularly for the

fixed effects. This suggests a fairly accurate variance approximation by these methods. However,

closer and more nuanced consideration, focusing on the ratio between estimated and empirical

variances, reveals instances of underestimation by the proposed methods. For instance, the EDC

method underestimates the variance of error variance parameter estimates, highlighting potential

issues as it does not account for the bias of the estimator. On the other hand, the naive method,

which ignores the misplacement errors, has larger empirical variances than the average estimated

variances. The naive method has larger empirical variances for the parameter estimates than the
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proposed methods.

Overall, the variance estimators proposed under the BC and EDCmethods performmoderatelywell

in estimating the variances of model parameter estimates under the random displacement process,

albeit with some instances of underestimation. The approximation of variance is notably accurate

for fixed effect parameters. However, the estimation of variance components, which are affected

by misplacement errors due to random displacement, may not be as reliable as it fails to account

for the bias of the estimator.

4.6 Conclusion

In this chapter, we address the issue that arises when random effects in multilevel models are spec-

ified at levels below the DHS displacement-restricted boundaries, such as admin 3. In particular,

misplacement or mixing of observations among groups (for instance, admin 3 units) can lead to

biased estimates of random variance components in multilevel models and associated model-based

estimates of finite population parameters, e.g., group means. When random effects are specified

at progressively lower administrative levels, the potential for misplaced EAs increases, leading to

greater bias in estimates. This implies that a DHS user specifying random effects at the admin 4

level might obtainmore biased estimates of random variance components inmultilevel models than

if specified at the admin 3 level. Therefore, in situations with high misplacement errors, failing

to account for this error can result in misleading inferences, making our proposed methodologies

even more invaluable. By applying our proposed methods, users can significantly mitigate the bias

in estimates, providing more accurate results and ensuring the reliability of their conclusions.

In this chapter, we explore the potential methods for estimating the linear mixed model and obtain-

ing the estimates of themodel parameters and themodel-based groupmeans under displacement. In

particular, we develop the framework of the linear mixed model under displacement. The proposed

model is fitted by an algorithm under the EDCmethod, which is developed under the measurement

error model by bringing additional information from different external sources. We also develop

a methodology for estimating the global (model) parameters of the linear mixed model using a

parametric bootstrap bias correction (BC) under displacement. The BC method is developed and

expected to produce unbiased estimates of the model parameters satisfying the two crucial assump-

tions on the model form and the magnitude of the bias of the estimates under displacement. In

addition to the point estimates, we develop the variance estimation of the model parameters under

the proposed EDC and BC methods. The variance approximation is obtained by using the law
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of total variance for the EDC-based estimator and model-based bootstrapping for the BC-based

estimator under random displacement.

We compare the performance of the two proposed methods EDC and BC and the naive method that

ignores the displacement error using simulated data. The simulated data are generated under the

linear mixed model by bringing some characteristics of the 2011 BDHS EAs. The naive estimates

of the variance component parameters and upazila means are biased under displacement. The

proposed EDC method can correct the bias of the model parameters and upazila means to some

extent and is preferred to the naive method. Also, the EDC estimator has a lower RMSE of the

upazila mean estimates compared to the BC and the naive estimators. The BC method performs

better than the EDC and the naive method by producing unbiased estimates of the linear mixed

model parameters under displacement. However, it does not work for estimating upazila means

and has a higher RMSE of the upazila estimates than the EDC and the naive methods. Thus, the

BCmethod should be used for obtaining the estimates of the global parameters under displacement,

while for the estimates of the finite population parameters, the EDC method is preferred. Finally,

the proposed variance estimation methods under the EDC and BC estimators provide moderately

accurate estimates of the variance for the linear mixed model parameters estimates under random

displacement. In comparison, the naive method tends to underestimate the variance of the model

parameter estimates ignoring the misplacement errors due to the random displacement process.
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Chapter 5

Regression models with spatial

covariates under random displacement

5.1 Introduction

Researchers are often interested in examining how spatial covariates, e.g., the distance from the

Enumeration Area (EA) centroid to the nearest health facility of the country, affect the outcome of

interest in regression models. For example, Feldacker et al. (2010) studied whether HIV infection

in rural Malawi is related to the distance from the Demographic and Health Survey (DHS) EA

centroid to major roads and health clinics. The DHS true EA coordinates are not available to the

data analysts and are displaced using the DHS displacement algorithm to protect the respondents’

confidentiality. Therefore, the statistical analyses with a spatial covariate that is constructed us-

ing the randomly displaced location can potentially be inaccurate, and the random displacement

process induces a measurement error in covariate problem in regression models, e.g., a linear re-

gression. The measurement error in covariate in a regression model leads to a biased estimate of

its coefficient (Aigner, 1973; Carroll et al., 2006, section 3.2).

Various methods have been proposed in the literature to address the issue of measurement error

in covariates. These include maximum likelihood methods (Rabe-Hesketh et al., 2003), Bayesian

Markov chain Monte Carlo algorithms (Goldstein and Shlomo, 2020), and regression calibration

(Hardin et al., 2003; Spiegelman et al., 1997). The regression calibration (RC) approach corrects

the measurement error by replacing spatial covariate values, measured with errors, with their ex-

pected values given the displaced locations. This ensures the derivation of unbiased and consistent

estimates (Carroll et al., 2006; Karra et al., 2020). We have described the RC approach in detail
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in Section 2.7. The term “calibration” in this context refers to the adjustment of the erroneous

measurements towards their expected true values. Given the displaced coordinates, spatial covari-

ate values are available at the individual level but are measured with error. The RC approach

attempts to obtain expected true values by correcting this error. The process might not be directly

related to the ecological fallacy, wherein inferences about individuals are erroneously derived from

grouped data (Wakefield and Shaddick, 2006). Previous studies (e.g., Warren et al., 2016a,b; Karra

et al., 2020) that focused on estimates of spatial covariate effects accounting for displacement un-

certainty have been discussed, presented mathematically and reviewed critically along with the

limitations and further methodological developments in the literature review, Chapter 2 of this

thesis. Following the literature review, in Chapter 3, we have developed the external data-based

classification (EDC) method under a functional measurement error model by using additional in-

formation from external sources and assessed its performance over the candidate methods through

a simulation study. In particular, the EDC method is used to draw likely true EA locations given

the displaced locations by using the developed conditional distribution of displaced coordinates

and the underlying marginal distribution of the true locations. As the distribution of the true loca-

tions is unknown, we have developed a flexible framework in Section 3.4 for approximating the

distribution using information from multiple external sources that improve the selection probabili-

ties for likely true locations. This is one of the key differences between the proposed EDC method

and other competing methods in the literature, for example, the methods by Warren et al. (2016a)

and Karra et al. (2020). We discussed this in detail in Chapters 2 and 3. In this chapter, we aim

to show that the proposed EDC method can be used to obtain unbiased estimates of the effects of

the spatial covariates under displacement. In particular, following the regression calibration under

a numerical integration by Karra et al. (2020), we can use the proposed EDC method to calculate

the expected value of the unknown true spatial covariate of interest given the displaced location

data. More specifically, we can obtain this expected value using a numerical integration by repeat-

edly drawing pseudo-samples of the true location coordinates using the proposed EDC method

under displacement given the displaced location coordinates. We refer to this as the external data-

based classification under regression calibration (EDC-RC) method hereafter. In this chapter, we

aim to describe the methodology for calculating the expected covariate values using the proposed

EDCmethod in order to obtain unbiased estimates of the spatial covariate parameters of regression

models such as the linear regression model.

Estimates of the parameters of spatial covariates in regression models are biased due to the ran-

dom displacement process. Consequently, efforts can be made to estimate the bias estimates and
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develop a bias-corrected estimator for themodel parameters. Specifically, bootstrap bias correction

methods for linear regression model parameters under displacement could be considered. To the

best of our knowledge, no prior studies have attempted to use a bootstrap bias correction method to

correct the bias of the estimates of spatial covariate parameters arising from the random displace-

ment process. The bootstrap bias estimation technique estimates an estimator’s bias by drawing

multiple bootstrap samples from the representative population sample. For more details, refer to

Efron and Tibshirani (1992), section 10.2. When addressing spatial covariate parameter estimates

bias due to displacement, the bootstrap bias correction method should meet two key assumptions.

The first assumption is that the functional form of the underlying model, such as the linear regres-

sion model, is appropriate for the data. The second, and perhaps more vital, assumption is that the

magnitude of the bias of naive estimates of model parameters under displacement reflects the mag-

nitude of the bias of estimates derived from bootstrap samples and repeated displacement processes

applied to displaced locations. Bootstrap samples are generated from the model using parameter es-

timates derived from observed displaced data. When these assumptions are met, the bootstrap bias

correction method can produce unbiased parameter estimates under displacement. This chapter

introduces a non-parametric bootstrap bias correction for the spatial covariate parameter estimates

in the linear regression model under the DHS displacement process, termed the Bootstrap Bias

Correction (BC) method. Using a model-based simulation study, we evaluate the BC method’s

performance against the EDC-RC and naive methods. We expect the BC and EDC-RC methods to

perform better than the naive method. Also, the BC method should be preferred to the EDC-RC

method, as it does not require additional information from external sources. We explore this in this

chapter.

The proposed methodological framework for the EDC-RC and BCmethods can be used for various

types of spatial covariates in regression models. For example, one type of covariate is the distance

from the DHS EA centroid to the nearest health facility of the country. Hereafter, it is referred to as

a distance covariate. Another type is when a covariate is available at the disaggregated level of the

geography from a different survey. For example, the proportion of poor people at the sub-district

level obtained from the Household Income Expenditure Survey (HIES) of the country. We refer

to the later type of covariate as an area-level covariate. The DHS EA locations are used to link

the area-level covariate values to the outcome of interest measured at the DHS EA points. In past

studies, the effects of only distance type covariates on the outcome of interest under displacement

were studied (for example, see Warren et al., 2016a; Karra et al., 2020). The effect of linking

the area-level covariate to the DHS EA locations is yet to be explored. Therefore, in this chapter,
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we consider both types of covariates to assess the performance of the proposed EDC-RC and BC

methods to correct the bias of the estimates of the spatial covariate effect under displacement over

the naive method that ignores the displacement error.

The chapter is organised as follows. Section 5.2 describes the theory and methods for estimat-

ing the effects of spatial covariates in the linear regression model under displacement. In Section

5.2.1, we discuss the proposed methodology under regression calibration for calculating the ex-

pected covariate values using the EDC method in order to obtain unbiased estimates of the spatial

covariate parameters of the linear regression model. Section 5.2.2 develops a bootstrap bias cor-

rection method for correcting the bias of the estimates of the spatial covariate parameters of the

linear regression model under the displacement process. In Section 5.3, we develop the variance

estimation methods for the point estimates of the model parameters under the proposed EDC-RC

and BC methods in the presence of random displacement errors. A model-based simulation study

is conducted in Section 5.4 to assess the performance of the proposed EDC-RC and BC methods

over the naive method that ignores the displacement error. We claim the EDC-RC and BCmethods

work well for correcting the bias of the spatial covariate parameters. In Section 5.5, we present

and discuss the simulation study results. Finally, some concluding remarks are given in Section

5.6.

5.2 Theory and methods for estimating spatial covariates effects un-

der random displacement

5.2.1 Development of the EDC-RC method under random displacement

In this section, we aim to describe the EDC under regression calibration (EDC-RC) method for

estimating the spatial covariates (e.g., distance, environmental, area level variable etc) effects in

regression models accounting for the observation locations displacement uncertainty. The method

we propose here should be applicable for estimating the effects of different types of spatial co-

variates, e.g., distance and area-level covariate in regression models such as the linear regression

model. We describe the theory in the context of the linear regression model.

Let 𝑇𝑘 denote the true location coordinates of the 𝑘th (𝑘 = 1, ⋯ , 𝑛) unit. The unit of analysis
can be the individual, household or Enumeration Area (EA). The true value 𝑇𝑘 can be represented

as 𝑇𝑘 = (𝑇𝑘1, 𝑇𝑘2), where 𝑇𝑘1 and 𝑇𝑘2 denote the exact geographical longitude and latitude

coordinates of the 𝑘th unit. Let 𝑋1𝑘(𝑇𝑘) be the value of a spatial covariate which is constructed or
measured based on the true location coordinates 𝑇𝑘. Also, we denote a non-spatial covariate value
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by 𝑋2𝑘. We want to estimate a relationship described by the linear regression model formulated

as follows:

𝑦𝑘 = 𝛽0 + 𝛽1𝑋1𝑘(𝑇𝑘) + 𝛽2𝑋2𝑘 + 𝜀𝑘, (5.1)

where, 𝑦𝑘 is the outcome, 𝛽0 is the unknown intercept, 𝛽1 is the unknown coefficient of the spatial

covariate 𝑋1𝑘(𝑇𝑘), 𝛽2 is the unknown coefficient of the non-spatial covariate 𝑋2𝑘 and 𝜀𝑘 is a

random-error term which is independent of 𝑋1𝑘(𝑇𝑘) and 𝑋2𝑘. For simplicity, we make the as-

sumption that the random errors 𝜀𝑘 in (5.1) are independent and identically distributed with mean

0 and constant variance 𝜎2
𝜀 . The unknown true parameters of the linear regression model (5.1) are

𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝜎2
𝜀).

As the true coordinates 𝑇𝑘 are unknown, the true spatial covariate values 𝑋1𝑘(𝑇𝑘) in (5.1) are
also unknown to the data analysts. It is well known in the literature that if we simply replace 𝑇𝑘

with the available displaced coordinates 𝑊𝐾 , the estimates of the model parameters, especially

𝛽1 in (5.1) will be biased (Warren et al., 2016a; Karra et al., 2020). In that case, following the

regression calibration (RC) approach by Carroll et al. (2006), section 4.2, we can replace the un-

known true spatial covariate values 𝑋1𝑘(𝑇𝑘) in (5.1) by its expected values given the displaced
coordinates 𝑊𝐾 in order to obtain unbiased and consistent estimates. In particular, we can calcu-

late the expected value of the 𝑋1𝑘(𝑇𝑘) given 𝑊𝑘 and defined as �̂�1𝑘(𝑇𝑘) = 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘}.
By replacing 𝑋1𝑘(𝑇𝑘) with the expected value �̂�1𝑘(𝑇𝑘), the linear regression model (5.1) can be
expressed as

𝑦𝑘 = 𝛽0 + 𝛽1�̂�1𝑘(𝑇𝑘) + 𝛽2𝑋2𝑘 + 𝜀′
𝑘, (5.2)

where 𝜀′
𝑘 are the random errors, with mean 0 and uncorrelated with the covariates in model (5.2).

Hence, the standard ordinary least squares method can be used to fit the model (5.2) and obtain the

estimates (for details, see Karra et al., 2020).

We can calculate the expected value𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘} by using the proposed external data-based
classification (EDC) method under a functional measurement error model given the displaced coor-

dinates. We have developed the measurement error model in Section 3.2. Under the measurement

error model, the expected value 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘} can be defined as

�̂�1𝑘(𝑇𝑘) = 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘} = ∫ 𝑋1𝑘(𝑇𝑘)𝑓(𝑇𝑘 ∣ 𝑊𝑘)𝑑𝑇𝑘, (5.3)

where, the expected value is obtained by integrating over all possible true locations, 𝑓(𝑇𝑘 ∣ 𝑊𝑘)
is the conditional distribution of the true locations 𝑇𝑘 given the displaced locations 𝑊𝑘. We de-
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veloped this conditional distribution 𝑓(𝑇𝑘 ∣ 𝑊𝑘) in Section 3.2.4. To recall, 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘 |𝑊𝑘) ∝

𝑓(𝑊𝑘|𝑇𝑘 = 𝑇 ⋆
𝑘 )𝑓(𝑇𝑘 = 𝑇 ⋆

𝑘 ) where 𝑇 ⋆
𝑘 is a likely true locations. Utilizing this formulation we

can draw pseudo-samples (imputations) of 𝑇𝑘 from 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘 |𝑊𝑘) using the proposed external

data-based classification (EDC) method under displacement to reconstruct the spatial covariate val-

ues 𝑋1𝑘(𝑇 ⋆
𝑘 ). The proposed EDC method, which we developed in Section 3.4 under a functional

measurement error model by using additional information (e.g., population density, designated ad-

ministrative boundary restriction, rural urban boundaries, boundary corrections for non-settlement

places) from external sources. In particular, as the marginal distribution 𝑓(𝑇𝑘) is unknown, we
have developed a flexible framework in Section 3.4 for approximating the distribution using in-

formation from multiple external sources that improve the selection probabilities for likely true

locations. This is one of the key differences between the proposed EDC method and other compet-

ing methods in the literature, for example, the methods by Warren et al. (2016a) and Karra et al.

(2020). We discussed this in detail in Chapters 2 and 3.

5.2.1.1 Estimation

It is not possible to obtain the expected values in (5.3) analytically. As the true location 𝑇𝑘 is un-

observed, we can use numerical integration for estimation. In particular, we draw pseudo-samples

(imputations) of 𝑇𝑘 from 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘 |𝑊𝑘) using the proposed EDC method given the displaced

locations. This works by replacing the unobserved true point 𝑇𝑘 in the target distribution by gen-

erating pseudo-samples of the unobserved true point given the observed data and then, obtaining

spatial covariate values 𝑋1𝑘(𝑇 ⋆
𝑘 ) with the updated (new) location samples 𝑇 ⋆

𝑘 . The process is

repeated a large number of times and we take the average of the estimates. The computational

steps for obtaining the estimates of the expected values 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘} under the proposed

EDC-RC method are given as follows:

• Step 1: For each unit 𝑘 = 1, ⋯ , 𝑛, generate a pseudo-sample {𝑇 ⋆
𝑘 ; 𝑘 = 1, ⋯ , 𝑛} of the

unknown true location coordinates 𝑇𝑘 from the conditional distribution 𝑓(𝑇𝑘 = 𝑇 ⋆
𝑘 |𝑊𝑘)

using the proposed EDC method under displacement described in Section 3.4.

• Step 2: Obtain the spatial covariate values 𝑋1𝑘(𝑇 ⋆
𝑘 ) using the pseudo-samples {𝑇 ⋆

𝑘 ; 𝑘 =
1, ⋯ , 𝑛} of the true location coordinates 𝑇𝑘 from Step 1.

• Step 3: Iterate Steps 1-2 𝐵1 + 𝐵2 times with 𝐵1 = 300 (large number of iterations) and

𝐵2 = 20 (additional iterations).

• Step 4: Compute the estimates of the expected values �̂�1𝑘(𝑇𝑘) = 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘} by
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averaging over the derived 𝐵1 and 𝐵1 + 𝐵2 estimates, respectively. Plot these estimated

expected values to visually assess their closeness. If they appear reasonably close on the plot,

it suggests convergence of the algorithm. Otherwise, return to Step 1 and proceed through

the subsequent steps, incrementing𝐵1 by a predetermined amount (for instance,𝐵1 = 𝐵1+
20), while keeping the constant value 𝐵2 = 20, until the algorithm meets the convergence

criteria.

If we now replace 𝑋1𝑘(𝑇𝑘) in (5.1) with the expected values �̂�1𝑘(𝑇𝑘) = 𝐸 {𝑋1𝑘(𝑇𝑘) ∣ 𝑊𝑘}, we
can fit the model (5.1) using a standard method, for example, the least squares method and obtain

the estimates of the model parameters, denoted by ̂𝜃RC.

5.2.2 Development of a bootstrap bias correction method under random displace-

ment

The true location coordinates 𝑇𝑘 are unknown to data analysts; only the displaced coordinates 𝑊𝑘

are available. Thus, in the linear regression model (5.1), instead of 𝑋1𝑘(𝑇𝑘), we directly use the
spatial covariate values 𝑋1𝑘(𝑊𝑘) based on 𝑊𝑘. This can be expressed as:

𝑦𝑘 = 𝛽0 + 𝛽1𝑋1𝑘(𝑊𝑘) + 𝛽2𝑋2𝑘 + 𝜀𝑘. (5.4)

When we fit the model (5.4) to the displaced dataset {𝑦𝑘, 𝑋1𝑘(𝑊𝑘), 𝑋2𝑘} and use the least squares
method, we obtain the estimated parameters ̂𝜃 = ( ̂𝛽0, ̂𝛽1, ̂𝛽2, �̂�2

𝜀). However, these naive estimates
of the linear regression model parameters, particularly the spatial covariate parameter, are biased

due to the random displacement of observation locations. Consequently, we aim to obtain the bias

estimates under displacement and develop a bias-corrected estimator for the parameters. Specifi-

cally, a bootstrapping technique can be used to estimate this bias. The bootstrap bias estimation

method estimates the bias of an estimator using bootstrap samples derived from repeated sampling

and displacement processes on the displaced location data. For further details on bootstrap bias

estimation, refer to Efron and Tibshirani (1992), section 10.2.

Concerning the bias of the linear regression model parameter estimates due to displacement, the

bootstrap bias correction method must satisfy two critical assumptions. Firstly, we assume that

the functional form of the linear regression model (5.1) is well-suited to the data. Secondly, we

assume that the bias magnitude of the naive estimates of the model parameters under displacement

is consistent with the bias observed in estimates from bootstrap samples with repeated displacement

processes applied to the displaced locations. We create bootstrap samples based on model (5.4)
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using the naive estimates, ̂𝜃. Given these two assumptions are met, the bootstrap bias correction
(BC) method can produce unbiased estimates of the model parameters despite displacement. We

assert that the BC method effectively corrects the bias in model parameter estimates. Below, we

outline the proposed bootstrap bias correction (BC) method designed to correct the bias of the

linear regression model parameter estimates caused by displacement:

The bias of the naive estimates ( ̂𝜃) of the model parameters (𝜃) is given by Bias ( ̂𝜃, 𝜃) = 𝐸 ( ̂𝜃) −
𝜃. This bias is unknown to us, as we do not know the true model parameters (𝜃). We obtain

the estimates of the bias by using the 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) model-based bootstrap samples and the
displaced set of observation coordinates which are obtained by applying the displacement process

to the displaced (observed) observation coordinates. These model-based bootstrap samples are

generated by adding bootstrapped residuals to the predicted values of 𝑦𝑘, which are obtained using

naive estimates ̂𝜃, and can be expressed as follows:

𝑦∗𝑏
𝑘 = ̂𝛽0 + ̂𝛽1𝑋1𝑘(𝑊𝑘) + ̂𝛽2𝑋2𝑘 + 𝜀∗𝑏

𝑘 , (5.5)

where 𝜀∗𝑏
𝑘 is the bootstrapped random error. These bootstrapped errors are obtained by sampling

with replacement from the estimated random errors of model (5.4). If the estimated random errors

are influenced by displacement, adjustments are made by rescaling and centering to ensure that

the re-sampled errors accurately reflect the underlying variation of the original sample. Unlike the

linear mixed model in Chapter 4, where the use of a parametric assumption (e.g., normal distribu-

tion) for the error terms was informed by the nature of the model, in the linear regression model

(5.1), we do not explicitly assume a parametric, such as normal distribution of the error term. Con-

sequently, we use a non-parametric bootstrap approach, which allows for greater flexibility. Let

the 𝑊 ∗𝑏
𝑘 denote the 𝐵 displaced set of observation coordinates which are obtained by displacing

the given displaced coordinates 𝑊𝑘 using the DHS random displacement algorithm. Next, we ob-

tain the bootstrap estimates of the parameters denoted by ̂𝜃∗𝑏; 𝑏 = 1, 2, ⋯ , 𝐵 using the bootstrap

samples data set {𝑦∗𝑏
𝑘 , 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ), 𝑋2𝑘}. Then, the bootstrap estimate of the bias is obtained by
calculating

B̂ias ( ̂𝜃, 𝜃) =
𝐵

∑
𝑏=1

̂𝜃∗𝑏/𝐵 − ̂𝜃. (5.6)

Finally, the bootstrap bias corrected estimator is defined as

̂𝜃cor = ̂𝜃 − B̂ias ( ̂𝜃, 𝜃) . (5.7)
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5.3 Variance estimation of the point estimates of model parameters

under random displacement

5.3.1 Variance estimation under the EDC-RC method

We want to obtain the estimated variance of the linear regression model parameter estimates, ̂𝜃RC
under the proposed EDC-RC method. In this regard, we can use a bootstrap resampling technique.

In particular, we take 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) model-based bootstrap samples under repeated dis-
placement to account for displacement error from the original sample. For each bootstrap sample,

we obtain the estimate of the model parameters by using the proposed EDC-RC method. The

computational details for obtaining the variance estimates of the EDC-RC estimator under a boot-

strapping are given below:

Step 1: Draw 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) bootstrap samples under the model (5.5) using naive esti-

mates ̂𝜃 = ( ̂𝛽0, ̂𝛽1, ̂𝛽2, �̂�2
𝜀), which are obtained by fitting the model (5.4) to the displaced data

{𝑦𝑘, 𝑋1𝑘(𝑊𝑘), 𝑋2𝑘}. Then, generate 𝐵 displaced sets of observation coordinates, denoted as

𝑊 ∗𝑏
𝑘 ; 𝑏 = 1, 2, ⋯ , 𝐵, by displacing the given displaced coordinates𝑊𝑘 using the random displace-

ment algorithm. Finally, the 𝐵 bootstrap samples data are expressed as {𝑦∗𝑏
𝑘 , 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ), 𝑋2𝑘}.

Step 2: For each 𝑏 = 1, 2, ⋯ , 𝐵 bootstrap sample data {𝑦∗𝑏
𝑘 , 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ), 𝑋2𝑘} from Step 1, we

obtain the estimated expected spatial covariate values conditional on 𝑊 ∗𝑏
𝑘 applying the proposed

EDC-RC method under the estimation algorithm in Section 5.2.1.1. The estimated expected spa-

tial covariate values are denoted by �̂�1𝑘(𝑇 ∗𝑏
𝑘 ). Using data {𝑦∗𝑏

𝑘 , �̂�1𝑘(𝑇 ∗𝑏
𝑘 ), 𝑋2𝑘} we obtain the

estimates of the model parameters denoted by ̂𝜃∗𝑏
RC; 𝑏 = 1, 2, ⋯ , 𝐵.

Step 3: Finally, using the 𝐵 (𝑏 = 1, 2, ⋯ , 𝐵) estimates of the model parameters in Step 1, we
calculate the estimated variance of the model parameter estimates under the EDC-RC method as

follows:

̂𝑉 ( ̂𝜃RC) =
𝐵

∑
𝑏=1

( ̂𝜃∗𝑏
RC − ̄̂𝜃

∗
RC)

2
/𝐵, (5.8)

where ̄ ̂𝜃
∗
RC is the average of the estimates ̂𝜃∗𝑏

RC over 𝐵 bootstrap samples. Also, the estimated

standard error of the model parameters estimates under the EDC-RC method is given by

̂𝑆𝐸( ̂𝜃RC) =
√√√
⎷

𝐵
∑
𝑏=1

( ̂𝜃∗𝑏
RC − ̄̂𝜃

∗
RC)

2
/𝐵. (5.9)
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5.3.2 Variance estimation under the BC method

In this section, we aim to calculate the estimated variance of the bootstrap bias-corrected estimates

in equation (5.7) for the parameters of the linear regression model, while taking into account the

random displacement error. The variance estimation of the bias-corrected (BC) estimator ( ̂𝜃cor) is
similar to the one discussed in Section 4.3.1, where we described the variance estimation of the

BC estimator for the parameters of the linear mixed model. To recall that the variance of the BC

estimator ( ̂𝜃cor) can be expressed using the variance and covariances of the naive estimator ( ̂𝜃)
and the bootstrap bias estimator, B̂ias ( ̂𝜃, 𝜃) in (5.6) as 𝑉 ( ̂𝜃cor) = 𝑉 ( ̂𝜃) + 𝑉 (B̂ias ( ̂𝜃, 𝜃)) − 2 ×
Cov ( ̂𝜃, B̂ias ( ̂𝜃, 𝜃)).

As mentioned in Section 4.3.1, obtaining the covariance between the naive and the bootstrap bias

estimator using a single level of bootstrap samples is challenging. To address this, a double boot-

strapping approach can be employed, involving two rounds of bootstrap sampling. In the first

round, we generate 𝐵 model-based bootstrap samples under repeated displacement, as described

in Section 5.2.2, and in the second round, 𝐶 model-based bootstrap samples are obtained from

each of the 𝐵 samples from the first round. We then compute a bias-corrected estimate based on

these 𝐶 bootstrap samples. The detailed computational steps for obtaining variance estimates of

the BC estimator using double bootstrapping are provided below:

In the first round, generate 𝐵 bootstrap samples (where 𝑏 = 1, 2, ⋯ , 𝐵) under the model specified

in equation (5.5) using the naive estimates ̂𝜃 = ( ̂𝛽0, ̂𝛽1, ̂𝛽2, �̂�2
𝜀), obtained by fitting the model

described in equation (5.4) to the displaced data {𝑦𝑘, 𝑋1𝑘(𝑊𝑘), 𝑋2𝑘}.

To create each bootstrap sample, apply the displacement algorithm to displace the given coordinates

𝑊𝑘, resulting in a set of displaced observation coordinates denoted as 𝑊 ∗𝑏
𝑘 . The data for the first

round of bootstrap samples, representing 𝐵 samples, can be expressed as {𝑦∗𝑏
𝑘 , 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ), 𝑋2𝑘}.

In the second round, draw 𝐶 bootstrap samples (where 𝑐 = 1, 2, ⋯ , 𝐶) from each of the 𝐵 boot-

strap samples obtained in the first round. Subsequently, compute the bias-corrected estimates for

the model parameters based on these 𝐶 bootstrap samples. The procedure is described in detail

below:

Step 1: For each 𝑏 = 1, 2, ⋯ , 𝐵, using the first round bootstrap samples data{𝑦∗𝑏
𝑘 , 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ), 𝑋2𝑘},
we obtain estimates of the model parameters denoted by ̂𝜃∗𝑏 = ( ̂𝛽∗𝑏

0 , ̂𝛽∗𝑏
1 , ̂𝛽∗𝑏

2 , �̂�2∗𝑏
𝜀 ) and the

estimated random errors of the model denoted by ̂𝜀∗′𝑏
𝑘 .
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Step 2: We generate 𝐶 bootstrap samples using estimates ̂𝜃∗𝑏 under the following model:

𝑦∗𝑐
𝑘 = ̂𝛽∗𝑏

0 + ̂𝛽∗𝑏
1 𝑋1𝑘(𝑊 ∗𝑏

𝑘 ) + ̂𝛽∗𝑏
2 𝑋2𝑘 + 𝜀∗𝑐

𝑘 , (5.10)

where 𝜀∗𝑐
𝑘 are the bootstrapped random errors which are obtained by sampling with replacement

from the estimated random errors ̂𝜀∗′𝑏
𝑘 . These bootstrapped random errors are added to the predicted

outcomes to generate the bootstrap samples, as indicated in (5.10).

Step 3: We create 𝐶 displaced set of observation coordinates, denoted as 𝑊 ∗𝑐
𝑘 ; 𝑐 = 1, 2, ⋯ , 𝐶 , by

displacing the given coordinates 𝑊 ∗𝑏
𝑘 using the random displacement mechanism. Therefore, the

second round 𝐶 bootstrap samples data are represented as {𝑦∗𝑐
𝑘 , 𝑋1𝑘(𝑊 ∗𝑐

𝑘 ), 𝑋2𝑘}.

Step 4: We obtain the estimates of the model parameters denoted by ̂𝜃∗𝑐 using the second round

bootstrap sample data from Step 3. We use these second round bootstrap sample-based model

parameter estimates to obtain the estimate of the bias of ̂𝜃∗𝑏 defined as

B̂ias ( ̂𝜃∗𝑏, 𝜃) =
𝐶

∑
𝑐=1

̂𝜃∗𝑐/𝐶 − ̂𝜃∗𝑏. (5.11)

Step 5: For each 𝑏 = 1, 2, ⋯ , 𝐵, we compute the bootstrap bias corrected estimates as

̂𝜃∗𝑏
cor = ̂𝜃∗𝑏 − B̂ias ( ̂𝜃∗𝑏, 𝜃) . (5.12)

Step 6: We calculate the variance of the model parameter estimates under the bias-corrected (BC)

method using the 𝐵 bias-corrected estimates obtained in Step 5. The calculation is performed as

follows:
̂𝑉 ( ̂𝜃cor) =

𝐵
∑
𝑏=1

( ̂𝜃∗𝑏
cor − ̄̂𝜃

∗
cor)

2
/𝐵, (5.13)

where ̄ ̂𝜃
∗
cor is the average of the estimates ̂𝜃∗𝑏

cor over 𝐵 first round bootstrap samples. Also, the

estimated standard error of the model parameters estimates under the BC method is given by

̂𝑆𝐸( ̂𝜃cor) =
√√√
⎷

𝐵
∑
𝑏=1

( ̂𝜃∗𝑏
cor − ̄̂𝜃

∗
cor)

2
/𝐵. (5.14)
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5.4 Model-based simulation

The model-based simulation enables a controlled empirical evaluation of the proposed EDC-RC

and BC methods for estimating the spatial covariate parameters in the linear regression model un-

der displacement. In particular, this section aims to assess the ability of the proposed EDC-RC

and BC methods to correcting the bias of the spatial covariate parameters under displacement and

hence, to provide unbiased estimates of the model parameters compared to the naive estimates that

ignore the displacement error. We evaluate the EDC-RC, BC and naive methods using simulated

data generated under the linear regression model, as described in the following paragraph. The

naive method that ignores the displacement error produces biased estimates of the spatial covari-

ate parameters. The proposed EDC-RC method is developed under the functional measurement

error model by bringing additional information from different external sources to approximate the

marginal distribution of the true locations. We also developed the BC method to correct the bias in

the estimates of the model parameters, subject to meeting assumptions regarding the model form

and the magnitude of the bias due to displacement. Therefore, we aim to show that the proposed

EDC-RC and BC methods perform better than the naive method by obtaining unbiased estimates

of the linear regression model parameters.

We generate the model-based simulated data by incorporating some characteristics from the 2011

Bangladesh Demographic and Health Survey (BDHS) EAs and using the geography of Bangladesh

with 544 upazilas (admin 3). The true coordinates of the 2011 BDHS EAs and also the survey’s

sampling frame, the list of the 2011 census EAs with their number of households are not available.

Therefore, we have generated the true coordinates for 274,150 EAswith their number of households

using the WorldPop 100𝑚 × 100𝑚 gridded population of Bangladesh for 2020 following the

same principles of the 2011 BDHS EAs selected from the 2011 census EAs. The constrained

population raster in Bangladesh for 2020 can be downloaded from WorldPop (Bondarenko et al.,

2020). Finally, following the 2011 BDHS EA selection process, we have drawn a sample of 1050

EAs with probability proportional to the EA population stratified by the upazila and by the rural

urban areas within the upazila. We have discussed this in Section 4.4.

In this simulation design, the 1050 selected EAs coordinates are considered as the true EA coor-

dinates, and they are fixed throughout the simulation. We consider 30 households for each EA,

and the households within an EA have the same coordinates as the EA centroid coordinate in the

2011 BDHS, i.e., households are georeferenced at the centre of the EA. Note that in this simulation

study, we ignore the aggregation of households issue. Therefore, the total number of households is
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𝑛 = 31, 500 which is spread over 𝑚 = 544 upazilas of Bangladesh. The upazila-specific number
of households ranges from 30 to 60. We generate outcomes for each household under the linear

regression model (5.1) with only spatial covariates for simplicity and defined as:

𝑦𝑘 = 𝛽0 + 𝛽1𝑋1𝑘(𝑇𝑘) + 𝜀𝑘. (5.15)

We consider a spatial covariate, e.g., the nearest distance between the true location and the health

facilities, and separately, a covariate available at the area (upazila) level in Bangladesh. For sim-

plicity in this empirical study, we consider only one type of spatial covariate and exclude other

non-spatial covariates in (5.15). The calculation of nearest distance and the linkage of the upazila

level covariate to the household based on the displaced location coordinates may not be accurate

that leads the biased estimates of the model parameters. In order to assess the impact of the dis-

placement, we consider the linear regression model with two types of spatial covariates, distance

and area-level, as described below:

Let 𝑋1𝑘.𝑑(𝑇𝑘) denote the true distance between the 𝑘th household location coordinates and the
nearest health facility. For this simulation study, as health facility location data, the location co-

ordinates of family welfare centers and hospitals of Bangladesh is used. The source of the spatial

data is the Local Government Engineering Department (LGED) of Bangladesh (Rahman and Sz-

abó, 2020). First, we calculate the distance for each household from the nearest health facility

𝑋1𝑘.𝑑(𝑇𝑘). Next, we generate an outcome variable 𝑦𝑘 based on the equation (5.15), by the follow-

ing relationship:

𝑦𝑘 = −0.75 − 0.10𝑋1𝑘.𝑑(𝑇𝑘) + 𝜀𝑘, (5.16)

where 𝜀𝑘 ∼ 𝑁 (0, 0.15) is a randomly generated error term. We generate the outcome data by

setting the true values of the parameters to 𝛽0 = −0.75 and 𝛽1 = −0.10 using the 2011 BDHS

data, as detailed below. We calculate the distance to the nearest health facility for each DHS cluster.

We then fit a linear regressionmodel using the z-score (which represents the level of underweight in

children from the 2011 BDHS) as the outcome, with distance as a covariate, to estimate the model

parameters. These estimates serve as the true parameter values for this empirical study. The z-

score is a standardized measure representing the weight-for-age (WAZ) of a child, which provides

an assessment of a child’s nutritional status relative to a reference population (WHO, 1986). This

results in the coefficient of determination 𝑅2 = 0.55 for the regression of 𝑦𝑘 on 𝑋1𝑘.𝑑(𝑇𝑘).

Regarding the linked (area-level) covariate, let, 𝑋1𝑘.𝑎(𝑇𝑘) indicate the covariate values available
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at the lower administrative level e.g., upazila level of Bangladesh. In this simulation study, as

an area covariate, we use the estimated upazila proportions of poor people which have been pro-

duced using the ELL poverty mapping method by combining 2011 census and 2010 HIES data

of Bangladesh. Then, we assign the upazila proportions to households by using the true location

coordinates 𝑇𝑘 and obtain a covariate value for each household 𝑋1𝑘.𝑎(𝑇𝑘). Finally, we generate
an outcome variable 𝑦𝑘 by the following relationship:

𝑦𝑘 = −0.65 − 0.50𝑋1𝑘.𝑎(𝑇𝑘) + 𝜀𝑘, (5.17)

where 𝜀𝑘 ∼ 𝑁 (0, 0.10) is a randomly drawn error term. To generate the simulated outcome

data from (5.17), we set the true values of the parameters to 𝛽0 = −0.65 and 𝛽1 = −0.50,
which we get from fitting a regression model using the 2011 BDHS data, as discussed below. We

assign upazila proportions to households based on the 2011 BDHS displaced coordinates, thereby

obtaining a covariate value for each household. Next, we fit a linear regressionmodel of z-scores (a

measure of underweight in children, as previously defined) on upazila proportions associated with

household children. The parameter estimates from this model act as the ‘true’ parameter values

for this empirical study. The coefficient of determination for the regression of 𝑦𝑘 on 𝑋1𝑘.𝑎(𝑇𝑘) is
𝑅2 = 0.11.

To obtain the displaced EA coordinates, the true EA coordinates are randomly displaced in line

with the DHS displacement parameters: urban locations are displaced between 0-2 kilometres,

while rural locations are displaced between 0-5 kilometres. Additionally, 1% of rural locations are

randomly displaced by a range of 0-10 kilometres.

We calculate the misplacement statistics using a single set of displaced coordinates by creating

buffers with maximum displacement distance around the displaced coordinates of the EA. About

42% (442 out of 1050) of the EAs are potentiallymisplaced, meaning their EA displacement buffers

intersect with an upazila boundary. Additionally, of the potentially misplaced EAs, approximately

29% (128 out of 442) are truly misplaced. In this thesis, a truly misplaced EA refers to an EA

where the displaced upazila ID differs from the actual upazila ID for that EA. In this simulation

study, we know the displaced upazila ID and the actual upazila ID for each EA using the displaced

and true EA coordinates. Area-level covariate assignment to EA/households will be wrong when

the EA is misplaced due to displacement. Also, for the distance covariate, the mean distance from

the EA centroid to the nearest health facility, based on true and displaced coordinates, is 5.42km

and 5.65km, respectively.
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The simulation steps (generation of the outcome variable under the model, parameter estimates and

displacement process) are independently repeated 300 times. Under the repeated displacement,

we compare the performance of the naive, the EDC-RC and the BC methods by computing the

Root-Mean-Square-Error (RMSE) and the Bias for the estimates of the linear regression model

parameters over 𝐿 = 300 simulations as follows:

RMSE( ̂𝜃) = √∑𝐿
𝑙=1( ̂𝜃𝑙 − 𝜃)2

𝐿 (5.18)

Bias( ̂𝜃) = ∑𝐿
𝑙=1( ̂𝜃𝑙 − 𝜃)

𝐿 (5.19)

where ̂𝜃𝑙 are the estimates of the linear regression model parameters using any of the methods

aforementioned in simulation round 𝑙 and 𝜃 defines the true value of the parameter.

To implement the model-based simulation, we use R (R Core Team, 2022). We fit the linear

regression model to the data and obtained the parameters estimates using the function lm.
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5.5 Results and discussion

In this section, we present and discuss the model-based simulation study results. We first discuss

the results using the distance-based covariate. Then, the upazila-level linked covariate based results

are presented and discussed. Section 5.5.1 reports and discusses the results on the performance

of the proposed EDC-RC and BC methods for estimating the linear regression model parameters

under randomdisplacement. Also, the results of the estimated standard error of the linear regression

model parameter estimates using the proposed estimators under the EDC-RC and BC methods are

reported and discussed in Section 5.5.2.

5.5.1 Evaluation of the performance of the proposed methods for point estimates

In the case of the distance covariate based linear regressionmodel, we run 300 simulations to obtain

the empirical distributions for the estimates of the linear regression model parameters using the

naive, EDC-RC and BC methods. The summary statistics of the estimates of the parameters of the

linear regression model over 300 simulation runs are presented in Table 5.1. Figure 5.1(a) shows

the empirical distribution of the estimates of the distance covariate parameter for each method over

300 simulation runs. As expected, the mean estimates of the distance covariate parameter over

300 simulation runs using true data (non-displaced) is approximately equal to the true value of the

parameter 𝛽1 = −0.10. The range of the estimates is small and is moderately symmetric around
the parameter (true) value. The naive estimate of 𝛽1 using displaced location data is biased. The

proposed EDC-RC and BC methods can correct the bias very well and produce an approximately

unbiased estimate of 𝛽1. For example, the mean estimates of 𝛽1 over 300 simulation runs using the

proposed EDC-RC and BCmethods are closer to the true value than the estimate obtained using the

naive method. Both EDC-RC and BC methods performed similarly and outperformed the naive

method in terms of reducing the bias in the estimates under random displacement.

The estimates of 𝛽1 using the non-displaced data gives the smallest RMSE whereas the proposed

BC and EDC-RCmethods have a somewhat larger RMSE of the estimates of the distance covariate

parameter. Also, the EDC-RC method has a slightly smaller RMSE of the estimates than the BC

method. Furthermore, estimates with the naive method that ignores the displacement error have a

much larger RMSE compared to the BC andEDC-RCmethods (Table 5.1). Therefore, the proposed

BC and EDC-RCmethods perform better than the naive method in terms of a lower bias and RMSE

for estimating the distance covariate parameter under random displacement.

Regarding the linked upazila-level covariate parameter estimates of the linear regressionmodel, the
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Parameter Min. 1st Qu. Median Mean 3rd Qu. Max. RMSE
̂𝛽0𝑇 -0.7582 -0.7524 -0.7503 -0.7502 -0.7479 -0.7409 0.0033
̂𝛽0𝑊 -0.7806 -0.7690 -0.7634 -0.7641 -0.7592 -0.7463 0.0156
̂𝛽0𝐵𝐶 -0.7726 -0.7567 -0.7499 -0.7502 -0.7437 -0.7292 0.0086

̂𝛽0𝐸𝐷𝐶−𝑅𝐶 -0.7645 -0.7561 -0.7537 -0.7533 -0.7507 -0.7403 0.0055
̂𝛽1𝑇 -0.1011 -0.1003 -0.1001 -0.1000 -0.0996 -0.0984 0.0005
̂𝛽1𝑊 -0.0990 -0.0971 -0.0963 -0.0964 -0.0957 -0.0939 0.0038
̂𝛽1𝐵𝐶 -0.1031 -0.1009 -0.0999 -0.0999 -0.0990 -0.0969 0.0012

̂𝛽1𝐸𝐷𝐶−𝑅𝐶 -0.1022 -0.1003 -0.0997 -0.0998 -0.0993 -0.0982 0.0007
�̂�2

𝜀 𝑇 0.1475 0.1493 0.1499 0.1500 0.1507 0.1533 0.0011
�̂�2

𝜀 𝑊 0.1628 0.1659 0.1670 0.1670 0.1680 0.1709 0.0170
�̂�2

𝜀 𝐵𝐶 0.1475 0.1507 0.1518 0.1518 0.1529 0.1560 0.0025
�̂�2

𝜀 𝐸𝐷𝐶−𝑅𝐶 0.1560 0.1599 0.1610 0.1609 0.1620 0.1637 0.0110

Table 5.1: Summary statistics for the distribution of the linear regression model parameter esti-
mates with a distance covariate for each method over the 300 simulation runs. T and W refer to
estimates based on non-displaced and displaced data, while BC and EDC-RC indicate the estimates
based on the two proposed methods.

Figure 5.1: Density curves of the estimated (a) distance covariate and (b) area/linked covariate
parameters of the linear regression model for each estimator over the 300 simulation runs. The ver-
tical dotted lines indicate the mean estimates for each estimator. The true values of the parameters
for distance and area covariates are -0.10 and -0.50 respectively.

summary statistics for the distribution of themodel (5.17) parameter estimates for eachmethod over

the 300 simulation runs with a linked upazila-level covariate are given in Table 5.2. Figure 5.1(b)

shows the density plot of the estimates of the linked covariate parameter over 300 simulation runs

for the naive, EDC-RC and BC methods. The mean estimates of 𝛽1 using true (non-displaced)

data over 300 simulation runs is very close to the true value of 𝛽1 = −0.50, as we expected.
Also, the estimates using true data have a small range and are symmetric around the true value of

𝛽1 = −0.50. The estimate of the linked covariate parameter using the naive method that ignores
the displacement error is biased. For example, the mean naive estimates over 300 simulation runs

is -0.4554 whereas the true value is 𝛽1 = −0.50. The proposed biased corrected BC and EDC-RC

methods correct the bias of the estimates very well and obtain an approximately unbiased estimate
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of the linked covariate parameter under displacement. For instance, the mean estimates of 𝛽1 over

300 simulation runs using the BC and EDC-RC methods are -0.4942 and -0.4951 respectively,

which are very close to the true parameter value of 𝛽1 = −0.50. Therefore, the proposed bias
corrected methods work very well to correct the bias and outperform the naive methods. The last

column of Table 5.2 presents the RMSE of the estimates of the linear regression model parameters

for each of the methods. As expected, the estimates of the linked upazila covariate parameter using

true (non-displaced) data have the smallest average root mean squared error (RMSE), whereas the

naive estimates that ignore the displacement error have the highest RMSE. The proposed BC and

EDC-RC estimators have much lower RMSE than the naive estimator. For example, the average

RMSE of the estimates of the linked covariate parameter is about 3.2 times lower when using the

proposed BC method than the naive method. Similarly, the proposed EDC-RC method produced

an average RMSE about 4 times lower than the naive method. Thus, BC and EDC-RC methods

produced more precise estimates than the naive method. Additionally, the EDC-RC method per-

formed slightly better than the BC method in terms of the variability of the estimates.

Parameter Min. 1st Qu. Median Mean 3rd Qu. Max. RMSE
̂𝛽0𝑇 -0.6581 -0.6527 -0.6500 -0.6500 -0.6477 -0.6380 0.0038
̂𝛽0𝑊 -0.6797 -0.6693 -0.6659 -0.6662 -0.6634 -0.6535 0.0169
̂𝛽0𝐵𝐶 -0.6674 -0.6563 -0.6522 -0.6527 -0.6495 -0.6379 0.0058

̂𝛽0𝐸𝐷𝐶−𝑅𝐶 -0.6665 -0.6553 -0.6530 -0.6525 -0.6497 -0.6404 0.0049
̂𝛽1𝑇 -0.5244 -0.5062 -0.5005 -0.5003 -0.4944 -0.4778 0.0094
̂𝛽1𝑊 -0.4865 -0.4625 -0.4562 -0.4554 -0.4473 -0.4229 0.0461
̂𝛽1𝐵𝐶 -0.5267 -0.5021 -0.4953 -0.4942 -0.4855 -0.4576 0.0144

̂𝛽1𝐸𝐷𝐶−𝑅𝐶 -0.5223 -0.5020 -0.4946 -0.4951 -0.4875 -0.4684 0.0115
�̂�2

𝜀 𝑇 0.0981 0.0996 0.1000 0.1000 0.1005 0.1019 0.0008
�̂�2

𝜀 𝑊 0.0996 0.1013 0.1017 0.1018 0.1023 0.1036 0.0019
�̂�2

𝜀 𝐵𝐶 0.0983 0.1000 0.1004 0.1004 0.1010 0.1023 0.0009
�̂�2

𝜀 𝐸𝐷𝐶−𝑅𝐶 0.0989 0.1005 0.1010 0.1010 0.1015 0.1034 0.0013

Table 5.2: Summary statistics for the distribution of the linear regression model parameter esti-
mates with a linked/upazila level covariate for each method over the 300 simulation runs. T and
W refer to estimates based on non-displaced and displaced data, while BC and EDC-RC indicate
the estimates based on the two proposed methods.

5.5.2 Estimated standard error of the model parameters under the proposed meth-

ods

In this section, we present the results of the simulation study on estimating the standard errors of

the linear regression model parameters. Specifically, we focus on models with distance-based and

upazila (or area)-level linked covariates, and we use the proposed standard error estimators under
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the EDC-RC and BC methods. To estimate the standard error of the model parameters under these

methods, we use single and double bootstrapping techniques, respectively, under the model and

repeated random displacement, as described in Section 5.3. We evaluate the effectiveness of the

proposed methods by comparing the average estimated standard errors and empirical standard er-

rors of the model parameters over 300 simulation runs. The empirical standard error is obtained

by calculating the standard deviation of the point estimates of the model parameters over the 300

simulation runs under the proposed EDC-RC and BC methods. Additionally, we report the esti-

mated standard error and empirical standard error of the point estimates obtained using the naive

method, which disregards displacement errors.

Figure 5.2: Boxplot of the estimated standard error (SE) of the regression coefficient for a) distance
covariate and b) area (upazila) linked covariate under the naive, EDC-RC and BC estimators over
300 simulation runs.

Figure 5.2 shows the boxplot of the estimated standard errors of the point estimates of the regres-

sion coefficient for a) the distance covariate and b) the upazila linked covariate under the naive,

EDC-RC and BC estimators over 300 simulations. The shape of the distribution of standard error

estimates using the proposed EDC-RC and BC estimators under the DHS displacement process

looks symmetric. Table 5.3 compares the average estimated standard errors and the empirical stan-

dard errors of the linear regression model parameters for three different estimators: naive, EDC-

RC, and BC methods over 300 simulations under random displacement. It presents the results

separately for the model with a distance covariate and the model with an area/linked covariate. For

each model, it reports the estimated standard errors of the intercept and slope coefficients.

The estimated standard errors of the parameter estimates obtained under the proposed EDC-RC and

BC methods are generally higher than those obtained under the naive method, which ignores the
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displacement errors. The differences in estimated standard errors between the proposed methods

and the naive method are relatively large in the case of the distance-based covariate. In contrast,

the empirical standard errors of the point estimates under the naive method is somewhat larger than

the proposed EDC-RC method. For example, the empirical standard error of the estimate for the

distance coefficient is 0.00098 using the naive method and 0.00071 using the proposed EDC-RC

method. The results indicate that the proposed methods provide a moderately accurate estimation

of the true standard errors under random displacement. Regarding comparing the EDC-RC and BC

methods, the EDC-RC-based method generally provides slightly lower estimated standard errors

than the BC-based method.

Estimator Model with distance covariate Model with area/linked covariate
̂𝑆𝐸( ̂𝛽0) ̂𝑆𝐸( ̂𝛽1) ̂𝑆𝐸( ̂𝛽0) ̂𝑆𝐸( ̂𝛽1)

naive 0.00363 (0.00667) 0.00051 (0.00098) 0.00361 (0.00456) 0.00900 (0.01172)
EDC-RC 0.00564 (0.00443) 0.00090 (0.00071) 0.00383 (0.00418) 0.00947 (0.01042)

BC 0.00771 (0.00862) 0.00113 (0.00123) 0.00441 (0.00514) 0.01093 (0.01319)

Table 5.3: The average of the estimated standard errors and the empirical standard error of the linear
regression model parameters using the naive, EDC-RC and BC methods over 300 simulation runs.
Empirical standard errors are given within the brackets.

We compare the average estimated standard errors to the empirical standard errors of the model

parameter estimates across the naive, EDC-RC, and BC methods. A closer alignment is observed

between the average estimated and empirical standard errors for the distance-based covariate using

the BC method, and for the upazila-level covariate using the EDC-RC method. Nonetheless, a

noticeable overestimation is apparent in themodel with the distance-based covariate using the EDC-

RC approach. This implies that while the proposed methods generally offer reasonably accurate

approximations of standard error estimates for model parameters, there are some occurrences of

both overestimation and underestimation. On the other hand, the difference between the average

estimated standard errors and the empirical standard errors under the naive method, which ignores

the random displacement errors, is relatively large. The naive method tends to underestimate the

standard errors. One possible explanation for the difference is that the estimates under the naive

method do not account for displacement error. Another possible reason is that the naive estimator

of the spatial covariate parameter is biased under random displacement, while the proposed EDC-

RC and BC estimators are approximately unbiased.

In summary, the methods proposed under EDC-RC and BC estimators are effective in estimating

standard errors of linear regression model parameters, yielding moderately accurate estimates with

instances of over- and underestimation, in contrast to the naive method, which tends to underesti-

mate the standard errors consistently. The empirical standard errors align somewhat closely with
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the average estimated standard errors under the proposed methods, suggesting that the standard er-

ror estimates of the model parameter estimates are moderately well approximated in the presence of

random displacement errors. Furthermore, the method based on EDC-RC produces slightly lower

estimated standard errors compared to the one based on BC.

5.6 Conclusion

In this chapter, we examine the potential methods for estimating regression models, e.g., a linear

regression model with spatial covariates under displacement. We propose two methods to fit the

model. The proposed EDC under regression calibration (EDC-RC) method, which is developed

under a measurement error model by bringing additional information from different sources to

approximate the marginal distribution of the true locations. We also develop a methodology for

estimating the model parameters of the linear regression model with spatial covariates using a

bootstrap bias correction (BC) under displacement. The BC method is developed and expected to

produce unbiased estimates of the model parameters satisfying the two crucial assumptions on the

model form and the magnitude of the bias of the estimates under displacement. In addition to the

point estimates, we develop the variance estimation of the estimates of the model parameters under

the proposed EDC-RC and BC methods using model based bootstrapping under repeated random

displacement.

We compare the usefulness of the two proposed EDC-RC and BC methods and the naive method

that ignores the displacement error using simulated data under two types of spatial covariates,

distance-based and linked area-level covariates. The simulated data are generated under the linear

regression model, incorporating certain characteristics from the 2011 BDHS EAs. The naive esti-

mates of the spatial covariate parameters are biased under displacement. The proposed EDC-RC

and BC methods can produce approximately unbiased estimates of the spatial covariate parame-

ters by correcting the bias of the estimates under displacement and outperform the naive method.

Estimates using the proposed methods have a much lower RMSE of the estimates than the naive

method. Finally, the proposed model-based bootstrap methods effectively estimate the variance

of linear regression model parameter estimates under EDC-RC and BC estimators, exhibiting in-

stances of over- and underestimation in the presence of random displacement errors. In comparison,

the naive method tends to under-estimate the variance of the model parameter estimates ignoring

the random displacement errors.

In this chapter, we developed two methods: EDC-RC and BC, in the context of linear models, to
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correct the bias of spatial covariate effects under random displacement. However, there is often

interest in estimating the effect of a spatial covariate on a binary outcome. In such cases, our meth-

ods can be directly extended to generalized linear models (e.g., logistic regression for a binary

outcome) to mitigate the bias in estimates of spatial covariates arising from the random displace-

ment of location coordinates. While RC is expected to provide improved estimates for non-linear

models, such estimates might not maintain the same consistency as in linear regressions; however,

any bias in estimates of a covariate measured with error in non-linear models is typically minor

(for further details, see Carroll et al. (2006)). Thus, future research could extend the proposed

methods to non-linear settings with spatial covariates to assess their performance under random

displacement.
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Chapter 6

Summary and research plan outline for

future studies

6.1 Introduction

The thesis addresses the issue of obtaining precise statistical estimates and inferences using georef-

erenced data that has been aggregated and randomly displaced to protect respondents’ confidential-

ity. The thesis develops methods for estimating density and domain parameters under measurement

error models using georeferenced data that is randomly displaced, as well as aggregated and ran-

domly displaced data. Furthermore, methods to correct bias in the estimates of spatial covariate

parameters of the linear regression model and variance-component parameters of the linear mixed

model due to the random displacement process are proposed. This chapter summarises the devel-

oped methods, their effects on inferences, their limitations, and promising directions for further

research in the field of statistical use of aggregated and randomly displaced georeferenced data.

6.2 Thesis summary

One key contribution of the thesis is to have proposed estimators for obtaining density estimates

and domain parameter estimates by correcting measurement errors due to the random displacement

process, and the combined aggregation and random displacement process. This is shown in Chap-

ter 3. In particular, in the case of displacement, we propose a measurement error model under the

DHS random displacement process, followed by the development of a new conditional probabil-

ity distribution of the displaced coordinates given the true coordinates. The measurement error

model proposed can be potentially extended to other types of random displacement processes, for
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example, the donut random displacement process. We then propose two estimation approaches for

the measurement error model to obtain density and domain parameter estimates by drawing likely

true location coordinates. The first method is based on Kernel Density Estimates (KDE) as the

marginal distribution of the true location data. The estimation is implemented using the Stochastic

Expectation-Maximisation (SEM) algorithm. The KDE-based method incorporates random dis-

placement error and derives the bandwidth during estimation. This allows for automatic selection

of an optimal bandwidth based on the data for each iteration, eliminating the need for pre-selection.

As a result, implementation is simplified, and the method can be used with any bandwidth selec-

tion method, offering a high degree of flexibility. Additionally, since the grid size is unrelated to

the displacement error, it does not affect kernel density estimation with randomly displaced data.

However, when the proposed KDE-based method is used to correct the displacement error, a large

grid size (e.g., 400) is required to cover all potential true locations within the buffers surrounding

the displaced coordinates. Kernel density estimates effectively approximate the marginal distribu-

tion of unknown true location coordinates using register data. However, their performance may be

limited in sampling scenarios where distinguishing between the absence of sample data and the ab-

sence of population units is challenging. Additionally, the random displacement process can create

false in-sample and out-of-sample domains. Nonetheless, the method can still yield satisfactory

results in sampling designs that cover the entire population area, such as a simple random sample

across the entire area.

The second method is the External Data Classification (EDC)-based method, which is an alter-

native to the KDE-based method by approximating the unknown underlying distribution of true

location data using additional information from external data sources. This is described in Chapter

3. Estimation in this EDC-based method is implemented through numerical integration. The EDC

method is expected to improve the estimates over the KDE-based method as it utilises additional

information from external data sources, which are more likely to be associated with the underlying

distribution of the true location data. The EDC method performs better than the KDE method by

more accurately approximating the marginal distribution of the true location coordinates using ex-

ternal data sources. However, the effectiveness of the EDC method relies on the availability and

up-to-date nature of external data sources. Apart from the register data, in scenarios with survey

data, such as the 2011 BDHS, where a clear link exists between the true enumeration area (EA) and

the population density of household distribution, the EDC method outperforms the KDE method.

This is particularly evident when the sampled DHS EAs are selected with a probability proportional

to the census EA size, corresponding to the number of households.
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In Chapter 3, we compare the effectiveness of the proposed KDE and EDC methods with the Most

Probable Domain (MPD)method byWarren et al. (2016b), which selects themost likely domain for

each EA, and the naive method that ignores displacement errors. The comparison is conducted us-

ing simulated register data generated from the WorldPop 100𝑚×100𝑚 gridded population raster,

which estimates the population of Bangladesh based on the 2011 census. Each grid cell in the raster

represents the number of people per pixel. It is important to note that in the simulation study, exter-

nal data sources, e.g., the WorldPop gridded population count, are used to generate the simulated

true location data, ensuring the quality and representativeness of the data. However, in real situa-

tions, the quality and up-to-dateness of such external data sources should be assessed. The study

demonstrates the utility of external data sources, such as WorldPop gridded population datasets, in

approximating the underlying distribution of the true enumeration area (EA) locations using only a

set of displaced EA coordinates from the 2011 BDHS. We note that to apply the proposed method,

we consider the WorldPop gridded population counts as fixed, assuming they are measured with-

out error. Therefore, future research could focus on extending the proposed method by accounting

for uncertainty in the estimates of the WorldPop gridded population counts. The proposed KDE

and EDC methods partially correct the bias in upazila (the admin 3 level of Bangladesh) estimates

of the proportion of poor households under misplacement errors due to the random displacement

process. These proposed estimators show lower root mean squared errors (RMSEs) than the naive

andMPD estimators. Upazilas with smaller areas in terms of square kilometres tend to have higher

misplacement errors, resulting in greater bias and variability when using the naive method. How-

ever, the proposed EDC method performs better by correcting misplacement errors, especially for

upazilas with smaller areas. When the misplacement errors are low, all methods perform simi-

larly. In such cases, the naive method should be selected for its simplicity. We observe that all

correction methods may introduce additional errors for non-misplaced units since, in practice, it

is not possible to determine which units are truly non-misplaced definitively. While the proposed

methods demonstrate high correct upazila classification probabilities for non-misplaced units, the

naive method has a perfect correct upazila classification probability of 1 for these units. How-

ever, regarding misplaced units, the correct upazila classification probability using the proposed

method consistently exceeds that of the naive method, which is 0. Furthermore, the proposed meth-

ods generate higher correct upazila classification probabilities for units when their buffers around

displaced coordinates intersect up to four upazilas. In summary, results based on the considered

simulation scenario, we find that the proposed EDC method outperforms other methods, including

KDE, MPD, and the naive method, which disregards misplacement errors, in terms of achieving

higher correct upazila classification probabilities across all study units. In situations with high
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misplacement errors, our proposed methodologies become even more invaluable than the naive

method, which ignores misplacement errors. The proposed method should be applied to obtain

estimates for upazilas with a higher number of misplaced units, which remain unknown to data

analysts. Therefore, future research could focus on estimating the expected number of misplaced

units within each domain (upazila) based on the displaced coordinates and other associated char-

acteristics. These could include the domain size (measured in square km), its shape, and whether

the unit is in a rural or urban location.

The proposed method is applied to real survey data under the DHS random displacement in Chap-

ter 3. It is important to note that the DHS random displacement process remains consistent across

all its surveys for every country, using identical urban-rural distance parameters. This consistency

ensures that our developed approach can be applied to any DHS survey. However, upazila poverty

estimates are obtained using the 2011 BDHS data by applying the proposed EDCmethod, theMPD

method, and the naivemethod that disregardsmisplacement errors due to the DHS random displace-

ment process. It is observed that the upazila estimates obtained from the proposed EDC method

are closer to the true upazila estimates than those obtained from the MPD and naive methods. The

random displacement process generates false out-of-sample upazilas. While the MPD method can

address this issue for a few upazilas by selecting the most likely upazila for each enumeration

area (EA), it introduces new false out-of-sample and in-sample upazilas. The proposed EDC and

KDE methods can provide estimates for all falsely created out-of-sample upazilas resulting from

the displacement process. This can be explained by the fact that, in the case of the proposed EDC

and KDE methods, all upazilas within the displacement buffer, including the correct but unknown

one, are selected based on the upazila classification probabilities for each EA. However, due to the

correction process that involves creating a buffer around the displaced EA centroid, the EDC and

KDE methods might introduce additional false in-sample upazilas, though they do not create false

out-of-sample upazilas.

Under the aggregation and random displacement process, the aggregation concentrates data in one

point, e.g., the centroid of the enumeration area (EA), while the random displacement moves the

original location from one place to another. To the best of our knowledge, previous studies did not

consider the uncertainty arising from aggregation and random displacement. Therefore, we pro-

pose a novel method called the external data and kernel density-based (KDE-ED) method to obtain

density and domain parameter estimates by correcting aggregation and random displacement er-

rors using a measurement error model. This is one of the important contributions in Chapter 3.

The simulation study results indicate that the proposed KDE-ED method outperforms the naive
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method, which ignores the aggregation and displacement errors, with lower bias and RMSE for

the upazila estimates of the proportion of poor households. Furthermore, for the density estimates

of poor households, the proposed KDE-ED method has a lower root mean integrated squared er-

ror (RMISE) compared to the naive method. Additionally, the proposed KDE-ED estimator can

capture and preserve the underlying structure of the density, derived from the true coordinates of

observation, more accurately across different aggregation and displacement levels. Therefore, the

KDE-ED estimator is considered a preferred method for estimating the density of poor households,

particularly when dealing with considerable aggregation and displacement errors.

Chapter 4 deals with the issues that come up when random effects in multilevel models are set at

levels below the DHS displacement-restricted boundaries, such as sub-district or admin 3 of a coun-

try. This can cause observations to mix among groups or sub-districts, leading to biased estimates

of random variance components in multilevel models and related model-based estimates for finite

population parameters, for example, group means. When random effects are set at lower adminis-

trative levels, there is a bigger chance of misplaced EAs, leading to more bias in the estimates. This

suggests that a DHS user defining random effects at the admin 4 level might obtain more biased es-

timates of random variance components than if defined at the admin 3 level. This, in situations with

high misplacement errors, failing to account for these errors can lead to misleading inferences. In

such cases, by applying our proposed methods, users can significantly reduce the bias in estimates,

ensuring the reliability of their conclusions. In Chapter 4, we explore methods for estimating lin-

ear mixed models, obtaining estimates of the model parameters, and model-based group means

under displacement. The framework of the linear mixed model under displacement is developed.

The proposed model is fitted using an algorithm under the EDC method, which incorporates addi-

tional information from external sources through a measurement error model. Apart from the point

estimates, variance estimation of the model parameter estimates under the EDC method is also de-

veloped using the law of total variance. A methodology for estimating the global parameters of the

linear mixed model using a parametric bootstrap bias correction (BC) under displacement is also

proposed to reduce the bias of the estimates of the model parameters. The proposed BC method

is expected to perform well in reducing the bias in estimates, provided the assumptions regarding

the model form and magnitude of bias under random displacement are met. Furthermore, variance

estimation for the estimates of the linear mixed model parameters is developed under the proposed

BC method, accounting for random displacement errors. This is conducted using model-based

bootstrapping under repeated random displacement. The BC method should effectively correct

the bias of global (model) parameters. However, it may not work for the associated model-based
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finite population parameters, such as group means under random displacement. This is because the

assumption of bootstrapping regarding the magnitude of the bias of predicted group means under

random displacement may not be satisfied. There are two likely reasons for this. First, creating

a buffer around truly non-misplaced EAs unknown to the data analysts may introduce additional

uncertainty in the estimates of upazila means. Second, due to random displacement, there may be

a mixing of groups within the buffer around the true and displaced locations, potentially affecting

the estimates of group means. We have explored this through a simulation study.

The performance of the proposed EDC and BC methods and the naive method that ignores dis-

placement error are compared using simulated data in Chapter 4. The data are generated under

the linear mixed model with characteristics similar to the 2011 BDHS EAs. The naive estimates

of variance component parameters and upazila means are biased under displacement, while the

proposed EDC method can correct the bias to some extent and is preferred over the naive method.

Additionally, the EDC estimator has a lower RMSE of upazila mean estimates compared to the

BC and naive estimators. The BC method produces unbiased estimates of the linear mixed model

parameters under displacement, outperforming the EDC and naive methods. However, it is not

suitable for estimating upazila means and has a higher RMSE of upazila estimates than the EDC

and naive methods. As a result, the BC method is recommended for obtaining estimates of global

parameters under displacement. In contrast, the EDC method is preferred for estimating finite

population parameters such as upazila means. Finally, the proposed variance estimators under the

BC and EDC methods perform moderately well in estimating the variances of the model parame-

ters estimates under the random displacement process. Specifically, the variance approximation is

good for the fixed effect parameters. However, for the variance components, which are affected by

misplacement errors due to random displacement, a variance estimation may not be as appropriate

as it does not account for the bias of the estimator.

The potential methods for estimating a linear regression model with spatial covariates under dis-

placement are investigated in Chapter 5. A framework of the linear regression model with spatial

covariates under displacement is developed, and two methods are proposed for fitting the model.

The first is the external data based on the regression calibration (EDC-RC) method, which uses

a measurement error model to incorporate additional information from different sources and ap-

proximate the marginal distribution of the true locations. The second method is a bootstrap bias

correction (BC) for estimating the model parameters of the linear regression model with spatial

covariates under displacement. The BC method can obtain unbiased estimates of the model param-

eters when the assumptions are satisfied regarding the model’s suitability to the data and the extent
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of bias arising from random displacement. In addition to the point estimates, the variance estima-

tion of the model parameter estimates under the proposed EDC-RC and BC methods is developed

using model-based bootstrapping under repeated random displacement.

In Chapter 5, we compare the performance of the two proposed methods, EDC-RC and BC, with

the naive method that ignores displacement error using simulated data. The simulated data are

generated using a linear regression model with two types of spatial covariates: distance-based and

linking area-level covariates. The simulated data incorporate characteristics from the 2011 BDHS.

For instance, the true values of the parameters for the linear regression model are chosen based on

estimates derived using outcome and covariate values from the 2011 BDHS. The spatial covariate

parameters estimated by the naive method are biased under displacement. However, the proposed

EDC-RC and BC methods can produce approximately unbiased estimates of the spatial covariate

parameters by correcting the bias of the estimates under displacement, and they outperform the

naive method. The RMSE of the estimates using the proposed methods is much lower than that of

the naive method. Finally, the proposed model-based bootstrap methods effectively achieve vari-

ance estimation of linear regression model parameter estimates under EDC-RC and BC estimators

in the presence of random displacement errors, albeit with instances of over- and underestimation.

In comparison, the variance of the model parameter estimates tends to be underestimated by the

naive method, which ignores the random displacement errors.

6.3 Future research

This thesis proposes methods for obtaining precise statistical estimates and inferences with aggre-

gated and displaced georeferenced data. However, theoretical and practical research questions

still need to be addressed regarding the aggregation and displacement process, modifications of

the methods, development of quality measures for point estimates, and other related issues which

could be explored in future research. The thesis concludes with some ideas for future research in

this context as follows:

6.3.1 Implementation of the proposed methods under other random displacement

processes

One potential area for future research is the implementation of the proposed methods under dif-

ferent random displacement processes. In this thesis, while the measurement error model and the

performance of the proposed methods have been developed and illustrated for the commonly used

DHS random displacement processes, other displacement processes are described in the literature
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review Chapter 2, such as the Donut random displacement process. To extend the measurement er-

ror model to other displacement processes, developing the probability distribution of the displaced

coordinates under that specific displacement process would be necessary. For example, in the

Donut random displacement process, a displaced location is randomly chosen within a minimum

and maximum displacement distance range, forming a “donut-shaped” region around the original

location (Hampton et al., 2010). The minimum and maximum displaced distances are denoted as

𝛿1 and 𝛿2, respectively. To assess the performance of the proposed methods under the Donut ran-

dom displacement process, the probability distribution of the Donut random displaced coordinates

would need to be developed, similar to how the probability distribution was developed for the DHS

displaced coordinates in Section 3.2.3. The domain of the probability distribution function would

be a bounded set of all points between the two smaller and larger circles with radii 𝛿1 and 𝛿2.

Under the Donut random displacement process, the likelihood of preserving respondent confiden-

tiality should be higher, as no displaced points are selected below the minimum displaced distance

𝛿1. However, this process may introduce larger misplacement errors compared to the DHS random

displacement process. In this case, the naive method that ignores the displacement error may per-

form worse in obtaining statistical estimates. Nevertheless, the proposed methods are expected to

outperform the naive methods by correcting misplacement errors under the Donut random displace-

ment process. Future research could focus on evaluating the performance of the proposed methods

under the Donut random displacement process and comparing them to the naive method. This

analysis would provide insights into the effectiveness of the methods in correcting misplacement

errors and obtaining accurate statistical estimates.

6.3.2 Estimation of misplacement probability under random displacement process

In this thesis, the proposed EDC andKDEmethods introduce additional uncertainty for unit (house-

hold or EA) locations that are truly non-misplaced but unknown to the data analysts. Consequently,

domain (upazila) estimates for potentially but not truly misplaced units will be biased under the

proposed methods, while the naive estimates that disregard misplacement errors are expected to

be unbiased. However, the naive method produces biased upazila estimates when truly misplaced

units are present. Moreover, upazilas with smaller areas in terms of square kilometres tend to

have higher misplacement errors, leading to increased bias and variability when using the naive

method. The proposed methods outperform the naive method in such cases by effectively correct-

ing misplacement errors, particularly for upazilas with smaller areas. Overall, the performance

of the naive method is better when misplacement errors arising from the random displacement
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process are minimal. Hence, considering the expected number of misplaced units within each up-

azila becomes crucial in determining the effectiveness of the proposed method and selecting the

appropriate method to use without intending to increase the disclosure risk of the respondents.

All the corrected methods discussed in this thesis introduce additional errors for truly non-

misplaced units, as the analysts are unaware of which units are misplaced. Therefore, future

research can focus on estimating the expected number of misplaced units within each upazila

using displaced coordinates. This estimation can help identify which units are more likely to be

misplaced, allowing the method to focus on the most probable misplacement units. This also

helps avoid disturbing potential but not truly misplaced units. Factors such as the area and shape

of the upazila, the proximity of households to the boundary, and whether the locations are in

urban or rural areas are potential factors associated with misplacement errors. Therefore, using

these potential factors, a statistical model could be developed to estimate the probabilities of

misplacement for location units due to the random displacement process. This model can be used

to estimate the number of misplaced units within each upazila, and the proposed method is best

applied to upazilas with higher such estimates.

6.3.3 Dealing with random displacement uncertainty in spatial estimates through

Kriging predictions

In the proposed Kernel Density Estimation (KDE) based method, density estimates of the location

data are used to approximate the distribution of the unknown true location coordinates, which is a

component of the measurement error model for the random displacement process. The corrected

density estimates are obtained by using the Stochastic Expectation-Maximization (SEM) algorithm,

allowing for estimation that accounts for random displacement error, as detailed in Section 3.3.

An alternative approach to estimating the distribution of unknown true locations can be using Krig-

ing predictions, a geostatistical interpolation method. Kriging predictions allow us to estimate val-

ues at unobserved locations based on available spatial data and the underlying spatial correlation

structure of the random field (Matheron, 1963; Goovaerts, 2019). For an overview of Kriging pre-

dictions, see Myers (1994). However, the observed location data is randomly displaced, which

can affect the spatial correlation of the data and, consequently, impact the accuracy of Kriging pre-

dictions. Therefore, similar to kernel density estimates, an iterative estimation algorithm needs to

be developed to obtain displacement error-corrected Kriging predictions for potential true location

coordinates.

Displacement error-corrected Kriging predictions have the potential to provide better estimates of
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the distribution of unknown true locations compared to kernel density estimates. This is because

Kriging predictions consider the spatial correlation and variability of a continuous spatial process,

enabling more accurate predictions at unsampled locations (Myers, 1994; Goovaerts, 2019). In

light of this, conducting future research to examine the effectiveness of using Kriging predictions

to address the uncertainty due to random displacement could greatly improve statistical estimates.

6.3.4 Development of an R package

In the future, I plan to develop an R package based on the methodologies presented in this thesis.

This will make it easier for other researchers to apply and build upon themethods we have proposed.

An R package will also promote reproducibility and replicability, which are crucial in academic

research. While the development of the R package is still in its planning stages, all codes and

simulation setups from this thesis are currently available upon request to facilitate further research.
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