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A B S T R A C T   

A crop growth monitoring system should objectively and reproducibly reflect changes in crop biophysical 
properties during the growing season. By monitoring crop growth and performance at specific crop development 
stages, the farmer can obtain reliable information for timely crop management to achieve optimum crop pro
duction. This work aimed to evaluate crop development using five winter wheat (Triticum aestivum L.) bio
physical properties (shoots number, green area index, plant height, leaf N content, and aboveground dry 
biomass) predicted from Sentinel-2 data compared with benchmarks representing target growth from emergence 
to harvest. Data were collected for four principal phenology stages (tillering, stem elongation, heading, and fruit 
development) in 35 winter wheat fields in the Republic of Ireland and 40 in the United Kingdom in 2020 and 
2021. A total of 1500 plots were selected for crop sampling over two growing seasons. The models were generally 
good, but phenology-specific models performed better (R2 between 0.72 and 0.87) than models for the entire 
season (R2 between 0.13 and 0.84). To assess the low-performance zones in fields, the predicted biophysical 
properties were compared to benchmarks taken from agronomic advice. Spatial analysis was then used to 
identify low-performance areas in fields, which were validated using farmers’ feedback. It was concluded that the 
approach taken could be reliably used to monitor winter wheat over a wide area and through time.   

1. Introduction 

Crop growth is a quantitative and irreversible process associated 
with changing plant morphological features leading to an increase in 
those features that constitute the yield (e.g., grain) (Sadras et al., 2016). 
Crop growth underperforms (i.e., does not deliver the expected return 
on investment of husbandry resources and time) when the amount of 
CO2 (Farkas et al., 2021), radiation (Mu et al., 2010), water (Fahad et al., 
2017), and nutrients (Barraclough et al., 1989), or such inputs are lower 
than needed to achieve the target yield. Crop growth monitoring before 
harvest is essential to support husbandry decisions, forecast yield, and 
understand environmental impacts (Boori et al., 2020). Timely moni
toring of crop biophysical properties (CBP) such as leaf area index (LAI), 
aboveground biomass, crop chlorophyll content, and plant height pro
vides valuable information to understand the crop development, varia
tion in plant morphology, nutrient uptake, and pesticide needs during 
crop growth (Thorp et al., 2012). 

Winter wheat (Triticum aestivum L.) is the dominant cereal crop in the 
Republic of Ireland (IE) and the United Kingdom (UK). Winter wheat is 

more expensive to grow than spring wheat because the longer growing 
season requires greater inputs (Fowler et al., 1983; He et al., 2013). To 
ensure return on investment, regular field scouting is necessary (Evans 
et al., 2014). As an alternative, satellite remote sensing and geographical 
information systems (GIS) are the cornerstones of site-specific crop field 
management, offer the ability to provide information repeatedly over 
wide areas at low cost. They are the cheapest means of data acquisition 
and communication for large geographical areas (Skakun et al., 2017), 
so CBP estimation using remote sensing has been widely developed (Xie 
et al., 2019). The spectral information obtained from satellite remote 
sensing has been used to assess plant health and productivity (Y. Wu 
et al., 2020), chlorophyll content of the leaves (Cui et al., 2019), the 
green area index (Richter et al., 2012), and the dry aboveground 
biomass (Du et al., 2015). There has been little research on measuring 
shoot numbers and plant height using optical spaceborne remote 
sensing, and the geographical coverage of much works has been 
restricted to small areas such as experimental plots or adjacent fields 
(Tao et al., 2020; Wu et al., 2022). This study uses data taken from the 
plot sampling approach over a wide geographical extent which is not 
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commonly seen in the literature due to a large amount of field labor 
required. 

The aim of this work was to develop the theoretical foundation for a 
crop growth monitoring system that can be used for winter wheat 
agronomy services. The concept was to (1) predict the most important 
biophysical property at a particular growth stage, (2) compare the 
property to a baseline used by agronomists and farmers for crop man
agement, and (3) map crop relative performance at sub-field level. To 
achieve this, the objectives of the study were to (1) investigate the use of 
Sentinel-2 spectral data for estimating shoot number, green area index 

(GAI), plant height (PH), leaf nitrogen content (LNC), and aboveground 
dry biomass (AGDB); (2) evaluate the best fit prediction model of these 
CBP by using two approaches: data for the whole growing season (called 
full wheat phenology) and data for specific growing time window of CBP 
(called phenological trait); (3) identify the contribution of each band to 
estimation of the CBP; (4) prepare CBP maps; and (5) validate the maps 
by reference to farmer opinion. Ultimately the approach will contribute 
to a digital crop intelligence system that can help farmers and agrono
mists achieve optimum winter wheat management. 

Fig. 1. The change in winter wheat biophysical properties over a typical winter wheat growing season in IE and UK. (compiled using data from: Teagasc (J. Lynch 
et al., 2016) and (Sylvester-Bradley et al., 2018). 

Fig. 2. Benchmark values for CBP at key growth stages for winter wheat growth monitoring derived from Teagasc (J. Lynch et al., 2016) and AHDB (Sylvester- 
Bradley et al., 2018). 
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2. Theoretical basis for winter wheat growth monitoring 

The management decisions for winter wheat are phenological stages 
dependent, where each stage represents a major change in plant 
morphology and function (Xue et al., 2004). There are seven key stages: 
tillering, stem elongation, booting, heading, flowering, fruiting, and 
ripening (Fig. 1), which can be used to link plant physiology to crop 
management. Specific crop morphological characteristics change within 
and between stages (Ledent, 1982). (Fig. 1) illustrates the changes in 
CBP over a typical winter wheat growing season in IE and UK. The 
Biologische Bundesanstalt, Bundessortenamt and CHemical industry 
(BBCH) scale was developed to describe the phenological stages of 
winter wheat and was used for this work (Lancashire et al., 1991). 

In order to place the CBP estimated from Sentinel-2 into a context 
useful for husbandry, winter wheat growth performance can be assessed 
against the benchmark values (Fig. 2). These values were derived from 
data published by Teagasc (Lynch et al., 2016) and AHDB (Sylvester- 

Bradley et al., 2018) based on observations of optimum yielding winter 
wheat grown in IE and UK over several growing season. These bench
mark values function as quantitative reference points for a comparison 
with current crop performance. Satellite-derived CBP can then be clas
sified against the benchmark values to create the categories “below 
target”, “on target” and “exceed target”. The comparison can be 
completed at end of tillering (BBCH30), when the flag leaf blade visible 
(BBCH39), at ear emerged (BBCH59) and when flowering completed 
(BBCH71). The theory for using the BBCH scale to interpret CBP in the 
context of winter wheat development is outlined in (Fig. 1). It assumes 
that the farmer has planned seeding rates and husbandry tactics for a 
pre-defined target yield (t/ha). 

2.1. Shoot number 

Following planting, the number of shoots that emerge, and the 
number of additional tillers after the third leaf has emerged, are 
important determinants for everything that follows. As seen in (Fig. 1), 
winter wheat reaches the maximum shoot number around BBCH30 
(EoT) and tillering ends just before stem elongation (SE) BBCH31. The 
shoot number per unit area will determine the potential to develop ears 
and produce grain. Accurate estimation of shoot number at BBCH30 
(EoT) will be useful for fertilizer and chemical input management and 
whether target yield will be achievable. Monitoring shoot number after 
BBCH30 (EoT) is less important later in the growing season because it 
settles after BBCH39 (FLBV). The number of shoots will be influenced by 
the amount of nitrogen (N) and Phosphorus (P) fertilizer applied 
(Rodríguez et al., 1998). Engström and Bergkvist (2009) reported a 
positive relationship between the number of days of spring N application 
before BBCH30 (EoT) and the number of shoots from beginning of 
tillering (BoT) BBCH21 to BBCH30 (EoT). There have been few studies 
on estimating shoot number using ground-based (Fang et al., 2020; 
Ishikura et al., 2020) and airborne (Roth et al., 2020; Wu et al., 2022) 
remote sensing, but none using spaceborne remote sensing across large 
geographical areas. 

2.2. Green area index 

The GAI describes canopy characteristics related to radiation ab
sorption, evapotranspiration, and crop growth (Bukowiecki et al., 
2020). GAI is defined as the projected area of green leaves and stems per 
unit of ground area. Chikov et al. (2020) have found that the stem, ear 
and leaf of winter wheat all contribute to photosynthesis, so GAI is 
thought to be a more useful index than LAI, the area of leaves per unit 
ground area. LAI can be difficult to measure due to clumping and 
overlap of leaves (Breda, 2003), and according to Duveiller et al. (2011), 
GAI is a more pertinent biophysical parameter to retrieve from satellite 
remote sensing because satellite sensors capture reflectance from the 
whole crop canopy, not just the leaves. (Fig. 1) shows the development 
of GAI between BBCH21 (BoT) and BBCH59 (EE). The most rapid change 
occurs between BBCH31 (SE) and BBCH39 (FLBV), the stem elongation 
stage as the plant responds to increased radiation and temperature. The 
increase continues during heading to BBCH59 (EE). In this study, any 
decline in estimated GAI from BBCH21 (BoT) to BBCH59 (EE) indicates 
poor performance, perhaps due to foliar disease, drought, or nutrient 
deficiency. There has been a rapid development of remote sensing 
technology to derive GAI from spaceborne optical sensors for wheat 
yield estimation (Kouadio et al., 2012) and crop monitoring (Buko
wiecki et al., 2021). 

2.3. Plant height 

PH characterizes the vertical plant structure, and is important for 
determining lodging risk (Zhang et al., 2021; Chauhan et al., 2021). PH 
increases rapidly from BBCH31 (SE) and reaches the maximum height at 
the end of heading (EoH) at BBCH61 (Fig. 1). Excessive N fertilizer can 

Fig. 3. Locations of 75 winter wheat fields for field sampling in IE and UK.  

Table 1 
Dataset used in this study for modelling and mapping.  

Datasets Input Data PLS-R 
Model 

Approaches Growth 
Stages 

1 Shoot No 
/Spectral 

Shoot 1st BBCH21-87 

2 Shoot No 
/Spectral 

Shoot 2nd BBCH21-30 

3 GAI / Spectral GAI 1st BBCH21-87 
4 GAI / Spectral GAI 2nd BBCH21-59 
5 LNC / Spectral LNC 1st BBCH30-87 
6 LNC / Spectral LNC 2nd BBCH30-39 
7 PH / Spectral PH 1st BBCH31-87 
8 PH / Spectral PH 2nd BBCH31-71 
9 AGDB / Spectral AGDB 1st BBCH21-87  
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cause crop lodging, diseases, and pollution. Thus, schedule of early plant 
growth regulation application is impactful in restricting crop height (J. 
Lynch et al., 2016). Many studies have used unmanned aerial vehicles 
(UAV) (Song and Wang, 2019; ten Harkel et al., 2019; Tao et al., 2020) 
to estimate PH, but few attempts had been made to monitor the wheat 
PH using the spaceborne remote sensing data (Xu et al., 2010; Chauhan 
et al., 2019) and to our knowledge none was using Sentinel-2. In this 
study, estimated PH was used to indicate the continuity of stem elon
gation at BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC). 

2.4. Leaf nitrogen content 

Nitrogen is a critical component of the enzymes associated with 
chlorophyll, which enable plants to absorb sunlight and produce sugars 
from water and carbon dioxide through photosynthesis (Reich et al., 
1995). With a better understanding of crop N accumulation, the farmer 
would be able to regulate N management by applying the appropriate 
amount at the appropriate time, based crop N demand (Frederick and 
Camberato, 1995; Jiang et al., 2021). Insufficient N supplies may cause 
smaller leaves, reduced chlorophyll content and decreased biomass 
production (Hokmalipour et al., 2011). The greatest rate of leaf N uptake 
is from BBCH30 (EoT) to BBCH39 (FLBV). During these critical growth 
stages, if the N supply is less than optimum, the crop will underperform 
with reduced canopy survival, final ear number, and yield. N uptake is 
stagnant after the flag leaf emerges and then starts to decline when the 
crop reaches maximum canopy height and size from BBCH39 (FLBV) to 
BBCH59 (EE) (Fig. 1). Delloye et al. (2018) found immense potential for 
using Sentinel-2 for N recommendation during 2nd and 3rd N applica
tions at BBCH30 (EoT) to flag leaf visible still rolled (FLVR) BBCH37. In 
this study, estimated leaf N uptake was used to assess the leaf N status 
across a field. 

2.5. Above ground dry biomass 

AGDB monitoring using remote sensing technique is most common in 
smart agriculture and precision agriculture as a strong predictor of crop 
productivity (Marshall et al., 2022). Crop biomass accumulation is 
driven by the radiation intercepted by the crop, nitrogen supply and 
available water (Serrano et al., 2000). (Fig. 1) shows that by early April, 
the crops start receiving more sunlight causes the accumulating AGDB to 
increase rapidly from BBCH31 (SE) due to the development of stems and 
leaves. At BBCH39 (FLBV), AGDB accumulates further, but this time 
from the stems, leaves, and ear. The accumulation of AGDB is primarily 
contributed by stems and ears after BBCH39 (FLBV). More than 50% of 
AGDB accumulation happens in the ears after BBCH59 (EE). The 
maximum accumulation of AGDB happens around hard dough (HD) 
BBCH87 before ear senescence takes place. Numerous studies have 
focused on estimating plant biomass using spaceborne remote sensing as 
an operative estimator together with vegetation index models (Gaso 
et al., 2019; Kokhan & Vostokov, 2020) and evapotranspiration models 

Fig. 4. Location of winter wheat fields selected for crop properties mapping and performance zoning.  

Table 2 
Winter wheat fields information from IE and UK.  

Country Wheat Field Crop Cycle Sowing Date Yield (t/ha) Area (ha) 

IE Ward2 2019/20 26/10/2019  3.8  75.8 
IE Meath1 2020/21 14/09/2020  12.2  8.4 
UK Hazel8 2019/20 29/10/2019  4.9  7.8 
UK FlaxClose 2020/21 15/09/2020  11.6  14.1  

Table 3 
Models for CBP estimation with Sentinel-2 spectral bands and results in training 
and testing models.   

Training Testing  

R2 RMSE NRMSE R2 RMSE NRMSE 

Shoots per m2       

BBCH21-87  0.13  220.00  0.14  0.14  200.00  0.19 
BBCH21-30  0.77  180.00  0.11  0.86  131.00  0.12 
GAI (m2/m2)       
BBCH21-87  0.68  1.13  0.17  0.68  1.18  0.18 
BBCH21-59  0.85  0.86  0.13  0.87  0.81  0.13 
PH (cm)       
BBCH31-87  0.73  8.78  0.13  0.84  6.83  0.12 
BBCH31-71  0.72  8.28  0.14  0.75  7.56  0.13 
LNC (kg N/ha)       
BBCH30-87  0.54  30.19  0.14  0.56  29.30  0.16 
BBCH30-39  0.74  18.99  0.13  0.69  24.75  0.18 
AGDB(t/ha)       
BBCH21-87  0.86  3.41  0.11  0.84  3.63  0.13  
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(Ouaadi et al., 2020) for crop yield prediction. 

3. Materials and methods 

3.1. Sampling sites 

The study used 35 winter wheat fields in IE and 40 in the UK, with all 
fields being > 1 ha (Fig. 3). The CBP ground truth were collected during 
field campaigns between 2019 and 2021 for 2 winter wheat production 
cycles. All sites fall within a temperate climate with an annual average 
temperature between 6 and 14 ◦C, 600 to 1500 mm annual rainfall, and 
1200 to 1600 h total annual sunshine. None of these fields had a steep 
slope of more than a 15% slope gradient (Jarasiunas, 2016). 

3.2. Sampling strategy 

Sampling was timed using a growing degree day calculator and 

further confirmation from the farmer to capture four key phenological 
stages of winter wheat: tillering, stem elongation, heading, and fruiting 
(Fig. 1). In each field, number of shoots, GAI, leaf chlorophyll content, 
PH and above ground fresh biomass was sampled from five quadrats 
disbursed over 1 ha. A random location was picked at least 20 m offset 
from the field boundary or other disruptions to avoid edge and shadow 
effects. Sampling started at this location by randomly locating a 0.5 m ×
0.5 m quadrat. A further four locations were picked at random, at least 
20 to 40 m apart. Each quadrat location was recorded in latitude and 
longitude. All field observations were taken within the quadrat, which 
was then destructively sampled for above ground biomass. In total, there 
were 700 samples taken from Ireland and 800 from the UK each year, 
making a total of 1500 samples over two years. 

3.3. Crop biophysical measurements 

At each quadrat location, a downward looking digital photo was 

Fig. 5. Plot of observed and predicted values for the 5 
optimal PLS-R models for training and testing datasets 
(a) Plot for shoot number using training dataset (b) 
Plot for GAI using training dataset (c) Plot for PH 
using training dataset (d) Plot for LNC using training 
dataset (e) Plot for AGDB using training dataset (f) 
Plot for shoot number using testing dataset (g) Plot for 
GAI using testing dataset (h) Plot for PH using testing 
dataset (i) Plot for leaf N using testing dataset (j) Plot 
for AGDB using testing dataset.   
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taken above the crop canopy to record the conditions during sampling. 
The GAI of the crop within the quadrat were measured using the BASF 
GAI smartphone application. Leaf chlorophyll content was determined 
using a Konica Minolta SPAD-502Plus chlorophyll meter as the average 
of 10 measurements from the uppermost leaves. The leaf nitrogen con
centration (LC%) was calculated based on Konica Minolta published 
equation (Eq. (1)) at https://www.konicaminolta.com/instruments. 

LC% = 0.079(SPAD) − 0.154 (1) 

Multiply the value of LC% by leaf dry biomass (LDB) to get the LNC 
(Li et al., 2018) (Eq. (2)). 

LNC = LDB × LC% (2) 

The specific BBCH code was recorded for each quadrat by matching 
the crop morphology with the BBCH-scale description. The plants within 
the quadrat were cut at the ground surface and transported in a labelled 
plastic bag to the laboratory, where total number of shoots and PH were 
determined. Finally, the plants were split into leaves, stems and spikes, 
weighed, and oven dried at 70 ◦C for 48 h until a constant weight was 
achieved. 

3.4. Farmers’ field observations 

Field observation notes recorded by the farmers contained general 
appearance of the crop, foliar disease effects, weeds coverage, insect 
effects, lodging and stone content. Where the farmer had a reliable 

Fig. 6. VI of PLS-R models for CBP. (a) VI for shoots number estimation within BBCH21-30. (b) VI for GAI estimation within BBCH21-59 (c) VI for PH estimation 
within BBCH31-87 (d) VI for LNC estimation within BBCH30-39 (e) VI for AGDB estimation within BBCH21-87. 
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record of field notes, these were collected and used to validate the crop 
performance maps. 

3.5. Sentinel-2 data pre-processing 

Cloud and cloud shadow free data from Sentinel-2A and Sentinel-2B 
were collected between 4 days before and 4 days after the field sampling 
at each location. The data closest to the sampling date were used for 
modelling. The Level-2A product, which provides the bottom of Atmo
sphere reflectance was acquired using Google Earth Engine (GEE). From 
the 13 spectral bands, Band 1 (Coastal aerosol), Band 9 (Water vapor) 
and Band 10 (SWIR-Cirrus) were excluded from the analysis. The 10 
spectral bands sensitive to vegetation were resampled at a 10 m spatial 
resolution for further analysis. 

3.6. Multivariate regression models 

Partial Least Square Regression (PLS-R) is proven to be successful for 
quantifying vegetation properties using remote sensing data (Ali et al., 
2019). The non-parametric, PLS-R method was used with the 10 spectral 
bands as predictors and the shoot number, GAI, PH, LNC, AGDB as 
response variables. Each CBP for each field per visit was used as an input 
to the regression model. The average of each of the 10 spectral bands, for 
the five pixels aligned to the five quadrats per field per visit were the 
input data for the regression models. As shown in (Table 1), these input 
data were further sorted by CBP and growth stage to construct 9 
different datasets for modelling. 

PLS-R models were developed using two approaches for each CBP 
except AGDB. The first approach, called full wheat phenology, measured 
the association between CBP and spectral bands over all stages of crop 
growth. However, the second approach, called phenological trait, 
measured the association between CBP and spectral bands only during 
growth stages when the crop properties contributed to significant 
change in morphology of the plant. It should be noted that AGDB was 
developed using the first approach only because AGDB should increase 
for all crop growth stages as illustrated in (Fig. 1). The AGDB model was 
constructed using only the IE data because of data quality issues asso
ciated with ovens drying of UK samples caused by COVID-19 restrictions 
leading to excessive transport distances and storage times. 

In order to achieve a high prediction ability model, there were 
several configurations that could be used, such as leave-one-out cross 
validation and setting for wide kernel PLS algorithm while the number 
of variables was larger than the number of observations (Liland et al., 
2020). The models were evaluated further using train-test split approach 
with 80% samples as training dataset and 20% samples as testing 

dataset. The best PLS-R component based on the greatest coefficient of 
determination (R2), the smallest root mean square error (RMSE), and 
normalized root mean square error (NRMSE) close to zero was selected 
to ensure the most appropriate model (Yue et al., 2018). 

3.7. Commonly used vegetation indexes 

Commonly used vegetation indexes such as normalized difference 
vegetation index (NDVI) and enhanced vegetation index (EVI) were 
found not satisfactory in predicting the five crop biophysical properties 
in this study. For detailed information, see the supplementary data or 
supporting information. The most common issues of NDVI are saturation 
of its value in a dense vegetation area (Aparicio et al., 2000) and 
interference from soil reflectance at low crop densities (Mulla, 2013). 
Furthermore, the NDVI and EVI values do not have a uniquely predictive 
relationship with specific biophysical properties, so it can be difficult to 
untangle and identify exactly which properties are causing a given NDVI 
and EVI values at a given time and location. 

3.8. Mapping crop growth performance 

A spatial distribution map of each CBP derived from the five best CBP 
models was created using the map algebra in ArcGIS Pro (Version 2.8.7). 
For preliminary evaluation, four winter wheat fields in (Fig. 4) were 
selected, two from the IE and two from the UK. The four fields were 
selected based on two having high yielding crop yield > 10 t/ha, which 
is considered as good yielding crops in IE and UK (Lynch et al., 2017; 
Sylvester-Bradley et al., 2018) and two having low crop yield in each 
country. These selected fields were excluded from the train and test 
models development. The details of the four winter wheat fields are 
provided in (Table 2). The CBP of the four winter wheat fields were 
estimated using the optimum PLS-R models in (Table 1) and classified 
relative to the benchmark values in (Fig. 2). Sentinel-2 was used to map 
spatial variability in crop growth performance of 4 fields at BBCH30 
(EoT), BBCH39 (FLBV), BBCH59 (EE), and BBCH71 (FC) and the maps 
were then validated with farmers’ field observation records. 

4. Results 

4.1. Performance of spectral bands for estimating crop properties using 
PLS-R 

(Table 3) shows the performance of the CBP for full wheat phenology 
and phenological trait models. All five CBP of winter wheat correlated 
positively with the spectral bands. The shoot number estimation model 

Fig. 7. Crop performance maps derived from estimated shoot number relative to the benchmark value at BBCH30 (EoT).  
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based on full wheat phenology (BBCH21-87), showed the weakest cor
relation, with a RMSE of 220 tillers/m2 making it unusable for man
agement decision making. Focusing on the phenological trait for this 
growth period, the RMSE reduced to 180 tillers/m2. In this study, we 
found that except for PH, the phenological trait models performed better 
than the full wheat phenology models. The study also indicated that 
AGDB and GAI were the two CBP that best associate with the spectral 
bands with R2 = 0.86 and R2 = 0.85. Among the testing models, GAI 
performed best prediction (R2 = 0.87, RMSE = 0.81 m2/m2, NRMSE =
0.13). LNC scored weakest prediction (R2 = 0.69, RMSE = 24.75 kg N/ 
ha, NRMSE = 0.18). 

4.2. Uncertainty of the five best performance PLS-R models 

(Fig. 5) displays the predicted against observed plots with the grey 
shaded area around line of best fit in the graphs presented lower and 
upper halves of 95% confidence interval. Narrower confidence intervals 
increased precision of the model and decreased prediction error. It can 
be observed from (Fig. 5a - j) that the sample size affects the widths of 
the confidence intervals. (Fig. 5b & g) show underestimated GAI values 
when observed GAI < 3.8 m2/m2 in training model and when observed 
GAI < 5.0 m2/m2 in testing model. Significant overestimated GAI values 
are discovered in Fig. 5g when observed GAI between 5.0 – 7.5 m2/m2. 

Fig. 8. Crop performance maps derived from estimated GAI relative to the benchmark value at BBCH30 (EoT), BBCH39 (FLBV) and BBCH59 (EE).  
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4.3. Variable importance of the five best performance PLS-R models 

Variable Importance (VI) of PLS-R models for CBP estimation help to 
create accurate predictions. The more a model depends on a variable, 
the more important it is in prediction. (Fig. 6a-e) shows the ranking of 
the VI for the five best PLS-R models. Based on these data, the red edge 
bands B5, B6, B7 and the short-wave infrared (SWIR) B11, B12 have a 
significant contribution to all five models. Near infrared (NIR) B8, B8A 
played important roles in shoot number, GAI, PH and AGDB models as 
well. Visible blue (B2) was a top five contributor for the LNC model, 
visible green (B3) for the AGDB model and visible red (B4) for the LNC, 
AGDB and PH models. 

4.4. Spatial distribution maps of crop growth performance. 

4.4.1. Shoot number growth performance map 
The estimated shoot number from the four winter wheat fields in 

(Fig. 4) was mapped for BBCH30 (EoT). The estimated value was 
compared relative to the benchmark values 543–1052 per m2 in (Fig. 2) 
to create crop performance map as in (Fig. 7). Among the four fields, 
Hazel8, Meath1 and FlaxClose show the overall good crop performance 
with 92%, 91%, and 94% respectively of the field area are on target or 
exceeding target at this stage of crop development. In Ward2 field 71% 
of the crop area did not reach the benchmark value of at least 543 
shoots/m2. 

4.4.2. Green area index growth performance map 
In (Fig. 8), Hazel8, Meath1 and FlaxClose show good crop 

Fig. 9. Crop performance maps derived from estimated PH relative to the benchmark value at BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC).  
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performance. There were 0% of crops falling below target for achieving 
good yield. Conversely, more than 50% of the crop area in Ward2 were 
lower than the benchmark value of 0.9 m2/m2 (Fig. 2). Ward2 showed a 
slight increase in crop performance with crops on target relative to 
benchmark GAI values of 4.0–7.0 m2/m2 at BBCH39 (FLBV) from 40% to 
51%. Taking a closer look at Hazel8 and Meath1, majority of the crop 
area was on target for good yield at BBCH39 (FLBV). FlaxClose 
continued to maintain crop development with 82% of the field 
exceeding GAI = 7 m2/m2. At BBCH59 (EE) when the canopy reaches 
maximum size, there was a substantial change observed in Hazel8. The 
crop performance plummeted to > 99% below the targeted GAI value of 
5.8–7.4 m2/m2(Fig. 2). While the crop performance in Ward2 showed no 
improvement and 96% of crops did not achieve GAI values of 5.8 m2/m2 

at this stage. Meath1 and FlaxClose appeared to have stable crop per
formance up to this stage. 

4.4.3. Plant height growth performance map 
(Fig. 9) revealed the distinct variation among the four fields at 

BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC). Overall result showed 
that crops in Meath1 and FlaxClose performed well at BBCH39 (FLBV), 
BBCH59 (EE) and BBCH71 (FC). Meath1 performed the best with 100%, 
97% and 86% of crop area achieving benchmark values of 34–58 cm, 
53–70 cm, 65–70 cm at three specified growth stages respectively 
(Fig. 2). FlaxClose achieved > 99%,97% and 83% of crop area achieving 
the benchmark height at BBCH39 (FLBV), BBCH59 (EE) and BBCH71 
(FC). In contrast, Ward2 and Hazel8 had poor crop performance. Hazel8 
initially has good crop condition at BBCH39 (FLBV) with 92% of crops 
on target and 8.0% of crops exceeding target PH. The performance 
reduced (Fig. 9) at BBCH59 (EE) and BBCH71 (FC). Ward2 consistently 
had poor crop performance with 43% and 66% of crop area on target of 
34–58 cm PH at BBCH39 (FLBV) and 53–70 cm at BBCH59 (EE). No 
Sentinel-2 image was available at BBCH71 (FC) for Ward2 due to cloud 
cover. 

4.4.4. Leaf N content performance map 
LNC performance map (Fig. 10) will keep the farmer informed of the 

crop N status after the 3rd N split application at BBCH37 (FLVR). The 
LNC distribution pattern of Ward2 was consistent with the other crop 
properties (GAI, PH) already presented. About 63% of crop in Ward2 
underperformed with leaf N deficiency below the benchmark value of 
64.4–89.6 kg N/ha in (Fig. 2). Compared to Ward2, Hazel8, Meath1 and 
FlaxClose had only 5%, 4% and 2% of crop leave N deficiency at 
BBCH39 (FLBV). FlaxClose had the highest percentage of crops (95%) 
exceeding the benchmark of 89.6 kg/ha in (Fig. 2). 

4.4.5. Aboveground dry biomass performance map 
The AGDB crop performance distribution maps (Fig. 11) show, at the 

beginning of the crop development, significant variation of AGDB per
formance between Ward2, Hazel8, Meath1 and FlaxClose. Hazel8, 
Meath1 and FlaxClose had 99%, 100% and 99% respectively on par and 
exceeding the AGDB benchmark values of 1.1 – 3.3 t/ha in (Fig. 2) at 
BBCH30 (EoT). Ward2 had 90% of crop area below 1.1 t/ha. Moving 
forward to BBCH39 (FLBV), the AGDB performance maps reveal good 
performance of Hazel8, Meath1 and FlaxClose but not for Ward2. 
Similar to the GAI and PH, the AGDB performance of Hazel8 takes a 
downward trend from 99% of crops achieving 1.1–3.3 t/ha AGDB at 
BBCH39 (FLBV), to 97% achieving 5.8–7.8 t/ha AGDB at BBCH39 
(FLBV) but only 3% achieving 9.7–15.1 t/ha at BBCH59 (EE) and 0% of 
crops achieve 12.4–17.2 t/ha at BBCH71 (FC). Ward2 had downward 
trend at BBCH39 (FLBV) with only 2% of crop area reaching the target 
AGDB but shows sign of increment at BBCH59 (EE) with 42% of crops 
reaching at least 9.7 t/ha. 

5. Discussion 

5.1. The performance of Sentinel-2 for crop biophysical properties 
estimation 

The correlation between the CBP of winter wheat and the Sentinel-2 
spectral bands showed strong relationships at the growth stages when 
the CBP contribute to significant change in plant morphology. This is 
because the satellite sensors received reflectance from the green canopy 
including all plant organs namely leaf, stem and ear that are photo
synthetically active (Duveiller et al., 2011). As in (Fig. 1), even though 
some CBP such as shoots and LNC have stopped increasing at BBCH30 
(EoT) and BBCH39 (FLBV) respectively, other crop properties including 
GAI, PH and AGDB continuing to increase and are the fundamental traits 
contributing to canopy reflectance patterns (Segarra et al., 2020). 

In the current work, the contribution of the spectral bands in 
Sentinel-2 to estimate shoot number, GAI, LNC, PH and AGDB showed 
that red-edge and SWIR were the most effective bands for all five CBP 
(Fig. 6). (L. Liu et al., 2004) observed that red edge has strong positive 
correlation with plant water content and canopy chlorophyll density. 
While (Y. Liu et al., 2021) found that SWIR has a relatively high sensi
tivity to the soil moisture and bare soil. Chlorophyll a and b are the 
dominant pigments in the leaf chlorophyll. Chlorophyll a absorbs 
maximum light from the red region, band 4 of Sentinel-2, while Chlo
rophyll b reaches peak absorption in the blue region, band 2 of Sentinel- 
2 (Milne et al., 2015). This is consistent with the result shown in 

Fig. 10. Crop performance maps derived from estimated LNC relative to the benchmark value at BBCH39 (FLBV).  
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(Fig. 6d) where band 2 and 4 are the major contributors to the LNC 
model. Another influential visible band for the AGDB model was green 
(band 3). The absorbance in band 3 is due to the anthocyanin (Zahir 
et al., 2022). The anthocyanin pigment of plants acts as important plant 
tissue protector against abiotic stressors such as extreme temperature, 
deficient or excessive water, and mineral deficiency. 

Segarra et al. (2020) showed that a combination of spectral indices 
allows more advance measurement taking into account the robustness of 
Sentinel-2′s design, specifically for precision agriculture and vegetation 

monitoring. Our data support this contention. 

5.2. Crop biophysical property performance distribution maps 

The low shoot number of Ward2 raised the concern of insufficient 
plant establishment or P and N status at 1st N split (Wang et al., 2021). 
From the field notes, the farmer identified that Ward2 had poor plant 
establishment due to the plant seeds being flushed away by heavy rain in 
November 2019 and February 2020. However, at BBCH59 (EE), there 

Fig. 11. Crop performance maps derived from estimated AGDB relative to the benchmark value at BBCH30 (EoT), BBCH39 (FLBV), BBCH59 (EE), BBCH71 (FC).  
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was an inconsistent distribution pattern between GAI with AGDB and 
PH. This could reflect a regrowth of the winter wheat crop and chlorosis 
as reported in photos and observation notes. A severe drought hit the 
Hazel8 field around middle of heading (MoH) BBCH55 (validated the 
underperformance CBP from BBCH59 (EE). The crops were stressed and 
most of the tillers and leaves had dropped according to the farmer’s 
observation. In addition, Septoria attacked Hazel8 explaining decreases 
in AGDB, PH and GAI. Ruan et al. (2021) suggested that foliar diseases 
destroy pigment, reduce biomass and water content, which explains the 
results in this case. Unlike Ward2 and Hazel8, Meath1 and FlaxClose 
performed very well to meet the target for each CBP and achieve a good 
yield. After the harvest, the yield information was reported by the 
farmers from each field. Final grain yield of Ward2 and Hazel8 were 3.8 
t/ha and 4.9 t/ha which are very low yields. Meath1 and FlaxClose had 
good yields of 12.2 t/ha and 11.6 t/ha. Sentinel-2 data was capable of 
being used to estimate the CBP and identify crop growth under
performance. The underperforming zones could be detected well before 
harvest as they occurred, and the combination of properties provides 
insight into likely causes. To date, within-field crop growth performance 
mapping based on the combination of crop properties have not been 
sufficiently explored. These CBP performance maps could be a reliable 
source of within-field yield mapping. 

5.3. The limitation of the study and suggestion for future work. 

The Sentinel-2 CBP PLS-R models for winter wheat were able to es
timate the CBP at a sub field scale. It was demonstrated that the accuracy 
of the CBP estimation depended on the prediction time window. In most 
cases, a phenological trait approach was most effective. Further inves
tigation is needed to create a larger dataset allowing sufficient samples 
for smaller time windows. Besides increasing the sample size, the un
certainty of the GAI PLS-R model in this experiment could be improved 
through configuration of digital photos for ground truth GAI (Baret 
et al., 2010). The generalization of the model was examined by using 
both IE and UK data that represent variation in environment conditions, 
climate and soil. Future studies to incorporate new winter wheat field 
data to account for a wider geographical extent with variety in season, 
soil, wheat varieties, and multiple years will improve the generalization 
of model further. Another challenge of using Sentinel-2 to estimate the 
CBP is cloud cover. At Ward2 field, there was no image available from 
beginning of flowering (BoF) BBCH60 until harvest. An alternative so
lution would be to explore Synthetic Aperture Radar data from Sentinel- 
1 (Khabbazan et al., 2019). 

6. Conclusions 

Crop growth monitoring is an important input for crop management 
decision making. Through measurable CBP such as shoot number, GAI, 
AGDB, leaf N uptake, and crop height, crop growth condition can be 
monitored thoroughly. Remote sensing is an efficient non-destructive 
method to retrieve the CBP. This study has shown that models with 
sufficient accuracy can be developed for the necessary biophysical 
properties. These can usefully be combined to provide management 
insights This valuable information will help farm managers to plan crop 
husbandry strategies. This study showed the potential of using Sentinel- 
2 with spectral signature modelling to detect the crop morphological 
change related to shoot number, GAI, AGDB, LNC and AGDB indepen
dently of geographical location, climatic zone, soil type and crop ge
notype (within the area of the British Isles). Using Sentinel-2, the 
prediction models are more accurate with the phenological trait 
approach than modelling the full phenology from tillering to ripening. 
Cloud cover and shadow are key factors that will limit the temporal 
resolution of support services that might be developed using the 
approached presented. Among the 10 spectral bands, red edge (Band 5, 
6, 7) played a significant role in all the crop biophysical prediction 
models. Future work should evaluate the robustness of the approach 

over larger areas and multiple years, testing for different climatic zones, 
larger numbers of winter wheat varieties, soil types and environmental 
conditions. 
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