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A crop growth monitoring system should objectively and reproducibly reflect changes in crop biophysical
properties during the growing season. By monitoring crop growth and performance at specific crop development
stages, the farmer can obtain reliable information for timely crop management to achieve optimum crop pro-
duction. This work aimed to evaluate crop development using five winter wheat (Triticum aestivum L.) bio-
physical properties (shoots number, green area index, plant height, leaf N content, and aboveground dry
biomass) predicted from Sentinel-2 data compared with benchmarks representing target growth from emergence
to harvest. Data were collected for four principal phenology stages (tillering, stem elongation, heading, and fruit
development) in 35 winter wheat fields in the Republic of Ireland and 40 in the United Kingdom in 2020 and
2021. A total of 1500 plots were selected for crop sampling over two growing seasons. The models were generally
good, but phenology-specific models performed better (R? between 0.72 and 0.87) than models for the entire
season (R? between 0.13 and 0.84). To assess the low-performance zones in fields, the predicted biophysical
properties were compared to benchmarks taken from agronomic advice. Spatial analysis was then used to
identify low-performance areas in fields, which were validated using farmers’ feedback. It was concluded that the

approach taken could be reliably used to monitor winter wheat over a wide area and through time.

1. Introduction

Crop growth is a quantitative and irreversible process associated
with changing plant morphological features leading to an increase in
those features that constitute the yield (e.g., grain) (Sadras et al., 2016).
Crop growth underperforms (i.e., does not deliver the expected return
on investment of husbandry resources and time) when the amount of
CO5 (Farkas et al., 2021), radiation (Mu et al., 2010), water (Fahad et al.,
2017), and nutrients (Barraclough et al., 1989), or such inputs are lower
than needed to achieve the target yield. Crop growth monitoring before
harvest is essential to support husbandry decisions, forecast yield, and
understand environmental impacts (Boori et al., 2020). Timely moni-
toring of crop biophysical properties (CBP) such as leaf area index (LAI),
aboveground biomass, crop chlorophyll content, and plant height pro-
vides valuable information to understand the crop development, varia-
tion in plant morphology, nutrient uptake, and pesticide needs during
crop growth (Thorp et al., 2012).

Winter wheat (Triticum aestivum L.) is the dominant cereal crop in the
Republic of Ireland (IE) and the United Kingdom (UK). Winter wheat is
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more expensive to grow than spring wheat because the longer growing
season requires greater inputs (Fowler et al., 1983; He et al., 2013). To
ensure return on investment, regular field scouting is necessary (Evans
etal., 2014). As an alternative, satellite remote sensing and geographical
information systems (GIS) are the cornerstones of site-specific crop field
management, offer the ability to provide information repeatedly over
wide areas at low cost. They are the cheapest means of data acquisition
and communication for large geographical areas (Skakun et al., 2017),
so CBP estimation using remote sensing has been widely developed (Xie
et al., 2019). The spectral information obtained from satellite remote
sensing has been used to assess plant health and productivity (Y. Wu
et al., 2020), chlorophyll content of the leaves (Cui et al., 2019), the
green area index (Richter et al., 2012), and the dry aboveground
biomass (Du et al., 2015). There has been little research on measuring
shoot numbers and plant height using optical spaceborne remote
sensing, and the geographical coverage of much works has been
restricted to small areas such as experimental plots or adjacent fields
(Tao et al., 2020; Wu et al., 2022). This study uses data taken from the
plot sampling approach over a wide geographical extent which is not
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Winter wheat biophysical properties over growing season in IE and UK
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Fig. 1. The change in winter wheat biophysical properties over a typical winter wheat growing season in IE and UK. (compiled using data from: Teagasc (J. Lynch

et al., 2016) and (Sylvester-Bradley et al., 2018).
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Fig. 2. Benchmark values for CBP at key growth stages for winter wheat growth monitoring derived from Teagasc (J. Lynch et al., 2016) and AHDB (Sylvester-

Bradley et al., 2018).

commonly seen in the literature due to a large amount of field labor
required.

The aim of this work was to develop the theoretical foundation for a
crop growth monitoring system that can be used for winter wheat
agronomy services. The concept was to (1) predict the most important
biophysical property at a particular growth stage, (2) compare the
property to a baseline used by agronomists and farmers for crop man-
agement, and (3) map crop relative performance at sub-field level. To
achieve this, the objectives of the study were to (1) investigate the use of
Sentinel-2 spectral data for estimating shoot number, green area index

(GAI), plant height (PH), leaf nitrogen content (LNC), and aboveground
dry biomass (AGDB); (2) evaluate the best fit prediction model of these
CBP by using two approaches: data for the whole growing season (called
full wheat phenology) and data for specific growing time window of CBP
(called phenological trait); (3) identify the contribution of each band to
estimation of the CBP; (4) prepare CBP maps; and (5) validate the maps
by reference to farmer opinion. Ultimately the approach will contribute
to a digital crop intelligence system that can help farmers and agrono-
mists achieve optimum winter wheat management.
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Fig. 3. Locations of 75 winter wheat fields for field sampling in IE and UK.

Table 1
Dataset used in this study for modelling and mapping.
Datasets  Input Data PLS-R Approaches  Growth
Model Stages
1 Shoot No Shoot 1st BBCH21-87
/Spectral
2 Shoot No Shoot 2nd BBCH21-30
/Spectral
3 GAI / Spectral GAI Ist BBCH21-87
4 GAI / Spectral GAI 2nd BBCH21-59
5 LNC / Spectral LNC Ist BBCH30-87
6 LNC / Spectral LNC 2nd BBCH30-39
7 PH / Spectral PH 1st BBCH31-87
8 PH / Spectral PH 2nd BBCH31-71
9 AGDB / Spectral AGDB 1st BBCH21-87

2. Theoretical basis for winter wheat growth monitoring

The management decisions for winter wheat are phenological stages
dependent, where each stage represents a major change in plant
morphology and function (Xue et al., 2004). There are seven key stages:
tillering, stem elongation, booting, heading, flowering, fruiting, and
ripening (Fig. 1), which can be used to link plant physiology to crop
management. Specific crop morphological characteristics change within
and between stages (Ledent, 1982). (Fig. 1) illustrates the changes in
CBP over a typical winter wheat growing season in IE and UK. The
Biologische Bundesanstalt, Bundessortenamt and CHemical industry
(BBCH) scale was developed to describe the phenological stages of
winter wheat and was used for this work (Lancashire et al., 1991).

In order to place the CBP estimated from Sentinel-2 into a context
useful for husbandry, winter wheat growth performance can be assessed
against the benchmark values (Fig. 2). These values were derived from
data published by Teagasc (Lynch et al., 2016) and AHDB (Sylvester-
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Bradley et al., 2018) based on observations of optimum yielding winter
wheat grown in IE and UK over several growing season. These bench-
mark values function as quantitative reference points for a comparison
with current crop performance. Satellite-derived CBP can then be clas-
sified against the benchmark values to create the categories “below
target”, “on target” and “exceed target”. The comparison can be
completed at end of tillering (BBCH30), when the flag leaf blade visible
(BBCH39), at ear emerged (BBCH59) and when flowering completed
(BBCH71). The theory for using the BBCH scale to interpret CBP in the
context of winter wheat development is outlined in (Fig. 1). It assumes
that the farmer has planned seeding rates and husbandry tactics for a
pre-defined target yield (t/ha).

2.1. Shoot number

Following planting, the number of shoots that emerge, and the
number of additional tillers after the third leaf has emerged, are
important determinants for everything that follows. As seen in (Fig. 1),
winter wheat reaches the maximum shoot number around BBCH30
(EoT) and tillering ends just before stem elongation (SE) BBCH31. The
shoot number per unit area will determine the potential to develop ears
and produce grain. Accurate estimation of shoot number at BBCH30
(EoT) will be useful for fertilizer and chemical input management and
whether target yield will be achievable. Monitoring shoot number after
BBCH30 (EoT) is less important later in the growing season because it
settles after BBCH39 (FLBV). The number of shoots will be influenced by
the amount of nitrogen (N) and Phosphorus (P) fertilizer applied
(Rodriguez et al., 1998). Engstrom and Bergkvist (2009) reported a
positive relationship between the number of days of spring N application
before BBCH30 (EoT) and the number of shoots from beginning of
tillering (BoT) BBCH21 to BBCH30 (EoT). There have been few studies
on estimating shoot number using ground-based (Fang et al., 2020;
Ishikura et al., 2020) and airborne (Roth et al., 2020; Wu et al., 2022)
remote sensing, but none using spaceborne remote sensing across large
geographical areas.

2.2. Green area index

The GAI describes canopy characteristics related to radiation ab-
sorption, evapotranspiration, and crop growth (Bukowiecki et al.,
2020). GAl is defined as the projected area of green leaves and stems per
unit of ground area. Chikov et al. (2020) have found that the stem, ear
and leaf of winter wheat all contribute to photosynthesis, so GAI is
thought to be a more useful index than LAIL the area of leaves per unit
ground area. LAI can be difficult to measure due to clumping and
overlap of leaves (Breda, 2003), and according to Duveiller et al. (2011),
GAI is a more pertinent biophysical parameter to retrieve from satellite
remote sensing because satellite sensors capture reflectance from the
whole crop canopy, not just the leaves. (Fig. 1) shows the development
of GAI between BBCH21 (BoT) and BBCH59 (EE). The most rapid change
occurs between BBCH31 (SE) and BBCH39 (FLBV), the stem elongation
stage as the plant responds to increased radiation and temperature. The
increase continues during heading to BBCH59 (EE). In this study, any
decline in estimated GAI from BBCH21 (BoT) to BBCH59 (EE) indicates
poor performance, perhaps due to foliar disease, drought, or nutrient
deficiency. There has been a rapid development of remote sensing
technology to derive GAI from spaceborne optical sensors for wheat
yield estimation (Kouadio et al., 2012) and crop monitoring (Buko-
wiecki et al., 2021).

2.3. Plant height

PH characterizes the vertical plant structure, and is important for
determining lodging risk (Zhang et al., 2021; Chauhan et al., 2021). PH
increases rapidly from BBCH31 (SE) and reaches the maximum height at
the end of heading (EoH) at BBCH61 (Fig. 1). Excessive N fertilizer can
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Fig. 4. Location of winter wheat fields selected for crop properties mapping and performance zoning.
2.4. Leaf nitrogen content
Table 2
Winter wheat fields information from IE and UK. Nitrogen is a critical component of the enzymes associated with
Country ~ Wheat Field  Crop Cycle  Sowing Date  Yield (t/ha)  Area (ha) chlorophyll, which enable plants to absorb sunlight and produce sugars
IE Ward2 2019/20 26/10/2019 3.8 75.8 from water and carbon dioxide through photosynthesis (Reich et al.,
IE Meath1 2020/21 14/09/2020  12.2 8.4 1995). With a better understanding of crop N accumulation, the farmer
UK Hazel8 2019/20 29/10/2019 4.9 78 would be able to regulate N management by applying the appropriate
UK FlaxClose 2020/21 15/09/2020 11.6 14.1 . . .
amount at the appropriate time, based crop N demand (Frederick and
Camberato, 1995; Jiang et al., 2021). Insufficient N supplies may cause
smaller leaves, reduced chlorophyll content and decreased biomass
Table 3

Models for CBP estimation with Sentinel-2 spectral bands and results in training
and testing models.

Training Testing

R? RMSE NRMSE R? RMSE NRMSE
Shoots per m>
BBCH21-87 0.13 220.00 0.14 0.14 200.00 0.19
BBCH21-30 0.77 180.00 0.11 0.86 131.00 0.12
GAI (m?/m?)
BBCH21-87 0.68 1.13 0.17 0.68 1.18 0.18
BBCH21-59 0.85 0.86 0.13 0.87 0.81 0.13
PH (cm)
BBCH31-87 0.73 8.78 0.13 0.84 6.83 0.12
BBCH31-71 0.72 8.28 0.14 0.75 7.56 0.13
LNC (kg N/ha)
BBCH30-87 0.54 30.19 0.14 0.56 29.30 0.16
BBCH30-39 0.74 18.99 0.13 0.69 24.75 0.18
AGDB(t/ha)
BBCH21-87 0.86 3.41 0.11 0.84 3.63 0.13

cause crop lodging, diseases, and pollution. Thus, schedule of early plant
growth regulation application is impactful in restricting crop height (J.
Lynch et al., 2016). Many studies have used unmanned aerial vehicles
(UAV) (Song and Wang, 2019; ten Harkel et al., 2019; Tao et al., 2020)
to estimate PH, but few attempts had been made to monitor the wheat
PH using the spaceborne remote sensing data (Xu et al., 2010; Chauhan
et al.,, 2019) and to our knowledge none was using Sentinel-2. In this
study, estimated PH was used to indicate the continuity of stem elon-
gation at BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC).

production (Hokmalipour et al., 2011). The greatest rate of leaf N uptake
is from BBCH30 (EoT) to BBCH39 (FLBV). During these critical growth
stages, if the N supply is less than optimum, the crop will underperform
with reduced canopy survival, final ear number, and yield. N uptake is
stagnant after the flag leaf emerges and then starts to decline when the
crop reaches maximum canopy height and size from BBCH39 (FLBV) to
BBCH59 (EE) (Fig. 1). Delloye et al. (2018) found immense potential for
using Sentinel-2 for N recommendation during 2nd and 3rd N applica-
tions at BBCH30 (EoT) to flag leaf visible still rolled (FLVR) BBCH37. In
this study, estimated leaf N uptake was used to assess the leaf N status
across a field.

2.5. Above ground dry biomass

AGDB monitoring using remote sensing technique is most common in
smart agriculture and precision agriculture as a strong predictor of crop
productivity (Marshall et al., 2022). Crop biomass accumulation is
driven by the radiation intercepted by the crop, nitrogen supply and
available water (Serrano et al., 2000). (Fig. 1) shows that by early April,
the crops start receiving more sunlight causes the accumulating AGDB to
increase rapidly from BBCH31 (SE) due to the development of stems and
leaves. At BBCH39 (FLBV), AGDB accumulates further, but this time
from the stems, leaves, and ear. The accumulation of AGDB is primarily
contributed by stems and ears after BBCH39 (FLBV). More than 50% of
AGDB accumulation happens in the ears after BBCH59 (EE). The
maximum accumulation of AGDB happens around hard dough (HD)
BBCHS87 before ear senescence takes place. Numerous studies have
focused on estimating plant biomass using spaceborne remote sensing as
an operative estimator together with vegetation index models (Gaso
et al., 2019; Kokhan & Vostokov, 2020) and evapotranspiration models
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(Ouaadi et al., 2020) for crop yield prediction.
3. Materials and methods
3.1. Sampling sites

The study used 35 winter wheat fields in IE and 40 in the UK, with all
fields being > 1 ha (Fig. 3). The CBP ground truth were collected during
field campaigns between 2019 and 2021 for 2 winter wheat production
cycles. All sites fall within a temperate climate with an annual average
temperature between 6 and 14 °C, 600 to 1500 mm annual rainfall, and
1200 to 1600 h total annual sunshine. None of these fields had a steep
slope of more than a 15% slope gradient (Jarasiunas, 2016).

3.2. Sampling strategy

Sampling was timed using a growing degree day calculator and

further confirmation from the farmer to capture four key phenological
stages of winter wheat: tillering, stem elongation, heading, and fruiting
(Fig. 1). In each field, number of shoots, GAIL leaf chlorophyll content,
PH and above ground fresh biomass was sampled from five quadrats
disbursed over 1 ha. A random location was picked at least 20 m offset
from the field boundary or other disruptions to avoid edge and shadow
effects. Sampling started at this location by randomly locating a 0.5 m x
0.5 m quadrat. A further four locations were picked at random, at least
20 to 40 m apart. Each quadrat location was recorded in latitude and
longitude. All field observations were taken within the quadrat, which
was then destructively sampled for above ground biomass. In total, there
were 700 samples taken from Ireland and 800 from the UK each year,
making a total of 1500 samples over two years.

3.3. Crop biophysical measurements

At each quadrat location, a downward looking digital photo was
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Fig. 6. VI of PLS-R models for CBP. (a) VI for shoots number estimation within BBCH21-30. (b) VI for GAI estimation within BBCH21-59 (c) VI for PH estimation
within BBCH31-87 (d) VI for LNC estimation within BBCH30-39 (e) VI for AGDB estimation within BBCH21-87.

taken above the crop canopy to record the conditions during sampling.
The GAI of the crop within the quadrat were measured using the BASF
GAI smartphone application. Leaf chlorophyll content was determined
using a Konica Minolta SPAD-502Plus chlorophyll meter as the average
of 10 measurements from the uppermost leaves. The leaf nitrogen con-
centration (LC%) was calculated based on Konica Minolta published
equation (Eq. (1)) at https://www.konicaminolta.com/instruments.

@

Multiply the value of LC% by leaf dry biomass (LDB) to get the LNC
(Li et al., 2018) (Eq. (2)).

LC% = 0.079(SPAD) —0.154

LNC = LDB x LC% 2

The specific BBCH code was recorded for each quadrat by matching
the crop morphology with the BBCH-scale description. The plants within
the quadrat were cut at the ground surface and transported in a labelled
plastic bag to the laboratory, where total number of shoots and PH were
determined. Finally, the plants were split into leaves, stems and spikes,
weighed, and oven dried at 70 °C for 48 h until a constant weight was
achieved.

3.4. Farmers’ field observations

Field observation notes recorded by the farmers contained general
appearance of the crop, foliar disease effects, weeds coverage, insect
effects, lodging and stone content. Where the farmer had a reliable
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Fig. 7. Crop performance maps derived from estimated shoot number relative to the benchmark value at BBCH30 (EoT).

record of field notes, these were collected and used to validate the crop
performance maps.

3.5. Sentinel-2 data pre-processing

Cloud and cloud shadow free data from Sentinel-2A and Sentinel-2B
were collected between 4 days before and 4 days after the field sampling
at each location. The data closest to the sampling date were used for
modelling. The Level-2A product, which provides the bottom of Atmo-
sphere reflectance was acquired using Google Earth Engine (GEE). From
the 13 spectral bands, Band 1 (Coastal aerosol), Band 9 (Water vapor)
and Band 10 (SWIR-Cirrus) were excluded from the analysis. The 10
spectral bands sensitive to vegetation were resampled at a 10 m spatial
resolution for further analysis.

3.6. Multivariate regression models

Partial Least Square Regression (PLS-R) is proven to be successful for
quantifying vegetation properties using remote sensing data (Ali et al.,
2019). The non-parametric, PLS-R method was used with the 10 spectral
bands as predictors and the shoot number, GAI, PH, LNC, AGDB as
response variables. Each CBP for each field per visit was used as an input
to the regression model. The average of each of the 10 spectral bands, for
the five pixels aligned to the five quadrats per field per visit were the
input data for the regression models. As shown in (Table 1), these input
data were further sorted by CBP and growth stage to construct 9
different datasets for modelling.

PLS-R models were developed using two approaches for each CBP
except AGDB. The first approach, called full wheat phenology, measured
the association between CBP and spectral bands over all stages of crop
growth. However, the second approach, called phenological trait,
measured the association between CBP and spectral bands only during
growth stages when the crop properties contributed to significant
change in morphology of the plant. It should be noted that AGDB was
developed using the first approach only because AGDB should increase
for all crop growth stages as illustrated in (Fig. 1). The AGDB model was
constructed using only the IE data because of data quality issues asso-
ciated with ovens drying of UK samples caused by COVID-19 restrictions
leading to excessive transport distances and storage times.

In order to achieve a high prediction ability model, there were
several configurations that could be used, such as leave-one-out cross
validation and setting for wide kernel PLS algorithm while the number
of variables was larger than the number of observations (Liland et al.,
2020). The models were evaluated further using train-test split approach
with 80% samples as training dataset and 20% samples as testing

dataset. The best PLS-R component based on the greatest coefficient of
determination (RZ), the smallest root mean square error (RMSE), and
normalized root mean square error (NRMSE) close to zero was selected
to ensure the most appropriate model (Yue et al., 2018).

3.7. Commonly used vegetation indexes

Commonly used vegetation indexes such as normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI) were
found not satisfactory in predicting the five crop biophysical properties
in this study. For detailed information, see the supplementary data or
supporting information. The most common issues of NDVI are saturation
of its value in a dense vegetation area (Aparicio et al., 2000) and
interference from soil reflectance at low crop densities (Mulla, 2013).
Furthermore, the NDVI and EVI values do not have a uniquely predictive
relationship with specific biophysical properties, so it can be difficult to
untangle and identify exactly which properties are causing a given NDVI
and EVI values at a given time and location.

3.8. Mapping crop growth performance

A spatial distribution map of each CBP derived from the five best CBP
models was created using the map algebra in ArcGIS Pro (Version 2.8.7).
For preliminary evaluation, four winter wheat fields in (Fig. 4) were
selected, two from the IE and two from the UK. The four fields were
selected based on two having high yielding crop yield > 10 t/ha, which
is considered as good yielding crops in IE and UK (Lynch et al., 2017;
Sylvester-Bradley et al., 2018) and two having low crop yield in each
country. These selected fields were excluded from the train and test
models development. The details of the four winter wheat fields are
provided in (Table 2). The CBP of the four winter wheat fields were
estimated using the optimum PLS-R models in (Table 1) and classified
relative to the benchmark values in (Fig. 2). Sentinel-2 was used to map
spatial variability in crop growth performance of 4 fields at BBCH30
(EoT), BBCH39 (FLBV), BBCH59 (EE), and BBCH71 (FC) and the maps
were then validated with farmers’ field observation records.

4. Results

4.1. Performance of spectral bands for estimating crop properties using
PLS-R

(Table 3) shows the performance of the CBP for full wheat phenology
and phenological trait models. All five CBP of winter wheat correlated
positively with the spectral bands. The shoot number estimation model
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Fig. 8. Crop performance maps derived from estimated GAI relative to the benchmark value at BBCH30 (EoT), BBCH39 (FLBV) and BBCH59 (EE).

based on full wheat phenology (BBCH21-87), showed the weakest cor- 4.2. Uncertainty of the five best performance PLS-R models
relation, with a RMSE of 220 tillers/m? making it unusable for man-

agement decision making. Focusing on the phenological trait for this (Fig. 5) displays the predicted against observed plots with the grey
growth period, the RMSE reduced to 180 tillers/m?. In this study, we shaded area around line of best fit in the graphs presented lower and
found that except for PH, the phenological trait models performed better upper halves of 95% confidence interval. Narrower confidence intervals
than the full wheat phenology models. The study also indicated that increased precision of the model and decreased prediction error. It can

AGDB and GAI were the two CBP that best associate with the spectral be observed from (Fig. 5a - j) that the sample size affects the widths of
bands with R? = 0.86 and R? = 0.85. Among the testing models, GAI the confidence intervals. (Fig. 5b & g) show underestimated GAI values

performed best prediction (R = 0.87, RMSE = 0.81 m%/m?, NRMSE = when observed GAI < 3.8 m%/m? in training model and when observed
0.13). LNC scored weakest prediction (R? = 0.69, RMSE = 24.75 kg N/ GAI < 5.0 m%/m? in testing model. Significant overestimated GAI values
ha, NRMSE = 0.18). are discovered in Fig. 5g when observed GAI between 5.0 — 7.5 m?/m?.
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Fig. 9. Crop performance maps derived from estimated PH relative to the benchmark value at BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC).

4.3. Variable importance of the five best performance PLS-R models

Variable Importance (VI) of PLS-R models for CBP estimation help to
create accurate predictions. The more a model depends on a variable,
the more important it is in prediction. (Fig. 6a-e) shows the ranking of
the VI for the five best PLS-R models. Based on these data, the red edge
bands B5, B6, B7 and the short-wave infrared (SWIR) B11, B12 have a
significant contribution to all five models. Near infrared (NIR) B8, BSA
played important roles in shoot number, GAI, PH and AGDB models as
well. Visible blue (B2) was a top five contributor for the LNC model,
visible green (B3) for the AGDB model and visible red (B4) for the LNC,
AGDB and PH models.

4.4. Spatial distribution maps of crop growth performance.

4.4.1. Shoot number growth performance map

The estimated shoot number from the four winter wheat fields in
(Fig. 4) was mapped for BBCH30 (EoT). The estimated value was
compared relative to the benchmark values 543-1052 per m? in (Fig. 2)
to create crop performance map as in (Fig. 7). Among the four fields,
Hazel8, Meath1l and FlaxClose show the overall good crop performance
with 92%, 91%, and 94% respectively of the field area are on target or
exceeding target at this stage of crop development. In Ward2 field 71%
of the crop area did not reach the benchmark value of at least 543
shoots/m?.

4.4.2. Green area index growth performance map
In (Fig. 8), Hazel8, Meathl and FlaxClose show good crop
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Fig. 10. Crop performance maps derived from estimated LNC relative to the benchmark value at BBCH39 (FLBV).

performance. There were 0% of crops falling below target for achieving
good yield. Conversely, more than 50% of the crop area in Ward2 were
lower than the benchmark value of 0.9 m%/m? (Fig. 2). Ward2 showed a
slight increase in crop performance with crops on target relative to
benchmark GAI values of 4.0-7.0 m?/m? at BBCH39 (FLBV) from 40% to
51%. Taking a closer look at Hazel8 and Meath1, majority of the crop
area was on target for good yield at BBCH39 (FLBV). FlaxClose
continued to maintain crop development with 82% of the field
exceeding GAI = 7 m?/m?2. At BBCH59 (EE) when the canopy reaches
maximum size, there was a substantial change observed in Hazel8. The
crop performance plummeted to > 99% below the targeted GAI value of
5.8-7.4 m2/m2(Fig. 2). While the crop performance in Ward2 showed no
improvement and 96% of crops did not achieve GAI values of 5.8 m?/m?
at this stage. Meath1 and FlaxClose appeared to have stable crop per-
formance up to this stage.

4.4.3. Plant height growth performance map

(Fig. 9) revealed the distinct variation among the four fields at
BBCH39 (FLBV), BBCH59 (EE) and BBCH71 (FC). Overall result showed
that crops in Meath1 and FlaxClose performed well at BBCH39 (FLBV),
BBCH59 (EE) and BBCH71 (FC). Meath1 performed the best with 100%,
97% and 86% of crop area achieving benchmark values of 34-58 cm,
53-70 cm, 65-70 cm at three specified growth stages respectively
(Fig. 2). FlaxClose achieved > 99%,97% and 83% of crop area achieving
the benchmark height at BBCH39 (FLBV), BBCH59 (EE) and BBCH71
(FC). In contrast, Ward2 and Hazel8 had poor crop performance. Hazel8
initially has good crop condition at BBCH39 (FLBV) with 92% of crops
on target and 8.0% of crops exceeding target PH. The performance
reduced (Fig. 9) at BBCH59 (EE) and BBCH71 (FC). Ward2 consistently
had poor crop performance with 43% and 66% of crop area on target of
34-58 cm PH at BBCH39 (FLBV) and 53-70 cm at BBCH59 (EE). No
Sentinel-2 image was available at BBCH71 (FC) for Ward2 due to cloud
cover.

4.4.4. Leaf N content performance map

LNC performance map (Fig. 10) will keep the farmer informed of the
crop N status after the 3rd N split application at BBCH37 (FLVR). The
LNC distribution pattern of Ward2 was consistent with the other crop
properties (GAL, PH) already presented. About 63% of crop in Ward2
underperformed with leaf N deficiency below the benchmark value of
64.4-89.6 kg N/ha in (Fig. 2). Compared to Ward2, Hazel8, Meath1 and
FlaxClose had only 5%, 4% and 2% of crop leave N deficiency at
BBCH39 (FLBV). FlaxClose had the highest percentage of crops (95%)
exceeding the benchmark of 89.6 kg/ha in (Fig. 2).
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4.4.5. Aboveground dry biomass performance map

The AGDB crop performance distribution maps (Fig. 11) show, at the
beginning of the crop development, significant variation of AGDB per-
formance between Ward2, Hazel8, Meathl and FlaxClose. Hazel8,
Meath1 and FlaxClose had 99%, 100% and 99% respectively on par and
exceeding the AGDB benchmark values of 1.1 - 3.3 t/ha in (Fig. 2) at
BBCH30 (EoT). Ward2 had 90% of crop area below 1.1 t/ha. Moving
forward to BBCH39 (FLBV), the AGDB performance maps reveal good
performance of Hazel8, Meathl and FlaxClose but not for Ward2.
Similar to the GAI and PH, the AGDB performance of Hazel8 takes a
downward trend from 99% of crops achieving 1.1-3.3 t/ha AGDB at
BBCH39 (FLBV), to 97% achieving 5.8-7.8 t/ha AGDB at BBCH39
(FLBV) but only 3% achieving 9.7-15.1 t/ha at BBCH59 (EE) and 0% of
crops achieve 12.4-17.2 t/ha at BBCH71 (FC). Ward2 had downward
trend at BBCH39 (FLBV) with only 2% of crop area reaching the target
AGDB but shows sign of increment at BBCH59 (EE) with 42% of crops
reaching at least 9.7 t/ha.

5. Discussion

5.1. The performance of Sentinel-2 for crop biophysical properties
estimation

The correlation between the CBP of winter wheat and the Sentinel-2
spectral bands showed strong relationships at the growth stages when
the CBP contribute to significant change in plant morphology. This is
because the satellite sensors received reflectance from the green canopy
including all plant organs namely leaf, stem and ear that are photo-
synthetically active (Duveiller et al., 2011). As in (Fig. 1), even though
some CBP such as shoots and LNC have stopped increasing at BBCH30
(EoT) and BBCH39 (FLBV) respectively, other crop properties including
GAI, PH and AGDB continuing to increase and are the fundamental traits
contributing to canopy reflectance patterns (Segarra et al., 2020).

In the current work, the contribution of the spectral bands in
Sentinel-2 to estimate shoot number, GAI, LNC, PH and AGDB showed
that red-edge and SWIR were the most effective bands for all five CBP
(Fig. 6). (L. Liu et al., 2004) observed that red edge has strong positive
correlation with plant water content and canopy chlorophyll density.
While (Y. Liu et al., 2021) found that SWIR has a relatively high sensi-
tivity to the soil moisture and bare soil. Chlorophyll a and b are the
dominant pigments in the leaf chlorophyll. Chlorophyll a absorbs
maximum light from the red region, band 4 of Sentinel-2, while Chlo-
rophyll b reaches peak absorption in the blue region, band 2 of Sentinel-
2 (Milne et al., 2015). This is consistent with the result shown in
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Fig. 11. Crop performance maps derived from estimated AGDB relative to the benchmark value at BBCH30 (EoT), BBCH39 (FLBV), BBCH59 (EE), BBCH71 (FC).

(Fig. 6d) where band 2 and 4 are the major contributors to the LNC
model. Another influential visible band for the AGDB model was green
(band 3). The absorbance in band 3 is due to the anthocyanin (Zahir
et al., 2022). The anthocyanin pigment of plants acts as important plant
tissue protector against abiotic stressors such as extreme temperature,
deficient or excessive water, and mineral deficiency.

Segarra et al. (2020) showed that a combination of spectral indices
allows more advance measurement taking into account the robustness of
Sentinel-2’s design, specifically for precision agriculture and vegetation

monitoring. Our data support this contention.

5.2. Crop biophysical property performance distribution maps

The low shoot number of Ward2 raised the concern of insufficient
plant establishment or P and N status at 1st N split (Wang et al., 2021).
From the field notes, the farmer identified that Ward2 had poor plant
establishment due to the plant seeds being flushed away by heavy rain in
November 2019 and February 2020. However, at BBCH59 (EE), there
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was an inconsistent distribution pattern between GAI with AGDB and
PH. This could reflect a regrowth of the winter wheat crop and chlorosis
as reported in photos and observation notes. A severe drought hit the
Hazel8 field around middle of heading (MoH) BBCH55 (validated the
underperformance CBP from BBCH59 (EE). The crops were stressed and
most of the tillers and leaves had dropped according to the farmer’s
observation. In addition, Septoria attacked Hazel8 explaining decreases
in AGDB, PH and GAL Ruan et al. (2021) suggested that foliar diseases
destroy pigment, reduce biomass and water content, which explains the
results in this case. Unlike Ward2 and Hazel8, Meathl and FlaxClose
performed very well to meet the target for each CBP and achieve a good
yield. After the harvest, the yield information was reported by the
farmers from each field. Final grain yield of Ward2 and Hazel8 were 3.8
t/ha and 4.9 t/ha which are very low yields. Meath1 and FlaxClose had
good yields of 12.2 t/ha and 11.6 t/ha. Sentinel-2 data was capable of
being used to estimate the CBP and identify crop growth under-
performance. The underperforming zones could be detected well before
harvest as they occurred, and the combination of properties provides
insight into likely causes. To date, within-field crop growth performance
mapping based on the combination of crop properties have not been
sufficiently explored. These CBP performance maps could be a reliable
source of within-field yield mapping.

5.3. The limitation of the study and suggestion for future work.

The Sentinel-2 CBP PLS-R models for winter wheat were able to es-
timate the CBP at a sub field scale. It was demonstrated that the accuracy
of the CBP estimation depended on the prediction time window. In most
cases, a phenological trait approach was most effective. Further inves-
tigation is needed to create a larger dataset allowing sufficient samples
for smaller time windows. Besides increasing the sample size, the un-
certainty of the GAI PLS-R model in this experiment could be improved
through configuration of digital photos for ground truth GAI (Baret
et al.,, 2010). The generalization of the model was examined by using
both IE and UK data that represent variation in environment conditions,
climate and soil. Future studies to incorporate new winter wheat field
data to account for a wider geographical extent with variety in season,
soil, wheat varieties, and multiple years will improve the generalization
of model further. Another challenge of using Sentinel-2 to estimate the
CBP is cloud cover. At Ward2 field, there was no image available from
beginning of flowering (BoF) BBCH60 until harvest. An alternative so-
lution would be to explore Synthetic Aperture Radar data from Sentinel-
1 (Khabbazan et al., 2019).

6. Conclusions

Crop growth monitoring is an important input for crop management
decision making. Through measurable CBP such as shoot number, GAI,
AGDB, leaf N uptake, and crop height, crop growth condition can be
monitored thoroughly. Remote sensing is an efficient non-destructive
method to retrieve the CBP. This study has shown that models with
sufficient accuracy can be developed for the necessary biophysical
properties. These can usefully be combined to provide management
insights This valuable information will help farm managers to plan crop
husbandry strategies. This study showed the potential of using Sentinel-
2 with spectral signature modelling to detect the crop morphological
change related to shoot number, GAI, AGDB, LNC and AGDB indepen-
dently of geographical location, climatic zone, soil type and crop ge-
notype (within the area of the British Isles). Using Sentinel-2, the
prediction models are more accurate with the phenological trait
approach than modelling the full phenology from tillering to ripening.
Cloud cover and shadow are key factors that will limit the temporal
resolution of support services that might be developed using the
approached presented. Among the 10 spectral bands, red edge (Band 5,
6, 7) played a significant role in all the crop biophysical prediction
models. Future work should evaluate the robustness of the approach
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over larger areas and multiple years, testing for different climatic zones,
larger numbers of winter wheat varieties, soil types and environmental
conditions.
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