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Abstract
Record linkage is increasingly used, especially in medical studies, to combine data

from different databases that refer to the same entities. The linked data can bring
analysts novel and valuable knowledge that is impossible to obtain from a single
database. However, linkage errors are usually unavoidable, regardless of record linkage
methods, and ignoring these errors may lead to biased estimates. While different
methods have been developed to deal with the linkage errors in the generalized linear
model, there is not much interest on Cox regression model, although this is one of
the most important statistical models in clinical and epidemiological research. In
this work, we propose an adjusted estimating equation for secondary Cox regression
analysis, where linked data have been prepared by a third-party operator, and no
information on matching variables is available to the analyst. Through a Monte
Carlo simulation study, the proposed method is shown to lead to substantial bias
reductions in the estimation of the parameters of the Cox model caused by false links.
An asymptotically unbiased variance estimator for the adjusted estimators of Cox
regression coefficients is also proposed. Finally, the proposed method is applied to a
linked database from the Brest stroke registry in France.
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1 Introduction

Record linkage, also known as data matching, is a process of combining data from different

sources that refer to the same individuals or entities. Nowadays, data are collected every-

where by different sectors, and the ability of combining information from several databases

can lead to novel knowledge for analysts. For example, record linkage is widely used in

epidemiology and medical studies to enrich data on clinical performance and other health-

related information.1,2 In national censuses, population data files obtained at different

times can be linked to create longitudinal data sets.3 Record linkage may also be applied

early in a survey to link the sampling frame and administrative data.4 The linked data

allows for statistical analysis (e.g., Cox regression) which would not be possible with data

collected solely by means of the survey.

The record linkage process is straightforward if unique identifiers (e.g. Social Security

Number) are available and free of error in both databases. However, this information is of-

ten not available, or sometimes cannot be used due to ethical reasons. In such cases, record

linkage methods may only use partial identifying information shared between databases,

such as name, address, and gender. The variables used for comparison are called matching

variables. Over the last decades, several methods have been developed to link data effi-

ciently,5,6 such as the frequentist approach7–9 and the Bayesian approach.10,11 However,

because the matching variables are not unique and are likely to contain inaccuracies, link-

age errors are unavoidable. The two kinds of record linkage errors are false links (false

positives, i.e. a non-matched pair predicted as a link), and missed links (false negatives,

i.e. a matched pair failed to be predicted as a link). Ignoring these errors may cause sub-

stantial bias in the analysis model,12 causing misleading inference. It is therefore important

to account for linkage errors in statistical analysis.
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In published literature, two positions are usually considered to account for linkage

errors in statistical analysis. Under the primary analysis framework, the data analyst is

supposed to be granted access to the full linkage process, including knowledge of matching

variables. From this perspective, Scheuren and Winkler13 made use of the two highest

matching weights of each record pair to reduce the bias of ordinary least square estimators

under a linear regression model. However, the proposed estimators are not unbiased in full

generality. Lahiri and Larsen14 discussed this problem and proposed unbiased estimators

in the same context, using the posterior matching probabilities obtained from the Fellegi-

Sunter record linkage model. Hof and Zwinderman15 extended the method by Lahiri and

Larsen14 for multiple links, and also proposed alternative estimators based on weighted

least square methods, both for linear and logistic regression models. Recently, Han and

Lahiri16 adapted the approach by Lahiri and Larsen14 to provide a system of estimating

equations, which may lead to unbiased estimators under a generalized linear model.

In some applications, the analysis step is separated from the record linkage, e.g. when

the matching variables contain confidential information. This is the secondary analysis

framework, in which the data analyst is only provided access to the final linked data,

whereas the (unknown) record linkage process has been performed by a third-party op-

erator.17 Starting from this perspective, Chambers18 proposed the exchangeable linkage

error (ELE) model, and bias-corrected estimating equations for both linear and logistic

regression modeling. Under the ELE model, it is assumed that linked records may be split

into distinct blocks inside which the probability of correct linkage and the probability of

incorrect linkage are constant. Following this work, several authors19–22 developed meth-

ods for secondary analysis of linked data. Recently, Zhang and Tuoto23 proposed a pseudo

ordinary least square method for secondary linkage-data linear regression analysis, which

can accommodate heterogeneous linkage errors and incomplete match space problems.
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Although the Cox proportional hazard model24 is of routine use for survival analysis,

comparatively very few papers have focused on accounting for record linkage errors in this

context.25 performed a simulation study emphasizing the impact of missing matches on

the parameter estimation of the Cox model, but did not propose any solution to obtain

unbiased estimators for the model parameters. Hof et al.26 proposed a joint modeling for

survival analysis and probabilistic record linkage. However, this analysis model is developed

under a primary analysis viewpoint, while in many applications, a secondary analysis is

more likely. In this work, we reason from the secondary analysis position. We propose a

model to account for record linkage errors, and an estimation method to correct for the

bias caused by false link errors in the Cox regression model.

The article is organised as follows. In Section 2, we propose a new estimating equation,

which leads to an approximately unbiased estimation of the parameters for the Cox model

with linked data. A variance estimator is also proposed. In Section 3, we evaluate the

proposed estimator and the associated variance estimator through simulation studies. In

Section 4, an application on a real dataset is presented. Finally, possible further research

is discussed in Section 5.

2 Cox regression analysis with linked data

2.1 Cox regression model

The Cox proportional hazard model24 is the most popular method to assess the effect of

covariates X on a survival time. This is therefore one of the most important models in

medical research. Suppose that a random sample of n units is available. For each unit

i = 1, . . . , n, we let T̃i be a non-negative random variable, which denotes the duration
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between a time origin and the time of occurrence of some event of interest. We suppose

that T̃i is right censored, which means that the event is observed only if it occurs before

censoring time Ci. For units i = 1, . . . , n, we therefore observe Ti = min(T̃i, Ci). We let

δi = 1{T̃i≤Ci} denote the variable indicating whether the duration time is observed prior

to censoring. The vector of covariates is denoted as Xi = (X1
i , . . . , X

p
i )

T . In this section,

we first suppose that Xi is observed for any unit in the sample.

According to the Cox model, the hazard function of an event at time t is given by

λ(t|Xi) = λ0(t) exp
(
XT

i β0

)
, (1)

where β0 = (β01, . . . , β0p)
T is a p-vector of unknown parameters and λ0(t) is a common

baseline hazard function. Assuming that the survival times are observed on a finite interval,

and that C is independent of T̃ conditionally on X, a consistent estimator β̂ of β0 may be

obtained by solving the estimating equation:

H0(β) ≡
1

n

n∑
i=1

δi

{
Xi −

∑n
j=1 Yj(Ti) exp

(
XT

j β
)
Xj∑n

j=1 Yj(Ti) exp
(
XT

j β
) }

= 0, (2)

where Yj(t) = 1(Ti≥t) is an at-risk indicator.27 We call (2) the theoretical estimating

equation. This is also the maximum partial likelihood (mpl) estimation. Under some mild

assumptions, a consistent estimator of the covariance matrix of β̂ is given by27

V̂mpl(β̂) =
{
−n∇H0(β̂)

}−1

. (3)

2.2 Linkage error model

Suppose that we have a dataset A of nA time-to-event data. If the covariates Xi were known

for any unit i ∈ A, the parameter of the Cox model would be estimated by solving the

theoretical estimating equation (2). However, if the covariates are not known in database

A, equation (2) may not be solved in practice.
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In order to obtain the needed covariates, a linkage is performed with a dataset B of size

nB ≥ nA, containing in particular the auxiliary variables Xi. For any unit i in A, we note

Zi for the vector of auxiliary values resulting from the linkage process. Reasoning from the

secondary analysis perspective, we do not have access to the matching variables and do not

know the actual linkage process.

We assume that the linkage error is non-informative of the regression model, i.e. may

depend on the errors in the matching process, but not on the model covariates nor on the

survival time.28 This is the key assumption of most secondary analysis approaches in the

literature, for which Zhang and Tuoto23 have proposed a diagnostic test. Adopting the

modelling approach of Copas and Hilton,29 we suppose that both databases are partitioned

into blocks Av and Bv, v = 1, . . . , V , and that the record linkage is performed independently

in these blocks. Also, we suppose that for any entity i ∈ Av, we have:

Zi =

 Xi with probability αv,

X(j) with probability 1− αv,
(4)

where (j) stands for some unit randomly selected in database Bv. In other words, it

is supposed that for any i ∈ Av, the correct entity is linked to i with probability αv,

otherwise the unit j linked to i is randomly selected in Bv. It should be noted that we

implicitly assume that A is a subset from B, and that all entities in A can therefore have

some matching records in B. Also, we assume that there is at most one link for each record

of both databases. In practice, there will often be some entities of A which remain unlinked

after the linkage process. This may be due to errors in the matching variables, or to the fact

they are not sufficiently discriminant for identifying links. Such incomplete record linkage

can be problematic for further analysis if the missed links are not at random.25 There are

some discussions on this incomplete matching space problem.19,23,30 This problem is out of

the scope of our work. We therefore assume that the linkage is complete, or alternatively
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that any missing links are independent on the time of event and model covariates.

2.3 Adjusted estimating equation

By naively treating the linked covariates Zi as if they were the true covariates Xi for the

units i ∈ A, an estimator of β0 may be obtained by solving the following equation:

Hnaive(β) ≡
1

nA

V∑
v=1

∑
i∈Av

δi

{
Zi −

∑V
v=1

∑
j∈Av

Yj(Ti) exp(Z
⊤
j β)Zj∑V

v=1

∑
j∈Av

Yj(Ti) exp(Z⊤
j β)

}
= 0. (5)

We call (5) the naive estimating equation. Since some units are incorrectly linked, it may

lead to biased estimates, see the simulation results in Section 3.

We propose a bias-corrected estimating equation, accounting for the fact that from

the hit-miss model (4), the covariates may be incorrectly linked. We first introduce some

notations. Let us define

g(β,Xi) = exp(X⊤
i β) and h(β,Xi) = exp(X⊤

i β)Xi.

Also, let X̄Bv , ḡBv(β) and h̄Bv(β) denote the means of Xi, g(β,Xi) and h(β,Xi) over Bv,

respectively. The linkage-error adjusted estimating equation (AEE) is given by

H̄(β) ≡ 1

nA

V∑
v=1

∑
i∈Av

δi

{
X∗

i (αv)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

}
= 0 (6)

where, for any i ∈ Av,

X∗
i (αv) = α−1

v Zi − (α−1
v − 1)X̄Bv ,

g∗j (αv,β) = α−1
v g(Zj,β)− (α−1

v − 1)ḡBv(β), (7)

h∗
j(αv,β) = α−1

v h(Zj,β)− (α−1
v − 1)h̄Bv(β).
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We prove in Appendix A that H̄(β) is an (approximately) conditionally unbiased esti-

mator for the function H0(β) involved in the theoretical estimating equation. Solving the

proposed AEE therefore leads to a consistent estimator of β, see the simulation results in

Section 3.

Since there is no closed-form solution for the estimating equations considered above,

an iterative method like the Newton-Raphson algorithm is commonly used in practice.

Also, the probabilities αv may be (somewhat arbitrarily) specified by the record linkage

practitioner, or estimated from a validation sample18,23 if their true values are unknown.

2.4 Variance estimator

In this section, we discuss variance estimation for the estimator of the parameter β0 ob-

tained by solving the AEE given in (6). We first note that several sources of variance need

to be accounted for: a) the (usual) variability associated to solving a sample-based esti-

mating equation, b) the variability associated to the linkage process, and c) the variability

associated to the estimation of the probabilities αv, v = 1, . . . , V . Using the variance es-

timator given in (3) fails to account for all these sources of variability, and therefore leads

to an underestimation of the variance, see the simulation results in Section 3.

We propose a sandwich-like variance estimator, which reads as follows:

V̂AEE(β̂) ≡ {∇H̄(β̂)}−1 × V̂{H̄(β0)} × {∇H̄(β̂)}−1, (8)

with V̂{H̄(β0)} = V̂1{H̄(β0)}+ V̂2{H̄(β0)}. (9)

The first component V̂1{H̄(β0)} in (9) accounts for the variability in (c). Under the

assumption that the validation samples Sv used for such estimation are selected in the

datasets Av through simple random sampling without replacement, this variance estimator
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is

V̂1{H̄(β0)} =
V∑

v=1

H̄2,v(α̂v, β̂){H̄2,v(α̂v, β̂)}⊤ ×
(

1

nSv

− 1

nAv

)
nSv

nSv − 1

1− α̂v

α̂3
v

,

where nSv is the sample size of the validation set Sv, and

H̄2,v(αv,β) =
1

nA

∑
i∈Av

δi{(Zi − X̄Bv
)

−
∑

j∈Av
Yj(Ti)

{{
h(β,Zj)− h̄Bv (β)

}
−R∗

i (αv,β) {g(β,Zj)− ḡBv (β)}
}∑

j∈Av
Yj(Ti)g∗j (αv,β)

}.

with

R∗
i (αv,β) =

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑

j∈Av
Yj(Ti)g∗j (αv,β)

.

The second component V̂2{H̄(β0)} in (9) accounts for both the variability in (a) and (b).

We have

V̂2{H̄(β0)} =
s2H(β̂)

nA

where

s2H(β) =
1

nA − 1

V∑
v=1

∑
i∈Av

{
Hi(β)−

1

nA

V∑
v=1

∑
j∈Av

Hj(β)

}2

and

Hi(β) = δi

{
X∗

i (α̂v)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(α̂v,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (α̂v,β)

}
.

The derivation of this variance estimator is explained in detail in Appendix B. It is evaluated

empirically in the next section through a simulation study.
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3 A simulation study

In this section, we evaluate the performance of the proposed estimator for the parameter

of the Cox model, and the associated variance estimator. The data generation process is

first presented in Section 3.1. The estimation methods that we evaluate are presented in

Section 3.2, along with the performance indicators. The simulation results are given in

Section 3.3. To facilitate interpretation and to study the influence of different simulation

parameters, we first consider in Section 3.3.1 scenarios with a single block. Scenarios with

multiple blocks and different levels of linkage quality are considered in Section 3.3.2.

3.1 Data generation

Assume that there are two datasets A with nA individuals, and B with nB ≥ nA individuals.

We first generate the nB units in database B with p = 2 covariates, including a continuous

variable X1 ∼ N (0, 1) and a binary variable X2 ∼ Bernoulli(0.7). Given the p-vector of

coefficients β = (β1, β2)
⊤ = (0.5,−0.5)⊤, the true survival time T̃B is generated as

T̃B = − log(U)

λ exp (X⊤β)
(10)

where U follows a standard uniform distribution,31 and λ is fixed as equal to 1 for simplicity.

A constant censoring time is chosen (from 100 000 independent data generation runs) to

yield a censoring rate of approximately 0.25 over all the simulation runs.

Without loss of generality, we suppose that the units in dataset A are the nA first ones

in dataset B. In other words, a pair of individuals (ai, bj) for i ∈ A and j ∈ B is a match

if i = j = 1, . . . , nA. The survival times TA
i for i ∈ A are therefore obtained as TA

i = TB
i

for i = 1, . . . , n. Given the values of α, the linked values Z for covariates in database A are

obtained according to the linkage error model (4).
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If there are multiple blocks, data for each block were generated independently as follows.

Firstly, for each block v, we generate nBv observations (T, δ,X) from the Cox model de-

scribed in equation (10). Note that the value of the true parameters β and the distribution

of X are the same over blocks v. Then, we choose randomly nAv ≤ nBv survival times (T, δ)

for block Av. All generated nBv values of X will be placed in block Bv. Secondly, given

the value of αv for block v, nAv linked values Z for block Av are obtained by the linkage

error model (4). Inside each block Av, an audit sample of 10% of the units is selected by

simple random sampling without replacement, and the proportion of correct links in the

audit sample is used as the estimator α̂v.

3.2 Methods and performance indicators

For each scenario, we consider the following estimation methods. The Theoretical is

obtained by solving the theoretical estimating equation (2) with the true values of covariates

X. This is a benchmark estimation strategy, since it cannot be applied on linked data in

practice. The Naive is obtained by solving the naive estimating equation (5) with linked

data. The Validation is obtained by solving the theoretical estimating equation (2) with

only correct linked pairs in the validation set. Note that, contrarily to Theoretical, this

method may be used in practice if an audit sample is available. For each of these three

methods, the variance of the estimator of the parameter in the Cox model is estimated by

using the variance estimator V̂mpl(β̂) in equation (3), implemented by means of R survival

package.

For each scenario, we also consider estimation methods making use of the proposed

approach. The TAEE (theoretical adjusted estimating equation) is obtained by solving the

proposed estimating equation (6) with the theoretical value of αv. The AEE (adjusted

estimating equation) is obtained by solving the proposed estimating equation (6), where
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αv is estimated by taking the proportion of correct links in the audit sample. For each

method, the Newton-Raphson algorithm is applied with a maximum of 20 iterations and

an initial parameter value β = (0, 0)⊤. We also report the number of time (Fails) when

the Newton-Raphson algorithm does not converge. For AEE, the variance is estimated by

using V̂(β̂) in equation (34). For TAEE, the variance is estimated by setting V̂1{H̄(β0)} = 0

in V̂(β̂). For both TAEE and AEE, we also compare to the variance estimator V̂mpl(β̂) in

equation (3).

The data generation and the estimation process are repeated R = 1, 000 times. Over

these simulations, we compare the estimation methods in terms of the Monte Carlo bias

BMC(β̂) =
1

R

R∑
r=1

(
β̂(r) − β

)
,

with β̂(r) the estimator computed on the r-th sample. We also compute the Monte Carlo

standard deviation:

SdMC(β̂) =

√√√√ 1

R− 1

R∑
r=1

(
β̂(r) − ¯̂

β
)2
.

For the variance estimation methods, we compute the Monte Carlo estimates of standard

deviation

Ŝd =

√√√√ 1

R

R∑
r=1

V̂(r)(β̂(r)),

with V̂(r) a variance estimator computed on the r-th sample. The Monte Carlo estimate

of standard deviation is compared to the true standard deviation Sd(β̂), approximated by

SdMC(β̂).
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3.3 Simulation results

3.3.1 One block situation

In this section, we consider the situation when the data sets are generated as presented in

Section 3.1, with V = 1 block only. We consider two cases. In the first one, the sample

sizes nA = 1, 000 and nB = 2, 000 are held fixed, and we let the probability of correct link

α vary in {0.75, 0.85, 0.95}. In the second one, the probability of correct link is held fixed,

equal to 0.85. We let nA vary in {500, 1000, 2000}, with nB = 2nA.

The simulation results obtained in Case 1 are presented in Table 1. As expected,

the Theoretical method leads to an unbiased estimation of the parameters. The Naive

method leads to severely biased estimators, especially with the smaller value α = 0.75. The

bias ranges from 0.029 to 0.147, corresponding to an absolute relative bias between 5.8 %

and 29.0 %. This bias decreases as the probability of correct link increases, as expected.

The proposed methods TAEE and AEE lead to approximately unbiased estimation of the

parameters, with a larger variability for AEE as expected. The bias under AEE ranges from

0.000 to 0.015, corresponding to a reduction of the relative bias (as compared to Naive)

ranging between 5.0 % and 27.6 %. We note that the variability under both TAEE and

AEE is but only moderately increased, as compared to Theoretical. The Validation

method also leads to unbiased estimators of the Cox regression coefficients, but with a

larger variability than both TAEE and AEE.

We now turn to the variance estimators. The variance estimator V̂mpl(β̂) (3) performs

well for Theoretical, Naive and Validation, but underestimates the variability of the

estimators obtained under TAEE and AEE. This is due to the fact that this variance estimator

only accounts for the variability of the sample-based estimating equation. On the other

hand, the proposed variance estimator performs well, except for β1 when α = 0.75, in which
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case the variance is underestimated. We have also computed coverage probabilities (CP)

for normality-based confidence intervals with a nominal coverage of 95%. We note that the

coverage probability is very poorly respected in case of Naive, even in situations when the

bias is moderate.

β̂1 β̂2

α Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

0.75 Naive 0 0.147 0.041 0.039 0.050 0.143 0.081 0.081 0.577

Validation 0 0.017 0.160 0.156 0.941 0.003 0.318 0.302 0.936

TAEE 0 0.007 0.072 0.041 0.069 0.945 0.013 0.124 0.081 0.129 0.957

AEE 4 0.009 0.082 0.041 0.085 0.962 0.015 0.131 0.081 0.138 0.962

0.85 Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

0.95 Naive 0 0.033 0.041 0.040 0.862 0.029 0.083 0.080 0.928

Validation 0 0.015 0.139 0.137 0.961 0.004 0.276 0.266 0.939

TAEE 0 0.001 0.045 0.040 0.051 0.965 0.003 0.089 0.080 0.101 0.977

AEE 0 0.000 0.048 0.040 0.054 0.973 0.004 0.090 0.080 0.103 0.981

Table 1: Simulation results in Case 1 with three different values for the probability of

correct link α ∈ {0.75, 0.85, 0.95}

The simulation results obtained in Case 2 are presented in Table 2. We observe no

qualitative difference compared to Case 1. The TAEE and AEE lead to almost unbiased

estimations for the regression coefficients, and the proposed variance estimator performs

well for both methods. The bias obtained under the Naive method does not decrease as the

sample size increases. As could be expected, the variability obtained under any estimation
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method decreases as the sample size increases.

β̂1 β̂2

nA Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

500 Theoretical 0 0.002 0.056 0.057 0.954 0.005 0.113 0.114 0.955

Naive 0 0.089 0.057 0.056 0.636 0.087 0.113 0.114 0.876

Validation 0 0.033 0.222 0.215 0.951 0.024 0.435 0.419 0.949

TAEE 0 0.009 0.078 0.058 0.085 0.963 0.010 0.145 0.114 0.161 0.972

AEE 1 0.015 0.104 0.058 0.104 0.976 0.015 0.161 0.114 0.172 0.977

1000 Theoretical 0 0.000 0.039 0.040 0.961 0.003 0.080 0.080 0.950

Naive 0 0.092 0.040 0.039 0.347 0.088 0.081 0.080 0.799

Validation 0 0.016 0.149 0.146 0.955 0.000 0.296 0.283 0.931

TAEE 0 0.002 0.055 0.041 0.059 0.964 0.007 0.103 0.080 0.113 0.969

AEE 0 0.005 0.063 0.041 0.066 0.969 0.010 0.110 0.080 0.118 0.972

2000 Theoretical 0 0.000 0.028 0.028 0.945 0.000 0.056 0.057 0.960

Naive 0 0.092 0.029 0.028 0.111 0.092 0.056 0.057 0.640

Validation 0 0.006 0.103 0.100 0.932 0.003 0.197 0.197 0.948

TAEE 0 0.001 0.039 0.029 0.041 0.953 0.000 0.071 0.057 0.080 0.971

AEE 0 0.002 0.043 0.029 0.046 0.964 0.001 0.075 0.057 0.082 0.969

Table 2: Simulation results in Case 2 with three different values for the sample size nA

3.3.2 Multiple blocks

In this section, we consider the situation when the data sets are generated as presented

in Section 3.1, with V = 3 blocks only. We take (nA1 , nA2 , nA3) = (250, 500, 250) and

(nB1 , nB2 , nB3) = (500, 1000, 500). Also, we consider a first scenario where (α1, α2, α3) =

(0.6, 0.7, 0.8); a second scenario where (α1, α2, α3) = (0.7, 0.8, 0.9); a third scenario where

(α1, α2, α3) = (0.8, 0.9, 1.0).
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Let ᾱ be the weighted average of α1, . . . , αv defined as

ᾱ =

∑V
i=1 nAvαv∑V
i=1 nAv

.

This leads to a percentage of correct links approximately equal to ᾱ = 70% in Scenario 1,

ᾱ = 80% in Scenario 2 and ᾱ = 90% in Scenario 3. In this context, we also consider two

additional versions of our proposed methods, when we are unable to access to the value αv

of each block, but we have only access to their weighted average: TAEE-ᾱ where the TAEE

is used with V = 1 and true value of ᾱ, and AEE-ᾱ where the AEE is used with V = 1 and

estimated value of ˆ̄α.

The simulation results are presented in Table 3, and confirm the good results of the

proposed methods observed in the situation of one block. Scenarios 1 and 2 are the cases

when the behaviour of the Naive method is particularly poor, with a very large bias due to

a larger number of false links, and very poor coverage for the confidence intervals. On the

other hand, AEE performs well in reducing the estimation bias even in this situation. The

proposed variance estimator also performs well in these cases. The standard errors of TAEE

and AEE estimators decrease as ᾱ increase, i.e. by going from Scenario 1 to Scenario 3 in

Table 3. As explained in Section 2.4, there are three sources of variance in the estimation

process: a) the variability associated to solving a sample-based estimating equation, b)

the variability associated to the linkage process, and c) the variability associated to the

estimation of the probabilities αv. Since the sample size is kept constant, the term a)

is likely not affected by the value of αv. The term b) decreases as αv increases, as the

variance in the hit-miss model (4) does so. The term c) also decreases as αv increases,

as illustrated by the fact that V̂1 depends on (1 − α)/α3, which is decreasing as α → 1.

Concerning the coverage probability of normality-based confidence intervals, we note that

they are well respected under the proposed methods, although the confidence intervals are
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slightly conservative when the variance estimators are so.

β̂1 β̂2

Scenario Methods Fails BMC SdMC Ŝdmpl ŜdAEE CP BMC SdMC Ŝdmpl ŜdAEE CP

* Theoretical 0 0.002 0.040 0.039 0.953 0.002 0.078 0.078 0.944

1 Naive 0 0.171 0.041 0.039 0.010 0.171 0.082 0.081 0.440

Validation 0 0.021 0.161 0.161 0.961 0.002 0.322 0.315 0.945

TAEE 1 0.018 0.097 0.042 0.136 0.944 0.013 0.143 0.081 0.144 0.947

AEE 17 0.030 0.136 0.042 0.128 0.961 0.022 0.177 0.081 0.183 0.960

TAEE-ᾱ 0 0.017 0.086 0.043 0.139 0.943 0.013 0.139 0.081 0.141 0.951

AEE-ᾱ 9 0.021 0.108 0.042 0.144 0.964 0.016 0.153 0.081 0.168 0.963

2 Naive 0 0.118 0.041 0.039 0.167 0.120 0.084 0.080 0.660

Validation 0 0.018 0.151 0.150 0.948 0.002 0.294 0.293 0.946

TAEE 0 0.007 0.066 0.041 0.064 0.952 0.003 0.118 0.080 0.122 0.953

AEE 1 0.015 0.086 0.041 0.081 0.969 0.010 0.129 0.080 0.135 0.961

TAEE-ᾱ 0 0.007 0.064 0.041 0.063 0.955 0.003 0.116 0.080 0.120 0.959

AEE-ᾱ 0 0.009 0.073 0.041 0.075 0.966 0.006 0.123 0.080 0.127 0.963

3 Naive 0 0.060 0.041 0.040 0.662 0.061 0.082 0.080 0.882

Validation 0 0.016 0.143 0.140 0.945 0.006 0.272 0.275 0.950

TAEE 0 0.005 0.052 0.041 0.056 0.965 0.004 0.097 0.080 0.108 0.967

AEE 0 0.007 0.058 0.041 0.062 0.973 0.006 0.102 0.080 0.112 0.971

TAEE-ᾱ 0 0.004 0.051 0.041 0.055 0.965 0.004 0.096 0.080 0.107 0.972

AEE-ᾱ 0 0.005 0.055 0.041 0.060 0.970 0.005 0.099 0.080 0.109 0.973

Table 3: Simulation results with 3 blocks with different linkage quality

When the block-specific true link rate is not correlated with the block-specific distribu-

tion of T and X, e.g. this multiple blocks simulation set up, a single-ᾱ adjustment (TAEE-ᾱ

and AEE-ᾱ) can still perform well. The main result in Table 3 concerning AEE and AEE-ᾱ is

that they both lead to virtually unbiased estimators. The bias is indeed always smaller with
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AEE-ᾱ, but the difference is no greater than 0.009, which is very small as compared to the

value of the parameters (β1 = 0.5 and β2 = −0.5). Closeness between TAEE and TAEE-ᾱ

confirms the somewhat favourable simulation setup of non-informative linkage error. Re-

duced bias of AEE-ᾱ compared to AEE-α may be due to the non-linearity of adjustment,

such that the additional variance of AEE-α adjustment is manifested in terms of the bias of

adjustment. Moreover, a single-ᾱ adjustment can provide a smaller variance. In practice,

this is very helpful when the analyst cannot conduct auditing, and when the linker can

only provide a single overall estimate of α. However, the linkage error may be informative,

such as when β and α vary across the blocks in a correlated manner. Block-specific adjust-

ment would then be clearly more helpful at reducing the bias than adjustment by a single ᾱ.

Some additional simulation results are presented in the supplementary material. In partic-

ular, we have studied the situation when the non-informative assumption is not true. The

simulation results in Tables S.1 and S.2 indicate that the Cox parameters estimated under

TAEE and AEE wil be more biased when α is dependent on variables from the Cox model.

This is especially true when α is small and dependent on T̃ (see Table S.2). This emphasizes

the importance of the non-informative linkage error assumption. We note, however, that

the proposed methods still perform better in this case than the Naive method. We have

also performed a sensitivity analysis, evaluating the performance of TAEE with incorrect

values for the parameter α. The results are presented in Table S.3. As could be expected,

the bias in the estimated parameters increases with the error in α, but the estimator remain

less biased than with the Naive method if the error is moderate.
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4 Application

4.1 Data description

The proposed model is fitted to a linked dataset between a registry of strokes, denoted by

AVC ("Accident Vasculaire Cérébral"), and an extraction of the national health information

system of France, denoted by SNDS ("Système national des données de santé"). The AVC

recorded all stroke cases of patients aged 15 years and older, who have lived in the Brest area

from 2008 to the end of 2018. SNDS is an extraction from the French health information

system, and contains patients for whom at least one medical service or hospitalization were

recorded since 2008 while they were living in the Brest area. Due to the limited information

in the registry, there is a demand of linking AVC and SNDS to enrich the registry for further

analyses.

The linkage was performed by a separate team, and due to confidentiality restrictions,

we were not allowed to access to the matching data and have limited knowledge about

the linkage. A deterministic record linkage method was used. This is the simpler linkage

approach, which ideally requires agreement on all matching variables, or otherwise on a

(large) subset of these variables. In the linkage process, there are 9 matching variables,

and the linkage is implemented sequentially. In the first step, it is required that the 9

matching variables agree for a pair to be viewed as a link. The corresponding pairs are

then suppressed, and among the remaining ones it is asked that 8 matching variables agree

for a pair to be viewed as a link. The procedure continues on similarly. The process is

summarized in Table 4.

After performing the linkage process, a dataset of 3, 535 patients has been obtained.

It contains the survival time, the censoring indicator and three covariates (age, gender,

type of stroke). We suppose that these covariates were obtained from SNDS by the linkage
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process, and may therefore be affected by linkage errors. A description of the dataset is

presented in Table 5. In this application, we are interested in comparing the risk of death

after the first stroke between males and females, taking into account the age and the type

of stroke.

Steps
Number of agreements

among 9 matching variables
Number of record pairs

1 9 1,792

2 8 170

3 7 11

4 6 1,500

5 5 58

6 4 4

Total 3535

Table 4: Description of the linkage process

4.2 Cox regression analysis

In this application, we use the Cox regression model (1) to model the relationship between

the survival time and three explanatory variables (age, gender, type of stroke). We consider

AVC as database A and SNDS as database B in our proposed model. In the naive approach,

we use the linked data as if it was directly observed. However, the simulation results in

Section 3.3 show that linkage errors lead to biased estimators of the regression coefficients.

Therefore, we also use the adjusted estimating equation (6).

21



Variable Description Source

Time
Time (in days) between the first stroke

and death or end of follow-up (31/12/2018)
AVC

Censoring
If the patient died before 01/01/2019:

1 = Yes, 0 = No
AVC

Age Age (in years) at the first stroke SNDS

Gender Sex: 0 = Male, 1 = Female SNDS

Type AVC Type of stroke (0 = Ischemic, 1 = Hemorrhagic) SNDS

Table 5: Description of the linked database

For the record pairs obtained at each step, the percentage of matching variables which

are in agreement are seen as a proxy of the probability that the matching is correct. For

example, for the 1, 500 pairs obtained at step 4, the probability that the matching is correct

is estimated as 6/9 = 0.667. We suppose that the linked dataset is comprised of two blocks,

so as to avoid the possibility of dependency between the linkage process performed into the

different blocks. The estimates of αv for each block v are obtained as follows:

• Block 1: 1,792 record pairs are obtained from Step 1, with α̂1 = 9/9 = 1.

• Block 2: 1,743 remaining record pairs, with

α̂2 =
170× 8/9 + 11× 7/9 + 1500× 6/9 + 58× 5/9 + 4× 4/9

1743
≃ 0.694.

Besides, because the covariates are not available for any units in the SNDS, the adjust-

ment terms in (7) cannot be computed since the proposed approach requires full access
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to the set of covariates in database B. We therefore use the proxy solution suggested in

equation (35), which requires that the covariates are known on the linked dataset only.

Simulations in Appendix C show that if the database A may be seen as a random sample

from the database B, or when the sampling leading to A is independent of the covariates,

this method leads to comparable results as the method proposed in Section 2.3.

Naive method AEE

coef sd hr coef sd hr

Age 0.059 0.002 1.061 0.070 0.001 1.073

Sex -0.120 0.047 0.887 -0.145 0.067 0.865

Type AVC 0.773 0.058 2.165 0.846 0.082 2.330

Table 6: Estimated coefficients (coef), estimated standard deviation of the estimated co-

efficients (sd), and the hazard ratio (hr = exp(coef)) of the naive method and the AEE

method from linked data.

In Table 6, we present the estimations arising from both the Naive and the AEE methods.

The two methods decidedly lead to different estimations. If the Naive method is used, the

hazard ratio of sex is 0.887, which means that given the same age and the same type of

stroke, the female’s risk of death after the first stroke is 0.887 times smaller than male’s.

On one hand, this ratio from the adjusted estimating equation approach is just 0.865.

5 Discussion

In this work, our simulations proved that the naive use of linked data may lead to substantial

bias in a Cox regression model. Therefore, under the secondary analysis position where the
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analyst can access to linked data only, we have proposed an adjusted estimating equation

for linked data, which can correct the bias from the naive estimating equation. A variance

estimator, which can capture three sources of variability has also been proposed. However,

proving the asymptotic normality of the resulting estimators remains challenging.

Through various simulation scenarios with one block and also multiple blocks, the pro-

posed adjusted estimating equation is shown to lead to substantial bias reductions as com-

pared to the naive estimating equation. Additional simulations study the non-information

linkage assumption and the sensitivity analysis of α̂ are also presented in the Supplementary

material.

We have also proposed different variants of the approach for scenarios where information

is limited. For example, when the block-specific linkage rate αv is not available for each

block, our method still works well by using the average true link rate ᾱ. If the analysts are

not able to fully access the covariates in database B, we proposed to use the adjustments

in (35) in the Appendix, which still maintain the good performance of the AEE if A is

a random sample from B. Detailed simulation results are presented in Table S.4 of the

Supplementary material. In addition, a linear approximated estimating equation (LAEE),

which can provide better estimation than AEE with small sample size, is given in Table

S.5 of the Supplementary material.

Although the proposed method has improved on the naive estimation, there are per-

spectives that need to be developed. In this work, we assumed that observations on survival

time are already available and all explanatory variables are obtained from another database.

In practice, there are some cases when a part of the covariates is also available in A, and

only a part of the covariates is acquired from B by linkage. In addition, the covariates

can be obtained from several sources with different linkage processes. The proposed model

should be developed to adapt to these cases.
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We also supposed that the survival time and the censoring indicator are observed in

database A, while the explanatory variables are obtained from database B by a linkage

process. However, the opposite situation may occur in practice: the covariates may be

available for the units in A, while the survival time needs to be obtained from another

database B by a linkage process. The proposed adjustment in equation (6) only accounts

for the error associated to Zi. If Ti and δi are linked from dataset B, they are prone to

linkage errors which need to be accounted for in modifying the estimating equation. This

requires a different adjustment approach.

A Expectation of the adjusted estimating equation

The proposed adjusted estimating equation is given by

H̄(β) ≡ 1

nA

V∑
v=1

∑
i∈Av

δi

{
X∗

i (αv)−
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

}
= 0. (11)

Let F = {(Ti, δi), i = 1, . . . , nA and Xj, j = 1, . . . , nB} denote the information related

to the duration times and censoring indicators for the units in A, and to the true values of

covariates for all the units in B. We have

E{H̄(β) | F} =
1

nA

V∑
v=1

∑
i∈Av

E

{
δi

[
X∗

i −
∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

] ∣∣∣∣∣ F
}

=
1

nA

V∑
v=1

∑
i∈Av

δi

E(X∗
i | F)︸ ︷︷ ︸
E1

−E

(∑V
v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)

∣∣∣∣∣ F
)

︸ ︷︷ ︸
E2

 (12)

For each i ∈ Av and j ∈ Bv, let lij be an indicator equal to 1 if unit i and j are linked,
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and to 0 otherwise. Then for each i ∈ Av, we have Zi =
∑

j∈Bv
lijXj, and

E(Zi | F) =
∑
j∈Bv

XjE(lij | F).

Under the non-informative assumption for the linkage process, we obtain from the hit-miss

model (4) that

E(lii | F) = αv + (1− αv)(nB)
−1,

E(lij | F) = (1− αv)(nB)
−1 for j ∈ B \ {i},

which leads to

E(Zi | F) = αvXi + (1− αv)X̄Bv

From equation (7) and under the non-informative linkage assumption, we have

E1 = E
{
α−1
v Zi − (α−1

v − 1)X̄Bv | F
}

= α−1
v E (Zi | F)− (α−1

v − 1)X̄Bv

= α−1
v

[
αvXi + (1− αv)X̄Bv

]
− (α−1

v − 1)X̄Bv

= Xi.

(13)

By using a first order Taylor approximation, we have up to negligible factors of order

Op(n
−1
A ):

E2 ≈
E
{∑V

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)

∣∣∣F}
E
{∑V

v=1

∑
j∈Av

Yj(Ti)g∗j (αv,β)
∣∣∣F} (14)
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where

E

{
V∑

v=1

∑
j∈Av

Yj(Ti)h
∗
j(αv,β)

∣∣∣∣∣F
}

=
V∑

v=1

∑
j∈Av

E
{
Yj(Ti)h

∗
j(αv,β) | F

}
=

V∑
v=1

∑
j∈Av

Yj(Ti)E
{
h∗
j(αv,β) | F

}
=

V∑
v=1

∑
j∈Av

Yj(Ti)h(β,Xj).

Similarly:

E

(
V∑

v=1

∑
j∈Av

Yj(Ti)g
∗
j (αv,β)

∣∣∣∣∣F
)

=
V∑

v=1

∑
j∈Av

Yj(Ti)g(β,Xj).

Therefore,

E2 ≈
∑V

v=1

∑
j∈Av

Yj(Ti)h(β,Xj)∑V
v=1

∑
j∈Av

Yj(Ti)g(β,Xj)
(15)

By plugging (13) and (15) into (12), we obtain

E
{
H̄(β)

∣∣F} ≈ 1

nA

V∑
v=1

∑
i∈Av

δi

{
Xi −

∑V
v=1

∑
j∈Av

Yj(Ti)h(β,Xj)∑V
v=1

∑
j∈Av

Yj(Ti)g(β,Xj)

}
= H0(β).

(16)

B Variance estimation for the proposed adjusted esti-

mator

In this appendix, the derivation of the variance estimator is explained. For simplicity, we

focus on the case V = 1 when a single block is used. The extension to multiple blocks is

straightforward.
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We first recall the main notations. A database B of size nB is first obtained, and the

covariates Xi are observed for all the units in B. We use the notations

X̄B =
1

nB

nB∑
i=1

Xi,

ḡB(β) =
1

nB

nB∑
i=1

g(β,Xi),

h̄B(β) =
1

nB

nB∑
i=1

h(β,Xi).

We also note XB ≡ {Xi}i∈B for the set of auxiliary variables in B.

A subsample A of size nA is then selected in B, and the variable Ti is obtained for

any unit i ∈ A. We note TA ≡ {Ti}i∈A for the set of outcome values in A. The auxiliary

variables are obtained in A by using record linkage, leading to the pseudo auxiliary variables

Zi for any unit i ∈ A. We note ZA ≡ {Zi}i∈A for the set of pseudo values in A.

Finally, a validation sample V of size nV is selected in A by simple random sampling,

and the true auxiliary variables Xi are obtained for the units i ∈ V . By comparing the

pseudo values Zi and the true values Xi in V , we obtain an unbiased estimator α̂ for the

parameter α.

B.1 Global estimating equation

Using the unbiased estimator α̂ for the parameter α (see equation 4), the global estimating

equation for the parameter β is

H̄(β) ≡ 1

nA

nA∑
i=1

δi

{
X∗

i (α̂)−
∑nA

j=1 Yj(Ti)h
∗
j(α̂,β)∑nA

j=1 Yj(Ti)g∗j (α̂,β)

}
︸ ︷︷ ︸

Hi(β)

= 0, (17)
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where

X∗
i (α̂) =

Zi

α̂
− 1− α̂

α̂
X̄B,

g∗j (α̂,β) =
g(β,Zj)

α̂
− 1− α̂

α̂
ḡB(β), (18)

h∗
j(α̂,β) =

h(β,Zi)

α̂
− 1− α̂

α̂
h̄B(β).

Let us denote by β0 the true value of the parameter. Then we have

H̄(β̂)− H̄(β0) = −H̄(β0) ≃ {E∇H̄(β0)}{β̂ − β0},

with ∇H̄(β) the differential of H̄(β). We obtain

β̂ − β0 ≃ −{E∇H̄(β0)}−1 × H̄(β0).

It is thus sufficient to obtain a variance estimator for H̄(β0), from which we can use the

sandwich variance estimator

V̂(β̂) = {∇H̄(β̂)}−1 × V̂{H̄(β0)} × {∇H̄(β̂)}−1. (19)

The derivation of V̂{H̄(β0)} is explained in the next sections.

B.2 Accounting for the estimation of α

Since we have

1

α̂
=

1

α
× 1

1 + α̂−α
α

=
1

α

[
1− α̂− α

α
+ op(nV

−0.5)

]
=

1

α
− α̂− α

α2
+ op(nV

−0.5),
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we may rewrite the quantities in (18) as

X∗
i (α̂) =

1

α
(Zi − X̄B) + X̄B︸ ︷︷ ︸

X∗
i (α)

− α̂− α

α2
(Zi − X̄B) + op(nV

−0.5),

g∗j (α̂,β0) =
1

α
{g(β0,Zj)− ḡB(β0)}+ ḡB(β0)︸ ︷︷ ︸

g∗j (α,β0)

− α̂− α

α2
{g(β0,Zj)− ḡB(β0)}+ op(nV

−0.5),

(20)

h∗
j(α̂,β0) =

1

α

{
h(β0,Zj)− h̄B(β0)

}
+ h̄B(β0)︸ ︷︷ ︸

h∗
j (α,β0)

− α̂− α

α2

{
h(β0,Zj)− h̄B(β0)

}
+ op(nV

−0.5).

(21)

Let us denote ϵ = α̂−α
α2 . By plugging (20) and (21) into equation (17), we have∑nA

j=1 Yj(Ti)h
∗
j(α̂,β)∑nA

j=1 Yj(Ti)g∗j (α̂,β)
=

∑nA

j=1 Yj(Ti)h
∗
j(α,β)− ϵ

∑nA

j=1 Yj(Ti)
[
h(β0,Zj)− h̄B(β0)

]∑nA

j=1 Yj(Ti)g∗j (α,β)− ϵ
∑nA

j=1 Yj(Ti) [g(β0,Zj)− ḡB(β0)]

+ op(nV
−0.5).

After some algebra, this leads to:

H̄(β0) = H̄1(β0)−
(
α̂− α

α2

)
H̄2(α,β0) + op(nV

−0.5), (22)

where

H̄1(β0) =
1

nA

nA∑
i=1

δi {X∗
i (α)−R∗

i (α,β0)}︸ ︷︷ ︸
H1i(β0)

(23)
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with R∗
i (α,β0) =

∑nA
j=1 Yj(Ti)h

∗
j (α,β)∑nA

j=1 Yj(Ti)g∗j (α,β)
, and with

H̄2(α,β0) =
1

nA

nA∑
i=1

δi

[
(Zi − X̄B)

−
∑nA

j=1 Yj(Ti)
{[

h(β0,Zj)− h̄B(β0)
]
−R∗

i (α,β0) [g(β0,Zj)− ḡB(β0)]
}∑nA

j=1 Yj(Ti)g∗j (α,β0)

]
. (24)

By neglecting the terms which are op(nV
−0.5), we obtain from (22) that

V
[
H̄(β0)

]
= V

[
E
{
H̄(β0)

∣∣XB, TA,ZA

}]
+ E

[
V
{
H̄(β0)

∣∣XB, TA,ZA

}]
≃ V

[
H̄1(β0)

]
+ E

[
H̄2(β0)V

{
α̂− α

α2

∣∣∣∣XB, TA,ZA

}
{H̄2(β0)}⊤

]
. (25)

Under the assumption that the validation sample SV is selected in A by simple random

sampling without replacement, we have

α̂ =
1

nV

∑
i∈SV

µi where µi =

1 if linkage is correct,

0 otherwise.

Since µi is a binary variable, it follows from standard results in survey sampling theory

that an unbiased estimator for V { α̂|XB, TA,ZA} is

V̂(α̂) =
(

1

nV

− 1

nA

)
nV

nV − 1
α̂(1− α̂).

Hence the second term in the right-hand side of (25) may be estimated by

V̂1

[
H̄(β0)

]
= H̄2(α̂, β̂){H̄2(α̂, β̂)}⊤ ×

(
1

nV

− 1

nA

)
nV

nV − 1

1− α̂

α̂3
, (26)

where H̄2(α̂,β̂) is obtained from (24) by replacing β0 with β̂ and α with α̂. This is the

component of the variance estimator which accounts for the estimation of α.
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B.3 Accounting for the linkage and estimation error

In this section, we focus on the first term in the right-hand side of (25). We have

V
[
H̄1(β0)

]
= V

[
E
{
H̄1(β0)

∣∣XB, TA

}]
+ E

[
V
{
H̄1(β0)

∣∣XB, TA

}]
. (27)

It follows from equation (16) in Appendix A that

E
{
H̄1(β0)

∣∣XB, TA

}
≃ 1

nA

nA∑
i=1

δi

{
Xi −

∑nA

j=1 Yj(Ti)h(β0,Xj)∑nA

j=1 Yj(Ti)g(β0,Xj)

}
︸ ︷︷ ︸

Hti(β0)

, (28)

which is the function associated to the theoretical estimating equation that we would solve

if the covariates Xi were known without linkage error for the units i ∈ A. Secondly, note

that conditionally on XB and TA, the terms H1i(β0) are approximately uncorrelated for

i = 1, . . . , nA. More precisely, it can be proved after some algebra that for any i ̸= j =

1, . . . , nA, we have

Cov
(
δi {X∗

i (α)−R∗
i (α,β0)} , δj

{
X∗

j(α)−R∗
j (α,β0)

}∣∣XB, TA

)
= Op(n

−1
A ).

Therefore, we obtain that

V
{
H̄1(β0)

∣∣XB, TA

}
≃ 1

(nA)2

nA∑
i=1

V {H1i(β0)|XB, TA} . (29)

where H1i(·) is defined in (23). From (27), (28) and (29), we obtain that

V
[
H̄1(β0)

]
≃ V

(
1

nA

nA∑
i=1

Hti(β0)

)
+ E

[
1

(nA)2

nA∑
i=1

V {H1i(β0)|XB, TA}

]
. (30)

Now, we consider the sample dispersion term given by

s2H(β0) =
1

nA − 1

nA∑
i=1

{
Hi(β0)−

1

nA

nA∑
j=1

Hj(β0)

}2

=
1

2nA(nA − 1)

nA∑
i ̸=j=1

{Hi(β0)−Hj(β0)}2 . (31)
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where Hi(·) is defined in (17).

We have

E
{
s2H(β0)

nA

}
= EE

{
s2H(β0)

nA

∣∣∣∣XB, TA

}
(32)

= E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

E{Hi(β0)−Hj(β0)|XB, TA}2
]

+ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

V{Hi(β0)−Hj(β0)|XB, TA}

]

≃ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

{Hti(β0)−Htj(β0)}2
]

(whereHti(·) is defined in (28))

+ E

[
1

2n2
A(nA − 1)

nA∑
i ̸=j=1

V{Hi(β0)|XB, TA}+ V{Hj(β0)|XB, TA}

]

= E

[
1

nA(nA − 1)

nA∑
i=1

{
Hti(β0)−

1

nA

nA∑
j=1

Htj(β0)

}2

+
1

n2
A

nA∑
i=1

V{Hi(β0)|XB, TA}

]
≃ V

[
H̄1(β0)

]
,

where the last line in (32) follows from a comparison with equation (30). Therefore,

V
[
H̄1(β0)

]
may be approximately unbiasedly estimated by replacing in (31) the unknown

parameter β0 with β̂, which leads to

V̂2

[
H̄(β0)

]
=

s2H(β̂)

nA

. (33)

This is the component of the variance estimator, which accounts for both the linkage and

estimation errors.
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B.4 Global variance estimator

By plugging (26) and (33) into (25), we obtain:

V̂{H̄(β0)} = V̂1{H̄(β0)}+ V̂2{H̄(β0)}.

The global variance estimator is therefore obtained from (19) as:

V̂(β̂) = {∇H̄(β̂)}−1 ×
{
V̂1{H̄(β0)}+ V̂2{H̄(β0)}

}
× {∇H̄(β̂)}−1 (34)

C Sampling affectations

To compute X̄Bv , ḡBv(β) and h̄Bv(β) in (7), the AEE requires access to all the X-vectors in

B. In some cases, this may not be possible due to confidentiality reasons. In that case, we

have access to only the linked dataset A. In this situation, we propose to approximate

X̄Bv with Z̄Av =
1

nAv

∑
i∈Av

Zi,

ḡBv(β) with ḡAv(β) =
1

nAv

∑
i∈Av

exp(Z⊤
i β), (35)

h̄Bv(β) with h̄Av(β) =
1

nAv

∑
i∈Av

exp(Z⊤
i β)Zi.

If Av is a random sample of Bv, (35) can be a good approximation. A simulation study is

presented in Table S.4 of the Supplementary material.

Data availability statement

Our R programs for simulation results are available at Github, https://github.com/

thanhhuanVO/Cox-regression-with-linked-data. The data used in the application of
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the methods may be obtained from a third party and are not publicly available. For all

interested researchers, data are available via SNDS, https://www.snds.gouv.fr/SNDS/

Accueil, subject to the authorization of CNIL (National Commission on Informatics and

Liberty of France).
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