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A B S T R A C T

Inferring modelling parameters of dynamical processes from observational data is an important
inverse problem in statistical physics. In this paper, instead of passively observing the dynamics
for inference, we focus on strategically manipulating dynamics to generate data that gives
more accurate estimators within fewer observations. For this purpose, we consider the inference
problem rooted in the Ising model with two opposite external fields, assuming that the strength
distribution of one of the fields (labelled as passive) is unknown and needs to be inferred.
In contrast, the other field (labelled active) is strategically deployed to interact with the Ising
dynamics in such a way as to improve the accuracy of estimates of inferring the opposing passive
field. By comparing to benchmark cases, we first demonstrate that it is possible to accelerate the
inference by strategically interacting with the Ising dynamics. We then apply series expansions
to obtain an approximation of the optimized influence configurations in the high-temperature
region. Furthermore, by using mean-field estimates, we also demonstrate the applicability of the
method in a more general scenario where real-time tracking of the system is infeasible. Last,
analysing the optimized influence profiles, we describe heuristics for manipulating the Ising
dynamics for faster inference. For example, we show that agents targeted more strongly by the
passive field should also be strongly targeted by the active one.

1. Introduction

The inverse statistical problem [1] aims at inferring structural and modelling parameters of complex-networked systems from
observed system dynamics. Due to the development of experimental techniques which allow for the accessibility of microscopic-
level data, as well as advances in data storage in the last two decades, inverse statistical problems have gained increasing interest
in a variety of research domains. Recent applications range from neuroscience [2], computational biology [3], epidemiology [4],
financial economics [5], to social science [6]. Even though much effort has been devoted to inverse statistical problems, they remain
challenging, especially when only a limited amount of observational data is available [7,8]. Therefore, in this paper, we focus on
addressing the inverse statistical problem from the perspective of speeding up the convergence of inference with the aim of obtaining
accurate estimations for the model parameters with less data. Our approach contrasts with the aim of most of the prior studies such
as Yang et al. [7], Braunstein et al. [8] and Hoang et al. [9], which assume the existence of a given dataset, and focus on methods for
inference. Instead, in this paper, we are interested in how data can best be generated. Our principal idea is that we allow strategic
interference in the dynamics while observations are being gathered. Below we focus on how to best apply such interference with
an aim to generate a more informative dataset that allows accurate inference with less data.

Specifically, in this work, we carry out our analysis of accelerating the convergence of inference based on the Ising model,
which is one of the most popular pair-wise models in the physics community for studying opinion dynamics [10]. The problem of
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reconstructing parameters of the Ising-like model from extant time series data is named the inverse kinetic Ising problem [1]. As a
subproblem of the more general problem of statistical inference, the core of most inference approaches for the inverse kinetic Ising
problem is to maximize the likelihood of model parameters given time series of system states [1]. The majority of studies in this area
concentrate on enhancing the inference performance by improving the accuracy or the scalability of proposed inference algorithms
via utilizing varying approximations with various regimes of validity [9,11–19]. For instance, the mean-field method [11,12] and the
Thouless-Anderson-Palmer approach [13–15] are utilized to provide approximated solutions for the inverse kinetic Ising problem
in the weak and dense network connection region. Moreover, belief propagation [20] and replicas analysis [16,17] are used for
inference in the strong and sparse network connection region. However, the above-mentioned methods only give close estimations
for the inverse kinetic Ising problem for large sample sizes. Improving on this and considering the limitation of the dataset size
obtained from experiments, the work of Hoang et al. [9] utilizes linear regression to provide accurate estimations for relatively small
sample sizes. However, even though the inverse kinetic Ising problem has been extensively studied from an algorithmic perspective
in the literature mentioned above, the data side has found relatively little attention [21]. In other words, little attention has been
put in the aspect of enhancing the inference performance by improving the dataset’s quality to obtain more accurate estimators
with less data. This is, however, of great importance in many real-world applications when the measurements for the dynamical
processes are costly or there are technical limitations in observing the whole process of networked dynamics such as the early stage
of a rumour (or epidemic) spreading.

To the best of our knowledge, there are only two works that consider the inference problem from the data quality side [21,22].
f these, Decelle et al. [21] measure the amount of information contained in a given dataset by applying a method that quantifies

he effective rank of the correlation matrix. However, that work has also assumed data to be given and the authors do not investigate
n active way of generating data for inference. The other work that is related to our modelling approach is our previous work [22].
hat work investigates how to strategically influence networked dynamics with the aim of generating a higher-quality dataset for
peeding up the convergence of inference. However, our previous study is based on the voter model, which belongs to the category
f simple contagion [23]. It is of interest if similar ideas can be applied in more realistic settings of complex contagion [24,25] in
he kinetic Ising model.

To bridge the gaps in the problem of inference acceleration from the data generating side, we extend our previous framework
n [22], to the kinetic Ising model. Different from the linearity of the voter model, which results in high levels of mathematical
ractability [26], the non-linearity of the Ising model requires different techniques for analysis. Inspired by the utilization of network
ontrol in [22], we treat the external magnetic fields as external controllers who exert influence in the network by building weighted
nd unidirectional links. Without loss of generality, we assume the existence of two opposing controllers. One is considered as
assive, whose strategies are unknown and need to be inferred. The other controller is the focus of our investigation, and is devoted
o minimizing the uncertainty of inference of its opponent’s strategy by optimally manipulating the Ising dynamics with the aim
f generating more informative data. Corresponding to the natural resource limits in real-world contexts, we also assume there are
nly limited resources available for the strategic controller.

Specifically, we make the following contributions. First, the inference of the inverse kinetic Ising problem of previous studies
s constructed on a given and fixed dataset. Our work is the first to explore the inverse kinetic Ising problem from the perspective
f manipulating the networked dynamics to generate a more informative dataset for inference. Second, our work provides a
omprehensive characterization for the configuration of optimal budget allocations by the active controller. To achieve this, we
ombine numerical results obtained from heuristics with detailed analytical explanations by the Taylor series approximation [27]
o gain a deeper understanding for the structure of optimal allocation strategies in the high-temperature region. Third, we analyse
he performance of the heuristics for generating the optimal allocations in the scenario where the real-time tracking of the system
tates is inaccessible. More specifically, we substitute the real dataset with the mean-field state data generated by the mean-field
pproximation [28]. Our results establish that the convergence of inference can be accelerated by smartly targeting agents in the
etwork with optimized control gains to improve the quality of generated dataset for inference. Moreover, we find two general
atterns for the configuration of optimal budget allocations in the absence or presence of budget constraints. When not considering
udget constraints, optimal allocations are determined only by the targeted node’s neighbourhood and the influencing strength
rom the opponent. When budget constraints are taken into account, the optimal allocations are to re-weight the unconstrained
ptimal allocations by counting the uncertainty of all the other agents’ estimations. More specifically, agents with larger uncertainty
n estimation will have a larger chance to be allocated resources closer to their unconstrained optimal allocations. Further, by
nvestigating the optimized influence profile, we find that agents targeted by the opponent with higher influences will be allocated
ore resources on average by the active controllers so as to even out the inaccuracy for inferring larger values.

The remainder of this paper is organized as follows. In Section 2, we give a formal description for the framework of accelerating
he convergence of inference under the inverse Ising context and present heuristics of how to optimally interact with the Ising
ynamics to generate more informative data. In Section 3, we provide numerical results for the optimal configuration of budget
llocations by the active controller obtained by numerical optimization and analytical approximations. In Section 4, we summarize
he main findings and contributions and discuss ideas for future work.

. Model description and methods

Following the work by Galam [29], we interpret the Ising model in the context of opinion formation. In more detail, spins in
he Ising model are considered as agents connected by a network. In the following, we consider a system consisting of 𝑁 agents.
2

Each agent is identical to a node embedded in the social network where the social links between agents are given by a weighted
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adjacency matrix 𝑊 = {𝑤𝑖𝑗}𝑁𝑖,𝑗=1. Agents 𝑖 and 𝑗 are considered to be neighbours if there is a weighted link 𝑤𝑖𝑗 > 0 between them.
e further assume that each agent holds one of two possible opinions at time step 𝑡, labelled as 𝑠𝑖(𝑡) = −1 or 𝑠𝑖(𝑡) = 1 for 𝑖 = 1,… , 𝑁

nd 𝑡 ≥ 0. Here, we assume the existence of two opposite external fields 𝐴 and 𝐵, also referred to as controller 𝐴 and 𝐵. To be more
pecific, controllers 𝐴 and 𝐵 are treated as external positive and negative fields that correspond to zealots who have unchanged
pinions 𝑠𝐴(𝑡) = 1 and 𝑠𝐵(𝑡) = −1 for ∀𝑡 ≥ 0. In addition, external controllers influence the Ising dynamics via unidirectional and
ositively-weighted connections to node 𝑖 in the network at time 𝑡, denoted as 𝐽𝐴,𝑖(𝑡) ∈ R+ and 𝐽𝐵,𝑖(𝑡) ∈ R+, respectively. Note that,
ere we assume the resources 𝑏𝐴 and 𝑏𝐵 available for controllers 𝐴 and 𝐵 at each time step are limited, i.e., the sum of control
ains 𝐽𝐴,𝑖(𝑡) and 𝐽𝐵,𝑖(𝑡) at each time step 𝑡 are subject to the budget constraints: ∑𝑁

𝑖=1 𝐽𝐴,𝑖(𝑡) ≤ 𝑏𝐴, ∑𝑁
𝑖=1 𝐽𝐵,𝑖(𝑡) ≤ 𝑏𝐵 .

Following the commonly-used Glauber algorithm [29,30] in simulating social dynamics, the parallel and discrete-time Ising
ynamics consist of the following three steps: (i) Sum the weighted neighbouring states of node 𝑖 (𝑖 = 1,… , 𝑁) at time 𝑡, which is
enoted as 𝑆𝑖(𝑡) =

∑

𝑗 𝑤𝑖𝑗𝑠𝑗 (𝑡). (iii) Compute the changes in the energy level of the Ising system if node 𝑖 flips at time 𝑡, which is
𝐸𝑖(𝑡) = 2𝑠𝑖(𝑡)𝑆𝑖(𝑡) + 2𝐽𝐴,𝑖(𝑡)𝑠𝑖(𝑡) − 2𝐽𝐵,𝑖(𝑡)𝑠𝑖(𝑡). (iii) Flip the state of node 𝑖 at time 𝑡 + 1 with probability 𝑒−𝛥𝐸𝑖(𝑡)∕𝑇 ∕

(

1 + 𝑒−𝛥𝐸𝑖(𝑡)∕𝑇
)

where 𝑇 is the temperature. Correspondingly, the time-varying transition matrix 𝑃𝑖(𝑡) describing the probabilities of state changes
of node 𝑖 at time 𝑡 is given by

𝑃𝑖(𝑡) =
[

𝑃−1
𝑖 (𝑡) 𝑃 1

𝑖 (𝑡)
]

=
[

𝑒(−2𝑆𝑖 (𝑡)−2𝐽𝐴,𝑖 (𝑡)+2𝐽𝐵,𝑖 (𝑡))∕𝑇

1+𝑒(−2𝑆𝑖 (𝑡)−2𝐽𝐴,𝑖 (𝑡)+2𝐽𝐵,𝑖 (𝑡))∕𝑇
1

1+𝑒(−2𝑆𝑖 (𝑡)−2𝐽𝐴,𝑖 (𝑡)+2𝐽𝐵,𝑖 (𝑡))∕𝑇

]

. (1)

ere, 𝑃−1
𝑖 (𝑡) stands for the probability of node 𝑖 to have state −1 at time 𝑡 + 1. From the third term of Eq. (1), we observe that

he transition probabilities are independent of the updated node’s current opinion state and are only determined by the node’s
eighbouring states and the control gains from external controllers.

As mentioned above, the external controllers interact with the internal Ising dynamics by targeting nodes with positively-
ontinuous weighted links. In this paper, we are interested in addressing the problem of accelerating the reconstruction of the
xternal controllers’ strategy from agents’ opinion changes. Specifically, we assume that controller 𝐴 is an active controller who
trategically distributes its control gains to alter the data generation with the aim of obtaining more accurate estimates of controller
’s budget allocations within fewer observations. For this purpose, we assume that controller 𝐵 is a constant opponent who has

ixed budget allocations from time 0, i.e., 𝐽𝐵,𝑖(𝑡) = 𝐽𝐵,𝑖(0) for ∀𝑡 ≥ 0. For simpler notation, we refer to 𝐽𝐵,𝑖(𝑡) as 𝐽𝐵,𝑖 in the following.
To obtain estimators for controller 𝐵’s budget allocations, we use maximum likelihood estimation (MLE) [31] for parametric

nference. More specifically, given the transition probabilities of opinion flips in Eq. (1), the logarithm of the likelihood function
or observing time series of opinion changes during time span [0,𝑀] for node 𝑖 is

𝐿𝑖(𝑀) =
∑

𝑡∈[0,𝑀−1]

[

1 + 𝑠𝑖(𝑡 + 1)
2

log
(

𝑃 1
𝑖 (𝑡)

)

+
1 − 𝑠𝑖(𝑡 + 1)

2
log

(

𝑃−1
𝑖 (𝑡)

)

]

. (2)

Inserting 𝑃 1
𝑖 (𝑡) and 𝑃−1

𝑖 (𝑡) from Eq. (1) into Eq. (2) yields the full expression. By maximizing the likelihood function of Eq. (2)
egarding the budget allocations of controller 𝐵, we obtain estimators of 𝐽𝐵,𝑖, denoted as 𝐽𝐵,𝑖.

In accordance with the consistency of the MLE method, given sufficiently long time series of agents’ opinion changes, the
stimators 𝐽𝐵,𝑖 asymptotically approach the true value of 𝐽𝐵,𝑖 [31]. Nevertheless, considering the cost of data collection in most
eal-world scenarios, it is always preferable to obtain more accurate estimators within a shorter observation period.

To assess the accuracy of the inference, we use the frequently-used Fisher information [32] as a metric to evaluate the quality
f fit of the estimators derived by MLE. The Fisher information gives a measure for the dispersion between the deduced estimators
rom MLE and actual values. According to Efron and Hinkley [33], the Fisher information 𝐼(𝐽𝐵,𝑖,𝑀) pertaining to 𝐽𝐵,𝑖 is defined as
he expectation of the second-order partial derivative of Eq. (2) with respect to 𝐽𝐵,𝑖, i.e.,

𝐼(𝐽𝐵,𝑖,𝑀) = 𝐸

[

𝜕2𝐿𝑖(𝑀)
𝜕𝐽 2

𝐵,𝑖

]

= −
∑

𝑡∈[0,𝑀−1]

⎡

⎢

⎢

⎢

⎣

sech2
( 𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)

𝑇

)

𝑇 2

⎤

⎥

⎥

⎥

⎦

. (3)

As the function domain of hyperbolic secant (sech(⋅)) is limited within the range of (0, 1], the Fisher information 𝐼(𝐽𝐵,𝑖,𝑀) is negative
for all possible values of independent variables, i.e., 𝐽𝐴,𝑖(𝑡) ∈ R+, 𝐽𝐵,𝑖 ∈ R+ and 𝑆𝑖(𝑡) ∈ R. Moreover, as the length of observation 𝑀
increases, the value of 𝐼(𝐽𝐵,𝑖,𝑀) decreases accordingly. Thereafter, by taking the negative reciprocal of Fisher information, one can
generate confidence intervals for the MLE estimators. In more detail, for a large enough data sample, the estimators 𝐽𝐵,𝑖 obtained
from MLE converge in a normal distribution to the actual value 𝐽𝐵,𝑖. Therefore, we have

(

𝐽𝐵,𝑖 − 𝐽𝐵,𝑖
) 𝐷
→ 

(

0,
[

−𝐼(𝐽𝐵,𝑖,𝑀)
]−1

)

. (4)

Here,  (0,
[

−𝐼(𝐽𝐵,𝑖,𝑀)
]−1) represents the normal distribution with standard deviation

[

−𝐼(𝐽𝐵,𝑖,𝑀)
]−1∕2 > 0, and mean value 0.

oreover, as 𝐼(𝐽𝐵,𝑖,𝑀) monotonically decreases with respect to an increase in the number of observations, we will obtain unbiased
stimators 𝐽𝐵,𝑖 with lower standard deviation as we use more system updates. Note that, in Eq. (4), the true values of controller
’s budget allocations are used to calculate the standard deviation. However, as the true values are what we want to infer and are
ormally unknown, in practical calculations, we substitute the true values 𝐽𝐵,𝑖 (1 ≤ 𝑖 ≤ 𝑁) with the estimated ones 𝐽𝐵,𝑖 [32].

In the following, to improve estimates of opponents, we minimize the standard deviation deduced by the Fisher information in
3

q. (3). By doing so, we have transformed the problem of accelerating the convergence of inference to strategically choosing the
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allocations of controller 𝐴’s budget to minimize the standard deviation of the estimators. Moreover, from Eq. (3), we observe that
he Fisher information can be calculated in a recursive way, i.e.,

𝐼(𝐽𝐵,𝑖, 𝑡 + 1) = 𝐼(𝐽𝐵,𝑖, 𝑡) −
sech2

( 𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

)

𝑇 2
. (5)

Accordingly, for the estimated standard deviation of node 𝑖 at current estimates 𝐽𝐵,𝑖, we have

𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝐼(𝐽𝐵,𝑖, 𝑡) +
sech2

(

𝐽𝐴,𝑗 (𝑡)−𝐽𝐵,𝑗+𝑆𝑗 (𝑡)
𝑇

)

𝑇 2

⎞

⎟

⎟

⎟

⎟

⎠

−1∕2

. (6)

Extending our previous framework in [22], we apply the heuristics called the one-step-ahead optimization to the inverse kinetic
Ising problem. In more detail, we optimize the configuration of controller 𝐴’s budget allocations at the current step with the aim of
minimizing the sum of the expected standard deviations in the next step. By doing so, we aim at a step-wise generation of a more
informative dataset. Formally, the objective function for the inference acceleration problem is given by

{

𝑁 agents in the network
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐽 ∗
𝐴,1(𝑡),… , 𝐽 ∗

𝐴,𝑁 (𝑡) } = argmin
𝑁
∑

𝑖=1
𝜎𝑖(𝐽𝐵,𝑖, 𝑡 + 1) = argmin

𝑁
∑

𝑖=1

⎡

⎢

⎢

⎢

⎢

⎣

−𝐼(𝐽𝐵,𝑖, 𝑡) +
sech2

(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

)

𝑇 2

⎤

⎥

⎥

⎥

⎥

⎦

−1∕2

subject to
𝑁
∑

𝑖=1
𝐽 ∗
𝐴,𝑖(𝑡) ≤ 𝑏𝐴

𝐽 ∗
𝐴,𝑖(𝑡) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑁.

(7)

Here, 𝐽 ∗
𝐴,𝑖(𝑡) represents the optimized budget allocation by controller 𝐴 for node 𝑖, and the sum of optimized 𝐽 ∗

𝐴,𝑖(𝑡) (for 1 ≤ 𝑖 ≤ 𝑁)
should satisfy the budget constraint 𝑏𝐴. Since the weighted sum of neighbouring states 𝑆𝑖(𝑡) can be observed and estimators 𝐽𝐵,𝑖 can
be computed by maximizing Eq. (2), the only unknown parameters in Eq. (7) will be 𝐽𝐴,𝑖(𝑡).

As Eq. (7) contains transcendental terms, it is challenging to obtain a closed-form solution for the optimization. However, by
onsidering the expected standard deviation for each node separately in Eq. (6) and taking 𝐽𝐴,𝑖(𝑡) as the only independent variable,
e have the following analytical findings for each single node in the absence of budget constraints. First, the expected standard
eviation for node 𝑖, 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1), is symmetric against the vertical line 𝐽𝐴,𝑖(𝑡) = 𝐽𝐵,𝑖 − 𝑆𝑖(𝑡) if we relax the domain of 𝐽𝐴,𝑖(𝑡) to R.
econd, 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) has a global minimum (see Appendix A for a detailed proof), given by

𝐽𝐴,𝑖(𝑡) =
{

𝐽𝐵,𝑖 − 𝑆𝑖(𝑡), 𝐽𝐵,𝑖 ≥ 𝑆𝑖(𝑡)
0, 𝐽𝐵,𝑖 < 𝑆𝑖(𝑡)

. (8)

dditionally, by taking the second-order derivative of Eq. (6), we find that for lower temperature 𝑇 , the function of 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)
as larger curvature at the minimum point 𝐽𝐴,𝑖(𝑡) = 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡) compared with a setting of higher temperatures when curvatures
re smaller (for the proof, see Appendix B).

.1. High-temperature Taylor expansion

To investigate the optimal allocations in more depth, we use the Taylor expansion to come up with an analytical approximation
or the optimal budget allocations. As the Taylor expansion for the standard deviation (see Eq. (6)) does not exist for low
emperature, in the following, we focus on the approximation in the high temperature regime. By applying the Lagrange multiplier
echnique [34] based on the high-temperature Taylor approximation of standard deviation of Eq. (6), we obtain approximated
olutions for the optimization of Eq. (7). A detailed proof is given in Appendix C. The approximated budget allocations obtained by
he high-temperature Taylor expansion are denoted as 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) for 1 ≤ 𝑖 ≤ 𝑁 .
We find that there are two possible cases for 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡):

(i)

If
𝑁
∑

𝑖=1
𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) ≤ 𝑏𝐴, then 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) =
{

𝐽𝐵,𝑖 − 𝑆𝑖(𝑡), 𝐽𝐵,𝑖 ≥ 𝑆𝑖(𝑡)
0, 𝐽𝐵,𝑖 < 𝑆𝑖(𝑡)

. (9)

That is, if controller 𝐴 has a large enough budget, the approximated solution will be the same as the optimized one in the
absence of a budget constraint (see Eq. (8)).

(ii) Otherwise, let

𝜙𝑖(𝑡) =
(

𝐽𝐵,𝑖 − 𝑆𝑖(𝑡)
)

+

[

𝑏𝐴 −
∑

𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑗 (𝑡)≠0

(

𝐽𝐵,𝑗 − 𝑆𝑗 (𝑡)
)

]

𝜎̂−3𝑖 (𝐽𝐵,𝑖, 𝑡)
∑

𝑎𝑝𝑝𝑟𝑜𝑥 𝜎̂−3(𝐽 , 𝑡)
. (10)
4

𝐽𝐴,𝑗 (𝑡)≠0 𝑗 𝐵,𝑗
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Here, ∑𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑗 (𝑡)≠0 stands for summing up all the 𝑗 where the budget allocations from the controller 𝐴 on nodes 𝑗 are not 0.

Thus, we have

𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) =

{

0, 𝐽𝐵,𝑖 ≤ 𝑆𝑖(𝑡) or 𝜙𝑖(𝑡) ≤ 0
𝜙𝑖(𝑡), 𝜙𝑖(𝑡) > 0

. (11)

In this case, by summing up the approximated budget allocations over all nodes, we have ∑𝑁
𝑖=1 𝐽

𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) = 𝑏𝐴. In practice, we

compute 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) as follows: (i) Calculate the approximation of optimal budget allocations 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) according to Eq. (9) and then
sum up 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) for 1 ≤ 𝑖 ≤ 𝑁 . If the sum exceeds the budget constraint 𝑏𝐴, continue with step (ii). Otherwise, the procedure
is terminated. (ii) Let 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) = 0 for 𝐽𝐵,𝑖 ≤ 𝑆𝑖(𝑡). (iii) Set the rest of the non-zero approximated optimal budget allocations
𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) = 𝜙𝑖(𝑡), and then proceed with determining whether all 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) are non-negative. If so, the procedure is terminated.
Otherwise, set the negative 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) to be 0 and recalculate the rest of the non-zero 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) according to Eq. (10). (iv) Repeat step

(iii) until all 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) are non-negative. Note that, the approximated solutions for the optimized budget configurations in Eq. (11)

are to re-weight the unconstrained solutions in Eq. (8) by counting the standard deviation of other agents’ estimations. Generally,
an agent with larger standard deviation in estimations will be allocated with resources closer to its unconstrained optimized budget
allocation.

2.2. High-temperature mean-field approximation

From the analytical solution of the high-temperature Taylor approximation shown in Eqs. (9) and (11), we find that the
approximated optimal budget allocations are dependent on the neighbouring states of the targeted nodes. However, in some practical
applications, it might be hard to keep track of the state changes at each step. Therefore, in the following we consider to replace the
real states of nodes by mean-field approximated states. Specifically, assume that ⟨𝑠𝑖⟩ denotes the average of the node 𝑖’s states over
the opinion dynamics. Using 𝑟𝑖 to approximate ⟨𝑠𝑖⟩ and employing the mean-field approximation (e.g., see [28]), we obtain

𝑟𝑖 = tanh

[(

∑

𝑗
𝑤𝑖𝑗𝑟𝑗 + 𝐽𝐴,𝑖 − 𝐽𝐵,𝑖

)

∕𝑇

]

(12)

for the opinion dynamics following the Glauber dynamics. Because of the hyperbolic term in Eq. (12), it is hard to obtain an explicit
solution for 𝑟𝑖. In the following, we consider the mean-field approximation in high-temperature region. Therefore, by applying the
Taylor expansion for high temperature with respect to Eq. (12), we have

𝑟𝑖 =

∑𝑁
𝑗=1 𝑤𝑖𝑗𝑟𝑗 + 𝐽𝐴,𝑖 − 𝐽𝐵,𝑖

𝑇
+ 

(

𝑇 −3) (13)

To further simplify the solution of Eq. (13), we assume that all nodes are affected by the same mean field, in which we have:

𝑟𝑖 ≈
𝑑𝑖 ⟨𝑟⟩ + 𝐽𝐴,𝑖 − 𝐽𝐵,𝑖

𝑇
(14)

where

⟨𝑟⟩ = 1
𝑁

∑

𝑖
𝑟𝑖. (15)

Here, 𝑑𝑖 =
∑

𝑗 𝑤𝑖𝑗 represents the weighted degree for node 𝑖. By summing Eq. (14) over all nodes, we obtain

∑

𝑖
𝑟𝑖 = 𝑁 ⟨𝑟⟩ =

𝑁 ⟨𝑑⟩ ⟨𝑟⟩ +
∑

𝑖 𝐽𝐴,𝑖 − 𝑏𝐵
𝑇

(16)

i.e.,

⟨𝑟⟩ =
∑

𝑖 𝐽𝐴,𝑖 − 𝑏𝐵
𝑇𝑁 − ⟨𝑑⟩𝑁

(17)

where ⟨𝑑⟩ represents the averaged linking weights of the network. Inserting Eq. (17) into Eq. (14) yields the full expression for 𝑟𝑖.
Note that ⟨𝑟⟩ is dependent on the real budget used by controller 𝐴, which could be less or equal to the budget constraint 𝑏𝐴.

By replacing the actual sum of weighted neighbouring states 𝑆𝑖 with the sum of mean-field states 𝑑𝑖 ⟨𝑟⟩ in Eqs. (9) and (11), we
have

𝐽𝑀𝐹
𝐴,𝑖 =

{

𝐽𝐵,𝑖 − 𝑑𝑖 ⟨𝑟⟩ , 𝐽𝐵,𝑖 ≥ 𝑑𝑖 ⟨𝑟⟩
0, 𝐽𝐵,𝑖 < 𝑑𝑖 ⟨𝑟⟩

, If
𝑁
∑

𝑖=1
𝐽𝑀𝐹
𝐴,𝑖 ≤ 𝑏𝐴. (18)

and otherwise

𝐽𝑀𝐹
𝐴,𝑖 = (𝐽𝐵,𝑖 − 𝑑𝑖 ⟨𝑟⟩) +

(𝑏𝐴 −
∑

𝐽𝑀𝐹
𝐴,𝑗 ≠0 𝐽𝐵,𝑗 +

∑

𝐽𝑀𝐹
𝐴,𝑗 ≠0 𝑑𝑗 ⟨𝑟⟩)𝜎̂

−3
𝑖 (𝐽𝐵,𝑖, 𝑡)

∑

𝐽𝑀𝐹
𝐴,𝑗 ≠0 𝜎̂

−3
𝑗 (𝐽𝐵,𝑗 , 𝑡)

. (19)

Here, 𝐽𝑀𝐹
𝐴,𝑖 represents the high-temperature mean-field approximation for the optimal budget allocation of node 𝑖. Eq. (19) exists

𝑀𝐹 𝑀𝐹 ̂
5

only when 𝐽𝐴,𝑖 is non-negative. Importantly, for the special case of 𝑏𝐴 ≥ 𝑏𝐵 , 𝐽𝐴,𝑖 = 𝐽𝐵,𝑖 holds. This means that, even when the
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active controller has more budget compared with its opponent, it will only spend the same amount of budget as its opponent for
better inference in the mean-field scenario. According to Eq. (6), to compute 𝜎̂−3𝑗 (𝐽𝐵,𝑗 , 𝑡), we also need the neighbouring states. To
urther simplify Eq. (19), we apply the Taylor expansion on 𝐼(𝐽𝐵,𝑖,𝑀) for high temperature, in which we have

𝐼(𝐽𝐵,𝑖,𝑀) =
𝑀−1
∑

𝑡=0

⎡

⎢

⎢

⎣

− 1
𝑇 2

+

(

𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡)
)2

𝑇 4
+ 

(

𝑇 −5)
⎤

⎥

⎥

⎦

≈
∑

(

− 1
𝑇 2

+
𝑟2𝑖
𝑇 2

)

. (20)

Assume that node 𝑖 is in equilibrium state. Then, for the mean-field approximation of the standard deviation 𝜎̂𝑖(𝐽𝐵,𝑖,𝑀), we have

𝜎̂𝑖(𝐽𝐵,𝑖,𝑀) ≈

(

𝑀 − 𝑟2𝑖𝑀

𝑇 2

)−1∕2

(21)

where 𝑀 is the length of the observation. Generally, for high temperature, 𝑟𝑖 is small. Therefore, we have

𝜎̂𝑖(𝐽𝐵,𝑖,𝑀)−3 =
(𝑀
𝑇 2

)3∕2
− 3

2
𝑟2𝑖

(𝑀
𝑇 2

)3∕2
+ 

(

𝑟4𝑖
)

. (22)

f we only consider the first term in Eq. (22) and replace 𝜎̂𝑖(𝐽𝐵,𝑖,𝑀)−3 with it in Eq. (19), we obtain

𝐽𝑀𝐹
𝐴,𝑖 ≈ 𝐽𝐵,𝑖 +

𝑏𝐴 −
∑

𝐽𝑀𝐹
𝐴,𝑗 ≠0 𝐽𝐵,𝑗

𝑍
+

𝑏𝐴 − 𝑏𝐵
𝑇𝑁 − ⟨𝑑⟩𝑁

⎛

⎜

⎜

⎝

∑

𝐽𝑀𝐹
𝐴,𝑗 ≠0 𝑑𝑗

𝑍
− 𝑑𝑖

⎞

⎟

⎟

⎠

, (23)

where 𝑍 counts for the number of non-zero 𝐽𝑀𝐹
𝐴,𝑖 . Eq. (23) exists when 𝐽𝑀𝐹

𝐴,𝑖 is non-negative.

2.3. Numerical one-step-ahead optimization

The approximated solutions for optimal budget allocations obtained in Sections 2.1 and 2.2 are deduced in the premise of high
temperature. To obtain comprehensive results for the optimized budget allocations regardless of the temperature constraints, we
use the interior-point method [35] for numerical optimization of Eq. (7) in all temperature regions. By doing this, we aim at getting
step-wise optimal budget allocations 𝐽 𝑜𝑝𝑡

𝐴,𝑖 for 𝑖 = 1,… , 𝑁 that can be different at each time step 𝑡, and name this as the numerical
one-step-ahead optimization. The procedure for the numerical one-step-ahead optimization is formalized in Algorithm 1.

Specifically, the detailed experimental setup for the numerical one-step-ahead optimization shown in Algorithm 1 is given
as follows: (i) To meet the assumption of having enough samples before leveraging Fisher information to compute the standard
deviation of MLE estimators given by Eq. (4), all nodes in the network are targeted by the same budget allocation 𝐽𝐴,𝑓 by controller
𝐴 for the first 𝑇0 updates in the initialization part of Algorithm 1. We also keep track of the likelihood functions for the first 𝑇0
updates for all nodes, denoted as 𝐿𝑖(𝑇0) for 𝑖 = 1,… , 𝑁 . (ii) Record the current observation time step 𝑡. If 𝑡 is smaller than the
total number of observations 𝑇1, we compute the estimators 𝐽𝐵,𝑖 for all nodes based on current maximum likelihood functions 𝐿𝑖(𝑡)
described in Eq. (2). Thereafter, we compute the Fisher information defined in Eq. (5) and insert them into the objective function
in Eq. (7). By optimizing Eq. (7) with the interior point method, we obtain a set of optimized budget allocations for controller 𝐴,
denoted as 𝐽 𝑜𝑝𝑡

𝐴,𝑖 (𝑡). Finally, the network is updated with the new set of allocations 𝐽 𝑜𝑝𝑡
𝐴,𝑖 (𝑡) following the Ising dynamics to obtain the

ext states at 𝑡 + 1 for all nodes. Lines 3–7 of Algorithm 1 codify the contents of this step. (iii) When the time step 𝑡 exceeds the
otal number of observations 𝑇1, the procedure is terminated. Note that the time complexity of the one-step-ahead optimization is
(

(𝑇1 − 𝑇0)𝑁3).

Algorithm 1: Numerical one-step-ahead optimization
input : Adjacency matrix 𝑊 , total number of observations 𝑇1, fixed budget allocation 𝐽𝐴,𝑓 , length of updates before

computing the standard deviation 𝑇0
output: optimized budget allocation, 𝐽 𝑜𝑝𝑡

𝐴,𝑖 (𝑡) for 𝑇0 ≤ 𝑡 ≤ 𝑇1, 1 ≤ 𝑖 ≤ 𝑁
1 Initialization: 50% of the initial opinions of agents 𝑠𝑖(0) are −1 or 1; update the network with 𝐽𝐴,𝑓 for the first 𝑇0 steps; let 𝑡 = 𝑇0;
2 while 𝑡 ≤ 𝑇1 do
3 𝐽𝐵,𝑖 = max𝐽𝐵,𝑖 𝐿𝑖(𝑡) for 1 ≤ 𝑖 ≤ 𝑁 ;
4 obtain 𝐽 𝑜𝑝𝑡

𝐴,𝑖 (𝑡) by optimizing Eq. (7);
5 update the network following stochastic Ising dynamics with {𝐽 𝑜𝑝𝑡

𝐴,𝑖 (𝑡)}
𝑁
𝑖=1 ;

6 𝑡 = 𝑡 + 1;
7 end

3. Results

In this section, we present the main results for the inference acceleration problem, with a special focus on exploring the
onfiguration of the optimized budget allocations by the active controller 𝐴. First, in Section 3.1, we explore the inferrability of

nodes in the case of no interference from controller 𝐴. Then, to gain some insights into how the inference is affected by the budget
6
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Fig. 1. (a) Dependence of the standard deviation of estimators for controller 𝐵’s control gains on nodes’ degrees in the absence of controller 𝐴. (b) Dependence
f the standard deviation of estimators for controller 𝐵’s control gains on controller 𝐵’s budget allocations in the absence of controller 𝐴. The standard deviation
s calculated at time step 1000 and temperature 𝑇 = 20. We use a setting in which controller 𝐵 targets all nodes with allocations randomly sampled from a
niform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵 per node on average is 10. We group the value of 𝑥 axis into bins with width 1
nd lower limits are inclusive, e.g., [0,1). Error bars indicate 95% confidence intervals.

llocations, we target all nodes with equal budget allocations. The results from the equally targeting scenario then work as the
enchmark to verify the effectiveness of the proposed one-step-ahead heuristics. Second, we proceed with an investigation of the
pproximated configuration of the optimized budget allocations in the high-temperature region obtained by the high-temperature
aylor expansion in Section 3.2. Third, we further explore the profiles of optimized budget allocations in the scenario of not having
riori knowledge about the neighbourhood by utilizing the high-temperature mean-field approximation in Section 3.3. Furthermore,
n Section 3.4, we discuss the influence of budget availability on the optimal control.

The numerical experiments in this work are performed on uncorrelated random scale-free networks with network size 𝑁 = 1000
nd average degree ⟨𝑑⟩ = 10, generated according to the configuration model [36]. To ensure a large degree heterogeneity, the
egree distribution of the constructed networks is 𝑝𝑑 ∝ 𝑑−2 where 𝑑 represents the node’s degree. The results shown in the following
ontext are all based on 50 repetitions of the corresponding experiments.

.1. Benchmark — the equally targeting scenario

Before investigating the influence of budget allocations by the active controller on the inference, we are interested in the accuracy
f inference without interference from controller 𝐴. Here, we use the standard deviation of estimators in Eq. (4) to quantify the
ccuracy of inference. For a preliminary investigation, we assume the passive controller 𝐵 targets each node with random control
ains drawn from a uniform distribution 𝑈 (0, 20) with the first moment of the distribution 10 equal to the average degree of the
etworks. To proceed, in Fig. 1, we present the dependence of the standard deviation of estimators for the opponent’s strategies on
odes’ degrees in panel (a) and on the allocations from controller 𝐵 in panel (b) at temperature 𝑇 = 20. In Panels (a) and (b) of

Fig. 1, we observe clear patterns for the corresponding dependence. In the absence of interference from controller 𝐴, nodes are the
harder to predict the larger their degrees and the larger the budget allocations from controller 𝐵. These results are consistent with
the conclusion drawn for the voter model in [22]. A wider range of temperature values from 𝑇 = 1 to 𝑇 = 100 for inference without
interference can be seen in Figs. 7 and 8 of Appendix D, showing similar patterns.

We then proceed with the qualitative exploration of the opponent strategy inference problem in the equally targeting scenario
where the active controller 𝐴 targets all nodes with the same control gain. By doing so, we aim at gaining some intuitions about
how the inference is affected by the interference from the active controller 𝐴. Furthermore, we will later use the equally targeting
strategy as a benchmark which will give insights into improvements in the estimations that can be obtained by optimization.

To proceed, in Fig. 2(a), we show the dependence of the mean standard deviation 𝜎̄𝑒𝑞 for the equally targeting scheme over
all nodes on varying temperature 𝑇 and different relative budget constraints 𝑏𝐴 = 0.5𝑏𝐵 (black circles), 𝑏𝐴 = 𝑏𝐵 (blue triangles),
𝑏𝐴 = 2𝑏𝐵 (red squares). After a careful inspection of Fig. 2(a), we make the following observations. First, as shown in the upper-left
corner of Fig. 2(a), it is hard to gain accurate estimations of the opponent’s strategy in the low temperature regions. The main
reason for the inaccuracy of the inference is that, at low temperature, the system falls into stabilization which leads to spontaneous
magnetization [37]. Some nodes are keeping their states unchanged during the whole updating process. Therefore, no information
would be obtained from the observation. Second, in the inset of Fig. 2(a), we find that, for extremely high temperature, the inference
errors are roughly the same for different equally targeting budgets. Together with the probabilities of state flips in Eq. (1), we can
thus understand why the Ising system is harder to control for inference acceleration as the temperature increases: In the context of
high temperature, nodes have nearly equal probabilities to change to state 1 or −1. In this case, the temperature is the main factor
for state flipping. As the control gains are divided by a large temperature, they have little influence in determining the agents’ next
states. Third, by combining the inset and the whole picture in Fig. 2(a), we find that the dependence of mean standard deviation
on temperature is a convex shape. This means that there is a temperature at which predictions of opponent strategies are the most
7

accurate.
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Fig. 2. (a) Dependence of the mean standard deviation 𝜎̄𝑒𝑞 of estimators for controller 𝐵’s control gains over all nodes at time step 1000 on varying temperature
𝑇 when controller 𝐴 targets all nodes equally. Different relative budget constraints 𝑏𝐴∕𝑏𝐵 = {0.5, 1, 2} are shown by different colours of curves. (b) Dependence of
the relative mean standard deviation 𝜎̄𝑒𝑞−𝜎̄𝑜𝑝𝑡

𝜎̄𝑒𝑞
on varying temperature 𝑇 . 𝜎̄𝑜𝑝𝑡 is calculated by averaging the standard deviation of estimators obtained via applying

the numerical one-step-ahead optimization over all nodes at time step 1000. The three horizontal lines show the percentages of improvements in reducing the
standard deviation by the optimization compared with the equally targeting strategy. We use a setting in which controller 𝐵 targets all nodes with allocations
randomly sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵 per node on average is 10. Error bars indicate 95%
confidence intervals.

Fig. 3. (a) Dependence of the relative mean standard deviation 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥−𝜎̄𝑜𝑝𝑡
𝜎̄𝑜𝑝𝑡

on varying temperature 𝑇 . 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥 stands for the mean standard deviation of estimators
obtained via applying the high-temperature Taylor series approximation shown as Eqs. (9) and (11) over all nodes after the system initialization. Different relative
budget constraints 𝑏𝐴∕𝑏𝐵 = {0.5, 1} are shown by different colours of curves. We use a setting in which controller 𝐵 targets all nodes with allocations randomly
sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵 per node on average is 10. Error bars indicate 95% confidence
intervals.

Next, to figure out if the inference of opponent budget allocations could be accelerated or not by the proposed one-step-ahead
optimization algorithm, we compare the mean standard deviation of estimators 𝜎̄𝑒𝑞 computed by the equally targeting strategy
with the mean standard deviation 𝜎̄𝑜𝑝𝑡 calculated by applying the optimized budget allocations of Algorithm 1 in Fig. 2(b). To
focus on the improvements of inference in the high-temperature region, we consider the relative mean standard deviation 𝜎̄𝑒𝑞−𝜎̄𝑜𝑝𝑡

𝜎̄𝑒𝑞
or different budget constraints 𝑏𝐴∕𝑏𝐵 = {0.5, 1, 2} in Fig. 2(b). It becomes clear that the optimization works best for extremely

low temperature with a reduction of the relative standard deviation close to 100%. Moreover, with an increase of temperatures,
the optimized standard deviation gets closer to the equally targeting one. However, more than 5% or about 1% improvements are
achieved in the intermediate or high temperature regions compared with the equally targeted strategy. Additionally, we observe that
the one-step-ahead optimization has a better performance in reducing the standard deviation of estimators if the active controller
𝐴 has more budget than the passive controller 𝐵.

3.2. Results for high-temperature Taylor series approximation

As the approximated solutions in Eq. (11) for the optimal budget allocations are deduced under the assumption of high
temperature, identifying the feasible region where the Taylor series approximation has close performance to the optimization is
crucial. To proceed, in the panels of Fig. 3, we compare the mean standard deviation over all nodes calculated via the one-step-
ahead optimization of Algorithm 1 with the Taylor series approximation in Eq. (11). In more detail, in Fig. 3(a), we show the
8
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Fig. 4. (a) Dependence of the absolute value of the relative mean standard deviation |
𝜎̄𝑀𝐹 −𝜎̄𝑜𝑝𝑡|

𝜎̄𝑜𝑝𝑡
on varying temperature 𝑇 . 𝜎̄𝑀𝐹 is computed by averaging Eq. (21)

over all nodes. Different relative budget constraints 𝑏𝐴∕𝑏𝐵 = {0.5, 1, 2} are shown by different shapes of symbols. (b) Dependence of the mean budget allocations
y controller 𝐴 over updates on the budget allocations by controller 𝐵. The triangles, squares and lines represent for the results calculated by the optimization,
aylor expansion and mean-field approximation, respectively. The blank symbols and solid line are for budget constraint 𝑏𝐴 = 0.5𝑏𝐵 , while the filled symbols
nd dashed line are for 𝑏𝐴 = 𝑏𝐵 . The value of 𝑥 axis are grouped into bins with width 1 and lower limits are inclusive, e.g., [0,1). Error bars indicate 95%
onfidence intervals.

ependence of relative mean standard deviation 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥−𝜎̄𝑜𝑝𝑡
𝜎̄𝑜𝑝𝑡

on the temperature 𝑇 at update 1000. Here, 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥 stands for the mean
standard deviation computed by the Taylor series approximation (see Eqs. (9) and (11)). To obtain 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥, we consider the following
rocedure: After the first 𝑇0 = 100 updates of system initialization as mentioned in Algorithm 1, we replace the optimization by
he Taylor series approximation and obtain the approximated budget allocations at each update. Thereafter, we update the network
ith the approximated values following Ising dynamics. By doing this, the results of 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥 are purely based on the approximated

budget allocations but not the optimal budget allocations. Note that, unlike Fig. 2, we only present two budget cases 𝑏𝐴 = 0.5𝑏𝐵
nd 𝑏𝐴 = 𝑏𝐵 in Fig. 3(a). The reason for not presenting the results for 𝑏𝐴 = 2𝑏𝐵 is that: if controller 𝐴 has sufficient budget, the
ptimized budget allocations will be the same as the approximated ones as indicated in Eqs. (8) and (9). As a consequence, the
ean standard deviation 𝜎̄𝑜𝑝𝑡 and 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥 will be the same, and thus the relative mean standard deviation 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥−𝜎̄𝑜𝑝𝑡

𝜎̄𝑜𝑝𝑡
= 0 cannot be

presented in a logarithmic figure.
Continuing with the results in Fig. 3(a), we find that even though the approximation is based on the assumption of high

temperature, it also works well in the intermediate temperature region. For instance, for 𝑏𝐴 = 𝑏𝐵 , the approximation will result in
a performance loss of less than 10% compared with the optimization at temperature above 10. Therefore, in the medium and high
temperature region, one could substitute the optimized budget allocations with the approximated ones to reduce the computational
complexity from 

(

(𝑇1 − 𝑇0)𝑁3) to (𝑇1 − 𝑇0) without sacrificing much of the performance. Moreover, consistent with the high-
temperature assumption, the relative difference of standard deviation between the Taylor series approximation and the numerical
optimization gets smaller with increasing temperatures. However, in the low-temperature region (𝑇 < 6), the high-temperature

aylor series approximation will lead to the performance loss of 𝜎̄𝑎𝑝𝑝𝑟𝑜𝑥−𝜎̄𝑜𝑝𝑡
𝜎̄𝑜𝑝𝑡

≥ 1. This is particularly pronounced for the insufficient
budget scenario 𝑏𝐴 = 0.5𝑏𝐵 , as demonstrated in the upper-left corner of Fig. 3(a), where the relative mean standard deviation will
exceed 102. The significant performance loss in the case of 𝑏𝐴 = 0.5𝑏𝐵 is a result of budget insufficiency, which leads to bad initial
estimations 𝐽𝐵,𝑖 for most nodes after the first 𝑇0 = 100 updates after system initialization. The subsequent utilization of Eqs. (9)
and (11) for approximated solutions allocates budgets only to nodes with extremely high standard deviations, leaving other nodes
untargeted. The division of budgets across a large number of nodes with extremely high standard deviations prevents targeted nodes
from receiving sufficient control gains to flip their states. Meanwhile, other untargeted nodes are hard to flip at low temperatures.
Consequently, the approximated budget allocations and system states remain almost constant, leading to almost no information
gain. This results in a persistently high mean standard deviation in the approximated solution. In contrast, for the 𝑏𝐴 = 𝑏𝐵 scenario,
he system initialization yields poor initial estimations for only a few nodes. Allocating resources to these nodes prompts state flips
nd thereafter leads to a relatively lower standard deviation compared to the 𝑏𝐴 = 0.5𝑏𝐵 case. A more detailed explanation of the
ifference in the relative mean standard deviation between 𝑏𝐴 = 0.5𝑏𝐵 and 𝑏𝐴 = 𝑏𝐵 for the low-temperature region can be found in
ppendix E.

.3. Results for high-temperature mean-field approximation

In the following, we consider a more practical scenario in the real-world context where we do not have access to real-time
racking of the system dynamics. In this scenario, we apply the high-temperature mean-field solutions presented in Section 2.2 to
btain a guess for nodes’ neighbouring states and thereafter generate approximations for the optimized budget allocations in the
igh-temperature region. Similar to Section 3.2, we start with identifying the region where the mean-field approximation has close
erformance to the numerical one-step-ahead optimization. For this purpose, we evaluate the performance of the high-temperature
ean-field approximation based on different temperatures. Fig. 4(a) shows the dependence of the absolute value of the relative
9
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mean standard deviationn
|

|

|

𝜎̄𝑀𝐹−𝜎̄𝑜𝑝𝑡
|

|

|

𝜎̄𝑜𝑝𝑡
on the temperature. Here 𝜎̄𝑀𝐹 is computed by averaging Eq. (21) over all nodes. Notice that,

on the 𝑦-axis, instead of calculating the relative values as Figs. 2 and 3, we compute the absolute difference between the numerical
optimization and the mean-field approximation. The reason for this is that in some cases 𝜎̄𝑀𝐹 will be smaller than 𝜎̄𝑜𝑝𝑡. For example,
onsider the setting of 𝑏𝐴 ≥ 𝑏𝐵 . In the scenario of 𝑏𝐴 ≥ 𝑏𝐵 , the mean-field states 𝑟𝑖 will be zero. Therefore, based on Eq. (21),
̄𝑀𝐹 =

(

𝑀
𝑇 2

)−1∕2
, which only considers the first term of the Taylor expansion of the Fisher information in Eq. (20) and ignores

the non-negative term of (𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡))2

𝑇 4 at each time step. This makes the high-temperature mean-field approximation of the
tandard deviation smaller than its actual value. To facilitate the analysis of the high-temperature mean-field approximation, we
onsider the relative standard deviation under three control settings, where controller 𝐴 has less budget 𝑏𝐴 = 0.5𝑏𝐵 , equal budget
𝑏𝐴 = 𝑏𝐵 , and more budget 𝑏𝐴 = 2𝑏𝐵 in Fig. 4(a). Consistent with the results of the high-temperature Taylor series approximation,
he high-temperature mean-field approximation has the worst performance if the active controller has less budget compared with
ts opponent in the low temperature region (see the upper-left corner of Figs. 3(a) and 4(a)). However, the approximated standard
eviation gradually converges to the optimized one as the temperature rises for these three budget settings. More importantly, even
hough the high-temperature mean-field approximation is deduced under the assumption of high temperature, it works well also in
he intermediate temperature region where the difference in the standard deviation is less then 10% for temperature over 10 when
𝑏𝐴 ≥ 𝑏𝐵 .

Moreover, in Fig. 4(a), for 𝑏𝐴 = 0.5𝑏𝐵 , after 𝑇 = 5.5, we observe an increase in the absolute value of the relative mean standard
deviation for 6.5 ≤ 𝑇 ≤ 13. The jump is mainly caused by the quality of the approximations. To be more specific, 𝜎̄𝑀𝐹 is computed
by averaging Eq. (21), where 𝑀 and 𝑇 are given and 𝑟𝑖 is dependent on ⟨𝑟⟩ =

∑

𝑖 𝐽𝐴,𝑖−𝑏𝐵
𝑇𝑁−⟨𝑑⟩𝑁 (see Eq. (17)). As the experiments are carried

ut on networks with average degree ⟨𝑑⟩ = 10, and given |

|

∑

𝑖 𝐽𝐴,𝑖 − 𝑏𝐵|| ≫ 0 for 𝑏𝐴 = 0.5𝑏𝐵 , we obtain high |⟨𝑟⟩| for temperatures

round 10 (i.e., 6.5 ≤ 𝑇 ≤ 13). This further leads to high 𝑟2𝑖 and 𝜎̂𝑖(𝐽𝐵,𝑖,𝑀) ≈ 0 (see Eq. (21)). As a result,
|

|

|

𝜎̄𝑀𝐹−𝜎̄𝑜𝑝𝑡
|

|

|

𝜎̄𝑜𝑝𝑡
are close to 1

for 6.5 ≤ 𝑇 ≤ 13 in the setting of 𝑏𝐴 = 0.5𝑏𝐵 . In contrast, for 𝑏𝐴 = 𝑏𝐵 and 𝑏𝐴 = 2𝑏𝐵 , according to Eq. (17), ⟨𝑟⟩ is dependent on the
real budget used by controller 𝐴, which could be less or equal to the budget constraint. In these cases, |

|

∑

𝑖 𝐽𝐴,𝑖 − 𝑏𝐵|| is very close
to 0, and will not result in significant increases in the mean-field standard deviations for temperatures around 10.

We next investigate the shape of the budget allocations obtained via the numerical optimization and approximations. As the
approximations have better performance in the intermediate and high temperature regions, we first present the profile of budget
allocations by controller 𝐴 for an intermediate temperature 𝑇 = 20. In more detail, in Fig. 4(b), we present the dependence of
the mean budget allocations by controller 𝐴 averaged over updates on the opponent’s budget allocations at 𝑇 = 20. Note that,
for ease of observation, we group opponent’s budget allocations in 𝑥-axis into bins with width 1 in Fig. 4(b). Results shown in
this figure are obtained from three different algorithms where the triangles represent the numerical one-step-ahead optimization

calculated as
⟨

𝐽 𝑜𝑝𝑡
𝐴,𝑖

⟩

=
∑𝑇1

𝑡=𝑇0
𝐽 𝑜𝑝𝑡
𝐴,𝑖 (𝑡)

𝑇1−𝑇0
, circles are for Taylor series approximation

⟨

𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖

⟩

=
∑𝑇1

𝑡=𝑇0
𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡)

𝑇1−𝑇0
and lines stand for mean-field

approximation 𝐽𝑀𝐹
𝐴,𝑖 . Moreover, the influence of budget constraints are also considered in Fig. 4(b), where marked symbol and dashed

line represent 𝑏𝐴 = 𝑏𝐵 , and blank symbols and line are for 𝑏𝐴 = 0.5𝑏𝐵 . By observing the trends of budget allocations by controller 𝐴
or varying budget allocations from its opponent, we find that for agents targeted by the opponent with larger budget allocations,
he active controller tends to allocate more resources on average as well. Moreover, we find that the high-temperature mean-field
nd Taylor series methods provide good approximations for the optimized budget allocations for both budget constraints. Note that,
onsistent with the analytical result obtained from the high-temperature mean-field method in which for 𝑏𝐴 ≥ 𝑏𝐵 𝐽𝑀𝐹

𝐴,𝑖 = 𝐽𝐵,𝑖, we
bserve a nearly linear dependence in Fig. 4(b) for 𝑏𝐴 = 𝑏𝐵 .

To proceed, we investigate the accuracy of inference for agents after we performed the optimal control and compare with the
esults for the no interference scenario in Fig. 1. Similar to Fig. 1(a), we show the dependence of standard deviation of estimations
n nodes with different degrees when applying the optimization of Algorithm 1 or using high-temperature Taylor and mean-
ield approximations in Fig. 5(a). By observing Fig. 5(a), we find that the high-temperature Taylor approximation provides close
erformance in depicting the influence of node degree heterogeneity on inference accuracy compared with the exact numerical
ptimization. Moreover, consistent with the no interference case in Fig. 1(a), we find that it is also harder to predict a higher
egree node under optimization. In Fig. 5(b), we present the dependence of standard deviation of estimators on opponent budget
llocations. We find that, compared with Fig. 1(b), the application of optimal control strongly alleviates the difference of standard
eviation for nodes targeted by the opponent with various values (i.e., we observe that values vary by less than 0.01 as opposed
o nearly 1 in Fig. 1(b)). Nevertheless, we still observe a clear negative correlation, i.e. the less the resource a node is targeted by
he opponent, the harder it is to predict. This conclusion differs from the pattern observed in the no interference case in Fig. 1(b),
here we observed that nodes targeted with higher control gains are harder to predict.

.4. Influence of budget availability

To facilitate the analysis of the configurations of the budget allocations by the active controller, we further investigate the
elationship between the budget allocations by the active controller and its opponent on the ratio of the budget constraints 𝑏𝐴∕𝑏𝐵 .
imilar to Fig. 4(b), we group budget allocations by the opponent into bins with width 1 and calculate the corresponding mean value
f
⟨

𝐽 𝑜𝑝𝑡
⟩

,
⟨

𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
⟩

and 𝐽𝑀𝐹 within the given bins, denoted as 𝐽 𝑜𝑝𝑡,𝑚, 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥,𝑚 and 𝐽𝑀𝐹,𝑚 for bins with higher limit 𝑚. Therefore,
10
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Fig. 5. (a) Dependence of the standard deviation of estimators for controller 𝐵’s control gains on nodes’ degrees. The inset shows the dependence of the absolute
difference in standard deviations calculated by the optimization and by the Taylor expansion on degree. (b) Dependence of the standard deviation of estimators
for controller 𝐵’s control gains on controller 𝐵’s budget allocations. The inset shows the dependence of the absolute difference in standard deviations calculated
y the optimization and by the Taylor expansion on budget allocations by controller 𝐵. The standard deviation is calculated at time step 1000 and temperature
= 20. The red triangles, blue circles and lines are for results calculated by the one-step-optimization, Taylor expansion and mean-field approximation separately.
e use a setting in which controller 𝐵 targets all nodes with allocations randomly sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation

by controller 𝐵 per node on average is 10. Error bars indicate 95% confidence intervals.

Fig. 6. Dependence of the fitness of the relationship of mean budget allocations by controller 𝐴 on the allocations by controller 𝐵 calculated by approximations
ompared with the optimization on relative budget constraints 𝑏𝐴∕𝑏𝐵 . Here the fitness is calculated by taking square root of the sum of squares of difference
etween corresponding points calculated by optimization and by Taylor series or mean-field approximations calculated by Eqs. (24) and (25), respectively. The
istance is further normalized by the actual budget used by controller 𝐴 in the optimization. The blue squares show the normalized distance between Taylor
xpansion and the one-step-ahead optimization while the black squares are for the normalized distance between mean-field approximation and the one-step-ahead
ptimization. Panel (a) shows the results for temperature 𝑇 = 20, and Panel (b) is 𝑇 = 50.

the distance of the dependence of mean budget allocations by the active controller on 𝐽𝐵,𝑖 between the numerical optimization and
the high-temperature Taylor approximation is calculated as

√

∑

𝑚

(

𝐽 𝑜𝑝𝑡,𝑚
𝐴 − 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥,𝑚

𝐴

)2
∕𝑏∗𝐴 (24)

Similarly, the distance of the dependence between the mean-field approximation and numerical optimization is
√

∑

𝑚

(

𝐽 𝑜𝑝𝑡,𝑚
𝐴 − 𝐽𝑀𝐹,𝑚

𝐴

)2
∕𝑏∗𝐴 (25)

Here 𝑏∗𝐴 represents the actual total budget that the controller 𝐴 has used during the optimization in Fig. 6.
For comparison, Fig. 6(a) is computed at intermediate temperature 𝑇 = 20 while (b) is for high-temperature at 𝑇 = 50. By

observing Fig. 6(a), we find that the distances of budget allocations between the numerical optimization and approximations
calculated by Eqs. (24) and (25) are smaller for larger relative budgets 𝑏𝐴∕𝑏𝐵 . This implies that the approximations work better if the
active controller has more budget than its opponent. However, we also note thresholds at which if the 𝑏𝐴 exceeds a certain value then
increasing 𝑏𝐴 does not result in improvements of the performance of the approximations. By comparing the normalized distance for
different temperature, we find that, temperature will shift the ‘‘best’’ points of relative budgets where the high-temperature Taylor
expansion will have the best performance in approaching the same budget allocations as the numerical optimization algorithm.
11

For example, for 𝑇 = 20, the performance of the high-temperature Taylor expansion is close to the numerical optimization when
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𝑏𝐴∕𝑏𝐵 ≥ 1.2. However, for higher temperature 𝑇 = 50, high-temperature Taylor expansion has close performance to the optimization
t 𝑏𝐴∕𝑏𝐵 ≥ 0.9.

. Conclusion

Existing literature related to the inverse kinetic Ising problem has traditionally studied inference based on a given dataset
f observations. In contrast, in this paper, we have investigated how to speed up the convergence of inference via strategically
nterfering with the Ising dynamics with the aim of generating a more informative dataset. To achieve this, we place the inference
ccelerating problem in the scenario of two opposing controllers. One is actively interacting with the opinion dynamics via
ptimizing its allocations step-wisely to minimize the uncertainty of its opponent’s unknown strategies.

By comparing with the benchmark scenario in which the active controller targets all nodes equally, we establish that interacting
ith the Ising dynamics can substantially speed up the convergence of inference. Specifically, in the low-temperature region, the
roposed heuristics decreases the uncertainty of inference by almost 100 percent compared with the benchmark case. This agrees
ith the finding of Decelle et al. [21], who demonstrate that out-of-equilibrium data allow for a much more accurate inference

ompared with equilibrium/stationary data. Moreover, even though the external controllers have limited power in manipulating
he networked dynamics in higher temperature settings, the proposed heuristics will still make some improvements in speeding up
he convergence of estimators of opponent strategies in the high-temperature region.

As a second contribution, we have provided a comprehensive exploration of the configuration of the optimal allocations both
nalytically and numerically. We find that, if the active controller has sufficient budget, it will allocate resources equal to the
ifference between the current estimators of opponent’s allocations and the sum of the targeted node’s weighted neighbouring states.
n the case of insufficient budget, we utilize the high-temperature Taylor approximation and find that the optimized allocations will
e re-weighted according to the standard deviation of current estimators based on the solutions for the sufficient budget case, in
rder to meet the budget constraints. By observing the profile of the mean optimized allocation over updates, we find a clear positive
ependence of mean optimized allocation on opponent’s budget allocations. Moreover, even by performing the optimal control, high
egrees will impede nodes to be inferred accurately. The main reason for this is that, for nodes with large degree, when it changes
ts state, it is hard to distinguish whether the change is a result of control or its neighbours. This pattern is consistent with the
indings presented in [38] and [22]. However, contrary to the results obtained from the voter model in [22], nodes targeted by the
pponent with larger allocations will have higher inferrability.

Furthermore, we have extended our heuristics of optimally interacting with the networked dynamics to the case of not having
he real-time tracking of the system dynamics. To cope with this situation, we substitute the real states with the mean-field states.
his assumption makes our algorithm applicable to a wide range of scenarios when real-time tracking for the feedback from the
opulation is infeasible. For a more extreme case, the results obtained via the mean-field approximation can be used as a guideline
o have accurate estimators for opponent’s strategies when only very limited data is accessible.

Our work illustrated above has been limited to inferring a fix-strategy opponent. Therefore, a possible line for future work is to
nvestigate the inference acceleration problem when the opponent will change its allocations dynamically. Moreover, as indicated
n the work of Romero Moreno et al. [39], knowing the strategy of the opponent will enable a better performance in influence
aximization where controllers compete to maximize their influence in the network. Therefore, one could combine the opponent

trategy inference problem with influence maximization where the active controller needs to find a trade-off between the resources
utting to accelerate the inference and to maximize its influence.
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Appendix A. Global minima for a single node

Specifically, to find the minima for 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) in Eq. (6), we take a first-order derivative of 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) with respect to 𝐽𝐴,𝑖.
y doing so, we obtain

𝜕𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)
𝜕𝐽𝐴,𝑖(𝑡)

=
𝑇 tanh

(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

)

sech2
(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑗 (𝑡)
𝑇

)

(

sech2
(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑗 (𝑡)
𝑇

)

− 𝐼(𝐽𝐵,𝑖, 𝑡)𝑇 2
)2

𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)

. (26)

By letting Eq. (26) equal to 0, we find that, 𝐽𝐴𝑗
= 𝐽𝐵,𝑖 − 𝑆𝑖(𝑡) is always a solution for Eq. (26) and it is independent of the value

of last-step Fisher information 𝐼(𝐽𝐵,𝑖, 𝑡). Furthermore, the sign of Eq. (26) is determined by the term of
(

𝑇 tanh
(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

))

,
nd we have

tanh

(

𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡)
𝑇

)

> 0 for 𝐽𝐴,𝑖(𝑡) > 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡)

tanh

(

𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡)
𝑇

)

< 0 for 𝐽𝐴,𝑖(𝑡) < 𝐽𝐵,𝑖 − 𝑆𝑖(𝑡).

(27)

his means that the function of Eq. (6) increases monotonically when 𝐽𝐴,𝑖(𝑡) > 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡) and decreases monotonically when
𝐴,𝑖(𝑡) < 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡). Therefore, 𝐽𝐴,𝑖(𝑡) = 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡) is a global minima for the standard deviation 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) if we consider
𝐴,𝑖(𝑡) in the domain of R. However, as the budget allocation cannot be negative, when 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡) < 0, the global minima is
𝐴,𝑖(𝑡) = 0.

ppendix B. Curvature of expected standard deviation

The second-order derivative of Eq. (6) with respect to 𝐽𝐴,𝑖(𝑡) is given by

𝜕2𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)

𝜕𝐽 2
𝐴,𝑖

= −
sech4

(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

)(

𝐼(𝐽𝐵,𝑖, 𝑡)𝑇 2 cosh
(

2(𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡))
𝑇

)

− 2𝐼(𝐽𝐵,𝑖, 𝑡)𝑇 2 + 1
)

(

𝐼(𝐽𝐵,𝑖, 𝑡)𝑇 2 − sech2
(

𝐽𝐴,𝑖(𝑡)−𝐽𝐵,𝑖+𝑆𝑖(𝑡)
𝑇

))3
𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)

. (28)

By letting 𝐽𝐴,𝑖(𝑡) = 𝐽𝐵,𝑖(𝑡) − 𝑆𝑖(𝑡) in Eq. (28), we have

𝜕2𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1)

𝜕𝐽 2
𝐴,𝑖

|

|

|

|

|

|𝐽𝐴,𝑖(𝑡)=𝐽𝐵,𝑖(𝑡)−𝑆𝑖(𝑡)

=
(

𝑇 −1 − 𝐼(𝐽𝐵,𝑖, 𝑡)
)1∕2. (29)

For a larger temperature 𝑇 , the value of Eq. (29) is smaller. Therefore, the curve of Eq. (6) is flatter for a high temperature compared
with a lower temperature.

Appendix C. High-temperature Taylor expansion

For high temperature, we have

𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡 + 1) = 𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡) −
𝜎̂3𝑖 (𝐽𝐵,𝑖, 𝑡)

2𝑇 2
+

3𝜎̂5𝑖 (𝐽𝐵,𝑖, 𝑡)
8𝑇 4

+
(𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡))2𝜎̂3𝑖 (𝐽𝐵,𝑖, 𝑡)

2𝑇 4
+ 

(

( 1
𝑇

)5)

. (30)

Here, the  represents the Big O notation.
Next, to obtain an analytical solution for the minima of Eq. (7) subject to the inequality constraint ∑𝑁

𝑖=1 𝐽𝐴,𝑖(𝑡) ≤ 𝑏𝐴, we apply
the Lagrange multiplier technique [34] based on the approximation shown in Eq. (30). In order to handle the inequality constraint
in the objective function, we introduce slack variables 𝑡 and 𝑘𝑖 (1 ≤ 𝑖 ≤ 𝑁). By letting

𝑓
(

𝐽𝐴(𝑡)
)

=
𝑁
∑

𝑖=1

⎡

⎢

⎢

⎣

𝜎̂𝑖(𝐽𝐵,𝑖, 𝑡) −
𝜎̂3𝑖 (𝐽𝐵,𝑖, 𝑡)

2𝑇 2
+

3𝜎̂5𝑖 (𝐽𝐵,𝑖, 𝑡)
8𝑇 4

+

(

𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡)
)2 𝜎̂3𝑖

(

𝐽𝐵,𝑖, 𝑡
)

2𝑇 4

⎤

⎥

⎥

⎦

, (31)

here 𝐽𝐴(𝑡) = {𝐽𝐴,𝑖(𝑡)}𝑁𝑖=1, Eq. (7) is converted into

{

𝑁 agents in the network
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,1 (𝑡),… , 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑁 (𝑡)} = argmin 𝑓
(

𝐽𝐴(𝑡)
)

subject to

ℎ
(

𝐽𝐴(𝑡)
)

=
𝑁
∑

𝑖=1
𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) − 𝑏𝐴 + 𝑡2 = 0

( ) 𝑎𝑝𝑝𝑟𝑜𝑥 2

(32)
13

𝑔𝑖 𝐽𝐴(𝑡) = −𝐽𝐴,𝑖 (𝑡) + 𝑘𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑁,
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Here, 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) for 1 ≤ 𝑖 ≤ 𝑁 denote the optimal budget allocations obtained from the Taylor expansion. Therefore, the Lagrangian

s defined as:

𝐿(𝐽𝐴(𝑡), 𝜆, {𝛽𝑖}𝑁𝑖=1) = 𝑓
(

𝐽𝐴(𝑡)
)

+ 𝜆ℎ
(

𝐽𝐴(𝑡)
)

+
𝑁
∑

𝑖=1

[

𝛽𝑖𝑔𝑖
(

𝐽𝐴(𝑡)
)]

. (33)

o obtain the optimal solution of Eq. (32), we set the gradients of Eq. (33) to be 0:

𝜕𝐿
𝜕𝐽𝐴,𝑖

=

(

𝐽𝐴,𝑖(𝑡) − 𝐽𝐵,𝑖 + 𝑆𝑖(𝑡)
)

𝜎̂3𝑖 (𝐽𝐵,𝑖, 𝑡)
𝑇 4

+ 𝜆 − 𝛽𝑖 = 0

𝜕𝐿
𝜕𝜆

=
𝑁
∑

𝑖=1
𝐽𝐴,𝑖(𝑡) − 𝑏𝐴 + 𝑡2 = 0

𝜕𝐿
𝜕𝑡

= 2𝜆𝑡 = 0

𝜕𝐿
𝜕𝛽𝑖

= −𝐽𝐴,𝑖(𝑡) + 𝑘2𝑖 = 0

𝜕𝐿
𝜕𝑘𝑖

= 2𝛽𝑖𝑘𝑖 = 0.

(34)

In accordance with the Karush–Kuhn–Tucker conditions [34], the inequality constraints should satisfy the complementary slackness
condition, i.e., either the Lagrange multipliers are equal to zero or the inequality constraints are active. Moreover, for the
minimization, the Lagrange multipliers should be non-negative, i.e.,

𝜆 ≥ 0

𝛽𝑖 ≥ 0.
(35)

By solving the system of Eqs. (34) and (35), we have:

(i)

If
𝑁
∑

𝑖=1
𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) ≤ 𝑏𝐴, 𝐽 𝑎𝑝𝑝𝑟𝑜𝑥

𝐴,𝑖 (𝑡) =
{

𝐽𝐵,𝑖 − 𝑆𝑖(𝑡), 𝐽𝐵,𝑖 ≥ 𝑆𝑖(𝑡)
0, 𝐽𝐵,𝑖 < 𝑆𝑖(𝑡)

. (36)

(ii) Otherwise, let

𝜙𝑖(𝑡) =
(

𝐽𝐵,𝑖 − 𝑆𝑖(𝑡)
)

+

[

𝑏𝐴 −
∑

𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑗 (𝑡)≠0

(

𝐽𝐵,𝑗 − 𝑆𝑗 (𝑡)
)

]

𝜎̂−3𝑖 (𝐽𝐵,𝑖, 𝑡)
∑

𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑗 (𝑡)≠0 𝜎̂

−3
𝑗 (𝐽𝐵,𝑗 , 𝑡)

. (37)

Here, ∑𝐽𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑗 (𝑡)≠0 stands for summing up all the 𝑗 where the budget allocations from the controller 𝐴 on nodes 𝑗 are not 0.

Thus, we have

𝐽 𝑎𝑝𝑝𝑟𝑜𝑥
𝐴,𝑖 (𝑡) =

{

0, 𝐽𝐵,𝑖 ≤ 𝑆𝑖(𝑡) or 𝜙𝑖(𝑡) ≤ 0
𝜙𝑖(𝑡), 𝜙𝑖(𝑡) > 0

. (38)

Appendix D. Standard deviation of estimators for varying temperatures in the absence of controller 𝑨

In this section, we extend the experiments depicted in Fig. 1, where we initially evaluated the accuracy of inference without
interference from controller 𝐴 at temperature 𝑇 = 20. In Figs. 7 and 8, we expand our investigation to include a wider range of
temperature values from 𝑇 = 1 to 𝑇 = 100 with the aim of offering a more comprehensive understanding of the performance of
inference without the inclusion of external interference.

In Figs. 7 and 8, we explore the dependence of the standard deviation of estimators for controller 𝐵’s control gains on nodes’
degrees and on the allocations from controller 𝐵. This exploration takes place in the absence of controller 𝐴, considering various
temperatures. Specifically, we analyse 𝑇 = 1 (7(a) and (d)), 𝑇 = 10 (7(b) and (e)), 𝑇 = 30 (7(c) and (f)), 𝑇 = 50 (8(a) and (d)),

= 70 (8(b) and (e)), and 𝑇 = 100 (8(c) and (f)). Similar to the patterns observed in Fig. 1, Figs. 7 and 8 also demonstrate that
odes are the harder to predict the larger their degrees and the larger the budget allocations from controller 𝐵. Furthermore, when
omparing standard deviations at varying temperatures, we observe that, at low temperatures, obtaining precise estimations of the
pponent’s strategy is challenging, given that the states of certain nodes remain unchanged. As temperature increases, the differences
n standard deviations among nodes of varying degrees and targeted by different control gains from controller 𝐵 diminish. This is
ue to the higher temperature causing nodes to have a more similar probability of state flipping.

ppendix E. Mean standard deviation calculated by the high-temperature Taylor series approximation in low-temperature
egions

In Fig. 3, we compare the mean standard deviation calculated via the one-step-ahead optimization of Algorithm 1 with the
14

igh-temperature Taylor series approximation in Eqs. (9) and (11) for two budget configurations: 𝑏𝐴 = 0.5𝑏𝐵 and 𝑏𝐴 = 𝑏𝐵 . Notably,
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Fig. 7. (a–c) Dependence of the standard deviation of estimators for controller 𝐵’s control gains on nodes’ degrees in the absence of controller 𝐴. (d-f) Dependence
of the standard deviation of estimators for controller 𝐵’s control gains on controller 𝐵’s budget allocations in the absence of controller 𝐴. The standard deviation
is calculated at time step 1000 and temperature 𝑇 = 1 (panels (a),(d)), 𝑇 = 10 (panels (b),(e)), 𝑇 = 30 (panels (c),(f)). We use a setting in which controller 𝐵
targets all nodes with allocations randomly sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵 per node on average
is 10. We group the value of 𝑥 axis into bins with width 1 and lower limits are inclusive, e.g., [0,1). Error bars indicate 95% confidence intervals.

Fig. 8. (a–c) Dependence of the standard deviation of estimators for controller 𝐵’s control gains on nodes’ degrees in the absence of controller 𝐴. (d-f) Dependence
of the standard deviation of estimators for controller 𝐵’s control gains on controller 𝐵’s budget allocations in the absence of controller 𝐴. The standard deviation
is calculated at time step 1000 and temperature 𝑇 = 50 (panels (a),(d)), 𝑇 = 70 (panels (b),(e)), 𝑇 = 100 (panels (c),(f)). We use a setting in which controller 𝐵
targets all nodes with allocations randomly sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵 per node on average
is 10. We group the value of 𝑥 axis into bins with width 1 and lower limits are inclusive, e.g., [0,1). Error bars indicate 95% confidence intervals.
15
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Fig. 9. (a) Percentages of estimators with standard deviations exceeding 102 among all nodes after system initialization 𝑇0 = 100 in the low-temperature
region. (b) Average number of state changes ∑𝑁

𝑖=1
∑𝑇1−1

𝑡=𝑇0
|
𝑠𝑖 (𝑡+1)−𝑠𝑖 (𝑡)|
2𝑁(𝑇1−𝑇0 )

after applying the approximated budget allocations according to Eqs. (9) and (11) in the
ow-temperature region. Here, we set 𝑇1 = 1000. Different relative budget constraints 𝑏𝐴∕𝑏𝐵 = {0.5, 1} are shown by different colours of curves. We use a setting

in which controller 𝐵 targets all nodes with allocations randomly sampled from a uniform distribution 𝑈 (0, 20), in which the budget allocation by controller 𝐵
per node on average is 10. Error bars indicate 95% confidence intervals.

the high-temperature Taylor series approximation provides a close performance to the one-step-ahead optimization in the medium
and high temperature regions for both 𝑏𝐴 = 0.5𝑏𝐵 and 𝑏𝐴 = 𝑏𝐵 . However, in the low-temperature region of Fig. 3, the relative mean
standard deviation significantly increases as the temperature decreases for 𝑏𝐴 = 0.5𝑏𝐵 , whereas no comparable rise is observed for
𝐴 = 𝑏𝐵 . An explanation for this phenomenon is as follows: After the first 𝑇0 = 100 updates of the system initialization as illustrated
n Algorithm 1, we obtain initial estimates of controller 𝐵’s budget allocations 𝐽𝐵,𝑖 and corresponding standard deviations for each
ode. We record the percentages of initial estimates with standard deviations exceeding 102 among all nodes for both 𝑏𝐴 = 0.5𝑏𝐵
nd 𝑏𝐴 = 𝑏𝐵 in the low-temperature region (𝑇 < 10) in Fig. 9(a). As shown in Fig. 9(a), due to the budget insufficiency in 𝑏𝐴 = 0.5𝑏𝐵 ,
e obtain a larger number of initial estimates with extremely high standard deviations compared with the case of 𝑏𝐴 = 𝑏𝐵 .

After the system initialization, we proceed with utilizing Eqs. (9) and (11) to calculate the approximated budget allocations
f controller 𝐴. According to Eq. (11), the approximation prioritizes allocating budgets to agents with extremely high standard
eviations to induce state flips. However, for 𝑏𝐴 = 0.5𝑏𝐵 , as seen in Fig. 9(a), when 𝑇 < 4 (corresponding to the first two points
n Fig. 3(a) with relative mean standard deviations exceeding 102), the percentage of estimators with high standard deviations is
arger than 0.5. In other words, dividing the limited budget 𝑏𝐴 = 0.5𝑏𝐵 among half of the network’s agents yields little effect on spin
tate changes. Therefore, very limited information will be gained. This, in turn, results in very limited improvements in standard
eviations, and approximated budget allocations stay constant. In contrast, for 𝑏𝐴 = 𝑏𝐵 , the approximated solutions initially allocate
udgets to a smaller number of agents, inducing state flips. Unlike the case of 𝑏𝐴 = 0.5𝑏𝐵 , this avoids getting stuck in a frozen
tate, leading to significantly lower relative mean standard deviation. To further illustrate the reasons for differences in standard
eviations calculated by the high-temperature Taylor series approximation for 𝑏𝐴 = 0.5𝑏𝐵 and 𝑏𝐴 = 𝑏𝐵 in the low-temperature region,
e present the average number of state changes after applying the approximated budget allocations, i.e., ∑𝑁

𝑖=1
∑𝑇1−1

𝑡=𝑇0
|𝑠𝑖(𝑡+1)−𝑠𝑖(𝑡)|
2𝑁(𝑇1−𝑇0)

in
Fig. 9(b). The results in Fig. 9(b) are consistent with our previous analysis: For 𝑏𝐴 = 0.5𝑏𝐵 and 𝑇 < 4, the average number of state
changes are less than 10−2. Therefore, little information can be obtained by observing the system, which results in large relative
mean standard deviations exceeding 102 in Fig. 3.
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