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ABSTRACT

Future constraints of cosmological parameters from Type Ia supernovae (SNe Ia) will depend on the
use of photometric samples, those samples without spectroscopic measurements of the SNe Ia. There
is a growing number of analyses that show that photometric samples can be utilised for precision
cosmological studies with minimal systematic uncertainties. To investigate this claim, we perform
the first analysis that combines two separate photometric samples, SDSS and Pan-STARRS, without
including a low-redshift anchor. We evaluate the consistency of the cosmological parameters from
these two samples and find they are consistent with each other to under 1σ. From the combined
sample, named Amalgame, we measure ΩM = 0.328 ± 0.024 with SN alone in a flat ΛCDM model,
and ΩM = 0.330± 0.018 and w = −1.016+0.055

−0.058 when combining with a Planck data prior and a flat
wCDM model. These results are consistent with constraints from the Pantheon+ analysis of only
spectroscopically confirmed SNe Ia, and show that there are no significant impediments to analyses
of purely photometric samples of SNe Ia.

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are a crucial component
of cosmological analyses due to their unparalleled map-
ping of the universe’s expansion history. The accelerating
expansion of the universe was discovered with the use of
SNe Ia by Riess et al. (1998) and Perlmutter et al. (1999),
but the cause of this acceleration remains an unsolved
mystery in cosmology. In the intervening decades, statis-
tical and systematic improvements in SNIa samples have
increased the precision of measurements of the Dark En-
ergy equation-of-state w = (P/ρc2); most recently Brout
et al. (2022) find w = −0.978+0.024

−0.031 when combined with
constraints from the Cosmic Microwave Background ra-
diation (Planck Collaboration et al. 2020) and Baryon
Acoustic Oscillations (Ross et al. 2015; Alam et al. 2017;
Bautista et al. 2020; Hou et al. 2020; Chabanier et al.
2021).
The strength of SNe Ia come from their status as stan-

dardisable candles - their luminosity, which is enough
to still be seen at cosmic distances, can be standardised
to ∼ 0.1 magnitudes, which corresponds to ∼5% in dis-
tance per supernova. Statistical improvements in SNIa
constraints have come in two parts. The first is the addi-
tion of new samples, such as the Sloan Digital Sky Survey
(SDSS; Sako et al. 2011; Campbell et al. 2013), the Su-
pernova Legacy Survey (SNLS; Astier et al. 2006), Pan-
STARRS (PS1; Scolnic et al. 2018), the Dark Energy
Survey (DES; Abbott et al. 2019), and Foundation (Fo-

ley et al. 2018). The second of these statistical improve-
ments comes from the compilation of these surveys such
as Union (Amanullah et al. 2010), the Joint Light-curve
Analysis (Betoule et al. 2014), the Pantheon (Scolnic
et al. 2018) and Pantheon+ (Brout et al. 2022) samples,
the latter of which is the largest to-date supernova col-
lection of 1550 unique spectroscopically-confirmed SNIa.
The practice of combining samples for improved statisti-
cal constraints has become commonplace in recent years.
However, these samples have relied on spectroscopi-

cally confirmed SNe Ia and to date, a compilation of
multiple photometric samples has not been done. While
the practice of spectroscopically confirming SNIa has
the benefit of reducing contamination from other types
of SNe (which are not standardisable in the same way
as SNIa) and confirming the redshift of the supernova,
spectroscopic confirmation for recent surveys has only
been available for ∼ 10% of observed SNIa (e.g. SDSS,
Popovic et al. 2019).
Photometrically classified samples are typically much

larger, but cosmologists must still contend with non-Ia
contamination. To mitigate this problem, photometric
classifiers such as Nearest Neighbor (Sako et al. 2018;
Kessler & Scolnic 2017), PSNID (Sako et al. 2008), Su-
perNNova (Möller & de Boissière 2019), and SCONE (Qu
et al. 2021) are used to assign a probability for multi-
ple SN types. These classifiers can be used in conjunc-
tion with the Bayesian Estimation Applied to Multiple

ar
X

iv
:2

30
9.

05
65

4v
1 

 [
as

tr
o-

ph
.C

O
] 

 1
1 

Se
p 

20
23



2

Species (BEAMS, Hlozek et al. 2012) method to rigor-
ously account for non-SNIa contamination by weighting
each distance measurement by their likelihood of being
type Ia. The BEAMS method has been implemented and
tested in several analyses (Kunz et al. 2007; Jones et al.
2018; Jones et al. 2019; Vincenzi et al. 2021) and has
been proved to reproduce unbiased cosmological results.
Here we focus on two photometric samples that have

have been used in previous SNIa-cosmology analyses:
the PS1 photometric sample (Jones et al. 2018) and the
SDSS photometric sample (Sako et al. 2014 with updates
from Popovic et al. 2019). These samples contain respec-
tively ∼ 1200 and ∼ 700 likely SNIa that pass light curve
fitting, larger than any individual spectroscopic survey.
We compare Hubble Residuals (the difference between
SNIa distance and the best-fit cosmology), light-curve fit-
ting parameters, and measure the dark energy equation-
of-state parameter w. These two subsamples comprise
the Amalgame sample; in contrast to the historical SNIa
analyses listed above, Amalgame does not include spec-
troscopically confirmed SNe Ia at low redshift (z < 0.1)
This paper will set the groundwork for combining

newer photometric samples and pave the way for a com-
bined (e.g. PS1, SDSS, and DES) photometric sam-
ple that can comprise ∼ 4, 000 photometrically classified
type Ia supernovae. The layout of the paper is as fol-
lows. Section 2 details methodologies such as distance
measurements, bias corrections, non-Ia contamination,
Bayesian Estimation Applied to Multiple Species, co-
variance matrices, cosmological calculations, and simu-
lations. Section 3 contains an overview of the data and
systematics, and Section 4 contains the cosmological re-
sults. Finally, Section 5 includes the discussion and Sec-
tion 6 details our conclusions.

2. CONSTRAINING COSMOLOGICAL PARAMETERS
WITH SNIA

2.1. Data

The PS1 survey operated from 2009 to 2013, with a
cadence of roughly 6 observations every 10 days in 10
7-square degree fields with 5 filters. Light curves for PS1
are taken from Jones et al. (2018).1 The PS1 data were
taken with the griz 2 filters (Chambers et al. 2016), host
galaxy redshifts are drawn from a compilation of sources
detailed in Jones et al. (2018).
The SDSS supernova program ran for three observing

seasons from 2005 to 2007 with a cadence of observing
every four days with five filters. An overview of the SDSS
survey is available in Frieman et al. (2008) and the ugriz
filters are detailed in Doi et al. (2010). We do not include
the u-band data, due to issues with standardisation de-
tailed in Brout et al. (2021). The SDSS light curves are
taken from Sako et al. (2018), though the host galaxies
and their associated redshifts were updated in Popovic
et al. (2019).
Host galaxy stellar masses for SDSS and PS1 are red-

erived for this paper from their photometry releases fol-
lowing the approach detailed in Smith et al. (2020). Full
details can be found in Appendix A.
While both SDSS and PS1 used similar image-

subtraction techniques to discover SNe, they used differ-

1https://archive.stsci.edu/prepds/ps1cosmo/
2Y band data was taken, but is not used here.

ent methods to provide accurate flux measurements for
light curves used in their cosmology analyses. Holtzman
et al. (2008) used Scene Modeling Photometry (SMP) for
the SDSS sample, whereas Jones et al. (2018) used differ-
ence imaging. Scolnic et al. (2018) compared the impact
of these different image subtraction techniques and found
them to be consistent.

2.2. Distances

SNIa brightnesses are standardised with the use of a
light-curve model and fitting process; here we use the
SALT3 model as developed by Kenworthy et al. (2021)
based on the SALT2 model from Guy et al. (2010). The
SALT3 fit reports four parameters for each supernova:
An overall light-curve amplitude x0, a colour parame-
ter c, a stretch parameter x1 related to the light-curve
width, and the time of peak brightness t0. The stretch
and colour parameters are used to standardise the SNIa
brightness, and the distance µ is determined from a mod-
ified version of the Tripp estimator (Tripp 1998; Scolnic
et al. 2018):

µ = mB + αx1 − βc−M0 − δµhost − δµbias (1)

where mB = −2.5 log10(x0), c and x1 are defined above,
and M0 is the absolute magnitude of a SNIa with c =
x1 = 0. δµhost accounts for residual standardised bright-
ness dependencies between the SNIa and its host galaxy;
here the host-galaxy stellar mass:

δµhost =

{
+ γ/2 if M∗ > Mstep

− γ/2 if M∗ ≤Mstep
(2)

where γ is the magnitude difference, typically ∼ 0.05
magnitudes (Sullivan et al. 2010), M∗ is the host-galaxy
stellar mass, and Mstep is the location of the ‘mass step’.
α and β are the stretch-luminosity and colour-luminosity
nuisance parameters. Finally, δµbias is a bias correction
determined from simulations.

TABLE 1
Number of SNe that pass SALT3 fitting before and after

cosmology cuts.

Survey Before Cuts After Cuts
SDSS 2015 646
PS1 2478 1153
Total 4493 1792

The cosmology cuts (Betoule et al. 2014) instituted
for our data and simulations are shown below; Table 1
shows a breakdown of the number of likely SNIa that pass
through light curve fitting before and after our cosmology
cuts.

• σx1 < 1 : SALT3 x1 uncertainty < 1.

• σPKMJD < 2 : Uncertainty on fitted peak bright-
ness < 2 days.

• −3 < x1 < 3.

• −0.3 < c < 0.3.

• Trest,min < 5 : Requires at least 1 observation 5
days before peak brightness (rest frame).



3

• Trest,max > 0 : Requires at least 1 observation after
peak brightness (rest frame).

• −20 < Trest < 60 : Requires at least one observa-
tion between -20 and 60 days (rest frame).

SDSS, in particular, loses over 50% of the potential
SNe Ia after cosmology cuts; these losses are primarily
due to x1 values outside of the range of −3 < x1 < 3 and
error cuts such as σPKMJD and σx1

; e.g., noisier data in
SDSS.

2.3. BEAMS with Bias Corrections

SNIa distance measurements can be biased due to
Malmquist bias and analysis selection effects (Kessler
et al. 2009a; Betoule et al. 2014; Scolnic & Kessler 2016;
Popovic et al. 2021b). In this analysis, δµbias is deter-
mined from simulations using the BEAMS with Bias Cor-
rections (BBC) framework from Kessler & Scolnic (2017)
with updates from Popovic et al. (2021b). BBC is de-
signed to correct distance biases arising from selection
effects and to account for the presence of non-Ia super-
novae in a cosmological analysis; the component that
handles non-Ia contamination is the Bayesian Estimation
Applied to Multiple Species (BEAMS) framework, and
is detailed further in Section 2.4. The bias-corrections
aspect of BBC works by including distance corrections
determined from the use of rigorous simulations. BBC
fits for nuisance parameters α, β, γ, and σint as described
in Marriner et al. (2011), and produces a binned and un-
binned Hubble diagram (Kessler et al. in prep; Kessler
& Scolnic 2017) that is corrected for selection effects and
non-Ia contamination.
The BBC-4D framework (BBC-BS20, Popovic et al.

2021b) models δµbias = δµbias{z, c, x1, logM∗} (where
M∗ = Mstellar/Msun) to account for dust-based models
of SNIa scatter. The measured distances in dust-based
models are affected by the dust law of the SN host galaxy,
an effect seen in Brout & Scolnic (2021), Pantheon+
(Popovic et al. 2021a; Brout et al. 2022) and DES (Wise-
man et al. 2022; Kelsey et al. 2022). The SALT light
curve fitter does not directly measure nor infer the dust
properties themselves (e.g. RV , AV , E(B−V )), so BBC-
4D is not directly able to correct for these, but rather
makes use of simulations (Section 2.3.1) to correct for
observed SNIa properties. This paper includes updates
to the BBC-4D framework, detailed in Appendix C.

2.3.1. Simulations

To compute the bias correction term δµbias, simula-
tions of supernovae are necessary. The simulation gen-
erates catalogue-level SNIa light curves in three general
steps:

• 1. True broadband fluxes are generated from a
model.

• 2. Noise is applied.

• 3. Detections are determined based on telescope
and survey-specific criteria.

Firstly, a rest-frame Spectral Energy Distribution
(SED) is created for each SNIa epoch and cosmological

effects (redshift, dimming) and galactic effects (Galac-
tic extinction, peculiar velocities, lensing) are applied.
An additional model is needed to accurately capture the
scatter in SNIa distances that is not due to measure-
ment error; this is included here. This rest-frame SED is
integrated for each telescope filter to obtain broadband
photometry fluxes.
It is at this step that the intrinsic distributions of SNIa,

such as colour and stretch, are selected from a popula-
tion given in the simulation input. The measurements of
these intrinsic distributions result in skewed and smeared
populations affected by measurement noise and detection
efficiency (steps two and three).
Measurement error is applied from the source flux, zero

points, PSF, and sky noise. Thirdly, detections are deter-
mined through the application of survey-dependent esti-
mate of efficiency vs. signal-to-noise. For photometric
samples, the simulation includes an additional efficiency
for measuring an accurate spectroscopic host-galaxy red-
shift. This is typically a function of the host galaxy
brightness (Popovic et al. 2019; Vincenzi et al. 2021).
SDSS and PS1 are modeled for the simulations with

the use of survey metadata – logs of observations, in-
cluding sky noise, zero points, and other telemetry are
included within the simulation. Table 2 shows the origin
of these simulation inputs. Figure 1 shows good agree-
ment between the data and our overlaid simulations for
SDSS and PS1 for redshift, c, and x1.

z
0

50

100 SDSS

c x1

0.0 0.5
z

0

100

200

PS1

−0.25 0.00 0.25
c

−2.5 0.0 2.5
x1

Fig. 1.— Comparison between simulations in dashed histogram
and data in black points for the subsamples in this analysis: SDSS
and PS1. Three distributions are compared: z, c, and x1. More
simulation-data comparison plots are found in the Appendix.

2.3.2. SDSS Detection Efficiency

In the course of the Amalgame analysis, a new detec-
tion efficiency was created using the results from Sánchez
et al. (2021). This detection efficiency, shown in Figure
2, was used in the fiducial sample, and a systematic with
increased efficiency was included to approximate the im-
pact on measuring cosmological parameters.

2.3.3. Error Modeling

After bias corrections are calculated from simulations,
BBC determines the distance uncertainties and calcu-
lates σint, the remaining post-standardisation scatter
that cannot be attributed to known experimental sources
of noise. The error on the distance modulus, σµ, is
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TABLE 2
Review of Simulation Inputs for Amalgame

Survey Cadence Detection Eff. Spectroscopic Eff.
SDSS Sako et al. (2018); Kessler et al. (2013) This work This work
PS1 Jones et al. (2018) Jones et al. (2018) This work
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Fig. 2.— The SDSS detection efficiency for simulated supernovae
as a function of SNR. The g band is presented in purple, r band in
blue, i band in green, and z band in yellow. In the inset plot is the
redshift distribution for the nominal simulations (grey histogram)
and no detection efficiency simulation (blue dashed histogram).

σ2
µ = f(z, c,M⋆)σ

2
meas + σ2

int(z, c,M⋆)

+ σ2
lens + σ2

vpec , (3)

where the measurement uncertainty of light-curve fit pa-
rameters and their covariances from SALT3 is repre-
sented by σmeas. This measurement uncertainty is scaled
by a survey-specific amount f(z, c,M⋆) to account for
selection effects that suppress distances corresponding
to fainter magnitudes. σlens = 0.055z – the effect of
gravitational lensing on SNIa brightness – is taken from
Jönsson et al. (2010). σvpec is the distance uncertainty

arising from peculiar velocities (set to 250 kms−1 as per
Pantheon+).
As stated above, σint is the remaining scatter after

standardisation, and is modeled as

σ2
int(z, c,M⋆) = σ2

scat(z, c,M⋆) + σ2
gray, (4)

where σ2
scat(z, c,M⋆) is a SN-property dependent value

and σ2
gray is a scatter floor for all SNe Ia. The σ2

gray

is determined to set the reduced χ2 from the Marriner
et al. (2011) fit to 1. Further details on σ2

scat(z, c,M⋆)
can be found in Section 3.3 and Appendix A of Brout
et al. (2022).

2.4. Core Collapse Supernova

After light curve fits and conventional quality cuts,
some non-Ia Sne may appear to be SNIa; approximately
1% of the resulting sample is likely to be non-Ia con-
tamination (Vincenzi et al. 2021). To account for po-
tential biases from non-Ia contamination we make use
of the Bayesian Estimation Applied to Multiple Species
(BEAMS) framework presented in Hlozek et al. (2012)
and updated in Kessler & Scolnic (2017).
The BEAMS approach marginalises over non-Ia con-

tamination while performing the cosmological fit. This

is done within the BBC framework (Kessler & Scolnic
2017). BEAMS uses two likelihoods to model distinct
SN populations. The first likelihood models the SNIa
population LIa and the second models the non-Ia con-
taminants LCC such that

Ltot =

NSNe∑
i=1

LiIa + LiCC. (5)

These likelihoods are defined as

LiIa = P̃ iIa × exp

(
− (µobs,i +∆µi − µref(zi))

2

σ2
µ,i

)
LiCC = (1− P̃ iIa)×DCC(zi, µobs,i, µref),

(6)

where the distance modulus of a given SN i is pre-
dicted assuming a fixed reference cosmology – an arbi-
trary placeholder cosmology that will be marginalised
out during the full cosmological fit – and ∆µ is the offset
from the reference cosmology. P̃ iIa is the scaled likeli-
hood of the ith SN being a type Ia supernova, and DCC

is the contamination likelihood term, given in Equation
5 of Vincenzi et al. (2021). The likelihood in Equation
5 is maximised, and the distance modulus uncertainties,
σµ,i, are determined in conjunction with Equation 3. For
those SNe with lower PIa values, the distance uncertainty
is increased via the BBC process during the cosmological
fit to account for non-Ia contamination (Kessler et al. in
prep).

2.5. Covariance Matrix

We compute statistical and systematic covariance ma-
trices, following Conley et al. (2011), to account for the
correlations between SNIa light curves and the system-
atic and statistical uncertainties in our analysis. We
use the unbinned covariance matrix approach from Brout
et al. (2021) with uncertainty scales from Kessler et al.
(in prep) to avoid inflating systematics with a redshift-
binned Hubble diagram. We define our statistical covari-
ance matrix Cstat, taking into account that the same SN
can be observed in two different surveys, as

Cstat(i, j) =


σ2
µ i = j

σ2
floor + σ2

lens+

σ2
z + σ2

vpec i ̸= j & SNi = SNj

,

(7)
where each row of Cstat corresponds to an SN light curve,
i and j are the column and row indices for each super-
nova, and the diagonal is the full distance error. The
process of taking SNIa light curves to cosmological mea-
surements invites a number of systematic uncertainties.
The largest categories of systematic uncertainty are:

• Assumptions and calibration related to the light-
curve fitting.
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• Redshift measurements.

• Astrophysical or survey-dependent factors in the
bias correction simulations.

Each of these broad categories needs to be accounted
for individually to determine the extent of the systematic
uncertainty ψ and the size of the systematic uncertainty
Sψ. For the covariance matrix, we define the set of dis-
tance uncertainties for a given systematic ψ:

∆µiψ ≡ µiψ − µiBASE − (µref(zψ)− µref(zBASE)) (8)

where µBASE is the SNIa distance that corresponds to
using zBASE, the base redshift, and µψ is similarly the
distance corresponding to using systematic redshift zψ.
Systematics that affect redshift, such as changing the
host-galaxy followup efficiency, include the methodology
from Equation 6 in Brout et al. (2022) that propagates
the effects of changing redshifts into the covariance ma-
trix by accounting for the difference in model differences
(µmod(zψ)− µmod(zBASE))).
We compute the distance shift for each ψ, and use it

to build a 1792×1792 systematic covariance matrix for
each supernova as

Cijsyst =
1

Wψ

∑
ψ

∆µiψ ×∆µjψ (9)

which gives the covariance between the ith and jth su-
pernova, marginalised over the systematic uncertainties
ψ with their uncertainty, σψ. The 1

Wψ
is included as an

optional weight for the systematic, for including multiple
realisations of a single systematic (realisations of differ-
ent dust models (Section 3.5) or SALT surfaces (Section
3.3)). To maintain a consistent sample of SNIa for accu-
rate comparisons of systematics, we constrain our final
set of SNe Ia to be the subset of SNe Ia that both pass
quality cuts and have valid bias corrections across all the
tested systematics. This results in a loss of ∼ 250 SNe.
When constraining cosmological parameters, we com-

bine the systematic covariance matrix with the statistical
covariance matrix:

Cstat+syst = Cstat + Csyst. (10)

2.6. Cosmology Fitting

We constrain our cosmological parameters using the χ2

likelihood method from Conley et al. (2011), minimising

−2ln(L) = χ2 = ∆D⃗T C−1
stat+syst ∆D⃗, (11)

where our 1792 SNIa distance modulus residuals is ∆D⃗
with components

∆Di = µi − µmodel(zi). (12)

The predicted distance at a given redshift from the cos-
mological fit (µmodel(zi)) is subtracted from the individ-
ual SNIa distance measurement µi. The model distance
is given as a function of the luminosity distance dL,

µmodel(zi) = 5 log(dL(zi)/10 pc), (13)

and includes the expansion history H(z).
For the flat cosmologies that we examine (Ωk = 0),

this luminosity distance is

dL(z) = (1 + z)c

∫ z

0

dz′

H(z′)
, (14)

and dL(z) is iteratively calculated at each step of the
cosmology fitting process. The expansion history H(z),
used in Equation 14 and subsequently in Equation 11, is

H(z) = H0

√
ΩM (1 + z)3 +ΩΛ(1 + z)3(1+w). (15)

We assume two models of cosmology for this analysis:

• ΛCDM; float ΩM and ΩΛ, fix w = −1

• FlatwCDM; float w and ΩM , fix ΩM +ΩΛ = 1

We also include a prior from the Cosmic Microwave
Background radiation (CMB, Planck Collaboration et al.
2020).

2.7. Software Programs

This analysis is performed using the SNANA software
package (Kessler et al. 2009b, 2019) with use of the PIP-
PIN software package (Hinton & Brout 2020). PIPPIN
includes SNANA integration with the the photometric
classifier SuperNNova (Möller & de Boissière 2019) to
assign a probability for each event to be of type SNIa.
The SuperNNova classifier trains and classifies directly
on SN light curves through the use of a recurrant neural
network.
For our final cosmology contours, we use CosmoSIS

(Zuntz et al. 2015). numerical estimates of specific w-
uncertainties are performed with wfit (Kessler et al.
2019).

3. SYSTEMATIC UNCERTAINTY SOURCES

Here we introduce and detail the assumptions and ap-
proaches in our cosmological analysis that lead to sys-
tematic uncertainties. Each assumption is discussed
and motivated, along with a complementary method of
modeling to account for systematic uncertainties. The
purpose, baseline treatment, and systematic uncertain-
ties are given. The effect of these systematics are shown
in Section 4; the detailed description of the systematics
themselves are given here.
Data

Section 3.1 Host-Galaxy Properties (Also see 3.10)

Calibration and Light-Curve Fitting
Section 3.2 Calibration
Section 3.3 SALT3 Model

Simulations
Section 3.4 Survey Modeling
Section 3.5 Intrinsic Scatter Models
Section 3.6 Core Collapse Models

Other
Section 3.7 Evolution of Nuisance Parameters with z
Section 3.8 Fixed Nuisance Parameters
Section 3.9 Validation
Section 3.10 Other
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Fig. 3.— A comparison of the host galaxy redshift efficiencies for
SDSS (top) and PS1 (bottom). The r-band magnitude efficiency
used in the fiducial analysis is presented in solid line, and the z
efficiency is presented in dashed line. The resulting redshift distri-
butions are presented in the inset plots for the r-band magnitude
in solid histogram and z efficiency in dashed histogram.

3.1. Host-Galaxy Properties

Purpose: The host-galaxy mass is used to standardise
and improve SNIa distances in two ways: simulations in-
clude correlations between x1 and the host-galaxy mass
from Popovic et al. (2021b) and correlations between c,
dust, and host-galaxy mass from Popovic et al. (2021a);
and a residual luminosity step related to the host galaxy
mass (the ‘mass step’ γ) is corrected in the Tripp Eq. 1
(Appendix B). Because SALT does not account for co-
variances between SNIa fitted properties and host galax-
ies, the first of these use cases accounts for observed cor-
relations between fitted SNIa properties x1 and c in the
data. These correlations are incorporated into the simu-
lations and bias corrections so as not to suppress nuisance
parameters as in Smith et al. (2020).
Baseline: We rederive the host-galaxy stellar masses

for all host galaxies using the methodology laid out in
Appendix A. For the baseline analysis, we place the mass
step at 1010M⊙.
Systematics: Analyses such as Sullivan et al. (2011),

Childress et al. (2014), and Kelsey et al. (2020) have
found evidence that a more appropriate location of the
mass step may not be at 1010M⊙. Following Pan-
theon+, we include a systematic placing the mass step
at 1010.2M⊙.

3.2. Calibration

Purpose: The compilation of different instruments, fil-
ters, and telescopes requires photometric calibration of
the passbands in each survey in order to fit light curves
and standardise SN brightnesses. This same calibration
is needed for the SALT3 model training.
Baseline: We use the calibration presented by Fragilis-

tic (Brout et al. 2021). Alongside the nominal calibra-
tion, we make use of the relevant subset of their 105×105

−1 0 1 2
µ− µmodel

10−1

100

101

102 PS1

All Sim. SNe

Sim. Ia

Sim. CC SNe

Data

−1 0 1 2
µ− µmodel

10−1

100

101

102 SDSS

All Sim. SNe

Sim. Ia

Sim. CC SNe

Data

Fig. 4.— Hubble Residuals for PS1 (left) and SDSS (right). The
data is shown in black points, simulations are broken down into
‘All Simulated SNe’ in dashed histogram, ‘Simulated Ia Only’ in
solid histogram, and only ‘Simulated Core Collapse Only’ in dash-
dotted histogram. Both surveys show good agreement between sim
and data.

covariance matrix that describes the zeropoint calibra-
tions. This 105 × 105 matrix includes the uncertainties
and zero points and effective wavelengths of the photo-
metric bands from SDSS and PS1.
Systematics: A more in-depth description of the cali-

bration and its systematics is given in Brout et al. (2021).
To estimate the calibration systematic, we refit SALT3
for 9 realisations of calibration zero points drawn from
the Fragilistic covariance matrix. The value ofWψ = 1/9
is chosen such that the sum of calibration weights is
unity. Additional changes to the wavelength range and
tertiary stellar magnitudes are given in Section 3.2.1 in
Brout et al. (2022).

3.3. SALT3 Model

Purpose: SNIa light curves are fit with the SALT3
model to determine the light-curve parameters mB , c, x1
for each SN for use in Equation 1.
Baseline: We use the SALT3 model from Kenwor-

thy et al. (2021) with the calibration from Brout et al.
(2021). We use a SALT3 surface trained without U -
band, after finding potential cosmological biases due to
mis-calibrated U -band information. This is further de-
tailed in Collaboration (in prep).
Systematics: Following Brout et al. (2022), we use

9 SALT3 models retrained on the the Fragilistic zero-
points. The calibration shifts in the retrained models are
coherently propagated through training and light curve
fitting.

3.4. Survey Modeling

Purpose: Cosmological measurements using SNe Ia
require additional followup for the acquisition of host
galaxy redshifts. Inaccurate modeling of this follow-up
efficiency can lead to errors in the simulated bias correc-
tions.
Baseline: In the fiducial analysis, the host galaxy de-

tection efficiency is modeled as a function of the r-band
magnitude of the host galaxy. The resulting redshift dis-
tribution is shown in Figure 1 alongside the c and x1
distributions.
Systematics: As a systematic we follow Jones et al.

(2019) and model the efficiency as a function of redshift
(Equations 2 and 3 of Popovic et al. 2019) for both SDSS



7

37.5

40.0

42.5

D
is

ta
n

ce
m

od
u

lu
s
µ

10−1

Redshift

−1

0

1

µ
-
µ

C
os

m
o

SDSS PIa PS1 PIa

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5.— Top panel: Distance Modulus µ versus redshift z (”Hubble Diagram”) for the Amalgame sample. SDSS (Viridis) and PS1
(Plasma, triangles) are coloured according to their classification probability PIa from SuperNNova; the Low-z and Foundation surveys are
dark grey as they contain no Core collapse supernovae. Bottom panel: the distance modulus residual relative to a best-fit cosmological
model (”Hubble Residuals”). The median Hubble Residual in bins of redshift is shown in yellow circle for reference.
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and PS1. The new redshift efficiency is shown in Figure
3, compared to the fiducial.

3.5. Intrinsic Scatter Models

Purpose: We use SNANA to generate catalogue-level
simulations for use in bias corrections and to correct for
inefficiencies in measuring intrinsic distributions of SNIa
fitted parameters. Within the simulation framework, we
model survey and astrophysical properties that, together,
account for all sources of intrinsic scatter. Colour and
stretch populations account for most of the observed in-
trinsic variation, but there is also a small ∼ 0.1 mag
scatter from the remaining scatter in SNIa measurements
post-standardisation. This intrinsic scatter model re-
quires a method of determining the stretch and colour
populations for use in bias corrections.
Baseline: To model the SNIa intrinsic scatter shown

in Equation 4 in our simulations, we use the Brout &
Scolnic (2021) (BS21) dust model with parameters up-
dated in Popovic et al. (2021a), hereafter P22. A more
detailed analysis of the model is available in Brout &
Scolnic (2021) and Popovic et al. (2021a). P22 simula-
tions are used to generate BBC-4D bias corrections. As
P22 does not include x1 effects, the x1 values are drawn
from the method in Popovic et al. (2021b).
We use the Dust2Dust program as presented in

Popovic et al. (2021a) to derive the dust model param-
eters (cint, RV , E(B − V ), βSN) for the combined SDSS
and PS1 sample. These model parameters (hereafter
constituting the P22) are given in Appendix B, and we
generate our baseline bias correction simulations with
these parameters. The simulations are used for the
BBC-4D/BBC-BS20 bias correction method presented in
Popovic et al. (2021b). A more in-depth explanation of
the effects of dust on SNIa light curves is presented in
BS21 and P22, but here we summarise the effects of dust
on mB :

∆mB = βSNcint + (RV + 1)Edust + ϵnoise (16)

and colour c:

cobs = cint + Edust + ϵnoise. (17)

Systematics: To reflect fitting uncertainties in
Dust2Dust, we follow P22 and Brout et al. (2022) and
draw 3 alternate realisations of model parameters from
Dust2Dust as alternative bias correction models. Parent
populations for x1 are calculated for the SDSS+PS1 pho-
tometric sample using the methodology in Popovic et al.
(2021b) and the parent populations for Foundation and
Low-z are taken from the same paper.

3.6. Core Collapse Models

Purpose: We use simulations for the BEAMS method
(2.4) to model the relative luminosities and rates of Ia
and non-Ia SNe. This prior is used to model the BEAMS
likelihood and subsequently the weighting for the super-
nova in the cosmological fit.
Baseline: We use simulations of SDSS and PS1 with

core-collapse SED inputs from Vincenzi et al. (2019) to
train SNN. We include Iax, 91-bg, SNII, and SNIb/SNIc
simulations alongside SNIa (Jha 2017; Kessler et al.
2010a; Pierel et al. 2018a; Guillochon et al. 2018a; Vil-
lar et al. 2017a; Kessler et al. 2010b; Pierel et al. 2018b;

Guillochon et al. 2018b; Villar et al. 2017b). Figure 4
shows the characteristic ‘Hubble Shoulder’ arising from
non-Ia in the SN sample, and that simulations match the
data for Amalgame. The SDSS simulations slightly over-
estimate the amount of non-Ia contamination compared
to the data; we choose to use this more conservative es-
timation over changing non-Ia rates to ensure a better
match.
Systematics: In place of non-Ia simulations, we use the

z-dependent polynomial expansion approximation from
Hlozek et al. (2012) to model non-Ia populations. This
z-dependent polynomial adds additional parameters to
the BBC fit, increasing the complexity.

3.7. Redshift Evolution of Nuisance Parameters

Purpose: Equation 1 includes a colour-luminosity coef-
ficient β and a stretch-luminosity component α that are
fit for the entire supernova sample. These nuisance pa-
rameters describe the slope of the SNIa-parameter (e.g.
c or x1) vs. luminosity graph.
Baseline: We follow Brout et al. (2022) and other cos-

mology analyses and assume that α and β are constant
in redshift while they are fit in the BBC process.
Systematics: We include two similar systematics, al-

lowing α and β to evolve with redshift. They are modeled
as

α(z) = α0 + α1 × z (18)

and
β(z) = β0 + β1 × z. (19)

We allow one nuisance parameter to evolve with red-
shift at a time.

3.8. Fixed Nuisance Parameters

Purpose: We require consistency between treatment of
simulations and data in the cosmological pipeline. Unlike
past analyses, which directly use nuisance parameters α
and β as inputs to simulations, we utilise the P22 scat-
ter model. The process of determining the P22 scatter
model, which requires an initial guess for α and β in the
fitting process, may result in the simulated α and β val-
ues not agreeing with the data. It is unclear how this
discrepancy in simulated and real α and β values may
affect cosmology.
Baseline: We let the BBC process fit for α and β in the

minimisation procedure, as done in historical analyses.
This may result in the α and β returned by the BBC
process being biased.
Systematics: We fix the α and β values to those found

in a fit of the data using only redshift-based corrections
to distance.

3.9. Validation

Purpose: Proper analysis with simulations requires
validation to ensure that we are able to recover our
cosmological input parameters and not produce biases.
These validation tests track biases due to BBC, light-
curve fitting, and simulation inputs, but do not track
assumptions made about photometry or calibration.
Baseline: The analysis is repeated, end to end, on 10

data-sized simulations using the P22 scatter model.
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3.10. Other

We include the following systematics as they were in
Brout et al. (2022): Redshift, Peculiar Velocities, and
Milky Way Reddening. These are summarised in Table
5.

4. RESULTS

Here we present the results of the Amalgame analyses.

4.1. Nominal Cosmological Results

4.1.1. Validation

We perform our nominal analysis on 10 simulated data-
sized samples with the P22 model, with realistic distri-
butions of SNIa parameters and core collapse contamina-
tion. Table 3 shows a comparison of the nuisance param-
eters from simulated SNIa and real data. For the Amal-
game sample, β is determined from forward-modeling
within the Dust2Dust program, where β is one of the out-
put metrics. This stands in contrast to previous analyses
using G10 and C11, where β was an independent input to
the simulations. This β discrepancy is discussed further
in Section 3.8. Our γ values for simulations and data are
different, though in line with results from Brout et al.
(2022). The σgrey values are different as well, indicating
that there still exists a relatively small amount of unex-
plained scatter in the data that is not being modeled by
the simulations. The σgrey = 0 for the simulations is ex-
pected, as the BBC process is accounting for the expected
scatter in the simulations. Nonetheless, we find we re-
cover our input cosmology, with wreco = −0.999± 0.005.

4.1.2. Hubble Diagram

The Amalgame Hubble Diagram of 1792 SNIa light
curves is shown in the large panel of Figure 5. It spans
a redshift range of 0.06 to 0.68. The datapoints are
coloured according to their probability of being an SNIa
(2.4). The top panel is the redshift distribution of each of
the constituent subsurveys. The bottom panel of Figure
5 shows the residuals to the best-fit cosmology, the re-
sults of which are presented in the following subsections.

4.2. Consistency of Subsamples

As this is the first attempt to combine two photometric
samples, here we investigate the consistency across the
subsamples and the full sample. The difference between
the mean Hubble Residuals of the two samples is 0.0013
magnitudes, less than the errors on the Hubble Residuals
themselves.
Figure 6 shows the Hubble Residuals for the full Amal-

game sample, split into the individual subsurveys. The
SDSS and PS1 results are consistent with each other, dif-
fering by less than 1σ for any given bin. There does not
present any coherent offset between the two subsamples
(< 1σ confidence).
To further evaluate the consistency between the two

photometric samples, we present the correlation of bias-
corrected Hubble Residuals with c and x1 for the overall
combined sample and the constituent subsamples in Fig-
ure 7. The slope of the Full Sample correlations between
the Hubble Residuals and c and x1 (shown in blue) is
consistent with zero at 1.3σ level.
This consistency in the Hubble Residuals carries

through to consistency in cosmological contours. Fig-
ure 8 shows the full Amalgame sample alongside SDSS
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TABLE 3
Comparison of BBC output between data and simulations

Amalgame Data Sim
NSNe 1792 1758
α 0.149 (0.004) 0.140 (0.003)
β 3.000 (0.044) 2.774 (0.037)

γM⋆ 0.024 (0.008) 0.003 (0.008)
σgray 0.0661 0.0000

Hubble Diagram RMS 0.285 0.249

and PS1 when combined with constraints from Planck
Collaboration et al. (2020), using the wfit minimiser.
For SDSS alone, we find an ΩM = 0.313 ± 0.037 for a
Flat-ΛCDM and an ΩM = 0.344 ± 0.026 for PS1. The
full combined Amalgame constraints are discussed later,
but shown here for comparison’s sake between the con-
stituent samples.

4.3. Constraints on Cosmological Parameters

Here we present the cosmological constraints for the
Amalgame sample using CosmoSIS. Figure 9 shows the
SN-only cosmological contours for the Amalgame and
Pantheon+ for comparison. The SN-only contours are
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consistent between Amalgame and Pantheon+. For the
Amalgame sample combined with a CMB prior, we find
w = −1.016+0.055

−0.058 for a flat wCDM universe. For a flat
ΛCDM universe, we find ΩM = 0.328± 0.024. These re-
sults are comparable with Pantheon+ at 0.334 ± 0.018,
though with increased uncertainty from the smaller red-
shift range.
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Figure 10 shows the w/Ωmatter constraints when com-
bined with the results from Planck Collaboration et al.
(2020) from the full Amalgame sample.
Table 4 displays a summary of the cosmological mea-

TABLE 4
Cosmological Results

Model ΩM w

SN-Only
Amalgame 0.328± 0.024 −1

SDSS 0.313± 0.037 −1
PS1 0.344± 0.026 −1

Pantheon+ 0.334± 0.018 −1

with CMB

Amalgame 0.330± 0.018 −1.016+0.055
−0.058

Pantheon+ 0.325+0.010
−0.008 −0.982+0.022

−0.038

surements from Amalgame, Ωm and w, as SN-only mea-
surements and with CMB results from Planck Collabo-
ration et al. (2020).
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a prior from the Planck Collaboration et al. (2020) measurement
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4.4. Systematic Uncertainties

Table 5 provides a comprehensive overview of the
sources of systematic uncertainty for the Amalgame anal-
ysis. These uncertainties, calculated with wfit, and their
relative contribution to the overall w systematic uncer-
tainty, are displayed in Figure 11. When comparing the
overall Amalgame w-uncertainties with those of SDSS
and PS1 (seen in Figure 11), the statistical w-uncertainty
increases as expected, but alongside the statistical, the
systematic w-uncertainty also increases. This indicates
that some systematics depend on the sample size used
to set a constraint, and that future, larger surveys using
covariance matrix measurements of cosmology may enjoy
reductions in systematic uncertainty.

5. DISCUSSION
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TABLE 5
Sources of Uncertainty

Sec. and description Baseline Systematic Scale σw,syst
σw,syst
σw,stat

∆wsyst
†

Total Statistical N/A 1.00 -0.0567
Total Systematic (Unbinned Covariance Matrix Approach) 0.0284 0.7063 N/A
Data
- Redshift shift (3.10) nominal redshift ∆z = 10−4 1 0.0009 0.0224 0.0002
- Peculiar velocities (3.10) 2M++ velocity map 2MRS velocity map a 1 0.0 0.0 -0.0001
- Host Galaxy Properties (3.1) Mass step at M⋆ = 10 Mass step at M⋆ = 10.2 1 0.0013 0.0323 0.0013
- α Evolution (3.7) constant α α(z) = α0 + α1 × z 1 0.0009 0.0224 -0.0001
- β Evolution (3.7) constant β β(z) = β0 + β1 × z 1 0.0068 0.1691 0.0012
- Not floating α and β in BBC
Fit (3.8)

Floated α and β Fixed α and β values 1 0.0054 0.1343 -0.0047

Calibration and Light-curve modelling
- HST Calspec (3.2) Calspec 2020 Update 5 mmag/7000Å 3 0.0009 0.0224 0.0
- SALT3 surfaces (3.3) & ZP SALT3 trained on fragilistic

best-fit of K21
10 covariance realizations 1/3 0.0185 0.4601 -0.0385

- MW scaling (3.10) Schlafly & Finkbeiner (2011) 5% scaling 1 0.0025 0.0622 -0.0011
- MW colour law (3.10) RV =3.1 and F99 RV =3.0 and CCM 1/3 0.0059 0.1467 -0.0025
Simulations
- Survey Modelling ϵspecz [X]
(3.4)

r-band magnitude efficiency z-based efficiency 1 0.005 0.1243 -0.0036

- Intrinsic scatter model (3.5) Dust model parameters from
Appendix Table C

Separate dust parameters
within 1σ
Sys 1 1/

√
3 0.0055 0.1368 0.0022

Sys 2 1/
√
3 0.0059 0.1467 0.0031

Sys 3 1/
√
3 0.0089 0.2213 0.0017

- Core-collapse SN prior (3.6) Vincenzi et al. (2019) CC
Templates

Polynomial fit as in Holzek
2012

1 0.0 0.0 0.0

† Shift in w when including when including ONLY this systematic
aBoth from Peterson et al.

(2021)

Overall, the individual systematics are subdominant
to the statistical uncertainty for the Amalgame sample,
and for the most part on the order of < 1% in w. The
largest systematic contribution remains the calibration
and SALT3 surfaces as detailed in Brout et al. (2021) and
Section 3.3. This systematic uncertainty contribution,
about ∼ 40% of the statistical uncertainty, is comparable
to that of Pantheon+, which found a calibration and
SALT3 uncertainty of 38% of the statistical uncertainty.
Those systematics shared with Pantheon+ are largely

similar, instead, we shall mostly focus on those systemat-
ics unique to this analysis or that we include significant
updates to (dust-based scatter modeling):

• Redshift Evolution of α and β

• Fixing α and β in the BBC fit

• Host Galaxy Follow-up Efficiency

• Intrinsic Scatter Model

• Core Collapse modeling

• SDSS Detection Efficiency

α(z) and β(z)
We allow the stretch-luminosity coefficient α and the
colour-luminosity coefficient β to change with z. We find
no evidence that α that evolves with redshift, nor any
noteworthy systematic uncertainty associated with such
an evolution. However, we do find evidence of an evolving
β with redshift at a 4σ. While the β(z) systematic has
a greater contribution to the overall systematic uncer-
tainty - 0.0068 - it is still ×6 smaller than the statistical
uncertainty.

Fixed α and β
We find a noticeable difference in the fitted α and β val-
ues between the BBC-4D recovered values and those pro-
vided by Dust2Dust. The differences between the BBC-
4D recovered values and the fixed values are ∆α ∼ 0.03
and ∆β ∼ 0.4, outside statistical error. However, the
resulting ∆w from fixing the nuisance parameters rather
than fitting is ∆w = − 0.0047, and the systematic un-
certainty is similarly small at 0.005.
Follow-up efficiency

Redshift determination for photometric surveys is a func-
tion of the host-galaxy properties, not the supernovae.
This systematic is σw,syst = 0.005, and ∆w = −0.0036.
For the full Amalgame sample, this systematic makes no
significant impact on cosmology. This is a sizeable sys-
tematic for SDSS alone, however. The fiducial case of
using the r-band magnitude of the host galaxy, rather
than a statistical redshift efficiency, is a more realistic
approach. We find that this systematic is very well con-
strained, not meriting further research.
Intrinsic Scatter Model

The three dust systematics result in a combined system-
atic uncertainty of ∼ 0.018, one of the larger systematic
contributions. The individual contributions are approxi-
mately equal, and there does not appear to be an obvious
correlation between the systematic uncertainty contribu-
tion and the ∆w.
Core Collapse Modeling

The choice of using a simulated core collapse SNe sample
as the prior for BEAMS versus using the Hlozek et al.
(2012) analytical solution results in a negligible differ-
ence in ∆w and σw. While the simulated set is a more
realistic approximation of the core collapse population,
the CC contamination as identified by SNN effectively
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marginalises issues due to contamination. Noticeably, we
find that non-Ia contamination represents a small portion
of our systematic uncertainties.
SDSS Detection Efficiency

The change in the SDSS detection efficiency is negligible
for the full Amalgame sample, though alongside the host
galaxy follow up efficiency it is one of the largest sys-
tematic uncertainties for SDSS alone. Given the lower
redshift range of SDSS (0.06 < z < 0.35), it is expected
that systematics that affect the observed redshift distri-
bution have a large impact on the measured cosmology.
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Figure 12 shows ∆w from each systematic evaluated
separately, and without using Csyst from Section 2.5. The
statistical-only ∆w ≈ 0.04, shown in grey fill. These

represent the largest potential ∆w for this analysis, and
are all within the reported statistical uncertainty.
The statistical-only constraints are shown alongside

the systematic+statistical constraints for Amalgame in
Figure 13 when combined with a CMB prior from Planck
Collaboration et al. (2020). These contours are generated
using the wfit program. Compared to stat-only results,
we see a shift towards higher ΩM and lower w when in-
cluding systematics.

6. CONCLUSION

In this paper, we have presented the first combina-
tion of separate photometric SN samples, and provide
a cosmological measurement from the combined sample.
These two photometric samples are consistent at both
the Hubble Residual level, and within their fitted cos-
mologies. Alongside these results, we have introduced
updates to the bias corrections methodology introduced
in Popovic et al. (2021b) and Brout et al. (2022), as well
as the dust model methodology from BS21 and Popovic
et al. (2021a). We release the data and analysis tools to
facilitate public work and discussion.
When using only SN for our measurement, we find

Ωm = 0.328 ± 0.024, consistent with the results of Pan-
theon+. Our result for the dark energy equation-of-
state, combined with the CMB, is w = −1.016+0.055

−0.058,
consistent with the cosmological constant of w = −1
and constraints from other SN samples. This consis-
tency is in spite of the three major differences between
recent cosmological measurements using SNe Ia (Scol-
nic et al. 2018; Brout et al. 2022; Abbott et al. 2019)
and Amalgame: the use of a photometric sample, rather
than spectroscopic, for the analysis; the use of dust mod-
eling to explain SNIa intrinsic scatter; and the lack of
a low redshift anchor. Our analysis is most similar to
that from Jones et al. (2018), though that focuses on
one photometric sample and includes a spectroscopically
confirmed low-redshift anchor. That analysis finds a
w = −0.989± 0.057.
This paper is a stepping stone for the next generation

of cosmological measurements with SNIa between now
and the dawn of the Legacy Survey of Space and Time
and the Roman Space Telescope; using combined photo-
metric samples including PS1, SDSS, and DES with an
improved low-redshift sample from the Zwicky Transient
Facility and the Young Supernova Experiment.
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APPENDIX

A. REDERIVING HOST GALAXY MASSES

We use photometric data for the host galaxies, measured in grizY for PS1 and ugriz for SDSS. The host galaxy
data are corrected for Milky Way extinction correction using colour excess E(B − V ) values from Schlegel et al. 1998
and a Fitzpatrick reddening law (Fitzpatrick 1999).
We then estimate stellar masses for the SN host galaxies. In brief, we use the PEGASE.2 spectral synthesis code

(Fioc & Rocca-Volmerange 1997; Le Borgne & Rocca-Volmerange 2002) to calculate the SED of a galaxy as a function
of time, using smooth, exponentially declining star formation histories (SFHs). Each SED is calculated at 102 time-
steps from 0 to 14 Gyr, with the standard PEGASE.2 prescription for nebular emission included. We use a Kroupa
(2001) initial mass function (IMF), and seven foreground dust screens with a colour excess ranging from 0.0 to 0.30
mag in steps of 0.05 mag to mimic the effect of foreground dust. For each host galaxy, the fluxes of each model SED at
the redshift of the SN in the relevant filters are calculated and the best-fitting template located using a least-squares
approach. To ensure consistency with our assumed cosmological model, we enforce that the age of the best-fitting
template must be less than the age of the Universe at the redshift of the SN. The stellar mass is then estimated from
the best-fitting SED.
We use a Monte Carlo approach to estimate the statistical uncertainties in our stellar masses. For each galaxy, we

perform 1000 random realizations of the observed galaxy data, drawing new ‘observations’ randomly from a normal
distribution, and repeating the procedure described above. The quoted uncertainties on the best-fitting parameters
are the standard deviation of the best-fitting parameters over all realizations.

B. UPDATES TO DUST2DUST

Proper modeling of dust parameters for photometric samples requires improvements to the methodology introduced in
Popovic et al. (2021a). The forward modeling of dust parameters was done with use of a program named Dust2Dust;
here we detail updates to the Dust2Dust approach to incorporate the presence of core collapse supernovae in the
Dust2Dust fit:

• We fix α and β in the Dust2Dust fit, instead of floating them in the SALT2mu minimisation.

• We institute a cut on the probability of being a Ia from our classifiers (PIa > 0.5).

• We do not include core collapse supernovae in the bounded simulations for Dust2Dust.

• We utilise BEAMS with the Hlozek et al. (2012) core-collapse prior.

In P22, the β (βobs in P22) parameter is used as a metric criteria (Section 4.1 of P22). However, this presents issues
with the colour vs. Hubble Residuals metric, which is calculated by subtracting out observed distances from the best
fit cosmology for both data and simulations. When βobs is floated, the resulting βobs for the data and simulations are
not guaranteed to be the same, therefore resulting in a bias in distance moduli that is not constrained by the more
impactful colour vs. Hubble Residual metric (Table 6 of P22).
To fix this issue, the βobs of the data is measured via a SALT2mu fit (Kessler & Scolnic (2017) find negligible

differences between β determinations with 1D bias corrections and none) and then used as the nominal βobs for both
the simulations and the data. While this approach does remove βobs as a metric criteria, it is not an effective constraint
on dust model parameters, contributing little to the overall χ2.
To mitigate core collapse supernovae from contaminating the Dust2Dust fits, we implement a probability cut on

the likelihood of being a Type Ia as assigned by our classifiers. The inclusion of obvious (PIa < 0.5) core collapse
supernova impacts all of the Dust2Dust criteria, and in particular the colour distribution, Hubble Residual scatter,
βobs, and σint metrics are not able to be mitigated with the inclusion of BEAMS. Our nominal probability cut is an
SNN-likelihood of greater than 0.5. As a quick test, we use our nominal dust model parameters with a probability cut
of PIa > 0.9 to compare the results, and find a ∆χ2 = 11.
We make the assumption that the probability cut removes enough non-Ia that the effects of not simulating core-

collapse supernovae into the bounded simulations that comprise Dust2Dust are negligible. This approach has the added
benefit of allowing us to use Vincenzi et al. (2019) core collapse models, which include accurate dust information for
core collapse supernovae.
Finally, we utilise the BEAMS methodology to mitigate the effect of any remaining core collapse supernovae on our

colour vs. Hubble Residual metric. We present the best-fit Dust2Dust Amalgame samples along with a breakdown of
their χ2 in Table C.

C. UPDATES TO σINT

Equations 3 and 4 in Section 2.2 detail the calculation of σint as prescribed in Brout et al. (2022). Here we detail a
small correction to the calculation as done in Brout et al. (2022).
When calculating µ for SNIa in the biasCor files, a β must be assumed. Brout et al. (2022) follow Popovic et al.

(2021b) in using the input βSALT when calculating µ; however, µERR was calculated with βSN due to an overlooked
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Fig. 14.— A comparison of the Root Mean Square of the Hubble residuals (solid) with the median distance modulus error (dash dotted)
for the data as a function of colour. This is shown for high and low mass host galaxies.

TABLE 6
P22 Model Parameters and Criteria Fit for this paper.

Parameter Value
cint -0.074
cstd 0.055

High mass RV 3.17
High mass σRV 1.23
Low mass RV 1.71
Low mass σRV 0.82

Low z, low mass τEBV 0.13
Low z, high mass τEBV 0.12
High z, low mass τEBV 0.11
High z, high mass τEBV 0.13

βint 1.50
σβint 0.29

Metric Criteria χ2

χ2
c 5.3

χ2
µres,high

27.3

χ2
µres,low

13.1

χ2
σr,high

62.3

χ2
σr,low

20.9

χ2
βint

N/A

χ2
σint

0.64

variable. Calculating µ and µERR with inconsistent β values incorrectly increased the calculated σint values. This has
since been fixed to use a consistent βSALT.

SIMS AND DATA

Here we present the data-sim overlays for the SDSS and PS1 surveys. There is good agreement between the data and
simulations. The redshift distribution for SDSS is slightly discrepant; this discrepancy is addressed in the efficiency
modeling systematic in Section 3.4.
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Möller, A., de Boissière, T., 2019, arXiv e-prints,

arXiv:1901.06384, arXiv:1901.06384

Perlmutter, S., Aldering, G., Goldhaber, G., et al., 1999, ApJ,
517, 565, astro-ph/9812133

Peterson, E. R., Kenworthy, W. D., Scolnic, D., et al., 2021,
arXiv e-prints, arXiv:2110.03487, arXiv:2110.03487

Pierel, J. D. R., Rodney, S., Avelino, A., et al., 2018a,
Publications of the Astronomical Society of the Pacific, 130, 11,
114504, arXiv:1808.02534

Pierel, J. D. R., Rodney, S., Avelino, A., et al., 2018b,
Publications of the Astronomical Society of the Pacific, 130, 11,
114504, arXiv:1808.02534

Planck Collaboration, Aghanim, N., Akrami, Y., et al., 2020,
A&A, 641, A6, arXiv:1807.06209

Popovic, B., Brout, D., Kessler, R., Scolnic, D., 2021a, arXiv
e-prints, arXiv:2112.04456, arXiv:2112.04456

Popovic, B., Brout, D., Kessler, R., Scolnic, D., Lu, L., 2021b,
ApJ, 913, 1, 49, arXiv:2102.01776

Popovic, B., Scolnic, D., Kessler, R., 2019, arXiv e-prints,
arXiv:1910.05228, arXiv:1910.05228
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