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0. Preface  
 

This article revives a presentation that we made at the Joint Statistical Meeting of the 

American Statistical Association in 2004. A paper was published in the proceedings of 

the ASA Section on Survey Research Methods in the same year, but for some reason 

we never submitted it to a peer reviewed journal. Towards the end of last year, 

Professor Partha Lahiri, one of the guest editors of the CSA Bulletin special issue on 

Small Area Estimation and Surveys, invited us to modify our article and submit it to 

this special issue. Due to the relative short time we had, the modification is rather 

limited, but we hope that the article will raise interest, because as far as we can tell, 

some of the procedures that we propose have not been considered in the SAE 

literature before. 

 

ABSTRACT 

In this article, we propose and compare some old and new parametric and 

nonparametric bootstrap methods for MSE estimation in small area estimation, 

restricting to the case of the widely used Fay-Herriot model. The parametric method 

consists of generating parametrically a large number of area bootstrap samples from 

the model fitted to the original data, re-estimating the model parameters for each 

bootstrap sample and then estimating the separate components of the MSE. The use  

of double-bootstrap is also considered. The nonparametric method generates the 

samples by bootstrapping standardized residuals, estimated from the original sample 

data. The bootstrap procedures are compared to other methods proposed in the 

literature in a simulation study, which also examines the robustness of the various 

methods to non-normality of the model error terms. A design-based MSE estimator for 

the Fay-Herriot model-dependent predictor is also described and its performance is 

investigated in a separate simulation study. 
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1. INTRODUCTION 

Over the last four decades, there is growing demand all over the world for reliable 

estimates of small area parameters such as means, counts, proportions or quantiles. 

The estimates are used for fund allocations, new social and health programs, and 

more generally, for short and long term planning. Small area estimates (SAE) are also 

used for testing, correcting and supplementing administrative records. Although 

commonly known as “small area estimation”, the domains of study may consist of 

socio-demographic subgroups as defined, for example, by gender, age and race, or 

the intersection of such domains with geographical locations. 

The problem of SAE is that the sample sizes in at least some of the domains of study 

are very small, and often there are no samples available for many or even most of 

these domains. In such cases, the direct estimates obtained from a survey are 

unreliable with unacceptable large variances, and no direct survey estimates can be 

computed for areas with no samples. SAE methodology addresses therefore the 

following two major problems: 

1. How to obtain reliable estimates for each of the areas, 

2. How to assess the error of the estimators (MSE, confidence intervals, etc.).  

In the present article, we restrict to the popular Fay-Herriot (1979) model and consider 

the estimation of the MSE of the Empirical Best Linear Unbiased Predictor (EBLUP). 

Due to time limitation, we only consider areas with samples. The computation of 

reliable MSE estimators in SAE problems is complicated because the models in use 

and the small sample sizes within the areas require accounting for the contribution to 

the error resulting from estimating the model parameters. Several procedures have 

been proposed in the literature, some of which we consider and compare in a 

simulation study in the present article. Our main goal is to propose new parametric 

and nonparametric bootstrap procedures for MSE estimation with correct order of bias, 

which to the best of our knowledge have not been proposed in the literature in the 

context of SAE. The parametric method consists of generating parametrically a large 

number of area bootstrap samples from the model fitted to the original data, re-

estimating the model parameters for each bootstrap sample and then estimating 

separately or jointly the components of the MSE. The double bootstrap procedure is 
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also considered.  The nonparametric method generates the samples by bootstrapping 

standardized residuals computed from the original sample data. 

In Section 2, we define the model, the resulting predictors and their theoretical MSEs. 

In Section 3 we describe two, commonly used estimators of the variance of the random 

effects, which is a major component of the model. Section 4 contains our proposed 

parametric and nonparametric bootstrap MSE estimators. Other procedures for MSE 

estimation proposed in the literature, including estimation of the randomization MSE 

over all possible sample selections are described in Section 5.  In Section 6, we report 

the results of a simulation study, which compares the MSE estimators considered in 

the article. We conclude with some brief comments in Section 7. 

 

2. THE FAY-HERRIOT AREA LEVEL MODEL, ESTIMATORS AND MSE’S 

This model is in broad use when the sample information is only available at the area 

level. It was used originally by Fay and Herriot (1979, hereafter FH) for predicting the 

per-capita income in geographical areas of less than 500 residents.  

Denote by 
iy , the direct sample estimator of the mean in area i  (based only on the 

sample from that area), and by 
i  the corresponding true area mean. Let m  denote 

the number of areas with observations. The model assumes, 

                                          ; x , 1,...,i i i i i iy e u i m       ,                            (2.1) 

where x i
 is a 1p  column vector of known area level characteristics (covariates), 

1( ,..., )p
    is a  fixed vector of regression coefficients, 

ie  represents the sampling 

error, assumed to have zero mean and known design variance 
2( )D i DiVar e  , and 

iu  

is a random effect, assumed to have zero mean and variance 
2

u . It is assumed that 

( ) 0 ,i jE e u i j  . For known model parameters 2( , )u   and under normality of the 

error terms ( ,i ie u ), the best predictor (minimum MSE) of 
iθ  is,  

                           ˆ (1 )x x ( x )BP

i i i i i i i i iy y              .                              (2.2) 

The predictor (2.2) is a “composite estimator” with weight )/( 222

uDiui   ,  which 

determines how much weight is assigned to the direct estimator and how much to the 

synthetic part, xi , depending on the corresponding error variances 2

Di  and 2

u . The 

MSE of ˆ
BP

i  under the model is, 
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2 2 2

1
ˆ ˆ( ) ( ) ( )BP BP

i i i i u i DiMSE θ E θ θ g       .                            (2.3) 

REMARK 1. Equation (2.3) holds also without the normality assumptions. The 

normality assumptions guarantee that the predictor (2.2) attains the minimum MSE.    

 When 2

u  is known but   is unknown, the best linear unbiased predictor (BLUP) of 

i  is obtained by replacing   in (2.2) by the generalized least square estimator (GLS), 

                                 1

2 2 2 21 1

1 1ˆ [ x x ] x

i i

m m

GLS i i i ii i
u D u D

y

 


 
 

   
.                    (2.4) 

The BLUP is thus, 

                                          ˆ ˆ(1 )xBLUP

i i i i i GLSy      .                                       (2.5) 

 

The MSE is,  

                                
2 2 2

1 2
ˆ ˆ( ) ( ) ( ) ( )BLUP BLUP

i i i i u i uMSE θ E θ θ g g     ,                  (2.6) 

where 2

2 ( )i ug  represents the additional error resulting from estimating  ;  

             2 2 1 2

2 2 21

1 ˆ( ) (1 ) x [ x x ] x (1 ) x ( )x

i

m

i u i i i i i i i GLS ii
u D

g Var


     


   

 
.      (2.7) 

REMARK 2. The BLUP property and the MSE expression (2.6) are valid without the 

normality assumptions of the error terms. 

In practice, both   and 2

u  are unknown and need to be estimated from the observed 

data. An empirical BLUP (EBLUP) is obtained by replacing 2

u  by an estimator 2ˆ ( )u y  

in the expression (2.5) of the BLUP, where 
1( ,..., )my y y  . The predictor is, 

                                          ˆ ˆˆ ˆ(1 )xEBLUP

i i i i i iy      ,                                                   (2.8) 

where 
î  and ˆi  are obtained from 

i  and ˆGLS  by replacing 2

u  by 2ˆ ( )u y .  

The question arising is how to estimate 2

u  and how to estimate the MSE of the 

resulting EBLUP defined by (2.8), to a correct order of bias. 

3. PROCEDURES PROPOSED IN THE LITERATURE FOR ESTIMATING 
2

u  

In what follows we describe two procedures that we use in our simulation study:  

a) Prasad and Rao (1990) estimator;  

          2 2 2

i

1 1

1 ˆ[ ( x ) ]
( )

m m

PR i OLS Di i

i i

y β h
m p

 
 

  


   ; 1

1
(1 x [ x x ] x )

m

i i i i ii
h 


    ,                 (3.1) 
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where 
1

1 1

ˆ [ x x ] x y
m m

OLS i i i ii i
 

 
   . The estimator 2

PR  can be negative, and so 

2 2ˆ max( ,0)PR PR   is usually the estimator used in practice. The estimator 2

PR  (but 

not 2ˆ
PR ) is unbiased. 

b) Fay and Herriot (1979) estimator; 

Solve iteratively,  

                                    
2 2

2 2
1

1 1 ˆ ˆ[ x ( )] 1
ˆ( ) ( )

m

i i u

i u Di

y β
m p


 

 
 

 ,                             (3.2) 

where 
2ˆ ˆ( )uβ   is the GLS estimator (2.4), with 2

u  replaced by 2ˆ
u . Define the solution 

by 2

FH  and set 2 2ˆ max( ,0)FH FH  . The rationale of (3.2) is that for 2 2ˆ
u u  , the 

expectation of the left-hand side of (3.2) equals 1.  

REMARK 3. The estimators defined by (3.1) and (3.2) satisfy i- 
2 2 0.5ˆ( ) ( ),u u pO m   

,ii- they are even functions of y  such that 2 2ˆ ˆ( ) ( )u uy y   and iii- they are translation 

invariant; 2 2ˆ ˆ( ) ( )u uy y Xd    for any vector pd R  and all y , where 
1[x ,...,x ]mX  . 

Under these conditions, the resulting EBLUP predictors remain unbiased. 

REMARK 4. Pfeffermann and Nathan (1981) proposed a similar estimator to 2ˆ
FH  in 

the context of regression analysis from a cluster sample with random cluster slopes, 

and showed some other desirable properties of this estimator.  

REMARK 5. Several other procedures have been proposed in the literature for 

estimating the variance 2

u . Datta and Lahiri (2000) derive maximum (MLE)- and 

residual maximum likelihood (REML) estimators for a general mixed linear model 

under normality of the error terms, which satisfy the regularity conditions in Remark 3 

above. These estimators can likewise be negative, particularly with small m. To deal 

with this problem, Li and Lahiri (2010) propose adjustments to the MLE and REML 

estimators that produces strictly positive estimates of 2

u . These adjusted estimators 

also satisfy the regularity conditions in Remark 3. We do not consider further the 

estimators mentioned in this remark in the present paper. The use of them requires 

normality of the error terms, but they remain consistent under general conditions, even 
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without the normality assumption (Jiang, 1996). Some of the Jackknife procedures for 

MSE estimation described in Section 5.2, use a Jackknife estimator of 2

u .  

4. MSE ESTIMATION OF THE EBLUP BY BOOTSTRAP 

4.1 MSE decomposition 

The EBLUP is defined by (2.8). The prediction error can be decomposed as, 

                            ˆ ˆ ˆ ˆ( ) ( ) ( )EBLUP BLUP EBLUP BLUP

i i i i i iθ θ        ,                             (4.1) 

where ˆ
BLUP

i  is defined by (2.5). Hence, by (2.6),  

2 2 2 2

1 2
ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ2 ( )( ).

EBLUP EBLUP EBLUP BLUP

i i i i u i u i i

BLUP EBLUP BLUP

i i i i

MSE θ E θ g g E θ

E θ θ

   

 

     

  

                   (4.2) 

Under normality of the model error terms (sampling errors and random effects), and 

for estimators 2ˆ
u  satisfying the conditions ii and iii in Remark 3, the cross-product 

expectation in 4.2 vanishes. ˆˆ ˆ( )( ) 0BLUP EBLUP BLUP

i i i iCPE E θ θ      (Harville, 1985). 

However, for other distributions of the model error terms, the cross-product 

expectation may not vanish and it is of similar magnitude as the second and third terms 

in the right hand side of (4.2). Lahiri and Rao (1995) developed a second order 

approximation for the cross-product expectation for the case where 2 2ˆ ˆ
u PR  , which 

only requires that the sampling errors are normally distributed. The approximation 

involves the fourth moment of the distribution of the random effects.  

4.2 Parametric bootstrap method for MSE estimation of the EBLUP  

The method consists of the following steps: 

P1. For 1,...,b B  (B large), generate independently normal random effects 

1( ,... )b b b

mu u u   and normal sampling errors 
1( ,... )e eb b b

me  , and hence bootstrap direct 

estimators 
1( ,... )b b b

my y y  from the F-H model (2.1), with hyper-parameters equal to 

2

iD , 
2ˆ ( )u y  and 

2ˆ ˆ[ ; ( )]uβ y y , where y  defines the original (parent) sample. 
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P2. Re-estimate 2

u  and   for each of the bootstrap samples using the same method 

as used for the original sample, yielding the estimators 2ˆ ( )b

u y , 
2ˆ ˆ[ ; ( )]b b

uβ y y , and 

also 
2ˆ ˆ[ ; ( )]b

uβ y y .  

P3. Estimate the MSE of the EBLUP as, 

        
2 2

1 1 2 1 2
ˆˆ ˆ ˆ( ) 2[ ( ( )) ( ( ))]PB EBLUP PB PB PB

i i u i u i iMSE θ g y g y g g puc      ,                 (4.3) 

where 
1 2 2 2 2 2

1

ˆ ˆˆ ˆˆ ˆ ˆ ˆ{ [ ; ( ), ( ; ( ))] [ ; ( ), ( ; ( ))]}
BPB b b b b b b

i u u i u ub
puc B θ y y y y θ y y y y     


   

and 
1 2

1
ˆ( ( )); 1,2

BPB b

ti ti ub
g B g y t


  .   

The term PBpuc  estimates the contribution to the MSE from the parameter 

uncertainty, as defined by the third term on the right side of (4.2). 

Using similar arguments to Pfeffermann and Tiller (2005), it follows that under mild 

regularity conditions, the MSE estimator (4.3) has bias of order 2( )O m .  

REMARK 6. Pfeffermann and Tiller (2005) consider MSE estimation of EBLUP state 

predictors in the context of state-space models, which contain the FH model as a 

simple special case. 

REMARK 7. Butar and Lahiri (2003) likewise developed the MSE estimator (4.3) 

although in a different way, and showed that it has bias of order 1( )o m .   

The MSE estimator defined by (4.3) assumes that the model error terms are normally 

distributed and hence that the cross product expectation in (4.2) is zero. When this is 

not the case, the cross-product expectation may not vanish. Assuming that the true 

distributions of the random errors are known, one needs to generate the bootstrap 

samples in Step P1 above by sampling the error terms from their respective 

distributions, and adding twice the following expression to the estimator (4.3):   

    

1 2 2 2 2

1

2 2

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ{ [ ; ( ), ( ; ( ))] [ ; ( ), ( ; ( ))]}

ˆ ˆˆ ˆ{ [ ; ( ), ( ; ( ))] },

BPB b b b b b b

i u u i u ub

b b b

i u u i

CPE B θ y y y y θ y y y y

θ y y y y θ

     

  




 

 


  (4.4) 

where 
2ˆ ˆx ( ; ( ))b b

i i u iθ y y u    is the “true” area mean generated for area i  in 

bootstrap sample b . 
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An alternative parametric bootstrap estimator, also resulting from Pfeffermann and 

Tiller (2005), is obtained by replacing (4.3) by 

           
2 2

2 1 2 1 2
ˆˆ ˆ ˆ( ) [ ( ( )) ( ( ))]PB EBLUP PB PB PB

i i u i u i iMSE θ g y g y g g mse      ,                (4.5) 

where 
1 2 2 2

1

ˆ ˆˆ ˆ{ [ ; ( ), ( ; ( ))] }
BPB b b b b b

i u u ib
mse B θ y y y y θ  


   is the MSE of the EBLUP 

under the bootstrap model. It is a ‘naive’ MSE estimator because it ignores the bias 

resulting from generating the bootstrap samples with a sample estimator 2ˆ
u , rather 

than with the true value 2

u . For distributions such that the cross-product expectation 

in (4.2) is of order 1( )O m , the MSE estimator (4.5) has bias of order 2( )O m . 

The estimator (4.5) is equivalent asymptotically to the estimator (4.3), but it has the 

potential advantage of robustness against non-normal distributions of the model error 

terms. To see this, denote by 
*E  the expectation with respect to the bootstrap model, 

i.e., when generating the area direct estimators with hyper-parameters

2 2ˆˆ ˆ( ), ( ; ( ))u uy y y   . Then, in analogy to Eq. (4.2),   

                         

2 2 2 2

* 1 2 *

*

ˆˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ2 ( )( ).

EBLUP EBLUP BLUP

i i u u i i

BLUP EBLUP BLUP

i i i i

E θ g g E θ

E θ θ

   

 

    

  

.              (4.6) 

Thus, the expression 
2ˆ ˆˆ ˆ ˆ( ) 2 ( )( )EBLUP BLUP BLUP EBLUP BLUP

i i i i i iE θ E θ θ       in (4.2) can 

be estimated by 
2 2 2 2 2

* 1 2 1 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )EBLUP PB

i i u u u uE θ g g mse g g          . The 

estimator (4.5) is obtained by adding the last expression to the bias reduced estimator 

2 2

1 2 1 2
ˆ ˆ2[ ( ) ( )] PB PB

u u i ig g g g     of 2 2

1 2[ ( ) ( )]u ug g  . For distributions such that the 

cross-product term in (4.2) is of order (1 / )O m , the MSE estimator (4.5) has bias of 

order 2(1/ )O m .  

4.3 Nonparametric bootstrap method for MSE estimation of the EBLUP  

For nonparametric bootstrap, we propose using the original estimates of 2

u  and   in 

order to generate bootstrap replications of estimated standardized combined error 

terms ( )t tu e . The method consists of the following steps: 

NP1. Calculate the m  estimated standardized residuals 
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2 1/2 2 2 1

2 21

1ˆˆ ˆ ˆ[ x ( ; ( ))] / ; ( ( ) ) x [ x x ] x
ˆ ( )i

i

m

i i i u i i u D i i i ii
u D

r y y y f f y
y

   
 




      


 .   (4.7) 

Note: 
2ˆ ˆ[ x ( ; ( ))]i i i uf Var y y y    under the FH model, with 

2 2ˆ ( ),
iu Dy   and  

2ˆ ˆ( ; ( ))uy y   as the “true” model hyper-parameters. 

NP2. Sample a large number B of sets of standardized residuals

1( ,..., ), 1,...,b b b

mr r r b B  , where each set is a simple random sample with 

replacement of size m  from the standardized residuals ˆ , 1,...,ir i m  defined by (4.7).  

NP3. Calculate the bootstrap direct estimators, 

               
1/2 2ˆ ˆ( ) x ( ; ( )); 1,..., , 1,...,b b

i i i i uy r f y y i m b B     .                              (4.8) 

Note: 1/2[ ( ) ]b

i i iVar r f f , the true variance of the estimated residual term in area i , 

under the setup above.  

NP4. Re-estimate the hyper parameters 2

u  and   for each of the bootstrap samples 

using the same method as used for the original sample, yielding the estimators, 

2 2ˆˆ ˆ( ), ( ; ( ))b b b

u uy y y   , and 
2ˆ ˆ( ; ( ))b

uy y  . Predict, 
2 2ˆ ˆˆ ˆ[ ; ( ), ( ; ( ))]b b b b

i u uθ y y y y    and 

2 2ˆ ˆˆ ˆ[ ; ( ), ( ; ( ))]b b

i u uθ y y y y   . 

NP5. Estimate the MSE of the EBLUP as, 

            
2 2

1 2 1 2
ˆˆ ˆ ˆ( ) 2[ ( ( )) ( ( ))]NPB EBLUP NPB NPB NPB

i i u i u i iMSE θ g y g y g g puc      ,       (4.9) 

where 
NPBpuc , 

1

NPB

ig  and 
2

NPB

ig  are defined similarly to in (4.3). 

REMARK 8. The estimator (4.9) is essentially the same as (4.3), but based on 

nonparametric bootstrap. Notice, however, that by bootstrapping the estimated 

standardized residuals, it is no longer possible to generate “true” bootstrap area 

means b

iθ  and hence to compute a nonparametric MSE estimator that is equivalent to 

(4.5). Also, notice that like the parametric estimator (4.3), the estimator (4.9) assumes 

that the cross-product expectation in (4.2) is zero, which does not necessarily hold if 

the true model error terms are not normally distributed. 

REMARK 9. In a discussion to an article by Jiang and Lahiri (2006), the late Professor 

Peter Hall reckons that “small area methods are motivated when data are scarce, and 
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it is exactly in such cases that informed parametric techniques can enjoy statistical 

advantages over their more adaptive nonparametric cousins. Parametric bootstrap 

methods therefore have an important role to play.” Our simulation results in Section 6 

do not backup this proposition, at least for small m .  

5. EBLUP MSE ESTIMATORS PROPOSED IN THE LITERATURE 

5.1 Estimators based on Taylor approximations 

Prasad and Rao (1990) show that under normality of the model error terms, the MSE 

of the EBLUP computed with an estimator 2ˆ
u , can be approximated  up to terms of 

order (1 / )o m  as, 

                    
2 2 2 2 2

1 2 3
ˆ ˆ[ ( )] ( ) ( ) ( ) ( )EBLUP

i u i u i u i u uMSE g g g Var        ,               (5.1) 

where 2 4 2 2 3

3 ( ) ( )i u Di u Dig       . For the case where 2 2ˆ ˆ
u PR  , the authors develop 

the following estimator for the MSE approximation (5.1), with bias of order (1 / )o m , 

                       
2 2 2 2

1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ[ ( )] ( ) ( ) 2 ( )EBLUP

i PR i PR i PR i PR PRMSE g g g V       ,           (5.2) 

where 
2 2 2 2 2

1

ˆ ˆ ˆ ˆ( ) 2 ( )
m

PR PR PR Dii
V Var m  


   .  

REMARK 10. Lahiri and Rao (1995) show that the estimator (5.2) is robust to non-

normality of the distribution of the model random effects. 

Datta, Rao and Smith (2005) consider the case where 2

u  is estimated by the FH 

method ( 2 2ˆ ˆ
u FH  ). The authors derive the following MSE estimator, with bias correct 

to the order (1 / )o m , 

           
2 2 2 2 2

1 2 3 4
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ ( )] ( ) ( ) 2 ( ) ( )EBLUP

i FH i FH i FH i FH FH i FHMSE g g g V g         ,    (5.3) 

where 
2 2 2 1 2

1

ˆ ˆ ˆ ˆ( ) 2 [ ( ) ]
m

FH FH FH Dii
V Var m  


      and  

    
2 2 2 2 1 2 1 3 2 2

4 1 1 1
ˆ ˆ ˆ( ) 2[1 ( )] [ ( ) ]( ) ;

m m m

i FH i FH i i i i Di FHi i i
g m           

  
       .   (5.4) 

5.2 Estimators based on Jackknife resampling 

An alternative approach for estimating the MSE of the EBLUP is the use of Jackknife 

procedures. Jiang, Lahiri and Wan (2002, hereafter JLW), develop a unified theory for 

estimation of the MSE of Empirical best predictors (EBP) under a general class of 
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mixed models, which includes the FH model as a simple special case. Recall that for 

the FH model with normal error terms, ˆ ˆEBLUP EBP

i i  , where ˆ
EBP

i  is the empirical best 

predictor of 
i , with ˆ

BP

i  defined by (2.2) (assuming known   and 2

u ).  

Similarly to (4.1),  ˆ ˆ ˆ ˆ( ) ( ) ( )EBLUP BP EBLUP BP

i i i i i iθ θ        . Hence, by (2.3), 

2 2

1
ˆ ˆ ˆ( ) ( ) ( )EBLUP EBLUP BP

i i u i iMSE g E      . JLW proposed the following Jackknife 

MSE estimator: 

 

, 1 2
ˆ ˆ ˆ( )EBLUP

i JLW i iMSE M M   ;  

1
ˆ

iM 
2 2 2

1 1 11

1
ˆ ˆ ˆ( ( )) [ ( ( )) ( ( ))]

m

i u i u j i uj

m
g y g y g y

m
  


  ,                                      (5.5) 

2 2 2 2 2

2 1

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ{ [ ; ( ), ( ; ( ))] [( ; ( )), ( ; ( ))]}
m

i i i u j j u j i i u uj

m
M y y y y y y y y

m
         


  . 

In (5.5), jy  is the vector of observations without the jth area direct estimator,  

2ˆ( ; ( ))j u jy y    is the GLS estimator of   based on 
jy  and 

2ˆ ( )u jy  , and  

2 2ˆ ˆˆ ˆ( ; ( ), ( ; ( ))i i u j j u jθ y y y y     is the EBLUP predictor of 
iθ  based on 

jy .  

REMARK 11. Lohr and Rao (2009) propose a modification of the estimator (5.5), which 

is simpler computationally and estimates the conditional MSE, 2ˆ[( ) | ]EBLUP

i i iE θ θ y . 

Denoting 2( , )u    and ( , ) ( | ; )i i i iq y Var y   . The modification consists of 

replacing 
1
ˆ

iM  in (5.5) by 1 , ( )
ˆ ˆ ˆ ˆ( , ) [ ( , ) ( , )]

m

i c i i i j i i i

j i

M q y q y q y  



   . When 

estimating   by MLE, the modified estimator , 1 , 2
ˆ ˆ ˆJK

i c i c iM M    has bias of order 

(1/ )po m  in estimating the conditional MSE and bias of order (1/ )o m  in estimating the 

unconditional MSE. Lohr and Rao (2009) note that for the Fay-Herriot model, the 

estimator ,
ˆ JK

i c  is approximately the same as the estimator (5.5).  

Chen and Lahiri (2002), develop the following Jackknife estimator: 
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2 2

1 , 1 2

2 2 2 2

1 2 1 21

2 2 2 2 2

1

ˆ ˆ ˆ ˆ( ) ( ( )) ( ( ))

1
ˆ ˆ ˆ ˆ[ ( ( )) ( ( )) ( ( )) ( ( ))]

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ{ [ ; ( ), ( ; ( ))] [( ; ( )), ( ; ( ))]} .

EBLUP

iJK CL i u i u

m

i u j i u j i u i uj

m

i i u j j u j i i u uj

MSE g y g y

m
g y g y g y g y

m

m
y y y y y y y y

m

  

   

       

 

  

 


   


 





    (5.6) 

For the case where the estimator 1 ,
ˆ ˆ( )EBLUP

iJK CLMSE   is negative (may happen with small

m ), the authors propose to replace the third term by 
4 2 2 3 2ˆˆ ˆ[ ( )] ( )JK

Di Di u uy V    , 

where 
2 2 2 2

1

1ˆ ˆ ˆ ˆ( ) [ ( ) ( )]
mJK

u u j uj

m
V y y

m
  


   is the Jackknife estimator of 2ˆ( )uVar  .  

Chen and Lahiri (2003), approximate additionally the last term of (5.6) by

4 2 2 4 2 2 2ˆ ˆˆ ˆ ˆ[ ( )] [ x ( ; ( ))] ( )JK

Di Di u i i u uy y y y V        . Thus, the MSE estimator proposed 

by Chen and Lahiri (2003) is, 

             

4
2 2 2

2 , 1 2 2 2 3

4
2 2 2

2 2 4

ˆ ˆ ˆˆ ˆ ˆ( ) ( ( )) ( ( )) ( )
ˆ[ ( )]

ˆ ˆˆ ˆ[ x ( ; ( ))] ( ).
ˆ[ ( )]

EBLUP JKDi
iJK CL i u i u u

Di u

JKDi
i i u u

Di u

MSE g y g y V
y

y y y V
y

  


 



   

 


  

 

             (5.7)   

REMARK 12. Under normality of the error terms ( , )i iu e , the three Jackknife estimators 

considered above have bias of order (1 / )o m  in estimating the unconditional MSE over 

the joint distribution of the random effects and the sampling errors.  

 

5.3 Estimator based on double parametric bootstrap 

Hall and Maiti (2006), propose estimating the MSE by use of double-bootstrap. For the 

FH model (2.1), the procedure consists of the following steps, where we denote by 

2 2ˆˆ ˆ ˆ[ , ( )]u u     the estimators obtained from the original sample.  

DB1. Generate a new population of area means from the model (2.1), with parameters   

̂ . Generate a sample and compute the EBLUP based on newly estimated 

parameters. The new population uses the same covariates as the original population. 

Repeat the process independently 
1B  times, with 

1B  large. Denote by ˆ( )i,bθ   and  
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,
ˆ ˆ( )EBLUP

i b bθ   the ‘true’ mean and corresponding EBLUP for population and sample b , 

11,...,b B . Compute the 1st step bootstrap MSE estimator (same as 
PBmse  in Eq. 4.5),  

                  
1 ( ) 2

1 , ,1
1

1ˆ ˆˆ ˆ ˆ[ ] [ ( ) ( )]
BBS EBLUP EBLUP

i i b b i bb
MSE θ θ θ

B
 


  .                               (5.8) 

DB2. For each sample b  drawn in Step 1, repeat the computations of Step 1 
2B  times 

with 
2B  sufficiently large, yielding new ‘true’ means ˆ( )i,b,c bθ   and EBLUPs 

, , ,
ˆ ˆ( ),EBLUP

i b c b cθ 
1 21,..., ; 1,...,b B c B  . Compute the second-step bootstrap MSE 

estimator,  

                        
1 2 ( ) 2

2 , , ,1
1 2

1 1ˆ ˆˆ ˆ ˆ[ ] [ ( ) ( )]
B BBS EBLUP EBLUP

i i b c b c i,b,c bb c
MSE θ θ θ

B B
 


   .            (5.9) 

Denote ,1 1
ˆˆ ˆ ( )BS BS EBLUP

i iMSE θ  , ,2 2
ˆˆ ˆ ( )BS BS EBLUP

i iMSE θ  . The double-bootstrap MSE 

estimator is obtained by computing bias corrected estimators. For example,  

                               
,1 ,1 ,2 ,1 ,2

,1 ,1 ,2 ,2 ,1 ,2

ˆ ˆ ˆ ˆ ˆ( ), if
ˆ

ˆ ˆ ˆ ˆ ˆ ˆexp[( ) / ], if

BS BS BS BS BS

i i i i iDBS

i BS BS BS BS BS BS

i i i i i i

    


     

   
 

 

.               (5.10)               

REMARK 13. The 1st step bootstrap estimator (5.8) has bias of order (1/ )O m . The 

double-bootstrap estimator (5.10) has bias of order (1/ )o m  under some mild regularity 

conditions. However, the use of (5.10) may inflate the variance of the estimator and 

hence the MSE. To deal with this problem, Hall and Maiti (2006) propose using instead 

an estimator with a lower bias reduction but smaller MSE. See the article for details. 

REMARK 14. The computation of the double bootstrap estimator is very computing 

intensive when applied with large 
2B . In the simulation study in Section 6, we follow 

Erciulescu and Fuller (2014) and set 
2 1B  , which yields similar results to those 

obtained with large values of 
2B . 

5.4 Estimation of Randomization Mean Square Error  

All the MSE estimators considered so far are model dependent, in our case for the FH 

model, accounting for all sources of variation. This implies that the target area means 
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are viewed as random, which is different from classical survey sampling theory under 

which the finite population values, and hence the area means, or other parameters of 

interest are considered as fixed values. However, users of sample survey estimates 

are used to measures of error such as MSE, which only account for the variability 

originating from the randomness of the sample selection (known as the randomization 

distribution), i.e., the MSE over all possible sample selections from the target finite 

population, with the population values of the survey variables held fixed. We refer to 

this MSE as the design-based MSE, denoted hereafter, DMSE.  

Pfeffermann and Ben-Hur (2018) propose a method for estimating the DMSE of 

model-dependent small area predictors. The proposed method models the DMSE as 

a function of known area statistics by repeatedly drawing samples from appropriately 

generated synthetic populations, and then applies the model to the original sample. 

The procedure follows a method of bias correction developed by Pfeffermann and 

Correa (2012) for unit-level- model dependent MSE estimation, with appropriate 

modifications.  

The DMSE is defined as,                                  

                                     
2ˆ ˆDMSE( ) [( ) | ]i D i i iE θ    ,                                        (5.11) 

where 
DE  is the expectation under the randomization distribution over all possible 

sample selections from the finite population, with 
iθ  held fixed. Simple calculations, 

show that for the FH model with known model parameters 2( , )u  ,  

                               2 2 2 2 2ˆ( , , ) ( ) (1 ) ( )
i ii i D i i D i i iDMSE x              .        (5.12)       

Simple calculations show that for known parameters, an unbiased estimator of   

ˆ( )iDMSE θ  is,  

                             
2 2 2ˆ (2 1) (1 ) ( )

i

UB

i i D i i iy x         .                                   (5.13) 

Hence, for large m , an approximately unbiased estimator of ˆ( )iDMSE θ is obtained by 

replacing the unknown parameters in (5.13) by their sample estimates, yielding the 

estimator, 

                            
2 2 2

ˆ
ˆ ˆˆ ˆ(2 1) (1 ) ( )AUB

i i Di i i i GLS
y x         ,                                     (5.14)    

where ˆ
ˆ

GLS
  is the GLS estimator but with 

2

u  replaced by 
2ˆ
u .  
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The DMSE estimator ˆAUB

i  is expected to be unstable for small m  and large sampling 

variances 2

iD . Therefore, Pfeffermann and Ben-Hur (2018) propose an alternative 

estimator, which is constructed by applying the following steps:                                    

Step 1. Estimate ( 2 ˆˆ ,u  ) based on the original sample. Generate a large number R of 

values 
2 ,ur r   from neighbourhoods around 2 ˆˆ ,u  ,

 
which are expected to include the 

true values underlying the hypothetical model generating the population values.   

Step 2. Generate pseudo area means, 
ri i r rix u   ; 1,..., ;r R 1,...,i m , using 

the same covariates as in the original sample. 

Step 3. For each pseudo population of area means, generate J  parametric 

bootstrap samples,
rij ri rij i r ri rijy e x u e      ; 1,..., ,j J 1,..., ,r R 1,...,i m .  

Step 4. For each bootstrap sample, estimate 2ˆ ˆ,rj urj   and compute the FH predictor,

ˆ ˆˆ ˆ(1 )rij rij rij rij i rjy x      ; 
2 2 2 1ˆ ˆ ˆ( )

irij urj urj D      . 

Step 5. Approximate the DMSE of the FH predictor ˆ ˆˆ ˆ(1 )ri ri ri ri i ry x      ; 

2 2 2 1ˆ ˆ ˆ( )
iri ur ur D       by                             

                                             2

1

1ˆ ˆ( ) ( )
J

ri ri rij rij
DMSE

J
  


  .                           (5.15)  

Step 6. Search for a function ,
ˆˆ( ) ( )

ll q ri riq DMSE    of known predictors, which best 

predicts ˆ( )ri riDMSE  (Eq. 5.15), among plausible functions ( )lq  . (See Section 6.2.) 

Step 7. Apply the chosen function to the original sample to obtain an estimator of the 

DMSE of the FH predictor defined in (2.8).  

Pfeffermann and Ben-Hur (2018) designed several simulation studies comparing their 

proposed method to other DMSE estimators proposed in the literature. 

6. SIMULATION STUDIES 

6.1 Simulation setup and results for MSE estimation under the model  

In order to assess and compare the performance of the model dependent MSE 

estimators considered in Sections 4 and 5, we conducted a Monte Carlo simulation 

study, designed as follows: 
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We generated a large number Q  of sets of true population means and corresponding 

direct estimators ( ) ( ){( , , 1,..., , 1,..., }q q

i iθ y i m q Q  , by use of the FH model (2.1). 

Following Datta, Rao and Smith (2005, hereafter DRS), we used for convenience a 

model with no auxiliary variables, such that x 0i     (but assumed unknown and 

hence estimated for each set of samples). We considered a total of 15m   areas, 

divided into 5 groups of 3 areas in each group, with different sampling error variances 

2

iD  in different groups. The sampling error variances are 

2 ( ) {2.0,0.6,0.5,0.4,0.2}D g  , 1,...,5g  , and the variance of the random effects is 

2 1u  , same as under Pattern  b  in DRS. Since the three areas in each group are 

exchangeable, the results reported in Section 6.2 are averages over the three areas 

in each group. 

We consider 3 combinations of distributions for the random effects, 
iu , and the 

sampling errors, 
ie : i- both sets of error terms are generated from normal distributions; 

ii- the sampling errors are generated from normal distributions but the random effects 

from a location exponential distribution; iii- both sets of error terms are sampled from 

location exponential distributions. The location exponential distributions were set such 

that the variances are the same as the variances of the corresponding normal 

distributions; ( 1,1)E   for the random effects and 
2[ ( ), ( )]D DE g g   for the sampling 

errors. The second and third combinations of distributions are considered in order to 

study the robustness of the various MSE estimators to deviations from the normality 

assumptions underlying the original FH model.  

We started by generating Q = 50,000  sets of true area means and direct estimators 

for each of the three cases i-iii, and computed the EBLUP, using 2ˆ
PR  and 2ˆ

FH  for 

estimating 2

u . This enabled us to approximate the true MSE of the corresponding two 

EBLUP predictors.  

Next, for each of the three combinations of model error distributions and for each of 

the MSE estimators we generated Q new sets of direct estimators and used them to 

compute the MSE estimators and their relative bias. We generated 2,000Q   sets for 
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the parametric bootstrap MSE estimators (Eqs. 4.3, 4.5 and 5.10), and 10,000Q  for 

the other estimators. 

Tables 1-3 show the true MSEs and the percent bias of the MSE estimators, separately 

for each of the sampling variances 
2 ( )D g  and the 3 combinations of the model error 

distributions defined above. The results refer to the following estimators: Prasad-Rao 

MSE estimator (Eq. 5.2), the DRS estimator (Eq. 5.3), the Jackknife estimator (Eq. 

5.7), the Nonparametric Bootstrap estimator (Eq. 4.9) and the three bootstrap 

estimators- th parametric נootstrap estimator Eq. (4.3) (adding twice Eq. (4.4) when 

sampling from the exponential distributions), the Double bootstrap estimator Eq. (5.10) 

and the first stage bootstrap estimator Eq. (5.8). The simulation results of the 

alternative parametric bootstrap estimator Eq. (4.5) are not presented as they are very 

similar to the results of the parametric bootstrap estimator Eq. (4.3). 

For the parametric bootstrap estimator and the first stage bootstrap estimator we used

500B   replications. For the Double parametric bootstrap estimator, we used 

1 250B   and 
2 1B   replications. (See Remark 14). Note that the total number of 

replications of the double bootstrap estimator is 500, similarly to the other two 

bootstrap estimators. All the estimators defined above are presented separately when  

estimating 2

u  by 2ˆ
PR  and when estimating 2

u  by 2ˆ
FH .  

We used the correction 
2 2ˆ max( ,0)PR PR   for negative estimates in Eq. (3.1). We 

didn't face negative variance estimators for 2ˆ
FH , because the iterative algorithm we 

used produced positive estimators for positive starting values. When the error terms 

are drawn from the exponential distributions, we show the results obtained for the 

three bootstrap-based estimators both when the error terms are drawn from the normal 

distribution and when they are drawn from the correct distributions.  

Tables 1-3 show the true MSEs and the percent bias of the various MSE estimators, 

separately for each of the sampling variances 2 ( )D g  and the 3 combinations of the 

model error distributions defined before. Tables 4-6 show the corresponding percent 

root MSE (RMSE) of the MSE estimators.  

Table 1 shows the results for the case where the distributions of the two error terms 

are normal. As can be seen, in this case the biases are low, except for the Taylor 
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estimator with 2 2ˆ ˆ
u PR  , where the bias increases quite drastically as the sampling 

variance decreases, similarly to the results in DRS. All the estimators, except the 

nonparametric bootstrap estimator NPB and the double bootstrap estimator DPB have 

generally a smaller bias for the case where 2 2ˆ ˆ
u FH   than for the case where 

2 2ˆ ˆ ,u PR  particularly for the smaller variances 2 ( )D g . The estimator DPB has 

generally the smallest bias, with NPB and JK-ACL coming next. The parametric 

bootstrap estimator PB performs likewise well when 2 2ˆ ˆ
u FH  , but less so when 

2 2ˆ ˆ
u PR  . As expected, the first stage bootstrap estimator, 

1BPmse  has a relatively 

large negative bias in all the cases. This estimator has bias of order (1 / )O m . 

Table 2 shows the results obtained when the sampling errors are sampled from normal 

distributions, but the random effects are sampled from the location exponential 

distribution. The results of the parametric bootstrap estimators under the correct 

model, i.e., when generating the bootstrap samples by drawing from the correct 

distribution of the random effects are labled by E. The results when the random effects 

are wrongly assumed to be generated from the normal distribution are labled by N.  

The results in Table 2 reveal that all the estimators, except for the Taylor based 

estimator with 2 2ˆ ˆ
u PR   perform relatively well in this case as well, despite the non-

normality of the random effects, although the biases are generally higher than in Table 

1, where the random effects are generated from the normal distribution. The large 

biases observed for the Taylor based estimator with 2 2ˆ ˆ
u PR   are somewhat 

surprising in view of the theoretical results of Lahiri and Rao (1995) (see Remark 10), 

but notice that in the present experiment we only consider 15 areas. When 2 2ˆ ˆ
u PR  , 

The estimator DPB E performs best, but the estimator DPB N has relative large biases 

of 5-6%. The estimator JK-ACL generally performs well, but it has a relatively large 

bias of 6.7% when 2 ( ) 0.2D g   (smallest sampling error variance). When 2 2ˆ ˆ
u FH  , 

JK-ACL performs overall the best. The estimator DPB N performs well except for the 

case of 2 ( ) 2D g   where the bias is -6% but surprisingly, the estimator DPB E which 

draws the random effects from the correct distribution performs less satisfactorily. The 

NPB estimator performs somewhat better with 2 2ˆ ˆ
u PR   than with 2 2ˆ ˆ

u FH  . The PB 
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estimator performs very well with 2 2ˆ ˆ
u FH   (better than DPB E), except when

2 ( ) 2D g  , in which case it has a bias of -5.4%. As in Table 1, the estimator 
1PBmse  

has large negative biases, much larger in absolute values than all the other estimators. 

Table 3 shows the results obtained for the case where both the random effects and 

the sampling errors are generated from the location exponential distributions. The 

relative biases in this table are much larger than in Tables 1 and 2, except in the case 

of PB E and DPB E, which use the correct distributions for generating the bootstrap 

samples. For 2ˆ
FH , the estimators JK-ACL, NPB and to a lesser extent also Taylor, 

also perform relatively well, except in the case 2 ( ) 2D g  . Interestingly, for 2ˆ
FH , the 

PB estimator performs somewhat better than DPB E and the estimator 
1PBmse E has 

smaller percent biases than some of the other estimators, about -11%. (-8.4% when 

2 ( ) 0.2D g  ). Thus, at least for a small number of areas as in the present experiment, 

all the other methods are sensitive to the deviation from normality of the sampling error 

distribution.  

Table 1. True MSE of EBLUP and Percent Relative Bias of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3) (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.3) (PB), Double 

Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, model errors 

generated from normal distributions. 

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 78.3 43.7 38.8 33.4 19.9 76.9 42.1 37.0 31.6 18.1 

Taylor -0.7 6.8 9.3 12.5 34.5 -2.4 -0.8 0.3 0.4 2.7 

JK-ACL  -3.2 -2.0 -1.2 -0.4 4.7 -1.6 -1.6 -0.7 -0.6 0.3 

NPB -0.7 -1.6 -1.3 -1.8 -0.3 1.4 0.6 1.7 1.4 2.5 

PB -2.9 -3.7 -3.1 -2.9 -1.3 -0.9 -1.1 -0.2 -0.3 0.7 

DPB -0.6 -1.2 -0.2 -0.7 0.6 -0.9 -0.1 -0.4 -0.7 0.5 

1PBmse  -8.5 -11.0 -10.2 -10.1 -7.9 -5.7 -7.0 -6.2 -6.3 -4.6 
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Table 2. True MSE of EBLUP and Percent Relative Bias of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3) (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.3*) (PB), 

Double Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, 

Random Effects generated from location exponential distribution, Sampling Errors 

generated from normal distribution. Parametric Bootstrap samples generated from the 

true random effect distribution (E) and from a normal distribution (N).  

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5   0.4 0.2 

100* MSE 74.2 40.7 36.9 31.6 19.4 74.7 39.4 35.1  29.9 17.3 

Taylor 0.4 14.6 17.2 24.9 69.4 -6.0 0.0 0.5   2.0 8.6 

JK-ACL -0.1 1.7 0.8 2.3 6.7 -0.7 2.2 2.2   2.6 3.6 

NPB 3.1 2.5 1.2 2.2 2.1 1.5 4.3 4.2   4.6 5.5 

PB  -4.2 -4.3 -5.4 -4.6 -4.9 -5.4 -1.9 -1.9   -1.3 0.1 

DPB N -6.0 -5.4 -6.4 -5.8 -5.3 -6.0 -1.8 -2.8   -1.8 -0.5 

1PBmse   -8.5 -10.0 -11.1 -10.4 -10.2 -9.0 -7.0 -7.1   -6.5 -5.0 

PB  -3.6 -4.7 -5.8 -4.8 -4.8 -6.1 -3.3 -3.3   -2.6 -0.7 

DPB E 0.1 0.3 -2.2 -0.9 -1.9 -5.5 -3.0 -4.4   -3.4 -1.6 

1PBmse   -12.9 -16 -17.2 -15.9 -14.6 -14.1 -13 -12  -13 -9.3 

 

* Added twice Eq. (4.4) to Eq. (4.3) 
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Table 3. True MSE of EBLUP and Percent Relative Bias of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3) (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.3*) (PB), 

Double Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, 

Random Effects and Sampling Errors generated from location exponential 

distributions. Parametric Bootstrap samples generated from the true random effect 

distribution (E) and from a normal distribution (N). 

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 92.7 45.4 40.3 34.7 20.8 89.9 43.1 38.1 32.2 18.1 

Taylor -22.1 2.8 8.9 18.0 80.5 -23.1 -10.4 -9.1 -6.7 5.0 

JK-ACL -21.3 -11.9 -10.7 -9.6 -0.3 -17.5 -8.1 -7.7 -6.4 -1.9 

NPB -20.4 -12.8 -12.0 -11.5 -9.1 -15.8 -5.6 -5.1 -4.0 0.5 

PB  -26.6 -19.1 -18.4 -18.0 -15.9 -23.7 -13.6 13.0 -11.7 -6.9 

DPB N -28.8 -20.8 -19.5 -18.4 -16.6 -25.3 -14.3 13.3 -12.2 -7.2 

1PBmse   -29.1 -22.9 -22.3 -22.1 -19.7 -26.6 -17.7 -17 -16 -11.2 

PB  -7.9 -8.1 -8.1 -8.3 -6.8 -4.2 -1.6 -1.9 -1.5 0.8 

DPB E -8.1 -9.1 -8.0 -7.3 -6.3 -8.1 -3.5 -3.7 -4.8 -1.1 

1PBmse   -14.6 -17.8 -17.7 -17.9 -16 -11.6 -11.2 11.4 -11.1 -8.4 

 

* Added twice Eq. (4.4) to Eq. (4.3) 

Tables 4-6 show the percent Root MSE (RMSE) of the MSE estimators, under the 

three combinations of the distributions of the random effects and the sampling errors.  
 

For the case where both distributions are normal (Table 4), the estimator DPB has the 

lowest RMSE, but for 2 ( ) 0.6,0.5,0.4D g  , the RMSEs of all the estimators, including 

DPB and 
1PBmse  are of similar magnitude of between 20 to 25 percent. When 

2 ( ) 2D g  , the RMSE of the DPB estimator is about 40.3% and the RMSE of all the 

other estimators are in the range of  46 to 57 percent. When 2 ( ) 0.2D g  , all the 

RMSEs including the DPB are in the range of 30-35 percent (30 to 31 percent when 

2 2ˆ ˆ
u FH  ). We also note that unlike in the case of the relative biases, the RMSEs of 

all the estimators are generally similar when estimating 
2 2ˆ ˆ
u PR   and 

2 2ˆ ˆ
u FH  . 
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Similar relative performance patterns are found in the case where the sampling errors 

have a normal distribution but the random effects are generated from the location 

exponential distribution (Table 5), and in the case where the two errors are generated 

from the location exponential distribution (Table 6). Note first that the RMSEs in Table 

5 are of similar magnitude to the RMSEs in Table 4, but they are larger in Table 6. 

Thus, generating the sampling errors from the exponential distribution increases the 

RMSE of the MSE estimators. The estimator DPB has again the lowest RMSEs and 

1PBmse  also performs relatively well in both the tables. The RMSEs of DPB N are 

similar to the RMSEs of DPB E in Table 5, but much smaller in Table 6 when 

2 ( ) 2.D g    

Table 4. True MSE of EBLUP and Percent Root MSE of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3), (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.3*) (PB), 

Double Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, errors 

generated from normal distributions. 

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 78.3 43.7 38.8 33.4 19.9 76.9 42.1 37.0 31.6 18.1 

Taylor 50.1 20.1 19.7 21.3 34.5 48.4 21.3 21.0 22.1 29.9 

JK-ACL  53.0 23.3 22.7 23.8 32.1 50.5 22.2 21.7 22.8 30.4 

NPB 54.9 24.4 23.5 24.0 30.5 57.3 25.9 24.8 24.8 30.7 

PB 51.6 23.5 23.0 23.8 30.6 49.6 22.0 21.6 22.7 30.3 

DPB 40.2 19.5 19.9 21.7 30.0 40.4 19.7 20.1 21.9 30.2 

1PBmse  
46.6 23.0 23.2 24.5 31.5 46.0 21.9 22.1 23.6 31.0 
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Table 5. True MSE of EBLUP and Percent Root MSE of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3) (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.3*) (PB), 

Double Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, 

Random Effects generated from location exponential distribution, Sampling Errors 

generated from normal distribution. Parametric Bootstrap samples taken from the true 

random effect distribution (E) and from a normal distribution (N).  

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 74.2 40.7 36.9 31.6 19.4 74.7 39.4 35.1 29.9 17.3 

Taylor 52.4 19.6 18.9 20.6 37.9 51.2 22.2 21.4 21.9 28.1 

JK-ACL 59.9 25.1 23.7 23.7 30.6 58.7 24.2 23.0 23.0 29.0 

NPB 61.1 26.4 24.7 24.1 28.6 65.3 28.9 26.9 25.9 29.7 

PB  53.8 24.7 23.8 24.0 29.3 52.0 23.3 22.6 23.2 29.4 

DPB N 34.7 18.5 19.3 21.3 28.8 37.0 19.4 20.0 21.7 29.2 

PBmse  
 48.6 23.3 23.1 23.9 29.9 48.8 22.9 22.7 23.7 30.0 

PB  55.0 25.0 24.0 24.1 29.3 52.1 23.7 23.0 23.5 29.6 

DPB E 38.6 18.4 18.9 20.5 28.3 37.0 19.3 20.1 21.9 29.4 

PBmse  
 46.7 23.4 23.4 24.4 30.3 45.2 23.1 23.2 24.5 30.6 

 

* Added twice Eq. (4.4) to Eq. (4.3)   
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Table 6. True MSE of EBLUP and Percent Root MSE of MSE estimators based on 

Taylor approximations Eqs. (5.2, 5.3) (Taylor), Jackknife Eq. (5.7) (JK-ACL), 

Nonparametric Bootstrap Eq. (4.9) (NPB), Parametric Bootstrap Eq. (4.5*) (PB), 

Double Parametric Bootstrap Eq. (5.10) (DPB) and 
1PBmse  Eq. (5.8). 15 Areas, 

Random Effects and Sampling Errors generated from location exponential 

distributions. Parametric Bootstrap samples taken from the true random effect 

distribution (E) and from a normal distribution (N). 

 2 2ˆ ˆ
u PR    

2 2ˆ ˆ
u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 92.7 45.4 40.3 34.7 20.8 89.9 43.1 38.1 32.2 18.1 

Taylor 52.6 24.7 25.0 27.3 45.4 52.0 27.7 27.8 28.9 35.1 

JK-ACL 65.3 31.9 31.4 32.2 39.7 63.3 29.9 29.3 30.1 36.3 

NPB 63.0 33.2 32.5 32.9 37.9 68.9 34.1 32.8 32.6 37.0 

PB  55.4 32.2 32.3 33.2 38.8 53.0 29.4 29.5 30.7 36.9 

DPB N 31.6 26.8 28.4 30.7 38.3 33.5 25.4 26.8 29.1 36.7 

PBmse   50.4 31.2 31.7 33.1 39.1 49.6 29.2 29.7 31.1 37.5 

PB  63.6 30.9 30.6 31.5 37.4 63.8 28.2 27.9 28.9 35.9 

DPB E 45.9 25.1 26.4 28.5 36.6 45.6 24.5 25.5 27.9 35.9 

PBmse   54.6 29.8 30.6 32.2 38.6 56.0 27.9 28.4 30.0 37.0 

 

* Added twice Eq. (4.4) to Eq. (4.3) 

6.2 Simulation setup and results for design-based MSE estimation  

In Section 5.4, we considered the estimation of the design-based MSE of the FH 

model-dependent EBLUP. We conducted a second simulation study in order to assess 

the performance of the following three estimators: the approximately unbiased 

estimator ˆAUB

i  (Eq. 5.14) based on L=10,000 simulations; the average of the 

estimators (5.15) over L=500 simulations, denoted ( )Av DMSE ; the estimator 

proposed by Pfeffermann and Ben-Hur (2018), denoted P BDMSE  . We used L=500, 

R=100, J=250 for the computation of the third estimator. See Section 5.4 for the 

definitions of R and J.   
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Following Pfeffermann and Ben-Hur (2018), we chose the function ,
ˆˆ( ) ( )

ll q ri riq DMSE    

(Step 6) among linear regression functions by  combination of stepwise regression 

and cross validation techniques, with the following plausible predictors,

2 2 2 2 2 2ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,(1 ) , ,( ) ,( )
ir u r D ri ri ri ri ri r ri ry              and dependent variables, 

 , log( ), arcsin /100 , 1 , , 1i i i i i iD D D D D D ; denoting ˆ( )ri riDMSE   by 
iD . 

The model, number of areas, the distributions of the random effects and the sampling 

errors are the same as in Section 6.1, estimating 
2

u  by 
2ˆ
PR  and 

2ˆ
FH . The true 

design-based MSEs have been computed based on L=50,000 simulated values of true 

area means and corresponding sample estimators. The selection of the function ( )lq   

has been applied for each distribution of the random effects and the sampling errors.   

Tables 7-9 present the results obtained for the three distributions of the random effects 

and the sampling errors. We used the neighbourhoods 
2( 2,2), (0.1,2)u     for the 

computation of the means 
ri riu    and the direct estimators  

rij ri rij ri rijy e u e       . (Steps 2 and 3, See Section 5.4). 

REMARK 15. The results in Tables 7-9 are averages over M=10 finite populations. In 

our simulation studies, we only consider 15 areas, and the true area means are ,i iθ u

such that it suffices that a small number of the random effects take extreme values to 

destabilise the results. 

Table 7. True DMSE of EBLUP and Percent Relative Bias of the following MSE 

estimators: the approximately unbiased estimator ˆAUB

i  (Eq. 5.14), the average 

estimator ( )Av DMSE (average of estimators 5.15) and the proposed estimator 

P BDMSE 
. 15 areas, random effects and sampling errors generated from normal 

distributions. 

 2 2ˆ ˆ
u PR    2 2ˆ ˆ

u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE   70.7 38.0 36.9 31.6 19.3 69.3 37.3 35.4 30.3 18.0 

ˆAUB

i  
-4.6 -3.9 -3.4 -2.8 -2.2 -4.1 -3.2 -2.9 -2.7 -2.4 

AvDMSE  -6.1 -5.0 -3.9 -3.3 -2.8 -5.2 -3.9 -2.5 -1.9 -1.7 

P BDMSE 
 -5.9 -4.0 -3.7 -3.6 -1.6 -5.3 -2.7 -2.8 -3.3 -1.2 
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Table 8. True DMSE of EBLUP and Percent Relative Bias of Percent Relative Bias of 

the following MSE estimators: the approximately unbiased estimator ˆAUB

i  (Eq. 5.14), 

the average estimator ( )Av DMSE (average of estimators 5.15) and the proposed 

estimator 
P BDMSE 

. 15 areas, random effects generated from location exponential 

distribution, sampling errors generated from normal distributions. 

 2 2ˆ ˆ
u PR    2 2ˆ ˆ

u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 71.3 38.4 33.7 28.4 19.0 71.4 37.1 32.7 27.6 17.4 

ˆAUB

i  
-9.2 -8.4 -7.3 -6.5 -6.2 -8.8 -6.9 -5.0 -5.7 -4.8 

riAvDMSE
 

-10.3 -8.9 -8.1 -6.9 -6.1 -10.1 -7.7 -7.3 -6.1 -2.6 

P BDMSE 
 -9.8 -8.1 -7.5 -6.3 -5.2 -9.3 -7.5 -7.1 -4.9 -3.1 

 
 
Table 9. True DMSE of EBLUP and Percent Relative Bias of Percent Relative Bias of 

the following MSE estimators: the approximately unbiased estimator ˆ
AUB

i  (Eq. 5.14), 

the average estimator ( )Av DMSE (average of estimators 5.15) and the proposed 

estimator 
P BDMSE 

. 15 areas, random effects and sampling errors generated location 

exponential distributions.  

  2 2ˆ ˆ
u PR    2 2ˆ ˆ

u FH   

𝜎𝐷
2(𝑔) 2.0 0.6 0.5 0.4 0.2 2.0 0.6 0.5 0.4 0.2 

100* MSE 90.8 41.9 35.6 29.7 20.2 87.5 40.6 34.6 29.1 18.1 

ˆAUB

i  
-13.7 -12.7 -12.5 -12.1 -11.4 -12.9 -11.8 -11.4 -10.2 -10.4 

AvDMSE  -13.4 -12.6 -12.2 -12.5 -11.6 -7.1 -9.1 -7.5 -8.6 -7.1 

P BDMSE 
 -11.9 -10.4 -9.5 -11.2 -8.8 -6.1 -7.5 -5.8 -6.4 -5.7 

 
The first noteworthy outcome emerging from Tables 7-9 is that the True DMSEs are 

systematically  somewhat lower than the corresponding true MSEs in Tables 1-3 under 

the model, except for the case where 2 2ˆ ˆ
u FH   and 𝜎𝐷

2(𝑔) = 0.2. This outcome can  

be explained by the fact that the MSEs under the model account also for the 

distribution of the random effects, which are held fixed under the design-based 

approach. All the three estimators in Tables 7-9 have a negative bias, with the absolute 

biases being less than 6% in Table 7, less than 10% in Table 8, and less than 14% in 
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Table 9. The three estimators perform quite similarly in Tables 7 and 8, but the 

proposed estimator 
P BDMSE 

 dominates the other two estimators in Table 9, when 

both the random effects and the sampling errors are generated from location 

exponential distributions. Notice the relative good performance of the approximately 

unbiased estimator ˆ
AUB

i  in Tables 7 and 8.  

We conclude from this simulation study that it is possible to estimate the design-based 

MSE of model dependent estimators. See Pfeffermann and Ben-Hur (2018) for the 

performance of the proposed estimator in the case of the unit-level generalised linear 

mixed model. 

7. SUMMARY REMARKS  

In this article, we compare a large number of methods for estimating the MSE of the 

EBLUP under the Fay-Herriot model. The first important result of this study is that the 

EBLUP that uses the estimator 2ˆ
FH  for estimating the variance of the random effects 

has somewhat lower true MSEs than the EBLUP that uses the estimator 2ˆ
PR , although 

not by much, (compare the true MSEs in the various tables). On the other hand, no 

single method of MSE estimation dominates all the other methods in terms of bias and 

RMSE (of the MSE estimators).  

In what follows we restrict to the MSE estimators under the model. When generating 

the error terms from the correct distributions, the double bootstrap estimator DPB has 

generally the lowest bias and RMSE. The Jackknife estimator JK-ACL and the 

nonparametric estimator NPB have generally small biases when the sampling errors 

have a normal distribution, but the biases increase in the case where they are 

generated from the location exponential distribution, as is the case with all the other 

estimators. The parametric bootstrap estimator PB has larger biases than the previous 

two estimators in all the cases when 2 2ˆ ˆ
u PR  , but similar biases when 2 2ˆ ˆ

u FH   and 

the sampling errors are generated from normal distributions, except in the case where 

𝜎𝐷
2(𝑔) = 2. When the two error terms are generated from the location exponential 

distribution and 2 2ˆ ˆ
u FH  , the PB estimator performs somewhat better than the DPB 

estimator. The Taylor based estimators perform well in terms of bias when 2 2ˆ ˆ
u FH  , 
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but not in the case where 2 2ˆ ˆ
u PR  . However, the RMSEs of the MSE estimators are 

in most cases quite similar with the two variance estimators.  

We emphasize again that our results are restricted to 15 small areas. Most of the 

published studies on the estimation of the MSE of the EBLUP in SAE focus on the 

bias of the MSE estimators. Clearly, the bias is the dominant contributor to the MSE 

when the number of areas is large, but not when it is small, as in the present study. 

We recognize that analytical comparisons of the MSE of MSE estimators to the right 

order is complicated, but this fundamental property of MSE estimators should be 

explored empirically. As our results indicate, a MSE estimator with negligible bias may 

actually have a larger variance and hence a larger MSE than another estimator with a 

large bias.  

The present article explores the effect of deviations from normality of the distributions 

of the model error terms on the performance of the MSE estimators. All the methods, 

except for PB and DPB when based on the correct distribution of the sampling errors, 

and to a lesser extent also the JK-ACL, NPB and Taylor methods with 2 2ˆ ˆ
u FH   and 

2 ( ) 2D g  , yield estimators with large bias when the distribution of the sampling errors 

in non-normal. Clearly, the use of bootstrap estimators based on the correct 

distribution of the sampling errors requires identifying this distribution, which is not 

always simple, especially with small number of areas. The JK-ACL, NPB and the 

Taylor estimator with 2 2ˆ ˆ
u FH   seem to be more robust to deviations from normality 

of the sampling errors. 

Finally, in the present article we also study the performance of three plausible 

estimators of the design-based MSE. All the estimators perform well when the error 

terms are generated from normal distributions, but our propose estimator 
P BDMSE 

 

performs better than the other two estimators when the sampling errors are generated 

from the location exponential distribution. Studying the performance of the three 

estimators and possibly other estimators proposed in the literature for estimating the 

design-based MSE, including for areas with no samples, when the distributions of the 

error terms are different from normal but normality is assumed, has to investigated 

further.   
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