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Abstract: If part of a population is hidden but two or more sources are available that
each cover parts of this population, dual- or multiple-system(s) estimation can be applied
to estimate this population. For this it is common to use the log-linear model, estimated
with maximum likelihood. These maximum likelihood estimates are based on a non-linear
model and therefore suffer from finite-sample bias, which can be substantial in case of
small samples or a small population size. This problem was recognised by Chapman, who
derived an estimator with good small sample properties in case of two available sources.
However, he did not derive an estimator for more than two sources. We propose an esti-
mator that is an extension of Chapman’s estimator to three or more sources and compare
this estimator with other bias-reduced estimators in a simulation study. The proposed es-
timator performs well, and much better than the other estimators. A real data example on
homelessness in the Netherlands shows that our proposed model can make a substantial
difference.

Keywords: Finite sample bias, Log-linear model, Multiple-systems estimation, Chap-
man estimator

1 Introduction

A well-known statistical problem concerns the estimation of the size of a population that
is only partly observed by different sources. By linking the records in the sources the num-
ber of units observed by at least one source is found, but the number of units that are
missed by all sources is unknown. The standard method to estimate this hidden num-
ber is known as dual-system estimation (DSE) for two lists and multiple-systems esti-
mation (MSE) for more than two lists. Other names found in the literature are capture-
recapture, mark-recapture, multiple-recapture and multiple-record systems estimation. A litera-
ture overview is provided by Chao (2001), who discusses these models in the context of
human populations.

DSE leans on a set of assumptions extensively described by, for example, Wolter (1986)
and Zhang (2019). The International Working Group for Disease Monitoring and Forecast-
ing (1995) summarize them as:

1. There is no change in the population during the investigation (the population is
closed).

2. There is no loss of tags (individuals can be linked from capture to recapture).

3. For each sample, each individual has the same chance of being included in the sam-
ple.
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4. The two samples are independent.

Earlier Seber (1982) and later Chao et al. (2001) and van der Heijden et al. (2012) showed
that assumption 3 can be further relaxed, i.e., it is sufficient that each individual has the
same chance of being included in only one of the samples, instead of both samples. In
MSE, samples are allowed to be dependent, and in practical situations this makes MSE
much more realistic than DSE.

Under the appropriate assumptions and conditions, a maximum likelihood (ML) es-
timator can be derived for the hidden and total population size. However, in finite sam-
ples these ML-estimators are mean-biased (see e.g. Bailey, 1951; Chapman, 1951; Rivest
& Lévesque, 2001). This mean-bias can be shown for the ML-estimators directly, but also
follows more generally from the fact that these estimators make use of a hierarchical log-
linear model (Fienberg, 1972), which provides median-unbiased, but not mean-unbiased
estimates (see e.g. Hald, 1952, chap. 7, or Miller, 1984). This finite-sample mean-bias (from
now on referred to as finite-sample bias or simply bias) can be substantial in case of small
samples (Long, 1997, p. 53-54; Rainey & McCaskey, 2021).

The role of finite-sample bias in the discussion on the robustness and accuracy of MSE
estimators is generally small. The focus is usually on other issues that lead to inaccurate
estimates, such as failing model assumptions (see e.g. Gerritse, van der Heijden, & Bakker,
1993; Zult, De Wolf, Bakker, & Van der Heijden, 2021) or model selection uncertainty (see
e.g. Binette & Steorts, 2022; Silverman, 2020). While it is true that these issues can poten-
tially lead to large estimation bias, it is not clear how these issues are affected by finite-
sample bias, simply because it is usually ignored. This is unfortunate, because correcting
for finite-sample bias comes at almost no costs to researchers (Rainey & McCaskey, 2021),
while, as we will see, its impact can be substantial and therefore may affect conclusions.

The first to address the problem of finite-sample bias in DSE were Chapman (1951) and
Bailey (1951). To reduce bias, they both proposed their own bias-reduced DSE estimator.
Chapman showed that his estimator is essentially unbiased (Chapman, 1951, p. 145) and
it became the most well-known of the two. Neither the Chapman nor Bailey estimator was
extended towards MSE. The main contribution of this paper is the proposal of a Chapman
MSE-estimator.

Our proposed Chapman MSE-estimator is not the first estimator that aims to reduce
bias in the ML-estimator. Evans and Bonett (1994) and Rivest and Lévesque (2001) pro-
posed population size estimators with the same goal. Others, such as Cordeiro and Mc-
Cullagh (1991), Firth (1993) and Kosmidis and Firth (2021); Kosmidis, Kenne Pagui, and
Sartori (2020), proposed bias-reduction methods for ML-estimators in log-linear models
in general, which can be used in the context of MSE. In this paper we will compare the
performance of these bias-reduced MSE estimators with our Chapman MSE-estimator in
simulation studies.

The paper is structured as follows. Section 2 discusses DSE and bias in DSE estimators.
Section 3 discusses MSE and a derivation of the new Chapman MSE-estimator for saturated
log-linear models, i.e., log-linear models where the number of independent parameters
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equals the number of counts. In Section 3.3 this new estimator is generalised towards a
Chapman MSE-estimator that is also valid for restricted log-linear models. In Section 4 the
new Chapman MSE-estimator is used to estimate the number of homeless people in The
Netherlands. Section 5 discusses and concludes.

2 Dual-system estimation

This section discusses DSE. We first introduce notation, then Section 2.1 proceeds with the
Lincoln-Peterson estimator and the log-linear model. Section 2.2 discusses the different
distributional assumptions that underlie DSE and some of their implications. Section 2.3
introduces the problem of mean-bias and gives the bias-reduced DSE estimators proposed
by Chapman (1951) and Bailey (1951). This section also presents an alternative interpreta-
tion of the derivation of the Chapman-estimator that has the advantage that it allows the
Chapman-estimator to be easily extended towards a similar estimator for multiple sources
(which we will do in Section 3). Finally, in Section 2.4, bias-reduced DSE estimators are
compared in a simple simulation study.

A description of the DSE problem starts from a population that consists of N unique
units that are partly observed by two sources A and B, where the units are matched be-
tween sources. Each source is a random sample from the population, so in general not all
N units are observed. Each unit has an inclusion pattern that tells us in which source(s)
a unit was observed. This inclusion pattern is denoted as ab with a, b = 1, 0, where a = 1

stands for ’in the first source’ and a = 0 for ’not in the first source’, and the same with b for the
second source. This implies that the inclusion pattern 00 belongs to the unobserved units.

DSE uses the frequencies of occurrence of each inclusion pattern, which are simply the
counts of the units with identical inclusion patterns. These counts are denoted as nab. A
vector of the observed counts is denoted as n, excluding the unobserved count n00 that
is unknown and to be estimated. When we sum over a or b, we replace that subscript by
’+’. Thus n10 + n11 = n1+ is equal to the size of the first source, and n+1 to the size of
the second source. The total number of observed units is denoted as n, which allows us to
write N = n+n00. nab is considered a random variable with expectation mab. Estimates for
N , mab and m00 are denoted by N̂ est, m̂est

ab and m̂est
00 , where the superscript ’est’ indicates the

estimator that was used. These bias-reduced estimators can be obtained by using adjusted
counts, that we denote as nest

ab or nest.

2.1 The Lincoln-Petersen estimator and the log-linear model

The first DSE model for population size estimation was proposed by Petersen (1896), and
later Lincoln (1930). It is often referred to as the Lincoln-Petersen (LP) estimator. The LP-
estimator can be derived from the assumption of independence between source A and B,
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which implies that the odds-ratio between source A and B, denoted by θAB , is

θAB =
m11/m10

m01/m00
= 1, (1)

which leads to

m00 =
m10m01

m11
. (2)

By plugging in ML estimates for mab, which are simply the observed values nLP
ab = nab (see

e.g., Bishop, Fienberg, & Holland, 1975), the LP-estimator for the missing cell is

m̂LP
00 =

nLP
10n

LP
01

nLP
11

=
n10n01

n11
, (3)

and the population size estimate

N̂LP = n+ m̂LP
00 =

n1+n+1

n11
. (4)

The LP-estimator for the missing cell and for the population size are ML estimators.
Fienberg (1972) shows that the LP-estimator can also be obtained from log-linear pa-

rameter estimates of the log-linear model

logE [n|X] = Xλ, (5)

with, for two sources, n = nLP = (n11, n01, n01)
⊤, X =

 1 1 1

1 1 0

1 0 1

 and λ =
(
λ, λA

a , λ
B
b

)⊤.

λ is the intercept term, and λA
a and λB

b are the respective inclusion parameters for source
A and B that are identified by setting λA

0 = λB
0 = 0. It is further assumed that Eq. (5) also

holds for m00. The parameters of a log-linear model are usually estimated with ML, which
for Eq. (5) gives the ML estimates λ̂ML, λ̂A,ML

a and λ̂B,ML
b , which can be used to estimate

m00, i.e.:

m̂ML
00 = exp λ̂ML, (6)

where m̂ML
00 is equal to m̂LP

00 . It is well known that ML-estimators for log-linear models are
biased (see e.g. Hald, 1952, chap. 7, or Miller, 1984), so this also holds for m̂LP

00 .

2.2 Distributional assumptions

Chapman (1951) and Bailey (1951) showed that the LP-estimator can be derived as an ML-
estimator, assuming that n11 and n01 conditional on n1+ and N , follow a hypergeometric
(Chapman) or binomial (Bailey) distribution. In the context of population size estimation,
a hypergeometric distribution seems more fitting, because it assumes sampling without re-
placement, which matches the ’no duplicates’ assumption (i) of Zhang (2019). Bailey(1951,
p. 294) was aware of this issue when he wrote ’We shall assume that n+1 is sufficiently
small compared with N for us to be able to ignore the complications of sampling without
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replacement’. However, later Darroch (1958) argued that this choice is less obvious. He
first showed that the LP-estimator can also be derived by assuming either

(n11, n10, n01, n00) ∼Multinomial (N, p11, p10, p01)

or

(n11, n10, n01, n00) ∼Hypergeometric (N, p11, p10, p01)

with pab = mab/N . Darroch (1958) discusses which of both distributions to any given
experiment is the appropriate choice. He concludes that they lead to the same estimate
N̂ of N and the same asymptotic estimate of Var(N̂), so the difference is notable only in
higher moments. He further states that ’In fact, if we had to generalize, we could say that
the hypergeometric is likely to be appropriate when the main limiting factor on sample size
is the trouble involved in marking animals and the multinomial when it is the difficulty
in catching them.’. This implies that, for instance, if a population is partly observed by
lists of records that contain unique record ID-codes, the multinomial seems to be the most
appropriate choice. Finally, Darroch concludes that the multinomial distribution is capable
of generalisations that the hypergeometric is unable to accommodate, an advantage that
we will use in this paper.

Later, Bishop et al. (1975, p. 446) showed that the assumption of a multinomial distri-
bution can be replaced by

nab ∼Poisson (mab) ,

with

n00 =N − n11 − n10 − n01,

without loss of generality. Both the multinomial and Poisson distribution have the prac-
tical advantage that they can deal with multiple sources more easily, but the Poisson dis-
tribution has a second advantage because it allows the simplification of some derivations
due to Cov (nab, n̸=ab) = 0 and Cov (1/nab, n̸=ab) = 0.

2.3 Bias reduction in dual-system estimation

Chapman (1951) and Bailey (1951) were the first to be aware of the bias in the LP-estimator.
This bias can be easily seen when we assume nab ∼ Poisson (mab) and write the expectation
of the LP-estimator as

E
[
m̂LP

00

]
= E

[
n10n01

n11

]
= m10m01E

[
1

n11

]
, (7)

which is not equal to m10m01
m11

because E
[

1
n11

]
̸= 1

m11
. This shows that under a Poisson

distribution, 1
n11

is the only source of bias in the LP-estimator.
Chapman and Bailey started with the hypergeometric and binomial distribution re-

spectively and used different approximation approaches of the expectation of the ML-
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estimator to derive their bias-reduced estimators. Bailey used a second-order Taylor series
approximation and concludes that

m̂
Bailey
00 =

n
Bailey
10 n

Bailey
01

n
Bailey
11

=
n10(n01 − 1)

(n11 + 1)
(8)

and

N̂Bailey =
n1+(n+1 + 1)

(n11 + 1)
. (9)

are biased reduced estimators for m00 and N respectively (Bailey, 1951, p. 295).
Chapman uses a different approach that is recommended by Stephan (1945). Instead

of a Taylor approximation, Stephan recommends writing E
[
1
x

]
, with x a binomial random

variable, as a series of inverse factorials, as one needs quite a few terms before a Taylor se-
ries becomes reasonably accurate (Stephan, 1945, p. 52). This increased rate of convergence
of Stephan’s inverse factorial approximation in case of E

[
1
x

]
and n11 ∼ Poisson(m11),

is illustrated with a straightforward simulation study presented in Appendix A. Chap-
man uses Stephan’s inverse factorial approximation to derive a bias-reduced expression
for n10n01

n11
and concludes that a bias-reduced estimator for m00 is

m̂
Chap
00 =

n
Chap
10 n

Chap
01

n
Chap
11

=
n10n01

(n11 + 1)
, (10)

and for N

N̂Chap =
(n1+ + 1)(n+1 + 1)

(n11 + 1)
− 1. (11)

A Bailey and Chapman estimate can also be obtained from the log-linear model in Eq.
(5), if instead of nLP = (n11, n01, n01)

⊤, respectively, nBailey = (n11 + 1, n01, n01 − 1)⊤ and
nChap = (n11 + 1, n01, n01)

⊤ are used.
The Chapman- and Bailey-estimator differ only slightly, but the Chapman-estimator

became the standard bias-reduced estimator in DSE literature. A reason could be that
Chapman (1951, p. 146) further shows that if n1+n+1

N > log
(
N
ϵ

)
holds,∣∣∣E [

N̂Chap
]
−N

∣∣∣ < ϵ

100
N,

with ϵ some arbitrary small positive number (Cramer, 1922, p. 502) also holds. This means
that if the two sources are large enough compared to N , the bias in N̂Chap is less than ϵ

percent of N and so Chapman refers to his estimator as ’essentially unbiased’. Therefore
we refer to the Chapman-estimator not only as a bias-reduced, but also as a bias-corrected
estimator. Chapman, (1951, p. 146) finally notes that the Chapman-estimator requires

n1+n+1

N
> logN, (12)

to hold. This inequality is derived from setting
∣∣∣E [

N̂Chap
]
−N

∣∣∣ ≤ 1 and can be consid-
ered a regularity condition for the Chapman-estimator. If this regularity condition is not
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met, N̂Chap may suffer from considerable (negative) bias, as we will illustrate later in the
simulation study in Table 1.

Chapman derived his estimator for the hypergeometric distribution, but it can also be
approximated with a second-order Taylor approximation for the multinomial and Poisson
distribution, which is derived in Appendix B. This derivation suggests that the Chapman-
estimator is also valid under a multinomial or Poisson distribution. This is useful when
we extend the Chapman-estimator to multiple sources in Section 3.2. Combining the
Chapman-estimator with the results in Appendix A and B imply that if nab ∼ Poisson(mab)

we can write

1

mab
≈ E

[
1

nab + 1

]
. (13)

This equation will allow us to easily extend the Chapman MSE-estimator towards multiple
sources in Section 3.2.

Bailey did not extend his estimator to more than two sources. Chapman (1952) did,
but he only considered the case where a unit was tagged in an earlier source or not, and
did not consider dependence between pairs of sources. Dependence between sources is
further discussed in Section 3.1. Others, like Cordeiro and McCullagh (1991), Firth (1993),
Evans and Bonett (1994), Rivest and Lévesque (2001), Kosmidis et al. (2020), have pro-
posed bias-reduced estimators for log-linear models in general and therefore do take de-
pendence between sources into account. These models are discussed in more detail in
Section 3.1.1. However, we will include these bias-reduced estimators in the simple DSE
simulation study presented in Section 2.4.

2.4 Dual-system estimation simulation study

In this section we compare the LP-, Bailey-, Cordeiro, Firth-, Kosmidis, Evans and Bonette
(EB)-, Rivest and Lévesque (RL)- and Chapman-estimator in a DSE setting. The LP-, Bailey-
and Chapman-estimator can only be used in DSE and were discussed in the previous sec-
tions. The Cordeiro, Firth-, Kosmidis, EB- and RL-estimator can be applied in both DSE
and MSE and will be discussed in Section 3.1.1. We use a Monte Carlo simulation study
to compare the different estimators. The method we use to generate contingency tables is
discussed in Hammond, van der Heijden, and Smith (2023). It allows us to start with a
log-linear model having prespecified inclusion probabilities pA and pB and odds ratio(s)
and generate contingency tables from this model. The resulting nab are generated from a
multinomial distribution. This is particularly useful in the next section in which we con-
sider more than two sources, and pairs of sources that are dependent.

A minor but important simulation issue is the regularity condition in Eq. (12), or the
issue of what (Otis, Burnham, White, & Anderson, 1978, p. 125) refer to as ’failures’. This
implies that the relation between n1+, n+1 and N must be set such that they comply to
Eq. (12). A simple example of a failure is when, in DSE, n11 equals zero, which leads to
N̂LP = ∞. Otis et al. (1978) recommend replacing such a replication with a new replica-
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tion, an advice that was followed in Evans and Bonett (1994). However, replacing failure
replications, that correspond to large population size estimates, with new population size
estimates, introduces selection bias in the sense that, when N̂ est is an unbiased estimator
for N , the mean of these estimates ¯̂

N est departs from N . Therefore, to obtain accurate mean
estimates that allow a fair comparison of bias between the different estimators, we choose
the combined N , pA and pB such that for scenario 1− 6 the probability of failures becomes
close to zero. Nonetheless a failure occurred once for scenario 1. These settings also imply
that the regularity condition in Eq. (12) holds by a substantial margin.

The scenario parameters are shown in the columns N, pA and pB of Table 1 below.
Scenarios 1 - 6 comply to Chapman’s regularity condition in Eq. (12). To see how esti-
mators are affected when this regularity condition is violated, we have added a 7th sce-
nario under which the regularity condition does not hold, i.e. n1+ = n+1 = 15, so
n1+n+1/N = 225/100 < log 100. The different estimators that are compared are shown
in the columns that follow. In the context of DSE some estimators are equivalent and their
results are displayed in a single column. This holds for N̂EB, N̂Cordeiro, N̂Firth and N̂Kosmidis

(denoted as N̂EB/CFK), and for N̂Chap and N̂RL (denoted as N̂Chap/RL).

Table 1: Simulation study with 20, 000 replications for seven DSE scenarios.

S N pA pB n̄
¯̂
NLP ¯̂

NBailey ¯̂
NEB/CFK ¯̂

NChap/RL

1 100 0.5 0.2 60.0 105.3∗∗∗† 96.1∗∗∗ 105.2∗∗∗ 100.1
2 100 0.35 0.3 54.5 106.0∗∗∗ 98.0∗∗∗ 105.3∗∗∗ 100.4∗

3 500 0.4 0.15 244.9 508.3∗∗∗ 493.6∗∗∗ 507.4∗∗∗ 499.2
4 500 0.25 0.2 200.1 512.4∗∗∗ 495.4∗∗∗ 509.3∗∗∗ 499.4
5 10,000 0.3 0.1 3,699.2 10,018.0∗∗∗ 9,987.9∗∗∗ 10,013.1∗∗∗ 9,996.9
6 10,000 0.25 0.15 3,624.9 10,016.7∗∗∗ 9,993.9∗ 10,012.5∗∗∗ 9,999.6
7 100 0.15 0.15 27.8 146.2∗∗∗† 87.2∗∗∗ 128.0∗∗∗ 92.3∗∗∗

n̄ gives the mean number of observed units n over all replications. The superscripts ∗, ∗∗ and
∗∗∗ indicate that we can reject N̂ est = N with a two-sided t-test with p-values = 0.05, 0.01 and
0.001 respectively. A † as superscript indicates that extremely high estimates due to failures were
replaced with the highest Chapman estimate in the simulation sample.

The ∗s in the column of ¯̂
NChap/RL indicate that for p-value = 0.05, in five out of the six

regular scenarios, the hypothesis N = N̂Chap/RL cannot be rejected. For p-value = 0.01

this holds for all six regular scenarios. The same does not hold for the other estimators,
for which the mean over all replications, in most cases, significantly differs from N for
p-value = 0.001, and for all cases for p-value = 0.05. For all scenarios the bias in N̂Chap/RL

is smaller than the bias in the other estimators. This shows that in DSE, the Chapman- and
RL-estimator are superior to the other estimators. If Chapman’s regularity condition in Eq.
(12) is not met, as in scenario 7, all estimators are considerably biased.

The standard deviation(SD) and root mean squared errors (RMSEs) that correspond
to each estimator and scenario in Table 1 can be found in Table C1 in Appendix C.1. This
table shows that the SDs and RMSEs of the Bailey- and Chapman/RL-estimator are smaller
than the RMSEs of the EB/CFK-estimator, which in turn are smaller than the RMSEs of the
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ML-estimator.

3 Multiple-systems estimation

This section discusses multiple-systems estimation (MSE). First it introduces some nota-
tion additional to the DSE notation introduced in Section 2. Next, Section 3.1 proceeds with
some MSE preliminaries and bias-reduced MSE estimators. In Section 3.2 we derive a new
bias-corrected estimator that can be considered an extension of the Chapman-estimator to-
wards MSE under saturated models. In Section 3.3 the Chapman MSE-estimator is further
generalised towards all log-linear models, both saturated and restricted.

MSE considers the case where a population that consists of N unique units is partly
observed by a set of k sources, indicated by A,B,C, .... For ease of notation we will, where
possible, discuss MSE from the perspective of three sources, because it can often be gen-
eralised to k sources in a straightforward way. For three sources, the inclusion pattern
is denoted as abc with a, b, c = 1, 0, with the same meaning as ab in DSE notation. For k

sources the inclusion pattern is ab . . . k. We introduce notation that allows us to distinguish
between the sets of unit counts that are observed an even and odd number of times, that we
denote by neven (or meven, m̂even) and nodd (or modd, m̂odd). For three sources this gives
nodd = (n111, n100, n010, n001) and neven = (n110, n101, n011).

In contrast to DSE, in MSE the log-linear model can take different forms. Therefore,
the superscript in N̂ est, nest

ab and m̂est
ab is extended to N̂ est,LLM, nest,LLM

abc and m̂est,LLM
abc , where

’est,LLM’ specifies not only the chosen estimator but also the chosen log-linear model.

3.1 Preliminaries

The first to consider more than two sources was Schnabel (1938). After this the use of
multiple sources became more common and estimators were introduced that made use of
different distributional assumptions. For instance, Chapman (1954), Darroch (1958) and
Cormack and Jupp (1991) assumed every element in nabc to be an independent realisation
from a Poisson distribution. This is a reasonable assumption when nabc are relatively small
compared to N , but when this is not true, one should take into account that each mabc

has an upper-bound of N . Adding this restriction to the Poisson distribution assumption
is equivalent to assuming that the joint set of nabc has a multinomial distribution with
expectations mabc for which m000 +

∑
abcmabc = N (see e.g. Bishop et al., 1975; Darroch,

Fienberg, Glonek, & W, 1993; Sanathanan, 1972; Wolter, 1986).
In case of three sources the independence assumption that holds in DSE is relaxed

and it is sufficient to assume that two conditional odds-ratios given the levels of the third
source are equal. For example, for the two odds-ratios of source A and B given source C

m110/m100

m010/m000
=

m111/m101

m011/m001
, (14)
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which gives

m000 =
m111m100m010m001

m110m101m011
. (15)

A general expression is provided by Fienberg (1972), who states that for k sources, m00...0

can be written as

m00...0 =

∏
modd∏
meven

. (16)

For three sources, the saturated (SAT) log-linear model for the seven observed counts be-
comes

SAT: logmabc = λ+ λA
a + λB

b + λC
c + λAB

ab + λAC
ac + λBC

bc , (17)

where the parameters are identified by setting them to zero if one or more of the sub-
scripts are 0. In comparison to DSE, in the saturated log-linear model the independence
assumption is replaced by the assumption of no three-factor interaction, i.e λABC

abc = 0. The
interaction parameters λAB

ab , λAC
ac and λBC

bc allow for interactions between pairs of sources,
and thus the model is less restrictive than the DSE model and hence more realistic in ap-
plications.

For three sources, the saturated model is not the only log-linear model that can be
used. If the parameters of one or more pairs of sources are set to zero (e.g. λAB

ab = 0),
we have a restricted log-linear model. An advantage of further restricted models is that
the resulting estimates have smaller variance than estimates from less restricted models
(Bishop et al., 1975, p. 242). A disadvantage is that they give biased estimates if the as-
sumed restriction does not hold. We discuss restricted models in more detail because, as
we will see in Section 3.3, the precise model specification affects the bias-corrected estima-
tor. Fienberg (1972) and Bishop et al. (1975) discuss the three possible alternative log-linear
model formulations for three sources where all direct inclusion parameters λa, λb and λc

are included. Starting from the saturated log-linear model SAT in Eq. (17), they discuss
the two-pair dependence (2PD), the one-pair dependence (1PD), and independence (IND)
model. Examples of 2PD and 1PD are

2PD : logmabc = λ+ λA
a + λB

b + λC
c + λAB

ab + λBC
bc , (18)

1PD : logmabc = λ+ λA
a + λB

b + λC
c + λAB

ab (19)

and

IND : logmabc = λ+ λA
a + λB

b + λC
c . (20)

It suits our purpose to write these models as in Eq. (5). They all use n = nML =

(n111, n110, n101, n011, n100, n010, n001), but differ with respect to λ = λLLM and X = XLLM.
λLLM simply consists of the λ’s in the corresponding LLM and XLLM becomes XSAT

abc , X2PD
abc ,

X1PD
abc or X IND

abc written as
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1 1 1 1 1 1 1

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0


,



1 1 1 1 1 1

1 1 1 0 1 0

1 1 0 1 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0


,



1 1 1 1 1

1 1 1 0 1

1 1 0 1 0

1 0 1 1 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0


or



1 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

1 1 0 0

1 0 1 0

1 0 0 1


,

respectively. Estimating one of these models with ML gives the fitted-values m̂ML,LLM
abc .

A general expression for mML,LLM
000 is obtained by replacing the mabc in Eq. (15) with the

ML estimates m̂ML,LLM
abc . For LLM = SAT this gives mML,LLM

abc = mML,SAT
abc = nabc and thus

m̂ML,SAT
000 =

n111n100n010n001

n110n101n011
. (21)

For model 2PD and 1PD Fienberg (1972, p. 596) shows this expression can be further
simplified, i.e.,

m̂ML,2PD
000 =

n100n001

n101
(22)

and

m̂ML,1PD
000 =

n001n++0

n111 + n101 + n011
. (23)

For model IND, such a closed form solution does not exist. However, for IND an estimate
can be obtained by replacing the mabc in Eq. (15) with the fitted-values m̂ML,IND

abc . (Fienberg,
1972, p. 597) shows that this is in fact an approach that can be generally used, where Eq.
(16) gives an estimate of the missing cell for any log-linear model with any number of
sources. Note that the LP-estimator in Eq. (3) can be considered a special of (16), with
k = 2 and LLM=SAT.

3.1.1 Bias reduction in multiple-systems estimation

MSE is based on a log-linear model estimated with ML, which is well known to give biased
estimates (see e.g. Hald, 1952, chap. 7, or Miller, 1984). In this context, an approach to ob-
tain bias-reduced ML estimates is also known as generalized linear models (GLMs) using
adjusted score functions (see e.g. Firth, 1993; Kosmidis et al., 2020). A DSE example of this
approach can be found in Section 2.3, where replacing n with the adjusted nChap or nBailey

led to the bias-reduced DSE estimators by Chapman and Bailey. Cordeiro and McCullagh
(1991); Firth (1993); Kosmidis and Firth (2011) and others use this approach to obtain bias-
reduced ML-estimators for generalised linear models, such as the log-linear model, that
can also be applied to MSE. In literature we also find bias-reduced MSE estimators that
are developed specifically in the context of MSE, such as by Evans and Bonett (1994) and
Rivest and Lévesque (2001). However, despite that they are developed in the more specific
MSE context, these bias-reduced MSE estimators also fit what Firth (1993) refers to as the
more general (GLMs with) modified-score functions approach.
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The simplest bias-reduced MSE estimator is proposed by Evans and Bonett (1994),
which we denote as N̂EB,LLM. They propose to use the adjusted nEB = n + 0.5(k−1) in
(5) instead of n. This is the result of a compromise between Berkson (1955) and Plackett
(1981). In a log-linear regression model, Berkson proposes to replace values in nabc that
are equal to zero with 0.5(k−1), and Plackett (1981), who states that if nabc ∼ Poisson(mabc),
then log (nabc + 0.5) instead of log (nabc) is a more accurate estimate for log (mabc).

Another bias-reduced estimator that was developed specifically for MSE was proposed
by Rivest and Lévesque (RL, 2001). They propose a bias reduction method that can be used
to reduce bias in a set of MSE estimators proposed by Otis et al. (1978) in the context of
wildlife populations. Unfortunately, with the exception of the independence model, which
corresponds to the Mt model, the other models by Otis et al. do not correspond exactly to
Eq. (17) - (19). For the SAT, 2PD and 1PD model, we consider the adjusted counts that
belong to model Mth as the most appropriate choice, because it is most similar. See (Evans,
Bonett, & McDonald, 1994) for further discussion on this topic. The bias reduction by
Rivest and Lévesque is derived from a standard result by McCullagh and Nelder (1989),
about the bias in estimators in generalized linear models. McCullagh and Nelder derive
an asymptotic bias expression for estimates based on models with canonical link functions,
such as the log-linear model. For two sources, the resulting RL-estimator is equal to the
Chapman-estimator, as was seen in Table 1. We denote the RL-estimator as N̂RL,LLM and
their adjusted count as nRL,LLM, with nRL,IND = nRL,Mt and nRL,SAT/2PD/1PD = nRL,Mth . For
three sources they become (Rivest & Lévesque, 2001, p. 562):

nRL,Mt = (n111, n110 +
1

3
, n101 +

1

3
, n011 +

1

3
, n100 +

1

6
, n010 +

1

6
, n001 +

1

6
)⊤ (24)

and

nRL,Mth = (n111, n110 +
1

3
, n101 +

1

3
, n011 +

1

3
, n100, n010, n001)

⊤. (25)

Rivest and Lévesque (2001) show in a simulation study that their estimator outperforms
the EB-estimator in terms of bias reduction.

Bias reduction in MSE by means of the modified-score functions approach (Firth, 1993)
relies on the same standard result about the bias of estimators in GLMs by McCullagh and
Nelder (1989) as was used by Rivest and Lévesque (2001). It was used by Cordeiro and
McCullagh (1991); Firth (1993); Kosmidis (2007); Kosmidis and Firth (2011) and others to
reduce bias in parameter estimates in log-linear models. Cordeiro and McCullagh, Firth
and Kosmidis and Firth give three different bias-reduced parameter estimates λ̂est for the λ

in Eq. (5), which correspond to three different bias-reduced estimators m̂est
000 = exp λ̂est. The

description of the details on these estimators are beyond the scope of this paper, but they
are provided in Kosmidis (2014); Kosmidis and Kenne Pagui (2023); Kosmidis et al. (2020).
In this paper we limit ourselves to noting that in the DSE and MSE simulation studies
presented in this paper we found negligible differences between them, and therefore we
denote them as the single estimator N̂CFK,LLM.

In the next section we extend the Chapman-estimator towards multiple sources, which
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results in a Chapman MSE-estimator that differs from the estimators discussed in this sec-
tion, both for the saturated and more restricted log-linear models.

3.2 The Chapman MSE-estimator for saturated models

To derive an Chapman MSE estimator we start with the result of Bishop et al. (1975, p. 446),
who showed that the MLEs for mabc are equivalent under the assumption that nabc follows
either a Poisson or multinomial distribution, provided that

∑
abcmabc +m000 = N . Com-

bining the implications of the Chapman-estimator as discussed in Section 2.3 with the MSE
models discussed in Section 3.1 under the assumption of a Poisson distribution allows us to
derive a bias-corrected MSE estimator in a straightforward way. The Poisson distribution
implies that Cov (nabc, n̸=abc) = 0 and Cov (1/(nabc + 1), n̸=abc) = Cov (1/nabc, n̸=abc) = 0,
when we combine this with Eq. (13) and (16) this gives

m00...0 =

∏
modd∏
meven

≈
∏

E [nodd]
∏

E

[
1

(neven + 1)

]
= E

[ ∏
nodd∏

(neven + 1)

]
, (26)

which suggests

m̂
Chap MSE,SAT
000 =

n111n100n010n001

(n110 + 1)(n101 + 1)(n011 + 1)
(27)

as a bias-corrected estimator for three sources, and

m̂
Chap MSE,SAT
00...0 =

∏
nodd∏

(neven + 1)
(28)

for any number of sources.
When we compare the Chapman MSE-estimator in Eq. (27) with the RL-estimator in

Eq. (25), it becomes clear that the equality between both estimators in DSE does not hold
for MSE. We further note that Chapman MSE estimates can also be obtained with Eq. the
Poisson regression model as defined in Eq. (5), by using the modified counts nChap MSE,SAT

abc

instead of n.

3.2.1 Simulation study with saturated models

In Section 2.4 we have seen that the Chapman- and RL-estimator are equivalent and less
biased than the alternative DSE estimators. This equivalence is unlikely to hold in MSE,
because they are no longer the same estimators. Here we compare them in a simulation
study, together with other bias-reduced MSE estimators. We consider fourteen scenarios.
The scenarios in Table 2 differ with respect to the size of the population N , the number of
sources k and log-linear model specifications (i.e. different values for pA, pB , pC , pD, θAB ,
θAC , θAD, θBC and θCD, see Hammond et al., 2023, for further details). The odds-ratios are
chosen such that scenario 1− 3 and 13 concern LLM = IND, scenario 4− 6 concern LLM =
1PD, scenario 7− 9 concern LLM = 2PD, scenario 10− 12 concern LLM = SAT and finally
scenario 14 concerns LLM = 4PD (i.e. four pairs of dependent sources). The different
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parameters are chosen such that the probability of failures in each scenario is small.

Table 2: MSE simulation scenarios

S LLM N k pA pB pC θAB θAC θBC

1 100 3 0.5 0.4 0.3 1 1 1
2 IND 500 3 0.4 0.3 0.2 1 1 1
3 10,000 3 0.35 0.3 0.25 1 1 1

4 100 3 0.5 0.4 0.3 1.5 1 1
5 1PD 500 3 0.4 0.3 0.2 1.5 1 1
6 10,000 3 0.35 0.3 0.25 1.5 1 1

7 100 3 0.5 0.4 0.3 1.5 1 0.5
8 2PD 500 3 0.4 0.3 0.2 1.5 1 0.5
9 10,000 3 0.35 0.3 0.25 1.5 1 0.5

10 100 3 0.5 0.4 0.3 1.5 0.75 0.5
11 SAT 500 3 0.4 0.3 0.2 1.5 0.75 0.5
12 10,000 3 0.35 0.3 0.25 1.5 0.75 0.5

S LLM N k pA pB pC pD θAB θAD θBC θCD

13 IND 20,000 4 0.4 0.35 0.3 0.25 1 1 1 1
14 4PD 20,000 4 0.4 0.35 0.3 0.25 1.5 1.5 0.75 0.5

The estimates presented in Table 3 are based on the assumption of a saturated model.
This means that for all scenarios, except scenario 10−12, the model is overspecified. Over-
specification only affects the variance and not the mean of an estimator, so it does not lead
to the introduction of bias, although it may increase the bias when it is present. In contrast
to the DSE simulation study in Section 2.4, it was not possible to exclude failures in all
scenarios, in particularly for N = 100. In those cases the failures where replaced with the
highest value of all Chapman MSE-estimators for that scenario, indicated by a superscript
† in the cell.

The results in Table 3 indicate that, given an assumed saturated model, the Chapman
MSE-estimator performs best of the tested estimators, irrespective of the underlying LLM.
For p = 0.01 it gives a mean value that cannot be rejected to be different from N in 13 out
of 14 scenarios. Also, in the scenarios where the Chapman MSE-estimator shows some
statistically significant bias (S = 4, 7 and 10), the bias is small in itself and much smaller
than in the other estimators. For the IND and 1PD model with large N , the bias of the
ML, EB and CFK-estimators is equally large. This unexpected indifference might be due to
the modification of elements of nabc that are in the numerator of the ML-estimator, which,
as we have seen in Section 3.2, is unnecessary. The RL-estimator performs clearly better
than the EB- and CFK-estimator, but still shows some statistically significant bias for most
scenarios, especially when N = 100 or 500.

The SEs and RMSEs that correspond to each estimator and scenario in Table 3 can be
found in Table C2 and C3 in Appendix C.2. These tables show that under an assumed
saturated model, the Chapman estimator not only outperforms the other estimators in
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Table 3: Simulation study with assumed saturated log-linear models, with 20, 000
replications for MSE scenarios 1− 14, for MSE scenario 1− 14 in Table 2.

S N n̄
¯̂
NML,SAT ¯̂

NEB,SAT ¯̂
NCFK,SAT ¯̂

NRL,SAT ¯̂
NChap MSE,SAT

1 100 79.0 112.7∗∗∗† 112.4∗∗∗ 110.9∗∗∗ 103.3∗∗∗ 100.1
2 500 332.0 520.8∗∗∗ 521.1∗∗∗ 521.3∗∗∗ 506.1∗∗∗ 499.3
3 10,000 6,587.7 10,015.5∗∗∗ 10,016.3∗∗∗ 10,017.1∗∗∗ 10,004.1 9,998.5

4 100 77.3 115.3∗∗∗† 114.4∗∗∗ 111.7∗∗∗ 103.4∗∗∗ 99.6∗

5 500 323.8 525.2∗∗∗ 524.4∗∗∗ 523.8∗∗∗ 508.3∗∗∗ 500.7
6 10,000 6,439.5 10,015.7∗∗∗ 10,016.0∗∗∗ 10,016.2∗∗∗ 10,003.5 9,997.4

7 100 79.1 121.5∗∗∗† 119.0∗∗∗ 113.2∗∗∗ 103.8∗∗∗ 99.5∗∗

8 500 330.3 532.1∗∗∗ 530.7∗∗∗ 529.4∗∗∗ 509.9∗∗∗ 500.4
9 10,000 6,608.9 10,019.6∗∗∗ 10,020.4∗∗∗ 10,021.1∗∗∗ 10,006.1∗ 9,999.3

10 100 80.0 117.8∗∗∗† 115.6∗∗∗ 111.9∗∗∗ 103.2∗∗∗ 99.4∗∗∗

11 500 334.1 529.7∗∗∗† 529.9∗∗∗ 529.6∗∗∗ 509.3∗∗∗ 500.4
12 10,000 6,690.3 10,019.6∗∗∗ 10,020.9∗∗∗ 10,022.3∗∗∗ 10,006.4∗ 9,999.8

13 20,000 15,905.3 20,051.8∗∗∗ 20,051.7∗∗∗ 20,051.6∗∗∗ 20,043.5∗∗∗ 20,004.1
14 20,000 15,834.5 20,049.4∗∗∗ 20,050.2∗∗∗ 20,052.6∗∗∗ 20,039.9∗∗∗ 19,992.4

n̄ gives the mean number of observed units n over all replications. The superscripts ∗, ∗∗ and
∗∗∗ indicate that we can reject N̂ est = N with a two-sided t-test with p-values = 0.05, 0.01 and
0.001 respectively. A † as superscript indicates that extremely high estimates due to failures were
replaced with the highest Chapman MSE estimate in the simulation sample.

terms of bias, but also in terms of SD and RMSE, in particular for smaller N , irrespective
of the true model as given in the column LLM.

The estimates in Table 3 are based on the saturated model, but more restricted models
such as those in Eq. (18), (19) and (20) might be assumed. In the next section we will
therefore discuss the Chapman MSE-estimator for restricted models.

3.3 A generalisation of the Chapman MSE-estimator

The Chapman MSE-estimator for saturated models, as discussed in the previous section,
is not necessarily a correct bias-corrected estimator for restricted log-linear models. As an
example where the use of the Chapman MSE-estimator for saturated models leads to an
incorrect result, consider the 1PD model (19) with estimator (23). When this estimator uses
the modified count vector nChap MSE, SAT = (n111, n110 + 1, n101 + 1, n011 + 1, n100, n010, n001)

instead of the observed count vector n, this gives

m̂
Chap MSE’,1PD
000 =

n001(n++0 + 1)

n111 + (n101 + 1) + (n011 + 1)
.

We know that this estimator is not correcting for bias correctly, because the ML-estimator
for the 1PD model has the same structure as the LP-estimator, namely the product of two
Poisson variables in the nominator (i.e. n001n++0) and a single Poisson variable in the
denominator (i.e. the sum n111 + n101 + n011). Therefore we should use the same bias-
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correction as used in the Chapman-estimator, namely

m̂
Chap MSE,1PD
000 =

n001n++0

n111 + n101 + n011 + 1
. (29)

This is the correct bias-corrected estimator for the 1PD model. Similarly, for the 2PD model
(18) with estimator (22) we have the bias-corrected estimator

m̂
Chap MSE,2PD
000 =

n001n100

n101 + 1
. (30)

For the independence model for three sources, a direct solution for the estimator does not
exist and therefore we cannot use the approach adopted for the 1PD and 2PD model as a
general solution. Furthermore, for log-linear models with more sources and more source
dependencies, the derivations performed by Bishop et al. (1975) become increasingly com-
plex.

Generally, in order to correct for bias, it appears that we should only know which
(functions of) observed counts nabc are in the denominator of m̂ML,LLM

000 , and subsequently
adjust these counts to correct for bias. To identify these (functions of) observed counts nabc,
we propose to use the Moore-Penrose inverse (MPI, Moore, 1920; Penrose, 1955), that can
be used to obtain a ’best fit’ (i.e. least squares) solution (if any exists) for systems of linear
equations.

3.3.1 Bias reduction by using the Moore-Penrose inverse

We start with the log-linear model in Eq. (5), logE [n|X] = Xλ, which is a system of
linear equations. A solution for λ can be found with the help of the MPI that we write as
Z =

(
X⊤X

)−1
X⊤, i.e.:

λMPI = Z log [n|X] = Z logm. (31)

For two sources this gives m = (m11,m10,m01)
⊤, λMPI =

(
λMPI, λA,MPI

a , λB,MPI
b

)⊤
, X =

Xab =

 1 1 1

1 1 0

1 0 1

 and Z = Zab =

 −1 1 1

1 0 −1

1 −1 0

. We are interested in a solution for

m00, which is m00 = expλMPI, and because λMPI depends only on the first row of Zab, only
this row is relevant for our purpose. We write this row as the vector z = (z11, z10, z01)

⊤ =

(−1, 1, 1)⊤. Thus (31) allows us to write m00 as a function of zab and mab, i.e.

m00 = expλMPI = exp
∑
ab

zab logmab =
∏
ab

(mab)
zab =

m10m01

m11
,

which corresponds to Eq. (2) that led to the LP-estimator, so for two sources λMPI = λML.
However, for our purpose a more important point is that the first element z11 in z has a
negative sign, which indicates that m11 is in the denominator of the expression for m00.
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We have seen in Eq. (26), that in order to correct for bias it is important to identify which
elements of n are in the denominator.

This relation between zab and the LP-estimator also holds for zabc and the SAT, 2PD and
1PD ML-estimators, as defined in Eq. (21), (22) and (23). This can be seen when we specify

mMPI,LLM
000 =

∏
abc

(mabc)
zLLM
abc ,

where zLLM
abc depends on the design matrices for restricted log-linear models XLLM

abc as de-
fined below Eq. (20). For the models SAT, 2PD, 1PD and IND, the vector zLLM is given in
Table 4a.

Table 4: The value of zLLM and zLLM
<0 for each LLM.

Table 4a Table 4b

m zSAT z2PD z1PD zIND

m111 1 0 -1/3 -1/2
m110 -1 0 1/3 0
m101 -1 -1 -1/3 0
m011 -1 0 -1/3 0
m100 1 1 1/3 1/2
m010 1 0 1/3 1/2
m001 1 1 1 1/2

m zSAT
<0 z2PD

<0 z1PD
<0 zIND

<0

m111 0 0 -1/3 -1/2
m110 -1 0 0 0
m101 -1 -1 -1/3 0
m011 -1 0 -1/3 0
m100 0 0 0 0
m010 0 0 0 0
m001 0 0 0 0

Table 4a shows the positive and negative signs in the elements zLLM that correspond to
the counts nabc in the numerator and denominator in the SAT, 2PD and 1PD ML-estimators
in Eq. (21), (22) and (23). It is useful to define zLLM

<0 , which is a vector equal to zLLM
abc for

zLLM
abc < 0, and zero otherwise. zLLM

<0 is shown in Table 4b for the SAT, 2PD, 1PD and IND
model.

For the 2PD and 1PD model the relation between the MPI expression for m000 and the
ML-estimator is more intricate. For the 1PD model the MPI expression for m000 is

mMPI,1PD
000 =

m001 (m110m100m010)
1
3

(m111m101m011)
1
3

and the ML-estimator in Eq. (23) can also be written as

m̂ML,1PD
000 =

n001 (m110 +m100 +m010) /3

(m111 +m101 +m011) /3
.

The MPI expression for m000 is a fraction with geometric means of sets of mabc, both in
the numerator and the denominator, while the ML-estimator is a corresponding fraction
of arithmetic means of nabc. The same relation can be shown for the SAT and 2PD model.
Because a sum of Poisson variables is itself a Poisson variable, and Eq. (13) shows that we
should add 1 to a Poisson variable in the denominator, where zLLM

<0 provides a distribution
of this +1. To illustrate this, in the bias-corrected estimator for the 1PD model in Eq. (29),
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1 is added to the sum of the three Poisson variables n111, n101 and n011. The same result is
obtained by subtracting −1/3 from each of them, which corresponds to subtracting zLLM

<0

from n. Thus we have a simple formula that can be used to obtain the Chapman-estimator
in Eq. (10) and the bias-corrected estimators in Eq. (21), (29) and (30), i.e.:

nChap MSE, LLM = n− zLLM
<0 (32)

For the IND model Eq. (32) implies we should replace n111 with n111 + 1/2 to obtain a
bias-corrected estimator. We cannot compare this result with a closed form expression of
the ML-estimator for the IND model, but an intuitive explanation for this adjustment is
that if in the denominator there is a Poisson variable multiplied by a 1/2 as is suggested
by the MPI expression, we should add 1 multiplied by a 1/2 to correct for bias as well.

Concluding, in Eq. (32) we propose an adjustment that is based on the MPI and can be
used for any log-linear model with any number of sources. We have shown for some exam-
ples (i.e., for two sources, and for three sources for the models SAT, 2PD and 1PD) that this
adjustment works in these instances. The adjustment also works for the saturated model
for any number of sources. We provide no proof for other models, such as the model IND
for three sources for which no closed form solutions of ML-estimators exist, and restricted
models for four or more sources. In the simulation study in the next section we show that
also for these models our procedure reduces the bias to a large extend. Finally, we note
that the Chapman MSE adjustment of nabc depends on both the log-linear model and the
exact inclusion pattern abc, which is more extensive than the information other estimators
use.

3.3.2 Multiple-systems estimation simulation study with restricted models

In Table 5 below we show the result of a simulation study in which we test the Chapman
MSE estimators under the different scenarios presented in Table 2, and compare them with
the other estimators described in Section 3.1.1. The number of replications is increased
from 20, 000 to 60, 000, because in comparison to Table 3, the estimates are much more
accurate because they are based on the same log-linear model that underlies the generation
of the contingency table. This is indicated by the LLM+ in the subscript. Scenarios 10− 12

are removed because they represent scenarios in which the saturated model is the true
model, and therefore the results of these scenarios are already provided in Table 3. The
increase of accuracy implies that, compared to the simulation study presented in Section
3.2.1, more replications are required to statistically reject unbiasedness in estimators with
a t-test.

Table 5 shows that if the correct log-linear model is used to estimate N , all estimators
have less bias than under the saturated model as presented in Table 3. This is unsurprising,
because for the presented scenarios the model that is used for estimation is less overspeci-
fied than the saturated model that was used for Table 3. For S = 13, the bias is statistically
insignificant in all estimators. The size of the bias in the ML-, EB- and CFK-estimator is
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Table 5: Simulation study with correctly specified log-linear models, with 60, 000
replications, for MSE scenario 1− 9, 13 and 14 in Table 2.

S N n̄
¯̂
NML,LLM+ ¯̂

NEB,LLM+ ¯̂
NCFK,LLM+ ¯̂

NRL,LLM+ ¯̂
NChap MSE,LLM+

1 100 79.0 100.5∗∗∗ 100.7∗∗∗ 100.9∗∗∗ 100.7∗∗∗ 99.9∗∗∗

2 500 332.0 501.5∗∗∗ 501.1∗∗∗ 501.9∗∗∗ 501.3∗∗∗ 499.9
3 10,000 6,587.3 10,001.0∗ 10,000.6 10,001.4∗∗ 10,000.8 9,999.4

4 100 77.3 101.2∗∗∗ 101.3∗∗∗ 102.1∗∗∗ 99.9 100.0
5 500 323.8 503.5∗∗∗ 502.6∗∗∗ 504.2∗∗∗ 499.6∗ 500.2
6 10,000 6,439.6 10,003.1∗∗∗ 10,002.5∗∗∗ 10,003.7∗∗∗ 10,000.1 10,000.4

7 100 79.1 102.7∗∗∗† 102.8∗∗∗ 102.8∗∗∗ 100.8∗∗∗ 99.9
8 500 330.3 505.9∗∗∗ 505.6∗∗∗ 505.3∗∗∗ 501.7∗∗∗ 499.8
9 10,000 6,608.9 10,005.0∗∗∗ 10,004.8∗∗∗ 10,004.7∗∗∗ 10,001.5 9,999.7

13 20,000 15,320.0 20,000.3 19,999.9 20,000.7 20,000.3 19,999.4
14 20,000 15,166.8 20,002.4∗∗∗ 20,002.3∗∗ 20,002.4∗∗∗ 20,001.4∗ 20,000.5

n̄ gives the mean number of observed units n over all replications. The superscript + indicates
that the estimates are obtained under the correctly specified log-linear model, as given in the ’LLM’
column in Table 2. The superscripts ∗, ∗∗ and ∗∗∗ indicate that we can reject N̂ est = N with a
two-sided t-test for p-values = 0.05, 0.01 and 0.001 respectively. A † as superscript indicates that
extremely high estimates due to failures were replaced with the highest Chapman MSE estimate in
the simulation sample.

comparable and small, and the RL-estimator has less bias than these three estimators. The
Chapman MSE-estimator is the only estimator for which unbiasedness cannot be statis-
tically rejected in all except for one scenario. Only in S = 1 there is some statistically
significant bias, but this bias is small in itself and less than the bias in the other estimators.
To conclude, also when the correct (restricted) model is used to estimate N , the Chapman
MSE-estimators outperforms the other estimators, although for simpler models the impact
becomes less substantial because the bias is smaller in the first place.

The substantial difference in the magnitude of the bias shown in Tables 3 and 5, is
caused by the inflationary effect of variance on positive bias in log-linear models. Less
restricted models have larger variance (Bishop et al., 1975, p. 242) and its inflationary
effect on the bias can be seen when the bias is written as ¯̂mest

000 − m000 = exp λ̂est − expλ,
where given some positive bias in λ̂est, a larger variance in λ̂est leads to a further increase
of exp λ̂est and therefore the bias.

Particularly interesting are scenarios for which we were not able to prove mathemati-
cally that our MPI procedure is correct, i.e. 1, 2, 3, 13 and 14, as these are scenarios in which
the independence model and/or four sources are used. In these scenarios the Chapman
MSE-estimator provides estimates with clearly less bias than the bias in the other estima-
tors, and also little bias in general. This is support for the approach that we adopted for
the development of the bias-reduced estimators based on Eq. (32).

The SDs and RMSEs that correspond to each estimator and scenario in Table 5 can be
found in Table C4 and C5 in Appendix C.3. These tables show that, just like the bias,
also the SD and RMSE are smaller when the correctly specified log-linear model is used

19



for estimation. Also in this case, the RL- and Chapman MSE-estimator outperform the
other estimators, especially for models with more parameters. Similar to bias, for the 2PD
and SAT model (for SAT see Table 3, C2 and C3) we see that the Chapman MSE-estimator
outperforms the RL-estimator in terms of SD and RMSE. This shows that the correction for
bias becomes more important when the estimated model has more parameters.

Finally, we note that the Chapman MSE-estimator suffers less from adding irrelevant
variables to the model. To illustrate this we consider scenario S = 7 from Table 2, for which
the saturated model contains the irrelevant parameter λAC

ac . When we consider the SDs of
the Chapman MSE-estimator for this scenario, as shown in Table C2 and C4, we see that
it approximately doubles from 12.3 to 24.7. For the other estimators adding the irrelevant
parameter λAC

ac has a larger impact on the SD, as it increases approximately three to six
times while starting from approximately the same level. The same relation holds for the
RMSE.

4 Example: Number of homeless people in the Netherlands

A population size estimate of the homeless people in the Netherlands is published an-
nually by Statistics Netherlands. This estimate is an ML estimate that is based on a MSE
model that is discussed in detail in Coumans, Cruyff, Van der Heijden, Wolf, and Schmeets
(2017). The estimate is based on a log-linear model that contains three sources and several
(categorical) covariates, such as gender (g, 2 categories), age (a, 3 categories), place of liv-
ing, in- or outside one of the big four Dutch cities (p, 2 categories) and region of origin
(o, 3 categories). Together there are 36 subgroups that have observed frequencies denoted
as ngapo and an observed frequency with a specific inclusion pattern denoted as nabc,gapo.
Which sources, covariates and interactions between them are included in the log-linear
model, is the result of an Akaike information criterion (AIC) based model selection proce-
dure that is explained in Coumans et al. (2017). Recent work by Silverman (2020) suggests
that other model selection approaches based on Bayesian approaches could lead to more
robust and stable results, but this is beyond the scope of this paper.

In this practical example, for the years 2009 - 2018, 2020 and 2021, we replicate the
model selection and estimation procedure as explained in Coumans et al. (2017). Data for
2019 is unavailable. This gives a series of annual ML estimates for the population size of
homeless people in The Netherlands. For each year, the log-linear model that was used
to calculate the ML estimate is also used to calculate the corresponding Chapman MSE
estimate. This allows us to calculate the difference between the ML and Chapman MSE
estimates, all other factors held constant, in a practical example.

In Figures 1a-c below we show, respectively, the original ML estimates and the Chap-
man MSE estimates of the total number of homeless people, the total number of homeless
men and the total number of homeless women, including their two-sided 95% confidence
intervals. Note that each figure has its own scale on the y-axis.

20



Figure 1: Total number of homeless people, homeless men and homeless women in the
Netherlands over the period 2009-2018 and 2020-2021.
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Figure 1a shows ML and Chapman MSE estimates of the total number of homeless
people over time, together with their confidence intervals. The ML estimates are between
a minimum of 9.5% and a maximum of 25.5% larger than the Chapman MSE-estimator.
The confidence interval of the Chapman MSE-estimators is clearly smaller. Figure 1b and
1c show that the total annual difference between both estimators, as was observed in Fig-
ure 1a, is not proportionally divided over men and women. In fact, the Chapman MSE-
estimator has, relatively, a much larger impact on the estimate of the number of homeless
women, which is the smaller group. For women the difference between the estimates is
between a minimum of 19.5% in 2017 and a maximum of 51.2% in 2018.

In this practical application the impact of using the Chapman MSE-estimator instead
of the ML-estimator is larger than the impact we have seen in the simulation studies. The
reason for this difference is twofold. First, the scenarios in the simulation studies were
set such that the probability of estimation failures was very small, which led to a mean
coverage (i.e. n̄/N ) that was large compared to the coverage in our example of home-
less people. Second, the MSE model to estimate the number of homeless people involves
the use of (categorical) covariates to control for heterogeneity in inclusion probabilities.
Because for some homeless people their background characteristics are missing, the esti-
mation procedure uses an expectation–maximization (EM) algorithm to impute missing
data (see Coumans et al., 2017, for further details), which for some inclusion patterns may
lead to observed frequencies between zero and one. To see why this is important we zoom
in on the underlying subgroup estimates for men and women in the year 2021 presented
in Table 6 below.

Table 6 presents 18 subgroups indicated by Gapo for both men and women. For each
subgroup we show both the total observed count ngapo and the observed count n101,gapo

for inclusion pattern 101. This specific inclusion pattern is shown because the selected log-
linear model is a 2-pair dependence model, for which Table 4 tells us that nChap

101 = n101 + 1

is the only adjusted observed frequency, while the other elements in n
Chap
abc are equal to

nabc. The difference between n101,gapo and n
Chap
101,gapo should therefore explain the difference

between NML
gapo and N

Chap
gapo . This difference is shown in the columns ∆Chap-ML

Mapo and ∆
Chap-ML
Wapo .

When we compare the columns ∆
Chap-ML
Mapo and ∆

Chap-ML
Wapo in Table 6, we see that despite

the fact that observed counts of men are larger than those of women, differences in counts
of subgroups of men and women are very similar. This can be explained by the smaller
observed frequencies for women with inclusion pattern 101, that are sometimes even be-
tween zero and one, as can be seen in the columns of n101,Mapo and n101,Wapo. Adding 1 to
such a small number has a relatively large impact on the population size estimate.

Finally, we note that the Chapman MSE estimates follow a similar trend as the ML-
estimates, which is relevant in practice. Only for the period 2018 − 2020, where the ML-
estimate is a decrease while the Chapman MSE-estimate is an increase. This might be due
to the large ML-estimate in 2018. Furthermore, the estimates and conclusions presented
in this section should be treated with some care because for the log-linear model that was
used, a regularity condition such as the one for DSE given by Chapman in Eq (12) may
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Table 6: Estimated number of homeless people in The Netherlands in 2021, separated by
men and women and 18 subgroups based on age, living in- or outside one of the four big
Dutch cities and country of origin.

Men Women

Gapo nMapo n101,Mapo N̂ML
Mapo N̂

Chap
Mapo ∆

Chap-ML
Mapo nWapo n101,Wapo N̂ML

Wapo N̂
Chap
Wapo ∆

Chap-ML
Wapo

1 1,956 134.07 4,279 4,263 -16 388 8.10 787 678 -109
2 1,283 45.78 4,687 4,464 -223 211 4.03 993 750 -243
3 1,130 37.41 4,458 4,304 -154 164 2.56 760 582 -178
4 516 17.62 1,006 978 -28 97 1.52 170 147 -23
5 496 9.56 2,241 2,065 -176 76 0.90 333 245 -88
6 491 41.02 1,316 1,278 -38 123 3.65 325 264 -61
7 436 36.36 1,072 1,055 -17 102 2.82 243 202 -41
8 350 12.83 1,388 1,302 -86 52 1.11 279 204 -75
9 319 11.04 1,224 1,133 -91 57 1.24 314 226 -88

10 241 7.72 555 533 -22 45 0.66 92 77 -15
11 237 6.07 1,222 989 -233 47 0.63 311 198 -113
12 224 4.84 952 890 -62 35 0.46 142 107 -35
13 201 11.23 685 586 -99 55 1.02 181 130 -51
14 106 2.71 329 274 -55 25 0.29 66 48 -18
15 95 7.82 287 275 -12 28 0.90 89 70 -19
16 91 1.44 561 435 -126 17 0.17 104 65 -39
17 46 1.15 252 194 -58 9 0.14 72 45 -27
18 35 1.90 150 120 -30 11 0.24 50 34 -16

Total 8,253 390.57 26,664 25,138 -1,526 1,542 30.44 5,311 4,072 -1,239

play a role. The fact that such a regularity condition for MSE is unknown is unfortunate,
because some of the subgroups are quite small and so the risk of not meeting a potential
regularity condition is not unrealistic. The data on homeless people in The Netherlands
that were used for this section is not publicly available due to legal restrictions.

5 Discussion

In this paper we have derived the Chapman MSE-estimator and we have shown that,
in terms of mean-bias correction, it outperforms a set of other bias-reduced MSE estima-
tors known in literature. We showed both mathematically and in a simulation study that
mean-bias correction in DSE is best achieved by means of the DSE estimator proposed by
Chapman (1951) and later by Rivest and Lévesque (2001). Furthermore we showed how
the Chapman-estimator can be derived in a different way than Chapman did. This deriva-
tion was extended towards multiple sources, which led to the Chapman MSE-estimator for
saturated models. We developed the Chapman MSE-estimator such that it can be applied
under both a saturated and restricted model. This generalisation was achieved by using
the MPI and for a small set of different restricted models it was proven mathematically
that this approach leads to bias-corrected estimators. We used a simulation study to inves-
tigate bias in a larger set of restricted models and we found that also for these models the
Chapman MSE-estimator shows little or no bias.

The mathematical derivations and simulation studies in this paper show that for any
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restricted model with three sources or a saturated model with any number of sources, the
Chapman MSE-estimator is a bias-corrected estimator. We suspect that this result can be
generalised towards any restricted model with any number of sources, although we did
not provide a mathematical proof. We think that further research that proofs, or disproofs,
our suspicion would be valuable.

The simulation studies also show that the Chapman MSE-estimator outperforms other
estimators in terms of a smaller size of bias and SD, and thus RMSE, in particular when the
estimated log-linear model has more interaction parameters. This advantage is important
because in practice the model that is used is usually the result of some model selection
procedure, which does not guarantee the selection of the correct model. When such a
selection procedure selects a model with irrelevant parameters, this increases the variance
of the population size estimate. This increase is less for the Chapman MSE-estimator than
for the other estimators considered.

In Section 4 we applied the Chapman MSE-estimator to estimate the number of home-
less people in The Netherlands for a series of years and compared these estimates with
the ML estimates. For each year both estimates are based on the same log-linear model
as discussed in Coumans et al. (2017). This comparison showed that the impact of bias-
correction can be substantial, e.g., in our example the use of the Chapman MSE-estimator
led to a Chapman MSE estimate that was between 9.3% and 25.4% lower for the total
number of homeless people in The Netherlands, as compared to the corresponding ML-
estimator. This relative difference became even larger, going up to 51%, when we zoomed
in on the subgroup of women.

The simulation studies and the example in Section 4 show that the difference between
the Chapman MSE- and the standard ML-estimator can be substantial. This raises the
question whether finite-sample bias correction should not have a more prominent role in
the discussion on the robustness of MSE methodology and the accuracy of MSE estimates,
which continues up till today (see e.g. Binette & Steorts, 2022; Silverman, 2020).

Finally, a topic that received little or no attention in MSE literature, but what would
be valuable to investigate, is regularity conditions. Chapman gave a regularity condition
for his DSE estimator, but similar regularity conditions for MSE estimators are unknown.
This topic is also beyond the scope of this paper but we think that this is an important
remaining problem for MSE estimators in general, including the Chapman MSE-estimator.

Software

All simulation studies in this paper are performed in the statistical software program R
(R Core Team, 2022). All estimates are obtained with the glm() function, with family

= poisson(link = "log"). Differences between the LP, ML, Chapman, Bailey, EB,
RL and Chapman MSE estimates are the sole result of different input vectors nest. For
the IND model the estimation results for the RL-estimator were verified with the func-
tion closedp.bc() with m = "Mt" from the R-package Rcapture (Rivest, 2022). The
Cordeiro-, Firth- and Kosmidis-estimator (N̂CFK) were also calculated with the glm()
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function, but with the additional settings method = "brglmFit" and type = "cor-

rection", type = "AS mean" and type = "MPL Jeffreys", respectively, which are
part of the R-package brglm2 (Kosmidis & Kenne Pagui, 2023). Code for the simulation
studies presented in this paper is available at
https://github.com/DaanZult/ChapmanMSE/.

Author contributions statement

D.Z. derived the Chapman MSE-estimator, did the set up and programming of the simu-
lation studies, and wrote the manuscript. P.H. had the initial idea for the study and edited
the manuscript. B.B. edited the manuscript.

Acknowledgements

The authors thank Jeroen Pannekoek, Peter-Paul de Wolf, Sander Scholtus and Moniek
Coumans from Statistics Netherlands for their detailed comments and suggestions on this
paper.

25

https://github.com/DaanZult/ChapmanMSE/


References

Bailey, N. T. J. (1951). On estimating the size of mobile populations from recapture data.
Biometrika, 38(3/4), 293–306. (link) doi: 10.2307/2332575

Berkson, J. (1955). Maximum likelihood and minimum χ2 estimates of the logistic function.
Journal of the American Statistical Association, 269(50), 130–162. (link) doi: 10.1080/
01621459.1955.10501254

Binette, O., & Steorts, R. C. (2022). On the reliability of multiple systems estimation for
the quantification of modern slavery. Journal of the Royal Statistical Society Series A:
Statistics in Society, 185(2), 640–676. (link) doi: 10.1111/rssa.12803

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis.
Springer New York, NY. Retrieved from https://link.springer.com/book/

10.1007/978-0-387-72806-3 (link 10.1007/978-0-387-72806-3) doi: 10.1007/
978-0-387-72806-3

Chao, A., Tsay, P. K., Lin, S. H., & Chao, D. Y. (2001). The applications of capture-recapture
models to epidemiological data. Statistics in Medicine, 20, 3123–3157. (link) doi:
10.1002/sim.996

Chapman, D. G. (1951). Some properties of the hypergeometric distribution with
applications to zoological sample censuses. Berkeley, University of California
Press. Retrieved from https://babel.hathitrust.org/cgi/pt?id=wu

.89045844248&view=1up&seq=3

Chapman, D. G. (1952). Inverse, multiple and sequential sample censuses. Biometrics, 8(4),
286–306. (link) doi: 10.2307/3001864

Chapman, D. G. (1954). The estimation of biological populations. The Annals of Mathemat-
ical Statistics, 25(1), 1–15. (link)

Cordeiro, G. M., & McCullagh, P. (1991). Bias correction in generalized linear models. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 53(3), 629–643. Retrieved
from https://www.jstor.org/stable/2345592 (link)

Cormack, R. M., & Jupp, P. E. (1991). Inference for poisson and multinomial models
for capture-recapture experiments. Biometrica, 78(4), 911–916. (link) doi: 10.2307/
2336943

Coumans, M. A., Cruyff, M., Van der Heijden, P. G. M., Wolf, J., & Schmeets, H. (2017). Es-
timating homelessness in the netherlands using a capture-recapture approach. Social
Indicators Research, 130(1), 89–212. (link) doi: 10.1007/s11205-015-1171-7

Cramer, H. (1922). Mathematical methods of statistics. Princeton University Press, Lon-
don. Retrieved from https://archive.org/details/in.ernet.dli.2015

.149716/page/n515/mode/2up (link)
Darroch, J. N. (1958). The multiple-recapture census: I. estimation of a closed population.

Biometrika, 45(3/4), 343–359. (link) doi: 10.2307/2333183
Darroch, J. N., Fienberg, S. E., Glonek, G. F. V., & W, J. B. (1993). A three-sample multiple-

recapture approach to census population estimation with heterogeneous catchability.
Journal of the American Statistical Association, 88(423), 1137–1148. (link) doi: 10.2307/

26

https://doi.org/10.2307/2332575
https://doi.org/10.1080/01621459.1955.10501254
https://doi.org/10.1111/rssa.12803
https://link.springer.com/book/10.1007/978-0-387-72806-3
https://link.springer.com/book/10.1007/978-0-387-72806-3
https://esl.hohoweiya.xyz/references/Discrete-Multivariate-Analysis.pdf
https://doi.org/10.1002/sim.996
https://babel.hathitrust.org/cgi/pt?id=wu.89045844248&view=1up&seq=3
https://babel.hathitrust.org/cgi/pt?id=wu.89045844248&view=1up&seq=3
https://doi.org/10.2307/3001864
https://www.jstor.org/stable/2236510
https://www.jstor.org/stable/2345592
https://www.jstor.org/stable/2345592
https://doi.org/10.1093/biomet/78.4.911
https://doi.org/10.1007/s11205-015-1171-7
https://archive.org/details/in.ernet.dli.2015.149716/page/n515/mode/2up
https://archive.org/details/in.ernet.dli.2015.149716/page/n515/mode/2up
https://archive.org/details/in.ernet.dli.2015.149716/page/n515/mode/2up
https://www.jstor.org/stable/2333183
https://doi.org/10.2307/2290811


2290811
Evans, M. A., & Bonett, D. G. (1994). Bias reduction for multiple-recapture estimators of

closed population size. Biometrics, 50(2), 388–395. (link) doi: 10.2307/2533382
Evans, M. A., Bonett, D. G., & McDonald, L. L. (1994). A general theory for modeling

capture-recapture data from a closed population. Biometrics, 50(2), 396–405. (link)
doi: 10.2307/2533383

Fienberg, S. E. (1972). The multiple recapture census for closed populations and incom-
plete 2k contingency tables. Biometrika, 59(3), 591–603. (link) doi: 10.2307/2334810

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1), 27–38.
(link) doi: 10.2307/2336755

Gerritse, S. C., van der Heijden, P. G. M., & Bakker, B. F. M. (1993). Sensitivity of population
size estimation for violating parametric assumptions in log-linear models. Journal of
Official Statistics, 80(3), 357–379. (link) doi: https://doi.org/10.1515/jos-2015-0022

Hald, A. H. (1952). Statistical theory with engineering applications. John
Wiley & Sons, Inc. Retrieved from https://archive.org/details/

statisticaltheor0000ahal/mode/2up?view=theater (link)
Hammond, C., van der Heijden, P. G. M., & Smith, P. A. (2023). Generating contingency

tables with fixed marginal probabilities and dependence structures described by log-
linear models. arXiv preprint arXiv:2303.08568. Retrieved from https://doi.org/

10.48550/arXiv.2303.08568 (link)
International Working Group for Disease Monitoring and Forecasting. (1995). Capture-

recapture and multiple-record systems estimation I: History and theoretical devel-
opment. American Journal Epidemiology, 142(10), 1047–1058. (link) doi: 10.1093/
oxfordjournals.aje.a117559

Kosmidis, I. (2007). Bias reduction in exponential family nonlinear models (Doctoral disser-
tation, The University of Warwick). Retrieved from https://www.ikosmidis

.com/files/ikosmidis thesis.pdf (link)
Kosmidis, I. (2014). Bias in parametric estimation: reduction and useful side-effects. WIREs

Comput Stat, 6(3), 185–196. (link) doi: 10.1002/wics.1296
Kosmidis, I., & Firth, D. (2011). Multinomial logit bias reduction via the poisson log-linear

model. Biometrika, 98(3), 755–759. Retrieved from https://www.jstor.org/

stable/23076146 (link)
Kosmidis, I., & Firth, D. (2021). Jeffreys-prior penalty, finiteness and shrinkage in binomial-

response generalized linear models. Biometirka, 108, 71–82. (link) doi: 10.1093/
biomet/asaa052

Kosmidis, I., & Kenne Pagui, E. C. (2023). brglm2: Bias reduction in generalized linear
models [Computer software manual]. Retrieved from https://cran.r-project

.org/web/packages/brglm2/brglm2.pdf (link )
Kosmidis, I., Kenne Pagui, E. C., & Sartori, N. (2020). Mean and median bias reduction in

generalized linear models. Statistics and Computing, 30, 43–59. (link) doi: 10.1007/
s11222-019-09860-6

27

https://doi.org/10.2307/2533382
https://doi.org/10.2307/2533383
https://doi.org/10.2307/2334810
https://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/GibbsFieldEst/BiasReductionMLE.pdf
https://sciendo.com/article/10.1515/jos-2015-0022
https://archive.org/details/statisticaltheor0000ahal/mode/2up?view=theater
https://archive.org/details/statisticaltheor0000ahal/mode/2up?view=theater
https://archive.org/details/statisticaltheor0000ahal/mode/2up?view=theater
https://doi.org/10.48550/arXiv.2303.08568
https://doi.org/10.48550/arXiv.2303.08568
https://doi.org/10.48550/arXiv.2303.08568
https://doi.org/10.1093/oxfordjournals.aje.a117559
https://www.ikosmidis.com/files/ikosmidis_thesis.pdf
https://www.ikosmidis.com/files/ikosmidis_thesis.pdf
https://www.ikosmidis.com/files/ikosmidis_thesis.pdf
 https://doi.org/10.1002/wics.1296
https://www.jstor.org/stable/23076146
https://www.jstor.org/stable/23076146
https://www.jstor.org/stable/23076146
https://doi.org/10.1093/biomet/asaa052
https://cran.r-project.org/web/packages/brglm2/brglm2.pdf
https://cran.r-project.org/web/packages/brglm2/brglm2.pdf
https://cran.r-project.org/web/packages/brglm2/brglm2.pdf
https://doi.org/10.1007/s11222-019-09860-6


Lincoln, F. C. (1930). Calculating waterfowl abundance on the basis of banding returns (Vol. 118).
United States Department of Agriculture. (link) doi: 10.5962/bhl.title.64010

Long, J. S. (1997). Regression models for categorical and limited dependent variables (Vol. 7).
SAGE Publications, Inc.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Second ed.). London:
Chapman and Hall. (link) doi: 10.1201/9780203753736

Miller, D. M. (1984). Reducing transformation bias in curve fitting. The American Statisti-
cian, 38(2), 124–126. (link) doi: 10.2307/2683247

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the
American Mathematical Society., 26(9), 394–395. (link) doi: 10.1090/S0002-9904-1920
-03322-7

Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference
from capture data on closed animal populations. Wildlife Monographs, 62, 3–135. Re-
trieved from https://www.jstor.org/stable/3830650 (link)

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cam-
bridge Philosophical Society., 51(3), 406–413. (link) doi: 10.1017/S0305004100030401

Petersen, C. G. J. (1896). The yearly immigration of young plaice into the lim-
fjord from the german sea. Report of the Danish Biological Station, 6, 5–84. Re-
trieved from https://archive.org/details/reportofdanishbi06dans/

page/n1/mode/2up (link)
Plackett, R. L. (1981). The analysis of categorical data (Second ed.). New York: Macmillan.
R Core Team. (2022). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. (link)
Rainey, C., & McCaskey, K. (2021). Estimating logit models with small samples. Political

Science Research and Methods, 9(3), 549–564. (link) doi: 10.1017/psrm.2021.9
Rivest, L.-P. (2022). Rcapture: Loglinear models for capture-recapture experiments

[Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=brglm2 (link)
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A Comparison of Taylor approximation and Stephan’s inverse fac-
torial approximation

The Taylor expansion that was also used by Bailey (1951) is a widely used approximation
approach, but it is not always the most accurate or efficient method to approximate a func-
tion. To illustrate that the inverse factorial (IF) expansion (see e.g. Stephan, 1945) used by
Chapman (1951) gives more accurate results for E

[
1

n11

]
, given the same number of expan-

sion terms, than a Taylor expansion, we provide a straightforward simulation study. With
r replications of n11,r ∼ Poisson(m11), we can write five-term expansion Taylor and IF
approximations for E

[
1

n11

]
as

Taylor → E
[

1

n11

]
= E

[
1

m11
− (n11 −m11)

m2
+

(n11 −m11)
2

m3
11

−

(m11 − n11)
3

m4
11

+
(m11 − n11)

4

m5
11

− . . .

]
where m11 will be estimated by m̂11 =

∑
r n11,r/r, and

IF → E
[

1

n11

]
≈

∑
r

(
1

n11,r + 1

)
/r +

∑
r

(
1

(n11,r + 1) (n11,r + 2)

)
/r+

∑
r

(
2

(n11,r + 1) (n11,r + 2) (n11,r + 3)

)
/r+

∑
r

(
6

(n11,r + 1) (n11,r + 2) (n11,r + 3) (n11,r + 4)

)
/r+

∑
r

(
24

(n11,r + 1) (n11,r + 2) (n11,r + 3) (n11,r + 4) (n11,r + 5)

)
/r

Table A1 shows the results for both approximation methods and their difference ∆ for
m11 = 20 and r = one million.

Table A1: Simulated approximations of E
[

1
n11

]
, with n11,r ∼ Poisson(m11 = 20) and r =

one million, which gives E
[

1
n11

]
≈

(∑
r

1
n11,r

)
/r = 0.052805.

# Terms Taylor ∆(E
[

1
n11

]
− Taylor) IF ∆(E

[
1

n11

]
− IF)

1 0.050001 0.002804 0.050006 0.002799
2 0.050001 0.002804 0.052507 0.000298
3 0.052505 0.000299 0.052757 0.000048
4 0.052379 0.000426 0.052794 0.000010
5 0.052763 0.000042 0.052802 0.000003

Table A1 shows that, for n11,r ∼ Poisson(mr = 20) and five or less expansion terms, the
IF approximation method used by Chapman (1951) gives a more accurate approximation
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of E
[

1
n11

]
≈

(∑
r

1
n11,r

)
/r = 0.052805 than the Taylor approximation method.

B Second-order Taylor approximation of the Lincoln-Petersen-estimator

Here we present an alternative derivation of a bias-reduced LP-estimator. This derivation
shows that the Chapman-estimator can be approximated with the well-known Taylor ap-
proximation. We write the LP-estimator as a Taylor series approximation. When we start
with some function f(n) of the three random variables n11,n10 and n01, and approximate
it around m, this gives:

f(n) = f(m) + (n−m)⊤∇f(m) +
1

2
(n−m)⊤∇∇f(m)(n−m) +O(||(n−m)⊤||)2)

with

∇f(m) =


∂f(n)
∂n11
∂f(n)
∂n10
∂f(n)
∂n01


m

and

∇∇f(m) =


∂2f(n)
∂n2

11

∂2f(n)
∂n11∂n10

∂2f(n)
∂n11∂n01
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∂n10∂n11

∂2f(n)
∂n2

10

∂2f(n)
∂n10∂n01

∂2f(n)
∂n01∂n11

∂2f(n)
∂n01∂n10

∂2f(n)
∂n2

01


m

Replacing f(n) with m̂LP
00 = n10n01

n11
gives:

∇f(n) =


−n10n01

n2
11

n10
n11
n01
n11


and

∇∇f(n) =


2n10n01

n3
11

−n01

n2
11

−n10

n2
11

−n01

n2
11

0 1
n11

−n10

n2
11

1
n11

0
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Therefore, because E
[
(n−m)⊤∇f(m)

]
= 0, we find:

E
[
n10n01

n11

]
≈m10m01

m11
+

Cov (n10, n01)

m11
− m10Cov (n11, n01)

m2
11

− m01Cov (n11, n10)

m2
11

+

m10m01Var (n11)

m3
11

. (33)

For the Poisson distribution we have Cov (nab, n̸=ab) = 0 and Var (nab) = mab, and for the
multinomial distribution we have Cov (nab, n̸=ab) = −Npabp ̸=ab and Var (nab) = Npab(1−
pab) with pab = mab/N . Then, for both nab ∼ Poisson(mab) and the joint set (n11, n10, n01, n00) ∼
Multinomial(m11,m10,m01,m00), Eq. (33) reduces to:

E
[
n10n01

n11

]
≈ m11m10m01 +m10m01

m2
11

=
m10m01

m11

m11 + 1

m11
. (34)

This implies that E
[
n10n01
n11

]
m11

m11+1 removes the second-order Taylor approximation bias
from the LP-estimator, which suggests that multiplying the LP-estimator with n11

n11+1 , which
gives the Chapman-estimator, is an improvement over the LP-estimator.

C Tables with SDs and RMSEs

C.1 DSE

Table C1: The SDs and RMSEs for the simulation study presented in Table 1.

S SDLP SDBailey SDEB/CFK SDChap/RL RMSELP RMSEBailey RMSEEB/CFK RMSEChap/RL

1 27.8† 20.8 25.8 21.9 28.3† 21.2 26.3 21.9
2 28.7 22.2 26.3 23.0 29.3 22.3 26.8 23.0
3 70.2 65.6 68.9 66.5 70.7 65.9 69.3 66.5
4 85.7 78.9 83.3 79.7 86.5 79.0 83.8 79.7
5 460.9 457.9 459.9 458.4 461.2 458.1 460.1 458.4
6 411.3 409.3 410.7 409.6 411.7 409.3 410.9 409.6
7 109.6† 45.8 104.2 48.8 118.9† 47.5 107.9 49.4

A † as superscript indicates that extremely high estimates due to failures were replaced with the
highest Chapman estimate in the simulation sample.
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C.2 MSE with saturated models

Table C2: The SDs of the estimates for saturated MSE models, as presented in Table 3.

S N SDML,SAT SDEB,SAT SDCFK,SAT SDRL,SAT SDChap MSE,SAT

1 100 47.0† 54.7 40.2 29.6 23.6
2 500 103.9 102.4 101.0 93.9 89.4
3 10,000 364.2 364.1 364.0 362.8 362.1

4 100 58.5† 72.5 46.9 33.3 25.4
5 500 111.9 109.6 107.5 99.9 94.6
6 10,000 373.4 373.2 373.0 371.9 371.2

7 100 76.9† 86.4 51.1 34.1 24.7
8 500 139.9 132.6 126.8 114.7 105.6
9 10,000 391.8 391.6 391.4 390.0 389.1

10 100 66.5† 71.4 44.7 30.5 22.7
11 500 128.8† 134.3 123.4 111.2 103.0
12 10,000 394.5 394.3 394.1 392.7 391.8

13 20,000 636.7 636.5 635.9 635.4 628.6
14 20,000 725.3 725.0 724.4 723.5 714.3

A † as superscript indicates that extremely high estimates due to failures were replaced with the
highest Chapman MSE estimate in the simulation sample.
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Table C3: The RMSEs of the estimates for saturated MSE models, as presented in Table 3.

S N RMSEsML,SAT RMSEsEB,SAT RMSEsCFK,SAT RMSEsRL,SAT RMSEsChap MSE,SAT

1 100 48.7† 56.1 41.7 29.8 23.6
2 500 106.0 104.6 103.2 94.1 89.4
3 10,000 364.5 364.4 364.3 362.8 362.1

4 100 60.5† 73.9 48.4 33.4 25.4
5 500 114.7 112.3 110.1 100.2 94.6
6 10,000 373.7 373.5 373.4 371.9 371.2

7 100 79.8† 88.4 52.8 34.3 24.7
8 500 143.5 136.1 130.2 115.1 105.6
9 10,000 392.3 392.1 392.0 390.1 389.1

10 100 68.8† 73.1 46.2 30.6 22.8
11 500 132.2† 137.6 126.9 111.6 103.0
12 10,000 394.9 394.8 394.7 392.7 391.7

13 20,000 638.8 638.6 638.0 636.8 628.6
14 20,000 726.9 726.8 726.2 724.6 714.3

A † as superscript indicates that extremely high estimates due to failures were replaced with the
highest Chapman MSE estimate in the simulation sample.

C.3 MSE with restricted models

Table C4: The SDs of the estimates for the correct restricted MSE models, as presented in
Table 5.

S N SDML,LLM+
SDEB,LLM+

SDCFK,LLM+
SDRL,LLM+

SDChap MSE,LLM+

1 100 8.0 7.9 8.0 8.0 7.8
2 500 28.5 28.3 28.5 28.4 28.3
3 10,000 125.9 125.8 125.8 125.8 125.8

4 100 11.7 11.4 11.6 10.9 11.0
5 500 41.2 40.7 41.0 40.1 40.3
6 10,000 164.4 164.3 164.3 164.2 164.2

7 100 15.4† 15.4 14.3 13.1 12.3
8 500 48.3 47.9 47.5 46.6 45.8
9 10,000 192.8 192.8 192.7 192.5 192.4

13 20,000 116.3 116.3 116.3 116.3 116.3
14 20,000 175.3 175.3 175.3 175.2 175.2

A † as superscript indicates that extremely high estimates due to failures were replaced with the
highest Chapman estimate in the simulation sample.
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Table C5: The RMSEs of the estimates for the correct restricted MSE models, as presented
in Table 5.

S N RMSEML,LLM+
RMSEEB,LLM+

RMSECFK,LLM+
RMSERL,LLM+

RMSEChap MSE,LLM+

1 100 8.0 8.0 8.1 8.0 7.8
2 500 28.6 28.3 28.6 28.4 28.3
3 10,000 125.9 125.8 125.9 125.8 125.8

4 100 11.8 11.4 11.8 10.9 11.0
5 500 41.4 40.8 41.2 40.1 40.3
6 10,000 164.4 164.3 164.4 164.2 164.2

7 100 15.7† 15.7 14.6 13.2 12.3
8 500 48.6 48.2 47.8 46.6 45.8
9 10,000 192.9 192.8 192.8 192.6 192.4

13 20,000 116.3 116.3 116.3 116.3 116.3
14 20,000 175.3 175.3 175.3 175.2 175.2

A † as superscript indicates that extremely high estimates due to failures were replaced with the
highest Chapman estimate in the simulation sample.
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