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Abstract

Demand for delivery of take-away meals to customers has been growing world-

wide, with deliveries often performed by non-specialised gig economy couriers

working for online platform operators such as Deliveroo or Just Eat. This has

led to the introduction of the ‘meal delivery problem’, characterised by a se-

ries of individual pickup and delivery tasks to be assigned to available couriers.

While there is a vast set of algorithms proposed in the literature that aim to

minimise total workload, very little attention has been given to equitably dis-

tributing work between couriers. We propose a new multi-objective problem

that is aiming at distributing orders equitably between couriers as well as min-

imising total workload, where all information is known upfront. We propose

an integer linear programming (ILP) model with a weighted objective function

that is used to derive the Pareto front in small-scale problems by exploiting the

ϵ−constraint approach. This formulation has been proven to solve in a reason-

able time for problems with up to 60 orders, however, the optimal Pareto front

can only be computed within a reasonable time for problems up to 30 orders.

For problems with more orders, we propose a Variable Neighbourhood Search
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(VNS) algorithm, for which the fitness evaluation evolves in order to explore a

wider set of the solution space. The VNS is compared against the ILP and also

tested on more realistic size instances with up to 3123 orders, improving the

performance over the business as usual and shows that equitable distribution of

work can be achieved alongside reducing the total travelled distance.

Keywords: food delivery, vehicle routing, fairness, variable neighbourhood

search, integer linear programming

1. Introduction

The demand for delivery of take-away meals to customer homes, workplaces

or other locations has been increasing rapidly, worldwide, in recent years, en-

abled by online platform technology and growth in companies that offer cus-

tomers a range of restaurant menu options, manage payments and arrange

deliveries (Dablanc et al., 2017). In the United Kingdom, the meal deliv-

ery market was estimated to be worth around 8.5 billion British pounds, in

2019, with around 11 million users ordering from major operators such as Just

Eat, Domino’s, Deliveroo and Uber Eats (Chartered Institute of Environmental

Health (2020)).

This growth has led to increasing interest from both practitioners and the OR

community in how to arrange an effective delivery service, where, typically, the

main objectives are fast deliveries (e.g. within one hour) at low cost. Delivery

is often performed by so-called gig economy couriers: non-specialised people

registered with one or more online platform companies to undertake individual

delivery tasks using their own transport (e.g. bike, motorbike, van or car).

This operating model and practice has received much criticism about per-

ceived unfair treatment of couriers relating to low pay, lack of employment

rights, lack of managerial support and job insecurity (Nolan (2018), Broughton

et al. (2018), Field & Forsey (2018) and Cant (2020)), in addition to courier

concerns relating to personal safety, and security of their vehicles while working

(Dablanc et al. (2017) and Christie & Ward (2018)). Low pay is often linked to
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the practice of being paid a fixed amount for a given order completed, rather

than an hourly rate, which means that the courier is effectively unpaid for any

excess waiting time at restaurants (when meal preparation has been delayed)

or at delivery addresses (e.g. when customers cannot be found) (Cant (2020)).

In addition, this operating model can encourage the platform companies to hire

too many couriers for the available work at any given time, as this does not

directly cost the company and is of benefit to them in terms of ensuring fast

delivery. However, this has a negative impact on individual couriers as they will

receive fewer orders and wait longer between them, with this further source of

waiting time also being unpaid. Some couriers also complain about perceived

app biases that appear to favour some couriers over others in allocating orders

(Cant (2020)). The purpose of this paper is to consider food delivery routing

and scheduling methods that are fairer to couriers by distributing work more

equitably between them, without unduly compromising delivery cost or time

taken.

Section 2 includes a review of related literature. Section 3 introduces the

problem and formalises it in Section 4 by proposing an Integer Linear Program-

ming (ILP) model. The model includes several objectives, which are embedded

into an ϵ−constraint approach proposed in Mavrotas & Florios (2013) to derive

or approximate the Pareto front, including balancing orders, minimising travel

time and minimising waiting time. To solve larger and more practical prob-

lems, we propose a Variable Neighbourhood Search (VNS), described in Section

5. The VNS starts with a solution obtained by greedy rules typically used by

platforms to sequentially assign orders to couriers (Section 5.1). These solutions

are aimed to capture behaviour of the business-as-usual (BAU) solutions used

by platforms. Finally, in Section 6 we compare the VNS against the approxi-

mated Pareto front obtained by the ILP models for a small-scale problem and

against the business-as-usual (BAU) solution for larger problems.
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2. Literature review

The meal delivery problem (MDP) is relatively new within OR literature,

introduced by Reyes et al. (2018), where their main goal was to maximise the

number of delivered orders while also considering delivery costs, based on fixed

payments per order and a guaranteed minimum wage, and customer waiting

times (time between ordering and delivery). The authors built a comprehensive

set of problem instances generated from real world historic data, available at

https://github.com/grubhub/mdrplib and used in this paper.

Vidal et al. (2020) presented a comprehensive guide to emerging vehicle rout-

ing problem variants in which different variants of pickup and delivery prob-

lems were discussed. MDP are pickup and delivery vehicle routing problems

(PDVRP) where goods are to be collected from specific locations (e.g. restau-

rants) and delivered to customers. They differ from the commonly studied ca-

pacitated vehicle routing problem (CVRP), where all goods are picked up from

a depot. Another variant of PDVRP considers items that need to be collected

and delivered from customers at the same time. A review paper on this variant

can be found in Koç et al. (2020). In Arslan et al. (2018), the authors assessed

the impact of crowdsourcing in the dynamic PDVRP for parcel delivery under

various assumptions about the behaviour of the ad hoc couriers.

The main difference between the general PDVRP and MDP derives from the

time window constraints. The MDP has extremely tight delivery time windows,

to the extent that only orders from the same restaurant at similar times can

potentially be combined with one another (Reyes et al. (2018), Yildiz & Savels-

bergh (2019)) and, in UK practice, Cant (2020) reported that opportunities to

combine orders were very rare. This makes a major difference since two consec-

utive pickups for different customers are generally not allowed in the MDP and,

therefore, the flexibility on designing a routing plan is more limited. However,

the assignment of orders to couriers has a direct impact on the quality of the

solution and the efficient use of the couriers, which commonly are measured

by the total waiting time of the couriers and the distance travelled by couriers
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between orders.

There are exact algorithms based on mathematical formulations for some of

these problems. In Aziez et al. (2020), a rolling horizon framework was proposed

to solve the dynamic PDVRP with ad hoc couriers and they developed an exact

solution approach that solves the matching problem between ad hoc couriers

and parcels every time new information is available. In Cosmi et al. (2019), the

authors explored the single courier, single restaurant, MDP. In this case, there

was no routing to be planned and the authors reduced it to a single machine

scheduling problem. A dynamic programming model was then proposed, which

can be solved in polynomial time when the slacks are bounded. Baldacci et al.

(2011) proposed an exact algorithm based on the set partitioning integer linear

programming model of the CVRP, in which the authors improved by enhancing

valid inequalities and reducing the problem size by using the dual solution. In

Dahle et al. (2019), the authors extended the PDVRP by considering occasional

couriers, and the exact algorithm proposed was able to optimally solve the

problem with up to 70 requests.

There are more recent papers in the literature targeting the efficiency from

the platform’s perspective. In Zheng et al. (2022) the authors explored an online

food delivery problem in which the problem is decomposed into two coupled

problems: an order assignment problem (assigning orders to couriers), and a

stochastic vehicle routing problem. The objective function considered in Zheng

et al. (2022) aims to minimise the total time taken, which might result in un-

balanced solutions that can be considered unfair from a courier’s perspective.

In most of the publications on the MDP the main focus is on minimising the

total cost and maximising the number of orders delivered. A relatively quick

delivery time is usually offered to the customer to attract their custom and us-

ing couriers efficiently is key to this goal. In common practice, couriers are paid

an agreed amount per delivery order with no guarantee of earning a minimum

hourly rate (Cant (2020)) whereas Reyes et al. (2018) modelled additional com-

pensation payments to couriers where the number of orders assigned to them did

not meet an agreed minimum number. Meal delivery platform companies will
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typically assign the next order to whichever courier is available and nearest to

the pickup point with no consideration of fairly distributing work between couri-

ers ((Cant (2020)). This can result in unbalanced earnings between couriers as

some receive more orders than others either through luck or courier experience

in being in the right place at the right time, or created by any inherent platform

biases where some couriers or vehicle types are prioritised over others.

There has been recent interest in finding balanced solutions in several routing

problems, as well as new variants and mathematical formulations to address

fairness in various optimisation problems (see Bektaş & Letchford (2020)). In

Bektaş et al. (2019), a branch and cut algorithm for the balanced vehicle routing

problem (BVRP) is proposed, where the aim is to balance the number of nodes

on each route in the final solution. This problem was first introduced in Gouveia

& Salazar-González (2010). This is aligned with the aims of this work since one

node could represent a specific order. However, in Bektaş et al. (2019), the

balancing feature was addressed in the constraints, by assuming a lower bound

and an upper bound on the number of orders in any route. In this paper we

introduce this fairness component as one of the terms in the objective function.

The delivery problem addressed in this work accounts for four different ob-

jectives, and the multi-criteria aspect brings to the problem the possibility to

define many different fitness functions that can be used in any heuristic al-

gorithm to approximate the Pareto front. These fitness functions are usually

derived by setting different weights to the objectives and then solving a single-

objective problem. However, the exact Pareto front (or good approximations) is

much more complex to compute in practice, and generally rely on ϵ−constraint

methods, where all the objectives but one are regarded as constraints, and then

the model is solved many times by changing the constraint set in a structured

way. In Mavrotas (2009) the author proposed an efficient implementation of

the ϵ−constraint method, named as AUGMECON (AUGMented Epsilon CON-

straint), accelerating the process by avoiding the calculation of weak solutions

and reducing overall iterations of the process. A more effective approach is

presented in Mavrotas & Florios (2013), named as AUGMECON2, which is
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capable of efficiently approximating the Pareto front to produce competitive re-

sults for larger problems, compared to multi-objective meta-heuristics. In this

work we have used the AUGMECON2 algorithm to derive good approximations

on small-scale problems.

3. Problem description

In this paper we consider different aspects of fairness as objectives in the

optimisation algorithm. We assume that the number of orders (I) and the set

of couriers (J) is known and that |J | is sufficiently large to meet all the orders.

All couriers are assigned to a shift with a maximum working time (‘shift length’)

of Tmax, and they can have different starting times across the day. The aim is

to assign all the orders to couriers in such a way that the following objectives,

in order of importance, are optimised:

1. The range in the number of orders undertaken by couriers is minimised.

(For example, if all undertake the same number of orders then the range

is zero.)

2. The travel time between orders (from delivery to next pickup) is min-

imised. (Note: the travel time within an order, from pickup to delivery, is

assumed to be fixed for any given mode of transport.)

3. The total waiting time between orders is minimised

4. The range in the proportion of waiting time (i.e. ratio of waiting time to

shift length) across all the couriers is minimised.

The four objectives consider both fairness and efficiency aspects. We con-

sider balancing orders between couriers to be the primary objective as, in prac-

tice, this dictates the pay they will receive. The second and third objectives

both relate to how efficiently the work is undertaken. The fourth objective

also relates to fairness, aiming at balancing the proportion of waiting time each

courier incurs, as this is effectively unpaid time.

Each order i ∈ I has an associated pickup location, ci, a delivery location, di

and a required pickup time ti. Immediate delivery is assumed (i.e. no waiting
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for another order), so delivery time is known once the mode of transport used

by the courier assigned to the order is determined. We represent by tsj (tfj ) the

start (finish) working time of courier j ∈ J and mj is the mode of transport

used by courier j, mj ∈ {1, . . . ,m}, where m is the number of different modes of

transport available. This differentiation between transport modes is only needed

when computing the travel times of the route plan for the couriers. We denote

by tma,b the travel time between locations a and b by transport mode m. In our

experiments we only consider bikes (m = 1) and motorbikes (m = 2) but this

can be easily extended to any other combination using any type of transport. In

this paper we assume that the travel times tma,b are given. In order to assess the

impact of the transport modes in Section 6 we created several problem instances

by sampling the travel times from real data. However, in order to be able to use

the model proposed in this work some estimates on travel times will be required.

The length of each shift is limited by a specified maximum value, which, in

practice, would be determined either by the courier or by the company they

work for. We denote by Tmax the maximum time allowed in a shift for any

courier. Therefore, in any solution or plan it is assumed that each courier j ∈ J

is assigned to a shift with a starting time tsj and finish time tsj + Tmax. If a

courier arrives at a collection point before the meal is ready to collect then the

courier should wait at that location, and some waiting time is incurred. The

time between the last delivery tfj and the end of the shift, tsj +Tmax, is regarded

as unused time, which differs from waiting time. We assume that the courier

can use that time for other purposes, e.g. going home early or working with

another platform.

In Figure 1 we present an illustrative example with three cycle couriers, eight

orders and three different solutions (plans). Lets assume in this example that

each courier is available to work for up to 3 hours. The first plan, using all

three couriers, has a total travel time (cycling) of 3.5 hours, which is the lowest

of the three plans shown, but the orders are unevenly distributed between the

Page 8
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Figure 1: Example with 3 couriers, 8 orders, comparing three plans.

- One order assigned
- 1 h cycling 
- No waiting 
- Unused time 2h

- Four orders assigned
- 1.5 h cycling 
- 0.5 h  waiting
- Unused time 1h

- Three orders assigned
- 1 h cycling 
- 2 h  waiting
- Unused time 0h

- Two orders assigned
- 1.5 h cycling 
- 0.5 h waiting 
- Unused time 1h

- Three orders assigned
- 1.5 h cycling 
- 1 h waiting
- Unused time 0.5h

- Three orders assigned
- 1.5 h cycling 
- 1 h waiting
- Unused time 0.5h

- Four orders assigned
- 2.5 h cycling 
- 0.5 h waiting 
- Unused time 0h

- Four orders assigned
- 2.5 h cycling 
- 0.5 h waiting
- Unused time 0h

Not working

Plan 1 Plan 2 Plan 3

couriers, whereas plan 2 has a more even distribution of orders but the total

travel time increases to 4.5 hours. Even though the number of couriers is not

being minimised in this work, it is worth pointing out that plan 3 provides

more work (= more pay) for the two couriers used and would be best from

the couriers’ perspective, so limiting the number of couriers is key to offering

sustainable shifts.

4. ILP model

LetRm be the set of all the feasible routes by transport modem ∈ {1, . . . ,m}.
Each route r ∈ Rm is defined by a subset of orders, r = {i1, . . . , i|r|}. We can

assume that the orders in r are sorted by increasing collection time (or deliv-

ery time). Then, route r stops in the following locations in the given order

(ci1 , di1 , ci2 , di2 , . . . , ci|r| , di|r|). The travel time within the orders (from pickup

to delivery) on route r can be computed as

Dw
r =

∑

i∈r

tmci,di

Page 9
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The travel time between orders (from delivery to next pickup) of route r can be

calculated as

Db
r =

∑

i∈{1,...,|r|−1}
tmdi,ci+1

Let R =
⋃

m∈{1,...,m} R
m. For each route r ∈ R we define a binary variable,

xr, which takes the value one if route r is used in the solution. We denote by

Wr the waiting time incurred by route r, defined, here, as all non-travel time

between the first pickup and the last delivery. The proportion of waiting time

to total time for any given route is denoted by ωr, and can be calculated as

ωr = Wr/Tr, where Tr is the total time taken between the first pickup and the

last delivery (tfj − tsj). Note that Tr ≤ Tmax for any valid route r.

To avoid quadratic terms in the first objective function (in Section 3), we

define two continuous variables, ymax and ymin, which represent the maximum

and minimum number of orders assigned to any route used in the solution,

respectively. Similarly, we define variables zmax and zmin as the maximum and

minimum proportion of waiting time by any route in the solution, so the fourth

objective described in Section 3 can also be linearised. In Table 1 we summarise

the notation used in this paper.

To capture the four objectives (1-4) listed in Section 3, we consider the four

objective functions described in, (1), (2), (3) and (4) all of them aimed at being

minimised.

Minimise ymax − ymin (1)

Minimise
∑

r∈R

Db
rxr (2)

Minimise
∑

r∈R

Wrxr (3)

Minimise zmax − zmin (4)

This objective can be combined into a single weighted objective function by
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Table 1: Notation - Parameters and variables

Parameters

I set of orders

J set of couriers

m ∈ {1, . . . ,m} mode of transport

Rm Set of all feasible routes for mode m

R Set of all feasible routes

Wr Waiting time in route r ∈ R

Tr Total time to perform route r ∈ R

Tmax Maximum time length allowed in a shift

ωr proportion of waiting time in shift defined by r ∈ R

Dw
r Total travel time from collections nodes to delivery nodes

Db
r Total travel time from delivery to the next collection

Variables

xr value 1 if route r is used in solution

ymax maximum number of orders performed by any used route

ymin minimum number of orders performed by any used route

zmax maximum proportion of waiting time performed by any used route

zmin minimum proportion of waiting time performed by any used route

adding weights w1, w2, w3 and w4, as follows.

F = w1(ymax − ymin) + w2

∑

r∈R

Db
rxr

+w3

∑

r∈R

Wrxr + w4(zmax − zmin)
(5)

Even though this is a widely used approach on multi-objective problems, the

way the weights are set up clearly determines the quality of the Pareto front. In

this work we will use the efficient implementation of the ϵ−constraint method

used in Mavrotas & Florios (2013). In order to compute the optimal Pareto

front (or good approximations) by using the ϵ−constraint method, we define

the following Integer Linear Programming model (ILP), where M is a big-M

constant used to deactivate constraint (13) if route r is not used in the solution.

Page 11
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Minimise ymax − ymin + ϵ(S2/r2 + 10−1S3/r3 + 10−2S4/r4) (6)

s.t.
∑

r∈R

Db
rxr − S2 = e2 (7)

∑

r∈R

Wrxr − S3 = e3 (8)

zmax − zmin − S4 = e4 (9)
∑

r∈R,i∈r

xr = 1 ∀i ∈ I (10)

∑

r∈R

xr = |J | (11)

ymax ≥ |r|xr ∀r ∈ R (12)

ymin ≤ |r|+M(1− xr) ∀r ∈ R (13)

zmax ≥ Wrxr ∀r ∈ R (14)

zmin ≤ Wrxr ∀r ∈ R (15)

xr ∈ {0, 1} ∀r ∈ R (16)

Where constraints (7), (8) and (9) are mapped to objectives (2), (3) and (4).

Parameters e2, e3 and e4 are set up for each iteration used in the AUGMECON2

method described in Mavrotas & Florios (2013). It is worth highlighting that,

even though the original algorithm is considering a maximisation problem, the

same approach can be used for a minimisation problem. Parameters r2, r3 and

r4 are the ranges of the respective objective function, and S2, S3 and S4 are the

surplus variables of the respective constraints, which are required to formulate

the main model used in the AUGMECON2 method. Finally, in this work we

have considered ϵ = 10e − 4, which is sufficient to guarantee that the optimal

solution matches with the optimal solution of the problem where the relevance

of the objectives are ranked in lexicographic order, helping to reduce the number

of MILP models being optimally solved.

Constraints (10) force each order to be served, and constraint (11) forces
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all of the couriers to be used. Finally, constraints (12), (13), (14) and (15) are

needed to properly link variables ymin, ymax, zmin and zmax with variables xr.

Constraints (16) force variables xr to be binary.

4.1. Implementation details of AUGMECON2

As it is shown in Mavrotas & Florios (2013), objective function (6) is al-

ready performing a lexicographic optimisation for objectives 2,3 and 4. This is

an improvement from previous ϵ−constraint methods that did not consider the

weights and had more erratic behaviour of the ultimate algorithm when there

are alternative optimal solutions.

In order to compute the range for objectives 2,3 and 4, we first need to com-

pute the payoff table, which is the table containing the results for the individual

optimisation of all the objective functions separately. It is worth highlighting

that the lower bound of each objective (best value) is easily obtained, however,

the drawback of this method is to compute an efficient nadir value for each

objective. In this work, this is approximated with the maximum value obtained

when solving all the individual optimisations of the objective functions. Once

the payoff table is calculated we can compute the ranges r2, r3 and r4 for ob-

jectives 2,3 and 4.

Due to the vast CPU time needed when using this method, in our com-

putational experiments we have then divided the ranges into 10 intervals for

objectives 2, 3 and 4, which limit the number of ILP problems that need to be

optimally proven to 1000 (accounting for all the combinations of the 10 inter-

vals for objectives 2,3 and 4) and we identified that these parameters provide a

very good approximation of the Pareto front. Furthermore, by using the AUG-

MECON2 method the number of ILPs solved is reduced considerably, but this

reduction is not sufficient to compute the optimal Pareto front (by considering

a unity step when defining the range) since the time consumed to solve a single

ILP model can easily be the order of hours for small-scale problems, and the
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number of problems that should be considered is increasing exponentially.

5. Variable Neighbourhood Search Algorithm

Variable neighbourhood search (VNS) algorithms have been proven to be

quite efficient when solving vehicle routing problems (Kytöjoki et al. (2007),

Sze et al. (2017)). The problem presented in Section 3 differs substantially from

the standard vehicle routing problems, where the neighbourhoods considered

in the literature can be classified in two types, the inter-route neighbourhoods

such as interchange or cross-exchange between routes, where two or more routes

are modified simultaneously, and the intra-route neighbourhoods, like the 2-opt

for the travelling salesman problem, where only one route is modified and the

only changes in the solutions are related to modifying the visiting order of the

nodes within the route.

In the MDP, the time windows constraint plays an important role, defining

a unique sequence for each feasible route. Therefore, the routing problem is

somehow defined and the main problem is to allocate the right set of orders to

each route (courier). In this work we heavily exploit the efficiency of simple

intra-route neighbourhoods based on the 1-insertion and the interchange (or

swap), but we include different stages of the algorithm for which the fitness

function keeps changing to account for the multiple objectives. One of the main

differences with the VNS proposed in this work and the first VNS proposed,

Hansen et al. (2008), is that in this paper we are using the neighbourhood to

improve the first objectives as the kick to escape from the local optima on the

other objectives, however, the other neighbourhoods are used in a simliar way

than in the original VNS setting. We now give a detailed explanation of the

construction heuristic, the two neighbour structures, and how they are used in

a VNS framework where the fitness function is modified during the search.

Page 14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofMartinez-Sykora et al.

5.1. Initial construction heuristic

The initial construction heuristic is an iterative process where the orders are

assigned one at a time to the first available courier from the list. We first sort the

orders by non-decreasing collection time and couriers are sorted at random or

by some criteria, e.g. using predefined priorities or based on the courier waiting

time. Algorithm 1 runs in linear time on the number of orders. The first for

Algorithm 1 Constructive algorithm

1: Sort I by non-decreasing collection time

2: Sort J by non-decreasing preference

3: for each i ∈ I do

4: Initialise j = 1

5: while i cannot be allocated to courier j do

6: j = j + 1

7: end while

8: Assign i to j, i.e, rj = rj ∪ {i}
9: Update ordering in J if needed

10: end for

loop (line 3) ensures that all orders are explored and in lines 5-7 the algorithm

computes the first courier available to deliver the order. The condition in line 5

is true if courier j has been already assigned an order which clashes with order

i. The order in which the list of couriers is sorted is key in this construction

heuristic since it has some similarities with the first fit decreasing or the best fit

decreasing in bin packing problems. In line 9 of Algorithm 1 we allow the order

to be modified during the algorithm to try a best fit approach. To reflect what

some meal delivery platforms do in practice, we tried the following different

options as potential ‘business as usual’ (BAU) scenarios:

1. The list of couriers J is sorted by a given fixed priority order and the order

will always be offered to an available courier with highest priority. This

approach will result in higher priority couriers receiving more orders than
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lower priority couriers and not all couriers will be used since the aim is to

minimise the number of couriers used.

2. The list of couriers J is sorted by waiting time. The courier that has been

waiting longest will receive the order.

3. The list of couriers J is sorted by time required to get to the collection

point of the order. The courier that can get to the collection point soonest

will be assigned to the order.

In Table 10 in the appendix we show the solutions obtained by applying

these three rules. It can be observed that the first strategy leads to more

unbalanced shifts and the second strategy is the least efficient in terms of total

travel time, which make sense since in the first strategy the couriers are ranked

by priority and in the second strategy, despite the waiting time being more

balanced, the travel time is not considered. However, all of these strategies

result in unbalanced shifts, where the range of orders is around 5. The algorithm

proposed in this paper aims to reduce the range as well as balance the waiting

time and workload across the gig workers, aiming for a range of 1 order on the

same shifts.

5.2. Neighbourhood structures

In this paper we explore two well-known fast and greedy neighbourhood

structures. The first neighbourhood we consider is the insertion of one order

from one courier into a different courier in such a way that the total distance

travelled is minimised. However, in order to explore efficient solutions in the

different objectives (criteria) described in Section 3 we add two different stages

on the search mapped. The first stage is targeting the fairness, corresponding

to objectives 1 and 4, and the second stage is aimed at improve the traveling

efficiency (the routing). It is important to highlight that these neighbourhoods

do not use the weighted objective function described in (5), but only the criteria

being considered.

Objectives 1 and 4 are looking at fairness across the couriers, and generally

clash more often with objectives 2 and 3, which are aiming at increasing the
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efficiency of routing and reducing the total travel time. Therefore, when ap-

plying the first neighbourhood we will consider two phases by introducing one

parameter, h ∈ H = {1, 2}. When h = 1 we are aiming to improve the fairness

of the solution and only objectives 1 (range) and 4 (balancing waiting time) of

those listed in Section 3 are considered as the fitness and the other objectives are

ignored within this neighbourhood. We start by accepting new solutions that

improve performance in objective 1, and, when there is no further improvement,

we then use the same insertion strategy, where solutions that improve perfor-

mance in objective 4 are accepted, maintaining the solution quality achieved in

objective 1.

This neighbourhood N1(h), h ∈ H is described in Algorithm 2, which runs

in linear time with respect to the number of orders. We use a first improvement

acceptance strategy for N1(h), h ∈ H, and in the case that h = 2 we sort the

orders randomly at every iteration of the algorithm (see line 4). However, when

h = 1 , the algorithm is trying to balance the quality of the route among couriers

(i.e. balancing the number of orders assigned to the couriers) and, therefore,

the orders will always be selected from the top of the list, i.e, the courier with

the most convenient route in terms of objectives 1 and 4, and then they will be

inserted to the courier on the back of the list, i.e, the courier with the worst

route in terms of objectives 1 and 4. For example, if we are minimising the range

of the number of orders on a given stage of the algorithm we will be selecting

orders from the courier with more orders assigned and these will be added to

the courier with fewer orders assigned and, in this case, only removing orders

from the first courier on the list or adding orders to the last courier would be

explored since this is aiming to reduce the range.

The second neighbourhood (N2) is the swap of two orders between two

couriers. This is explained in Algorithm 3. This algorithm is quadratic on the

number of orders and it only aims to improve objectives 2, 3 and 4 since it is not

really helpful to improve fairness. As in N1(h), we perform any improvement

found during the search process.
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Algorithm 2 N1(h)

1: Let J ⊆ J be the set of couriers being used

2: Routes rj , j ∈ J are sorted by non-increasing number of orders (|rj |)
3: while There is an improvement do

4: Sort I randomly

5: for each i ∈ I do

6: Find best insertion of order i into a different route(courier).

7: if Fitness h improved then

8: Improvement found

9: Update solution

10: Break for loop

11: end if

12: end for

13: end while

Algorithm 3 N2

1: Let J ⊆ J be the set of couriers being used

2: Routes rj , j ∈ J are sorted by non-increasing number of orders (|rj |)
3: while There is an improvement do

4: Sort I randomly

5: for each rj , rk, j, k ∈ J do

6: for each possible swap do

7: Compute value of fitness

8: if Fitness improved then

9: Improvement found

10: Update solution

11: Break both for loops

12: end if

13: end for

14: end for

15: end while
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5.3. VNS framework

An overview of the VNS algorithm is shown in Figure 2. We first build an

initial solution by using Algorithm 1 with the first option described in Section

5.1. This is determining the business-as-usual (BAU) solution and dictating the

number of couriers needed; we assume that this number would be provided by

the platform and is not allowed to change during the algorithm.

Then, in a first step, we apply the neighbourhood N1, which will find a so-

lution aiming at reducing the first objective, the range on the number of jobs

assigned to all the couriers. Then, the value of the first objective (range) is fixed

in the second step, and it remains fixed when both neighbourhoods N1(2) and

N2 are applied, steps 3 and 4, aiming at improving objectives 2 and 3. Every

time a non-dominated solution is found after applying each neighbourhood then

it is added in the Pareto set, and this set is updated by removing all the solutions

that are dominated by the new solution. Once there is no further improvement

in step 4 we allow the range of the first objective to increase by one unit (step

5). If the range is maximum then we complete one iteration of the VNS, and

we increase the iteration number by one unit (step 6) if the maximum number

of iterations of the VNS has not been reached.

It is worth highlighting that the solution that is returned from step 6 to step

1 usually performs badly in the first objective, which is again optimised in step 1,

ignoring the other objectives. However, during one iteration of the algorithm we

try to improve the other objectives again, and we iterative allow more flexibility

by allowing to explore more unfair solutions (by worsening the first objective).

The stopping criteria of the algorithm is the number of iterations, MaxIter.

In all of our experiments we used MaxIter = 5000, providing a good balance

between time and solution quality for all instances.
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Figure 2: VNS framework.

Build initial solution (BAU); Iter = 0

1. Apply N1(1) 2. Fix Range (Objective 1) to current value 3. Apply N1(2)

4. Apply N2

5. Increase range by one unitrange = Max RangeIter<MaxIter

6. Iter++

End

yes

no

yes

no

6. Computational results

In this section we present the results of the algorithm described in Section

5.3 using two different sets of instances. In Section 6.1 we used data from a

major UK courier working on behalf of a meal delivery platform to simulate a

set of instances, allowing us to assess in Section 6.3 the performance of both the

ILP model presented in Section 4 and the VNS algorithm presented in Section

5. Finally, in Section 6.4 we compare the BAU against the VNS algorithm in a

larger set of instances proposed in Reyes et al. (2018).

6.1. Courier data

Data from a major courier operating on behalf of a meal delivery company

in Greater London were obtained for a 3-week period (10-31 July 2017). The

data comprised individual meal pickup and delivery times and locations, courier

ID and their mode of transport (bike or motorbike) for a total of 7,917 meal

deliveries. These took place in scattered locations across Greater London (Fig-

ure 3). Delivery trip distances were estimated using Google’s Distance Matrix

API service and were found to have a mean of 2019m and a standard deviation

of 1000m. Based on this, and to generate more instances, we sampled delivery
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distances from a Normal distribution, X ∼ N(2019, 1000). We first randomly

decided the pickup location of a new order from the map and then we used

the X distribution to sample the distance of the delivery location. Then we

randomly selected the delivery point from the circumference whose centre is the

pick-up location and the radius is the distance. Therefore, we guaranteed that

the distribution of our instances have, on average, 2019m from pick-up point to

delivery point.

We generated 50 instances with 20, 30, 40, 50 and 60 orders (10 instances

for each number of orders). In the first 20 instances, with 20 and 30 orders we

have solved the multi-objective problem by using the AUGMECON2 method

described in Section 4.1. For the instances with 40, and 50 and 60 orders we

have solved the induced problem by considering a lexicographic approach on

the four objectives, i.e., in the weighted approach described in equation (5) we

considered w1 > w2 > w3 > w4 to show the complexity of the ILP models being

solved and the efficiency of the VNS algorithm presented in 5 in the problem

which consider the objectives in a lexicographic order. In all the experiments

the shifts for the gig economy couriers were fixed to 4 hours from the starting

work time (first delivery).

All of the ILP models were solved by using GUROBI (version 9.1.1) on

an Intel (R) Core(TM) i9-9980E CPU with 3.00 GHz and 18 Cores desktop.

A time limit of 2 hours was imposed in the computational experiments for the

lexicographic problems, on instances with 40, 50 and 60 orders, and no time limit

for the AUGMECON2 approach on the smaller instances. The same machine

was used to run the VNS.

6.2. VNS and exact algorithm - Multiobjective

One of the most widely used measures to compare the quality of the Pareto

set obtained by different algorithms is to compute the hyper-volume covered by

the Pareto set. In order to do that, we need to have a reference solution or

point (generally a much worse solution, or even a nadir point) to compute the
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Figure 3: Food delivery trips recorded by a courier company (10-31 July 2017).

hyper-volume defined between that point and the Pareto set.

Let nv (na) be the number of solutions in the Pareto set obtained by VNS

(AUGMENCON2) algorithm. Let Sv ∈ R4×Rnv (Sa ∈ R4×Rna) be the matrix

with four columns (linked to the four objectives) and nv (na) rows mapped to

all the solutions obtained by the VNS (AUGMENCON2) algorithm.

We denote by x ∈ R, x = (x1, x2, x3, x4) to the reference point to compute

the hyper-volume, which is computed as follows.

xi = 10 ∗max{max
j

Sv(i, j),max
j

Sa(i, j)}, ∀i ∈ {1, . . . , 4} (17)

In Table 2 we show the hyper-volume obtained for each instances with 20

orders and 30 orders. In this table we can observe that, on average, in instances

with 20 orders the average of the VNS is 1.38% worse than the exact solution,

and this difference increases to 3.05% in the instances with 30 orders. In all

the cases, that difference is never higher than 5%. The CPU time required to
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compute the Pareto set is not comparable, since the AUGMECON2 algorithm

required over 10 hours to compute the approximated Pareto set on the instances

with 30 orders, and the VNS needs less than one minute for all the problems.

Table 2: Hypervolume AUGMEN2 vs VNS

20 orders 30 orders

Exact VNS Exact VNS

Test 1 89.46 87.93 92.90 89.27

Test 2 91.83 90.60 89.90 86.02

Test3 89.92 88.72 90.37 87.76

Test4 91.39 88.68 90.78 87.97

Test5 91.69 90.47 89.66 87.82

Test6 93.13 92.17 93.84 90.77

Test7 91.83 90.62 91.18 88.57

Test8 93.06 92.13 93.61 90.60

Test9 88.70 86.96 93.40 88.44

Test10 90.67 89.59 92.19 90.12

Average 91.17 89.79 91.78 88.73

In Tables 3 and 4 we show the specific values obtained for each instance in

the problem with a lexicographic approach for all the problems with 20 and

30 orders. These solutions are obtained from the Pareto set obtained by each

method, and the last column shows the number of solutions obtained in the

Pareto set. If we take into account the average, the difference starts with the

second objective, with a difference of 0.01 in Table 3 and a difference of 0.07 in

Table 4. In 7 out of 10 instances with 20 orders the best lexicographic solution

in the Pareto set is the same, and the same solutions are obtained in 5 out of 10

instances with 30 orders. It is also worth highlighting that the solution obtained

by the VNS algorithm in the problem Test8 has a slightly better performance

than the one obtained by the AUGMECON2 algorithm (second objective 3.335

vs 3.367 obtained by AUGMECON2). Finally, the size of the Pareto set obtained
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is generally higher and more erratic when applying the VNS, which is expected

since it is an heuristic approach.

Table 3: Best lexicographic solutions on instances with 20-orders.

AUGMEN2 VNS

obj1 obj2 obj3 obj4 #sol obj1 obj2 obj3 obj4 #sol

Test 1 1 3.142 10.697 2.096 36 1 3.318 11.972 1.147 45

Test 2 1 3.171 14.098 1.388 35 1 3.171 14.098 1.388 115

Test3 1 4.114 10.812 2.308 31 1 4.114 10.812 2.308 9

Test4 1 3.022 13.900 2.859 21 1 3.047 9.172 2.817 8

Test5 1 3.717 15.389 2.381 50 1 3.717 15.389 2.381 50

Test6 1 2.951 12.822 1.524 53 1 2.951 12.822 1.524 144

Test7 1 2.968 12.933 3.055 25 1 2.968 12.933 3.055 45

Test8 1 3.367 13.646 2.038 37 1 3.335 12.973 2.074 150

Test9 1 3.603 10.718 2.305 24 1 3.603 10.718 2.305 8

Test10 1 3.418 9.070 1.811 22 1 3.418 9.070 1.811 55

Average 1 3.35 12.41 2.18 33.4 1 3.36 11.99 2.08 62.9

6.3. VNS and exact algorithm (Lexicographic problem)

In this section we compare the VNS against the construction heuristic pre-

sented in 5.1 (BAU) and the ILP model presented in Section 4 using the problem

instances generated in Section 6.1 with 40, 50 and 60 orders, where the relevance

of the objectives is considered to be in lexicographic order, being objective 1

the most relevant one and objective 4 the least relevant. The main purpose of

considering this problem is to be able to compare single solutions against the

BAU solutions.

In Figures 4, 5 and 6 it can be observed that the total amount of travel

within the orders (from pickup to delivery) is the same for the three methods,

which is expected as it is a fixed value for each order. The travel time between

orders (from delivery to next pickup) depends on how the allocation of orders

is done, and it can be observed here that the BAU is the worst in this respect.
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Table 4: Best lexicographic solutions on instances with 30-orders

AUGMEN2 VNS

obj1 obj2 obj3 obj4 #sol obj1 obj2 obj3 obj4 #sol

Test 1 0 5.453 17.830 2.566 53 0 5.561 21.399 2.277 90

Test 2 1 5.102 17.556 2.651 57 1 5.304 16.973 2.765 173

Test3 1 4.743 12.619 0.719 52 1 4.868 14.045 1.605 74

Test4 1 4.954 18.750 1.981 60 1 5.004 17.345 2.003 155

Test5 1 3.692 20.169 2.853 56 1 3.692 20.169 2.853 49

Test6 0 4.728 18.397 2.555 60 0 4.728 18.397 2.555 121

Test7 1 4.350 17.163 2.113 71 1 4.350 17.163 2.113 294

Test8 1 3.272 24.012 2.850 53 1 3.272 24.012 2.850 184

Test9 0 3.727 22.537 2.107 70 0 3.872 23.116 2.107 159

Test10 1 4.104 22.878 2.911 56 1 4.104 22.878 2.911 235

Average 0.70 4.41 19.19 2.33 58.80 0.70 4.48 19.55 2.40 153.40

The VNS managed to reduce the travel time between orders by approximately

25%, and the ILP by almost 50% compared to the BAU. The waiting time is

lower in the BAU because there are couriers with only one order assigned in

a shift in some of the instances, which implies no waiting time, however, the

unused time is higher (time left after the last delivery until the end of the shift).

In Table 5 we present the results obtained by the construction heuristic

presented in Section 5.1, named as BAU, the VNS heuristic and the ILP model.

The first three columns show the average of the 10 problem instances of the

minimum, mean and maximum waiting times of all the gig economy couriers.

The average minimum waiting time (second column) of the BAU is only 1%, and

the maximum waiting time (third column) is 61% of the couriers’ time, which

indicates that there is an unbalanced set of shifts being used in the solution.

The average waiting time between orders (second column) is lower in the BAU

because there is a gig economy courier with only one order assigned with zero

waiting time, which skews the mean.
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The last three columns in Table 5 are related to the average of the mini-

mum, average and maximum number of orders assigned to the couriers. We can

observe that the VNS finds the most balanced solution, matching the ILP. The

range of the orders assigned per courier ranges between 2.8 and 3.8. However,

the BAU is rather unbalanced, with couriers doing 6 orders and other couriers

with only one order assigned. Similar behaviour can be seen in Table 6 and

Table 7, where the instances with 50 and 60 orders are considered. The results

presented in Table 7 consider only the 9 out of 10 instances in which the ILP

managed to compute a feasible solution within two hours of CPU time (see Ta-

ble 9 in the appendix), and four instances out of ten were optimally solved. For

the 5 remaining instances where GUROBI did not prove optimality, the average

gap obtained was 61.6%.

Table 5: Exploring fairness on instances with 40 orders

minwait avwait maxwait minorders avorders maxorders

BAU 1% 27% 61% 1.1 3.25 6.1

VNS 29% 59% 78% 2.8 3.25 3.8

ILP 27% 56% 78% 2.8 3.25 3.8

Table 6: Fairness comparison on instances with 50 orders

minwait avwait maxwait minorders avorders maxorders

BAU 0% 28% 67% 1 3.3 6.5

VNS 20% 55% 81% 2.8 3.3 3.8

ILP 22% 53% 79% 2.8 3.3 3.8

Table 7: Fairness comparison on instances with 60 orders

minwait avwait maxwait minorders avorders maxorders

BAU 0% 28% 71% 1 3.29 6.89

VNS 24% 60% 81% 2.89 3.29 3.78

ILP 24% 56% 81% 2.89 3.29 3.78
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Figure 4: Fairness comparison on instances with 40 orders (Average number of couriers used

= 12.4)

Figure 5: Fairness comparison on instances with 50 orders (Average number of couriers used

= 15.3)
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Figure 6: Fairness comparison on instances with 60 orders (Average number of couriers used

= 18.4)

6.4. Previous work in MDP data

In this section we present results from using the 240 problem instances

generated by Reyes et al. (2018), available at https://github.com/grubhub/

mdrplib. The number of orders in these instances ranged from 242 to 3212 and

the number of restaurants ranged from 54 to 323. While in Reyes et al. (2018)

the number of couriers and the total number of working hours was assumed

known and fixed and the orders might not be delivered on time, in this work

we assumed that all the orders must be delivered as soon as ready. To ensure

feasibility we permitted as many extra couriers as needed, but always minimis-

ing the total number of couriers used in the final plan. In Reyes et al. (2018),

different orders from the same restaurant could be bundled together and picked

up by the same courier in one visit. However, in our case study we assumed

that each order had to be picked up and delivered separately. For the sake of

clarity, service times at all restaurants and at all delivery locations were not

considered, although could easily be added if known. The target in this study

is to minimise the objective functions in lexicographic order, which is aligned
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with minimising (5) with weights such that w1 >> w2 >> w3 >> w4. It is

worth highlighting again that we are addressing the deterministic version of the

problem where all the information about orders is known beforehand.

Table 8: Solutions obtained in the MDP instances
Set WT (%) WTmax(hours) WTmin(hours) range(%) DD(%) DDtotal(%) DifmaxD(hours) DifminD(hours)

0 -67.09 0.08 1.24 69.37 41.60 21.47 -1.52 0.52

1 -94.98 -0.28 1.31 68.88 39.72 20.70 -1.30 0.57

2 -73.62 -0.26 1.38 74.29 40.40 20.44 -1.33 0.74

3 -80.73 -0.11 1.48 71.41 37.56 19.01 -1.17 0.84

4 -108.65 0.23 1.28 82.12 36.40 17.34 -1.09 0.96

5 -75.14 0.41 0.76 67.71 30.01 14.63 -0.58 0.87

6 -87.55 0.12 1.18 74.31 35.25 17.45 -0.99 0.87

7 -99.89 -0.50 0.53 63.67 25.02 11.97 -0.35 1.10

8 -67.98 -0.09 0.48 34.77 28.37 14.30 -0.36 0.56

9 -125.20 -0.88 0.59 50.39 30.03 15.41 -0.43 0.66

Av. -88.08 -0.13 1.02 65.69 34.44 17.27 -0.91 0.77

In Table 8 we present the summary of the results obtained for the 240 MDP

instances (10 sets with 24 instances). The first column, WT (%), shows the aver-

age reduction in the total waiting time when comparing the BAU (construction

heuristic presented in 5.1) solution against the VNS algorithm presented in 5.3,

computed as
WV NS −WBAU

WV NS
∗ 100,

where WV NS and WBAU represent the total waiting time of all the couriers in

the VNS and BAU solutions respectively. It can be seen that the overall average

reduction in waiting time is 88.08%.

The second and third columns show the time reduction for the courier with

maximum and minimum waiting times, respectively. If we represent by CBAU

the set of all couriers in any given instance and by wc the waiting time of courier

c ∈ CBAU , then

WTmax = max
c∈CV NS

wc − max
c∈CBAU

wc.

Similarly,

WTmin = min
c∈CV NS

wc − min
c∈CBAU

wc.

Therefore, the courier with more waiting time from the VNS solution versus

the BAU solution is reduced by 0.13 hours on average, but in sets 1,4,5 and 6
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the maximum waiting time is slightly higher in the VNS solution. On the other

hand, the courier with a shift with less waiting time in the VNS solutions has,

on average, 1.02 hours more waiting (WTmin). Both these results suggest that

the waiting times in the VNS solution are more balanced than the BAU across

the couriers.

The fourth column (range) shows the percentage of reduction of the range

(maximum difference of the number of orders assigned to any two couriers).

We can observe that the average reduction is 65.69%, which is significantly

better but it is slightly lower than in the previous section (see Tables 5,6 and

7), suggesting that this problem with higher numbers of orders becomes more

challenging to be solved efficiently.

The fifth column (DD) shows the percentage travel time difference between

the VNS and BAU solutions for travel between orders (from delivery point of

one order to pickup point of the next), and in column DDtotal we present the

percentage difference of the total travel time in the solution (i.e. travel during

and between orders). The VNS solution reduced the travel time between orders

by 34.44% on average and the total travel time by around half of that, which is

expected as travel during orders was constant and approximately equal to the

amount of travel between orders.

ColumnDifmaxD (DifminD) shows the mean difference between the courier

with maximum (minimum) travel times from the VNS and the BAU solutions.

These are defined as follows.

DifmaxD = max
c∈CV NS

TTc − max
c∈CBAU

TTc

and

DifminD = min
c∈CV NS

TTc − min
c∈CBAU

TTc,

where TTc represents the total travelling time o courier c.

The results indicate that the ‘most travelled’ courier travels 0.91 hours less,

on average, in the VNS solution and the ‘least travelled’ courier travels 0.77

hours more, both indicating better balancing of travel between couriers.
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These results shows that fairness can be achieved alongside efficiency: as

well as balancing the work the total distance travelled by all the couriers in the

plan obtained by the VNS is on average 17.27% lower than the BAU plan.

7. Conclusions

This paper proposes a new mathematical model to address the meal delivery

problem where it is assumed that orders must be picked up and delivered as soon

as they are ready. The model takes into account the efficiency of the routes as

well as the fairness among the couriers, introducing four objectives into the

problem, where different modes of transport might be used. We show that the

model is able to optimally solve a reasonable size of problem instances, up to

30 orders to compute the full Pareto set, and up to 60 orders in a reasonable

amount of time for the single objective problem (if some weights are specified

by the user). For larger problems we propose a VNS algorithm with simple and

efficient neighbourhoods in which fitness used changes during the search. We

show that it is possible to produce fair solutions from the courier perspective

as well as reduce the travel times, making an efficient use of courier time and

producing more robust shifts.

The potential application for new solutions to the meal delivery problem, or

similar pickup and delivery tasks, is great, given the considerable demand for

home delivery, accelerated by behavioural changes resulting from the Covid-19

pandemic. Coupled to this are the increasing restrictions resulting from the

imposition of low emissions zones and schemes to promote walking and cycling

which limit access for motorised vehicles. Under such circumstances, logistics

providers are increasingly looking for environmentally friendly ways of meeting

consignee delivery requirements and the use of sustainable last-mile delivery sys-

tems are being trialled by several carriers. The use of cycle and scooter couriers

through last-mile delivery platforms such as Deliveroo and UberEats offer al-

ternative ways of making deliveries in dense urban centres. In most cities there
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are pools of riders available, largely serving the takeaway restaurant market,

that could provide an additional delivery fleet. Key questions have been raised

however regarding the efficacy of such operations and how riders can gain an

equitable supply of work.

The results obtained from the ILP model show that existing policies and

practice, as considered here as the BAU case, can be improved in terms of

both fairness and route efficiency. In addition, the VNS has been shown to be

competitive in the small-scale problems solved by the ILP and, on the larger

instances, provides a considerable improvement over the plans derived from the

BAU strategies.
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APPENDIX

Appendix

Table 9: Solutions obtained by the ILP on the instances with 60 orders from set A. Avw is

the average working time of all the couriers with some orders assigned in the solution and Avt

is the average travel time. The range of the number of orders assigned is in column range and

the last columns show the gap obtained and total CPU time in seconds, with a time limit of

2 hours.

Instance Avw Avt range Gap CPUtime(sec)

1 3.71 2.84 1 0.56 7200

2 3.39 2.27 1 0.00 5138

3 3.30 2.69 1 0.00 5084

4 3.60 2.52 1 0.54 7200

5 - - - - 7200

6 3.26 2.38 1 0.97 7200

7 3.24 2.04 1 0.48 7200

8 3.45 2.31 1 0.53 7200

9 3.36 2.52 0 0.00 768

10 3.49 2.52 1 0.00 4712
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Table 10: Comparison of construction heuristics

#orders Heur Av Waiting time range orders Total travel

40

1 0.83 5 17.97

2 0.84 4.8 18.47

3 0.98 4.6 16.08

50

1 0.79 5.5 22.11

2 0.78 5.4 22.26

3 0.92 5 19.94

60

1 0.86 5.9 26.06

2 0.91 5.6 26.29

3 1.06 5 22.55
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problem 
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