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Abstract—Acoustic scene classification (ASC) is an important
branch of machine hearing. Since ASC systems are intended to
be deployed on mobile devices, how to ensure the performance
under low-complexity implementation has become an attracting
research problem. The state-of-the-art methods include compress-
ing parameter precisions, reducing quantization bits, introducing
sparsity constraints and so on. These methods mainly focus on the
model level optimization, while explorations are rarely originated
from the data level. This paper introduces a train of thoughts
from data level, inspired by a stereo audio processing algorithm,
namely the primary ambient extraction (PAE), which generates
additional samples through audio up-mixing. The experiment
results demonstrate that the proposed method exhibits better
performance than a group of ASC baseline systems without data
level optimization, not to mention that the proposed method is
compatible with the existing model level optimization.

Index Terms—Acoustic scene classification, low-complexity
implementation, convolutional neural network, primary ambient
extraction

I. INTRODUCTION

In recent years, resultant from the rapid development of
artificial intelligence, more and more new market demands
have emerged. As one of the main ways of human computer in-
teraction, machine hearing has been attracting extensive atten-
tion from academia and industry. ASC is an important branch
of machine hearing, which aims to judge the environment
of sound transmission through recorded audio signals. ASC
systems can be deployed in the fields of disability assistance,
autonomous driving, and multimedia material archiving.

According to previous subjective testing results, the perfor-
mance of machine hearing in ASC has far exceeded that of
human hearing [1]. Human beings are not naturally good at
distinguishing acoustic scenes. Peltonen et al. demonstrate that
people’s perception of acoustic scenes relies on cognition of
typical sound events, and people lose their ability to judge
when facing acoustic scenes that are weakly correlated with
typical sound events [2].

However, ASC is facing implementation difficulties. ASC is
intended to be deployed in mobile devices in most application
scenarios, where communication and computing capacities
are rather limited [3]. Convolutional neural network (CNN)
models can recognize scaling, displacement and other 2-
dimensional distortion invariance [4]. They are the mainstream
choice for ASC system implementation [1]. However, a CNN
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Fig. 1. Approaches of parameter precision compression.

model often consists of an overwhelming number of param-
eters. Therefore, how to ensure the performance of the ASC
system in low complexity, more precisely, how to optimize the
ASC system under a relatively low level of parameter storage
capacity, has become an emerging research problem.

At this stage, there are several well-known strategies for
ASC system implementation with low level of parameter
storage capacity. The compression of parameters precision
can accommodate more parameters with the same memory
space. Compressing FLOAT32 into FLOAT16 is one of the
most commonly adopted methods. When dealing with a small
number of classes, this method has achieved considerable
performance [5] [6]. On this basis, quantization is also a
feasible idea. Hu et al. use INT8 quantization for parameters
to further compress the memory usage of a single parameter
[7], while McDonnell et al. use the extreme quantization
method of just 1 bit per parameter [8], which increases the
parameter amount by an order of magnitude compared with
the conventional model using FLOAT32. The comparison of
the above methods is shown in Fig. 1.

In addition, Chang el al. propose to prune the parameters
whose weight is lower than a threshold value, in order for
the parameters of the deep learning model to possess sparsity
[9]. Koutini et al. use the decomposed convolutional layer,
which is inspired by the singular value decomposition [10]
[11]. Through the split and reorganization of the convolution
layers, the model scale is directly saved to one eighth of the
original size.



The state-of-the-art methods mainly focus on the model
level optimization. Previous works have demonstrated that
there is still room for exploration from the data level [12]
[13]. In this paper, a stereo audio processing algorithm, namely
the PAE, is introduced to generate additional audio samples
through up-mixing. As a data level optimization, the PAE can
be integrated with existing model compression methods. A
fast implementation of the PAE algorithm is also proposed to
reduce its complexity. Experiments are carried out on the TAU
urban acoustic scenes 2020 3-class development dataset. The
proposed method is compared with and outperforms a group
of ASC baseline systems without data level optimization.

II. PROPOSED APPROACH

The PAE algorithm was originally proposed to up-mix a
stereo audio clip into an arbitrary number of channels in order
to be played back by multi-channel reproduction systems. It
assumes that in every channel of a stereo audio, there is a
primary component and an ambient component, which are
written as

xc(t) = pc(t) + ac(t), ∀c ∈ {0, 1}, (1)

where c ∈ {0, 1} is the channel index. The primary com-
ponents pc are assumed to be correlated with each other
and only different in the amplitude with a panning factor k,
i.e. p1 = kp0 .The ambient components ac are assumed to
have the same energy but uncorrelated with each other. The
ambient components are also uncorrelated with the primary
components. These are crucial spatial assumptions in the
derivation of the PAE algorithm [14].

After the short-time Fourier transform (STFT), (1) is rewrit-
ten as

Xc[m, f ] = Pc[m, f ] +Ac[m, f ], ∀c ∈ {0, 1}, (2)

where m is the index of frame and f is the index of frequency
bin. The notations [m, f ] are omitted for brevity in the latter
part of this paper.

The spectra of ambient components are expressed as

Ac = |Ac| �Wc, ∀c ∈ {0, 1}, (3)

where Wc is Wc(m, f) = ejθc(m,f) and θc(m, f) is the
element of θc in the time-frequency bin (m, f). θc = ∠Ac is
the vector of phase angles of the ambient components.

Since P I = kP 0, (2) leads to

X1 − kX0 = A1 − kA0. (4)

Substituting (4) into (3) yields

|A| = (X1 − kX0) / (W1 − kW0) . (5)

Let the phase angle of (X1 − kX0) be θ. Since |A| is real,
sin θ/ cos θ = (sin θ1 − ksin θ0) / (cos θ1 − kcos θ0) must
hold. It is further manipulated as

sin (θ − θ0) = k−1 sin (θ − θ1) . (6)

There are two tentative solutions of θ0. They are

θ
(0)
0 = θ −α,
θ
(1)
0 = θ +α+ π,

(7)

where α = arcsin
[
k−1 sin (θ − θ1)

]
and α ∈ [−0.5π, 0.5π].

Moreover, the imaginary part of (W1 − kW0) has a
same sign with that of (X1 − kX0). This leads to
(Im {W1 − kW0} / Im {X1 − kX0})|θ0 ≥ 0. Therefore,
θ0 = θ +α+ π is the only solution to (6).

By substituting (3) and (5) into (2), we have

Ac = (X1 − kX0) / (W1 − kW0)�Wc,
Pc = Xc − (X1 − kX0) / (W1 − kW0)�Wc,
∀c ∈ {0, 1},

(8)

where Xc and k can be computed from the correlation of input
signals. Up to this stage, θ0 and θ1 are still unknown. Due
to the spatial assumptions between θ0 and θ1, only one phase
angle θ1 needs to be estimated. With a sparsity constraint, the
PAE is transformed into an optimization problem, which is
expressed as

θ̂
∗
1 = argmin

θ̂1

∥∥∥P̂1

∥∥∥
1
. (9)

The standard implementation of the PAE algorithm is based
on a time-consuming angle-by-angle searching strategy [15].
Instead, an approximated solution to θ1 can be analytically
obtained [16]. According to (8), the approximated solution is
given by

θ̂
∗
les =

{
∠X1,∀k > 1;
∠ (X1 −X0) ,∀k = 1.

(10)

This approximated solution often causes a notable loss of
accuracy [17]. Therefore, a fast implementation of the PAE
algorithm is proposed by optimizing the searching strategy.
The range of angles are limited to be centered at the approxi-
mated solution with an offset not exceeding ±β. The proposed
solution to θ1 can be expressed as

θ̂
∗
1 =


arg min

θ=[∠X1−β,∠X1+β]

∥∥∥P̂1(θ)
∥∥∥
1
,∀k > 1;

arg min
θ=[∠(X1−X0)−β,∠(X1−X0)+β]

∥∥∥P̂1(θ)
∥∥∥
1
,∀k = 1.

(11)
This results in a fast implementation and equivalent accuracy
as compared to the original PAE algorithm.

The PAE algorithm is thereafter applied to each stereo audio
sample to extract the primary and ambient components of
the left and right channels. However, considering that the
primary and ambient components are not with the same data
distribution as the original stereo audio, it is not suggested to
use them as individual samples. Therefore, as shown in Fig. 2,
during the process of each iteration, the primary and ambient
components are remixed according to a random weight, which
can provide augmented acoustic features that the conventional
mix-up method cannot provide. Due to the correlation between
the augmented samples and the original stereo audio sample,
the proposed method can increase the generalization of data
without modifying the original data distribution.
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Fig. 2. Data generation using the PAE algorithm.

III. EXPERIMENTS

Experiments are conducted on the TAU urban acoustic
scenes 2020 3-class development dataset, which is a high-
quality binaural recorded dataset and consists of various
acoustic scene samples collected in 10 cities of Europe [3].
40 hours of recordings are divided into 14400 segments, with
10 seconds length for each segment. Considering the learning
ability of the model under low complexity is limited, the
dataset is only divided into 3 classes. They are the classes of
indoor, outdoor, and transportation. The development dataset
is split into the training subset and the evaluation subset upon
the release.

A. Fast Implementation of the PAE Algorithm

Compared with the previous work [15], the PAE algorithm
is optimized in two aspects to achieve low complexity. Firstly,
the acoustic features are transformed from log-mel energies
to constant-Q transform (CQT). The former uses STFT first
and then passes through mel filter bank, while the latter only
needs CQT directly. The PAE algorithm is implemented after
STFT or CQT. The number of CQT calculation points in each
frame is close to the log-mel energies, which is far lower than
STFT. Therefore, the total number of PAE calculation points
can be greatly reduced.

In addition, the previous PAE implementation searches
phase angles of the whole 360-degree range in each time-
frequency bin. As shown in Section 3, this process can be
improved by limiting the search range of angles to ±20°of
the approximated analytical solution with almost no per-
formance degradation. The time costs for processing 14400
audio samples are shown in Fig. 3. “Raw” denotes the
conventional preprocessing without any up-mixing methods.
“Fast PAE” denotes the proposed fast implementation, while
“PAE” denotes the standard implementation. The time costs
of different processing methods are recorded by the same
personal computer equipped with Intel i5-9600K processor
running at 5.00GHz. Since the time costs of model training in
all experiments are less than half an hour, the improvement

Fig. 3. Time costs of processing 14400 audio samples.

achieved by the fast implementation of the PAE algorithm is
crucial.

B. Data Generation

Every audio sample with the length of 10 seconds is firstly
resampled to 22.05kHz and divided into 216 frames with 1024-
point Hanning windows. In the processing of CQT, C0 ≈
16.35 Hz is set as the lowest tone. There are 336 bins in total
and every 36 bins represent one octave. Finally, the energy
spectrum of CQT is transformed to the decibel scale. Acoustic
features with the shape of (2, 336, 216) are obtained at last.
The first dimension of the acoustic features indicates that there
are 2 channels, the left and right channels, in each stereo audio
sample.

A full CNN is adopted as the ASC model. Residual blocks
are further included in the structure, which is shown in Table. I
[18]. The parameter precision is compressed to FLOAT16
to reduce the model size. During the training of the CNN
model, the min-max method is used to treat the model input in
order for the convergence to be accelerated and the numerical



TABLE I
THE STRUCTURE OF MODEL, WHERE THE KSIZE1 AND KSIZE2 DENOTE

THE SIZE OF THE FIRST AND SECOND CONVOLUTION LAYERS OF A
RESIDUAL BLOCK, RESPECTIVELY.

Input 2×336×216
Conv2d (ksize=5, pading=2, stride=2, channel=48)

BatchNorm2d(channel=48)
ReLU(channel=48)

ResidualBlock (ksize1=3, ksize2=1, channel=48)
MaxPooling (size=2)

ResidualBlock (ksize1=3, ksize2=1, channel=48)
MaxPooling (size=2)

ResidualBlock (ksize1=3, ksize2=1, channel=48)
MaxPooling (size=2)

ResidualBlock (ksize1=1, ksize2=1, channel=96)
ResidualBlock (ksize1=1, ksize2=1, channel=96)
ResidualBlock (ksize1=1, ksize2=1, channel=96)

Conv2d (ksize=1, padding=2, stride=2, channel=3)
BatchNorm2d (channel=3)

GlobalAveragePooling2d (channel=3)
Output 3-way SoftMax

problems to be avoided. The adaptive moment estimation
algorithm is chosen as the optimizer, where the learning rate,
betas, eps, and mini batch size are set to 0.001, (0.9, 0.999),
2−11, and 32, respectively. The mix-up method is also adopted
with the hyper-parameter alpha of 0.2 [19]. The above settings
are applied on PyTorch 1.5.1 and Nvidia GeForce RTX 2080Ti
(11GB).

Furthermore, common model level optimizations are per-
formed on the proposed model. In addition to the use of
FLOAT16 as the default parameters precision setting, decom-
posing convolution layers and enhancing parameter sparsity
are also involved. When decomposing the convolution layers,
the compression parameter is set to Z = 4 [11]. Pruning is
carried out by the L1 sparsity constraint and adopting pruning
rates of 0.1 and 0.2 [9].

The experiment results of low-complexity ASC systems are
shown in Table. II, where training and evaluation are carried
out 10 times for each method such that the mean and deviation
of the classification accuracy can be calculated. Another group
of results with the the PAE-based data augmentation are shown
in Table. III. “CNN+log-mel (Baseline)” refers to the baseline
system provided by the dataset [3], which is a conventional
CNN model using acoustic features of log-mel energies.
“CNN+CQT” denotes the baseline CNN model structure using
acoustic features extracted by CQT. “ResNet+CQT” refers to
the ResNet model (shown in Table. I) using acoustic features
extracted by CQT. “Decomp”, “Prune”, and “FP” refers to
the actions of decomposing convolution layers, adopting L1
constrained unstructured pruning, and the proposed fast im-
plementation of the PAE algorithm, respectively.

The first two rows of Table. II and Table. III show the
performance improvement coming from the optimization of
the acoustic feature and model structure. The rest of the
results are obtained by the same model structure to quantify
the impact of different methods. Decomposing convolution
layers can reduce the parameter scale by more than half,

TABLE II
THE EXPERIMENTAL RESULTS OF LOW-COMPLEXITY ASC SYSTEMS.

model
Total

non-zero
parameters

Model
Size

Macro-average
accuracy (%)

CNN+log-mel
(Baseline) [3] 110579 450KB

(float32) 87.3 (± 0.7)

CNN+CQT 110579 450KB
(float32) 92.0 (± 0.4)

ResNet+CQT 210438 456KB
(float16) 95.4 (± 0.3)

ResNet+CQT
(Decomp) 91930 365KB

(float16) 94.5((± 0.3)

ResNet+CQT
(Prune0.1) 189395 410KB

(float16) 95.3(± 0.6)

ResNet+CQT
(Prune0.2) 168360 365KB

(float16) 94.0 (± 1.4)

TABLE III
THE EXPERIMENTAL RESULTS OF LOW-COMPLEXITY ASC SYSTEMS WITH

THE PAE-BASED DATA AUGMENTATION.

model
Total

non-zero
parameters

Model
Size

Macro-average
accuracy (%)

CNN+log-mel
(Baseline) 110579 450KB

(float32) 87.3 (± 0.7)

CNN+CQT
(FP) 110579 450KB

(float32) 92.4 (± 0.3)

ResNet+CQT
(FP) 210438 456KB

(float16) 96.0 (± 0.2)

ResNet+CQT
(Decomp+FP) 91930 237KB

(float16) 95.0(± 0.3)

ResNet+CQT
(Prune0.1+FP) 189395 410KB

(float16) 95.8(± 0.5)

ResNet+CQT
(Prune0.2+FP) 168360 365KB

(float16) 94.4(± 1.5)

while achieving the performance loss of just 1%. Pruning
introduces sparsity to the parameters and increases the uncer-
tainty of model performance. There is few performance loss
when the pruning rate is within a threshold range, but the
performance will drop rapidly after the threshold is exceeded.
The pruning rate at 0.2 in Table. III is more uncertain than
that in Table. II. PAE enhances the resistance of the model
to numerical disturbance and correspondingly improves the
effective parameters of the model, which results in less prun-
able parameters. The effective of the proposed PAE-based data
augmentation method is proven by the fact that the macro-
average accuracy of the model has exceeded 95%. In the
proposed method, there are very few parameters to tune, but
still results in higher performance in different model level
optimization conditions. Particularly, the proposed PAE-based
data augmentation method has no conflicts with the existing
model level optimization according to the experimental results.
With the fast implementation of the PAE algorithm, the low-
complexity model can easily achieve over 96% accuracy in
the 3-class classification task.



IV. CONCLUSIONS

In this paper, the PAE algorithm is proposed to be used
as the data augmentation method for the development of the
low-complexity ASC system. A fast implementation of the
PAE algorithm is proposed, which is suitable in schemes of
STFT and CQT. The usage of the PAE algorithm ensures the
correlation between the augmented samples and the original
stereo audio sample. Therefore, the proposed method can
increase the generalization of data without modifying the
original data distribution and be compatible with the existing
model level optimization. The effectiveness of the proposed
method is validated through experiments, achieving more than
95% macro-average accuracy in the 3-class ASC task.
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