
ON ALGORITHMS AND IMPLEMENTATIONS OF A 4-CHANNEL ACTIVE NOISE
CANCELING WINDOW

Chuang Shi, Nan Jiang, Huiyong Li

School of Electronic Engineering,
University of Electronic Science and

Technology of China, Chengdu, China

Dongyuan Shi, Woon-Seng Gan

School of Electrical and Electronic Engineering,
Nanyang Technological University,

Singapore

ABSTRACT

The active noise canceling window is an application of the
multi-channel active noise control (ANC) system, which aims
to provide a quiet living environment while preserving the
ventilation of the room. In the implementation of the active
noise canceling window, the standard multiple-error LMS al-
gorithm demands too much computational power to be han-
dled by a common digital signal processor (DSP). Hence, the
minimax algorithm, which minimize the amplitude instead of
the power of the noise field, is revisited. The minimax al-
gorithm is compared with the multiple-error LMS algorithm
based on numerical simulations of a case (1, 4, 4) ANC sys-
tem and real-time experiments with floating-point implemen-
tations. The simulation and experiment results show that the
minimax algorithm has a distinct advantage in reducing the
computational complexity but its trade-off is the relatively
slow convergence speed.

Index Terms— Active noise control, minimax algorithm,
multiple-error LMS algorithm, active noise canceling window

1. INTRODUCTION

The history of the active noise control (ANC) technology can
be traced back to 1936, when Lueg was granted the patent
on the “process of silencing sound oscillations”, whereby a
reference signal was used to generate the control signal and
the quiet zone was formed behind the secondary loudspeaker
[1]. This is now widely known as the feedforward structure
of ANC systems. In the 1980s, the emergence of adaptive
signal processing and digital signal processors (DSPs) accel-
erated the development of the ANC technology. In the early
1990s, Eriksson reported the successful implementation of an
ANC system to deal with the noise in an air duct [2]. From
then on, ANC systems have been widely used in many noise
mitigating applications [3, 4, 5].
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Fig. 1. Illustration of the active noise canceling window (pic-
tures are extracted from [6, 7]).

Some of the ANC applications focus on the local cancel-
lation of noise, typically within one tenth of the noise wave-
length from the error microphone, while multi-channel ANC
systems are necessarily deployed when the targeted control
areas are large. The computational complexity of a multi-
channel feedforward ANC system increases with the num-
bers of reference microphones, secondary loudspeakers, and
error microphones [7]. Active control of noise in large 3D
spaces is therefore more complicated and costly [8]. Since
successful implementation of ANC systems is dependent on
their practicality, different approaches to reduce the computa-
tional complexity have been attempted, such as the collocated
and decentralized systematic configurations [9, 10].

Active noise canceling window is an application of the
multi-channel ANC system to provide a quiet living environ-
ment while preserving the ventilation of the room [11]. Ac-
cording to Ise’s boundary surface control principle, the sound
field in an enclosed space can be controlled by adjusting the
sound pressure and particle velocity on the surface of the
space [12]. Therefore, the active noise canceling window is
feasible to generate an anti-noise field with inverted phase of
the noise field, so that the noise level in the room is globally
minimized, as illustrated in Fig. 1.



This paper works on a demo setup of the active noise can-
celing window, which consists of two by two feedforward
channels. Each channel is made up of one reference micro-
phone, one secondary loudspeaker and one error microphone.
The fully functional multi-channel ANC system requires data
sharing between all the four reference microphones, four sec-
ondary loudspeakers and four error microphones, which will
exceed the capability of a common DSP. Therefore, the mini-
max algorithm proposed in [13] is adopted and compared with
the standard multiple-error LMS algorithm in both numerical
simulations and real-time experiments based on floating-point
implementations.

2. MULTI-CHANNEL ANC ALGORITHMS

The multi-channel ANC system, shown in Fig. 2, includes I
reference microphones, J secondary loudspeakers and K er-
ror microphones, which is also called the case (I, J,K) ANC
system. The reference signal vector of the i-th reference mi-
crophone is denoted as

xi(n) = [xi(n), xi(n− 1) , · · · , xi(n− L+ 1)]
T
, (1)

where L is the tap length for both the control filters and sec-
ondary path models. The control filter that calculates the out-
put of the j-th secondary loudspeaker based on the input from
the i-th reference microphone is denoted as

wji(n) =
[
w

(0)
ji (n), w

(1)
ji (n), · · · , w(L−1)

ji (n)
]T
. (2)

The output of the j-th secondary loudspeaker is denoted as

yj(n) = [yj(n), yj(n− 1), · · · , yj(n− L+ 1)]
T
, (3)

where

yj(n) =

I∑
i=1

wT
ji(n)xi(n). (4)

Therefore, the error signal measured at the k-th error micro-
phone is a summation of the noise and anti-noise signals as

ek(n) = dk(n) +

J∑
j=1

sTkjyj(n), (5)

where dk(n) is the noise signal received by the k-th error mi-
crophone. The secondary path from the j-th secondary loud-
speaker to the k-th error microphone is denoted as

skj =
[
s
(0)
kj , s

(1)
kj , · · · , s

(L−1)
kj

]T
. (6)

In order to update coefficients of those control filters, the
standard multiple-error LMS algorithm yields

wji(n+ 1) = wji(n)− µ
K∑

k=1

[ek(n)x
′
kji(n)], (7)
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Fig. 2. Block diagram of multi-channel active noise control.

where the filtered reference signal vector is written as

x′kji(n) =
[
x′kji(n), x

′
kji(n− 1), · · · , x′kji(n− L+ 1)

]T
.

(8)
Each element in (8) is calculated by

x′kji(n) = ŝTkjxi(n). (9)

Here, an estimate of the secondary path assumed to be ob-
tained offline is written as

ŝkj =
[
ŝ
(0)
kj , ŝ

(1)
kj , · · · , ŝ

(L−1)
kj

]T
. (10)

Practically, there are feedback paths from the secondary
loudspeakers to the reference microphones. In our demo setup
with four reference microphones and four secondary loud-
speakers, there are four by four feedback paths. They can be
modeled by finite impulse response (FIR) filters like the sec-
ondary paths. However, after offline modeling of the feedback
paths, implementing the feedback path cancellation costs ad-
ditional four by four filter operations.

Among different algorithms that reduce the computational
complexity of the multi-channel ANC system, the minimax
algorithm is seldom addressed after its proposal. A detailed
introduction to the minimax algorithm can be found in Prof.
Elliott’s seminal textbook [3].

The basic idea begins by examining the cost function that
the multi-channel ANC system deals with, which is given as

Jp = ep =

(
K∑

k=1

|ek|p
) 1

p

. (11)

The multiple-error LMS algorithm solves this optimization
problem when p = 2.

Another possible choice of p is to consider the ANC prob-
lem as minimizing the amplitude of the noise field, rather than
the power of the noise field. This has been proven to be an
efficient viewpoint, especially when the control area is rela-
tively large. In this case, the cost function becomes

J∞ = e∞ = max (|ek|) . (12)



x

q1

q2

q3

q4

Secondary 

Loudspeakers

Solid Wall

Solid Wall

e1

e2

e3

e4

Primary 

Noise

Error 

Microphones

12cm

40 cm

48cm

-60cm

Fig. 3. Simulation setup of case (1,4,4) active noise control
system.

To minimize the cost function above is same as to minimize

J2
∞ = e2∞ = max

(
e2k
)
. (13)

Hence, a small modification to the multiple-error LMS al-
gorithm will be adequate to solve the new cost function in
(13). In every iteration, instead of updating coefficients of
the control filters with error samples from all the error mi-
crophones, only the maximum error sample in terms of the
absolute value is selected, i.e.

wji(n+ 1) = wji(n)− µem(n)x′mji(n), (14)

where m is the index of the error microphone that presents
the maximum absolute value.

3. NUMERICAL SIMULATION

A case (1,4,4) ANC system is configured for 2D numerical
simulations, as illustrated in Fig. 3. The primary noise source
is placed 60 cm from the center of the four secondary loud-
speakers. The primary noise signal is generated as a ran-
dom white noise and available as the common reference sig-
nal with no feedback path assumed. However, the diffraction
effect of the solid walls creates unknown yet complicated pri-
mary paths. The opening between the two solid walls is 48
cm and the thickness of the walls is ignored. The error mi-
crophones are placed 40 cm away from the secondary loud-
speakers. The spacing between the neighboring secondary
loudspeakers, as well as between the neighboring error mi-
crophones, is set at 12 cm. The secondary path models are
identified through an offline manner with 50-tap FIR filters.
The control filters also have the same length of 50 taps.
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(a) Multiple-error LMS algorithm (µ = 5.0e-5)
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(b) Minimax algorithm (µ = 2.0e-4)
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(c) Multiple-error LMS algorithm (µ = 2.0e-4)

(d) Minimax algorithm (µ = 8.0e-4)

Fig. 4. Simulated outputs of error microphones.



Small chamber setup 

• This is the improved version of the previous setup with a 
noise source contained in a chamber. 
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Fig. 5. Experimental setup of the 4-channel active noise can-
celing window.

The outputs of every error microphone are plotted in Fig.
4 using both the multiple-error LMS and minimax algorithms
with different stepsize settings. When comparing Figs. 4(a)
and 4(b), we note that the minimax algorithm requires four
times the stepsize of the multiple-error LMS algorithm in or-
der to achieve the same convergence speed. When using the
same stepsize, the multiple-error LMS algorithm converges
faster than the minimax algorithm, as shown in Figs. 4(b) and
4(c). However, the stepsize bound of the minimax algorithm
doesn’t appear to be broader than the multiple-error LMS al-
gorithm. As shown in Fig. 4(d), when the stepsize is set
to four times of µ = 2.0e-4, the minimax algorithm cannot
converge at the same speed of the multiple-error LMS algo-
rithm using µ = 2.0e-4. Instead, it diverges. Hence, although
the minimax algorithm is less computationally complicated,
it may slow down the convergence as a trade-off.

4. REAL-TIME EXPERIMENT

Real-time experiments are carried out with the Texas Instru-
ment TMS320C6713 DSP starter kit running at 225 MHz
clock rate. Eight ADCs and four DACs are integrated on
the HEG DSK6713 IF-A data acquisition board, supporting
up to 200 kHz sampling frequency and 16 bit precision. The
sampling frequency used in the experiment is locked at only
16 kHz. The primary noise is enclosed in a wooden box, as
shown in Fig. 5. The opening on the wooden box is 20 cm by
20 cm. The spacing between the secondary loudspeakers is 12
cm, which is also the spacing between the error microphones.
Each feedforward channel obtains the reference signal from
individual reference microphone, which is located at 12 cm
away from the secondary loudspeaker inside the wooden box.
Therefore, the feedback paths occur and affect the noise re-
duction performance. A band-limited white noise is used in
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Fig. 6. Noise levels at the error microphones’ locations.

the experiment as the primary noise.
When the length of the control filters is 100 taps, both the

multiple-error LMS and minimax algorithms converge, with-
out implementing the feedback path cancellation. However,
the minimax algorithm remains effective when the length of
the control filters increases to 120 taps and even 200 taps. The
multiple-error LMS algorithm cannot run fast enough with
such long tap lengths and thus breaks the causality constraint.
On the other hand, the minimax algorithms allows the feed-
back path cancellation to be implemented when the length of
the control filters is 100 taps, owing to its significant advan-
tage in consuming less computational power. The multiple-
error LMS algorithm cannot run together with the feedback
path cancellation, due to the limited computational capacity
of the DSP used in the experiment.

The measured convergence curves are plotted in Fig. 6.
The multiple-error LMS algorithm tends to converge to the
same level at all the four error microphones’ locations, as
shown in Fig. 6(a). In contrast, the minimax algorithm con-
verges to different levels at the error microphones’ locations.
It is likely that the recording duration is insufficient to show
the complete convergence of the minimax algorithm, as the
minimax algorithm converges slower than the multiple-error
LMS algorithm. Furthermore, Fig. 6(c) shows that the benefit
of the feedback cancellation is an additional 2-3 dB noise re-
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Fig. 7. Converged control filters in the experiment.

duction, due to the fact that higher quality of reference signals
leads to better performance of ANC systems.

The coefficients of the control filter after convergence are
plotted in Fig. 7. The multiple-error LMS algorithm results in
similar control filters as the minimax algorithm. This is par-
tially because the configuration of the 4-channel active noise
canceling window is symmetric. When the gains of the ampli-
fiers are uniform, the control filters can be the same across all
channels [9]. When the feedback path cancellation is imple-
mented, the control filters are different from those obtained
without feedback path cancellation, since the primary paths
have been changed implicitly.

5. CONCLUSIONS

This paper revisits the minimax algorithm specifically for a
new application of the multi-channel ANC system, namely
the active noise canceling window. As compared to the
multiple-error LMS algorithm, the minimax algorithm up-
dates coefficients of the control filters by only one error
sample in every iteration. The saved computational power
can be relocated for longer tap lengths or the feedback path
cancellation so that better noise reduction performance can
be achieved. However, the minimax algorithm converges
slower than the multiple-error LMS algorithm when the same
stepsize is used. It will be interesting to investigate different
approaches to accelerate the convergence of the minimax
algorithm in future works.
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