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ABSTRACT

We introduce a software suite developed for galaxy cluster cosmological analysis with the Dark
Energy Survey Data. Cosmological analyses based on galaxy cluster number counts and weak-lensing
measurements need efficient software infrastructure to explore an increasingly large parameter space,
and account for various cosmological and astrophysical effects. Our software package is designed to
model the cluster observables in a wide-field optical survey, including galaxy cluster counts, their
averaged weak-lensing masses, or the cluster’s averaged weak-lensing radial signals. To ensure maximum
efficiency, this software package is developed in C++ in the CosmoSIS software framework, making
use of the CUBA integration library. We also implement a testing and validation scheme to ensure the
quality of the package. We demonstrate the effectiveness of this development by applying the software
to the Dark Energy Survey Year 1 galaxy cluster cosmological data sets, and acquired cosmological
constraints that are consistent with the fiducial Dark Energy Survey analysis.

1. INTRODUCTION

The abundance of galaxy clusters, the most massive
gravitationally-bound structures in the Universe, are im-
portant cosmology probes utilized by wide-field cosmic
surveys like the Dark Energy Survey (DES) (Abbott et al.
2020; To et al. 2021a). Together with large scale structure
correlation functions (Frieman et al. 2008; Weinberg et al.
2013), galaxy cluster cosmology studies are projected to
yield significantly improved constraints on dark energy
in coming years, especially with the Rubin Observatory
Legacy Survey of Space and Time (LSST) (The LSST
Dark Energy Science Collaboration et al. 2018).
To derive cosmological constraints from galaxy cluster

abundance observables (see a review in Allen et al. 2011),
studies rely on a few theoretical ingredients to model the
observations. First, gravity theories predict that galaxy
clusters form through linear gravitational accretion and
nonlinear collapse (see a review in Kravtsov & Borgani
2012). Different cosmology models predict different abun-
dances of galaxy clusters, and those abundances can be
modeled with a dark matter halo mass function (e.g.,
Press & Schechter 1974; Tinker et al. 2008; McClintock
et al. 2019a). This mass function depends on cosmological
parameters such as the matter fluctuation amplitude and
its growth, σ8, and the total matter density, Ωm, and is
subject to effects such as the number of neutrino species
and the neutrino matter densities (Costanzi et al. 2013),
as well as baryonic effects at the small scales (Bocquet

et al. 2016). Further, the cosmic geometry predicted by
cosmological models allows us to translate a dark matter
halo mass function into dark matter halo counts (Wein-
berg et al. 2013).
To compare the abundance of dark matter halos to

galaxy cluster observations, we also need to forward model
how imaging surveys identify and measure galaxy clusters
using a set of observational criteria (e.g., Rykoff et al.
2014, 2016; Palmese et al. 2020; Aguena et al. 2021). The
key to this task is a cluster observable-mass relation which
models the relation between a cluster mass “proxy” and
the dark matter halo mass. This relation takes many
forms in literature – the Log-Normal relation is typical,
but new forms of the relation have been suggested in
recent years (e.g., Mao et al. 2015; Costanzi et al. 2019a;
Zhang & Annis 2022).
Parameter inference in cluster cosmology is often done

by adopting a Bayesian framework comparing theoretical
predictions to observations. The posterior distributions of
the cosmological parameters and nuisance parameters are
often sampled using Markov Chain Monte Carlo (MCMC)
methods, with a typical analysis requiring hundreds to
thousands of CPU hours (Lemos et al. 2022). Additional
systematic effects, such as incorrectly choosing a cluster’s
central galaxy known as “mis-centering” (Zhang et al.
2019), the projection of correlated and uncorrelated struc-
tures around the clusters (Costanzi et al. 2019a), the
weak lensing cluster member contamination (Varga et al.
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2019), and the shape and orientation of real non-spherical
clusters also need to be considered as corrections to the
theoretical expectation from spherically symmetric clus-
ter density distributions. Given all of those elements,
forward-modeling the galaxy cluster abundance and their
shear measurements can be approached as an integration
problem because of the need to marginalize over various
theoretical and observational effects. Solving this prob-
lem poses a significant computational challenge when the
integrations have large dimensions and need to be com-
puted at every step of a Monte Carlo parameter sampling
analysis.
In this paper, we introduce our efforts to develop a soft-

ware package to compute models for cluster abundance
and weak lensing measurements. The latter introduces
a few more dimensions of integrations than the fiducial
analysis adopted in DES Y1 (Abbott et al. 2020). As the
MCMC sampling methods used for cosmological param-
eter inference often need to compute those models with
varying cosmological and nuisance parameters for many
thousands of times, the efficiency of those computations
becomes critically important. The change necessitates
the development of a new pipeline that is focused on com-
puting efficiency and the application on high-performance
computing resources. In the rest of this paper, we describe
the design background of this new pipeline including the
theoretical models, the structure of our software pack-
age and our testing mechanisms. We also use this new
package to reproduce the fiducial DES Y1 analysis in
Section 6 and acquire consistent cosmological results.
This analysis also serve as an independent check of the
fiducial DES Y1 analysis.
The package described in this paper will be made openly

available.

2. CLUSTER COSMOLOGY THEORETICAL FRAMEWORK

2.1. Number Counts and Average Masses

In galaxy cluster cosmology studies performed by op-
tical surveys like Sloan Digital Sky Survey (SDSS) and
DES, the clusters are discovered through their richness,
denoted as λ (Rykoff et al. 2012). To-date, the cluster
cosmology analyses performed with large cluster samples
from SDSS and DES (Rozo et al. 2010; Costanzi et al.
2019b; Abbott et al. 2020) use summary statistics of the
selected samples, i.e. the number of clusters in a few
richness and redshift ranges, and their average masses in
these richness/redshift ranges as the observable of cosmol-
ogy. In this section, we describe the analytical formalism
for modeling those cluster number and mass observables.
We first present the theoretical predictions for the total

number and the average mass of the clusters in one red-
shift and richness bin. Those quantities can be written

as

⟨N(∆λi,∆zj)⟩ =
∫
∆zj

dzob
∫
∆λi

dλob

∫ ∞

0

dM

∫ ∞

0

dztrue

P (zob|ztrue,∆λi)P (λob|M, ztrue)

n(M, ztrue) Ω(ztrue)
dV

dΩ dztrue
(ztrue) .

⟨NM(∆λi,∆zj)⟩ =
∫
∆zj

dzob
∫
∆λi

dλob

∫ ∞

0

dM

∫ ∞

0

dztrue

P (zob|ztrue,∆λi)P (λob|M, ztrue)

M · n(M, ztrue) Ω(ztrue)
dV

dΩ dztrue
(ztrue) .

⟨M(∆λi,∆zj)⟩ = ⟨NM(∆λi,∆zj)⟩ / ⟨N(∆λi,∆zj)⟩ .
(1)

In this set of equations, ⟨N(∆λi,∆zj)⟩ is the predicted
number of galaxy clusters in a redshift range of ∆zj and
a richness range of ∆λi, while ⟨NM(∆λi,∆zj)⟩ is the
predicted total mass of those clusters and ⟨M(∆λi,∆zj)⟩
is their average mass.
The predictions for those three quantities consider sev-

eral theoretical elements. First, the volume density of
galaxy clusters in terms of their theoretical quantities,
mass M and redshift ztrue, is known as the halo mass
functions n(M, ztrue) . Analytical approximations for the
halo mass function can be calculated from the matter
power spectrum and the cosmological model, and depends
most strongly on the values of Ωm and σ8 in a ΛCDM
cosmology (our applications are based upon Tinker et al.
2008). Second, Ω(ztrue) is the total solid angle area of the
cosmic survey, which may have a redshift dependence as
the usable area for cluster searching changes with redshift.
Further, dV

dΩ dztrue (z
true) is the cosmological volume ele-

ment in solid angle dΩ and a redshift slice dztrue, which
also depends on the cosmological parameters. On top of
those cosmology and geometry related quantities, we also
consider a few relations linking cluster observable to their
theoretical quantities. Among those, P (zob|ztrue,∆λi)
considers the redshift uncertainty of the clusters, as its
measured value of zob may deviate from its true redshift
characterized by a (sometimes Gaussian) probabilistic
distribution. P (λ|M, ztrue) relates the cluster’s observa-
tional selection quantity λ to the cluster’s theoretical
mass quantity, M , and true redshift ztrue. P (λ|M, ztrue)
can be further expanded to marginalize over latent pa-
rameters to consider astrophysical effects like projection
and cluster triaxial shapes. A more detailed description
can also be found in Abbott et al. (2020).

2.2. Number Counts and Average Lensing Signals

In observations, to measure the averaged cluster masses,
the averaged cluster lensing signals are analyzed for the
clusters in the richness ranges (McClintock et al. 2019b).
In this software development, our end goal is to forward
model this lensing observable together with the cluster
number counts, instead of relying on the cluster’s average
mass measurements and number counts. Realizing this
goal requires us to further consider the relations between
cluster mass, concentration (c), and the cluster’s projected
radial mass density from the center Σcen(r|M, ztrue, c).
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⟨NΣcen(r,∆λi,∆zj , c)⟩ = (2)∫
∆zj

dzob
∫
∆λi

dλ

∫ ∞

0

dM

∫ ∞

0

dztrue

P (zob|ztrue,∆λi)P (λ|M, ztrue)

Σcen(r|M, ztrue, c) · n(M, ztrue) Ω(ztrue)
dV

dΩdztrue
(ztrue)

Further, those projected mass densities are susceptible
to an additional physical effect – mis-identification of
galaxy cluster centers, that the cluster’s real centers can
be offset from the identified centers by a distance, Rcen.
This mis-centering offset can be described by a probability
distribution P (Rcen):

P (Rcen) = fcenδ(Rcen) + (1− fcen)Pmis(Rcen). (3)

In this equation, we recognize that a significant frac-
tion (fcen) of the clusters are actually well-centered. For
those well-centered clusters, Rcen can be described as
a δ function, as often adopted in cluster lensing mod-
eling (e.g., McClintock et al. 2019b). For the clusters
that are indeed mis-centered, their mis-centering distance
can be described by a continuous probabilistic function
Pmis(Rcen), constrained by multi-wavelength studies (e.g.,
Zhang et al. 2019). Further, mis-identification of clus-
ter centers have also been shown to further affect the
cluster richness observable by introducing dependence on
the cluster’s mis-centering offset, which can be modeled
by an additional latent parameter λcen describing a clus-
ter’s would-be richness without the mis-centering effect
(Johnston et al. 2007; Zhang et al. 2019).

P (λob|M, ztrue, Rcen) =∫ ∞

0

dλcen P (λob|λcen, Rcen)P (λcen|M, ztrue).
(4)

This equation marginalizes over the latent λcen parameter,
assuming that the cluster’s observed richness λob depends
on λcen and the cluster’s mis-centering offset Rcen with a
probability distribution P (λob|λcen, Rcen).
Thus, the prediction for the clusters’ projected surface

mass density as a function of radius can be written as,

⟨Σ(r|∆λi,∆zj , c)⟩ = (5)

fcen
⟨N(∆λi,∆zj)⟩

⟨NΣcen(r,∆λi,∆zj , c)⟩ +

1− fcen
⟨N(∆λi,∆zj)⟩

⟨NΣmis(r,∆λi,∆zj , c)⟩ .

While ⟨NΣcen(r,∆λi,∆zj , c)⟩ has been defined in Equa-
tion2, ⟨NΣmis(r,∆λi,∆zj , c)⟩ needs to azimuthally aver-
age over the mis-centering distance distribution, which

can be written as:

⟨NΣmis(r,∆λi,∆zj , c)⟩ = (6)∫
∆zj

dzob
∫
∆λi

dλob

∫ ∞

0

dM

∫ ∞

0

dztrue∫ ∞

0

dλcen

∫ ∞

0

dRcen

∫ 2π

0

dα

2π

P (zob|ztrue,∆λi) P (λob|λcen, Rcen)

P (λcen|M, ztrue) Pmis(Rcen) (7)

n(M, ztrue) Ω(ztrue)
dV

dΩdztrue
(ztrue)

Σcen(
√
r2 +R2

cen − 2rRcen.cosα|M, ztrue, c).

Given that mis-centering affects the cluster richness-
mass relation, we shall also update the writing of the
cluster number counts as

⟨N(∆λi,∆zj)⟩ = fcen · ⟨Ncen(∆λi,∆zj)⟩ (8)

+ (1− fcen) ⟨Nmis(∆λi,∆zj)⟩ ,
⟨Ncen(∆λi,∆zj)⟩ =∫

∆zj

dzob
∫
∆λi

dλob

∫ ∞

0

dM

∫ ∞

0

dztrue

P (zob|ztrue,∆λi) P (λob|M, ztrue)

n(M, ztrue) Ω(ztrue)
dV

dΩ dztrue
(ztrue),

⟨Nmis(∆λi,∆zj)⟩ =∫
∆zj

dzob
∫
∆λi

dλob

∫ ∞

0

dM

∫ ∞

0

dztrue∫ ∞

0

dλcen

∫ ∞

0

dRcen

P (zob|ztrue,∆λi) P (λob|λcen, Rcen)

P (λcen|M, ztrue) Pmis(Rcen)

n(M, ztrue) Ω(ztrue)
dV

dΩ dztrue
(ztrue) .

Finally, the results of the cluster’s averaged projected
densities can be further converted into the so-called excess
surface mass density ∆Σ as with:

⟨∆Σ(R|∆λi,∆zj , c)⟩ =
2

R2

∫ R

0

r ⟨Σ(r|∆λi,∆zj , c)⟩dr − ⟨Σ(R|∆λi,∆zj , c)⟩ .

(9)

or into reduced tangential shear signals, γt, which are
observables from cluster weak lensing analyses (Umetsu
2020).

3. PARAMETER ESTIMATION AND COSMOSIS

Our development is guided by the Bayes’ theorem to
derive a posterior probability distribution of a set of model
parameters θ, upon a set of observations x.

P (θ |x, I) ∝ P (x | θ, I)P (θ | I), (10)
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Fig. 1.— Components of CosmoSIS pipeline using a Markov Chain Monte Carlo sampling method to derive the posterior cosmological
constraints.

In this equation, our knowledge of the parameters before
consideration of the data x, but based on our prior in-
formation I, is described by the joint prior probability
P (θ | I). On the other hand, P (x | θ, I), often called the
likelihood, is the probability of observing the data x,
given the parameters θ and the same prior information I.
In cluster cosmology studies that rely on summary

statistics, such as the cluster number counts and their
lensing masses or their average lensing profiles described
in the previous section, the likelihood is often assumed to
be a multi-dimensional Gaussian as studied and tested in
literature (Gruen et al. 2015; Wu et al. 2019; Fumagalli
et al. 2021). The mean of the Gaussian is the expectation
values of the predictions for the data in a given cosmology
(µ(θ)) while the spread of the distribution is described by a
covariance matrix C that characterizes the uncertainties
in both observation and theory. Thus the likelihood
function can be written as:

P (x | θ, I) = N (x− µ(θ), C(θ)) (11)

To derive the posterior cosmological constraints given
the observational measurements, theoretical predictions,
and the covariance matrix, we rely on MCMC methods,
as well as other sampling techniques. These samplings
and the development of the prediction code are performed
in the CosmoSIS software framework 1. Figure 1 demon-
strates a typical workflow to derive posterior cosmological
constraints in CosmoSIS.
CosmoSIS Zuntz et al. (2015) is a modular system for

cosmological parameter estimation. It solves integrals
like that in Equation 10 using MCMC. MCMC solves
an n-dimensional integral by generating a collection of
points, called samples, in an n-dimensional space; the
points are distributed according to the functional form
of the solution. A sampler drives the exploration of the
parameter space. A sampler is the software component
responsible for determining the location in the parameter
space for the next step of the MCMC chain based upon
the evaluation of the user-supplied likelihood function,
and the location of the current sample. The user provides
the likelihood function by supplying one or more modules
(Forward Model modules and/or Gaussian Likelihood
modules in Figure 1) which, given a point in the parameter
space, evaluate the likelihood of the data given those
parameters.
In CosmoSIS, a module is user-written code responsible

for calculating physical quantities of interest (e.g., pre-
dicted cluster number counts) based on the parameters
of the current sample. CosmoSIS modules can be writ-
ten in several programming languages, including Python,

1 https://bitbucket.org/joezuntz/cosmosis

C, Fortran, C++ and Julia. Calculations from those
modules are stored in a structure known as a DataBlock
object, which is passed through the list of modules used
in a CosmoSIS pipeline setup, and thus functions to pass
results between modules.

4. PIPELINE STRUCTURE

Our pipeline delivers prediction code that can be imple-
mented in a CosmoSIS module for the likelihood calcula-
tion (Equation 11), µ(θ). In particular, we calculate the
predictions for the cluster number counts, cluster masses
and/or shear profiles using models and the integrals they
involve. The efficiency of the numerical integration li-
brary we use is of primary importance, as the calculation
of the integrals of interest can involve 105—106 function
evaluations. In the rest of the section, we describe the
structures of this pipeline as well as how those structures
function in an analysis implementation.

4.1. “Models”

The smallest software units in our development of the
pipeline are the models. Examples include the survey area
function Ω(ztrue), the halo mass function n(M, ztrue), and
the cluster observable-mass relation P (λ|M, ztrue) from
Equation 1.
In each case, the essence of one model is a function

which we need to evaluate as part of our integrand, and
which can be tested for correctness in isolation from the
rest of the integrand. Furthermore, there may be more
than one sensible implementation of the function—for
example, in the case of the survey area function, the
implementation would be different for different surveys.
Finally, the evaluation of the function may require the
use of some additional data, other than the values of the
function arguments. A very common example of this is
the use of interpolation tables, which can be output arrays
from other CosmoSIS modules (such as the CosmoSIS
CAMB module), or derivations from supporting analyses
not as part of this efforts.
Figure 2 shows most of the implementation of one of

our models, the survey area for the SDSS redMaPPer
cluster sample, which is redshift dependent. The name
of the class is OMEGA_Z_SDSS. The state of each object
of this type consists only of a polynomial object named
fit_, which itself is a callable object representing a poly-
nomial interpolation function. The default constructor
of the class, which initializes an object of a class, estab-
lishes the state of the object, in this case a polynomial
used to evaluate the function. There is a second con-
structor, which takes a CosmoSIS DataBlock object; this
use of the constructor will be described later. In this
case, the constructor does nothing differently than the
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class OMEGA_Z_SDSS {
private:

polynomial <12> fit_ {...};

public:
OMEGA_Z_SDSS () = default;

OMEGA_Z_SDSS(cosmosis :: DataBlock &) {}

double
operator ()( double zt) const
{

return fit_(zt - 0.2);
}

};

Fig. 2.— Abridged implementation of the class OMEGA_Z_SDSS,
which represents the cosmological survey area for SDSS. Details of
namespaces and the implementation of the initialization of fit_
have been suppressed for brevity.

default constructor—it is acceptable for a constructor to
ignore its argument(s). The function call operator shows
that this class represents a function of one argument, zt,
and the implementation is using the interpolation table
to calculate the function. Importantly, the function call
operator is implemented inline. This means the compiler
is free to put the code of the function directly into the
place where the function is called. This is important
because it provides the compiler the opportunity to see
the implementation of the function at any place in the
code where this function is called, which allows an opti-
mizing compiler to make use of this information to do
more optimizations than would be possible without this
information. This member function is const-qualified,
which means calling the function does not alter the state
of the object. Marking the function helps assure the
correctness of our code; if an error in implementation
is made that perhaps inadvertently modifies the state
of the object (for example, by changing the values in
an interpolation table), a compilation failure will occur.
Marking the function const can also provide a compiler
additional opportunities for optimization of the generated
machine code.
The example class shown in Figure 2 computes the

survey area for SDSS, but additional classes/models that
represent the survey area of different data sets, e.g., DES
year 1 data sets, or year 6 data sets can be constructed.
Each class that represents a survey area has a function
call operator with the same signature: one argument,
of type double representing the redshift at which the
area element is to be calculated, and returning a double
representing the area of the survey at that redshift.
In addition, every model (not just those representing

cosmological area calculations) has a constructor that
takes a CosmoSIS DataBlock object. This constructor is
used when the model is invoked in a CosmoSIS pipeline,
and is used to provide any necessary initialization values
to the model. In this case, no such initialization param-
eters are needed, and this constructor does not need to
consult the DataBlock which is given. However, the con-
structor must still be present, so that the generic code
that creates a model (and which provides the DataBlock
to be used) is well-formed. Our library of models includes
two volume elements, one for the DES and one for the
SDSS.

We also require that those models, as they are the
smallest development unit, must have a corresponding
test whenever possible. This is described in more detail
in Section 5.1.

4.2. CosmoSIS modules in general

The models are embedded into CosmoSIS modules. The
module interface provided by CosmoSIS has a natural
implementation when translated into C++. Each module
is represented as an instance of a module class. We note
that no inheritance is necessary, because there is nothing
in CosmoSIS that would ever interact with the base class
of an inheritance hierarchy.
A module object is created at program start-up time,

using the constructor of the class. Any configurable
parameters required by the class are passed to the con-
structor through a DataBlock object, which contains the
configuration information read by the CosmoSIS program.
At each step of the MCMC process, CosmoSIS calls the
module’s execute function; this is naturally implemented
in C++ as a member function execute, which is passed
an instance of the class DataBlock carrying the cosmo-
logical parameters and derived physical quantities for
the current MCMC sample. For our prediction modules,
these quantities are used as inputs for calculating the
predictions of observables, given the cosmology of the
current sample. The prediction modules in turn record
these predictions in the DataBlock for later processing by
our likelihood module. Our likelihood module retrieves
the predictions from the DataBlock and calculates the
data likelihood for the sample cosmology, recording it in
the DataBlock. Figure 3 shows a flowchart of the oper-
ations between integrands, modules and the DataBlock
described in this section. Finally, the module objects are
destroyed at program shutdown. In a well-designed class,
there is usually no user-written code necessary for the
destructor; the compiler-generated destructor will assure
that all allocated resources are properly released.

4.3. Our physics modules

The prediction modules calculate their predictions
based on integrands formed from the models described in
Section 4.1. These models are typically created for a given
cosmology, and thus model instances are created anew
for each MCMC sample. (In some cases, as described
below, models have an even shorter lifetime.) Equation 2
shows one such integral, which calculates the centered
shear profile. This integral is done over five variables of
integration. Two of the variables of integration (zob, λob)
are each integrated over several distinct, possibly over-
lapping, ranges. Thus there are distinct 5-dimensional
volumes of integration to be calculated for each sample.
In addition, the integral is evaluated for a distinct set
of values of r and c, which form a grid of locations in
(r, c) space at which each of the integrals are calculated.
Typically, several hundred integrals are calculated for a
single integrand—the product of the number of volumes
of integration and the number of grid points at which the
integral is evaluated.

4.4. The physicist supplied integration problem class

To simplify the task of writing a prediction
module, we have created the class template
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Fig. 3.— Flowchart of the CosmoSIS cluster pipeline summarizing
the operations between integrands, modules and DataBlock.

CosmoSISScalarIntegrand that takes a user pro-
vided template parameter and supplies the integrand.
The template provides several facilities. It configures the
model upon construction, when possible. It re-configures
the model for each sample, if needed. It re-configures the
model for the grid points at which the integrands are in-
tegrated. It configures the volumes of the integrand, and
calculates all the integration results. It then organizes
the integration results into simple data structures and
puts them into the DataBlock. The type used for this
template argument must be a class (or struct).
We have developed a class template

(CosmoSISScalarIntegrationModule) that employs
these tools to make the writing of a physics module
that performs integrals like those described above
simpler. The physicist who wishes to write an integration
module can do so with the help of this template, and
then needs to write a simpler class (named X, for
example) that provides the following features; the
type CosmoSISScalarIntegrationModule<X> is then a
fully-functional CosmoSIS module.
The required features of the physicist-provided class

include not only the implementation of the function to be
integrated (which is implemented through the function
call operator of the class), but also functions that provide
the information needed to make the module configuration
code function for the specific integrand.
The physicist inventing a new module must write a class

with several features that are relied upon by the class
template CosmoSISScalarIntegrationModule. These
features include some required nested types (type def-
initions within the class), static and non-static member
functions, and static member data. In the remainder of
this subsection we describe these features.
The class must have two nested type declarations,

grid_t and volume_t. The type grid_t is to be defined

using the helper template y3_cluster::grid_t<M>, us-
ing the appropriate value of M for the dimensionality of
the desired grid points (as described in Section 4.3, grid
points are set of variable values at which the integrals are
evaluated). The type volume_t is to be defined using the
helper template cubacpp::IntegrationVolume<N>, and
using the appropriate value of N to define the dimension-
ality of the volume of integration (otherwise also known
as the boundaries of the parameters to be integrated).
The class must have a constructor that accepts a single

DataBlock object. This object carries the configuration
parameters provided by the CosmoSIS user’s configura-
tion file. Parameters that do not change with MCMC
sample or with the grid point at which the integral is
being evaluated should be set in this constructor.
The class must provide a function call operator that

defines the actual integrand. This must define a (non-
static) member function with a return type of double and
which accepts any fixed number of double arguments. At
compilation time, this member function will be probed to
determine the dimensionality of the resulting integrand,
and to verify the dimensionality of the integration volume
specified in the type volume_t.
The class must provide a member function set_sample

that accepts a DataBlock object. This function is called
with every MCMC sample; the argument carries all the
data (most importantly, the cosmology) corresponding
to the current sample. The integrand object can read
whatever data are needed to adjust model parameters to
reflect the current sample.
The class must provide a static member func-

tion make_integration_volumes, which accepts a
DataBlock. This function is to be implemented
using one of two provided helper function tem-
plates, make_integration_volumes_wall_of_numbers
and make_integration_volumes_cartesian_product.
The choice of helper used by the integrand class deter-
mines how the integration volumes used by resulting
CosmoSIS module are configured. Both helper templates
are called with a number of C-style strings specifying the
names of the parameters that are to be read from the
CosmoSIS module configuration; the number of strings
specified must match the declared dimensionality of the
integrand’s grid. The compiler will reject as invalid code
any class for which these two do not agree. The values
of these parameters read at the startup of a CosmoSIS
run determines the set of points at which the integrals
are to be evaluated. Note that the author of the class de-
termines the dimensionality of the integration volume(s)
and the name(s) of the configuration parameter(s) to be
read from the CosmoSIS initialization file, but the user of
CosmoSIS determines the number of integration volumes
to be used in the run of CosmoSIS, and their sizes.
The class must provide a non-static member function

set_grid_point that is called to allow the setting of
any model parameters that define the grid of points at
which the integral is calculated for each sample. This
function is passed an object of type grid_point_t, car-
rying the data that specifies the location of the grid
point at which the integrand will next be evaluated. The
CosmoSISScalarIntegrationModuleclass template im-
plements the loop over the grid points specified in the
CosmoSIS user’s configuration file.
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4.5. Using the module

We rely upon several of the integration routines pro-
vided by the C-language library CUBA2(Hahn 2007). Pri-
marily, we use the (deterministic) algorithm CUHRE,
described in (Berntsen et al. 1991a); we also make some
use of the Monte Carlo algorithm VEGAS (Lepage 1978).
The CUBA library requires an inconvenient form for the
functions it integrates, and also integrates only over the
unit hypercube. It is left to the CUBA user to provide the
necessary transformation of the integrand to handle the
integration volume of interest to the user. To solve these
issues, we use the cubacpp3 C++ library. This allows
the user-supplied integrand to be any “callable object”
that takes any number of double arguments, and returns
double. It also allows the user to supply an arbitrary vol-
ume of integration, and assures at compilation time that
the volume of integration is of the same dimensionality
as the integrand. The user of the algorithm can specify
both relative and absolute tolerances, and the integration
algorithm stops when either condition is met (or when
a specified maximum number of integrand evaluations
has been done, providing a coarse means of limiting the
time allowed to calculate an integral). The value returned
from an integration problem includes the estimate of the
integral, and an approximate error in that estimate, as
well as some diagnostic information, most importantly
whether the integration algorithm has converged or not.
A physics module created using the class template

described above, instantiated using a physicist-supplied
integrand class, has several configuration parameters that
are to be set by the user of CosmoSIS. The author of
the integrand class has specified the mathematical mod-
els to be used, the dimensionality of the integrand in
question, and the parameters that are used to define the
locations in parameter space where the integrals are to be
calculated. The user of CosmoSIS, not the author of the
integrand class, chooses how many grid locations are to
be used, and where they are. The user of CosmoSIS also
defines the set of volumes over which the integral should
be evaluated. The user also chooses which of the avail-
able integration routines (CUHRE or VEGAS) should
be used, and configures the relative and absolute error
tolerances for the integration. The user also specifies a
maximum number of function evaluations to be used for
each integration task, as a means of limiting the running
time of the module for cases when the algorithm chosen
is not converging rapidly enough.

5. TESTS AND PHYSICS VALIDATION

To ensure a robust pipeline, we utilize both unit tests
and physics-based validations. In this set-up, a unit test
is designed to test the models or infrastructural functions
(e.g., 1-d and 2-d interpolators), while in cases that a
crucial calculation makes use of multiple models and/or
infrastructural functions, we rely on a physics validation
document to check the quality of the calculations.

5.1. Unit Tests

We use unit tests to ensure the accuracies of the models
in our pipeline. These unit tests are implemented and

2 http://www.feynarts.de/cuba/
3 https://bitbucket.org/mpaterno/cubacpp

TEST_CASE("omega_z_sdss works")
{

// read in comparison data file
std:: ifstream infile =
std::vector <double > zs;
std::vector <double > ys;
while (infile) {

double z, y;
infile >> z >> y;
zs.push_back(z);
ys.push_back(y);

}

OMEGA_Z_SDSS omega;

// Perform the unit test comparison
for (std:: size_t i = 0,
sz = zs.size (); i != sz; ++i) {

double const fz = omega(zs[i]);
double constexpr epsrel = 1.0e-6;
CHECK(fz ==
Approx(ys[i]). epsilon(epsrel ));

}
}

Fig. 4.— Abridged Unit test code for OMEGA_Z_SDSS, which com-
putes the cosmological survey area for the redMaPPer cluster catalog
from the Sloan Digital Sky Survey (SDSS).

ran through the CTest tool 4. An example of the unit
test is shown in Figure 4.
The structures of the unit tests are organized as the

follows. A comparison data set is read in and the relevant
function is called to execute at the comparison data points.
The output from the function is compared to the values in
the comparison data sets. If the two values are comparable
within an acceptance limit for every comparison point,
the test passes. Otherwise, the test fails.
To set up the unit tests for the physical models, we ac-

quire expected values of those model functions at a given
set of input values from previously implemented code
in other analysis, e.g., Fortran90 code implemented for
SDSS cluster cosmology analysis (Costanzi et al. 2019b),
or Python code implemented for quantifying cluster mis-
centering effects (Zhang et al. 2019). We require the
model output and the comparison value sets to agree
either within a relative or an absolute (in the case of
values being zeros) accuracy limit. The relative accuracy
limit, meaning the allowed relative differences between
the values, are by default set at 10−6 while the absolute
accuracy limit, which is the absolute differences between
the values, is set at 10−12 by default. In the cases that the
comparison values are calculated through approximations
or interpolations, we relax the accuracy requirements on
a case-by-case basis.
These unit tests are designed to be re-ran with a ctest

command when the code re-compiles because of updates
or revision and give a pass or fail indication. Output
from some of the unit tests, especially those implementing
physics models, are saved and can be used for debugging
or visualization later.

4 https://cmake.org/cmake/help/latest/manual/ctest.1.html
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5.2. Physics Validation

We also compile a physics validation document, which
visualizes the unit test results and in addition, visualizes
a selected set of more complicated calculations from the
physics modules. Specifically, we compare the module
outputs that calculate the theoretical predictions for a
set of SDSS/DES cluster observables, to the theoretical
outputs calculated by previous analyses (Costanzi et al.
2019b; Abbott et al. 2020).
In designing the physics validation document, our origi-

nal goal was to implement the validation in a system that
enables version control to easily track the comparisons.
We have considered a few different systems including
static pages such as word or PDF. Jupyter notebooks
are also considered, but ruled out because they are saved
in XML which makes it difficult to interpret the version
differences. In the end, the validation is implemented as
R markdown notebooks, which makes it easier to track
versions and present the differences.
The physics validation R notebooks can be compiled

at a single command. The generated document will au-
tomatically use the outputs from unit tests and module
outputs from the latest runs, producing a file that visual-
izes additional checks of the system. Thus, the validation
document provide a more thorough test of the pipeline.
We require agreement with a relative accuracy of 10−6

and absolute accuracy of 10−12 by default in the vali-
dation document, which maybe relaxed if necessary. In
Fig. 5, we show an excerpt of the document comparing
predictions for cluster observable in the first year’s of
DES observation data (DES Y1), as an example of what
to expect in this document. The output from our pipeline
and the fiducial DES Y1 analysis pipeline, gives highly
consistent predictions for the same set of cosmological
and nuisance parameters.

5.3. Instances of unit tests and physics validation

We stress that both unit tests and physics validation
are important to ensure the successful development and
configuration of the pipeline. For example, the unit test
of the 2-d interpolator caught an array index switch;
finding this in a physics validation plot would be difficult.
On the other hand, physics validation plots have caught
errors that we were not able to uncover in unit tests. We
illustrate this aspect with our experience of catching a
mis-match in the installation of the pipeline.

1. Our analyses need to account for the effect of mas-
sive neutrinos in the galaxy cluster mass function,
thus we developed modifications to the power spec-
trum implementation in the CAMB module in Cos-
moSIS which only uses the dark and baryonic matter
components – excluding the neutrino component –
of the power spectrum to compute the halo mass
function. This is suggested in Costanzi et al. (2013)
as massive neutrinos do not cluster at small scales.
Because the modifications are carried out by a Cos-
moSIS module that is not part of the package, we
attempted to establish a branch in the CosmoSIS
repository that contains the changes to be used in
our development.

2. The development of our package continued in the
CosmoSIS branch. A few months later, we on-

boarded a new member to the team to use and
participate in the development. The new member
installed the software and ran the initial tests and
validations.

3. All unit tests pass with no issues.

4. Upon running the physics-validation files in R, the
predictions for the DES Y1 data vectors do not
match comparison values. During the investigation,
it was also discovered that the halo mass function
output from the CosmoSIS pipeline do not match
previous values.

5. We realized that our earlier modifications to the
CAMB (Lewis et al. 2000; Howlett et al. 2012)
module a few months earlier have not been com-
mitted to the CosmoSIS repository. We promptly
committed the branch and requested the CosmoSIS
development team for approval, which since then
has been merged into CosmoSIS.

In this case, the success of our pipeline depends on
successfully capturing the dependences which are also
undergoing constant developments and updates. Given
that our modification of the CAMB module in CosmoSIS
is not part of this package, those differences were not
caught by unit tests. The separate validation testing
which captures individual physics tests makes it possible
to trace and debug this dependence.

6. ANALYSIS CASES

6.1. DES Y1 cluster Cosmology “Mock” Data

In this section, we demonstrate the efficacy of this
pipeline by implementing a DES Year 1 cluster abun-
dance cosmology analysis Abbott et al. (2020) and com-
pute prediction data vectors from the pipeline. In this
demonstration, we model the number of clusters, and
their average masses in richness/redshift subsamples.
Specifically, we use the new pipeline to derive theoreti-

cal predictions of the cluster counts and average masses
described by Equation 1. As discussed in Section 4.3 and
4.4, we use the class template to implement the integrals
of Equation 1 in CosmoSIS. Figure 6 shows a code snippet
implementing the integrands in those equations, which is
a member function of the physics module class that will
be used to calculate the integrals. Notably, we did not
adopt a projection model (Costanzi et al. 2019a) in the
richness–mass relation in this analysis. The projection
model implementation does not significantly increase the
computing time for a DES Y1-like analysis (Equation 1)
as discussed in the next subsection, which is dominated by
the running time of other cosmological modules outside
of this development such as CAMB, that can take several
seconds to run. Conversely, our modules dominate the
running time when calculating cluster shear profiles in
Equation 5, which are much slower to calculate and can
takes more than 100s of seconds using CPU machines; in
this case, skipping the projection model greatly improves
the running speed.
We compare the predictions of number counts and

masses computed from our pipeline and the DES fiducial

5 https://camb.info
6 https://bitbucket.org/joezuntz/cosmosis/wiki/default modules/camb Jan15
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Fig. 5.— Excerpt of the physics validation output implemented in R. The example shows the predictions from our pipeline for the DES
Y1 cluster number counts, compared to the model output in (Abbott et al. 2020) using the same set of values for cosmological and nuisance
parameters. The two pipelines give highly consistent predictions. The plots and values of relative and absolute differences are automatically
compiled from CosmoSIS output.

std::vector <double >
y1_analysis_mor :: operator ()( double lo, double zt , double lnM) const
{

std::vector <double > results (2 * zo_low_.size ());
double mass = std::exp(lnM);
double common_term = (*mor)(lo, lnM , zt) *

(* dv_do_dz )(zt) * (*hmf)(lnM , zt) * (* omega_z )(zt);

// Number counts first in the returned results ,
// followed by the masses
for (std:: size_t i = 0; i != zo_low_.size (); i++) {

results[i] = (* int_zo_zt )( zo_low_[i], zo_high_[i], zt) * common_term;
results[i + zo_low_.size ()] = mass * results[i];

}
return results;

}

Fig. 6.— Snippet of the module operator function implementing the integrand in Equation 1. This operator function is part of the
integration class, described in Section 4, implementing the DES Year 1 analysis. It makes use of the models described in Section 4 as well:
for example ( omega z)() is a call to the operator that implements the footprint function, similar to the one shown in Figure 2.

pipeline using one same set of cosmology and richness-
mass relation parameters. Those comparisons are done
five times with five sets of parameters, and the predictions
are all highly consistent. Figure 7 shows the prediction
data points for one set of the parameters (with Ωm =
0.3406, σ8 = 0.8049): the number count predictions from
the two pipelines agree within 3% in the lowest richness
bin, or within 1% in the highest richness bin, and the mass
predictions agree within 1%. The prediction differences
between the two pipelines are negligible compared to the
measurement uncertainties.
To test the capability of our pipeline to recover unbi-

ased parameter posteriors, we further use the prediction
data vector as a “Mock” observational data vector (from
the DES fiducial Year 1 pipeline), and derive the cosmo-
logical constraints for this “Mock” data set. Because the
“Mock” observations are derived with the same theoretical
modelling code in this pipeline, we expect to recover the
cosmological and richness-mass relation parameters that
was used to derive those “Mock” data. To derive the pos-
terior cosmological constraints, we set up the likelihood
calculation: the integral output from the modules, which
are the predictions for the cluster counts and average
masses, are passed to a separate CosmoSIS likelihood
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Fig. 7.— Comparison between the theoretical predictions from this pipeline, and the reference pipeline used in DESY1 fiducial analyses.
The upper panels show the predictions (left figure) of cluster number counts in three redshift ranges (see legend) and four richness ranges
(x-axis), and the relative difference between the two pipelines (right figure). The lower panels show the predictions of clusters’ average masses
in the redshift/richness ranges (left figure) and the relative differences between the two pipelines (right figure). Note that the difference
comparisons are highly consistent in the right figures, that the lines representing different redshift bins overlap.

Fig. 8.— Ωm − σ8 posteriors derived from DES Y1 “Mock” data.
The “Mock”data are generated with Ωm = 0.3406, and σ8 = 0.8049.
Our pipeline successfully recovers the truth parameters with the
1σ level.

module, as described by equation 11 in Section 3. The
likelihood is assumed to be a multi-dimensional Gaussian
distribution with a covariance matrix (as described in
Abbott et al. (2020)).
The posterior parameter distributions are sampled with

the “polychord” sampler implemented in CosmoSIS, as
recommended in (Lemos et al. 2022, private communica-
tions with the DES TCP Working Group) which is more

accurate compared to the EMCEE sampler (Foreman-
Mackey et al. 2013) used in Abbott et al. (2020) at sam-
pling a large parameter space with the same number of
samples. We vary and sample a total of 12 parameters
(same with Abbott et al. (2020) but setting both Ωb and
Ων to be 0), including cosmological parameters, cluster
scaling relation parameters and nuisance parameters. Fi-
nally, Figure 8 shows the posterior constraints on the Ωm

and σ8 parameters. For all of the 12 cosmological and
richness-masss relation parameters, our pipeline has suc-
cessfully recovered the values used to create the “Mock”
observations, within the 1σ level.

6.2. DES Y1 cluster cosmology constraints

Based on the success with the DES Y1 “Mock” obser-
vations, we further use the pipeline to reanalyze the DES
Year 1 data vector. We use the same prediction modules
described in the previous subsection, but this time, using
the real DES Year 1 data vector in the likelihood instead
of the “Mock” observations. We sample a total f 14 cos-
mological and richness-mass parameters as presented in
Abbott et al. (2020), using the same prior distribution
for those parameters.
Figure 9 shows the posterior constraints on the Ωm and

σ8 parameters from our re-analysis. For comparison, we
also show the Ωm and σ8 constraints from the fiducial
DES analysis pipeline of the same data vectors but using
the polychord sampler. The results are consistent within
0.5σ of the fidual DES analysis despite the differences in
the software pipelines. We note that we have tried differ-
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Fig. 9.— Ωm −σ8 posteriors from the DES Y1 cluster abundance
cosmology analysis reanalyzed with a polychord sampler (red dotted
line) and the result from the pipeline described in this paper (black
dashed line). From DES Y1: Ωm’s constraint is 0.191±0.043, while
σ8’s constraint is 0.834± 0.059. From this work: Ωm’s constraint
is 0.210± 0.046, while S8’s constraint is 0.813± 0.057. The results
from the two pipelines are consistent within 0.5σ8 for both Ωm and
σ8.

ent prior setups for the parameters, and found that in one
case, the differences can be further reduced to within 0.3σ,
but the posteriors presented here are based on the closest
implementation of the DES fiducial analysis (excluding
projection effect in the richness-mass relation). Because
our pipeline is an independent implementation from the
DES fiducial analysis, using different programming lan-
guages (C++ VS Fortran), integration algorithms, and
pipeline design, the consistency in the results between
the two pipelines also highlight the robustness of the
cosmological constraints from the DES fiducial analysis.
The CosmoSIS module we implemented for this re-

analysis, which makes theoretical predictions of the cluster
counts and average masses in a variety of integration
volumes using Equation 1 is fast. Using a single processor
on a Macbook pro (2GHz intel core i5), the calculation
for all of the 12 richness and redshift bins (corresponding
integration volumes in our pipeline) listed in the DES
Y1 analysis takes less than 0.1 second for one set of
cosmological and nuisance parameters. Including the
projection effect model increases the computing time to
about 1.9 seconds. Both impelmentations are significantly
faster than the other CosmoSIS modules needed for the
DES Y1 analysis, such as the CosmoSIS CAMB module
(which can take ∼ 4 seconds). Notably, the speed of those
computations change with the values of cosmological and
nuisance parameters, as the integrations in Equation 1
may be slow to converge if the parameters are far away
from a likely range (but necessary to sample in the MCMC
process).

6.3. DES Y1 shear profile modeling

The cluster masses that we used as an observable in DES
Y1 cluster abundance analysis are further derived from
the cluster-weak lensing shear measurements McClintock
et al. (2019b). Given an efficient method, we can directly
model cosmology from cluster number counts and cluster
weak-lensing measurements, bypassing the step to derive

masses. Here, we further demonstrate that the pipeline
can be used to compute the predictions of the DES Y1
weak-lensing observables based on Equations 5 to 9. Using
a set of cosmological and nuisance parameters from the
posterior distribution in the previous section (but not at
“best-fit”), and assuming a concentration parameter, we
show those predictions in Figure 10.
Ideally, we will also constrain cosmological parameters

through modeling the measurements, and sampling using
MCMC. However, a fully accurate pipeline will require
a good understanding of the selection effects (Abbott
et al. 2020) as well as a robust procedure of testing on
simulations (DeRose et al. 2021; To et al. 2021b) and a
blinding scheme (Muir et al. 2020). We defer this analysis
to an ongoing study. In addition, the analysis pipeline
developed for this purpose is also being implemented for
GPU computing clusters to speed up the analysis. We
will discuss those implementations in other publications.

7. DISCUSSION

In this paper, we describe a software development effort
to deliver theoretical modeling of galaxy cluster cosmology
observables implemented in CosmoSIS for cosmological
likelihood calculations. Given the set of astrophysical and
cosmological factors to be taken into account and thus
the challenging computing demands, this sofware package
is developed to optimize speed and accuracy. Specifically,
we address several challenges in the development efforts.
First, the prediction of the cluster cosmological ob-

servables depend on a few models for different physics
elements. Each of the models, for example the cluster
mass-observable relation, halo mass function etc., is still
under active development, and subject to active updates.
In addition, it is often desirable to explore several different
forms of those models to assess the robustness of the anal-
ysis due to different physical assumptions. Two examples
are the models for the mass-observable relations and the
halo mass function. To make it easy to change a model
implementation, we make the models modular, that one
model implementation can be replaced by another that
shares use of the same set of physical parameters. Each
model is represented as a C++ class, which is callable by
implementing the function call operator.
Second, the predictions can be implemented as numer-

ical integrals as shown in Section 2. The dimensions of
the integrals are often larger than two, and in our case,
reaches as many as eight. Common integration tools
such as those implemented in Python, or GSL, have only
implemented algorithms to handle 1-D or 2-D integrals.
The dimension of those integrals can become even larger
for future analyses if marginalizing over parameters rep-
resenting additional systematic effects. We make use of
the algorithms described in Berntsen et al. (1991b), and
implemented in the CUBA library Hahn (2005) in our
development.
Thirdly, the integrals mentioned above need to be eval-

uated for each sample of cosmological and nuisance pa-
rameters. If using MCMC sampling, those integrals often
need to be iterated ∼ 106 times to evaluate the posterior
distribution of cosmological parameters. In order to fin-
ish the sampling in a reasonable timescale (ideally in a
matter of days), the integrals need to be performed very
quickly. We implement all our models and our integra-
tion routines in C++: it provides the best combination
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Fig. 10.— Predictions from our pipeline for cluster number counts (upper panel) and their weak lensing measurement signals (lower panel)
in multiple redshift (each subplot) and richness ranges (each data point/line) for one set of cosmological and nuisance parameters (not at
“best-fit”). In cosmological analysis, those predictions will be compared to constrain cosmological parameters. We defer that analysis to a
future study.

of expressiveness and performance available. We also
implement procedures to ensure the reproducibility of the
code, achieved through testing.
In this paper, we demonstrate the effectiveness of this

software package by reproducing the cluster cosmology
analysis based on the public DES Year 1 data sets of
cluster number counts and weak-lensing masses. This
analysis has also served as an independent check of the
DES Y1 fiducial analysis, verifying the robustness of the
previous analysis. In the future, we expect to further
adapt the software for GPU resources (Sakiotis et al.
2021). Using this package, we will further extend the
DES Year 1 analysis by forward modeling cluster number
counts and weak lensing radial signals. The analysis is
currently under-way and will be described in a future
publication.
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35 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
36 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
37 Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK
38 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
39 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
40 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
41
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