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Sensitivity analysis of non-linear systems is performed by finding solutions to the tan-
gent/adjoint equations when the sensitivity of a function of interest is required with
respect to single/multiple parameter(s). For chaotic systems, the simulation of the tan-
gent/adjoint equations produces an unstable solution which leads to inaccurate sensi-
tivities. There have been two main methods developed in the literature to overcome
this limitation. The first are Shadowing methods, where their main feature is to find
a tangent solution which remains bounded and shadows the original non-linear tra-
jectory. This is achieved through modification of the initial condition to the tangent
equation typically through a minimisation routine. These methods are typically com-
putationally expensive whilst producing accurate sensitivity values. The second are
the computationally cheap but potentially inaccurate numerical viscosity (NV) meth-
ods. NV methods stabilise the tangent/adjoint solution through incorporation of an
additional control term into the tangent/adjoint equation that dissipates excess en-
ergy. Additional work is required when determining and tuning this additional con-
trol term, which leads to these methods being potentially inaccurate. The benefit of
the NV method is that only one non-linear solution and one tangent/adjoint solution
is required making them computationally cheap. There is, currently, a large gap in un-
derstanding of how these two methods relate and it is this question that this thesis at-
tempts to answer. This thesis proposes a novel method to answer this question through
introducing a generic control term into the tangent equation and finding its structure
using optimal control techniques. This is referred to as Optimal Control Shadowing
and abbreviated to OCS. The optimal control approach utilises a control term, similar
to the control term in the NV methods, and finds its structure using a minimisation
procedure, similar to the minimisation procedures used in the Shadowing approaches.
Therefore, OCS can be seen as bridging the Shadowing and NV methods. Both tangent
and adjoint forms of OCS have been developed for single and multiple parameters of
interest, respectively. Computational methods are developed for solving the optimal-
ity equations in a matrix free sense which reduces the memory requirements of the
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algorithms. The result of this is that these methods become more tractable to large sys-
tems. Development of time parallel algorithms and preconditioning methods enabled
the solution to be distributed in a parallel manner enabling distribution across multiple
compute nodes further increasing tractability to large systems.

One of the main findings of this thesis was that OCS finds a tangent solution very
similar in structure to that of Multiple Shooting Shadowing (MSS), which is a leading
Shadowing method. The NV methods investigated, on the other hand, did not produce
any similarity with MSS suggesting the Shadowing direction was not found. Further,
it was found that OCS predominantly targets the wavenumbers where production of
tangent/adjoint energy dominated dissipation. This suggests that OCS applies control
on the unstable sub-space and is minimal in the neutral and stable sub-space. The
NV methods investigated here did not have this behaviour and were applying large
amounts of control across all sub-spaces. The ramification of this is that for an NV
method to be optimal, control should be applied mainly in the unstable sub-space.
Further, the adjoint formulation applied significantly lower amounts of control than
the tangent form. This was due to the terminal boundary condition being identical
to that of MSS, and closer to the stabilised solution which required smaller amounts
of control. The significance of this is that if an initial condition that is closer to the
Shadowing direction for the tangent solution can be found than a smaller amount of
control could be applied.

A second major finding was that the Shadowing solution was primarily composed of
near neutral covariant Lyapunov vectors (CLVs), ones whose Lyapunov exponent was
close to zero. This suggests that these near neutral CLVs play an important role in
the sensitivity of the system. This thesis also found that the solution generated by
OCS is also mainly composed of the near neutral CLVs. This implies, again, that OCS
and MSS are finding similar solutions and behave in a comparable manner. NV, on
the other hand, did not show as large dominance of the near neutral CLVs suggesting
that these methods are applying control in a less than optimal manner and are not
targeting the unstable sub-space as well as OCS. A further result discovered in this
thesis was that the expected gain, the ratio of the output to input, of the tangent/adjoint
solution is proportional to the inverse of the Lyapunov exponent. The significance of
this is that CLV modes whose exponents are close to zero will dominate the solution
and, as discovered previously, these relate to the near neutral CLVs. This suggests that
selecting a control term in the NV method that has these features could produce a more
accurate solution with minimal tuning.
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Chapter 1

Introduction

Designing components is a very common activity in the engineering sector.
Traditionally, the design has been undertaken by engineers by hand, but since the
development of computers, designs have been largely automated. This automation
typically involves the minimisation or maximisation of a certain function of interest
relevant to the design, and to compute the function of interest generally involves the
solution of some governing equations which are usually controlled by certain
parameter(s). A common method in the automated design of components is the
gradient descent method. This approach starts with a given parameter set, a solution
of the governing equations, a computation of the gradient of the function of interest
with respect to the parameter(s), and a step that updates the values of the
parameter(s) by a certain amount based on the gradient value. This is repeated until a
stopping criterion is reached. Locally optimal designs can be found as a result. These
gradients of the function of interest are computed using the tangent (forward) or
adjoint (backward) equations for a single parameter and multiple parameters,
respectively. The tangent equation is found through linearisation of the non-linear
governing equations and the adjoint is found using Lagrange multipliers, Ref. [68].

This thesis focuses on the aerospace sector and examples of the function of interest are
the lift or drag produced by a body. Similarly, the parameter(s) could be the shape of
the body or angle of attack of a wing. The governing equations in the aerospace sector
are the Navier-Stokes equations which are typically very computationally expensive
and time-consuming. The majority of the design process has been undertaken on the
steady state Reynolds-Averaged Navier-Stokes (RANS) equations, Refs. [68, 105, 130].
Therefore, the reason why the methods of Ref. [68] have gained traction is that the
solution of the steady state RANS is comparatively cheap and achievable. Consider,
for example, a wing at a certain angle of attack for a given flow velocity. These design
methods optimise the wing profile for this given flow regime. It is, therefore, unlikely
that the wing, in flight, will be at this exact design point for the majority of its life. The



2 Chapter 1. Introduction

reason for this is that the wing will experience, for example, fouling or wind gusts.
Therefore, the design will not be optimal for a large proportion of its working life and
is the main limitation of these steady state methods.

With the current advancements and improvements of the computing sector access to
high performance computing (HPC) is becoming more readily available. This results
in a larger amount of computing power being available to the designer and, as such,
problems that were not previously feasible are becoming more approachable. Direct
Numerical Simulation (DNS) of the Navier-Stokes equations is currently reserved for
academic test cases and is still unfeasible for real world geometries. The result of this
is that URANS or Large Eddy Simulation of the Navier-Stokes equations becoming
realisable. These methods are inherently transient and, therefore, time averaged
sensitivity values should be computed.

The application of the approach taken in Ref. [68] for transient systems fails if that
system is chaotic. This is a well known phenomenon as the tangent/adjoint space has
an unstable sub-space, Ref. [72]. The result of this is that the solution generated from
simulation of the tangent/adjoint equation is unstable and unbounded. Further, these
solutions exhibit exponential growth of perturbations which has been referred to as
the “butterfly effect”, Ref. [125]. This exponential growth of the solution leads to the
sensitivities calculated being unphysical and inaccurate. The Navier-Stokes equations
are an example of a chaotic system and, therefore, a method to overcome this
limitation is required.

To overcome this limitation, two main classes of time averaged sensitivity analysis
have been developed in the literature. The first class comprises methods based on the
Shadowing lemma, Refs. [84, 101]. This class of methods essentially find a
perturbation to the original non-linear governing equations that remains close to, or
shadows, the original solution trajectory. The first instance of this approach, Ref. [125],
utilised the covariant Lyapunov vectors (CLVs), Refs. [6, 7, 50, 51, 72, 95, 112, 131] and
Appendix A. The interpretation of the CLVs are that they describe long-term
perturbations of a solution of the dynamical system. The CLVs/adjoint CLVs also
form a basis of the tangent/adjoint space, respectively, and, along with the Lyapunov
exponents (LEs), can determine their stable, neutral and unstable sub-spaces. Further,
the same way that eigenvalues denote how much scaling is applied to an eigenvector
under a linear transformation the LEs and CLVs are analogous for dynamical systems.
CLVs have also been utilised in prediction of rare events, Refs. [4, 5, 26, 46, 47, 108,
123].

This initial approach, Ref. [125], has not seen significant traction as the computation of
these CLVs and LEs is very memory intensive and computationally time-consuming.
Therefore, alternative approaches have been derived in the literature. The first of
these is the Least Squares Shadowing (LSS) approach, Refs. [16, 17, 18, 21, 35, 124,
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128]. The LSS approach solves a minimisation problem where the L2 norm of the
tangent solution is minimised through the relaxation of the initial conditions on the
tangent equation. The LSS formulation results in a large linear system being solved
and can be computationally expensive. To reduce the size of the LSS system, the
Multiple Shooting Shadowing (MSS) approach has been developed, Refs. [19, 110,
111], which minimises the tangent solutions at selected checkpoints. This formulation
adds additional constraints on the solution, reducing the size of the linear system
generated. There are two main limitations of the MSS method. Firstly, the linear
system being solved is proportional to the dimension of the problem under
investigation times by the number of time segments which results in the memory
requirement of the method scaling linearly with the number of variables of the
system. Secondly, the co-state equations are required which can be difficult to derive
limiting the ease of utilising MSS.

A limitation of the LSS/MSS approaches is that additional equations are required to
be implemented. Many of the existing scientific software may not be able to compute
the Jacobian required by LSS/MSS, Ref. [92]. To overcome this limitation, the
non-intrusive LSS (NILSS) method was developed, Refs. [14, 22, 65, 88, 91, 92, 93].
This class of methods computes one inhomogeneous linearised solution and M
homogeneous linearised solutions where M is larger than the number of positive
Lyapunov exponents of the system. The tangent solution is then formed from the
inhomogeneous tangent solution and a linear combination of the homogeneous
tangent solutions. A minimisation problem is formed that minimises the norm of the
tangent solution by altering the linear combination of homogeneous tangent
solutions. The current main limitation of NILSS is not the size of the problem being
investigated but the number of positive Lyapunov exponents. The minimisation
problem scales with the number of positive Lyapunov exponents. It is well known for
spatially distributed systems, Figure 7 in Ref. [118], that as the domain size of a system
is increased so too does the dimension of the system and, hence, the number of
positive Lyapunov exponents. An alternative to LSS/MSS is Periodic Shadowing,
Refs. [77, 78]. The Periodic Shadowing method, instead of solving the LSS/MSS linear
system, finds a tangent solution which is periodic in time utilising appropriate
numerical techniques.

The second class of methods for time averaged sensitivity analysis of chaotic systems
is the numerical viscosity (NV) methods, Refs. [12, 23, 49, 120, 121]. These methods
have been primarily developed on the adjoint equation. The additional control term is
found by determining which terms in the adjoint equation contribute to dissipation of
energy, Refs. [23, 120]. These terms are then scaled using a tuning parameter. The
value of the tuning parameter selected impacts the accuracy of the method and can be
thought of as impacting the amount of control applied. Too little control leads to an
under-damped solution and inaccurate sensitivity values. Therefore, these methods
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can produce inaccurate sensitivity values if tuned incorrectly. A large amount of work
is required in determining the value of the tuning parameter. Typically, the value is
selected such that the sensitivity produced is similar to that of the expected sensitivity,
limiting their use in industrial applications. Further, no a priori recommendations or
rules of thumb have been provided for the value of the tuning parameter. The reason
for this is that the additional control term and tuning parameter are system dependent
and links between systems have not been made. Finally, the vast majority of the
method has been developed on the Navier-Stokes equations. NV methods have not
been compared with Shadowing approach and their relationship to the CLVs has not
been investigated.

1.1 Aims of this thesis

The main limitation of the Shadowing approaches is that they can be very
computationally expensive. This is because either the CLV modes are required, an
expensive minimisation problem is solved for LSS, MSS and NILSS, or a boundary
value problem is solved for Periodic Shadowing. The benefit of these methods is that
accurate sensitivities can be calculated for a range of different systems without any
tuning and without a priori information of the expected sensitivity values.

The NV approaches, on the other hand, are computationally cheap, as only one
non-linear solution and one linearised solution is required. The expected value of the
sensitivity is required to be able to tune these methods correctly. Currently, there is no
best practice in finding these values without a priori knowing the sensitivity. Further,
additional work is required to find which terms should be added to the linearised
equations and usually involves deriving which terms contribute to the dissipation of
tangent/adjoint energy.

Several questions arise from analysing these various approaches. The first main
question is how optimal are the current NV methods that have been proposed in the
literature? This relates to the amount of control that is required to be applied to
stabilise the tangent/adjoint solution. Also, is there an alternative approach that could
apply less and still stabilise the solution? Further, are there specific structures or
characteristics of control that could be utilised to provide a better, more selective NV
term in stabilising the solution? The current NV literature select terms which dissipate
energy. It is unclear if this is the best strategy or is, for example, targeting production
of energy terms more effective? Another question that arises is how similar or
dissimilar are the solutions generated by the Shadowing approach to NV? It is clear
that the two methods can produce the same sensitivities but how do the solutions
compare? It is currently unclear if there are certain features of Shadowing that can be
utilised to generate a more optimal NV term. As all the current NV method are
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reactive, i.e. the application of control is proportional to the linearised solution, is
there an approach that is proactive, for example a NV term that can apply control
based on the future dynamics of the non-linear solution?

This thesis aims to answer these questions through derivation of a method that
bridges the gap between the Shadowing and NV methods. The key idea and novel
contribution proposed is to introduce a generic control term to the tangent equation
with no a priori limitations on its structure. Instead, optimal control techniques,
Refs. [96, 103], will be leveraged to find its structure which minimises the norm of the
tangent solution. Optimal control techniques are chosen as they provide the “best”
control available in stabilising the tangent solution. This approach will be referred to
as Optimal Control Shadowing (OCS). It can be seen that, through the addition of the
control term, OCS is similar to NV methods and solving the optimal control
minimisation problem is similar to the minimisation problem in the Shadowing
methods. OCS can be thought of as a bridge between the Shadowing and NV
methods. It is worth noting that the control found by OCS is the “best” solution that
can be found using NV methods.

This thesis also makes use of covariant Lyapunov vectors (CLVs) as a tool to answer
some of the open questions. It is well known that the CLVs span the tangent/adjoint
space, Refs. [6, 7, 50, 51, 72, 95, 112, 131], and along with their Lyapunov exponents
help determine the unstable, neutral and stable sub-spaces. Currently, NV methods
are derived from terms which contribute to dissipation of tangent/adjoint energy. It is
unclear which sub-spaces these control terms act. Further, it is unclear on which
sub-space an optimal application of control would act on. Decomposing the solutions
generated by MSS, OCS and NV onto these modes could show in more detail how
these methods behave, what the structure of the solutions look like along with what
are the dominant sub-spaces in the solutions. This information could then be utilised
in the development of future NV methods that targets specific features or structures
and apply control in a more optimal manner.

Chapters 3 through to 5 of this thesis have been accepted for publication in the SIADS
journal in the paper, "On the application of optimal control techniques to the
Shadowing approach for time averaged sensitivity analysis of chaotic systems" by R.
E. Gilbert and D. Lasagna. Another paper is, at the time of writing, being drafted
containing Chapters 7 and 8.

1.2 Thesis outline

To provide justification as to why the Shadowing and NV methods are required,
mathematical details outlining the current steady state approach to sensitivity
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analysis, and an explanation of why transient sensitivity analysis fails for chaotic
systems is presented in chapter 2. Mathematical details of the Shadowing and NV
methods are also provided in chapter 2, so that the reader can easily see the connection
between OCS and the Shadowing and NV methods that OCS is proposed to bridge.

Mathematical derivation of Optimal Control Shadowing (OCS), the novel method
developed here in linking the Shadowing and NV methods, is presented in chapter 3
initially for the tangent (single parameter) formulation. As multiple parameters are
common in industry, two approaches for the adjoint formulation of OCS are also
developed in chapter 3 where they are shown to be identical. Matrix-free methods to
solve the optimality conditions are developed in this methodology chapter. This
results in the OCS having a reduced computational memory over the alternative
solution approaches, Ref. [98], which makes the method more tractable to industrially
relevant systems. Finally, a method for decomposing the time domain into segments
is developed along with various preconditioning methods. This has the benefit of
conditioning the system, Ref. [52], leading to more favourable convergence rates. An
added benefit is that these methods can make use of HPC architectures and be
distributed across multiple compute nodes leading to investigations into more
industrially relevant systems.

Initially, no knowledge of the computational behaviour of OCS is known. Generating
an understanding of this behaviour is useful when applying OCS to larger systems
that are computationally expensive. This leads to lower amounts of trial and error and
saves compute resources and time. Computational aspects such as the impact the
tuning parameter has on the accuracy of the method, the time horizon,
preconditioning method, number of segments, the stopping criteria for the various
linear solvers used in the matrix-free methods, and how these methods scale with
domain size, are investigated in chapter 4. This is primarily undertaken on the Lorenz
1963 system, Ref. [80], while the investigation into scaling the domain is undertaken
on the Kuramoto-Sivashinsky (KS) system, Refs. [73, 74, 113, 114].

Once an understanding of the computational behaviour of OCS is achieved, a
comparison in solutions generated with MSS, OCS and NV can be undertaken. The
tangent formulations of MSS, OCS and NV are investigated on the KS system in
chapter 5. A large proportion of the development of NV methods are on the
Navier-Stokes equations and, therefore, their development on the KS system is
required. Two NV terms are developed for the KS system. The first is from terms
which produce tangent energy and the second from terms which dissipate tangent
energy. Comparison of the tangent solutions generated by MSS, OCS and NV is
undertaken and conclusions about their behaviour is drawn. A similar comparison is
conducted between the control terms in OCS and NV which provides
recommendations as to the structure that NV terms should take. This chapter
concludes with a spectral analysis investigation again providing features which the
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NV methods should incorporate which could potentially lead to NV methods,
through application of control in a more targeted manner, having increased accuracy.

Chapter 6 repeats the analysis undertaken in chapter 5 for the adjoint formulation of
MSS, OCS and NV on the KS system. The rationale is to show that the behaviour of
the method is common between formulations and that all analysis drawn is applicable
to the adjoint formulation also. The adjoint solutions are compared between MSS,
OCS and NV to provide deeper insight into the methods. In the adjoint MSS
formulation, an equivalent control term in the adjoint equation is present which
enables comparison with the control found by OCS and NV. The added benefit of this
MSS control term is in providing additional insight into the method along with
recommendations for features and structures that NV methods should target. Finally,
spectral analysis is performed on the solutions producing similar features and
structures to the tangent formulation.

The CLVs, which span the tangent/adjoint space, along with their Lyapunov
exponents, help determine the unstable, neutral and stable sub-spaces, Refs. [6, 7, 50,
51, 72, 95, 112, 131]. To gain a deeper understanding of the MSS, OCS and NV
methods the solutions generated for the KS system are decomposed onto the KS
system CLVs in chapter 7. This is performed to gain deeper insight along with
providing details as to what features and structures NV therms should include. The
majority of this work is undertaken on the tangent formulation and only the
differences between the adjoint and tangent formulations are presented. This involves
decomposing the tangent and control solutions which provides additional insight in
addition to that presented in chapters 5 and 6. Analysis is presented while varying the
domain size to show that there are common features between domain sizes. Further
analysis is provided through varying which parameter is investigated to show that
the analysis already provided is general and not system or parameter specific. Finally,
the adjoint solution decomposition analysis is undertaken to show that conclusions
drawn are common between the formulations.

The systems investigated in chapters 4, 5, 6 and 7 are small systems. Industrially
relevant systems are larger. Therefore, to show that the analysis that have been
presented also translates to larger systems a comparison between OCS, MSS and NV
is undertaken on the Kolmogorov system, Refs. [29, 81, 102], in chapter 8. This is
mainly a repetition of results and findings showing the analysis is system agnostic
and the key features and structures can be translated between systems without loss of
generality.

Finally, chapter 9 provides a details summary of findings along with a critical analysis.
Suggestions of further research that arises from this thesis is also provided in this
chapter.
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Chapter 2

Mathematical Preliminaries

This chapter provides mathematical details of the steady state sensitivity analysis that
is currently used in industry, Ref. [68]. This is provided to give the reader an initial
starting point for moving towards time averaged sensitivity analysis. Development of
the time averaged sensitivities and an explanation as to why these methods fail for
chaotic systems is then provided. This is undertaken to provide the rationale for
development of the Shadowing and NV methods. An introduction to the Shadowing
method is provided as the initial approach, Ref. [125], rely on the covariant Lyapunov
vectors (CLVs) along with the Shadowing lemma, which is a foundation of these
methods. Finally, details of NV method is provided for the purpose of context and
highlights the difference in the approaches taken between NV and Shadowing
methods in overcoming the limitation in time averaged sensitivity analysis. This
chapter is an overview of the literature where no additional insight or development is
produced, and is used to provide details and background.

In general, the computer simulations used as a basis in sensitivity analysis solve
chaotic non-linear governing equations of the form

du(t, p)
dt

= f(u(t, p), p), (2.1)

where u(t, p) ∈ Rnu is the state vector, p ∈ R is a parameter, t ∈ (ts, t f ), ts and t f are
the start and end times of the simulation, respectively, and
f(u(t, p), p) : Rnu ×R → Rnu are the governing equations. These functions of interest
generally have the form

J (u(t, p), p) , (2.2)

where J (u(t, p), p) : Rnu ×R → R.
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2.1 Current approaches to sensitivity analysis

In the aerospace sector, it is common to perform sensitivity analysis on steady state
solutions, i.e. finding a solution u(p) that satisfies f(u(p), p) = 0, of Equation (2.1),
Refs. [68, 105, 130]. Therefore, the function of interest becomes J(u(p), p). There is
high demand for the derivative of the function of interest with respect to parameter(s),
which is denoted dJ(u(p),p)

dp , commonly known as sensitivity analysis. There are two
main uses of sensitivity analysis in the engineering sector. The first use is the
generation of designs that are robust to perturbations in certain parameter(s). Take,
for example, an airfoil that produces a certain amount of lift for a given flow regime.
Designers require that this lift remains relatively constant for a perturbation in either
shape, due to fouling, or flow conditions, due to gusts. Therefore, dJ(u(p),p)

dp must be
relatively constant over a large range of p such that perturbations do not significantly
impact J(u(p), p). The second use is to utilise dJ(u(p),p)

dp in some optimisation routine,
where the derivatives are used to alter the parameters to minimise or maximise the
function of interest, typically utilising a gradient descent algorithm.

A common approach to sensitivity analysis is to find the finite difference between the
function of interest with two solutions each with slightly perturbed parameters

dJ(u(p), p)
dp

= lim
∆p→0

J(u′(p + ∆p), p + ∆p)− J(u(p), p)
∆p

=

〈
∂J(u(p), p)

∂u(p)
,

∂u(p)
∂p

〉
+

∂J(u(p), p)
∂p

,
(2.3)

where ∆p is a perturbation in the parameter and is typically small, u′(p + ∆p) is the
solution of f(u′(p + ∆p), p + ∆p) = 0, and 〈·, ·〉 is an appropriately defined inner
product with ‖ · ‖ =

√
〈·, ·〉 as the norm. It is common that the term ∂u(p)

∂p is referred to
as the tangent solution or variable, Ref. [125], and is often denoted v ∈ Rnv . The terms
∂J(u(p),p)

∂u(p) and ∂J(u(p),p)
∂p are usually known whereas the tangent solution is unknown.

Therefore, an equation is required to compute its value. This is achieved through
linearisation of Equation (2.1) which results in

∂f(u(p), p)
∂u(p)

∂u(p)
∂p

+
∂f(u(p), p)

∂p
= 0, (2.4)

where ∂f(u(p),p)
∂u(p) is the Jacobian, ∂u(p)

∂p is the tangent solution and ∂f(u(p),p)
∂p is a forcing

term. Equation (2.4) is also known as the tangent equation and forms a linear system
that is solved for the tangent variable. Once the tangent solution has been found the
sensitivity is calculated with Equation (2.3). This approach is known as the tangent or
forwards method.

The tangent method outlined above is valid for a single parameter. It is common in
industry, however, that there are multiple parameters. Therefore, the adjoint, Refs. [68,
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105, 130], method is utilised. Firstly, let λ̂ ∈ Rnλ̂ be a Lagrange multiplier which is
known as the adjoint solution. Equation (2.4) can be incorporated into Equation (2.3)
as follows

dJ(u(p), p)
dp

=

〈
∂J(u(p), p)

∂u(p)
,

∂u(p)
∂p

〉
+

∂J(u(p), p)
∂p

+〈
λ̂,

∂f(u(p), p)
∂u(p)

∂u(p)
∂p

+
∂f(u(p), p)

∂p

〉
.

(2.5)

This is possible because the second inner product adds zero to Equation (2.3) which
does not impact the value of the sensitivity generated. After integration by parts
Equation (2.5) becomes

dJ(u(p), p)
dp

=

〈
λ̂,

∂f(u(p), p)
∂p

〉
+

∂J(u(p), p)
∂p

+〈
∂J(u(p), p)

∂u(p)
+

∂f(u(p), p)
∂u(p)

†

λ̂,
∂u(p)

∂p

〉
,

(2.6)

where ∂f(u(p),p)
∂u(p)

†
is the adjoint of the Jacobian. The value of λ̂ can be selected

arbitrarily and, therefore, it is chosen such that

∂J(u(p), p)
∂u(p)

+
∂f(u(p), p)

∂u(p)

†

λ̂ = 0, (2.7)

which results in ∂u(p)
∂p never being computed. Equation (2.7) is referred to as the

adjoint equation. The sensitivity equation then becomes

dJ(u(p), p)
dp

=

〈
λ̂,

∂f(u(p), p)
∂p

〉
+

∂J(u(p), p)
∂p

. (2.8)

The adjoint solution, λ̂, is independent of the parameter under investigation and only
∂f(u(p),p)

∂p and ∂J(u(p),p)
∂p depend on the parameter of interest. Therefore, to compute the

sensitivity with respect to different parameters only ∂f(u(p),p)
∂p and ∂J(u(p),p)

∂p need to be
re-computed, which is computationally cheap and is the main benefit of this
formulation. This approach to sensitivity analysis is known as the adjoint or
backward approach.

2.2 Towards time averaged sensitivity analysis methods

Recent improvements and advancements in the computing sector means that high
performance computing (HPC) is becoming more powerful. This leads to methods
that have been previously reserved for academic test cases are increasingly becoming
utilised in industry. Examples of these methods include URANS and LES which are
inherently transient. The result of this is that time average sensitivity values should be
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used. This section follows a similar form to section 2.1 except with the restriction of a
steady state solution removed. Also presented in this section is the reason time
averaged sensitivity fails for chaotic systems and is the rationale for the development
of Shadowing and NV methods.

Firstly, let the time average of the function of interest be

J̄ =
1
T

∫ t f

ts

J (u(t, p), p)dt, (2.9)

where T = t f − ts is the time horizon. The infinite time averaged sensitivity is found
again by computing the finite difference between time averaged functions of interest

d J̄
dp

= lim
∆p→0

1
∆p

(
lim

T→∞

1
T

∫ t f

ts

J(u′(t, p + ∆p), p + ∆p)dt −

lim
T→∞

1
T

∫ t f

ts

J(u(t, p), p)dt
)

.
(2.10)

For the limits in Equation 2.10 to commute u(t, p) and u′(t, p + ∆p) must remain
uniformly close to each other forever. If this is the case then

d J̄
dp

= lim
T→∞

1
T

∫ t f

ts

lim
∆p→0

J(u′(t, p + ∆p), p + ∆p)− J(u(t, p), p)
∆p

dt

= lim
T→∞

1
T

∫ t f

ts

〈
∂J(u(t, p), p)

∂u(t, p)
,

∂u(t, p)
∂p

〉
+

∂J(u(t, p), p)
∂p

dt.
(2.11)

It is worth reiterating this point in that the solutions must remain uniformly close to
each other for the limits to commute. If this is not the case then the sensitivity analysis
generated using Equation (2.11) is inaccurate. It is worth noting that for URANS these
two solutions do remain close to each other as the URANS solution averages out the
impact of small scales and is not chaotic. For LES, which contains the small scales and
is, therefore, chaotic, these solutions do not remain close to each other and the limits
do not commute.

Similar to the steady state case, section 2.1, the terms ∂J(u(t,p),p)
∂u(t,p) and ∂J(u(t,p),p)

∂p are

known whereas the tangent solution v(t) ≡ ∂u(t,p)
∂p is unknown. The tangent equation

is found through linearisation of Equation (2.1) which results in

dv(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
v(t) +

∂f(u(t, p), p)
∂p

. (2.12)

Equation (2.12) is simulated to give the tangent solution which can then be substituted
into Equation (2.11) to compute the sensitivity. It is common to solve the two
trajectories u′(t, p + ∆p) and u(t, p) from the same initial condition, Ref. [92]. This
leads to ∂u(ts,p)

∂p ≡ v(ts) = 0.
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It is well known that when the system is chaotic, such as turbulent flows, the tangent
space has an unstable sub-space, Ref. [72]. The tangent solutions generated by
Equation (2.12) become unstable and unbounded. This means that
u′(t, p + ∆p)− u(t, p) ∼ eΛMAX t, Ref. [19], where ΛMAX is the largest Lyapunov
exponent. For chaotic systems it is well known that ΛMAX > 0, Ref. [72]. This results
in u′(t, p + ∆p) and u(t, p) no longer remaining uniformly close forever. Since this
was required for the limits to commute (Equation (2.10) to (2.11)), for chaotic systems
the sensitivity generated by Equation (2.11), therefore, becomes inaccurate and
unphysical. The implication of this is that without any modification this approach will
not produce accurate sensitivity. This is the justification as to why Shadowing and NV
methods have been developed. Shadowing and NV methods have been developed to
find solutions to Equation (2.12) that remain bounded. This then means the limits do
commute and Equation (2.11) produces accurate sensitivity values.

The adjoint formulation follows in a similar manner to that presented in section 2.1
where λ̂(t) ∈ Rnλ̂ is a Lagrange multiplier, also known as the adjoint solution, which
can be used to incorporate Equation (2.12) through the addition of zero into
Equation (2.11), which results in

d J̄
dp

=
1
T

∫ t f

ts

〈
∂J(u(t, p), p)

∂u(t, p)
, v(t)

〉
+

∂J(u(t, p), p)
∂p

+〈
λ̂(t),

dv(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)
v(t)− ∂f(u(t, p), p)

∂p

〉
dt.

(2.13)

Integration by parts in time of Equation (2.13) results in

d J̄
dp

=
∫ t f

ts

1
T

∂J(u(t, p), p)
∂p

−
〈

∂f(u(t, p), p)
∂p

, λ̂(t)
〉
+〈

v(t),−dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) +
1
T

∂J(u(t, p), p)
∂u(t, p)

〉
dt +

〈
v(t), λ̂(t)

〉∣∣∣t f

ts
,

(2.14)

where ∂f(u(t,p),p)
∂u(t,p)

†
is defined as before. The value of λ̂(t) is free to be selected and is

chosen in such a way that the explicit computation of v(t) is removed. This is
achieved through selecting

0 = −dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) +
1
T

∂J(u(t, p), p)
∂u(t, p)

, (2.15)

which is referred to as the adjoint equation, see Refs. [119, 126] for details. There still is

a reliance on v(t) in
〈

v(t), λ̂(t)
〉∣∣∣t f

ts
. Since the adjoint solution is free to be selected〈

v(t), λ̂(t)
〉∣∣∣t f

ts
= 0 is used which , in combination with v(ts) = 0 , leads to λ̂(t f ) = 0.

This terminal condition on the adjoint equation means that Equation (2.15) is solved
backwards in time from t f to ts with λ̂(t f ) = 0 as the terminal condition. Finally, the
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adjoint sensitivity equation becomes

d J̄
dp

=
∫ t f

ts

1
T

∂J(u(t, p), p)
∂p

−
〈

∂f(u(t, p), p)
∂p

, λ̂(t)
〉

dt. (2.16)

2.3 The Shadowing approach to time averaged sensitivity
analysis

The failure of the method presented in section 2.2 can be caused by the trajectories
u′(t, p + ∆p) and u(t, p) not remaining uniformly close forever. It was presented that
the difference between these two solutions is proportional to eΛMAX t. The Shadowing
lemma, where details are provided in section 2.3.1, describes a pseudo-orbit that
remains uniformly near a true orbit, Refs. [84, 101]. This suggests that the
pseudo-orbit can be utilised as u′(t, p + ∆p) and the true orbit as u(t, p) resulting in
Equation (2.11) producing accurate sensitivity values. The downside of this
Shadowing lemma is that no indication as to how to find this pseudo-orbit is given.
One such approach, Ref. [125], to find the Shadowing direction, or pseudo-orbit, is to
use the covariant Lyapunov vectors (CLVs), Refs. [6, 7, 50, 51, 72, 95, 112, 131], and is
referred to as Shadowing. Details and algorithms in the computation of CLVs are
provided in Appendix A. Details, recapped from the literature, of this Shadowing
approach, Ref. [125], are provided in section 2.3.2 for the tangent formulation. The
limitations of these Shadowing methods involve the computation of the CLVs which
is computationally expensive. Therefore, alternative reformulations of the Shadowing
approach are outlined from literature in sections 2.3.3, 2.3.4 and 2.3.5.

2.3.1 The Shadowing lemma

In this section the details of the Shadowing lemma, which is used in time averaged
sensitivity of chaotic systems, is outlined. Further, details are given in Refs. [84, 101].
This section is a overview of the literature where no new insight is provided and is
provided purely for context. The Shadowing lemma exists for both discrete and
continuous dynamical systems, but is provided here for a discrete system of the form

xi = Φ(xi−1),

where Φ : R → R and xi ∈ R. A β-pseudo-orbit for Φ is a sequence of points {xi}
where this sequence obeys the following inequality

‖xi+1 −Φ(xi)‖ < β,

shown in Figure 2.1. Typically, this β-pseudo-orbit is the result of using a numerical
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xi

xi+1

xi+2Φ(xi)

Φ(xi+1)
β

β

β

FIGURE 2.1: A β-pseudo-orbit.

method to solve the dynamical system Φ and the error is due to round off error. An
orbit {yi}, where yi = Φi(y0), is said to α-shadow a β-pseudo-orbit, {xi}, if

‖yi − xi‖ < α,

shown in Figure 2.2. The Shadowing lemma is

xi

xi+1

xi+2

yi

Φ1(yi)

Φ2(yi)α

α α

FIGURE 2.2: An α-shadow.

Lemma 2.1. If Γ is a compact, hyperbolic attractor for Φ, then, for all α > 0, there exists a
β > 0 such that every β-pseudo-orbit in Γ is α-shadowed by the actual orbit of some point
z ∈ Γ.

The implication of this is the pseudo-orbit remains uniformly close to the true orbit.
This then means that these two orbits, the true and pseudo-orbits, can be utilised in
the derivation for time-averaged sensitivity values (section 2.2), resulting in the
sensitivity produced by Equation (2.11) being accurate. The limitation of the
Shadowing lemma is that no details are provided as to the method to find the
pseudo-orbit.

2.3.2 A tangent formulation for sensitivity analysis

The Shadowing lemma states that there is, for a given initial condition, a solution that
α-shadows a β-pseudo-orbit. Rather than starting from v(ts) = 0 as in the traditional
approach, a method that has been introduced finds an initial condition to the tangent
equation that results in an α-shadow, Ref. [125]. This method relies on the Shadowing
lemma which is shown in section 2.3.1, and further details are provided in Ref. [125].



16 Chapter 2. Mathematical Preliminaries

Linearisation of Equation (2.1) leads to the following tangent equation

dv(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
v(t) +

∂f(u(t, p), p)
∂p

. (2.17)

By defining the Shadowing operator as S f (t) = d
dt −

∂f(u(t,p),p)
∂u(t,p) , Equation (2.17) can be

re-written resulting in

S f (t)v(t) =
∂f(u(t, p), p)

∂p
.

There is a need to invert this shadow operator because in general ∂f(u(t,p),p)
∂p is known

but v(t) is unknown. It is well known that the CLVs span the tangent space, Ref. [72].
An introduction to covariant Lyapunov vectors (CLVs) and Lyapunov exponents
(LEs) is given in Ref. [131] and the reader is referred to Appendix A for details. One
interpretation of the CLVs and LEs is that LEs denote the growth/decay rate and the
CLVs the directions along which perturbations grow/decay for a dynamical system.
This is analogous to eigenvector-eigenvalue pairs for linear operators. A positive
Lyapunov exponent implies that perturbations grow along its corresponding CLV
denoting an unstable direction. Similarly, a negative exponent implies perturbations
decay along the CLV and is a stable direction. A netural direction is one in which the
exponent is zero. Typical examples of a neutral mode is a shift in time, or space.
Systems can have multiple neutral modes corresponding to a shift in time and space.
Therefore, the tangent solution, v(t), can be constructed from a linear combination of
CLVs, γk(t), resulting in

v(t) =
nv−1

∑
k=0

ak(t)γk(t), (2.18)

where ak(t) ∈ R is a weighting factor. The same decomposition is undertaken for the
forcing term, resulting in

∂f(u(t, p), p)
∂p

=
nv−1

∑
k=0

a f
k (t)γk(t), (2.19)

where a f
k (t) ∈ R. Substitution of these into Equation (2.17) leads to

nv−1

∑
k=0

dak(t)γk(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)

nv−1

∑
k=0

ak(t)γk(t) +
nv−1

∑
k=0

a f
k (t)γk(t). (2.20)
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After the application of the chain rule on the left hand side, Equation (2.20) results in

nv−1

∑
k=0

dak(t)
dt

γk(t) = −
nv−1

∑
k=0

ak(t)

dγk(t)
dt

− ∂f(u(t, p), p)
∂u(t, p)

γk(t)︸ ︷︷ ︸
A


+

nv−1

∑
k=0

a f
k (t)γk(t).

(2.21)

The equation for the CLVs, Ref.[50], is

dγk(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
γk(t)−Λkγk(t) k = 0, 1, . . . , nv − 1, (2.22)

where Λk is the Lyapunov exponent. Using Equation (2.22), it can be seen that the
term labelled A in Equation (2.21) is the Lyapunov exponent term, −Λkγk, and using
this substitution results in

nv−1

∑
k=0


dak(t)

dt
−Λkak(t)− a f

k (t)︸ ︷︷ ︸
B

 γk(t)

 = 0. (2.23)

The method for finding the tangent solution begins with computing the CLVs and
Lyapunov exponents. Next, the forcing term is then decomposed onto each CLV
mode, Equation (2.19). Once these have been computed the terms ak(t) for
k = 0, 1, . . . , nv − 1 are found by solving the scalar ODE using the term labelled B in
Equation (2.23). Finally, the tangent solution is found using Equation (2.18). This
tangent solution can then be used in Equation (2.11) to compute the sensitivity of the
system

Special considerations are required when Λk = 0 as this results in the corresponding

v(t) = S f (t)−1 ∂f(u(t, p), p)
∂p

not existing, Ref. [125]. This results in the scalar ODE for this mode becoming

dak(t)
dt

= a f
k (t)

and the corresponding covariant Lyapunov vector is γk(t) = f(u(t, p), p), Ref. [125].
Taking the infinite time average of this leads to

lim
T→∞

ak(T)− ak(0)
T

= a f
k (t) = 0.

This is not always guaranteed to be true and one example that contradicts this is when
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∂f(u(t,p),p)
∂p ≡ f(u(t, p), p) leads to a f

k (t) 6= 0. To overcome this limitation, a time
dilation variable, η ∈ R, is added to handle this case. The value of

η + a f
k (t) = 0

is selected which leads to the ODE becoming

dak(t)
dt

= a f
k (t) + η, (2.24)

when Λk = 0.

This approach to time averaged sensitivity analysis has been shown on the Lorenz
1963 system, Ref. [125], where there are three CLVs. For larger spatially distributed
systems, such as turbulent flow, computation of the CLVs may be infeasible due to the
limitation in current computational resources. This limitation reduces the tractability
and adoption of the method into an industrial setting. There has been work
undertaken in the literature to overcome this limitation and these are recapped in
sections 2.3.3, 2.3.4 and 2.3.5.

The adjoint formulation of this method follows a very similar form to that shown
here, Ref. [125]. Adjoint forms of the tangent variables are denoted with �̂. For clarity,
the adjoint scalar ODE is found by satisfying

nv−1

∑
k=0

[(
dâk(t)

dt
+ âk(t)Λk − â f

k (t)
)

γ̂k(t)
]
= 0, (2.25)

in a similar manner to the tangent form. The scalar â f
k (t) ∈ R is found using

1
T

∂J(u(t, p), p)
∂u(t, p)

=
nv−1

∑
k=0

â f
k (t)γ̂k(t). (2.26)

The scalar âk(t) ∈ R for each mode is found using the adjoint scalar ODE. Following
this, its value is used in

λ̂(t) =
nv−1

∑
k=0

âk(t)γ̂k(t), (2.27)

to compute the adjoint solution which is then used in Equation 2.16 to compute the
sensitivity.

2.3.3 A least squares method to the Shadowing approach for sensitivity
analysis

One of the first approaches to remove the computation of the CLVs in the method
derived in section 2.3.2 was Least Squares Shadowing (LSS), Refs. [16, 17, 18, 21, 35,
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124, 128]. The Shadowing approach is reformulated, Ref. [128], to a minimisation
problem resulting in

min
τ(t),u(τ(t),p+∆p)

1
T

∫ t f

ts

‖u(τ(t), p + ∆p)− ur(t, p)‖2 + β2
(

dτ(t)
dt
− 1
)2

dt, (2.28a)

s.t.
du(τ(t), p + ∆p)

dτ
= f(u(τ(t), p + ∆p), p + ∆p), (2.28b)

where τ(t) ∈ R is a time transformation term, ur(t, p) ∈ Rnu is a reference trajectory
and β ∈ R is selected such that the two terms in the integral have a similar magnitude.
The term ur(t, p) is analogous to u(t, p) and u(τ(t), p + ∆p) is analogous to
u′(t, p + ∆p) in section 2.2. In this instance ur(t, p) is known and u(τ(t), p + ∆p) is
unknown and is found by the minimisation. Further, the reference trajectory can be
thought of as the true orbit in the Shadowing lemma and u(τ(t), p + ∆p) to be the
pseudo-orbit. The minimisation problem was reformulated through linearisation of
Equation (2.1), Ref. [128], resulting in

min
η(t),v(t)

1
T

∫ t f

ts

‖v(t)‖2 + β2η(t)2dt, (2.29a)

s.t.
dv(t)

dt
=

∂f(u(t, p), p)
∂u(t, p)

v(t) +
∂f(u(t, p), p)

∂p
+ η(t)f(u(t, p), p). (2.29b)

The main benefit of the linearised formulation is that there is no requirement to
compute the CLVs or LEs. Instead, a minimisation problem is solved. Manipulation of
the minimisation problem results in a linear system and all the numerical tools
associated with the field can be leveraged. One limitation of the method is that the
minimisation problem can be very large and memory intensive, Ref. [15]. To improve
the tractability of this method, improvements such as preconditioning and multi-grid
approaches have been developed and implemented, Ref. [18]. The linearised approach
has been applied to the Lorenz 1963 system, the van der Pol oscillator, and an
aero-elastic limit cycle oscillator, Refs. [125, 128], and the Dowell’s plate, Ref. [15]. The
development of the Shadowing approach relied on the infinite time horizon
sensitivity, Equation (2.10). This is clearly impossible in practice, and as a result long
finite time horizons are utilised. It has been shown that as the time horizon increases
the accuracy of the sensitivity increases, Ref. [128]. Further, the sensitivity standard
deviation is proportional to the inverse of the time horizon, Ref. [128], suggestin that
as the time horizon increases a better approximation to the true Shadowing direction
is found. LSS has also been applied to larger spatially distributed systems such as the
Kuramoto-Sivashinsky (KS) system, Ref. [17], turbulent flow, Ref [16], and flow
around an airfoil, Ref. [21].

Increasing the time horizon, which increases accuracy, has the impact of increasing the
memory requirements of the system and decreasing convergence of the method. A
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sufficient ‘spin up’ time is required to ensure that the solution is on the attractor and,
therefore, ergodic. The error between the analytical Shadowing direction and the
approximate Shadowing direction generated by LSS is shown on the Smale-Williams
solenoid system, Refs. [35, 124], and is shown to decrease as the time horizon is
increased. The main limitation is that LSS relies on a uniformly hyperbolic attractor
whereas not all real world systems are uniformly hyperbolic, Ref. [35]. Further, it was
shown that LSS can produce non-physical results, Ref. [31].

Lasagna, Sharma, and Meyers developed a modification of the LSS algorithm for
systems that exhibit periodicity. The main feature is that a boundary value problem is
solved, using appropriate numerical methods, and a periodic Shadowing direction is
found, Refs. [77, 78], which is in contrast to the minimisation problem of LSS. This
approach is referred to as Periodic Shadowing. An error analysis is also provided
showing that Periodic Shadowing has the same requirements for the time horizon as
that of the standard LSS method. Further, it has been shown on the Lorenz attractor,
Refs. [77, 78].

2.3.4 A multiple shooting reformulation of LSS

The main size of the linear system derived in the LSS formulation comes from the
minimisation of the integral of the tangent solution over the entire time horizon. An
approach to reduce the size of the linear system generated by LSS, section 2.3.3, is to
use a multiple shooting approach, Ref. [19]. Utilising a multiple shooting approach
seeks to minimise the tangent solution at a discrete number of checkpoints. This
reduces the size of the linear system making the multiple shooting approach more
tractable to industrial applications. This formulation is known in the literature as
Multiple Shooting Shadowing (MSS). One other method to reduce the size of the
linear system is to constrain the tangent solution to be orthogonal to f(u(t, p), p) at all
times. This has the result of removing the explicit computation of η(t) from the linear
system, Ref. [19]. The minimisation problem for MSS is

min
vj(tj+1)

N−1

∑
j=0

〈
vj(tj+1), vj(tj+1)

〉
, (2.30a)

s.t. vj(tj+1) = vj+1(tj+1) j = 0, 1, . . . , N − 2, (2.30b)

dvj(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
vj(t) +

∂f(u(t, p), p)
∂p

+

ηj(t)f(u(t, p), p) j = 0, 1, . . . , N − 1,
(2.30c)

〈
f(u(t, p), p), vj(t)

〉
= 0 j = 0, 1, . . . , N − 1, (2.30d)

where the time domain is split into N segments. Equation (2.30a) is the cost of the
tangent solution at the end of each segment. Equation (2.30b) ensures that the tangent
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solution is continuous across consecutive segments. Equation (2.30c) is the modified
tangent equation with ηj(t)f(u(t, p), p) term for handling the neutral CLV.
Equation (2.30d) constrains the tangent solution to be orthogonal to f(u(t, p), p) and is
used to remove the explicit computation of ηj(t) in Equation (2.30c). The MSS
formulation is based on the initial Shadowing approach, Ref. [125], and, therefore, the
MSS tangent solution also decomposes on the CLVs in a similar way. Equation 2.30d is
derived from solving Equation 2.29 when β = 0, Ref. [13].

For the remainder of this thesis, MSS is utilised to compute the sensitivity for the
Shadowing approaches for the various dynamical systems investigated. MSS has been
applied to the KS system, Ref. [19]. An alternative application is to utilise MSS to
compute gradients that are used in a gradient descent approach in finding an optimal
feedback kernel to control a chaotic system, Ref. [111].

It is recognised in Ref. [19] that there are convergence issues of the minimisation
problem due to the large difference in eigenvalues of the linear operator that is
formed. To overcome this, the authors introduced a filtering parameter which
improves conditioning which results in better convergence. Further advancements in
improving the conditioning of the linear operator were achieved through
preconditioning, Ref. [110]. It was shown, Ref. [19], that when the filtering parameter
is large the MSS approach is an ensemble average of solutions similar to alternative
ensemble average approaches, Refs. [45, 79].

2.3.5 A non-intrusive approach to LSS

Both LSS and MSS require additional equations to be implemented into software.
Current scientific software may not have the ability to compute the Jacobian required
for LSS/MSS and therefore alternatives are required, Ref. [92]. To overcome this the
non-intrusive LSS (NILSS) method was developed, Refs. [14, 22, 65, 88, 91, 92, 93].
NILSS finds the solution to one inhomogeneous tangent equation and M
homogeneous tangent equations where M is larger than the number of positive LEs of
the system. The tangent solution is then formed from the inhomogeneous tangent
solution and of a linear combination of homogeneous tangent solutions. A
minimisation problem is formed that minimises the norm of the tangent solution by
altering the linear combination of homogeneous tangent solutions. The main
limitation of this method is that the number of LEs of the system must be known a
priori to ensure that M is large enough. As in the LSS and MSS methods, the time
horizon must also be large for accurate sensitivites, Ref. [20]. Adjoint approaches to
NILSS have also been developed, Refs. [14, 88]. The NILSS approach also requires the
derivation of the tangent equation and to overcome this finite difference NILSS
(FDNILSS) has been developed where the tangent solutions are approximated by
finite differences, Ref. [93].
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NILSS has been shown on the Lorenz 1963 system, the KS system and a fluid flow
problem, Refs. [14, 90, 91, 92]. Ensemble averages for adjoint solutions, Refs. [45, 79],
have been approximated by NILSS, Ref. [89]. Chaotic acoustic oscillations in a cavity
have been controlled using the NILSS approach, Ref. [65]. Further to this, NILSS has
been used for sensitivity analysis of weakly turbulent flow over a 3D cylinder,
Refs. [91, 93].

2.4 A numerical viscosity approach to time averaged
sensitivity analysis

The time averaged sensitivity derived in section 2.2 requires that the two trajectories,
u′(t, p + ∆p) and u(t, p), remain uniformly close forever. The Shadowing approach
presented in section 2.3 utilised the Shadowing lemma. An alternative approach is
also possible. In this section a method for keeping the two trajectories uniformly close
is to apply a control term that damps excess energy, Refs. [23, 49, 120, 121], resulting in
accurate sensitivity values. These methods are referred to, in this thesis, as numerical
viscosity (NV) methods.

The main focus of these methods is to find terms that contribute to the dissipation of
adjoint energy and to use those terms as additional control terms in the adjoint
equation, Refs. [23, 120]. While these methods have been predominantly focussed on
the adjoint formulation, they are also applicable to the tangent formulation. A tuning
parameter is added to control term that determines the amount of control that is
applied. This has been predominantly developed on the Navier-Stokes equations
where the additional control term was ∇ · (µs∇λ̂(t)), Ref. [23], where µs ∈ R+ is the
tuning parameter. This results in Equation (2.15) becoming

0 = −dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) +
1
T

∂J(u(t, p), p)
∂u(t, p)

−∇ · (µs∇λ̂(t)), (2.31)

This tuning parameter can be thought of as damping additional adjoint energy. Too
small a value leads to inadequate damping and the solutions being unstable and
unbounded. The determination of the tuning parameter is selected such that the
sensitivity produced by the method matches the expected sensitivity, Refs. [23, 120].
This limits the application of these methods into industry as the required sensitivity is
unknown. These NV methods have been shown on quasi-2D annular jet, Ref. [23], 2D
turbine blades, Ref. [121], trailing edge of a turbine blade, Ref. [120], and channel flow,
Ref. [49]. The main benefit of these NV methods is that one non-linear and one linear
solution is required. Therefore, these methods are significantly computationally
cheaper than the Shadowing approach.
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Numerical damping has also been introduced through the careful selection of the time
step, Ref. [12], as opposed to introduction of an additional term. The numerical
dissipation introduced in the time stepping scheme is utilised to stabilise the adjoint
solution. Using this approach removes the numerical inconsistency between the
adjoint and non-linear systems when utilising the control term, Ref. [49].

2.5 Summary

This chapter initially presented the steady state sensitivity analysis approach. Recent
developments in computational hardware means that a larger amount of computing
power is available which means that methods that have previously been reserved for
academic test cases have started to be utilised in industrial applications. Examples of
such methods are URANS and LES which are inherently transient. Therefore, time
averaged sensitivity values should be used. A method for time averaged sensitivity
values was presented and its limitations were outlined. The main limitation was that
the tangent/adjoint solution must remain bounded i.e. two trajectories under the
non-linear system with perturbed parameters must remain uniformly close forever,
and not diverge away from the unperturbed solution. If this was not satisfied the
sensitivity values produced will be inaccurate and unphysical. This limitation arises
in chaotic systems of which turbulent flow is one example. The reason for this is that
the initial value problem is ill-conditioned for chaotic systems, Ref. [128]. The physical
manifestation of this is that the tangent space has an unstable sub-space, Refs. [6, 7,
112], meaning perturbations grow exponentially in time.

There has been two main classes of methods developed in the literature to overcome
this limitation in sensitivity analysis. The first class of methods is derived from the
Shadowing lemma, Refs. [84, 101]. The Shadowing lemma essentially states that for a
given true trajectory of a system that there exists a pseudo-orbit that remains
uniformly close. This then implies that this method can be utilised in time-averaged
sensitivity analysis. The limitation of the Shadowing lemma is that no information as
to the method to find this pseudo-orbit is provided. The first approach to utilise the
Shadowing lemma in sensitivity analysis, Ref. [125], utilised the covariant Lyapunov
vectors (CLVs) and Lyapunov exponents (LEs), Refs. [6, 7, 50, 51, 72, 95, 112, 131]. The
key focus of industry is generation of solutions in a fast manner. The main limitation
in the adoption of this approach into industry is the computational expense of finding
the CLVs. One of the limiting factors causing a large computational expense is that all
the CLVs are required for this method. The number of CLVs is porportional to the
dimension of the system. For Lorenz there are three, but for turbulence there could be
many millions. Each CLV is then marched under the tangent equation and are
re-orthogonalised after n time steps resulting in a large computational cost. Further
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details of the algoithms required to compute the CLVs are presented in Ref. [72] and in
Appendix A. For larger systems, which are common in industry, computation of the
CLVs may even be infeasible given the current computing resources.

Therefore, alternative developments have been made in the literature. The first
development was the Least Squares Shadowing (LSS), Refs. [16, 17, 18, 21, 35, 124,
128]. These approaches reformulate the Shadowing approach into a minimisation
problem where the integral of the tangent solution is minimised. This results in a large
linear system being solved. Consequently, for large industrially relevant systems the
LSS approach may be too time and memory intensive which limits its traction in
industry.

The second development is Multiple Shooting Shadowing (MSS), Ref. [19, 110], which
utilise multiple shooting methods to minimise the tangent solution at a discrete
number of checkpoints. This reduces the size of the linear system solved making this
method more appealing to industrial applications. Finally, non-intrusive methods,
Refs. [14, 22, 65, 88, 91, 92, 93], have been developed. These methods solve one
inhomogeneous tangent equation and M homogeneous tangent equations. The
limitation is that M must be larger than the number of positive Lyapunov exponents,
which generally is unknown a priori. An approximation to the Shadowing direction is
then found by combining the inhomogeneous tangent solution a linear combination of
homogeneous tangent solutions. The tangent solution is minimised by altering the
combination of homogeneous tangent solutions.

The implications of the Shadowing method is that a minimisation problem is solved
which can be computationally expensive. Large solution times of the linear systems
generated from the Shadowing approach limits the uptake of these methods into
industry. The benefit of these methods is that accurate sensitivity values are produced
with no tuning.

The second class of time averaged sensitivity analysis methods are numerical
viscosity approaches. While the Shadowing approaches utilise the Shadowing lemma
the numerical viscosity methods either add an additional control term to the adjoint
equations, Refs. [23, 49, 120, 121], or use the dissipation of the time stepping scheme,
Ref. [12], to stabilise the linearised solution. The methods that apply additional
control determine its structure by finding which terms contribute to dissipation of
adjoint energy. An additional tuning parameter is added that controls the amount of
control added. When the control added is too small the control is unable to stabilise
the adjoint solution which results in inaccurate and unphysical sensitivity values.
Currently, the tuning parameter is selected such that the sensitivity produced by the
NV method matches the expected sensitivity. One approach is to compute the
sensitivity across a wide range of values and find which range of values matches the
expected sensitivity, similar to a design of experiments. This implies that the
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sensitivity is already known thus meaning NV methods would not be required. The
benefit of these methods is that only one non-linear solution and one linear solution is
required resulting in these methods being computationally cheaper than the
Shadowing approach. This implies that, provided the tuning parameter can be
selected accurately, these methods would be more likely to be adopted into an
industrial setting than Shadowing.

The result of this analysis suggest for time-averaged sensitivity analysis to be adopted
into industry either cheaper numerical methods for solving the Shadowing direction
or improvements in understanding in the NV methods are required. Current literature
has kept both of these approaches separate and there has been no connection between
Shadowing and NV methods. The main reason for this is that the Shadowing methods
have mainly been developed and tested on small systems whereas the NV methods
have been developed and tested on the Navier-Stokes equations. Comparison of the
two methods could be mutually beneficial and this thesis performs this analysis.
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Chapter 3

Applying optimal control
techniques to the Shadowing
approach

It was shown in chapter 2 that the traditional approach to sensitivity analysis fails for
chaotic systems. Further, there have been two main approaches presented in the
literature to find stabilised solutions to the tangent/adjoint equations. Those being the
Shadowing approach and the numerical viscosity (NV) approaches. These approaches
either find a bounded solution through finding an initial condition to Equation 2.1 that
shadows the original trajectory (Shadowing) or through the addition of a damping
term in the tangent/adjoint equations that damps excess energy. Due to their
formulation differences there has been little comparison between these approaches.

The chapter aims to bridge this gap in understanding and presents a novel approach.
The original contribution proposed utilises optimal control theory, Refs [2, 9, 27, 97], to
find an appropriate stabilising control for the tangent/adjoint equations. This
approach will be referred to as Optimal Control Shadowing and abbreviated to OCS.
OCS provides the link between the Shadowing and NV approaches. This is because
optimal control techniques add additional control to the tangent/adjoint equations,
similar to that of NV, and find its value/structure utilising minimisation procedures,
similar to some Shadowing methods. This chapter provides the derivation for OCS
along with pseudocode/algorithms for computing the optimal tangent/adjoint
solution. Detailed implementation details are provided in section 3.8 Some notation
used previously is repeated here for clarity and to ensure this chapter is stand alone.

As shown in section 2.2 there are two approaches used in computing sensitivities.
Those are the tangent and adjoint methods which are utilised for single and multiple
parameters, respectively. This leads to two possible approaches for OCS. The first of
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these is to apply control to the tangent equation, derived in section 3.2, and is known
as tangent OCS. Following this, the adjoint of tangent OCS can be derived which is
detailed in section 3.4. Alternatively, the adjoint equation can be directly controlled is
presented in section 3.5.

3.1 Problem set-up

Firstly, consider a non-linear chaotic dynamical system of the form

du(t, p)
dt

= f(u(t, p), p), (3.1)

where u(t, p) ∈ Rnu is the state vector, which in the aerospace sector typically is the
fluid velocity, pressure and temperature, p ∈ R is a parameter of interest, typically the
surface geometry, t ∈ (ts, t f ), and ts and t f are the start and end times of the
simulation, respectively, and f(u(t, p), p) : Rnu ×R → Rnu are the governing
equations, typically the Navier-Stokes equations. In general, the function of interest is
J (u(t, p), p) : Rnu ×R → R and its time average is

J̄ =
1
T

∫ t f

ts

J (u(t, p), p)dt, (3.2)

where T = t f − ts is the time horizon. A common example of the function of interest
in the aerospace sector is the lift or drag produced by a body.

3.2 Derivation of the tangent OCS formulation

To derive OCS, first Equation (3.1) is linearised. A time dilation term η(t)f(u(t, p), p)
is introduced to invert the Shadowing operator for the covariant Lyapunov vector
(CLV) that corresponds to a Lyapunov exponent (LE) of zero. The reader is referred to
section 2.3.2 for details on inverting the Shadowing operator and Appendix A for
details on CLVs and LEs. This results in

dv(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
v(t) +

∂f(u(t, p), p)
∂p

+ η(t)f(u(t, p), p), (3.3)

where v(t) ∈ Rnv and v(t) ≡ ∂u(t)
∂p , ∂f(u(t,p),p)

∂u(t,p) is the Jacobian and ∂f(u(t,p),p)
∂p is a forcing

term. The addition of the time dilation term is common in the LSS, MSS and NILSS
approaches, Refs. [14, 16, 17, 18, 19, 21, 22, 35, 65, 88, 91, 92, 93, 124, 128], but is not
utilised in NV approaches due to the presence of the control term. To remove explicit
calculation of the η(t)f(u(t, p), p) term, v(t) is constrained to be orthogonal to
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f(u(t, p), p) or simply 〈v(t), f(u(t, p), p)〉 = 0 where 〈·, ·〉 is an inner product and
‖ · ‖ =

√
〈·, ·〉 is the norm.

In the Shadowing approach the tangent solution is stabilised by minimisation of the
norm of the tangent solution through modification of the tangent initial condition.
Unlike the Shadowing approaches, the tangent solution is stabilised in the NV
approach with the additional control term. This control term utilised in the NV
approach is defined a priori and the tuning parameter requires further work to find its
value. It is worth noting that the author did combine both approaches to stabilising
the tangent solution, i.e. allowing both the tangent initial condition to vary and
application of control, but found that the term that was most significant in stabilising
the tangent solution was the initial condition and control was minimal which resulted
in there being similar computational effort to MSS. This did not provide significant
understanding between the methods. To overcome this, and gain a better knowledge
between the Shadowing and NV methods, the initial condition is constrained to
v(ts) = 0. NV methods usually consist of addition of a pre-defined control term. It is
currently unclear how optimal these terms are. The novelty of this thesis is to
introduce a generic control term whose structure is found utilising optimal control
techniques, Refs. [2, 9, 27, 97]. These optimal control techniques find a control term
which minimises the integral of the norms of the tangent solution and control
solution. This generic control term denoted q(t) ∈ Rnq is introduced into
Equation (3.3) and results in the tangent equation

dv(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
v(t) +

∂f(u(t, p), p)
∂p

+ η(t)f(u(t, p), p) + q(t), (3.4a)

v(ts) = 0. (3.4b)

Following the control techniques, which are typically used to compute the structure of
the control term q(t), leads to the following minimisation problem

min
v(t),q(t)

∫ t f

ts

〈v(t), v(t)〉+ α 〈q(t), q(t)〉dt (3.5a)

s.t.
dv(t)

dt
=

∂f(u(t, p), p)
∂u(t, p)

v(t) +
∂f(u(t, p), p)

∂p
+ η(t)f(u(t, p), p) + q(t), (3.5b)

〈v(t), f(u(t, p), p)〉 = 0, (3.5c)

v(ts) = 0, (3.5d)

where α ∈ R can thought of as modifying the cost of applying control. Small values of
α mean control is cheap to apply and the tangent solution is over-damped, and large
values mean control is expensive to apply and the tangent solution is under-damped.
The effects of varying α will be discussed later on each system investigated, for
example in section 4.3. Introduction of the control term is assumed to be small and
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does not significantly alter the attractor of the dynamical system, thus removing the
issues outlined in Ref. [49].

It is worth noting the difference between OCS and other Shadowing methods.
Shadowing methods do not “kill off” the unstable subspace. Instead they find a linear
combination of covariant Lyapunov vectors which results in a stable solution.
Through the introduction of the control term, OCS can “kill off” the unstable subspace
resulting in a stable solution, because the control term can negate the unstable
covariant Lyapunov vectors. These two approaches, while achieveing the same
outcome of a stable solution, are completely different in terms of the approach used to
achieve this objective.

For the structure of q(t) to be optimal, the Pontryagin minimisation principle,
Refs. [96, 103], is used. Firstly, a set of Lagrange multipliers, λ(t) ∈ Rnλ and ω(t) ∈ R,
are introduced for each of the constraints, Equation (3.5b) and Equation (3.5c),
respectively. Utilising λ(t) and ω(t) means that the constraints can be incorporated to
form the Hamiltonian,H, of Equation (3.5), resulting in

H =
∫ t f

ts

〈v(t), v(t)〉+ α 〈q(t), q(t)〉+〈
λ(t),

dv(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)
v(t)− ∂f(u(t, p), p)

∂p
− η(t)f(u(t, p), p)− q(t)

〉
+

ω(t) 〈f(u(t, p), p), v(t)〉dt.

(3.6)

Integration of Equation (3.6) by parts leads to

H =
∫ t f

ts

〈v(t), v(t)〉+ α 〈q(t), q(t)〉+〈
v(t),−dλ(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ(t)

〉
−〈

λ(t),
∂f(u(t, p), p)

∂p
+ η(t)f(u(t, p), p) + q(t)

〉
+

ω(t) 〈f(u(t, p), p), v(t)〉dt + 〈λ(t), v(t)〉|t f
ts

,

(3.7)

where ∂f(u(t,p),p)
∂u(t,p)

†
is the adjoint of the Jacobian. Pontryagin’s minimisation principle

defines the minimum of Equation (3.5) to be when all partial derivatives ofH with
respect to v(t), λ(t), q(t), ω(t) and η(t) are zero. This leads to the set of first order
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optimality conditions

∂H
∂v(t)

= 0 = −dλ(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ(t) + 2v(t) + ω(t)f(u(t, p), p), (3.8a)

∂H
∂λ(t)

= 0 =
dv(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
v(t)− ∂f(u(t, p), p)

∂p
−

η(t)f(u(t, p), p)− q(t),
(3.8b)

∂H
∂q(t)

= 0 = 2αq(t)− λ(t), (3.8c)

∂H
∂ω(t)

= 0 = 〈f(u(t, p), p), v(t)〉 , (3.8d)

∂H
∂η(t)

= 0 = 〈λ(t), f(u(t, p), p)〉 . (3.8e)

The Hamiltonian Hessian matrix is positive-definite, which means the minimisation
problem, Equation (3.5a), will be convex if the second order sufficient condition

∂2H
∂q(t)2 = 2α, (3.9)

is greater than zero. This leads to the constraint α > 0.

To find the optimal control, Equation (3.8) need to be solved. Once the optimal
solution has been found the sensitivity of the system, due to the time dilation term
η(t), is

d J̄
dp

=
1
T

∫ t f

ts

〈
∂J(u(t, p), p)

∂u(t, p)
, v(t)

〉
+

∂J(u(t, p), p)
∂p

+ η(t) (J(u(t, p), p)− J̄)dt. (3.10)

Details of the derivation of Equation (3.10) are presented in Ref. [19].

There are some terms, λ(t), η(t) and ω(t), in the derivation which, currently, are free
variables and are eliminated using the state transition matrix. To overcome this each
term is handled in turn. As the Lagrange multipliers are free to be selected the
following constraint, 〈λ(t), v(t)〉|t f

ts
= 0, is used. This results in the terminal condition

on the co-state equation being λ(t f ) = 0.

3.2.1 Derivation for the closed form expression of η(t)

So far in the OCS derivation the time dilation term, η(t), has been introduced to
overcome the limitation in inverting the Shadowing operator for CLV modes
corresponding to Λk = 0, but has not been explained as to what values it should take.
LSS solves for this term at each time step, Ref. [128], whereas MSS, Ref. [19], utilises a
closed form solution and finds a projection operator to remove the explicit
computation of η(t). This section computes the closed form solution of η(t) such that
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its explicit calculation is removed, reducing the size of the linear system formed and,
therefore, improving convergence of the numerical method.

Firstly, the solution at time t to Equation (3.8b) can be written utilising the state
transition matrix, Φ(t1, t2), which results in

v(t) = Av(ts) +

(∫ t

ts

η(τ)dτ

)
f(u(t, p), p)+∫ t

ts

Φ(τ, t)
∂f(u(τ, p), p)

∂p
dτ +

∫ t

ts

Φ(τ, t)q(τ)dτ,
(3.11)

where the operator A is defined as

Av(ts) = Φ(ts, t)v(ts). (3.12)

An introduction to the state transition matrix can be found in Ref. [57] and details are
provided in Appendix B. To ease notation the terms

∫ t

ts

Φ(τ, t)
∂f(u(τ, p), p)

∂p
dτ and

∫ t

ts

Φ(τ, t)q(τ)dτ

are denoted using the simplified notation

B� =
∫ t

ts

Φ(τ, t)�(τ)dτ to give B
∂f(u(t, p), p)

∂p
and Bq(t).

By defining the solution to the tangent equation without the influence of the
η(t)f(u(t, p), p) term as

v′(t) = Av(ts) + B
∂f(u(t, p), p)

∂p
+ Bq(t), (3.13)

Equation (3.11) can be re-written as follows

v(t) = v′(t) +
(∫ t

ts

η(τ)dτ

)
f(u(t, p), p). (3.14)

Taking the inner product of Equation (3.14) with f(u(t, p), p) and utilising the
constraint, Equation (3.8d), results in

〈v(t), f(u(t, p), p)〉 = 0

=
〈
v′(t), f(u(t, p), p)

〉
+

(∫ t

ts

η(τ)dτ

)
〈f(u(t, p), p), f(u(t, p), p)〉 .

(3.15)

Manipulation of Equation (3.15) leads to the closed form expression of η(t),

∫ t

ts

η(τ)dτ = − 〈v′(t), f(u(t, p), p)〉
〈f(u(t, p), p), f(u(t, p), p)〉 , (3.16)
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which can be combined with Equation (3.14) to give the solution to the tangent
solution at time t

v(t) = v′(t)− 〈v′(t), f(u(t, p), p)〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p). (3.17)

Finally, Equation (3.10) still has reliance on η(t). To remove its influence, v′(t) and
Equation (3.15) can be utilised to give

d J̄
dp

=
1
T

∫ t f

ts

〈
∂J(u(t, p), p)

∂u(t, p)
, v′(t)

〉
+

∂J(u(t, p), p)
∂p

dt+

1
T

〈
v′(t f ), f(u(t f , p), p)

〉〈
f(u(t f , p), p), f(u(t f , p), p)

〉 ( J̄ − J(u(t f , p), p)
)

.
(3.18)

Further details of this manipulation are given in Appendix C of Ref. [19].

3.2.2 Derivation for the closed form expression of ω(t)

The ω(t) term was introduced as a method of incorporating the orthogonality
constraint into the Hamiltonian. There, so far, has been no description on what value
this should take and it, therefore, requires constraining. The closed form expression
for ω(t) is found by following a similar procedure to that of the derivation for the
closed form expression for η(t).

Firstly, the solution to Equation (3.8a) at time t can be written in terms of the adjoint
state transition matrix, Φ̂(t1, t2), which results in

λ(t) = −C [2v(t)] + Dλ(t f ) +

(∫ t f

t
ω(τ)dτ

)
f(u(t, p), p), (3.19)

where
C [2v(t)] =

∫ t f

t
Φ̂ (t, τ)−1 [2v(τ)]dτ, (3.20)

and
Dλ(t f ) = Φ̂

(
t, t f

)−1
λ(t f ). (3.21)

Defining the solution to the co-state equation without the influence of ω(t)f(u(t, p), p)
as

λ′(t) = −C [2v(t)] + Dλ(t f ), (3.22)

leads to Equation (3.19) being

λ(t) = λ′(t) +
(∫ t f

t
ω(τ)dτ

)
f(u(t, p), p). (3.23)
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Taking the inner product of Equation (3.23) with f(u(t, p), p) and using the co-state
constraint, Equation (3.8e), results in

〈λ(t), f(u(t, p), p)〉 = 0

=
〈
λ′(t), f(u(t, p), p)

〉
+

(∫ t f

t
ω(τ)dτ

)
〈f(u(t, p), p), f(u(t, p), p)〉 .

(3.24)

Manipulation of Equation (3.24) leads to the closed form expression of ω,

∫ t f

t
ω(τ)dτ = −

〈
λ′(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 , (3.25)

and can be substituted into Equation (3.23) to give the co-state solution at time t

λ(t) = λ′(t)−
〈
λ′(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p). (3.26)

3.3 A matrix-free method for the solution to the optimality
conditions of tangent OCS

The first order optimality conditions were derived in the previous section with no
information about how to solve them computationally. This section provides
algorithms for the computation of these optimality conditions. A common method for
generating a solution that satisfies the optimality conditions, Equation (3.8), is the
differential Riccati equation (DRE), Refs. [10, 64, 85, 104]. The DRE generates a
differential equation for the feedback kernel, a matrix nq × nq in size, between v(t)
and q(t) that ensures all of the optimality conditions are satisfied. This DRE becomes
unfeasible for systems with a large number of degrees of freedom, such as unsteady
turbulent flows, due to memory requirements. The rationale is that memory
requirements of the DRE square with number of solution variables. Further, the cost
of solving the DRE scales with the cube of the number of degrees of freedom of the
system. This soon becomes unfeasible for large systems and the required storage for
the matrix becomes larger than the available compute resources. Further, it has been
shown, Ref. [100], that the control term relates to the tangent term via
v(t) = −Kq(t) + q′(t), where K is a feedback kernel and q′(t) is a feed forward term.
This solutions requires the backward marching of two Riccati equations. The feedback
kernel relates to the terms in the tangent equations that are to be supressed or kept.
Selecting terms within the feedback kernel could help also select a better tuning
parameter of NV term for the NV method. Further, utilising the DRE would remove
the requirement for iterative solvers removing the requirement for time domain
decomposition in section 3.6. While the DRE and feedback kernel have their benefits
the author determined, that through the use of CLVs, that similar information from the
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solution could be gained and that the memory requirements of storing the feedback
kernel at each time step would become problematic. An example of this would be a
simple 1D mesh with 100 grid points in the x direction simulated for 500 time units
with a time step of 1× 10−4 using double precision would result in 400Gb of memory.

One of the simplest and earliest methods to overcome the memory requirements of
the DRE is the matrix-free approach, Ref. [98]. This approach casts the optimality
conditions as a linear system and utilises conjugate gradient (CG) methods, Refs. [39,
48, 117], to solve the system. An alternative to the matrix-free method, Ref. [98], is the
reduced space method, Ref. [86], which solves the reduced Hessian system.
Alternatives also include various types of preconditioning, Refs. [3, 109], where Schur
complement and Schwarz preconditioning are utilised to increase convergence rates.
The methods proposed here compute the solution of the control at every time step. An
approach to increasing performance is the multi-grid in time method, Ref. [56], where
through restriction the control solution is solved on a coarser time step and then
prolongated down onto a finer one. All of these approaches have been utilised on
stable systems whereas the tangent equation investigated here is linear and unstable.
Therefore, it is unclear how these methods perform on such systems. The vast
majority of the alternatives to the DRE require manipulation of the Hessian matrix,
which for large spatially distributed systems such as unsteady turbulence, is not
feasible due, again, to memory requirements. Here matrix-free methods, Ref. [98], are
utilised so that the Hessian or DRE matrices are not computed, which reduces
memory requirements. In this section the notation is kept general for reasons that will
become clear when undertaking the time domain decomposition technique,
section 3.6.

Initially, there is no knowledge of what the control term should be and, therefore, here
q(t) = 0 is arbitrarily selected as an initial estimate for the control terms. The tangent
solution is found by solving Equation (3.8b) from ts to t f from the initial condition
v(ts) = 0, the initial guess for q(t), and Equation (3.17). Finding the tangent solution
in this way ensures that Equation (3.8b) and Equation (3.8d) of the optimality
conditions are always satisfied. Similarly, the co-state solution is found by solving
Equation (3.8a) backwards in time from t f to ts with λ(t f ) = 0 as the terminal
condition along with using the tangent solution, v(t), and Equation (3.26). Finding the
co-state solution in this way ensures that Equation (3.8a) and Equation (3.8e) of the
optimality conditions are always satisfied.

The only remaining unsatisfied optimality constraint is ∂H
∂q(t) = 0 because the initial

guess for the control is not guaranteed to satisfy this equation. To show this, the
analytical solutions of the tangent and co-state solutions are required.
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Substitution of the analytical tangent solution, Equations (3.11), into the analytical
co-state solution, Equation (3.19), leads to

λ(t) = −C
(

2
[

Av(ts) +

(∫ τ

ts

η(s)ds
)

f(u(τ, p), p) + B
∂f(u(t, p), p)

∂p
+ Bq(t)

])
+

Dλ(t f ) +

(∫ t f

t
ω(τ)dτ

)
f(u(t, p), p).

(3.27)
Substitution of Equation (3.27) into Equation (3.8c) and grouping term in q(t) gives

[2αI + C (2B)] q(t) + C
(

2
[

Av(ts) +

(∫ τ

ts

η(s)ds
)

f(u(τ, p), p) + B
∂f(u(t, p), p)

∂p

])
−(∫ t f

t
ω(τ)dτ

)
f(u(t, p), p)−Dλ(t f ) = 0,

(3.28)
where I is the identity. This represents a linear system of the form

∂H
∂q(t)

= Gq(t) = Eq(t)− b(t) = 0,

where Gq(t) represents the value of the gradient given a certain value of q(t), Eq(t)
the impact that the control has on the solution, and b(t) the growth of the solution
without control. This linear system can be solved using a conjugate gradient method
as the linear operator is positive-definite, Ref. [98]. Algorithm 1 shows how to
compute Gq(t) in a matrix-free sense which can then be utilised to compute b(t). This
is achieved by computing Gq(t) with q(t) = 0 and Eq(t) is computed by evaluating
Gq(t) and adding b(t). Finally, the optimal control, tangent and co-state solutions are

Algorithm 1: A matrix-free method for the calculation of Gq(t).
Input: q(t)
Output: Gq(t)

1 v(t)← Solve Equation (3.8b) from ts to t f using v(ts) and q(t)
2 λ(t)← Solve Equation (3.8a) from t f to ts using λ(t f ) and v(t)
3 Gq(t)← 2αq(t)− λ(t)

found using Algorithm 2.

Algorithm 2: A matrix-free method for solution of the optimality conditions.

1 b(t)← −G0(t)
2 Eq(t)← Gq(t) + b(t)
3 Solve Eq(t) = b(t) using conjugate gradient to compute q(t)
4 v(t)← Solve Equation (3.8b) from ts to t f using v(ts) and q(t)
5 λ(t)← Solve Equation (3.8a) from t f to ts using λ(t f ) and v(t)
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The operators G and E are never actually formed in practice and only their action on
vectors is computed. This method requires the storage of v(t), λ(t) and q(t) at each
time step in the time horizon. Storage requirements scale linearly with problem size,
time horizon and time step.

It is well known that the convergence rate of the conjugate gradient algorithm is
determined by the condition number of E, Ref. [98]. The value chosen for α, through
the 2αI term, controls the condition number of the operator E which is composed of
two terms, 2αI and C (2B). These terms can be thought of as the cost in applying
control and how well the control stabilises the solution, respectively. If α ≈ 0, then the
C (2B) term dominates the condition number and as such a control is applied such
that

q(t) ≈ [C (2B)]−1
(
−C

(
2
[

Av(ts) +

(∫ τ

ts

η(s)ds
)

f(u(τ, p), p) + B
∂f(u(t, p), p)

∂p

])
+[∫ t f

t
ω(τ)dτ

]
f(u(t, p), p) + Dλ(t f )

)
,

which implies that the control applied is exactly the negative of the tangent equation
and leads to a tangent solution that is over-damped. Conversely, if α is large then 2αI
dominates the conditioning of E and the control applied results in

q(t) ≈ 1
2α

(
−C

(
2
[

Av(ts) +

(∫ τ

ts

η(s)ds
)

f(u(τ, p), p) + B
∂f(u(t, p), p)

∂p

])
+[∫ t f

t
ω(τ)dτ

]
f(u(t, p), p) + Dλ(t f )

)
,

which implies the control applied is negligible and the solution is under-damped.
Therefore, selecting α in between these values leads to an adequately controlled
solution.

3.4 Derivation of the adjoint OCS formulation

It is common in engineering applications that the sensitivity of the function of interest
is required with respect to multiple parameters. Typically, this is achieved using the
adjoint approach. To derive the adjoint of OCS, additional Lagrange multipliers,
λ̂(t) ∈ Rnλ̂ , v̂(t) ∈ Rnv̂ , q̂(t) ∈ Rnq̂ , η̂(t) ∈ R and ω̂(t) ∈ R, one for each optimality
condition in Equation (3.8), are introduced. These, again, allow the incorporation of
the optimality conditions, Equation (3.8), into Equation (3.10), through the addition of
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zero, which results in

d J̄
dp

=
∫ t f

ts

1
T

〈
∂J(u(t, p), p)

∂u(t, p)
, v(t)

〉
+

1
T

η(t) (J(u(t, p), p)− J̄) +

1
T

∂J(u(t, p), p)
∂p

+〈
λ̂(t),

dv(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)
v(t)− ∂f(u(t, p), p)

∂p
− η(t)f(u(t, p), p)− q(t)

〉
+〈

v̂(t),−dλ(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ(t) + 2v(t) + ω(t)f(u(t, p), p)

〉
+

〈q̂(t), 2αq(t)− λ(t)〉+

ω̂(t) 〈f(u(t, p), p), v(t)〉 − η̂(t) 〈f(u(t, p), p), λ(t)〉dt.

(3.29)

Integration by parts of Equation (3.29) and grouping terms in v(t), q(t), λ(t), ω(t)
and η(t) leads to

d J̄
dp

=
∫ t f

ts

1
T

∂J(u(t, p), p)
∂p

−
〈

∂f(u(t, p), p)
∂p

, λ̂(t)
〉
+〈

v(t),
1
T

∂J(u(t, p), p)
∂u(t, p)

− dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) + 2v̂(t) + ω̂(t)f(u(t, p), p)

〉
+〈

λ(t),
dv̂(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
v̂(t)− η̂(t)f(u(t, p), p)− q̂(t)

〉
+〈

q(t), 2αq̂(t)− λ̂(t)
〉
+

η(t)
(

1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉)
+

ω(t) 〈v̂(t), f(u(t, p), p)〉dt +
〈

λ̂(t), v(t)
〉∣∣∣t f

ts
+ 〈λ(t), v̂(t)〉|t f

ts
.

(3.30)
By careful selection of the terms in Equation (3.30) to be zero, one removes the explicit
calculation of v(t), q(t), λ(t), ω(t) and η(t) and obtains the following adjoint
optimality conditions

0 =
dv̂(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
v̂(t)− η̂(t)f(u(t, p), p)− q̂(t), (3.31a)

0 =
1
T

∂J(u(t, p), p)
∂u(t, p)

− dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) + 2v̂(t) + ω̂(t)f(u(t, p), p),

(3.31b)

0 = 2αq̂(t)− λ̂(t), (3.31c)

0 = 〈v̂(t), f(u(t, p), p)〉 , (3.31d)

0 =
1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉
. (3.31e)
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Finally, the remaining terms that are non-zero from Equation (3.30) lead to the adjoint
sensitivity equation

d J̄
dp

=
∫ t f

ts

1
T

∂J(u(t, p), p)
∂p

−
〈

∂f(u(t, p), p)
∂p

, λ̂(t)
〉

dt. (3.32)

Once λ̂(t) has been found, it is trivial to modify Equation (3.32) for multiple
parameters.

There is still some reliance on v(t) and λ(t) and as in the tangent OCS formulation
there are still some free variables, η̂(t) and ω̂(t), that require constraining. Following a
similar procedure of constraints to that presented in the tangent OCS formulation,〈

λ̂(t), v(t)
〉∣∣∣t f

ts
= 0 and 〈λ(t), v̂(t)〉|t f

ts
= 0, leads to v̂(ts) = 0 and

λ̂(t f ) =
1
T

J(u(t f , p), p)− J̄〈
f(u(t f , p), p), f(u(t f , p), p)

〉 f(u(t f , p), p),

as the initial and terminal constraints for Equations (3.31a) and (3.31b), respectively.
The closed form expressions for η̂(t) and ω̂(t), using a similar procedure to their
tangent counterparts, result in

v̂(t) = v̂′(t)− 〈v̂′(t), f(u(t, p), p)〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p).

and

λ̂(t) = λ̂
′
(t)−

〈
λ̂
′
(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p)+

1
T

J(u(t, p), p)− J̄
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p).

Details of these derivations can be found in Appendices C and D, respectively. The
approach for solving the first order optimality conditions, section 3.3, are equally
viable for the adjoint optimality conditions, Equation (3.31), but are not presented here
for brevity.

3.5 An alternative derivation for adjoint OCS

This section shows that directly controlling the unstable and unbounded adjoint
equation produces an identical set of optimality conditions to that presented in
section 3.4. First, the unbounded and unstable adjoint equation is found. Let the
Lagrange multipliers λ̂(t) ∈ Rnλ̂ and ω̂(t) ∈ R be utilised to incorporate
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Equation (3.3) and 〈v(t), f(u(t, p), p)〉 = 0 into Equation (3.10) which results in

d J̄
dp

=
∫ t f

ts

1
T

〈
∂J(u(t, p), p)

∂u(t, p)
, v(t)

〉
+

1
T

∂J(u(t, p), p)
∂p

+

1
T

η(t)(J(u(t, p), p)− J̄)+〈
λ̂(t),

dv(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)
v(t)− ∂f(u(t, p), p)

∂p
− η(t)f(u(t, p), p)

〉
+

ω̂(t) 〈f(u(t, p), p), v(t)〉dt.

(3.33)

Again, performing integration by parts and grouping terms in v(t) and η(t) results in

d J̄
dp

=
∫ t f

ts

1
T

∂J(u(t, p), p)
∂p

−
〈

∂f(u(t, p), p)
∂p

, λ̂(t)
〉
+〈

v(t),
1
T

∂J(u(t, p), p)
∂u(t, p)

− dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) + ω̂(t)f(u(t, p), p)

〉
+

η(t)
(

1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉)
dt +

〈
λ̂(t), v(t)

〉∣∣∣t f

ts
.

(3.34)

Careful selection of the Lagrange multiplier terms in Equation (3.34) removes the
explicit calculation of v(t) and η(t) and results in the adjoint co-state equation and
adjoint co-state orthogonality constraint

0 =
1
T

∂J(u(t, p), p)
∂u(t, p)

− dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t) + ω̂(t)f(u(t, p), p), (3.35)

and
0 =

1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉
. (3.36)

Again, setting
〈

λ̂(t), v(t)
〉∣∣∣t f

ts
= 0 and using Equation (3.36) leads to the terminal

condition

λ̂(t f ) =
1
T

J(u(t f , p), p)− J̄〈
f(u(t f , p), p), f(u(t f , p), p)

〉 f(u(t f , p), p)

and Equation (3.35) is solved backwards in time. Equation (3.35) shares the same
behaviour as the tangent equation, Equation (3.3), in that it experiences exponential
growth of perturbations and requires controlling. Introducing a control term
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ζ̂(t) ∈ R
nζ̂ into Equation (3.35) and forming the minimisation problem results in

min
λ̂(t),ζ̂(t)

∫ t f

ts

β̂
〈

λ̂(t), λ̂(t)
〉
+ δ̂

〈
ζ̂(t), ζ̂(t)

〉
dt, (3.37a)

s.t.
dλ̂(t)

dt
=

1
T

∂J(u(t, p), p)
∂u(t, p)

− ∂f(u(t, p), p)
∂u(t, p)

†

λ̂(t) + ω̂(t)f(u(t, p), p) + ζ̂(t), (3.37b)

1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉
= 0, (3.37c)

λ̂(t f ) =
1
T

J(u(t f , p), p)− J̄〈
f(u(t f , p), p), f(u(t f , p), p)

〉 f(u(t f , p), p), (3.37d)

where β̂ and δ̂ control the relative importance of each term. As before, introducing
additional Lagrange multipliers v̂(t) ∈ Rnv̂ and η̂(t) ∈ R to incorporate
Equation (3.37b) and Equation (3.37c) into Equation (3.37a) leads to the Hamiltonian,
Ĥ, and performing integration by parts results in

Ĥ =
∫ t f

ts

β̂
〈

λ̂(t), λ̂(t)
〉
+ δ̂

〈
ζ̂(t), ˆζ(t)

〉
+〈

λ̂(t),
dv̂(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
v̂(t)− η̂(t)f(u(t, p), p)

〉
+〈

v̂(t),
1
T

∂J(u(t, p), p)
∂u(t, p)

+ ω̂(t)f(u(t, p), p) + ζ̂(t)
〉
+

η̂(t)
(

1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉)
dt +

〈
λ̂(t), v̂(t)

〉∣∣∣t f

ts
.

(3.38)

Pontryagin’s minimisation principle defines the minimum of Equation (3.37) to be
when all partial derivatives of Ĥ with respect to v̂(t), λ̂(t), ζ̂(t), ω̂(t) and η̂(t) are
zero. This leads to the first order adjoint optimality conditions

∂Ĥ
∂λ̂(t)

= 0 =
dv̂(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
v̂(t)− η̂(t)f(u(t, p), p) + 2β̂λ̂(t), (3.39a)

∂Ĥ
∂v̂(t)

= 0 =
1
T

∂J(u(t, p), p)
∂u(t, p)

− dλ̂(t)
dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λ̂(t)+

ω̂(t)f(u(t, p), p) + ζ̂(t),
(3.39b)

∂Ĥ
∂ζ̂(t)

= 0 = 2δ̂ζ̂(t) + v̂(t), (3.39c)

∂Ĥ
∂ω̂(t)

= 0 = 〈f(u(t, p), p), v̂(t)〉 , (3.39d)

∂Ĥ
∂η̂(t)

= 0 =
1
T
(J(u(t, p), p)− J̄)−

〈
λ̂(t), f(u(t, p), p)

〉
. (3.39e)

Selecting δ̂ = − 1
4 and substituting Equation (3.39c) into Equation (3.39b) to eliminate

ζ̂(t) leads to Equation (3.31b). Similarly, selecting β̂ = − 1
4α in Equation (3.39a) leads to

the same equation when Equation (3.31c) is substituted into Equation (3.31a) to
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eliminate q(t). Again, η̂(t) and ω̂(t) can be handled as in Appendices C and D
respectively. Therefore, it can be concluded that taking the adjoint of the minimisation
problem or minimisation of the adjoint problem result in methods that are identical,
given careful selection of β̂ and δ̂.

3.6 Decomposition of the time horizon into segments

A matrix-free method for solving the optimality conditions for the tangent OCS
formulation was presented in section 3.3 where the time horizon was considered as a
whole. The runtimes of these standard algorithms can be large, Ref. [52], and,
therefore, there has been a large development in parallel-in-time or time domain
decomposition methods for optimal control problems, Refs. [37, 38, 42, 52, 53, 60, 71,
76, 82, 83, 122]. Further to this, the splitting of the time horizon into segments acts to
condition the system, Ref. [75], where the convergence rates of these algorithms are
related to the condition number of the linear operator. A solution of the tangent
equation still exhibits exponential growth but is limited to the growth in one segment.
The growth is reduced due to the smaller segment time resulting in better
conditioning.

One further benefit for splitting the time horizon into segments is that, for large
systems, the method outlined in section 3.2 may require more memory than the
compute node has. Therefore, the time domain is split into segments so that the
memory requirements are reduced and each segment can be solved on a separate
compute node.

The splitting, Ref. [37, 38, 42, 60, 71], is derived for the tangent OCS formulation in this
section. However, this is easily modified for the equations derived for the adjoint OCS
formulation, section 3.4. Various alternatives to Refs. [37, 38, 42, 60, 71] are available.
One alternative method is the single shooting formulation Ref [25], which estimates
the initial condition for the tangent and co-state equation that satisfy the terminal
condition on the co-state. This shooting approach is also undertaken on multiple time
segments, Ref. [24], which is the single shooting method but reformulated on multiple
segments with continuity conditions applied between consecutive segments. This
multiple shooting approach is also undertaken utilising gradient descent, Ref. [1], to
impose continuity between consecutive segments. Finally, a receding horizon optimal
control, Ref. [55], formulation which approximates the long time horizon control by
solving iteratively smaller finite horizon control problems.

The time horizon (ts, t f ) is split into N equal segments where each has a local time
span, (tj, tj+1), j = 0, 1, . . . , N − 1 and ts = t0 < t1 < . . . < tN−1 < tN = t f . Next, a
locally defined tangent solution vj(t) ∈ Rnv and control qj(t) ∈ Rnq on each segment j
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are introduced. For this splitting to be identical to the method presented in section 3.2,
continuity in both control and tangent solutions between consecutive segments is
required. This results in the following constraints vj−1(tj) = vj(tj) for j = 1, . . . , N − 1
and qj−1(tj) = qj(tj) for j = 1, . . . , N − 1. A graphical representation of this can be
seen in Figure 3.1. These conditions leads to the following minimisation problem

t0 t1 t2t1 t2 t3

v0(t) v1(t) v2(t)

q0(t) q1(t) q2(t)

FIGURE 3.1: Example time domain decomposition where the dotted lines represent
the solution in segment 0, dashed in segment 1 and solid segment 2. Black solutions

represent the tangent solution and blue the control.

min
vj(t),qj(t)

N−1

∑
j=0

∫ tj+1

tj

〈
vj(t), vj(t)

〉
+ α

〈
qj(t), qj(t)

〉
dt (3.40a)

s.t.
dvj(t)

dt
=

∂f(u(t, p), p)
∂u(t, p)

vj(t) +
∂f(u(t, p), p)

∂p
+ ηj(t)f(u(t, p), p)+

qj(t) j = 0, 1, . . . , N − 1,
(3.40b)

〈
vj(t), f(u(t, p), p)

〉
= 0 j = 0, 1, . . . , N − 1, (3.40c)

v(ts) = 0, (3.40d)

vj−1(tj) = vj(tj) j = 1, . . . , N − 1, (3.40e)

qj−1(tj) = qj(tj) j = 1, . . . , N − 1. (3.40f)

The Hamiltonian,H, for this minimisation problem is formed through the
introduction of locally defined Lagrange multipliers λj(t) ∈ Rnλ for j = 0, 1, . . . , N − 1
for the tangent equation, ωj(t) ∈ R for j = 0, 1, . . . , N − 1 for the tangent
orthogonality constraint, κj ∈ Rnκ for j = 1, . . . , N − 1 for the tangent continuity
constraints, and ιj ∈ Rnι for j = 1, . . . , N − 1 for the control continuity constraint. For
optimality the derivatives of the Hamiltonian with respect to vj(t), λj(t), qj(t), ηj(t),
ωj(t), ιj and κj, using Pontryagin’s minimisation principle, are zero. This leads to the
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set of first order optimality conditions

∂H
∂λj(t)

= 0 =
dvj(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)
vj(t)−

∂f(u(t, p), p)
∂p

−

ηj(t)f(u(t, p), p)− qj(t) j = 0, 1, . . . , N − 1,

(3.41a)

∂H
∂vj(t)

= 0 = −
dλj(t)

dt
− ∂f(u(t, p), p)

∂u(t, p)

†

λj(t) + 2vj(t)+

ωj(t)f(u(t, p), p) j = 0, 1, . . . , N − 1,

(3.41b)

∂H
∂qj(t)

= 0 = 2αqj(t)− λj(t) j = 0, 1, . . . , N − 1, (3.41c)

∂H
∂ωj(t)

= 0 =
〈
f(u(t, p), p), vj(t)

〉
j = 0, 1, . . . , N − 1, (3.41d)

∂H
∂ηj(t)

= 0 =
〈
λj(t), f(u(t, p), p)

〉
j = 0, 1, . . . , N − 1, (3.41e)

∂H
∂κj

= 0 = vj−1(tj)− vj(tj) j = 1, . . . , N − 1, (3.41f)

∂H
∂ιj

= 0 = qj−1(tj)− qj(tj) j = 1, . . . , N − 1. (3.41g)

The control continuity constraint, Equation (3.41g), can be cast onto the co-state
through the use of the control equation, Equation (3.41c), resulting in

0 = λj−1(tj)− λj(tj) j = 1, . . . , N − 1. (3.42)

The initial condition for the tangent equation in segment 0 is v(ts) = v0(t0) = 0 and
the terminal condition for the co-state equation in segment N − 1 is
λ(t f ) = λN−1(tN) = 0. Again, removing the explicit computation of ηj(t) using
Equation (3.41d) results in

vj(t) = v′j(t)−

〈
v′j(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p). (3.43)

Similarly, removal of the explicit computation of ωj(t) using Equation (3.41e) results in

λj(t) = λ′j(t)−

〈
λ′j(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p). (3.44)

The sensitivity equation, Equation (3.10), is an integral over the whole time horizon
with an additional modification for the time dilation therm, η(t). Due to performing
the time domain decomposition the sensitivity equation is decomposed into the sum
of integrals on each segment, This is because the solution may not be exactly
continuous between segments and small discontinuities could be present due to how
accurately the optimality conditions are solved. This leads to the following sensitivity
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equation

d J̄
dp

=
1
T

N−1

∑
j=0

∫ tj+1

tj

〈
∂J(u(t, p), p)

∂u(t, p)
, v′j(t)

〉
+

∂J(u(t, p), p)
∂p

dt+

1
T

N−1

∑
j=0

〈
v′(tj+1), f(u(tj+1, p), p)

〉〈
f(u(tj+1, p), p), f(u(tj+1, p), p)

〉 ( J̄ − J(u(tj+1, p), p)
)

.

(3.45)

The derivation of this equation is not reported here but further details of this
derivation can be found in Appendix C of Ref. [19].

3.7 A matrix-free method for solving the optimality
conditions for time domain decomposition

The matrix-free methods used in section 3.3 can also be used for the first order
optimality conditions, Equation 3.41. The previous work on the matrix-free methods
for the time domain decomposition has been undertaken on advection-diffusion
problems and heat equations, Refs. [37, 38, 60]. The systems that are being solved here
are linear and unstable. The authors of Refs. [37, 38, 60] make no discussion on the
impact of these methods for unstable systems. Therefore, it is unclear if the unstable
system causes any additional requirements on the length of the segments and the
impact the growth of the solution in the time horizon has on convergence of these
methods. To aid in the distributed computation, the initial values of vj(tj) = 0 and
λj−1(tj) = 0 for j = 1, . . . , N − 1 are used. Further, qj(t) = 0 for j = 0, 1, . . . , N − 1 is
used. The local tangent solution is found by marching Equation (3.41a) forwards in
time from tj to tj+1 using the initial condition vj(tj) for j = 0, 1, . . . , N − 1, the control
qj(t) and making use of Equation (3.43) to remove the explicit computation of ηj(t).
Using this approach ensures that the time domain decomposition optimality
constraints Equation (3.41a) and Equation (3.41d) are satisfied. The same procedure is
used for the co-state solution by solving Equation (3.41b) backwards in time from tj+1

to tj using the terminal condition λj(tj+1) for j = 0, 1, . . . , N − 1, the tangent solution
vj(t) and Equation (3.44) to remove the explicit calculation of ωj(t). Again, this
approach ensures that the constraints Equation (3.41b) and Equation (3.41e) are
satisfied. Therefore, the only constraints not satisfied are the control equation,
Equation (3.41c), the continuity constraint on the tangent solution, Equation (3.41f),
and the continuity on the control solution, Equation (3.41g).

In practice, substitution of Equation (3.41g) for Equation (3.42) is undertaken. With
this approach the unknowns are

x =
(
v1(t1), q0(t), . . . , vj+1(tj+1), qj(t), λj−1(tj), . . . , qN−1(t), λN−2(tN−1)

)T
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Making use of the analytical form of the tangent and co-state solutions leads to

∂H
∂κ0
∂H

∂q0(t)
...

∂H
∂κj
∂H

∂qj(t)
∂H
∂ιj
...

∂H
∂qN−1(t)

∂H
∂ιN−1



= Hx =



v1(t1)− v0(t1)

2αq0(t)− λ0(t)
...

vj+1(tj+1)− vj(tj+1)

2αqj(t)− λj(t)
λj−1(tj)− λj(tj)

...
2αqN−1(t)− λN−1(t)

λN−2(tN−1)− λN−1(tN−1)



=



0
0
...
0
0
0
...
0
0



. (3.46)

Using a similar approach to that presented in section 3.3 it can be shown that

Hx = Fx− c = 0, (3.47)

where the linear operator, F, is block-tridiagonal,

F =



F0,0 F0,1

F1,0
. . .

Fj,j−1 Fj,j Fj,j+1
. . . FN−2,N−1

FN−1,N−2 FN−1,N−1


, (3.48)

and block Fj,j is

Fj,j =

I −Bj 0
0 2αI + Cj

(
2Bj
)

0
0 Cj

(
2Bj
)

I

 , (3.49)

where B and C are defined as in section 3.3 and the subscript �j denotes the operator
� on segment j. The full structure of F and c can be found in Appendix E.

The system, Equation (3.47), cannot be solved using conjugate gradient methods
because conjugate gradient methods are used on systems whose operators are
positive-definite, Refs. [39, 48, 117], and the operator generated by the time domain
decomposition is symmetric and indefinite, Refs. [38, 60]. Therefore, GMRES,
Refs. [106, 107, 116], a generic linear system solver is used for solving the linear
system generated. Algorithm 3 is a matrix-free method for computing Hx which can
then be utilised for computing c by computing Hx with x = 0. Fx is found by
computing Hx and adding c. Algorithm 4 is used for finding the optimal control,
tangent and co-state solutions. Parallel computation can be leveraged using this
method as all the information required for each segment is contained within x and,
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Algorithm 3: A matrix-free method for the calculation of Hx.
Input: x
Output: Hx

1 for j = 0, 1, . . . , N − 1 do
2 vj(t)← Solve Equation (3.41a) from tj to tj+1 using vj(tj) and qj(t)
3 λj(t)← Solve Equation (3.41b) from tj+1 to tj using λj(tj+1) and vj(t)
4 Hx← 2αqj(t)− λj(t)

5 for j = 1, . . . , N − 1 do
6 Hx← vj−1(tj)− vj(tj)

7 Hx← λj−1(tj)− λj(tj)

Algorithm 4: A matrix-free method for solution of the optimality conditions.

1 c← −H0
2 Fx← Hx + c
3 Solve Fx = c using GMRES to compute x
4 for j = 0, 1, . . . , N − 1 do
5 vj(t)← Solve Equation (3.41a) from tj to tj+1 using vj(tj) and qj(t)
6 λj(t)← Solve Equation (3.41b) from tj+1 to tj using λj(tj+1) and vj(t)

therefore, computation of the tangent and co-state solutions on each segment along
with computation of the constraints between consecutive segments are not reliant on
the solutions of other segments.

The main limitation with this method is that the vector of unknowns, x, is larger than
q(t) presented in section 3.3 due to the unknown conditions of the tangent and
co-state at the segment interfaces and, therefore, does not reduce the memory
limitations. One method to overcome this limitation is to store the vector x across
compute nodes. Using this approach a parallel implementation of GMRES, see
Refs. [43, 44, 134], is required for the solution of the optimality conditions. An
alternative approach to remove this limitation is through using various
preconditioning methods, Refs. [8, 38, 60, 71], that reduce the size of the linear system
formed which can then fit on one compute node and parallel GMRES methods are not
required. These preconditioning methods are presented in the following sections.

3.7.1 Jacobi preconditioning

To reduce the condition number of the system and to reduce the size of the linear
system various preconditioning methods have been developed, Refs. [8, 38, 60, 71],
and a benefit of these preconditioning methods is that the convergence rates are
improved. Here the Jacobi approach is presented. Firstly, consider the splitting
F = M− L−U, where M is the block diagonal component of F, and L and U are the
block lower and block upper components, respectively. The intuitive reasoning
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behind these components is that M is related to the constraints ∂H
∂qj(t)

, L is related to the

constraint ∂H
∂κj

and U is related to the constraint ∂H
∂ιj

. Inverting any of M, L and U can be
thought of as solving their respective constraints, for example inverting the diagonal
blocks of F is equivalent to solving the optimal control problem on each segment,
Ref. [60]. Utilising this splitting, the system, Equation (3.46), can be written as

Fx− c = [M− (U + L)] x− c = 0, (3.50)

where left multiplication by M−1 results in[
I−M−1 (U + L)

]
x−M−1c = 0. (3.51)

Left multiplication of M−1 always satisfies the constraints ∂H
∂qj(t)

regardless of which
qj(t) is chosen in x. This leaves the unknowns for the Jacobi preconditioning as

xJac =
(
v1(t1), . . . , vj+1(tj+1), λj−1(tj), . . . , λN−2(tN−1)

)T ,

which is significantly smaller than x and can easily fit onto one compute node to be
solved with GMRES. This results in a better conditioned linear operator which
reduces the computational cost and time over the non-preconditioned system,
Ref. [38]. These unknowns are the initial tangent conditions at the beginning of each
segment and the co-state terminal conditions at the end of each segment. Further, the
entries from F and c relating to the constraint ∂H

∂qj(t)
can be removed which leads to the

simplified Jacobi preconditioned system

∂H
∂κ0
...

∂H
∂κj
∂H
∂ιj
...

∂H
∂ιN−1


= HJacxJac =



v1(t1)− v0(t1)
...

vj+1(tj+1)− vj(tj+1)

λj−1(tj)− λj(tj)
...

λN−2(tN−1)− λN−1(tN−1)


=



0
...
0
0
...
0


. (3.52)

Again, it can be shown that

HJacxJac = FJacxJac − cJac = 0.

Algorithm 5 is a matrix-free method for the computation of HJacxJac. The term cJac is
computed using HJacxJac using zero for xJac. Similarly, FJacxJac is computed using
HJacxJac and adding cJac. An algorithm for computing the optimal control, tangent and
co-state solutions using Jacobi preconditioning is given Algorithm 6. One benefit of
this approach is that all the optimal control problems on each segment can be solved
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Algorithm 5: A matrix-free method for the calculation of HJacxJac.

Input: xJac

Output: HJacxJac

1 for j = 0, 1, . . . , N − 1 do
2 Solve Algorithm 2 on (tj, tj+1) from vj(tj) and λj(tj+1)

3 for j = 1, . . . , N − 1 do
4 HJacxJac ← vj−1(tj)− vj(tj)

5 HJacxJac ← λj−1(tj)− λj(tj)

Algorithm 6: A matrix-free method for solution of the optimality conditions.

1 cJac ← −HJac0
2 FJacxJac ← HJacxJac + cJac

3 Solve FJacxJac = cJac using GMRES to compute xJac

4 for j = 0, 1, . . . , N − 1 do
5 Solve Algorithm 2 on (tj, tj+1) from vj(tj) and λj(tj+1)

in parallel, even distributed across multiple compute nodes, thus distributing
computational resources and reducing the per-node memory requirements.

3.7.2 Forward Gauss-Seidel preconditioning

The same splitting of F = M− L−U presented in section 3.7.1 is utilised for this
preconditioning approach. Left multiplying Equation (3.50) by (M− L)−1 results in[

I− (M− L)−1 U
]

x− (M− L)−1 c = 0. (3.53)

Left multiplication by (M− L)−1 can be thought of as solving the optimal control on
each segment and then applying continuity in the tangent solution between
consecutive segments. This approach is referred to as Forward Gauss-Seidel (FGS)
preconditioning. The remaining unknown terms are

xFGS =
(
λj−1(tj), . . . , λN−2(tN−1)

)T .

These unknowns are the co-state terminal conditions at the end of each segment. By
utilising this left multiplication, the FGS linear system satisfies the constraints ∂H

∂qj(t)

and ∂H
∂κj

and, as before, these can be removed from the linear system resulting in


∂H
∂ι1
...

∂H
∂ιN−1

 = HFGSxFGS =


λ0(t1)− λ1(t1)

...
λN−2(tN−1)− λN−1(tN−1)

 =


0
...
0

 . (3.54)
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Again, it can be shown that

HFGSxFGS = FFGSxFGS − cFGS = 0.

Algorithm 7 is used for computing HFGSxFGS in a matrix-free sense. Computation of

Algorithm 7: A matrix-free method for the calculation of HFGSxFGS.

Input: xFGS

Output: HFGSxFGS

1 for j = 0, 1, . . . , N − 1 do
2 Solve Algorithm 2 on (tj, tj+1) from vj(tj) and λj(tj+1)

3 if j 6= N − 1 then
4 vj+1(tj+1)← vj(tj+1)

5 for j = 1, . . . , N − 1 do
6 HFGSxFGS ← λj−1(tj)− λj(tj)

Algorithm 7 is commonly referred to as instantaneous control in the literature,
Refs. [11, 34, 36, 61, 62, 63]. The term cFGS is computed using HFGSxFGS using zero for
xFGS. Similarly, FFGSxFGS is computed using HFGSxFGS and adding cFGS. An algorithm
for computing the optimal control, tangent and co-state solutions using FGS
preconditioning is given Algorithm 8. One drawback of the FGS preconditioning

Algorithm 8: A matrix-free method for solution of the optimality conditions.

1 cFGS ← −HFGS0
2 FFGSxFGS ← HFGSxFGS + cFGS

3 Solve FFGSxFGS = cFGS using GMRES to compute xFGS

4 for j = 0, 1, . . . , N − 1 do
5 Solve Algorithm 2 on (tj, tj+1) from vj(tj) and λj(tj+1)

method is that the parallel computation of segments is removed due to the continuity
constraint between segments. The solution of FGS preconditioning can be distributed
across the compute nodes, for systems where memory is a limitation, in the same way
that the Jacobi preconditioning can. However, unlike Jacobi the solution of the
optimal control on each compute node cannot be computed in parallel. This is because
the initial condition of a segment relies on the optimal solution of the previous
segment and the solution becomes serialised and no longer computationally parallel.
The result of this is that compute nodes are sat idle waiting for their respective initial
conditions to be updated.
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3.7.3 Backward Gauss-Seidel preconditioning

An alternative to the FGS preconditioning approach is to left multiply Equation (3.50)
by (M−U)−1, which results in

0 =
[
I− (M−U)−1 L

]
x− (M−U)−1 c. (3.55)

Left multiplication by (M−U)−1 can be thought of as solving the optimal control
problem on a segment and then applying continuity in the co-state solution and is
referred to as Backward Gauss-Seidel (BGS) preconditioning. The remaining
unknowns in using this approach are

xBGS = (v1(t1), . . . , vN−1(tN−1))
T .

These unknowns are the initial tangent conditions at the beginning of each segment.
Using this approach results in the constraints ∂H

∂qj(t)
and ∂H

∂ιj
being satisfied and,

therefore, can be removed from the linear system which results in the BGS linear
system 

∂H
∂κ1
...

∂H
∂κN−1

 = HBGSxBGS =


v0(t1)− v1(t1)

...
vN−2(tN−1)− vN−1(tN−1)

 =


0
...
0

 . (3.56)

As in the FGS case, it can be shown that HBGSxBGS = FBGSxBGS − cBGS, where the
structures of FBGS and cBGS are the matrices F and c with the respective rows and
columns relating to the ∂H

∂qj(t)
and ∂H

∂ιj
constraints removed. The algorithms for the

matrix-free computation of HBGSxBGS are very similar to that of the FGS approach
except that the segments are solved from starting from the final segment and then
continuity is applied on the co-state solution. An algorithm for computing HBGSxBGS

in a matrix free sense is provided in Algorithm 9 and an algorithm for the solution of
the optimality conditions is given in Algorithm 10.

Algorithm 9: A matrix-free method for the calculation of HBGSxBGS.

Input: xBGS

Output: HBGSxBGS

1 for j = N − 1, N − 2, . . . , 0 do
2 Solve Algorithm 2 from vj(tj) and λj(tj+1)

3 if j 6= 0 then
4 λj−1(tj)← λj(tj)

5 for j = 1, . . . , N − 1 do
6 HBGSxBGS ← vj−1(tj)− vj(tj)
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Algorithm 10: A matrix-free method for solution of the optimality conditions.

1 cBGS ← −HBGS0
2 FBGSxBGS ← HBGSxBGS + cBGS

3 Solve FBGSxBGS = cBGS using GMRES to compute x
4 for j = 0, 1, . . . , N − 1 do
5 Solve Algorithm 2 from vj(tj) and λj(tj+1)

The BGS approach has the same computational limitations as the FGS approach in
that solutions can be distributed across compute nodes but due to the reliance on the
optimal solution in a segment updating the terminal co-state solution in the
preceeding segment means that computational efficiency is reduced.

3.8 Implementation details for solving the OCS optimality
conditions

While pseudocode has been provided in sections 3.3 and 3.7 further details of the
implementation are provided in this section. The implementation of the algorithms
made heavy use of C++ templates along with parallelism from OpenMP and MPI.
Utilising C++ templating enabled writing of generic, system agnostic code that could
be tested and validated on simple small cases. No modifications were then required in
the investigation of more complex systems. This reduced the time spent debugging
and bespoke code was not required to be written when changing system. The
implementation involved several classes and functions each described here.

The two main functions are the conjugate gradient and GMRES functions. This is
called to solve systems of the form Ax = b and takes as input A and b and initial
estimate for x. Templating these functions enables the reuse on different operators A
and as such the method can be tested on simple known problems and applied to more
complicated systems without any additional modification.

The first class is the variable class. This class houses logic for adding, subtracting,
multiplication, division, inner products and norms of the variables under
investigation. Specific implementations depending on whether the variable is 1D, 2D
or the result of a Fourier transform all inherit from the base class and overload the
required member functions. Rationale for a variable class is that the return type of
C++ functions is required enabling a generic return type (base class) and making use
of polymorphism when more complex variables are used.

The second class is the time integration scheme. As with the variable class the base
class houses the functions for stepping a generic equation forwards in time. The
equations used are inputs to the class meaning, again, maximal code reuse is
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achieved. Implementation of a new time stepping scheme is achieved via inheritance
and overloading with no additional modifications to alternative classes are required
ensuring that maximal flexibility is maintained.

The system class is specific for each system under investigation. This class contains
the non-linear, tangent and co-state equations under investigation and is provided by
the user. Furthermore, the system class houses storage containers for the non-linear,
tangent, co-state and control solutions for the given time horizon.

The previous three classes have been building blocks for the optimal control class. The
optimal control class takes, as input, the system and time integration scheme classes
along with making use of the conjugate gradient function. This enables the optimal
control class to be written in a generic orchestration manner. Member functions
include methods for computing Algorithms 1 and 2.

The member function for the operator G (Algorithm 1) takes as an input a control
term. This input control term is then passed into the system class for use in the
marching of the tangent equation. The tangent equation is then marched forwards in
time from the initial condition along with control term, Equation (3.8b). Next, the
co-state is marched backwards in time from the terminal condition and utilising the
tangent solution, Equation (3.8a). Finally, the return of the member function is
2αq(t)− λ(t) at every time step.

The member function for Algorithm 2 is as follows. Firstly, the term b is computed
using a zero input to the member function for the operator G (Algorithm 1). Next, the
operator function for E is created. This wraps the call to member function for the
operator G (Algorithm 1) and addition of b into one function. This operator function
for E along with b and initial guess for q are then passed to the conjugate gradient
function for solving the linear system. The return of the conjugate gradient function is
the optimal control value at each time step. One final call to operator G with the
optimal control generates the optimal tangent and co-state solutions that are then
used to compute the sensitivities.

Finally, the time domain decomposition class takes many optimal control classes (one
for each segment) as input. Each segment shares a time instance with its neighbour,
referred to as the interface time, tj. As with the optimal control class the time domain
decomposition class is an orchestration manner. This class is responsible for
orchestration of the solving of the optimal control problems on each segment.
Depending on which preconditioner used results in a different size system solved by
the GMRES solver. If Jacobi is used then the continuity constraints for the tangent and
co-state between consecutive segments are solved. If FGS is used then only the
continuity constraints between consecutive segments for the co-state variable is
solved and finally BGS the continuity constraint between consecutive segments for the
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tangent solution is solved. These methods work in a very similar way so the
algorithm for the preconditioners is described.

The member function HJac, FGS or BGS (Algorithms 5, 7 or 9) takes an input of the
xJac, FGS or BGS. These contain the initial and terminal conditions for the tangent and
co-state solutions on each segment. These values are then set in the optimal control
class for each segment. Once this has been undertaken Jacobi preconditioning uses
MPI to solve the optimal control problem (Algorithm 2) for each segment in parallel.
FGS solves the optimal control problem on the first segment (Algorithm 2) then sets
the tangent interface value vj+1(tj) using vj(tj) from the current segment. In other
words the terminal condition of the current segment is passed onto the proceeding
segment for the tangent solution. The optimal control problem (Algorithm 2) is then
solved on the next segment. This continues sequentially forwards until all segments
are solved. BGS solves the optimal control problem on the final segment (Algorithm 2)
then sets the tangent interface value λj−1(tj−1) using λj(tj−1) from the current
segment. In other words the initial condition of the current segment is passed onto the
preceding segment. The optimal control problem (Algorithm 2) is then solved on the
penultimate segment. This continues sequentially backwards until all segments are
solved. Once the optimal control problem has been solved on each segment then the
continuity conditions can be computed resulting in HJac, FGS or BGSxJac, FGS or BGS.

The member function for Algorithms 6, 8 or 10 is, again, dependent on the
preconditioner used. Even though the methods are preconditioner dependent they all
follow a similar format. Firstly, the term cJac, FGS or BGS is calculated by providing
xJac, FGS or BGS = 0 into the member function for HJac, FGS or BGS. Next, a function
wrapper for the operator FJac, FGS, BGS is created. This function wrapper takes
xJac, FGS or BGS as an input. The wrapper calls the member function for HJac, FGS or BGS

and adds cJac, FGS or BGS to the output. It is worth noting that this function wrapper is
called at every iteration within the GMRES solver. And in turn this function calls a
solve for the optimal control problem on each segment, therefore at each GMRES
iteration one CG optimisation is performed. This highlights the nested nature of the
OCS method. Having set up the function wrappers GMRES is utilised to solve the
linear system FJac, FGS or BGSxJac, FGS or BGS − cJac, FGS or BGS = 0 for the optimal continuity
conditions between consecutive segments (xJac, FGS or BGS). Once these have been
computed, then, one final call to the member function for HJac, FGS or BGS which ensures
the tangent and co-state solutions are optimal.

3.9 Summary

This chapter presented derivation of the tangent formulation of the Optimal Control
Shadowing, OCS, approach. This approach is valid when only a single parameter is of
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interest. The minimisation problem was outlined and the first order optimality
conditions were derived. Solving these optimality conditions results in an optimal
and bounded solution. Further, the equation to compute the sensitivity generated by
OCS was also presented.

As multiple parameters are commonly of interest in industry two methods of the
adjoint OCS formulation were derived. The first used the adjoint of the tangent OCS
formulation. The second approach found the adjoint and then found an appropriate
stabilising control for the adjoint equation. It was shown that these two methods are
equivalent given careful selection of certain weighting factors.

An approach for decomposing the time horizon into non-overlapping segments was
developed. This was undertaken to improve the conditioning of the linear operator
generated. This has the benefit of increasing computational efficiency and reducing
solving time. The matrix-free methods for solving the tangent OCS optimality
conditions require the storage of the non-linear, tangent, control and co-state solutions
at each time-step in the time horizon. For large systems this could be larger than the
available computational resources. One additional benefit of the time domain
decomposition is that each time segment can be distributed across multiple compute
nodes, thus reducing per-node memory limitations. Additional constraints were
imposed on the solution, namely continuity between consecutive segments, to ensure
that the solution generated using the time domain decomposition techniques is
identical to the case where no time domain decomposition is used. This approach is
also valid for the adjoint OCS formulation.

This chapter also provided implementation details in a matrix-free sense for solving
the optimality conditions for the tangent OCS formulation. These were derived using
analytical solutions of the tangent and co-state equations along with the optimality
conditions. Pseudocode has also been provided to outline the steps taken to compute
the optimal solution. These details were provided for the tangent OCS formulation,
however, these methods are equally viable and easily translatable to the adjoint OCS
formulation. Further, details were provided to explain what the control term would
look like for extreme values of α.

A similar approach was taken for the method that decomposes the time domain into
segments which resulted in a matrix-free method. It was shown that this
decomposition could leverage parallel computation. In addition to this, three different
preconditioning methods were presented. The first is Jacobi, which computes the
optimal control solution on each segment, and then solves the discontinuity between
consecutive segments. The second is Forward Gauss-Seidel, which solves the optimal
control problem on the first segment and then applies continuity in the tangent
solution, repeating this process on the proceeding segments and solving the
discontinuity in the co-state solution. The final method was Backward Gauss-Seidel,
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which solves the optimal control problem in the final segment and then applies
continuity on the co-state solution, repeating this on the preceding segments and
solving the discontinuity in the tangent solution. These methods are, again, equally
applicable to the adjoint formulation of the time domain decomposition. The Jacobi
preconditioning method still leverages parallel computing. Due to the sequential
nature of both Gauss-Seidel methods the solution can be split across compute nodes,
however, the compute nodes will be sat idle as the solution of the optimal control
problem cannot be computed in parallel.
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Chapter 4

Computational aspects of the OCS
algorithm

This chapter is focused on the computational aspects of the OCS method. Only the
tangent OCS formulation is investigated here as all analysis is identical for the adjoint
formulations. The main focus is on the time domain decomposition approach as this is
more industrially relevant and the results generated are easily transferable to the case
where the whole time domain is investigated. These computational methods will be
applied to larger more industrially relevant systems. To avoid trial and error tuning of
the methods, a deeper understanding of how the various variables interact and affect
convergence rates and accuracy of the method is required. The main variables free to
the user are α, the time horizon, the preconditioning method, the number of segments,
and the stopping criteria in both CG and GMRES, Refs. [48, 106]. These variables are
investigated on two systems that are extensively utilised as a benchmark for
sensitivity analysis of chaotic systems. The first is the Lorenz 1963 system, Ref. [80],
which has been mainly investigated using the Shadowing approaches using LSS,
Refs. [18, 23, 35, 125, 128, 129], MSS, Ref. [110], NILSS, Refs. [14, 20, 65, 91, 92],
Periodic Shadowing, Refs. [77, 78], and various other approaches, Ref. [12, 30, 31, 32].
The Lorenz system is of fixed size and, therefore, a system that is spatially distributed,
which is common in more industrially relevant systems, is required. Varying the
domain size or mesh density is common in industry and information on the
algorithm’s behaviour is required. This is investigated on the widely used
Kuramoto-Sivashinsky system, Refs. [73, 74, 113, 114], for sensitivity analysis of
chaotic systems using the Shadowing approach using LSS, Refs. [16, 17, 23, 129], MSS,
Refs. [19, 110, 111], NILSS, Ref. [14], Periodic Shadowing, Refs. [77], and by altering
the time step, Ref. [12].
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4.1 Description of the Lorenz system

The Lorenz system, Ref. [80], was developed as a simplified model for atmospheric
convection and is given by the following system of ordinary differential equations

dx(t)
dt

= σ (y(t)− x(t)) (4.1a)

dy(t)
dt

= x(t) (ρ− z(t))− y(t) (4.1b)

dz(t)
dt

= x(t)y(t)− βz(t). (4.1c)

The state vector is u(t) = (x(t), y(t), z(t))T, where x(t) ∈ R represents the rate of
convection of the problem, y(t) ∈ R is the horizontal temperature variation, z(t) ∈ R

is the vertical temperature variation. The parameter σ is proportional to the Prandtl
number of the flow, ρ is proportional to the Rayleigh number, and β represents a
physical thickness of the fluid layer. Typical values for σ, ρ and β are 10, 28 and 8

3

respectively, and shall be used here unless otherwise stated. The time step for the
numerical simulation of the system is ∆t = 0.01 time units. For numerical stability a
fourth order Runge-Kutta time-stepping scheme is used, Refs. [28, 133]. All results are
generated using an initial conditions for x(t), y(t) and z(t) drawn from a uniform
random distribution between 0 and 1.

4.2 Numerical computation of the Lorenz system sensitivity

The variable ρ is chosen to be the parameter of interest as in other studies and

J(u(t, p), p) = z(t), (4.2)

as the function of interest. To aid in the investigation into the accuracy in the time
averaged sensitivity generated by OCS the impact that ρ has on J̄ is found. The value
of J̄ is computed for the range ρ ∈ (1, 100) for 100 equally spaced points with each
sample having a random initial conditions for u(ts). Each sample has a ‘spin up’ time
of 50 time units to ensure the solution is on the attractor. The time average is
computed over 1500 time units.

The results can be seen in Figure 4.1 along with a curve fit of the solution following the
discontinuity at ρ = 24. The curve fit can then be utilised to compute the derivative of
J̄ with respect to ρ. The derivative of the curve fit at ρ = 28 is d J̄

dρ ≈ 1.006 and it is this
value that will be utilised for comparison throughout the remainder of this system.
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FIGURE 4.1: The value of J̄ against ρ for the Lorenz system.

4.3 Influence of α on the sensitivity generated by OCS

The sensitivity generated by OCS is now computed for the range α ∈ (1, 1× 1015)

when T = 30 time units, a ‘spin up’ time of 50 time units and the same initial
conditions are used for Equation (4.1) for each value of α. This analysis is undertaken
to investigate how varying the cost of the control applied varies the sensitivity
generated. This influence has been undertaken on three different initial conditions
and can be seen in Figure 4.2. The first observation to note is that the initial condition
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FIGURE 4.2: d J̄
dρ against α for OCS for three different initial conditions, solid black

line, dashed blue line and dotted red line. The derivative of the curve fit derivative of
Figure 4.1, black dash dotted line, is also shown for comparison.



60 Chapter 4. Computational aspects of the OCS algorithm

chosen impacts the value of the sensitivity generated. However, it is well known that
Shadowing methods increase in accuracy as the time horizon is increased, Ref. [78,
124], and, therefore, this bias will reduce. Secondly, taking an average of the
sensitivity over a range of initial conditions will also reduce the bias. It is worth
noting here that using OCS leads to a larger spread in sensitivity values for given
initial conditions than that of MSS. The reason is due to the control term stabilising the
solution onto something which is not the exact Shadowing solution. To investigate
these claims, the mean and standard error, σ√

n where σ is the standard deviation and n
the number of samples, are computed for T ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} time
units from 100 different initial conditions. This is shown in Figure 4.3 for a ‘spin up’
time of 50 time units, α = 500. This value of α is selected as it is in the “flat” region of
Figure 4.2 and is neither under- or over-damped and provides good sensitivity values.
The first observation to note is that the oscillations in average solution above T = 30
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FIGURE 4.3: Mean and standard error of d J̄
dρ computed over 100 different samples for

T ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. The derivative of the curve fit derivative of
Figure 4.1, black dash dotted line, is also shown for comparison.

are due to the small sample size used to generate the averages but general trends can
still be found. It can be seen that when T is small the sensitivity generated has the
largest error between the curve fit derivative. Furthermore, the standard error
associated with the mean is also largest for small T values. As is common in the
Shadowing approach, the error of the result is reduced as the time horizon is
increased, Refs. [78, 124]. It can be seen that this is the case for OCS also. The reason
for this is that when as the time horizon is increased the tangent solution generated
tends towards the true Shadowing direction, reducing the error, which results in more
accurate sensitivities, Ref. [124].
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The physical interpretation of this is that, when the time horizon is small, there is a
large number of different trajectories that remain bounded and the numerical
methods, due to round off error, could find any one of these. These solutions are not
the Shadowing direction which lead to inaccurate sensitivity values. If, however, these
trajectories are simulated for a larger time they will no longer remain bounded and,
therefore, the solutions that do remain bounded are better approximations of the true
Shadowing direction. This is compounded as T increases. It can be concluded, that,
for accurate simulations large time horizons, as in all Shadowing methods, should be
utilised.

It can be observed that when α ≤ 10 the sensitivity is under-predicted. This is because
the control in this region is considered cheap to apply and a large amount is applied.
Large amounts of control damps the tangent solution significantly (over-damping)
which results in the inaccurate sensitivity, that tends towards zero. By contrast, when
α ≥ 1× 1011 the control applied is unable to stabilise the tangent solution which leads
to inaccurate sensitivities, and an under-damped solution. In between these regions
the control applied is large enough to control the exponential growth of perturbations
but small enough not to damp the entire solution. Comparisons not reported here
with solutions obtained with MSS suggest that, excluding the initial fraction of the
time horizon, the tangent solution generated by OCS converges to a solution which is
very close to the true Shadowing direction. This is a bounded, but unstable, solution
of the linearised equations which many Shadowing methods find approximations for.
In the present approach, such an approximation is found by finding an appropriate
stabilising control using optimal control theory.

It has been argued here that the inaccurate sensitivities below α ≤ 10 is due to an
over-damped solution and α ≥ 1× 1011 form an under-damped solution. To provide
additional weight to this argument, the squared norm profiles of the tangent and
control solutions are presented to provide additional detail. These are shown in
Figure 4.4 where the norms of the optimal tangent and control solutions as a function
of time are displayed for α ∈ {1, 1× 106, 1× 1012}. Panel (A) shows that for all α

values investigated the tangent solution is stabilised onto approximations of the
Shadowing direction for the initial five sixths of the time horizon. There are slight
differences between the tangent solutions generated by each value of α and, therefore,
the same approximation to the Shadowing direction is not found between cases.

Panel (B) shows that when α = 1 there is a constant amount of control being applied
throughout the time horizon which is able to counteract the growth of perturbations.
The dip in control applied at the end of the time horizon is due to the terminal
condition on the co-state. When α = 1× 106 there is significantly less control applied,
where the control value decays exponentially for the first two thirds of the time
horizon and then reaches a constant value for the remainder. Finally, when
α = 1× 1012, the control follows a similar profile for the previous case except the
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FIGURE 4.4: Comparison of the squared norms of the tangent solution, panel (A),
and control, panel (B), for α = 1, solid black line, α = 1× 106, red dotted line, and

α = 1× 1012 blue dotted line.

constant value reached is several orders of magnitude lower. This exponential decay
in the first two thirds of the time horizon of the control solution suggests that a
solution with exponential growth is being controlled. In the final third of the time
horizon there is significant difference between α = 1× 1012 and the other two cases.
This is caused by the small value of control applied which is unable to control
exponential growth in the tangent solution. This is the mechanism that causes the
sensitivity values to be inaccurate for large values of α.

OCS has been derived to better understand the NV method. The result of the analysis
presented in this section is that the control applied in NV methods by the additional
term must be large initially. This will have the impact of stabilising the tangent
solution onto an approximate Shadowing direction. Once the solution is near the
approximate Shadowing direction, an unstable and bounded solution, minimal
amounts of control are then required to keep the solution stable.

4.4 Convergence rates of the preconditioning methods

The stopping criteria for the GMRES is based on the value of the residual, r = Hx− c,
and gives an estimate of how accurately the linear system has been solved. In this
analysis the stopping criteria is chosen to be 1× 10−14 for both CG and GMRES,
Refs. [48, 106], as this value is close to machine epsilon in 64-bit double-precision
floating-point arithmetic. A large stopping tolerance means that there are
discontinuities between segments, and the control will not be optimal, and as such the
values generated for the sensitivities will be impacted.
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The various preconditioning methods derived, Jacobi, Forward Gauss-Seidel (FGS)
and Backward Gauss-Seidel (BGS), are compared to the no preconditioning case in
Figure 4.5 for T = 30 time units, a ‘spin up’ time of 50 time units, α = 500, N = 6 and
using the same initial condition for Equation (4.1). It can be seen that applying no
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FIGURE 4.5: The squared norm of the residual, r, for no preconditioning, solid line,
Jacobi preconditioning, dotted line, FGS, dashed line, and BGS, dash dotted line.

preconditioning has the slowest rate of convergence, followed by Jacobi then BGS and,
finally, FGS having the fastest convergence rate of those investigated. These results are
in good agreement with those presented in Figure 6 in Ref. [60], Figure 5.6 in Ref. [37]
and Tables 5.2 to 5.4 in Ref. [38] despite the difference in system investigated.

When there is no preconditioning applied, the converge rate is slow because all
variables, i.e. the control and interface values for the tangent and co-state, are solved
together. Therefore, at each iteration the control values on each segment and tangent
and co-state values at the segment interfaces are not guaranteed to be optimal. Jacobi
preconditioning, on the other hand, solves the optimal control problem on each
segment at each GMRES iteration with discontinuities in both the tangent and co-state
solution between consecutive segments. This results in “information” being
propagated between consecutive segments faster than no preconditioning. BGS solves
the optimal control problem sequentially backwards in time, meaning the co-state
equation always obeys continuity across the segment boundaries. This leads to an
increased rate of “information” transfer compared to the Jacobi preconditioning. The
reason why the FGS converges quicker than BGS is that the formulation derived in
section 3 is to minimise the norm of the tangent solution. By ensuring that there is
continuity between consecutive segments in the tangent solution, as the FGS
preconditioning does, its growth is known in each segment. By knowing the growth
of the tangent solution in each segment the control can be applied in a more
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“appropriate” fashion to better stabilise the solution which leads to fewer iterations
required.

From these results it is clear that FGS requires the fewest number of iterations, but
FGS does not have a favourable parallel efficiency, as the optimal control problems on
the segments must be solved sequentially. In this regard, from the perspective of
maximising compute resources, Jacobi preconditioning is advantageous over FGS or
BGS. This is because the increased parallelism of the Jacobi preconditioning may
result in the CPU wall-clock time of a single GMRES iteration being reduced over FGS
or BGS and may lead to a faster overall solution in terms of CPU wall-clock time
depending on the number of segments and other factors. In this thesis the FGS
method is used due to the faster convergence rates and the impact on computational
efficiency is disregarded.

4.5 Total cost of the OCS algorithm

For a given preconditioning method, there are two factors that will impact the cost of
the OCS algorithm, the first being α, due to its impact on the condition number of the
linear system associated with the optimal control problem in each segment and the
second being the number of segments, N. The cost of the algorithm, where the total
cost is the number of tangent and co-state solutions required, is used here. Providing
the cost in terms of the number of tangent and co-state solution leads to results which
are agnostic of computer hardware and implementation, and this gives a better
understanding of how these methods will behave in general.

The total cost of the algorithm is computed for N ∈ {4, 6, 8, 12, 24} with
α ∈ (1, 1× 1019) for T = 30 time units and a ‘spin up’ time of 50 time units using the
FGS preconditioning method. The number of tangent and co-state solutions is directly
tied to the number of CG and GMRES iterations. For a solution of the optimal control
problem on each segment a tangent and co-state solution is required for the
computation of bj(t). A forward and backward solution is then required for each
computation of Ejqj(t). Finally, solutions to the tangent and co-state equations are
required once the optimal control qj(t) has been found. Solving the discontinuities
between segments leads to one optimal control solution required for the computation
of cJac, cFGS or cBGS. An optimal control solution is required every GMRES iteration for
the evaluation of FJacxJac, FFGSxFGS or FBGSxBGS. Finally, one more optimal control
solution is required once the interface values for the tangent and co-state has been
found. Therefore, the total cost of the algorithm in terms of number of tangent and
co-state solutions required for convergence through can be found with

Total Cost = (ItersGMRES + 2)× (2× ItersCG + 4) .
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The change in cost through varying α and the number of segments for one simulation
is presented in Figure 4.6. For large values of α, fewer segments are preferred,
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FIGURE 4.6: Total cost of the OCS algorithm against α for 4 segments, solid black line,
6 segments, dotted black line, 8 segments, dashed black line, 12 segments, dash dotted

black line, and 24 segments, blue solid line.

however, for small values of α the difference between the cost generated by varying
the number of segments is reduced. As can be found in Figure 6 in Ref. [60], Figure 5.6
in Ref. [37] and Tables 5.2 to 5.4 in Ref. [38], fewer segments produce lower
computational cost. The number of iterations required for MSS is an order of
magnitude lower than OCS. The reason is that per GMRES iteration MSS solves the
tangent and co-state equation whereas OCS solves a minimisation problem with
multiple solutions of the tangent and co-state equations. Based on this analysis, the
fewest number of segments should be used. However, due to memory limitations this
may not be feasible and a larger number of segments may be necessary. In practice,
the number of segments used are selected such that the memory required for the
optimal control problem on each segment is constrained by the memory each compute
node has available.

4.6 Description of the Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky (KS) equation was initially introduced as a method of
modelling angular-phase turbulence in a system of reaction-diffusion equations,
Refs. [73, 74]. Later, the equations were derived to model how the instabilities of a
distributed plane flame front evolve, Refs. [113, 114]. The KS system investigated here
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is given by

∂u(x, t)
∂t

= −(u(x, t) + c)
∂u(x, t)

∂x
− ∂2u(x, t)

∂x2 − β
∂4u(x, t)

∂x4 ,

x ∈ [0, L),

u(0, t) = u(L, t),

(4.3)

where u(x, t) is a spatially distributed variable with L being the length of the domain,
c = 0.5 the mean convective speed, and β = 1.0 is used in section 7.5 as an alternative
parameter of interest. There have been several investigations into the modified KS
system where Neumann and Dirichlet boundary conditions are used, Refs [12, 14, 16,
17, 19, 23, 77, 110, 111, 129], instead of periodic boundary conditions used here. In this
thesis, periodic boundary conditions are utilised as this facilitates the use of spectral
methods and a wavenumber-by-wavenumber analysis of the tangent/adjoint energy
budget derived in sections 5.1 and 6.1. The solution can be expanded as

u(x, t) =
∞

∑
k=−∞

ũk(t)eik 2π
L x,

but, in practice, a discretisation of Kx = 6L
5 grid points is used. The reason for this is

that the solutions of Equation (4.3) are smooth for long time horizons and the values
of ũk decrease with k due to the ∂4u(x,t)

∂x4 term, Ref [41]. As the solution is real valued,
this results in Kx

2 + 1 Fourier modes. A zero mean solution is chosen, i.e. ũ0 = 0, which
is commonly performed in the literature, Ref [41]. For the time integration, a
Crank-Nicolson scheme, Ref. [40], is used for the linear terms and a second order
Runge-Kutta scheme, Ref. [69], is used for the non-linear terms and ∆t = 1× 10−3

time units is used for stability. An inner product between two spatially distributed
variables, a(x, t) and b(x, t),

〈a(x, t), b(x, t)〉 = 1
L

∫ L

0
(a(x, t)b(x, t))dx

is used and the norm is
‖a(x, t)‖ =

√
〈a(x, t), a(x, t)〉.

A typical example of the solution to the KS system is given in Figure 4.7.

4.7 Influence of the domain size on the convergence rate of
the OCS algorithm

The influence the size of the domain, L, has on the convergence properties of CG and
GMRES is now investigated. The spatial resolution, ∆x = L

Kx
= 5

6 , is kept constant
between all domain sizes investigated. Each simulation uses a time horizon of
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FIGURE 4.7: Example of a typical solution, u(x, t), of the Kuramoto-Sivashinsky equa-
tions when convective speed c = 0.5.

T = 240 time units, following a ‘spin up’ time of 1000 time units, N = 20 and the FGS
preconditioning method. Increasing the domain size increases the size of the control
variable, q(t), which results in the size of the linear systems generated by the optimal
control problem on each segment and the continuity constraints between consecutive
segments becoming larger. The convergence properties of the average number of CG
iterations across all segments per GMRES iteration, panel (A), and GMRES, panel (B),
for L ∈ {64, 128, 256, 512} and α ∈ (1, 1× 1019) are presented in Figure 4.8. In general
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FIGURE 4.8: Average number CG iterations per GMRES iteration, panel (A), and GM-
RES iterations, panel (B), for L = 64, black solid line, L = 128, blue dotted line,
L = 256, red dashed line, and L = 512, orange dash dotted line, for a range of α

values.

a small value of α leads to an increase in the number of CG iterations required for all
domain sizes, Figure 4.8a. There is a very small influence that domain size has on the



68 Chapter 4. Computational aspects of the OCS algorithm

average number of CG iterations. This behaviour is also seen, for a different system, in
Table 5.7 in Ref. [38]. In general, increasing α leads to a larger number of GMRES
iterations, Figure 4.8b. This is because the discontinuities between segments becomes
larger when α is increased which results in more work being required to enforce
continuity. Increasing the domain size increases the system solved by GMRES which
results in a larger number of GMRES iterations and this relationship can be seen to be
linear. From this analysis it is expected that when applying these methods to larger
systems, such as fluid flow problems, that the majority of the computational time is
dedicated to the GMRES iterations.

4.8 Summary

This chapter investigated the computational aspects of the tangent OCS formulation
on two systems. The first was the Lorenz system as it is commonly utilised in
sensitivity analysis of chaotic systems as it is a small and simple problem to test the
methods on. Unfortunately, the Lorenz system is not spatially distributed and the
computational aspects on a spatially distributed system could not be investigated.
Spatially distributed systems are common in engineering and to provide details on
their performance, the Kuramoto-Sivashinsky system was investigated.

There are several terms available to the user of the OCS algorithm. The first of these is
α. The value of α modifies the cost of applying control. Too small a value will result in
a large amount of control being applied, which damps the solution significantly
(over-damping), and leads to inaccurate sensitivity values and large computational
cost. Conversely, a large value means control is expensive to apply and small amounts
of control are applied, which does not provide enough control to stabilise the solution
(under-damping), leading to inaccurate sensitivity values and small computational
cost. Values in between this provides adequate control to stabilise excess
tangent/adjoint energy, which results in accurate sensitivity values. The values of α

that should be selected are dependent on the system under investigation and general
guidelines cannot be developed. However, the range of α that relates to apropriate
stabilising control is large and suggests that values around 100 to 1000 may be
appropriate for a range of different systems. One approach to automate the finding of
this value is to find an α value where the gradient of the sensitivity is small or zero
over a range of values. An iterative process could be utilised for determining the
appropriate value of α which increases the tractability of the method and reducing the
need to evaluate the sensitivity for a large range of α values.

The second term is the time horizon of the simulation. As in all Shadowing methods,
the accuracy of the method improves with increasing the time horizon. When the time
horizon is small there are a number of different trajectories that are bounded. These
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trajectories are different from the Shadowing direction and, therefore, produce
inaccurate sensitivity values. Increasing the time horizon leads to fewer of these
bounded trajectories, which also tend towards the true Shadowing direction, resulting
in more accurate sensitivity values. Therefore, for OCS to produce accurate sensitivity
values large time horizons are required. Investigating the role of α on a smaller time
horizon could be beneficial in selection of an appropriate value. The reason for this is
that investigatinos on smaller time horizons are computatioanlly cheaper and a larger
range of α values could be investigated. This would then give better confidence in the
range of α values that produce accurate sensitivity which could then be utilised on
longer time horizons with minimal modification.

Another variable open to the user is the preconditioning method used. For the tangent
OCS formulation, the Forward Gauss-Seidel method provided the fastest convergence
rate. This was due to two factors. First the OCS method minimises the norm of the
tangent solution and having continuity between segments in this equation means that
the growth of the solution is known and control can be applied more “appropriately”.
Secondly, these methods transfer “information” between segments faster than Jacobi
preconditioning which leads to faster convergence. It is expected that for the adjoint
OCS formulation that as the adjoint is being controlled that Backward Gauss-Seidel
would have faster convergence for a similar reason. The limitation of the Gauss-Seidel
methods is that the segments are solved sequentially whereas Jacobi preconditioning
allows for parallel computation. Jacobi preconditioning has a slower convergence rate
but may, potentially, have a lower CPU wall-clock time due to the parallel
computation over Gauss-Seidel methods. This again is highly dependent on the
problem investigated as the growth of the tangent/adjoint solution is determined by
the largest Lyapunov exponent.

To improve convergence rates of the method, the time horizon was split into a number
of segments which has an impact on the computational cost of the algorithm. A small
number of segments leads to reduced computational cost for all values of α and is
recommended. One limitation of using small number of segments is that the memory
requirements per segment increase. For small systems, such as the Lorenz and
Kuramoto-Sivashinsky systems investigated here, this was not an issue as the
memory required for all variables was smaller than that of the compute node. For
larger systems, such as transient turbulent flows, the memory requirements for each
segment when few segments are used could be larger than the compute node. One
other limitation is that with small number of segments the runtime computing the
optimal control on each segment increases. This is compounded by large
computational cost for small values of α which may mean that solutions are unfeasible
for industry. It is, therefore, recommended that the number of segments is selected on
two factors: the first being that the memory required for the solution on each segment
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is smaller than the compute node, and secondly the solution of the optimal control
problem on each segment is achieved in a “reasonable” time.

The main insight that the Lorenz system has provided is that the control applied by
OCS has one important feature. A large amount of control is applied to move the
solution onto an approximation of the tangent solution followed by minimal control
that is required to keep the solution stable. Implications of this feature are control is
applied in a more targeted manner than other NV methods which suggests a smaller
amount of control is used. As a smaller amount of control is used this reducs the
impact on the attractor of the system which results in sensitivity values that are more
representative of the system under investigation.

For spatially distributed systems the domain size is another variable that influences
computational cost. This was investigated on the Kuramoto-Sivashinsky system.
Large domain sizes lead to increased number of GMRES iterations. This was because
the linear system solved by GMRES increases with the number of variables. There is
small dependence on the number of iterations of the CG method with domain size.
For even larger systems, such as 2D/3D transient turbulent flows, it is expected that
the largest factor in the computational cost is the solution of the linear system
corresponding to the segment interface values. This could become an issue and
reduce the industrial traction of the OCS method.
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Chapter 5

Performance of tangent OCS on the
Kuramoto-Sivashinsky system

OCS has been proposed to bridge the gap in understanding between MSS and NV
methods for sensitivity analysis and this role is invesitgated in this chapter. This
analysis is undertaken on the Kuramoto-Sivashinsky (KS) sysytem, Refs. [73, 74, 113,
114], which is a spatially distributed system. The rationale for why the KS system is
utilised is that a vast amount of engineering systems are spatially distributed systems,
typically in all three spatial dimensions. The KS system, which is a 1D partial
differential equation, is utilised as a stepping stone to larger, more industrially
relevant systems. Furthermore, while the KS system has been extensively investigated
for Shadowing approaches to sensitivity analysis, Refs. [12, 14, 16, 17, 19, 23, 77, 110,
111, 129], there has been little development of NV methods on this system. To be able
to compare the OCS with MSS and NV, additional derivation of the NV method for
the KS system is required. This is achieved following similar principles to that
proposed in previous literature in computing sensitivity analysis using the NV
method, Refs. [12, 23, 49, 120, 121], and is found by determining which terms
contribute to dissipation of tangent energy.

As with the Lorenz system, the sensitivity computed by OCS and NV are compared to
the expected value for a range of their tuning parameters to show the behaviour of
OCS and NV on these systems. This analysis is undertaken on the KS system with a
domain size of L = 50 and Kx = 60 solution points, which results in Kx

2 + 1 Fourier
modes. A ‘spin up’ time of 1000 time units and a total time horizon T = 240 time units
were used.

The NV and Shadowing methods have been shown to produce similar sensitivity
values to the expected values, Refs. [12, 14, 16, 17, 19, 23, 49, 77, 110, 111, 120, 121,
129]. The similarity in solutions generated by the Shadowing and NV methods have
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yet to be compared in the literature which is predominantly due to the methods being
investigated on different systems. As the solutions generated by the Shadowing
approach and NV have not been compared there could be some structure or feature
present in Shadowing that could inform the structure of the computationally cheaper
NV methods. To overcome this gap in the literature the spatio-temporal structure of
the tangent and control solutions generated by MSS, OCS, and NV are compared. The
similarity between the methods is investigated through comparison of the angle
between solutions generated by MSS and by OCS and NV. Finally, a wavenumber
analysis of the solutions generated by MSS, OCS and NV is presented as this could
help inform certain structures, features or length scales which numerical viscosity
terms should incorporate.

5.1 Derivation of the tangent energy equation

The main development of NV methods has been for fluid flow problems, Ref. [23],
and has not been developed for the KS system. Therefore, the derivation of the
tangent energy equation is needed for the NV approach. The approach taken to derive
the NV method in Ref. [23] consisted of selecting a term which dissipates excess
adjoint energy and stabilises the solution. Here, the NV terms for the KS system are
derived following a similar approach by finding terms that contribute to the
dissipation of tangent energy.

Starting from the KS system, Equation (4.3), the tangent equation when c is the
parameter of interest and a control term, q(x, t), is added is

∂v(x, t)
∂t

= −c
∂v(x, t)

∂x
− u(x, t)

∂v(x, t)
∂x

− v(x, t)
∂u(x, t)

∂x
+ η(t) f (x, t)︸ ︷︷ ︸

C(x,t)

−

∂2v(x, t)
∂x2︸ ︷︷ ︸

P(x,t)

− ∂4v(x, t)
∂x4︸ ︷︷ ︸

D(x,t)

− ∂u(x, t)
∂x︸ ︷︷ ︸

I(x,t)

+ q(x, t)︸ ︷︷ ︸
Q(x,t)

,

x ∈ [0, L),

v(0, t) = v(L, t),

(5.1)

where v(x, t) is the tangent solution, C(x, t) can be seen as relating to a combination of
production and dissipation of tangent energy, P(x, t) purely contributes to production
of tangent energy, D(x, t) purely to dissipation of tangent energy, I(x, t) to the
contribution to the tangent energy due to the inhomogeneous term, Q(x, t) to the
contribution to the tangent energy due to the control term, and f (x, t) is the right
hand side of Equation (4.3). Note that q(x, t) is only applicable for OCS and NV and
not MSS due to its formulation. The KS system, Equation (4.3), has periodic boundary



5.1. Derivation of the tangent energy equation 73

conditions, therefore, it follows that the tangent equation also has periodic boundary
conditions. This results in the spectral methods being applicable for the tangent
equation also. Therefore, the tangent and control variables can be broken down in a
similar fashion

v(x, t) =
∞

∑
k=−∞

ṽk(t)eik 2π
L x and q(x, t) =

∞

∑
k=−∞

q̃k(t)eik 2π
L x,

where ṽk(t), q̃k(t) ∈ C.

Let ε(x, t) = 1
2 v(x, t)2 denote the local tangent energy. This variable is found by

multiplication of Equation (5.1) by v(x, t) resulting in

∂ε(x, t)
∂t

=

−2ε(x, t)
∂u(x, t)

∂x
− (u(x, t) + c)

∂ε(x, t)
∂x

− v(x, t)
∂2v(x, t)

∂x2 + v(x, t)η(t) f (x, t)−

v(x, t)
∂4v(x, t)

∂x4 − v(x, t)
∂u(x, t)

∂x
+ v(x, t)q(x, t).

(5.2)

Defining the tangent energy E(t) = 1
L

∫ L
0 ε(x, t)dx as the domain average of the local

tangent energy results in

dE(t)
dt

=
1
L

∫ L

0

(
−2ε(x, t)

∂u(x, t)
∂x

− (u(x, t) + c)
∂ε(x, t)

∂x
− v(x, t)

∂2v(x, t)
∂x2 +

+v(x, t)η(t) f (x, t)− v(x, t)
∂4v(x, t)

∂x4 − v(x, t)
∂u(x, t)

∂x
+ v(x, t)q(x, t)

)
dx.

(5.3)

Integration of the third term on the right hand side of Equation (5.3) by parts results in

∫ L

0
−v(x, t)

∂2v(x, t)
∂x2 dx =

∫ L

0

(
∂v(x, t)

∂x

)2

dx,

which can be seen to be a production term as it is always positive. Similarly,
integration of the fourth term by parts twice leads to

∫ L

0
−v(x, t)

∂4v(x, t)
∂x4 dx =

∫ L

0
−
(

∂2v(x, t)
∂x2

)2

dx,

which is always negative and is a dissipation term.

The first numerical viscosity term considered here is

q(x, t) = µP
∂2v(x, t)

∂x2

which modifies the production of tangent energy where µP ∈ R+ is a tuning
parameter, and shall henceforth be referred to as NVP. When µP > 1 the control
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applied by NVP counteracts the influence of P(x, t). Similarly, modification of the
dissipation of tangent energy leads to

q(x, t) = −µD
∂4v(x, t)

∂x4

where µD ∈ R+ is a scaling factor for the artificial viscosity term and shall be referred
to as NVD.

5.2 Computation of the sensitivity for the
Kuramoto-Sivashinsky system

The parameter chosen for this case is the mean convective speed, c, as is a precedent in
the literature, Refs [12, 14, 16, 17, 19, 23, 77, 110, 111, 129], and

J (u(x, t), p) = ‖u(x, t)‖2, (5.4)

is the function of interest which represents the energy density of the solution variable
u(x, t). The value of J̄ is found using a random initial condition for Equation (4.3) for a
time horizon of T ∈ {2× 103, 2× 104} time units following a ‘spin up’ time of 1000
time units. This is undertaken over 50 samples. The change in mean value J̄ and
standard deviation as a function of c ∈ (0.0, 1.0) using 100 equally spaced points is
shown in Figure 5.1, where a curve fit through the data is also shown. It is worth
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FIGURE 5.1: Mean and standard deviation of J̄ against c for the KS system from nu-
merical simulation when T = 2× 103, blue crosses, T = 2× 104, red crosses, and a

curve fit through when T = 2× 104, black dashed line.

noting that the literature uses Neumann and Dirichlet boundary conditions and the
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resulting correlation between c and J̄ is strong, see Figure 7 in Ref. [19]. Figure 5.1
indicates that as the time horizon increases the average value of J̄ is approximately
constant in this range of c values. This is shown by the mean converging to the curve
fit as T increases along with the standard deviation decreasing. The derivative of the
curve fit when c = 0.5 is d J̄

dc ≈ 6.725× 10−2, which shall be used for comparison
throughout the investigation into this system.

The tangent OCS problem is solved for α ∈ (10, 1× 1010) using T = 240 time units,
preceded by a ‘spin up’ time of 1000 time units, L = 50 and Kx = 60. This procedure is
repeated for µP ∈ (0, 5) and µD ∈ (0, 50) using the same conditions. In Figure 5.2, the
sensitivity generated by tangent OCS, NVP and NVD are shown in the left column for
the range of tuning parameters along with, in the right column, ‖v(x, t)‖2. There is
some bias with the OCS solution and the curve fit derivative, Figure (5.2a), which is
caused by the selection of the initial condition of u(x, ts) as discussed in section 4.3.
Although there is little correlation between c and J̄ the influence of α still shows
similar features as those presented for the Lorenz case and this lack of correlation is
not a major limitation in the analysis. Further, the values of α that determine the
under and over-damping regions are different to that of the Lorenz system and can be
concluded that each system will have a different range of values. This reduces ability
to transfer OCS between systems as one value which produces accurate sensitivity on
one system may not produce accurate sensitivity on a different system. The result of
this is that additional work is required to find a value which is inbetween the under
and over-damped regions. When α < 1× 102 the solution is over-damped and when
α > 1× 104 the solution is under-damped. In between these values the sensitivities
are in good agreement with the curve fit derivative. Above this value the sensitivities
become inaccurate. This, as will be shown later, is due to the control applied being too
small and allowing the tangent solution to experience exponential growth,
Figure (5.2b). One interesting feature to note is that the norm of the tangent solution
can be quite large, and still produce sensitivity values in good agreement with the
curve fit derivative.

When µP < 1 the sensitivities generated by NVP are inaccurate, Figure (5.2c), which is
due to the control being inadequate and not able to stabilise the tangent solution.
When µP is increased above 2, on the other hand, the sensitivity generated becomes in
better agreement with the curve fit derivative which is due to the control being
adequate and tangent solution norm does not exhibit exponential growth. This
behaviour is similar for the NVD case. In both of these NV cases it is unclear if there is
an over-damped region as the range of tuning parameters investigated is relatively
small.
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5.3 Analysis of the optimal tangent spatial structures
generated by MSS, OCS and NV

In this section MSS, OCS and NV are compared. An MSS solution, panel (A), on a time
horizon of 240 time units following a ‘spin up’ time of 1000 time units using Kx = 60
and N = 20 from a random initial condition u(x, ts) is shown in Figure 5.3 along with
the norm of the tangent solution, panel (B), for comparison. The main features of
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FIGURE 5.3: v(x, t), panel (A), and ‖v(x, t)‖2, panel (B), of the tangent solution gener-
ated by MSS.

Figure 5.3 is that the solution exhibits a large amount of dissipation in the initial 5
time units. It is unclear if this is due to dissipation leverged by the MSS method or if
this is due to physical phenomena within the primal solution. Further, a large amount
of features present in the tangent solution, Figure 5.3, have direct comparison to those
in primal solution, Figure 4.7, suggesting that the tangent solution is tightly coupled
with the primal solution. Regions of interest within the primal solution, such as vortex
bursting in turbulent flows, impact the tangent solution and ultimately the sensitivity
of the system. The large spikes in tangent energy around t = 60, t = 120 and t = 160
time units are due to the “merging” of features in the primal solution at these
instances also, Figure 4.7 reiterating the importance of physical phenomena on the
tangent solution. This “merging” process causes a lot of mixing and “turbulence”
which is inherrantly chaotic leading to a tangent solution with larger energy than
regions without “merging”.

The tangent solutions generated by OCS for the same conditions when
α ∈ {50, 5000, 5× 106} are shown in Figure 5.4 in the left column along with
‖v(x, t)‖2, right column. When α = 50 there are some similarities between MSS,
Figure 5.3a, and the OCS, Figure 5.4a. One thing to note is that OCS produces a
tangent solution with a smaller norm, Figure 5.4b, than MSS, Figure 5.3b. It is argued
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(C) v(x, t) generated by OCS for α = 5000.
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(E) v(x, t) generated by OCS for α = 5× 106.
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FIGURE 5.4: v(x, t), left column, and ‖v(x, t)‖2, right column, of the tangent solution
generated by OCS for α = 50, top row, α = 5000, middle row, and α = 5× 106, bottom

row.
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that this is because the small value of α leads to a large amount of control being
applied which damps the solution. OCS has zero norm which then rises, which is
common between all OCS solutions due to the control stabilising the solution onto the
approximate Shadowing direction. Increasing α to 5000 results in a larger solution
norm, Figure 5.4d. The large initial fluctuations in the tangent solution are caused by
the reduced amount of control being applied when α = 5000 compared to the
previous case. The tangent solution for α = 5× 106, Figure 5.4c, is found to not
resemble that of MSS initially, Figure 5.3a, but following the transient period does
show similar features. Finally, when α = 5× 106 it is seen that the solution norm is
significantly larger than MSS. This is caused by the control term being too small. This
results in the tangent solution, Figure 5.4e, having no resemblance to MSS.

The behaviour that increasing α leads to a larger norm is not seen in the literature.
This is because the equations that optimal control have been applied to in the
literature, Refs. [10, 11] for example, do not exhibit exponential growth whereas the
tangent equation, in this case, does. From this analysis it can be seen that OCS, given
adequate selection of α, produces a tangent solution which is visually similar to that
generated by MSS. This suggests that OCS, a NV method, can find the approximate
Shadowing direction found by MSS.

The same analysis is repeated for µP ∈ {1, 2.5, 5} using the same conditions as before.
Results are shown in Figure 5.5. When µP = 1, it can be seen the control term is unable
to stabilise the tangent solution, which results in the solution norm growing
exponentially, Figure 5.5b. One other impact of this is that this solution, Figure 5.5a,
has no similarities with that generated by MSS. Increasing µP to 2.5 leads to a solution
where the control applied results in a better stabilised tangent solution, Figure 5.5b,
shown by the reduced norm. For this value of µP, the tangent solution is better
controlled, Figure 5.5c, and is starting to exhibit some features that resemble that of
MSS. Increasing µP to 5 leads to a solution that has been stabilised, Figure 5.5f.
Further, this norm is smaller than that generated by MSS, Figure 5.3b. When µP = 5
the tangent solution, Figure 5.5e, has some features of the MSS solution, Figure 5.3a,
but there is still a large difference, seen in the large diagonal banding in the solution.
Similar behaviour is found for NVD. This analysis suggests that utilising the NV
approaches that are derived from finding terms which dissipate tangent energy may
not be able to find the approximate Shadowing direction found by the Shadowing
methods.
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(C) v(x, t) generated by NVP for µP = 2.5.
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(D) ‖v(x, t)‖2 generated by NVP for µP = 2.5.
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FIGURE 5.5: v(x, t), left column, and ‖v(x, t)‖2, right column, of the tangent solution
generated by NVP for µP = 1, top row, µP = 2.5, middle row, and µP = 5, bottom row.
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5.3.1 Quantifying the similarities between tangent solutions

To gain a better understanding of the similarities between the tangent solutions
generated by OCS and NV with MSS the metric

θX(t) = arccos
(
〈vMSS(x, t), vX(x, t)〉
‖vMSS(x, t)‖‖vX(x, t)‖

)
,

is used where vX(x, t) is the tangent solution generated by OCS or NVP and vMSS(x, t)
by MSS. The solution generated by MSS is used as a reference for the approximate
Shadowing direction. Similar behaviour is seen between the NVP and NVD methods.
A value of θX(t) close to zero shows that the solutions are well aligned with each
other and are similar whereas values close to π

2 indicates the solutions are dissimilar.
The comparison between MSS and OCS, θOCS(t), for a range of α values in panel (A)
and the comparison between NVP and MSS, θNVP(t), for a range of µP values in panel
(B), are shown in Figure 5.6.
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FIGURE 5.6: θOCS(t) for α = 1.0× 101, solid black line, α = 1.0× 102, dotted black line,
α = 1.0× 103, dashed black line, α = 1.0× 104, dash dotted black line, α = 1.0× 105,
solid red line, and α = 1.0× 109, dotted red line, panel (A), and θNVP(t) for µP = 1,
solid black line, µP = 1.5, dotted black line, µP = 2, dashed black line, µP = 2.5, dash
dotted black line, µP = 3, solid red line, µP = 3.5, dotted red line, µP = 4, dashed red

line, µP = 4.5, dash dotted red line, and µP = 5, solid blue line, panel (B).

When α ∈ {1.0× 101, 1.0× 102, 1.0× 103, 1.0× 104} there is initially little similarity
between the tangent solution generated by MSS and OCS. This is because there is a
difference in the initial conditions between the two methods. Following this initial
period, the tangent solutions become more similar, shown by the reduction in the
value of θOCS(t). This suggests that OCS stabilises the tangent solution to one similar
to MSS. When α = 1.0× 101, the tangent solution gets close to the MSS solution
rapidly and throughout the time horizon diverges away. This is because the
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exponential growth of perturbations are damped, yet control is continued to be
applied throughout the time horizon meaning the solution is controlled further.
Increasing α to 1.0× 102 leads to an increased time the OCS solution takes to get close
to MSS. Once the solution reaches something resembling MSS, little control is applied
and the solution stays close and, therefore, diverges less. This behaviour is seen when
increasing α to 1.0× 103 or 1.0× 104. If α is increased further then there is no
resemblance between the tangent solutions generated by OCS and MSS. This is
because the control applied is unable to control the growth of perturbations. As OCS
is an NV method it can be seen that these methods, with appropriate selection of
control term, can produce solutions similar to those produced by Shadowing.

To gain a deeper understaning panel (A) of Figure 5.6 is reproduced for a time horizon
of 380 time units. The results of this are shown in Figure 5.7. It can be seen that there
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FIGURE 5.7: θOCS(t) for α = 1.0× 101, solid black line, α = 1.0× 102, dotted black line,
α = 1.0× 103, dashed black line, α = 1.0× 104, dash dotted black line, α = 1.0× 105,

solid red line, and α = 1.0× 109, dotted red line for T = 380 time units.

are very similar features between Figure 5.6a and Figure 5.7 implying the solutions
generated for the smaller time horzon are valid. It is, again, argued that small values
of α move the solution towards the Shadowing direction initially yet as more control is
applied this increases the difference between the solution and the Shadowing
direction. Increasing α means the solution takes longer to become similar to the
Shadowing direction but stays closer for longer, again due to the large control applied
initially and reduced amount later in the time horizon being applied to keep the
solution stable. Finally, when too little control is applied the solution does not
resemble the Shadowing direction. One interesting observation is that for T = 240
time units the solution generated by α = 1.0× 104 remains similar to the tangent
solution for the entire time horizon, yet when T = 380 this solution diverges. One
explanation for this is that increasing the time horizon reduces the space of control
solutions that can adequately stabilise the tangent solution. This value of α is
appropriate for small values but is outside the space of adequate control for larger
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time horizons. The implication is that as the time horizon is increased the range of
stabilising α values decreases.

For NVP, it can be seen that regardless of which value of µP chosen there is no
similarity with the tangent solution generated by MSS, as the angle between solutions
is on average π

2 . This result is surprising even though the sensitivity values generated
with both methods are in good agreement with each other. One possible explanation
of this behaviour is that the NV methods, due to their simple control strategy, find a
trajectory that resembles an approximate Shadowing direction which is different from
the true Shadowing direction.

5.4 Spatio-temporal structures of the control produced by
OCS and NV

The control solution is now shown to aid in the explanation of the analysis derived for
the tangent solutions. The spatio-temporal structures of q(x, t) and its squared norm
generated by OCS for α ∈ {50, 5000, 5× 106} are shown in the left and right columns,
respectively, of Figure 5.8. When α = 50, it can be seen that the amount of control
applied is constant throughout the time horizon, Figure 5.8b. The drop towards the
end of the time horizon is due to the control being related to the co-state solution
which has zero terminal condition. The control also has very similar spatio-temporal
structures in the entire time domain, as observed in the tangent solution, Figure 5.4a.
When increasing α to 5000, there is exponential decay in the amount of control applied
over the first half of the time horizon, Figure 5.8d. Following this, the amount of
control applied is constant. The majority of the control is found to be applied in the
first half of the time horizon, Figure 5.8c. Finally, increasing α to 5× 106 the control
applied is several orders of magnitude lower than the other cases. It is argued that the
large amount of control applied initially stabilises the solution onto the approximate
Shadowing direction. The results of the control term are in good agreement with the
analysis presented in section 5.3. Small values of α lead to a large amount of control
being applied throughout the time horizon which, while initially driving the solution
towards the approximate Shadowing direction, leads to the solution becoming
dissimilar to MSS towards the end of the time horizon. Large values, on the other
hand, are unable to control the solution meaning the Shadowing direction is not
found. Finally, values in between these extremes lead to a solution which is stabilised
onto the Shadowing direction and minimal control is applied to keep the solution
bounded.

The same analysis is repeated for µP ∈ {1, 2.5, 5} using the same conditions as before.
These results can be seen in Figure 5.9. As the control term, q(x, t) = µP

∂2v(x,t)
∂x2 , is

linked to the tangent solution it is found that when µP = 1 the control is unable to



84 Chapter 5. Performance of tangent OCS on the Kuramoto-Sivashinsky system

0 50 100 150 200

t

0

10

20

30

40

50

x

−10−1

10−1

(A) q(x, t) generated by OCS for α = 50.

0 50 100 150 200 250

t

10−4

10−3

10−2

10−1

‖q
(x

,t
)‖

2

(B) ‖q(x, t)‖2 generated by OCS for α = 50.

0 50 100 150 200

t

0

10

20

30

40

50

x

−10−1

10−1

(C) q(x, t) generated by OCS for α = 5000.

0 50 100 150 200 250

t

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
‖q
(x

,t
)‖

2

(D) ‖q(x, t)‖2 generated by OCS for α = 5000.

0 50 100 150 200

t

0

10

20

30

40

50

x

−10−1

10−1

(E) q(x, t) generated by OCS for α = 5× 106.

0 50 100 150 200 250

t

10−10

10−8

10−6

10−4

10−2

‖q
(x

,t
)‖

2

(F) ‖q(x, t)‖2 generated by OCS for α = 5× 106.

FIGURE 5.8: q(x, t), left column, and ‖q(x, t)‖2, right column, of the control solution
generated by OCS for α = 50, top row, α = 5000, middle row, and α = 5× 106, bottom

row.
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(A) q(x, t) generated by NVP for µP = 1.
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(C) q(x, t) generated by NVP for µP = 2.5.
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(D) ‖q(x, t)‖2 generated by NVP for µP = 2.5.

0 50 100 150 200

t

0

10

20

30

40

50

x

−100

0

100

(E) q(x, t) generated by NVP for µP = 5.

0 50 100 150 200 250

t

100

‖q
(x

,t
)‖

2

(F) ‖q(x, t)‖2 generated by NVP for µP = 5.

FIGURE 5.9: q(x, t), left column, and ‖q(x, t)‖2, right column, of the tangent solution
generated by NVP for µP = 1, top row, µP = 2.5, middle row, and µP = 5, bottom row.
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stabilise the solution and the amount applied increases exponentially throughout the
time horizon, Figure 5.9b. The control is also applied at shorter wavelengths,
Figure 5.9a, compared to the tangent solution, Figure 5.5a. Increasing µP to 2.5 applies
smaller amount of control than µP = 1, Figure 5.9d. This may seem counter-intuitive,
but as q(x, t) is directly related to the tangent solution a control term that is able to
stabilise the solution will result in less control being applied. Finally, increasing µP to
5 reduces the control applied even more, Figure 5.9f. When µP = 5, Figure 5.9e, the
resulting control being applied has similar features as that of α = 50, Figure 5.8a.
Further, NVP applies orders of magnitude more control than OCS.

As a final remark, the magnitude of the control applied by NVP has high amplitude
oscillations, Figure 5.9f, whereas that applied by OCS, Figure 5.8d, does not exhibit
this behaviour. This behaviour is also seen for the NVD case. This analysis shows that
the NV terms derived from the tangent equation produce results which are dissimilar
to MSS as the amount of control is significant. The results in the tangent system are
altered significantly and an alternative Shadowing direction is found which, in
essence, relates to a slightly modified non-linear system, Ref. [49]. The conclusion is
that the NV method is too simple to be able to find the correct Shadowing direction. It
can be concluded that an NV method should utilise minimal control to stabilise the
tangent solution to ensure that the tangent solution is as similar to the true Shadowing
direction as possible.

5.5 Spectral analysis of the tangent equation

It has been shown in previous sections that the control term applied should have
minimal influence while still stabilising the solution. To aid in this understanding, the
tangent equation, section 5.1, is investigated on a wavenumber by wavenumber basis
for the solutions generated by MSS, OCS, and the two NV methods. Investigating the
wavenumber decomposition of the solution could lead to a deeper understanding of
the structure required by NV methods. The tangent equation is solved using spectral
methods and, therefore, each term in Equation (5.1) can be represented in terms of its
spectral decomposition. The time average of the absolute value of these terms is
computed on a wavenumber by wavenumber basis, i.e. |Pl |. This analysis is repeated
for 50 samples from different initial conditions, L = 50, Kx = 60, T = 240 and a ‘spin
up’ time of 1000 time units. An observation is that results on different domain sizes
collapse when the wavenumbers are scaled by l

L . This behaviour is shown in
Figure 5.10 for three domain sizes L ∈ {50, 75, 100}. It is worth noting that these
decompositions are computed for a single simulation and the values are impacted by
the initial condition selected. To mitigate this averages over multiple simulations
should be undertaken. Therefore, the analysis drawn for L = 50 is applicable to all
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FIGURE 5.10: Comparison of the power spectra of the tangent equation produced by
MSS over different domain lengths L = 50 black line, L = 75, blue line and L = 100.

domain sizes under the correct scaling. A restriction imposed here is that one value of
the tuning parameters in OCS and the NV methods which are α = 500, µP = 2.5 and
µD = 31.0 is used. These values are chosen as the sensitivity values generated are in
good agreement with the expected value and are in the adequately damped region.
The mean and standard error, σ√

(n)
where σ is the standard deviation and n the

number of samples, of these results is computed for 50 different initial conditions
which is shown in Figure 5.11 for MSS, panel (A), OCS, panel (B), NVP, panel (C), and
NVD, panel (D). Some general trends that are observed are production of tangent
energy is dominated by the longest wavelengths. For dissipation of tangent energy
the dominant wavelengths are of medium wavelength. Dissipation of tangent energy
dominates production around wavenumber l = 8. It is well known that the stable
CLVs have stronger signatures at high wavenumbers, see Figure 3 in Ref. [118], and
more stable CLVs have higher wavenumbers. It is argued that the wavenumber at
which dissipation dominates production is related to the most dominant wavenumber
of the CLV with the smallest negative (closest to zero) LE. Inhomogeneous and C(x, t)
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FIGURE 5.11: Comparison of the mean and standard error of the power spectra of
the tangent equation produced by various methods over 50 samples. Panel (A) is

produced by MSS, panel (B) by OCS, panel (C) by NVP and panel (D) by NVD.

terms both act on the longest length scales of the system and are reduced at shorter
length scales for all cases.

The main difference between OCS and the two NV methods investigated is the length
scales at which the control term acts. It can be seen that for OCS the control term acts
predominantly in wavenumbers where production dominates dissipation and is
reduced elsewhere. Further, the magnitude of the control term is several orders of
magnitude lower than the other terms. This suggests that OCS applies control at
length scales that require stabilising. The same argument that these long wavelengths
are related to the unstable CLVs of the system, see Figure 3 in Ref. [118], is made. Both
NV methods, on the other hand, have a large amount of control applied across all
wavenumbers, peaking at l = 8 and damping across a large range of length scales,
even when dissipation dominates production. This behaviour suggests that NV
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applies control that does not consider the unstable, neutral or stable sub-spaces of the
tangent space. By contrast, it is argued that OCS applies control only on the unstable
sub-space. The wider implications of this is that knowing at what length scales
production of tangent energy dominates dissipation or the length scales associated to
the unstable sub-space could lead to the selection of a control term with more targeted
control.

5.6 Summary

This chapter focussed on a comparison between the tangent formulations of the OCS,
NV and MSS methods. NV methods have not been developed in the literature for the
KS system. Therefore, the tangent energy equation was derived and its analysis
allowed the determination of two NV terms. The first is derived from terms which
contribute to production of tangent energy, and the second is derived from terms that
contribute to dissipation. The expected value of the sensitivity was computed and the
impact that the tuning parameters had on this were presented for OCS and the two
NV methods. It was shown that the behaviour of α in the OCS method shared similar
characteristics with that of the Lorenz case. Small values led to an over-damped
solution, while large values resulted in under-damped solutions. Values inbetween
led to an appropriately stabilised tangent solution and accurate sensitivity values. The
main difference is that the values of α at which the tangent solution became under or
over-damped are system dependent. This results in additional work required to
determine the value of α if OCS is to be applied to a new system.

OCS has been developed to bridge the gap between Shadowing and NV methods. To
gain a better understanding of this bridge the tangent solutions generated by OCS for
a range of α were compared to the solution generated by MSS. It was found that OCS
produced solutions which looked visually similar to MSS for smaller values of α.
These values of α led to solutions with smaller norms than MSS and is due to the
larger control applied damping the solution. Further, the angle between the solutions
generated by MSS and OCS initially was π

2 , showing the results are dissimilar, but
tended towards an angle close to 0. This suggests that OCS finds a solution that is
approximately the Shadowing direction. Increasing α led to solutions which did not
visually resemble MSS due to the control applied being smaller and the solutions
becoming unbounded. For these values, the angle between OCS and MSS was π

2

throughout the time horizon suggesting the solutions are not similar. This implies that
NV methods, of which OCS is one, can find a solution which is similar to that found
by Shadowing methods, when control is appropriately chosen, and is an approximate
Shadowing direction. Further, to ensure the solution remains close to the Shadowing
direction for the duration of the time horizon, the control applied should be minimal
whilst still stabilising the tangent solution.
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This analysis was also undertaken for NV methods. The main features were that for
smaller values of the tuning parameters the solutions were not stabilised and did not
visually resemble MSS. Increasing the tuning parameter stabilised the solution,
however, did not visually resemble the MSS solution. For all values of the tuning
parameter the angle between MSS and NV was, on average, π

2 throughout the time
horizon implying the solutions are not similar. One possible explanation for this is
that these methods derived from the tangent energy equation apply significant
amount of control to stabilise the solution and, therefore, are the tangent equations to
modified non-linear systems, Ref. [49].

A comparison of the control between OCS and NV was then conducted. The main
feature of OCS is that large amounts of control are applied initially and decreased
throughout the time horizon. This control, it was argued, stabilised the solution onto
the approximate Shadowing direction. Increasing α reduced the amount of control
applied where this feature of larger control initially was still present. Following this
initial period, the amount of control applied reduced and resulted in there being
inadequate control to stabilise the tangent solution. NV, on the other hand, applies
control proportional to the tangent solution. Therefore, NV methods apply zero
control initially and increase in time. Further, the amount of control applied was
significant which supports the analysis that there is a difference between the tangent
system and non-linear system, Ref. [49]. This also suggests that the NV methods are
non-optimal in the application of the control.

Finally, a wavenumber analysis of the tangent equation was undertaken. It was found
that OCS predominantly applies control along wavenumbers where the production of
tangent energy dominates dissipation. Outside this region, the control decays quickly
with increasing wavenumber. It was argued that this region was related to the power
spectra of the unstable covariant Lyapunov vectors and that OCS provides control
only in the unstable sub-space of the tangent space. This was not the case for the NV
method which applied significant control across all wavenumbers even when
dissipation of tangent energy dominates production contrary to OCS. The wider
implication of this is that to generate a solution which is similar to the Shadowing
direction, control must be applied in minimal amounts to stabilise the solution. This is
achieved through application of control only in the unstable sub-space. This leads to
the conclusion that NV methods should act predominantly in the unstable subspace
region and only provide minimal control required to stabilise the tangent solution.
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Chapter 6

Performance of adjoint OCS on the
Kuramoto-Sivashinsky system

It is common in the engineering sector that the sensitivity of functions of interest with
respect to multiple parameters is required. This led to the development of the adjoint
formulation of OCS. This chapter repeats the analysis of chapter 5 for the adjoint
formulation through comparison of the co-state and control spatio-temporal
structures and the respective angles between solutions along with a wavenumber
analysis of the adjoint equation. The rationale for this is to show the analysis
presented for the tangent formulation is equally valid for the adjoint form and to aid
in determining the link between NV and Shadowing methods along with finding
features that are present in Shadowing that should be incorporated into NV methods.
The adjoint NV terms are required for comparison and have not been investigated in
the literature. Therefore, these terms are found through analysis of the adjoint energy
equation. The sensitivity values produced by adjoint OCS are presented and
compared to the expected sensitivity and the tangent OCS formulation.

Chapter 5 provided analysis that links the OCS, Shadowing and NV methods for the
tangent formulation. This was achieved through comparison of tangent and control
structures along with a wavenumber analysis of the solutions. This tangent
formulation analysis was undertaken on the KS system with functional of interest
J (u(x, t), p) = ‖u(x, t)‖2 and a parameter of interest c = 0.5. The domain size was
L = 50, and Kx = 60 solution points were used which resulted in Kx

2 + 1 Fourier
modes. A ‘spin up’ time of 1000 time units and a total time horizon T = 240 time units
were used. These conditions are, again, used in the analysis of the adjoint formulation
of OCS. Further, the adjoint is found under the inner product

〈a(x, t), b(x, t)〉 = 1
L

∫ L

0
(a(x, t)b(x, t))dx.
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6.1 Derivation of the adjoint energy equation

It is common in the NV method, Refs. [12, 23, 49, 120, 121], to introduce a control term
into the adjoint equations which dissipates excess adjoint energy. The NV method has
not been developed in the literature for the KS system. This section identifies which
terms contribute to the production and dissipation of adjoint energy and manipulates
them to form the NV terms that dissipate excess adjoint energy. These terms are
analogous to those presented in section 5.1.

To undertake this analysis, firstly define the adjoint of Equation (5.1) under the
appropriate inner product as

∂λ̂(x, t)
∂t

= −c
∂λ̂(x, t)

∂x
−

∂
(
u(x, t)λ̂(x, t)

)
∂x

+ λ̂(x, t)
∂u(x, t)

∂x
+ ω̂(t) f (x, t)︸ ︷︷ ︸

Ĉ(x,t)

+

1
T

∂J(u(x, t), p)
∂u(x, t)︸ ︷︷ ︸
Î(x,t)

+
∂2λ̂(x, t)

∂x2︸ ︷︷ ︸
P̂(x,t)

+
∂4λ̂(x, t)

∂x4︸ ︷︷ ︸
D̂(x,t)

+ ζ̂(x, t)︸ ︷︷ ︸
Q̂(x,t)

,

x ∈ [0, L),

λ̂(0, t) = λ̂(L, t),

(6.1)

where Î(x, t), Ĉ(x, t), P̂(x, t), D̂(x, t), Q̂(x, t), and ζ̂(x, t) are the adjoint counterparts to
I(x, t), C(x, t), P(x, t), D(x, t), Q(x, t) and q(x, t) presented in section 5.1. The term
ζ̂(x, t) = 2v̂(x, t) for MSS and OCS is found from the difference between
Equations (2.15) and (3.31b). It follows that as the boundary conditions for the tangent
equation are periodic, so too are the boundary conditions for Equation (6.1).
Therefore, the co-state and control can be decomposed in a similar fashion

λ̂(x, t) =
∞

∑
l=−∞

˜̂λl(t)eil 2π
L x and ζ̂(x, t) =

∞

∑
l=−∞

˜̂ζl(t)eil 2π
L x.

where ˜̂λl(t),
˜̂ζl(t) ∈ C.



6.1. Derivation of the adjoint energy equation 93

Defining the adjoint co-state energy as Ê(t) =
∫ L

0 ε̂(x, t)dx and multiplication of
Equation (6.1) with λ̂(x, t) and integration over the domain leads to

dÊ(t)
dt

=∫ L

0

(
−cλ̂(x, t)

∂λ̂(x, t)
∂x

− λ̂(x, t)
∂
(
u(x, t)λ̂(x, t)

)
∂x

+ 2ε̂(x, t)
∂u(x, t)

∂x
+

λ̂(x, t)ω̂(t) f (x, t) + λ̂(x, t)
∂2λ̂(x, t)

∂x2 +

+λ̂(x, t)
∂4λ̂(x, t)

∂x4 + λ̂(x, t)
1
T

∂J(u(x, t), p)
∂u(x, t)

+ λ̂(x, t)ζ̂(x, t)

)
dx.

(6.2)

Integration of the fourth term of the right hand side of Equation (6.2) by parts leads to

∫ L

0
λ̂(x, t)

∂2λ̂(x, t)
∂x2 dx =

∫ L

0
−
(

∂λ̂(x, t)
∂x

)2

dx,

which is always negative. Since the adjoint equations are solved backwards in time,
this negative term acts as a production term. Similarly, integration of the fifth term by
parts twice leads to

∫ L

0
λ̂(x, t)

∂4λ̂(x, t)
∂x4 dx =

∫ L

0

(
∂2λ̂(x, t)

∂x2

)2

dx,

which is always positive, but backwards in time acts as a dissipation term. Following
the same approach as the tangent formulation the first adjoint NV term, which
modifies the production of adjoint co-state energy, is

ζ̂(x, t) = −µ̂P
∂2λ̂(x, t)

∂x2 ,

where µ̂P ∈ R+ is a tuning parameter. When this value is larger than one this term
counteracts the production due to P̂(x, t), and utilising this control term in the NV
method is referred to as adjoint NVP in this thesis. The second adjoint NV term, which
modifies the dissipation of adjoint energy, is

ζ̂(x, t) = µ̂D
∂4λ̂(x, t)

∂x4 ,

where µ̂D ∈ R+ is a tuning parameter, utilising this control term in the NV method is
referred to as adjoint NVD in this thesis.
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Kx = 60 Kx = 120 Kx = 180
Tangent Adjoint Tangent Adjoint Tangent Adjoint

∆T = 1× 10−3 0.003037 0.098168 0.003153 0.057134 0.002938 0.002705
∆T = 1× 10−4 0.001031 0.040315 0.001153 0.028382 0.001052 0.001059
∆T = 1× 10−5 0.001029 0.004872 0.001045 0.001691 0.001027 0.001025

TABLE 6.1: Sensitivity generated by Tangent and Adjoint OCS for ∆T ∈ {1× 10−3, 1×
10−4, 1× 10−5} and Kx ∈ {60, 120, 180}

6.2 Sensitivities generated by the adjoint OCS and NV
formulations

From the derivation presented in section 3.4 it is expected that α would behave in an
identical manner to the tangent form. This is investigated in this section. The values of
sensitivity generated by the adjoint formulations as a function of their respective
tuning parameters, left column, and the squared norm of the adjoint co-state solution
for a range of tuning parameters, right column, are presented in Figure 6.1 for OCS,
top row, NVP, middle row, and NVD, bottom row.

The first major difference between the tangent and adjoint OCS formulations is the
difference in the profile of the sensitivity as a function of α, Figures 5.2a and 6.1a
respectively. The tangent profile is always negative and below that of the expected
value whereas the adjoint profile starts positive then decreases as α increases until
around α = 1× 105 until the sensitivity increases. The main reason for this is to do
with discrete and continuous adjoint formulations, where details can be found in
Ref. [87]. Essentially, the discrete adjoint approach finds the exact adjoint of the
tangent OCS that has been implemented and should reproduce the sensitivity exactly.
The continuous adjoint, on the other hand, implements the adjoint equations and is
not guaranteed, given the same discretisation, to compute the same sensitivity profile
as the discrete adjoint approach or the tangent OCS formulation. The two approaches
do compute identical sensitivity values as ∆t→ 0 and Kx → ∞. Table 6.1 shows this.
Here the continuous formulation is utilised and, therefore, the sensitivity profiles
generated by tangent OCS and adjoint OCS are different.

It can be seen that the behaviour of the adjoint formulation shares features with the
tangent formulation presented in section 5.2. The bias in the sensitivity is, again, due
to the initial condition of the non-linear solution. When α < 1× 102 the solution is
showing signs of being over-damped. Similarly, when α > 1× 108 the solution is
under-damped, as seen in the solution norms, Figure 6.1b, and leads to inaccurate
sensitivities. In between these values the control applied is able to stabilise the
solution and results in accurate sensitivities. These are different to the tangent OCS
formulation where under-damping occurs at α > 5× 106, again due to the continuous
adjoint formulation being utilised. This analysis can be seen in the squared norm
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profiles which have very similar behaviour to the tangent formulation presented
previously. With small values of α the solution does not exhibit exponential growth,
and increasing the value increases the squared norm.

The behaviour of adjoint NVP is very similar to that of NVP. Too small a value for µ̂P

and the control is unable to stabilise the solution. This leads to the sensitivity value
generated being inaccurate. As µ̂P is increased the solution is stabilised more and the
method produces sensitivity values that are in good agreement with the curve fit
derivative of Figure 5.1. This behaviour is also seen for the adjoint NVD case.

6.3 Adjoint co-state spatio-temporal structures generated by
OCS, NV and MSS

This section investigates the similarities in co-state solutions generated by the adjoint
formulations of MSS, OCS and NV. This is undertaken to gain a better understanding
of the behaviour of the methods and to link to the analysis undertaken on the tangent
formulation. In this section, the adjoint co-state spatio-temporal structures generated
by adjoint MSS, panel (A), and the squared norm of this value, panel (B), are
presented in Figure 6.2. It is worth noting that the adjoint MSS formulation has initial
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FIGURE 6.2: λ̂(x, t), panel (A), and ‖λ̂(x, t)‖2, panel (B), of the adjoint solution gener-
ated by MSS.

and terminal constraints on λ̂(x, t). Further, the solution generated by MSS is of
similar order of magnitude to that generated by the tangent formulation along with
the sensitivity values generated being similar.

The spatio-temporal structures and squared norm of the solution generated using
adjoint OCS are shown in Figure 6.3. It can be seen that when α = 50 the solutions



6.3. Adjoint co-state spatio-temporal structures generated by OCS, NV and MSS 97

0 50 100 150 200

t

0

10

20

30

40

50

x

−10−1

10−1

(A) λ̂(x, t) generated by OCS for α = 50.

0 50 100 150 200 250

t

10−4

10−3

10−2

‖λ̂
(x

,t
)‖

2
(B) ‖λ̂(x, t)‖2 generated by OCS for α = 50.

0 50 100 150 200

t

0

10

20

30

40

50

x

−5× 10−1

5× 10−1

(C) λ̂(x, t) generated by OCS for α = 5000.

0 50 100 150 200 250

t

10−3

10−2

10−1

‖λ̂
(x

,t
)‖

2

(D) ‖λ̂(x, t)‖2 generated by OCS for α = 5000.

0 50 100 150 200

t

0

10

20

30

40

50

x

−100

0

100

(E) λ̂(x, t) generated by OCS for α = 5× 106.

0 50 100 150 200 250

t

10−3

10−2

10−1

100

‖λ̂
(x

,t
)‖

2

(F) ‖λ̂(x, t)‖2 generated by OCS for α = 5× 106.
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generated by OCS shares a large similarity with the non-linear solution, Figure 4.7.
The explanation for this is that the forcing term in the adjoint formulation is 2u(x,t)

T and
similarity is expected. This solution shares little similarity with the solution generated
by MSS outside of the central quarter of the time horizon. Further, the solution has a
constant magnitude throughout the time horizon and is significantly lower than the
MSS solution implying the solution is over-damped. Increasing α to 5000 results in a
solution that starts to resemble the spatio-temporal features of MSS but at a reduced
magnitude. Further, the solution does not exhibit signs of exponential growth as
shown in the relatively constant squared norm of the solution. Finally, when
α = 5× 106 the solution’s spatio-temporal structures are closest to MSS and no longer
resemble the non-linear solution. This solution is showing signs of exponential
growth as the squared norm of the solution is increasing backwards in time
suggesting an under-damped solution.

The wider implication is that, while the tangent formulation of OCS finds a similar
approximate Shadowing direction as MSS for a large proportion of the time horizon,
this is not necessarily the case when using the adjoint formulation. The MSS, Ref. [19],
and OCS, chapter 3, formulations were developed to minimise the tangent norm.
Adjoint formulations were then derived from these which leads to a difference in
temporal boundary condition between the methods. This difference between the
temporal boundary conditions could be an explanation for the visual differences
between the solutions generated. One method to test this hypothesis is to formulate
the Shadowing minimisation problem for the adjoint equation and allow the adjoint
temporal boundary conditions to vary, i.e. an “adjoint Shadowing direction”. It is
argued that this method may produce adjoint solutions which are more similar to
those produced by OCS more in line with conclusions drawn from the tangent
analysis. Another argument for the difference is that OCS found an approximate
Shadowing direction that was similar but not exactly the same as MSS and that this
difference is amplified in the adjoint solutions.

The analysis is repeated for µ̂P ∈ {1, 2.5, 5} using the same conditions as before.
Results are shown in Figure 6.4. The behaviour of adjoint NVP is again similar to that
of the tangent NVP. When µ̂P = 1.0, the control is unable to stabilise the solution. This
leads to the squared norm of the adjoint co-state solution increasing exponentially
backwards in time. Further, the spatio-temporal structures generated share no
similarities with MSS and are predominantly composed of long wavelength features.
Increasing µ̂P to 2.5 provides some better control, however the squared norm of the
solution is still increasing backwards in time. The magnitude of the solution is also an
order of magnitude smaller than MSS but still shows signs of exponential growth.
This suggests that the solution may not be applying control in a targeted or optimal
manner. As in the previous case the spatio-temporal structures do not resemble that of
MSS. When µ̂P = 5.0, the squared norm of the adjoint co-state shows adequate
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stabilisation of the solution. This suggests that the solution is stabilised to a value
which is several orders of magnitude smaller than MSS. The spatio-temporal
structures also has some shorter wavelengths present similar to those in MSS. This
analysis suggests that, as in the tangent formulation, the NV methods derived from
the adjoint energy equation may not be able to find approximate Shadowing direction.
This could be due to the large amount of control applied resulting in a discrepancy
between the adjoint equation and non-linear equation, Ref. [49]. One other
explanation could be that while these NV methods attempt to stabilise the adjoint
solution whereas Shadowing minimise the tangent solution and then find the
corresponding adjoint.

6.3.1 Similarity in adjoint co-state spatio-temporal structures

In this section the angle between solutions generated by MSS, OCS and NV is found.
This provides more objective comparison between the solutions than comparing
visually the solutions. In this section the metric used to compare the adjoint co-state
solutions of OCS and NV with MSS is

θ̂X(t) = arccos

( 〈
λ̂MSS(x, t), λ̂X(x, t)

〉
‖λ̂MSS(x, t)‖‖λ̂X(x, t)‖

)
,

where λ̂X(x, t) is the adjoint co-state solution generated by OCS or NVP and λ̂MSS(x, t)
from MSS. This metric determines the angle between the two solutions where values
of 0 mean the solutions are identical and values of π

2 mean the solutions are
orthogonal and dissimilar. The solution generated by MSS is used as a reference for
the approximate Shadowing direction. Similar behaviour is seen between the NVP

and NVD methods. The comparison between MSS and OCS, θ̂OCS(t), for a range of α

values is shown in panel (A) and the comparison between NVP and MSS, θ̂NVP(t), for
a range of µ̂P values in panel (B) of Figure 6.5.

It can be seen that unlike the tangent OCS formulation the adjoint variant diverges
away from MSS. The explanation for this is that MSS has initial and terminal
constraints whereas OCS only has the terminal constraint. Therefore, the MSS solution
is modified significantly to satisfy these conditions which leads to an OCS solution
that is dissimilar to MSS. It is argued that adjoint OCS finds an “adjoint Shadowing
direction” whereas adjoint MSS finds the adjoint corresponding to the tangent
Shadowing direction. This difference leads to the two solutions, while finding the
similar time averaged sensitivity values, producing different adjoint solutions. This is
not necessarily an issue as the sensitivity generated by both methods are similar.
Comparison of the OCS solution to the “adjoint Shadowing direction”, discussed
previously, may provide OCS solutions in better agreement with MSS.
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line, µ̂P = 4.5, dash dotted red line, and µ̂P = 5, solid blue line, panel (B).

Similar to Figure 5.6b, there is very little similarity between the MSS and NVP

solutions for all values of µ̂P investigated for the majority of the time horizon. There is
similarity towards the end of the time horizon which is caused by the similarity in
terminal conditions. This, again, implies that these methods are non-optimal and
potentially better control terms can be found.

6.4 Adjoint control spatio-temporal structures generated by
OCS, NV and MSS

This section repeats the analysis of section 6.3 using the control terms instead. The
rationale for this is to gain a better understanding of the methods along with showing
the analysis presented is identical for the adjoint and tangent forms. Through
examining Equation (3.31b) generated by OCS and comparing it to Equation (2.15), it
can be seen that the main difference, disregarding the ω̂(t)f(u(t, p), p) term, is 2v̂(t).
This thesis refers to this term as the adjoint control term. The reason why this term is
referred to as a control term is that it acts to stabilise the adjoint solution. This term is
present both in MSS and OCS. In this section the spatio-temporal structures of the
control term, 2v̂(x, t), for MSS and the squared norm of this are shown in panel (A)
and panel (B), respectively, of Figure 6.6. It can be seen that the amount of control
applied by MSS is negligible across the entire domain. The implications are that MSS
is applying control in a targeted and specific manner targeting certain features in the
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FIGURE 6.6: 2v̂(x, t), panel (A), and ‖2v̂(x, t)‖2, panel (B), of the adjoint solution gen-
erated by MSS.

solution. It is argued that these features are the unstable sub-space. A larger amount is
applied near the start of the time horizon and smaller towards the end.

The spatio-temporal structure, left column, of the control term, 2v̂(x, t), for OCS and
its squared norm, right column, are shown in Figure 6.7 for α ∈ {50, 5000, 5× 106},
rows. The main feature across all values of α is the reduced amount of control applied
compared to the tangent formulation. The argument for this is that the terminal
conditions on the adjoint co-state between OCS and MSS are identical and, therefore,
minimal amounts of control are required to keep the solution stable. It can be seen
that the control applied when α = 50 shares similar features to the non-linear solution.
Similar to the co-state solution, the control applied by OCS shares no resemblance to
the solution generated by MSS. Further, the amount of control is orders of magnitude
larger than MSS, suggesting the solution is over-damped. Increasing α to 5000 results
in a control solution that is starting to not resemble the non-linear solution. As in the
tangent formulation, increasing α reduces the amount of control applied and is also
the case here. Further, the amount of control applied is relatively constant throughout
the time horizon. Finally, when α = 5× 106 the control applied is reduced further for
the majority of the time horizon and increases towards the end implying the solution
is under-damped. The argument for this is that OCS stabilises the solution onto an
“adjoint Shadowing direction”. This is the inverse of MSS where the majority is
applied initially. It can also be seen that, on average, the amount of control is orders of
magnitude smaller than when α = 5000 and is comparable to the amount of control
applied by MSS. The implication of this is that MSS is applying control in a more
targeted fashion. This is because OCS, while still applying similar amounts of control,
has an under-damped co-state solution and inaccurate sensitivity values whereas MSS
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(C) 2v̂(x, t) generated by OCS for α = 5000.
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(D) ‖2v̂(x, t)‖2 generated by OCS for α = 5000.
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(E) 2v̂(x, t) generated by OCS for α = 5× 106.
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FIGURE 6.7: 2v̂(x, t), left column, and ‖2v̂(x, t)‖2, right column, of the adjoint solution
generated by OCS for α = 50, top row, α = 5000, middle row, and α = 5× 106, bottom

row.
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has a stabilised solution and accurate sensitivity. This suggests that the adjoint OCS
form is non-optimal.

Similarly, the spatio-temporal structures of the NVP approach, −µ̂P
∂2λ̂(x,t)

∂x2 , and its
squared norm are shown in Figure 6.8 for µ̂P ∈ {1, 2.5, 5}. As a general observation,
the amount of control applied by NVP is orders of magnitude larger than MSS. This
suggests that NV methods, derived using the adjoint energy budget, are non-optimal
and alternative methods can stabilise the solution for less control. As in the tangent
formulation case, when µ̂P = 1 there is insufficient control to stabilise the solution
which is applied in a general sense. The implication of this is that the control does not
target specific structures within the solution that contribute to production of adjoint
energy. This leads to the amount of control being applied increasing exponentially
backwards in time implying an under-damped solution. The control applied is also
composed of shorter wavelengths in comparison to the adjoint co-state solution,
which is related to the stable sub-space, Ref. [118], and more optimal control would
apply control on the unstable sub-space.

Increasing µ̂P to 2.5 leads to a solution that does not exhibit such extreme exponential
growth and some features in the control that are similar to Figure 4.7. There still,
however, is a gradual increase in the amount of control applied backwards in time.
Finally, when µ̂P = 5 the control that is applied is able to stabilise the solution. The
amount of control applied is orders of magnitude less than the other two cases but still
larger than MSS or OCS. Further, the control applied strongly resembles that of
Figure 4.7. This implies that the control, which acts at these shorter wavelength
features, are not as optimal as those which apply control at longer wavelengths. The
observation that control applied by NV methods investigated here is larger than OCS
or MSS suggests that this approach of stabilisation could be improved and one which,
as shown in the section 5.5, acts on the adjoint energy producing terms would be
beneficial.

6.4.1 Similarity in adjoint control spatio-temporal structures

This thesis developed OCS as a bridge between Shadowing and NV methods. It was
shown for the tangent formulation that OCS produces a solution similar to MSS. To
help explain why the adjoint solutions are dissimilar between MSS, OCS and NV the
angle between the control solutions is investigated. The angle between OCS and MSS
is

θ̂
q
OCS(t) = arccos

(
〈2v̂MSS(x, t), 2v̂OCS(x, t)〉
‖2v̂MSS(x, t)‖‖2v̂OCS(x, t)‖

)
,
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∂2λ̂(x,t)

∂x2 , left column, and
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, right column, of the adjoint

solution generated by NVP for µ̂P = 1, top row, µ̂P = 2.5, middle row, and µ̂P = 5,
bottom row.



106 Chapter 6. Performance of adjoint OCS on the Kuramoto-Sivashinsky system

and for NVP and MSS is

θ̂
q
NV(t) = arccos


〈

2v̂MSS(x, y, t),−µ̂P
∂2λ̂(x,t)

∂x2

〉
‖2v̂MSS(x, y, t)‖

∥∥∥−µ̂P
∂2λ̂(x,t)

∂x2

∥∥∥
.

These angles determines how similar the control solutions generated by OCS and NV
are with MSS. An angle of 0 means the control solutions are identical and a value of π

2

means they are dissimilar. The results of these metrics can be seen for a range of α

values for OCS, panel (A), and range of µ̂P values for NVP, panel (B), in Figure 6.9. As
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FIGURE 6.9: θ̂
q
OCS(t) for α = 1.0× 101, solid black line, α = 1.0× 102, dotted black line,

α = 1.0× 103, dashed black line, α = 1.0× 104, dash dotted black line, α = 1.0× 105,
solid red line, and α = 1.0× 109, dotted red line, panel (A), and θ̂

q
NVP

(t) for µ̂P = 1,
solid black line, µ̂P = 1.5, dotted black line, µ̂P = 2, dashed black line, µ̂P = 2.5, dash
dotted black line, µ̂P = 3, solid red line, µ̂P = 3.5, dotted red line, µ̂P = 4, dashed red

line, µ̂P = 4.5, dash dotted red line, and µ̂P = 5, solid blue line, panel (B).

in the co-state similarity there is little to no resemblance of the control applied by OCS
to MSS for the majority of the time horizon. There is a similarity in the final tenth of
the time horizon, which is caused by OCS and MSS sharing the same terminal
conditions. As in the co-state analysis it is argued that this difference is caused by the
difference in temporal boundary conditions on the co-state solution. Regardless of
which value for µ̂P selected there is no similarity between the control solution
generated by MSS and NVP as seen in the values of θ̂

q
NVP

(t) being, on average π
2 . The

interpretation of this is that the solutions are orthogonal and share no similar
characteristics. This implies that NV methods, derived from the adjoint energy
budget, are non-optimal suggesting that alternative methods would be beneficial.
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6.5 Spectral analysis of the adjoint equation

In section 5.5 it was shown that the tangent OCS formulation applies control which
acts on wavenumbers where production of tangent energy dominated dissipation.
This, it is argued, is a feature of the method and relates to the application of control in
the unstable sub-space. To show that this is a feature of the method spectral analysis is
undertaken on the adjoint equation. In section 6.1, various terms ( Î(x, t), Ĉ(x, t),
P̂(x, t), D̂(x, t) and Q̂(x, t)) were derived. The wavenumber decomposition for each of
these terms is presented in Figure 6.10 for MSS, panel (A), OCS, panel (B), NVP, panel
(C), and NVD, panel (D). The value of the tuning parameters are α = 500, µ̂P = 2.5
and µ̂D = 31.0 for consistency with the analysis drawn in section 5.5. In general,
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(A) Power spectra of the adjoint equation terms pro-
duced by MSS.
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FIGURE 6.10: Comparison of the power spectra of the adjoint equation produced by
various methods. Panel (A) is generated by MSS, panel (B) by OCS, panel (C) by NVP

and panel (D) by NVD.

Ĉ(x, t) along with Î(x, t) act on the longest wavelengths and decrease for shorter
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wavelengths. The wavenumber at which dissipation dominates production is, again,
l = 8, similar to the tangent formulation, section 5.5. The control applied by MSS,
2v̂(x, t), is predominantly in the wavenumbers where production dominates
dissipation and reduced elsewhere. This, it is argued, implies MSS applies control
targeting the unstable sub-space and minimal control is applied on the stable and
neutral sub-spaces. The power spectra of the unstable sub-space, Figure 3 of Ref. [118],
is dominant at smaller wavenumbers which are predominantly the modes which OCS
and MSS apply control along implying OCS and MSS target and control these features.
Similar to the tangent formulation, the control applied by OCS is in the wavenumbers
where production of adjoint energy dominates dissipation. The wavenumbers where
control is applied by OCS also shares similarities with MSS suggesting these methods
are very similar in behaviour. Further, the amount of control applied by OCS is larger
than MSS suggesting that OCS is non-optimal. For both the NV cases the amount of
control applied is significantly larger than MSS or OCS and occasionally is the largest
contribution along certain wavenumbers, l = 5 for example. The implication of this is
that both NV methods apply control across all sub-spaces and do not specifically
target the unstable sub-space. This suggests that the NV methods investigated here
are non-optimal. In general, the main conclusion of this analysis is that, similar to the
tangent formulation, the NV terms should act at wavelengths where production
dominates dissipation and minimal elsewhere, i.e. targeting the unstable sub-space.

6.6 Summary

It was shown in chapter 5 that tangent OCS shares similar features with both
Shadowing and NV methods. In industry, it is common to require the sensitivity of a
function of interest with respect to multiple parameters. The tangent OCS formulation
produces the sensitivity for a single parameter which led to the development of the
adjoint OCS formulation. A comparison between the adjoint formulations of MSS,
OCS and NV was undertaken to determine what, if any, features of Shadowing or
OCS could provide a more optimal NV control term. This was undertaken through
the comparison of the co-state and control fields generated by each method along with
wavenumber analysis of the individual terms in the adjoint equation.

The adjoint energy equation was derived and utilised to determine two NV terms
which were the adjoint variants of the NV terms used in the tangent OCS analysis.
This approach is common in the literature. The sensitivity generated by these methods
was compared against the expected values and showed similarities with the tangent
formulation. There are differences in the sensitivity profile produced as a function of α

compared to the tangent formulation of OCS and this was caused by the continuous
adjoint approach being utilised instead of the discrete adjoint. It was found that as the
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time step and grid spacing reduced, the discrete and continuous adjoint solutions, not
reported here, produced identical results down to machine precision. This result is in
good agreement with the literature, Ref. [87].

The co-state solutions generated by OCS were compared to solutions generated by
MSS for a range of α values. Small values of α produced solutions which did not look
visually similar to MSS. This was caused by the large amount of control applied which
resulted in an over-damped solution. The solutions produced by OCS were an order
of magnitude smaller than MSS. Increasing α led to solutions which visually
resembled those of MSS along with the magnitudes being similar. On average, the
angle between the solutions generated by OCS and MSS was π

2 throughout the entire
time horizon. This suggests that the adjoint formulation of OCS finds an “adjoint
Shadowing direction” whereas MSS finds an adjoint solution corresponding to the
tangent Shadowing direction. The adjoint MSS formulation is derived from the
tangent MSS formulation which minimises the tangent solution through modification
of the tangent temporal boundary conditions and leads to two temporal boundary
conditions on the adjoint solution. OCS, on the other hand, only has one temporal
boundary condition on the adjoint solution and it is this difference that it argued to be
the cause of the difference between solutions. One method to test this, which was not
investigated here, is to formulate MSS to minimise the growth of the adjoint solution
through relaxation on its temporal boundary conditions, i.e. find an “adjoint
Shadowing direction”. It was argued that this approach may lead to an increased
similarity between the adjoint MSS and OCS solutions as in the tangent formulation.
This analysis was repeated for NV where small values of the tuning parameter led to a
solution which was not stabilised and visually dissimilar to MSS. Increasing the
tuning parameter stabilised the solutions which did not look visually similar to MSS.
Further, the angle between solutions generated by NV and MSS was, on average, π

2

similar to the tangent case. This suggests that NV methods derived using the adjoint
energy budget are non-optimal. Further, the large amount of control produces an
adjoint solution that relates to a slightly modified non-linear solution, Ref. [49], which
could also be a cause of the discrepancy between MSS and NV solutions.

The analysis was repeated for the control terms. In the adjoint formulation there is a
control term in the MSS solution and its structure is 2v̂(x, t). Therefore, the control
solutions that were generated by OCS for a range of α values were compared to MSS.
The main feature is that the amount of control applied by the adjoint formulation is
orders of magnitude smaller than the tangent formulation. This suggests that in some
sense the temporal boundary conditions used in the adjoint formulation are more
optimal and closer to a stabilised solution which requires smaller control. The reason
for this is that the terminal condition on the co-state solution for OCS is identical to
that of MSS and, therefore, minimal control is required to keep the solution stable.
Further, the control applied by small values of α share some resemblance to the
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non-linear solution and not MSS. The quantity of control applied is orders of
magnitude larger than MSS for small values of α implying an over-damped solution.
Increasing α further produced control of similar orders of magnitude to MSS with
visually similar spatial structures except that the adjoint solution was under-damped.
This result implies that, when OCS applied similar magnitude of control to MSS, the
application of control in OCS is not as targeted as that in MSS and that its application
could be improved further. MSS applied the majority of control towards the
beginning of the time horizon whereas OCS applies the largest amount towards the
end of the time horizon implying OCS stabilises the solution onto an “adjoint
Shadowing direction”.

As in the co-state solutions the angle between the control generated by OCS and MSS
was around π

2 . The outcome of this analysis is that, again, the control applied by OCS
is non-optimal. This analysis was repeated for the NV control term where small values
of the tuning parameter led to large amounts of control being applied which increased
backwards in time. Increasing the tuning parameters led to smaller amounts of control
being applied. The control applied by the NV methods was at a smaller wavelength
than the adjoint solution. This suggested that the majority of the control is being
applied in the stable sub-space. One interpretation of this is that the NV methods are
applying general control and not in a targeted manner. Further benefits could be seen
if control is developed to target specific features relating to production of adjoint
energy. As in the co-state solutions the angle between the control terms generated by
NV and MSS was π

2 throughout the time horizon implying sub-optimal control.

Finally, a wavenumber analysis of the adjoint equation was undertaken. The control
applied by MSS was predominantly smaller than all other methods and acted on
wavenumbers where production of adjoint energy dominated dissipation and was
reduced outside this region. This suggests that MSS is applying control to target the
unstable covariant Lyapunov vectors and specifically targeting the unstable
sub-space. Further, the control applied by OCS shared the same behaviour as MSS but
with a larger magnitude implying OCS is not as optimal in its application of control as
MSS. Conclusions drawn for the adjoint case are similar to those for the tangent OCS
formulation in that OCS applies targeted control with similar features to MSS. This
implies that NV methods should also have this feature which was not found in the
NV methods investigated here as control was applied across all wavelengths.
Determination of the wavelengths of production and dissipation of adjoint energy
may be computationally expensive and, therefore, prohibit the development of these
methods. Further, this analysis was possible as spectra of the covariant Lyapunov
vectors have been published prior. For systems where these are unfeasible would
result in NV methods that could not apply control in the unstable sub-space.
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Chapter 7

Decomposition of OCS onto
covariant Lyapunov vectors for the
KS system

It is well known, Ref. [125] and section 2.3, that the solutions generated by MSS
decompose onto the covariant Lyapunov vectors (CLVs). These CLVs span the
tangent/adjoint space and with help from the Lyapunov exponents (LEs) determine
stable, unstable and neutral sub-spaces, Refs. [6, 7, 50, 51, 72, 95, 112, 131]. Various
Shadowing methods, Refs. [14, 22, 65, 88, 91, 92, 93, 125], have been developed as
linear combinations of these CLVs yet there has been little to no reporting of the
composition of the generated tangent/adjoint solutions in terms of the CLVs. Here, it
is argued that these CLVs could provide a deeper insight into the behaviour of these
methods and could help inform structures or features of NV methods. In this section
the CLVs and LEs are calculated for the Kuramoto-Sivashinsky (KS) system and
analysis is provided. There has been limited research into adjoint CLVs in general and
this section adds to this literature by providing details and analysis of the adjoint
CLVs for the KS system. These CLVs are then used to decompose the solution fields
generated by MSS, OCS and NV and are used to provide a deeper understanding of
the methods.

7.1 Validation of covariant Lyapunov vectors and Lyapunov
exponents

The Kuptsov and Parlitz algorithm, Ref. [72] and Appendix A, is used for the
computation of CLVs, γk(x, t) and γ̂k(x, t), and LEs, Λk. This is undertaken on
T = 240 time units on a domain size of L = 50 using Kx = 60 grid points. As
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mentioned in section A.1, due to the method of selecting initial conditions for the
CLVs/adjoint CLVs, γk(t) and γ̂k(t) for k = 0, 1, . . . , nv − 1, the ‘spin up’ time must be
sufficiently long enough to allow them time to align with their respective sub spaces.
Therefore, a method to determine when these have aligned is required.

One such approach is to fix the end of the ‘spin up’ time to tB = 1000 and make
multiple runs from tA ∈ (0, 950) and compare the values of γk(tB) from the different
starting initial starting times. This can be seen in Figure 7.1. The metric used here to

t0 tB

γ(t) γ(tB)
γ(t) γ(tB)

γ(t) γ(tB)
γ(t) γ(tB)

FIGURE 7.1: An approach to determing the ‘spin up’ time for backward CLV sub-space
alignment.

determine convergence of the CLVs to their respective sub-spaces is to use the
following metric

θk = arccos
(
〈γk(x, tB)τ, γk(x, tB)1000〉
‖γk(x, tB)τ‖‖γk(x, tB)1000‖

)
,

where γk(x, tB)1000 refers to the CLV at time tB that has been simulated for a ‘spin up’
time of 1000 time units and γk(x, tB)τ to the CLV at time tB that has a ‘spin up’ time of
τ = 1000− tA time units. When θk is close to 0 it means the two CLVs are aligned and
are assumed here to be converged to their respective sub-space. Conversely, when the
value of θk is π

2 it means the CLVs are orthogonal and dissimilar and are determined
to have not converged to their respective sub-spaces. The results of this convergence
from tA ∈ (0, 950) are shown in Figure 7.2. When τ is small the CLVs are not aligned
with the longest ‘spin up’ time case. It can be seen that when the τ is increased the
CLVs are aligned with the longest ‘spin up’ time case. It can be concluded that when
the ‘spin up’ time is 1000 time units the CLVs are aligned with their respective
sub-spaces and are converged. The same process for the adjoint CLVs was
undertaken, not reported here, but backwards in time and it was found that the time
taken for the CLVs to align was very similar to the adjoint CLVs.

Having found the ‘spin up’ time that results in converged CLVs, the LE spectrum for
the KS system is shown in Figure 7.3. This shows a very similar structures to that of
Figure 1 presented in Ref. [132] and Figure 8 in Ref. [59]. Note at this point that here
L = 50 is used, similar to that used in Ref. [59], whereas Ref. [132] uses L = 96. There
are 6 positive exponents where Λ0 = 0.086 is the largest. There are two neutral modes,
Λ6 = Λ7 = 0 which theoretically correspond to γ6(x, t) = f (x, t) and γ7(x, t) = ∂u(x,t)

∂x .
Here the value of f (x, t) is the right hand side of Equation (4.3). This can be validated
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FIGURE 7.2: Convergence rates of γk(x, tB)τ for various ‘spin up’ times.
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FIGURE 7.3: Lyapunov exponent, Λk, associated to each CLV mode.

by substitution of these into Equation (A.10). These CLVs can be thought of as being
caused by the property of the system and to translational symmetry in the x direction.
However, the algorithms used to generate these modes have difficulty in splitting the
two neutral modes as their growth is identical, and the computed modes end up being
a linear combination of the two theoretical modes and is the cause for the large angle
at large τ values in Figure 7.2. Therefore, the space spanned by the computed neutral
CLVs is the space spanned by the theoretical CLVs. There is a range of negative
exponents, Λ8 to Λ20, which relate to physical and stable modes of the system, see
Ref. [132]. Following this, the exponents come in pairs Λk and Λk+1 having the same
LE value for k > 20. This is caused by these modes being “isolated” and are high
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frequency sine cosine pairs, see Ref. [132]. A range of spatio-temporal structures are
shown in Figure 7.4 which, again, shows similar behaviours to those shown in Figure
2 in Ref. [118].
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(A) Spatio-temporal structure of γ0(x, t).
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(B) Spatio-temporal structure of γ5(x, t).
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(C) Spatio-temporal structure of γ10(x, t).
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(D) Spatio-temporal structure of γ15(x, t).
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(E) Spatio-temporal structure of γ25(x, t).
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(F) Spatio-temporal structure of γ30(x, t).

FIGURE 7.4: Spatio-temporal structures of γk(x, t) for k ∈ {0, 5, 10, 15, 25, 30}.

The spatial power spectra for the CLVs are also computed which shows similar



7.1. Validation of covariant Lyapunov vectors and Lyapunov exponents 115

structures to that presented in Figure 3 of Ref. [118] and are shown in Figure 7.5. It can
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FIGURE 7.5: Power spectrum for each wavenumber, l, of γk(x, t) for k ∈
{0, 5, 10, 15, 25, 30}, where the solid lines represent a positive LE and the dashed rep-

resent a negative LE.

be seen that for large k the power spectrum is dominated by one wavenumber. As k
increases this dominant wavenumber increases also. To provide further validation the
time averaged angle between CLVs are shown in Figure 7.6. These angles are again in
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very good agreement with Figure 4 in Ref. [118]. When the modes are in the physical
region there is an angle between all pairs of CLVs. This is not the case when the
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modes are in the “isolated” and high frequency regime and the only angle is between
the sine cosine pairs.

As part of the Kuptsov and Parlitz algorithm the adjoint CLVs, γ̂k(x, t), are also able to
be computed. To the author’s knowledge there has been no presentation of adjoint
CLVs, γ̂k(x, t), for this system and the spatio-temporal structures, Figure 7.7, their
power spectra, Figure 7.8, and the time averaged angle between pairs of CLVs,
Figure 7.9, are shown. The properties of γ̂k(x, t) are very similar to that of γk(x, t). It
can be seen that, unlike the CLVs, the adjoint CLVs do not resemble the non-linear
solution when k < 20. Outside of this region the CLVs are, again, dominated by high
frequency structures similar to those of the CLVs. A similar argument can be made
that these modes are “isolated” and not physical. This is, again, confirmed by the
power spectra between the CLVs and the adjoint CLVs having a very similar structure.
Further, the angle between the adjoint CLVs has a very similar profile to that of the
CLVs.

One important characteristic of the covariant Lyapunov vectors is bi-orthogonality,
Ref [72], where in general 〈

γi(t), γ̂j(t)
〉
= δijCij(t), (7.1)

where δij is the Kronecker delta and Cij(t) is a constant. The CLVs, in this thesis, are
being utilised as a tool for understanding the behaviour of the Shadowing and NV
methods. The implications of the bi-orthogonality is that as opposed to solving a large
linear system of equations for the influence of each CLV on the solution the only CLV
and associated adjoint CLV are required to compute the influence of the kth CLV on
the solution. This reduces the requirement for computation of all CLV modes, which
can be computationally expensive. One other implication of this bi-orthogonality is
that it is well known that orthogonality between the CLV and its adjoint are present
when homoclinic tangencies are present, Ref. [72]. These tangencies correspond to
CLVs becoming collinear, Ref. [50, 131]. The implications of this is that the accuracy of
the influence of the CLVs when tangencies are present is reduced.

7.2 Decomposition of the solutions onto the covariant
Lyapunov vectors

To gain better understanding of the structure of the forcing ∂u(x,t)
∂x , tangent v(x, t), and

control q(x, t) terms the decomposition of these onto the CLVs is computed. The
rationale for undertaking this decomposition is to find if there are any structures or
features present in MSS or OCS that can be utilised to inform a better choice of NV
term. These features, if present, could produce a more accurate NV method, similar to
the accuracy of Shadowing methods but without the computational cost, which
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(A) Spatio-temporal structure of γ̂0(x, t).
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(B) Spatio-temporal structure of γ̂5(x, t).

1000 1050 1100 1150 1200

t

0

10

20

30

40

50

x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(C) Spatio-temporal structure of γ̂10(x, t).
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(D) Spatio-temporal structure of γ̂15(x, t).
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(E) Spatio-temporal structure of γ̂25(x, t).
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FIGURE 7.7: Spatio-temporal structures of γ̂k(x, t) for k ∈ {0, 5, 10, 15, 25, 30}.
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FIGURE 7.8: Power spectrum for each wavenumber, l, of γ̂k(x, t) for k ∈
{0, 5, 10, 15, 25, 30}, where the solid lines represent a positive LE and the dashed rep-

resent a negative LE.
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would be beneficial to industry. A time horizon of T = 240 time units, following a
‘spin up’ time of 1000 time units, L = 50 and Kx = 60 are used. The mean of the
decomposition is computed using 50 samples from different initial conditions along
with computation of the standard error, σ√

n , where σ is the standard deviation and n is
the number of samples. To ensure the decomposition is valid, MSS, OCS, and NV are
computed on the same 240 time unit time horizon that the CLVs were computed on.
The mean and standard deviation are computed from 50 different samples each with
unique initial conditions so that analysis drawn in later sections are more general
statements.

7.2.1 Decomposition of the forcing term onto the covariant Lyapunov
vectors

This section finds the decomposition of the forcing term onto the CLVs by taking the
inner product of Equation (2.19) with the adjoint CLVs and making use of
Equation (7.1) which results in the forcing weighting factor

a f
k (t) =

〈
γ̂k(x, t), ∂u(x,t)

∂x

〉
〈γ̂k(x, t), γk(x, t)〉 . (7.2)

The mean and standard error of the forcing term is shown in Figure 7.10. This shows
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FIGURE 7.10: Mean and standard error of |a f
k (t)|. Yellow boxes denote the neutral

CLV modes.

the decomposition is dominated by the modes in the k = 3 to k = 9 region. As can be
seen from the LE spectrum, Figure 7.3, these modes relate to the near neutral CLVs, i.e.
Λk ≈ 0. The modes outside this region play a lesser role in the structure of the forcing
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term. Figure 7.10 shows why the traditional sensitivity analysis methods fail, in that
the forcing term drives the dynamics along all CLV modes, and as such the tangent
solution is dominated by the unstable CLV.

One possible explanation for the peak around the near neutral modes is due to the
denominator, | 〈γ̂k(x, t), γk(x, t)〉 |, of Equation (7.2). The meaning of this term is the
orthogonality between γ̂k(x, t) and γk(x, t). A value of zero means the vectors are
orthogonal and larger values means the vectors are more aligned. In other words,
having small value of orthogonality means that the adjoint CLV has a small
component along the CLV. Equation (7.2) essentially finds the component of the
solution down each CLV through finding the projection of the solution onto the
adjoint CLV and performing a scaling which is related to the projection of the CLV
onto its adjoint. It is clear that if the CLV and its corresponding adjoint are orthogonal
then this method gives erroneous results. The time averaged value of this
denominator is shown in Figure 7.11. The main feature to note is the large dip around
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FIGURE 7.11: | 〈γ̂k(x, t), γk(x, t)〉 | for each CLV mode. Yellow boxes denote the neu-
tral CLV modes.

the near neutral modes meaning these modes are becoming orthogonal. This has the
impact of increasing the influence of these modes when computing a f

k (t).

It is well known that orthogonality between γ̂k(x, t) and γk(x, t) is due to a homoclinic
tangency, i.e. the intersection of the stable and unstable manifolds, Ref. [72]. Further,
the tangency between γk(x, t) and γk+1(x, t) results in γ̂k+i(x, t) and γk+i(x, t) for
i = 0, 1 being orthogonal, Ref. [72]. This is not observed in practice as these CLVs and
their adjoints are subject to numerical round off error and do have a small component
along each other. It can be seen that as the LEs get closer to zero, an increased
tangency in the CLVs is observed and, therefore, the kth CLV and its associated adjoint
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become more orthogonal. It is for this reason that in the following sections the
decomposition along the neutral CLVs are highlighted with yellow boxes to alert the
reader that these decompositions are subject to orthogonality between the CLVs and
their adjoints.

7.2.2 Decomposition of the tangent solution onto the covariant Lyapunov
vectors

From Equation (2.23) it is expected that the tangent decomposition will follow
something similar to that presented in section 7.2.1. Taking the inner product of
Equation (2.18) with the adjoint CLVs and making use of Equation (7.1) results in

ak(t) =
〈γ̂k(x, t), v(x, t)〉
〈γ̂k(x, t), γk(x, t)〉 . (7.3)

Figure 7.12 shows the mean and standard error of the time average of the absolute
value of ak(t) for MSS, OCS when α = 500, NVP when µP = 3.0 and NVD when
µD = 30. These tuning parameter values are selected because they produce sensitivity
results that are in good agreement with the curve fit derivative and the along with the
squared norm of the tangent solution not showing signs of exponential growth across
the time horizon. It can be seen that the MSS tangent solution is primarily composed
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FIGURE 7.12: Mean and standard error of |ak(t)| for MSS, black line, OCS, blue, NVP,
red and NVD, pink. Yellow boxes denote the neutral CLV modes.

of the near neutral CLV modes and has reduced dependence on the modes outside
this region. This is similar to Figure 7.10 as mentioned previously. This suggests that,
as the tangent solution is used in the computation of the sensitivity, the near neutral
modes also play an important role in the sensitivity calculated. Further, the solution
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generated by OCS has a very similar structure to MSS in the near neutral CLV mode
region. This implies that OCS is finding a similar solution and structure to MSS.

Outside this region OCS has more reliance on the CLVs than MSS. One argument for
this is that this difference is caused by the addition of the control term that stabilises
the solution onto the approximation of the Shadowing direction. NVP has a similar
peak around the near neutral CLV modes but is broader than MSS or OCS. Further,
NVP has an increased reliance on the other modes than MSS or OCS, which suggests
that either the unstable CLVs are not completely being damped or the method is not
optimal in its application of control. Finally, NVD has the broadest peak around the
near neutral modes and has increased dependence on all the CLV modes which,
again, suggests that this approach is non-optimal.

It was noted in section 7.1 that, theoretically, the neutral modes should be
γ6(x, t) = f (x, t) and γ7(x, t) = ∂u(x,t)

∂x . This should result in the sixth mode in
Figure 7.12 being zero due to 〈v(x, t), f (x, t)〉 = 0 for OCS and MSS. This is not the
case as the computed neutral CLVs are a linear combination of the two theoretical
modes which results in the tangent solution having a component down both modes.

It can be argued that knowing only these near neutral modes will produce a good
approximation of v(x, t) and the full solution is not required. To validate this, the
modes are ordered by their decreasing value of |ak(t)|. The reconstruction of the
solution with an increased number of ordered CLV modes is

vk∗(x, t) =
k∗

∑
i=0

ai(t)γi(x, t),

where the CLVs are ordered such that |ai(t)| > |ai+1(t)| for i = 0, 1, . . . , nv − 2. The
angle between this reconstruction and the computed solution is

θk∗(t) = arccos
(
〈v(x, t), vk∗(x, t)〉
‖v(x, t)‖‖vk∗(x, t)‖

)
.

This analysis is undertaken for the MSS approach only as the results were similar
between the methods. The angle between the actual and reconstructed MSS solutions,
panel (A), and the ratio of norms of the reconstructed and MSS solution, panel (B), are
given in Figure 7.13. It can be seen that there is exponential decay in the relationship
between θk∗(t) as k∗ increases. This implies that the vast majority of the solution is a
combination of the near neutral CLV modes. Addition of further modes just increases
the accuracy of the solution. This implies that the near neutral CLV modes are
important. Further, the magnitude of the reconstructed solution is significantly larger
than the actual solution for the first k∗ < 6 reconstruction cases. This is due to the
large magnitude of the ai(t) terms. Above this the ai(t) terms result in a solution with
similar norm to the MSS tangent solution.
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FIGURE 7.13: Properties of the reconstructed tangent solution from the ordered CLV
modes.

Investigating the linear combination further, the sensitivitiy computed from each
reconstructed tangent solution, dJk∗

dc , is presented in Figure 7.14 along with the curve
fit derivative of Figure 5.1. It can be seen that, similar to the computed angle and
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FIGURE 7.14: Sensitivitiy, dJk∗
dc , computed from the reconstructed tangent solution,

vk∗(x, t). Curve fit derivative of Figure 5.1, dashed black line.

norm Figure 7.13, that when k∗ < 4 the reconstructed sensitivity is inaccurate and
only when more modes are utilised the accuracy of the sensitivity is increased. From
Figure 7.12 it can be noted that the smallest influence CLVs are those that relate to the
“isolated” region, k > 20. These have very little impact on the value of the sensitivity,
as can be seen in Figure 7.14, and the majority of the accuracy come from the physical
region of the CLVs.
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7.2.2.1 Expected gain of the scalar ODE

To aid in the investigation of the CLVs it is useful to know how the output of a system
is impacted by the input. To help with this analysis the state space gain of the ODE
relating to each CLV mode is investigated. This also has the added benefit of
removing the influence of the denominator, Figure 7.11, and its associated errors. This
is achieved this as follows.

Firstly, consider Equation (2.23) which is restated here with a generic control term,
bk(t) ∈ R, applied

dak(t)
dt

= Λkak(t) + a f
k (t) + bk(t). (7.4)

Taking the transfer function of this, see Refs. [99, 115] for details, results in

sAk(s) = Λk Ak(s) + A f
k (s) + Bk(s). (7.5)

Investigating the ratio of output to input leads to

Ak(s)

A f
k (s)

=
1 + Bk(s)

A f
k (s)

s−Λk
. (7.6)

From this it is expected to see a large gain either when the denominator s−Λk is small
or when the control term Bk(s)

A f
k (s)

is large. For MSS, bk(t) = 0 and Bk(s)
A f

k (s)
= 0. Therefore,

the magnitude of the gain of the system is found by finding the ratio of ak(t),
Figure 7.12, to a f

k (t), Figure 7.10. The mean and standard error of this ratio generated
by MSS, OCS and both NV methods for 50 samples is shown in Figure 7.15. The gain
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of MSS is very similar to 1
|Λk |

and is in good agreement with the simple analysis
provided. This implies that MSS is finding a very good approximation for the
Shadowing direction. There is some bias outside the near neutral CLV modes for MSS.
It is argued here that the explanation for this difference is that the solution is
computed on a finite time horizon and it is expected that this causes some bias.
Increasing the time horizon is expected to reduce this bias. Further, MSS generally has
the lowest gain of all the methods implying that the solution fround using these
methods are more optimal. It can, therefore, be concluded that the most important
modes are the near neutral CLV modes. As argued previously the increased value of
the gain in the region outside the near neutral modes for OCS and both NV methods
is due to the control term stabilising the solution which is shown in the following
section.

7.2.3 Decomposition of the control solution onto the covariant Lyapunov
vectors

The control term applied by OCS, q(x, t), NVP, µP
∂2v(x,t)

∂x2 , and NVD, −µD
∂4v(x,t)

∂x4 , can
also be decomposed onto the CLVs. This results in

q(x, t) =
nv−1

∑
k=0

bk(t)γk(x, t),

µP
∂2v(x, t)

∂x2 =
nv−1

∑
k=0

bk(t)γk(x, t),

−µD
∂4v(x, t)

∂x4 =
nv−1

∑
k=0

bk(t)γk(x, t).

(7.7)

The decomposition of the control solution is computed by taking the inner product of
Equation (7.7) with the adjoint CLVs and using Equation (7.1) which results in

bk(t) =
〈γ̂k(x, t), q(x, t)〉
〈γ̂k(x, t), γk(x, t)〉 ,

bk(t) =

〈
γ̂k(x, t), µP

∂2v(x,t)
∂x2

〉
〈γ̂k(x, t), γk(x, t)〉 ,

bk(t) =

〈
γ̂k(x, t),−µD

∂4v(x,t)
∂x4

〉
〈γ̂k(x, t), γk(x, t)〉 .

(7.8)

Figure 7.16 shows the mean and standard error of |bk(t)|. It can be seen that of all the
methods investigated OCS applies the least control. Further, OCS has a peak around
the near neutral modes. There is some component of the control generated by OCS on
the modes outside this region but this influence is several orders of magnitude
smaller. This is again due to the control stabilising the solution onto the approximate
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FIGURE 7.16: Mean and standard error of |bk(t)| for OCS, blue line, NVP, red and
NVD, pink. Yellow boxes denote the neutral CLV modes.

Shadowing direction. NVP has a larger component down each CLV mode than OCS
implying this method is not as optimal as OCS and the application of control is not as
targeted as OCS. There still remains a peak which is slightly broader than OCS around
the near neutral modes.

NVD has the largest decomposition onto the CLVs out of all the methods investigated.
There still is a peak around the near neutral modes but the influence of the other
modes is still high, implying control is being applied in a non-optimal way. This is
because NV does not produce a solution that is near the approximate Shadowing
direction resulting in larger control than OCS. It can be concluded that the control term
must also decompose onto the near neutral modes and have minimal contribution
from the other modes. Selection of a control term that is along the near neutral modes
is difficult because the CLVs are unknown a priori and, therefore, knowing if the
control term selected is dominated by the near neutral modes is challenging.

7.2.3.1 Expected gain of the control term in the scalar ODE for Shadowing

In section 7.2.2.1 the scalar ODE gain was derived. There were some differences
between OCS, NVP, NVD and MSS which were argued to be due to the control term
applied. The gains associated to the control term for OCS, NVP and NVD are shown in
Figure 7.17. The profiles of the control gains are very similar to the differences
between the tangent gain and expected gain shown in Figure 7.15. Further, the
majority of the gain from the control term is outside the near neutral modes. An
explanation for this is that the tangent initial condition is not on the approximation to
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the Shadowing direction and, therefore, requires stabilising onto an estimate for the
Shadowing direction for OCS, but is continually stabilised for NV. The process of
stabilisation requires applying control down those modes outside the near neutral
regime which leads to the large gain in these modes. Once the OCS solution is on the
approximate Shadowing direction small nudges are required along each mode to keep
it there hence the smaller control than NV. Selecting a value of α that results in a
solution that remains closer to MSS, Figure 5.6a, for longer should reduce the gain
seen along the modes outside of the near neutral mode regime.

7.3 Similarities in tangent decomposition between solutions
on different domain sizes

The previous analysis has been undertaken on one single domain size. To show that
the analysis is general the decomposition generated by MSS is computed for multiple
domain sizes. The number of Fourier modes computed is scaled proportional to L
such that the ratio Kx

L = 6
5 is kept constant. This is undertaken such that the value of

∆x is constant between the simulations. Further, the time horizon, T = 240 time units,
is used for all domain sizes to ensure that the time horizon has no influence on the
results. The ‘spin up’ times used for L = 50 is 10, 000 time units, for L = 75 is 12, 500
time units, for L = 100 is 15, 000 time units, for L = 250 is 20, 000 time units and for
L = 500 is 40, 000 time units. The CLV calculation for L = 500 took several days on 6
compute nodes each with 20 CLVs computed per node.

Firstly, with appropriate normalisation the LE spectra of varying domain lengths
collapse onto the same curve. This is shown by normalising the index of each mode
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by the domain size, i.e. k
L , and the normalised LE spectrum is shown in Figure 7.18.

This shows that changing the domain length does not increase the value of Λ0 but
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FIGURE 7.18: The LE spectrum, Λk for L = 50, black pluses, L = 75, red downwards
tri, L = 100, blue crosses, L = 250, yellow upwards tri, and L = 500, pink left tri. The

inset shows the region around the near neutral modes in more detail.

rather fills in the spectrum, meaning that the increased number of modes fill the gaps
in between the LEs of the smaller domain cases. This results in the difference between
LE values decreasing. The decrease between successive LE values results in a longer
‘spin up’ time required as these modes take longer to align with their respective
sub-spaces. This is because it is more “difficult” to distinguish between modes that
have similar exponents. This difference is only noticeable after longer simulation
times. The projection of the MSS solution onto the normalised index of CLV modes
results in the same gain profile as shown in Figure 7.19.

The main feature to notice is that as L increases the decomposition is dominated by
the modes corresponding to k

L = 0.13. These are the modes which relate to the near
neutral modes. This suggests that the analysis for L = 50 is directly translatable to
other domain sizes. It is also found that as L increases the peak around k

L = 0.13
becomes narrower and taller. The reason for this is that around these modes the LEs
are getting closer to zero and the expected gain is the inverse of this which leads to
large values. One important issue to note is that the results are generally noisy in the
region outside the near neutral modes. This is dissimilar to that presented in
section 7.2 as the regions outside the near neutral modes are generally well-behaved.
The reason for this is that the results presented here are for a single simulation and not
an average over multiple simulations.
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7.4 Tuning parameters influence on the solution
decomposition

It has been shown in chapter 5 that the tuning parameters have a large influence on
the solutions generated by OCS and NV. In this section the influence that the tuning
parameters has on the solutions generated by OCS and NV is investigated in terms of
the decomposition of both the tangent and control solutions onto the CLVs. This is
undertaken on the L = 50 domain size with T = 240 time units, a ‘spin up’ time of
1000 time units and Kx = 60. This analysis is undertaken for OCS and NVP but similar
features are present between NVP and NVD.

7.4.1 Impact of α on the decomposition

The role of α on the tangent and control decomposition is investigated in this section.
Using the same tangent and control decomposition methods detailed previously the
decomposition of the solutions generated using different α values onto the CLVs is
shown in Figure 7.20 with MSS as a comparison. It can be seen that there is very
similar projection in the near neutral modes regardless of which α value chosen.
Increasing α from 1× 101 to 1.0× 104 moves the projection of the OCS tangent
solution closer to that of MSS. There is little difference in the projection between
α = 1.0× 103 and α = 1.0× 104 suggesting that there is a range of α values that all
provide adequate control which results in a solution similar to that generated by MSS,
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Figure 5.6a. Increasing α to 1.0× 106 and beyond moves the projection away from the
MSS projection. This suggests that the solution is prone to the exponential growth of
perturbations as the control applied is unable to counteract the growth. Further, the
implications are that regardless of what tuning parameter value selected OCS
attempts to find the same Shadowing direction.

To validate this, a comparison of the projection of the control terms for a range of α

valued is shown in Figure 7.21. A similar feature to the tangent decomposition is that
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regardless of what value of α is chosen the decomposition in the near neutral modes is
relatively constant. The main difference between control applied at each α is the
projection onto each of the remaining CLV modes. Increasing α reduces the amount of
control applied down each CLV. This suggests that when α is too large, inadequate
control is applied to the remaining modes resulting in the tangent solution having
exponential growth. Without knowing this decomposition a priori it is difficult to
select an appropriate value of α. The point at which control becomes inadequate is not
clear from Figure 7.21 as there is a general decrease in control along the region outside
the near neutral modes as α is increased. As a final remark, this analysis suggests that
the control term applied in the NV method, to be optimal, must be dominated by the
near neutral modes.

7.4.2 Impact of µP on the decomposition

The analysis presented in section 7.4.1 is repeated here when µP is varied in the NVP

approach. The results for the tangent solution decomposition when µP is varied are
presented in Figure 7.22 with MSS as a comparison. It can be seen that with small
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values of µP the tangent solution is equally composed of each CLV mode and is
significantly larger influence than the other µP values investigated. This is due to the
control being inadequate in stabilising the solution. As µP is increased, the tangent
decomposition reduces on each mode along with emergence of the peak around the
near neutral modes. The implication of this is that the value of the tuning parameter
can be found when this peak emerges and not based on matching the sensitivity
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values produced with that of the expected sensitivity. This suggests the increased
influence of the near neutral modes in the solution determines the accuracy in the
sensitivity produced. This is the case until increasing the value of µP further has very
little impact on the decomposition suggesting that there is a limit to the solutions that
are found by NV methods. An outcome is that the NV methods investigated with this
simple control term are unable to find the Shadowing direction. The decomposition of
the control solutions for the same µP values are shown in Figure 7.23. This control
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FIGURE 7.23: |bk(t)| when µP = 1.0, solid black line, µP = 2.0, solid red, µP = 3.0,
solid blue, µP = 4.0, solid yellow, and µP = 5.0, solid pink.

term produces very different behaviour to OCS presented previously. The main
difference is that the control solutions do not decompose onto the same near neutral
modes regardless of which value of µP is selected. This behaviour is more akin to the
tangent decomposition where µP is small a large decomposition of the control across
all modes is seen. As µP is increased further the decomposition decreases along with
an emergence of the peak around the near neutral modes. This implies, again, that this
emergence could be utilised to determine the tuning parameter value. There is a point
where the increase of µP has very little impact on the decomposition of the control
term. This suggests there is a limit as to how similar the solution that these methods
generate are to MSS.
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7.5 Influence of the parameter of interest

The analysis undertaken until this point has been on the system

∂u(x, t)
∂t

= −(u(x, t) + c)
∂u(x, t)

∂x
− ∂2u(x, t)

∂x2 − β
∂4u(x, t)

∂x4 ,

x ∈ [0, L),

u(0, t) = u(L, t),

when c = 0.5 is the parameter of interest. To show that the analysis presented
previously is transferable between forcing terms this section focuses on analysing the
system when β = 1.0 is the parameter of interest. A repeat of the analysis shown
previously is not undertaken. Instead, the expected gain of MSS along each CLV is
investigated.

Initially the value of J against β is presensted in Figure 7.24 for a time horizon
T = 2× 104 and an average is taken over 50 different initial conditions u(ts). The
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FIGURE 7.24: J against β and dashed line is the curve fit.

sensitivity computed using the curve fit is d J̄
dβ ≈ 1.055× 10−1. The value computed

using MSS is 1.2789× 10−1.

The reason for this is that there is fundamentally a large amount of factors that are
prevalent in the computation of the gain. To compute the gain, firstly the
decomposition of the forcing term, which in this case is − ∂4u(x,t)

∂x4 , onto these CLV is
undertaken to compute a f

k (t). Secondly, the tangent solution generated by MSS,
v(x, t), is decomposed onto the CLV modes to produce ak(t). Finally, the ratio of ak(t)
to a f

k (t) is the computed gain along each CLV mode. As before, the solution generated
by MSS is computed on the same T = 240 time unit time horizon as the CLVs are
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computed on using Kx = 60, L = 50 and a ‘spin up’ time of 1000 time units is used.
The gain can be seen in Figure 7.25. The reader is reminded that the expected gain
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the parameter of interest. Yellow boxes denote the neutral CLV modes.

along each CLV mode is proportional to 1
|Λk |

. It is clear that the gain generated in this
case when β is the parameter of interest is in very good agreement with the expected
value. The implications of this is that the analysis drawn previously is generic for all
parameters. This suggests that the same near neutral modes are also important
between tuning parameters and that it is the difference linear combination of these
modes that determine the sensitivity values for each tuning parameter. The reason
why there is such similarity between the expected and computed gain is that the
analysis provided in section 7.2.2.1 is generic. Therefore, it can be concluded that the
analysis undertaken previously is common across all parameters of interest.

7.6 CLV decomposition of the adjoint solutions

The analysis undertaken for altering the domain size and parameter of interest are
also valid for the adjoint formulation. Further analysis is required between the adjoint
and tangent formulations to show that the conclusions drawn around the near neutral
modes are common between the methods. In this section, the decomposition of the
adjoint forcing 2u(x,t)

T , co-state λ̂(x, t) and control terms 2v̂(x, t) for MSS and OCS,

−µ̂P
∂2λ̂(x,t)

∂x2 for NVP and µ̂D
∂4λ̂(x,t)

∂x4 for NVD onto the CLVs are investigated. The
adjoint forcing term is found by taking the inner product of Equation (2.26) with



7.6. CLV decomposition of the adjoint solutions 135

γk(x, t) along with using Equation (7.1) resulting in

â f
k (t) =

〈
2u(x,t)

T , γk(x, t)
〉

〈γ̂k(x, t), γk(x, t)〉 .

Results of this decomposition are shown in Figure 7.26. The results of the adjoint
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k (t)| for the adjoint formulation. Yellow boxes denote neutral CLV

modes.

forcing decomposition produces a profile that is very similar to that presented in
section 7.2.1. The forcing term is dominated by the near neutral CLV modes and
reduced elsewhere which shows very similar features to the tangent forcing
decomposition. The implications of this is that, as in the tangent case, the near neutral
CLV modes are of importance for the adjoint case also.

7.6.1 CLV decomposition of the adjoint co-state solution

The decomposition of the co-state solution is achieved through taking the inner
product of Equation (2.27) with γk(x, t) along with using Equation (7.1) resulting in

âk(t) =
〈
λ̂(x, t), γk(x, t)

〉
〈γ̂k(x, t), γk(x, t)〉 .

The results of this are shown in Figure 7.27 for MSS, OCS when α = 500, NVP when
µ̂P = 3.0 and NVD when µ̂D = 30. Again, these values are selected so that comparison
between tangent and adjoint forms is consistent along with these values producing
sensitivities in good agreement with the expected value and the adjoint solutions
being adequately stabilised. It is clear that MSS, again, is dominated by the near
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FIGURE 7.27: |âk(t)| for the adjoint formulations of MSS, black line, OCS, blue line,
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neutral CLV modes. This is comparable to the investigation into the tangent
formulation presented in section 7.2.2. It can be seen that OCS and MSS share very
similar decomposition profiles across all CLV modes. This implies that OCS and MSS
are acting in very similar ways and targeting the same features. There is even better
agreement in the adjoint formulation than the tangent formulation with MSS.

The solution generated by NVP is in very good agreement with the solution produced
by MSS and OCS. This is contrary to the analysis undertaken for the tangent
formulations. The cause of this is due to the similarity in terminal conditions between
OCS, NV and MSS in the adjoint formulation which results in smaller amounts of
control being applied to stabilise the solution. The implications of this is that if a
better tangent initial condition can be found for the tangent formulation then smaller
amounts of control would be required to keep the solution stable. Further, there is a
similarity between NVD and the other methods, however, the decomposition is larger
across all modes. The peak around the near neutral modes still dominates the
decomposition. This analysis suggests that using a NV term that is derived from a
production of adjoint energy term is more optimal than one that is derived from
dissipation of adjoint energy. Further, this analysis suggests that these NV terms
derived for the adjoint formulation are more optimal than those developed for the
tangent case. The reason for this is the reduced difference between the MSS and NVP

terminal boundary condition. OCS is still more optimal than NV but the difference in
the adjoint formulation is not as significant as in the tangent form.

Using the same reconstruction approach presented for the tangent formulation, the
âk(t) coefficients are ordered in descending order of importance. Following this, a
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reconstruction of the adjoint co-state solution is generated by incorporation of an
increased number of modes. It was argued in section 7.2.2 that knowing only these
near neutral modes will produce a good approximation of λ̂(x, t) and the full solution
is not required. The reconstruction of the solution with an increased number of
ordered CLV modes is

λ̂k∗(x, t) =
k∗

∑
i=0

âi(t)γ̂i(x, t).

The angle between this reconstruction and the computed solution is

θ̂k∗(t) = arccos

( 〈
λ̂(x, t), λ̂k∗(x, t)

〉
‖λ̂(x, t)‖‖λ̂k∗(x, t)‖

)
.

This analysis is undertaken for the MSS approach only. The time averaged angle
between the actual and reconstructed MSS solutions, panel (A), and the time averaged
ratio of norms of the reconstructed and MSS solution, panel (B), are given in
Figure 7.28. It can be seen that a larger number of CLV modes are required to
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FIGURE 7.28: Properties of the reconstructed tangent solution from the ordered adjoint
CLV modes.

reconstruct the solution for the adjoint formulation. In the adjoint formulation it takes
around k∗ = 20 modes to generate a solution that is similar to the computed solutions
whereas for the tangent formulation is takes around k∗ = 6 modes. The ratio of the
reconstructed solution norm has a significant bump following k∗ = 6. This feature is
not present in the tangent case. It is unclear what is causing this bump only for the
adjoint case in the solution norms but could potentially account for the increased
number of modes required in the adjoint case. One possible explanation for this is that
in the tangent formulation there was four orders of magnitude difference between the
decomposition onto the near neutral CLV modes and the others. Here there are only
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two orders of magnitude difference. Therefore, the other modes that are not the near
neutral modes play a more important role which is why more of them are required to
produce a reconstructed solution that is in good agreement with the computed
solution. One possible explanation for this is that the adjoint MSS solution does not
find an “adjoint Shadowing direction”, rather the adjoint solution that equates to the
tangent Shadowing direction. This difference has produced discrepancies in the
adjoint OCS and MSS solutions presented in section 6. It is expected that if MSS is
reformulated to find the “adjoint Shadowing direction” that this difference between
the adjoint MSS and OCS forms decreases. The implications of this is that the number
of CLV modes required to create an approximate adjoint solution would decrease and
the analysis would be more in line with the tangent formulation.

7.6.1.1 Expected gain of the ODE

This section repeats the analysis of deriving the expected gain for the adjoint solution.
Firstly, the addition of a generic control term, b̂k(t) ∈ R, to Equation (2.25) results in

dâk(t)
dt

= −âk(t)Λk + â f
k (t) + b̂k(t). (7.9)

Taking the transfer function of this leads to

sÂk(s) = −Âk(s)Λk + Â f
k (s) + B̂k(s). (7.10)

The relationship between the output and the input is given by

Âk(s)

Â f
k (s)

=
1 + B̂k(s)

Â f
k (s)

(s + Λk)
. (7.11)

The gain of the MSS, OCS, and NV systems are shown in Figure 7.29. It can, again, be
seen that the MSS gain is in very good agreement with the expected gain. This was
shown in the tangent MSS formulation also. Similar to the decomposition, the
solution gain of OCS is very similar to that of MSS across all modes implying that
OCS and MSS behave in similarly and it suggests that adjoint OCS is near optimal in
its application of control. Further, NVP is also in very good agreement with MSS again
implying adjoint formulations are more optimal in application of control over their
tangent counterparts. This was not the case for the tangent formulation. An
explanation for this is that due to the terminal condition of the adjoint co-state being
identical to that of MSS for OCS and similar for NV results in a solution that does not
require significant control for stabilisation. This was shown in section 6.4. Therefore,
the gain due to the control does not contribute as much to the solution compared to
the tangent formulation. As seen previously NVD has the largest gain.
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7.6.2 CLV decomposition of the adjoint control solution

The decomposition is repeated here for the control terms. The control for MSS and
OCS is 2v̂(x, t), NVP is −µ̂P

∂2λ̂(x,t)
∂x2 and NVD is µ̂D

∂4λ̂(x,t)
∂x4 . Firstly, let these control

terms be a linear combination of adjoint CLVs

2v̂(x, t) =
nv−1

∑
k=0

b̂k(t)γ̂k(x, t),

−µ̂P
∂2λ̂(x, t)

∂x2 =
nv−1

∑
k=0

b̂k(t)γ̂k(x, t),

µ̂D
∂4λ̂(x, t)

∂x4 =
nv−1

∑
k=0

b̂k(t)γ̂k(x, t).

(7.12)

Taking the inner product of these with γk(x, t) along with using Equation (7.1) results
in

b̂k(t) =
〈2v̂(x, t), γk(x, t)〉
〈γ̂k(x, t), γk(x, t)〉 ,

b̂k(t) =

〈
−µ̂P

∂2λ̂(x,t)
∂x2 , γk(x, t)

〉
〈γ̂k(x, t), γk(x, t)〉 ,

b̂k(t) =

〈
µ̂D

∂4λ̂(x,t)
∂x4 , γk(x, t)

〉
〈γ̂k(x, t), γk(x, t)〉 .

(7.13)
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The results of this are shown in Figure 7.30 for MSS and OCS when α = 500, NVP

when µ̂P = 3.0 and NVD when µ̂D = 30. Again, these values are selected so that
comparison between tangent and adjoint forms is consistent along with these values
producing sensitivities in good agreement with the expected value and the adjoint
solutions being adequately stabilised. It is clear that MSS, again, is dominated by the
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FIGURE 7.30: |b̂k(t)| for the adjoint formulations of MSS, black line, OCS, blue line,
NVP, red line, and NVD, pink line. Yellow boxes denote neutral CLV modes.

near neutral CLV modes. Further, MSS applies the least control of all the methods
investigated. OCS applies a similar amount of control as MSS along the near neutral
CLVs, again, implying similarity between the methods. Outside this region the
amount applied is larger than MSS. This is due to the difference in temporal boundary
conditions between MSS and OCS. The solution generated by OCS can become
unbounded if the control is small whereas the solution generated by MSS must satisfy
terminal and initial constraints. This results in OCS applying more control than MSS.
There is a larger difference in the amount of control applied between NVP and MSS
than is seen in the co-state solutions. This implies that NV methods are non-optimal
and that smaller amounts of control can be applied in a more targeted fashion. Similar
to the tangent analysis, to apply control in a more optimal manner the NV method
should apply control that is composed predominantly of the near neutral modes.

The gain of the MSS, OCS, and NV control terms are presented in Figure 7.31. MSS,
similar to the co-state gain, produces a control gain that has similar features as the
expected gain albeit at a smaller value. Further, MSS has the largest gain around the
near neutral modes again suggesting the importance of the near neutral modes. OCS
also shows similar features to MSS with a peak around the near neutral CLVs and
reduced gain outside this region contrary to the tangent formulation analysis. This
implies that OCS, as in the tangent form, is finding similar features and structures to
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MSS and the Shadowing methods. These differences with the tangent formulation are
due to the similarity in terminal conditions of the co-state equations between the
methods which results in smaller control being applied to keep the solution stable.
Similar to the values of |b̂k(t)|, the control gain of OCS is similar to MSS in the near
neutral region and larger than MSS elsewhere suggesting that OCS is not as optimal in
its application of control as MSS.

Further, NVP has, in general, larger gain than MSS and OCS but shares the similar
features of dominance in the near neutral region again implying the NV methods
investigated here are non-optimal. This is also caused by the similarity in terminal
conditions between NV and MSS resulting in smaller control being applied compared
to the tangent formulation. NVP is still dominated by the near neutral CLV modes and
all gains are larger than OCS and MSS. This is due to the control applied being larger
than OCS and MSS. This implies that NV methods could apply control in a more
targeted fashion which, in turn, could increase the accuracy of the methods. NVD has
significantly larger amounts of gain due to the large amount of control applied. This
suggests that, as in the tangent case, deriving control terms from terms which
dissipate adjoint energy are not as optimal as those derived from production of
adjoint energy.
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7.7 Summary

This chapter presented the Lyapunov exponent (LE) spectrum and the covariant
Lyapunov vectors (CLVs) generated for the KS system. As far as possible these were
validated against previous CLVs and LEs presented in the literature. This was
achievable for the CLVs as there is some work on these in the literature. However,
validation of the adjoint CLVs was not possible as there has been no previous analysis
on them in the literature. These adjoint CLVs did show similar features to the CLVs.

Following this, the decomposition of the solutions generated by the tangent MSS, OCS
and NV formulations onto these CLVs was presented. This was undertaken to
compare features present in MSS or OCS that could be transferred to NV. It was found
that the main CLVs of importance were the near neutral modes. These were defined as
the modes whose LEs are close to zero. This implies that any NV method should
ensure that the tangent solution is predominantly comprised of the near neutral
modes. This may be difficult to establish a priori as, in general, the CLV modes are
computationally expensive to produce. Analysis of the expected gain, the ratio of
output to input, was also presented for each mode and the computed gain showed
similar features to the expected gain for MSS for two different parameters of interest.
The expected gain along each CLV mode, which has been discovered through this
investigation, is proportional to the inverse of the corresponding Lyapunov exponent,

1
Λk

. This suggests that a Shadowing solution should primarily be composed of the
near neutral modes which is found in the MSS solution. This was not the case for OCS
and NV. The reason why there was a large gain in the region outside the near neutral
modes for OCS and NV was due to the tangent initial condition being away from the
approximate Shadowing direction the solution required a large amount of
stabilisation of these modes. If an initial condition that is closer to the Shadowing
direction can be found then reduced control is required in the tangent formulations.
This resulted in the larger than expected gains in this region. This suggests that the
NV methods investigated here are non-optimal and better alternatives are available.
The implications of this is that the control applied by NV should primarily damp the
unstable CLV modes. This is in very good agreement with the conclusions drawn
from the spectral analysis presented in the previous chapters. It was also shown that
reconstruction of the MSS tangent solution using the six CLVs which had the largest
influence which resulted in a solution that is in very good agreement with the
computed solution. This implies that these near neutral CLV modes are important in
the sensitivity of the system and that if they were known a priori then a reasonable
approximation of the solution could be made using a linear combination of them.
Further, this analysis was shown to be common between domain sizes given the
correct scaling of the mode indices.



7.7. Summary 143

It was also shown that varying α produced solutions which are in good agreement
with MSS in the near neutral CLV range for all values. Increasing α moved the
decomposition closer to MSS until the control applied is too small then the solution
diverges from MSS. This implies that OCS is applying control in such a manner that
an approximation to the Shadowing direction is found. Further, OCS, regardless of
tuning parameter used, it is argued attempts to find the same Shadowing direction.
This, however, is unlike the NV methods investigated here. For small values of the
tuning parameter in NV produced a decomposition that was dissimilar to MSS.
Increasing this value brought the decomposition closer to one produced by MSS. The
implications of this is that NV methods do not act in the same way for different tuning
parameters.

The solutions generated by adjoint MSS, OCS and NV were decomposed onto the
CLVs. It was shown that, as in the case of the tangent formulation, the near neutral
CLV modes play an important role in the co-state solutions generated. A
reconstruction of the MSS solution was generated using the most influential modes
and twenty modes were required to produce a solution that is in good agreement with
the computed solution. This is larger than the tangent formulation and one possible
explanation why was due to the smaller difference between the decomposition of the
near neutral modes compared to the modes outside this region. One other explanation
for this difference is that tangent MSS finds the Shadowing direction and the adjoint
form used here finds the adjoint solution which corresponds to the Shadowing
direction. Reformulation of adjoint MSS to find an “adjoint Shadowing direction”, i.e.
find an adjoint solution that remains bounded through allowing the temporal
boundary conditions to vary, could reduce the number of modes that are required to
produce accurate sensitivity values. This would result in the analysis being more
aligned with the tangent formulation.

The co-state solution generated by OCS decomposed onto the modes in a very similar
manner to MSS with similar features and magnitudes. This implies that OCS and MSS
are acting in very similar ways and that NV methods should also share this feature to
be optimal. Further, NVP also shared this behaviour whereas NVD shared features but
had larger magnitudes than all the other methods. The co-state gain along each CLV
shared the same profile as the expected gain for all cases. This is different to the
tangent investigation. This implies that the NV methods derived for the tangent
formulation may be less optimal than those generated for the adjoint form. One
reason for this is that the terminal conditions of the co-state equations are identical for
OCS and MSS and similar for NV. This resulted in a smaller amount of control being
applied which resulted in the control being applied down the modes outside the near
neutral region being reduced. This implies that if an initial condition for the tangent
solution is provided that is a better approximation to the Shadowing direction then



144
Chapter 7. Decomposition of OCS onto covariant Lyapunov vectors for the KS

system

minimal control could be applied. Finding such a value may not be feasible as the
computation of the Shadowing direction is expensive.

In the adjoint formulation the control solution decomposed predominantly onto the
near neutral modes, similar to the tangent formulation, for all methods investigated.
MSS applies the least control, followed by OCS and then the two NV methods. This
implies that NV methods investigated here are not as optimal as OCS and that NV
methods, of which OCS is an optimal version, may not be able to reproduce the exact
solution found by Shadowing methods. The control gain was mainly dominated by
the near neutral modes and reduced elsewhere for all methods. This was contrary to
the tangent formulation and is caused by the similarity in terminal condition of the
co-state equation which leads to minimal control being applied to stabilise the
solution. This implies that depending on which formulation is being used potentially
different NV methods should be utilised. The wider implications of this finding are
that computing the CLVs beforehand is expensive and, therefore, knowing if the
control term selected in the NV method acts in the near neutral modes is difficult and
impractical.
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Chapter 8

Behaviour of adjoint OCS on the
Kolmogorov system

In this chapter, the behaviour of the adjoint OCS formulation on a 2D spatially
distributed system is investigated to show that the analysis presented previously is
common between systems. The Kolmogorov system, Refs. [29, 81, 102], which is a
modification to the Navier-Stokes equations, is used as it provides a more industrially
relevant test case than those used previously. The reason for this is that the
Kolmogorov system is spatially two dimensional. The Navier-Stokes equations have
been widely investigated for sensitivity analysis of chaotic systems, Refs [14, 16, 20,
21, 22, 23, 32, 33, 49, 90, 91, 92, 93, 120, 121, 127], however, to the author’s knowledge
sensitivity analysis has not been undertaken on the Kolmogorov system. In this
chapter the analysis of the adjoint solutions generated by OCS and NV are compared
to MSS to aid in the insight as to what features and structures the control term in the
NV method should resemble. The solutions are also decomposed onto the CLVs for
the system which, again, are utilised to provide insight into the structure of the NV
methods.
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8.1 Description of the Kolmogorov system

The Kolmogorov system, which is presented in detail in Ref. [29], is given by

∂χ(x, y, t)
∂t

+
∂ϕ(x, y, t)

∂y

(
∂χ(x, y, t)

∂x

)
− ∂ϕ(x, y, t)

∂x

(
∂χ(x, y, t)

∂y

)
=

1
Re
∇2χ(x, y, t)− n cos (ny),

x ∈ [0, Lx),

y ∈ [0, Ly),

χ(0, y, t) = χ(Lx, y, t),

χ(x, 0, t) = χ(x, Ly, t),

(8.1)

where χ(x, y, t) is the vorticity, ϕ(x, y, t) is the stream function which is computed
using −χ(x, y, t) = ∇2 ϕ(x, y, t), ∇2 is the Laplace operator and Lx and Ly are the
domain lengths in the x and y co-ordinate directions, respectively. The terms ∂ϕ(x,y,t)

∂y

and − ∂ϕ(x,y,t)
∂x are the velocity components in the x and y directions, respectively. The

Reynolds number is Re = 40 and n = 4 is an integer determining the length scale of
the forcing are used. Utilising periodic boundary conditions in x and y allows use of
spectral methods where the solution can be decomposed as follows

χ(x, y, t) =
∞

∑
l=−∞

∞

∑
m=−∞

χ̃(l,m)(t)e
i
(

2lπ
Lx x+ 2mπ

Ly y
)
,

where χ̃(l,m)(t) ∈ C and the solution is discretised in the x and y directions with
Nx = 90 and Ny = 90 grid points, respectively. A domain of Lx = 2π and Ly = 2π in
the x and y directions, respectively, is used. A ‘spin up’ time of 10, 000 time units is
used. For numerical stability ∆t = 5× 10−3 and T = 500 time units are used. For time
integration a third order Implicit-Explicit scheme, Ref. [70], for the linear and
non-linear terms is used. An example of the solution at an instant in time is given in
Figure 8.1. The inner product used for the Kolmogorov system between two spatially
distributed variables a(x, y, t) and b(x, y, t) is

〈a(x, y, t), b(x, y, t)〉 = 1
LxLy

∫ Ly

0

∫ Lx

0
a(x, y, t)b(x, y, t)dxdy,

and the norm is
‖a(x, y, t)‖ =

√
〈a(x, y, t), a(x, y, t)〉.
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FIGURE 8.1: Example of a typical solution, χ(x, y, t), of the Kolmogorov equations
when t = 100.

8.2 Numerical computation of the sensitivity for the
Kolmogorov system

As in the previous cases the choice of the parameters and function of interest is free.
The parameter of interest is chosen to be the Reynolds number, Re, and the function of
interest is

J(χ(x, y, t), p) = ‖χ(x, y, t)‖2. (8.2)

To find the relation between J̄ and Re the value of J̄ is computed for Re ∈ (38, 42) with
an interval of ∆Re = 0.2 for a time horizon of T = 25, 000 time units, preceded by a
‘spin up’ time of 10, 000 time units. The impact that varying Re has on J̄, along with a
curve fit, is shown in Figure 8.2. It can be seen that there is good correlation between
the function of interest and parameter choice. The derivative of the curve fit gives an
approximation to the sensitivity, which is d J̄

dRe ≈ 0.179.

Here, the NV term µs∇2λ̂(x, y, t), Ref. [23], is utilised where µs is the tuning
parameter. It is worth acknowledging that this NV term is derived from terms which
dissipate adjoint energy. In sections 5, 6 and 7 it was shown that this approach is not as
optimal as those derived from terms which contribute to production of adjoint energy.
However, this approach has been developed and utilised in the literature, Refs. [23,
120], and is one of the simplest and most intuitive methods for sensitivity analysis and
is for this reason that it is utilised here. Sensitivities generated by OCS, panel (A), and
NV, panel (C), by varying their tuning parameters, α and µs, respectively, along with
the squared norm of the solutions for a range of tuning parameters for OCS, panel (B),
and NV, panel (D), can be seen in Figure 8.3. The behaviour seen here for both OCS
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FIGURE 8.2: The relationship between J̄ and Re and its curve fit.

and NV is similar to the behaviour shown for the previous cases. When α < 1× 102

the solution is over-damped shown by the small solution norm and the reduced
sensitivity value. Increasing α increases the solution norm and the sensitivity. Finally,
when α ≥ 1× 108 the control is unable to stabilise the solution leading to an
under-damped solution and inaccurate sensitivity values. These values of α are, again,
system dependent. This implies that, while the features of OCS are common between
system, the values at which the solutions is under or over-damped requires work in
finding their values. This limits the applicability of the methods as a parameter
sweep, to a certain fidelity, is required. Once this region has been determined the
sensitivity values and solutions can then be utilised. For large systems, such as
turbulent fluid flows, this parameter sweep approach will become unfeasible and
alternative methods that do not require tuning should be utilised such as MSS.

For the NV case the solution is under-damped when µs < 6.0× 10−2. Increasing µs

leads to a solution which does not show signs of exponential growth of perturbations
and accurate sensitivity values. This feature is in very good agreement with the
analysis provided for the KS case but again the value of the tuning at which the
solution becomes stabilised is problem dependent. The saving grace of the NV
methods is that the computation of these methods are cheaper than OCS or MSS and
so a tuning parameter sweep may be more feasible.
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FIGURE 8.3: Sensitivity generated by the different methods, left column, and
‖λ̂(x, y, t)‖2, right column, for OCS, top row, and NV, bottom row.

8.3 Influence of tuning parameters on the adjoint co-state
solution

In this section the adjoint co-state solutions generated by OCS and NV are compared
to those generated by MSS. The rationale is that, as before, features and structures
may be present in OCS or MSS that can help inform better, more optimal, selection of
NV terms. This is conducted for Lx = Ly = 2π, Nx = Ny = 90, T = 500 time units
preceded by a ‘spin up’ time of 10, 000 time units. Figure 8.4 shows the spatial
solution generated by MSS at t = 100 time units, panel (A), and the squared norm of
the solution, panel (B). Due to the formulation of the minimisation problem of MSS
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(A) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units.
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FIGURE 8.4: The solution generated by MSS at t = 100 time units, panel (A), and the
squared norm of the solution, panel (B).

the adjoint co-state solution has both initial and terminal constraints on the solution.
This causes the small squared norm values at the beginning and end of the time
horizon. The MSS solution is the largest around the two vortex core regions of
x = y = 2 and x = y = 5.

The solution generated by OCS for α ∈ {100, 1× 104, 1× 1011}, left column, and the
squared norm of the solution, right column, can be seen in Figure 8.5. In general, OCS
has a terminal condition identical to that of MSS. When α = 100 the solution
generated by OCS is several orders of magnitude smaller than that generated by MSS.
This, again, is due to an over-damped solution. The two vortex core regions, found by
MSS, are also present in the OCS solution, except there are higher frequency features
present in OCS. One explanation for this is that, as in the KS case, the forcing term
which is proportional to the non-linear solution, Figure 8.1, is dominating the solution
hence why there are higher frequency features present in OCS. The squared norm of
the solution remains, on average, around 1× 10−2, which is smaller than MSS
suggesting signs of over-damping. Increasing α to 1× 104 produces a solution which
is very similar to one generated by MSS. This implies that this value of α is neither
over or under-damped. This also impacts the squared norm of the solution where the
average is increased to around 2× 10−1. Finally, when α = 1× 1011 the solution is
larger than that generated by MSS which implies the solution is under-damped. In
this instance the vortex cores have negative solutions compared to MSS. Further, the
norm squared of the solution is, on average, larger than that of generated by MSS. The
implication of this analysis is that OCS behaves in a very similar manner between
systems and the concluisions drawn in the previous chapters are also valid here.
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(A) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units and α = 100.
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(C) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units and α = 1× 104.
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(E) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units and α = 1× 1011.
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FIGURE 8.5: The solution generated by OCS at t = 100 time units, left column, and
the squared norm of the solution, right column, when α = 100, top row, α = 1× 104,
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The solutions generated by NV for µs ∈ {0.01, 0.05, 1.0} are shown in Figure 8.6.
When µs = 0.01 the solution is under-damped and is several orders of magnitude
larger than that generated by MSS or OCS. This suggests that this value is applying
control in a non-optimal fashion and that more efficient methods are available.
Further, the largest region in the solution is at x = 0.5, y = 4.5 and x = y = 4.5 which
is dissimilar to the solution generated by MSS implying NV is not finding the same
approximate Shadowing direction as MSS. The solution magnitude continues to grow
backwards in time in contrast to OCS and MSS which remain constant. This suggests
that NV is not applying control in an optimal or targeted fashion. Increasing µs to 0.05
produces a similar, albeit inverted, structure that, again, is still several orders of
magnitude larger than MSS and OCS. In this instance the squared norm of the
solution does grow backwards in time but to a lesser extent than the previous case
implying the solution is still under-damped. Finally, when µs = 1.0 the solution is
stabilised and the squared norm of the solution remains of the order 5× 10−4 which is
significantly lower than both OCS and MSS. This may imply that the solution has
been over-damped or the application of control is generic and not targeting specific
structures that contribute to the production of adjoint energy and that more efficient
methods are availabe. It is also clear that the solution does not resemble that of MSS or
OCS. This could be due to the control term leading to an adjoint system being altered
significantly and an alternative Shadowing direction is found which, in essence,
relates to a slightly modified non-linear system, Ref. [49]. Further, the damping has
removed the high frequency modes which is expected as these control terms act on
high frequency modes. Finally, there are two main vortex structures at x = 3, y = 1
and x = 6, y = 4 that are not seen in the MSS or OCS cases.

8.3.1 Similarities in co-state solution with MSS

In this section the adjoint co-state solutions generated by OCS and NV are compared
against MSS using the same metric used previously which is restated here

θ̂X(t) = arccos

( 〈
λ̂MSS(x, y, t), λ̂X(x, y, t)

〉
‖λ̂MSS(x, y, t)‖‖λ̂X(x, y, t)‖

)
.

The rationale is, again, to attempt to find structures and solutions that are present in
the Shadowing approach that could provide more targeted control in NV methods. As
in the KS case, a small value of this metric means the solutions are aligned and values
close to π

2 means the solutions are dissimilar. The results of this decomposition for a
range of value of α, panel (A), and µs, panel (B), are shown in Figure 8.7. All OCS
solutions are aligned with MSS denoted by the small value of θ̂OCS(t) towards the end
of the time horizon. This implies that the solutions are similar in this region. This, as
mentioned previously, is due to the same terminal conditions. Working further
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(A) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units and µs = 0.01.
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(C) Adjoint co-state solution, λ̂(x, y, t), when t =
100 time units and µs = 0.05.
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(E) Adjoint co-state solution, λ̂(x, y, t), when t =
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0 100 200 300 400 500

t

10−4

10−3

‖λ̂
(x

,y
,t
)‖

2

(F) ‖λ̂(x, y, t)‖2 generated by NV when µs = 1.0.
The dashed vertical line indicates where the solu-

tion in Figure 8.6e is plotted.

FIGURE 8.6: The solution generated by NV at t = 100 time units, left column, and
the squared norm of the solution, right column, when µs = 0.01, top row, µs = 0.05,

middle row, and µs = 1.0, bottom row.
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FIGURE 8.7: θ̂X(t) for OCS, panel (A), for a range of α values and NV, panel (B), for a
range of µs values.

backwards in time the solutions diverge. This means the solutions are orthogonal and
share no similarities with each other. This, as mentioned in chapter 6, is caused by the
difference in temporal boundary conditions between OCS and MSS. One interesting
observation is that when α is small the values diverge away from MSS more rapidly
than larger values. This is caused by the large amount of control being applied in
these cases having a large influence on the solution. Implications of this are that OCS
is finding an “adjoint Shadowing direction” which is different to the MSS method.
One possible solution to this, as mentioned for the adjoint KS analysis, is to find the
solution using MSS that minimises the adjoint solution through allowing the temporal
boundary conditions to vary. This is different to the method used here where the
adjoint solution has constrained temporal boundary conditions. All values of µs

investigated showed no similarity with the MSS solutions, Figure 8.7b. The
implications of this are that, as in the KS cases, the NV methods are non-optimal and
more efficient methods of control are availabele. The dip in both OCS and NV around
t = 250 is caused by a large vortex bursting event where it is well known that
solutions align in these regions, see Refs. [4, 5, 26, 46, 47, 108, 123] for further details,
hence the aligning of the solutions with MSS.
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8.4 Influence of tuning parameters on the adjoint control
solution

In this section the adjoint control solutions generated by OCS and NV are compared to
those generated by MSS. This is undertaken using similar reasoning to before and to
find potential structures or features that could improve NV methods. As mentioned in
section 6.4, MSS also has a control term, 2v̂(x, y, t), and is compared to those generated
by OCS and NV. This is conducted for Lx = Ly = 2π, Nx = Ny = 90, T = 500 time
units preceded by a ‘spin up’ time of 10, 000 time units which ensures the solution is
on the attractor. Figure 8.8 shows the control spatial solution generated by MSS at
t = 100, panel (A), and the squared norm of the solution, panel (B). Due to the
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FIGURE 8.8: The solution generated by MSS at t = 100 time units, panel (A), and the
squared norm of the solution, panel (B).

formulation of the minimisation problem of MSS the adjoint control solution has no
fixed initial and terminal constraints on the solution. The MSS solution is largest
around the regions of x = 3, y = 1 and x = 6, y = 4 which relate to the vortex core
regions in the non-linear solution at that instant in time.

The solution generated by OCS for α ∈ {100, 1× 104, 1× 1011}, left column, and the
squared norm of the solution, right column, can be seen in Figure 8.9. It is clear that in
all cases investigated the control solution shares common features, albeit of different
magnitudes, with that of MSS. This implies that the control applied by OCS is very
similar in feature and structure to MSS suggesting that OCS acts in a similar manner
to MSS. The main two are the vortex cores at x = 3, y = 1 and x = 6, y = 4 and there
are high frequency features present similar to MSS. When α = 100 the solution
generated by OCS is several orders of magnitude larger than that generated by MSS
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FIGURE 8.9: The solution generated by OCS at t = 100 time units, left column, and
the squared norm of the solution, right column, when α = 100, top row, α = 1× 104,

middle row, and α = 1× 1011, bottom row.
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suggesting the solution is over-damped. This, again, is due to the control being cheap
to apply. The squared norm of the solution remains, on average, around 5× 10−5,
which is larger than MSS. Increasing α to 1× 104 produces a solution which is very
similar to one generated by MSS in structure suggesting that this value is producing a
solution which is appropriately stabilised. This also impacts the squared norm of the
solution where the average is decreased to around 5× 10−6 which is comparable to
MSS. When α = 1× 1011 the solution is smaller than that generated by MSS
suggesting the solution generated is under-damped. Further, the norm squared of the
solution is, on average, significantly smaller than that generated by MSS. When
α ∈ {100, 1× 104} the squared norm remains constant throughout the time horizon
whereas for α = 1× 1011 the solution increases exponentially. Selection of the value of
α a priori is difficult as the value which appropriately stabilised the solution is system
dependent and as such no rules of thumb can be produced. This suggests that an
alternative approach should be utilised in industry, such as MSS.

The solutions generated by NV for µs ∈ {0.01, 0.05, 1.0} are shown in Figure 8.10. The
first finding is that when µs = 0.01 the squared norm of the control solution increases
exponentially backwards in time. This implies the control is non-optimal and not
targeting the unstable CLV modes. This behaviour was seen for small values of tuning
parameter in the KS case also and suggests is a feature of certain NV methods.
Further, the solution generated does not resemble the solution generated by MSS and
is in the under-damped region. There is an emergence of the diagonal streaks that are
not present in MSS or OCS. This, it is argued, is caused by the control applied altering
the system significantly which results in a discrepancy between adjoint system and
non-linear system, Ref. [49]. Increasing µs to 0.05 reduces the squared norm of the
solution but still is unable to stabilise the solution. Further, the control solution is
closer to that of µs = 0.01 than MSS or OCS suggesting that the control is not being
applied in a more appropriate manner. When µs = 1.0 the control applied has a
squared norm that remains constant throughout the time horizon. Finally, the solution
shares similar features with MSS and OCS but is an order of magnitude larger. This
analysis suggests that when µs = 1.0 then this NV method may be close to optimal.

8.4.1 Similarities in control solution with MSS

In this section, the similarities between the control solutions generated by MSS are
compared to OCS and NV. This additional analysis is used to determine if structures
or features are present in OCS or MSS that could influence future selection of NV
terms. The metric used to in the comparison between the adjoint control terms for
MSS and OCS is

θ̂
q
OCS(t) = arccos

(
〈2v̂MSS(x, y, t), 2v̂OCS(x, y, t)〉
‖2v̂MSS(x, y, t)‖‖2v̂OCS(x, y, t)‖

)
,
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(A) Adjoint control solution, µs∇2λ̂(x, y, t), when
t = 100 time units and µs = 0.01.
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(C) Adjoint control solution, µs∇2λ̂(x, y, t), when
t = 100 time units and µs = 0.05.
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FIGURE 8.10: The solution generated by NV at t = 100 time units, left column, and
the squared norm of the solution, right column, when µs = 0.01, top row, µs = 0.05,

middle row, and µs = 1.0, bottom row.
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and NV and MSS is

θ̂
q
NV(t) = arccos

( 〈
2v̂MSS(x, y, t), µs∇2λ̂NV(x, y, t)

〉
‖2v̂MSS(x, y, t)‖‖µs∇2λ̂NV(x, y, t)‖

)
.

As before values close to 0 for these metrics means solutions are aligned and values of
π
2 mean the solutions are orthogonal and dissimilar. The results of this decomposition
for a range of values of α, panel (A), and µs, panel (B), are shown in Figure 8.11. In the
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FIGURE 8.11: θ̂
q
X(t) for OCS, panel (A), for a range of α values and NV, panel (B), for a

range of µs values.

OCS case the control applied is fairly well aligned with that of MSS in the final 100
time units of the time horizon for large values of α. This implies that the control terms
share some resemblance in this region. The reason for this is that OCS and MSS share
identical terminal boundary conditions and, therefore, minimal control is applied in
this region resulting in similar control between the methods. Outside this region there
is no similarity between the OCS and MSS control terms as the angle between
solutions is around π

2 . This is again due to the initial condition on the co-state solution
of MSS which is not present for OCS leading to differing control strategies between
the methods. The initial condition on MSS modifies the control such that OCS is no
longer similar. For NV, however, initially the control applied is similar to that of MSS
for large values of µs. As time increases this similarity diverges until there is no
similarity at all between solutions. The behaviour shown by NV is very similar to that
presented in chapter 6 which implies this control method is non-optimal and does not
apply control in a targeted manner.
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8.5 Validation of the covariant Lyapunov vectors and
Lyapunov exponents generated for the Kolmogorov
system

There has been relatively little work on computation of the CLVs, γk(x, y, t) and
γ̂k(x, y, t), on the Kolmogorov system. Work on computation of CLVs and LEs for fluid
flow has been undertaken in Ref. [90] around a cylinder, Ref. [66] on a thermo-acoustic
model, Ref. [58] for forced homogeneous turbulence and Ref. [94] in a turbulent
channel. There are works investigating the LEs of the Kolmogorov system, Ref. [54].
More recently computation of the CLVs for the Kolmogorov system, Ref. [67], has
taken place. This work presents the adjoint CLVs extending the work of Refs. [54, 67]

Firstly, as in the KS case, the ‘spin up’ time is determined such that the CLVs have
aligned with their respective sub-spaces. This is achieved in a very similar manner to
that presented in section 7.1 by simulating many CLVs from different starting times
and finding when the angles between the CLVs reduces to zero or in reality below
1× 10−7. The angle metric used is

θk = arccos
(
〈γk(x, y, tB)τ, γk(x, y, tB)10,000〉
‖γk(x, y, tB)τ‖‖γk(x, y, tB)10,000‖

)
,

where γk(x, y, tB)10,000 is the CLV simulated for 10, 000 time units and γk(x, y, tB)τ the
CLV simulated for τ = 10, 000− tA time units. As before, small values of the metric
mean the CLVs are similar and aligned and large values are dissimilar and not
aligned. The results of this can be seen in Figure 8.12 for a range of different τ values.
The two neutral CLVs do not converge with the same behaviour of the other modes.
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FIGURE 8.12: Convergence rates of γk(x, y, tB)τ for various τ values.
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The reason for this is identical to the KS CLVs and is due to the computed neutral
modes being a linear combination of the analytical neutral modes. Similar features are
present here as with the KS CLVs in that small values of τ means the CLVs do not
have time to align with their respective sub-spaces while large values allow time for
alignment. Here, a ‘spin up’ time of 10, 000 time units is used.

As the ‘spin up’ time has been determined, the LE spectrum computed using
the Kuptsov and Parlitz algorithm for the Kolmogorov system is shown in Figure 8.13
when Re = 40. While Ref. [67] uses a lower Reynolds number than investigated here

0 3 6 9 12 15 18 21

k

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

Λ
k

FIGURE 8.13: The Lyapunov exponent spectrum for the Kolmogorov system when
Re = 40.

there are similarities between Figure 1 in Ref. [67] and Figure 8.13 presented here. It
can, therefore, be concluded that the LE spectrum computed here is showing similar
behaviour to that of previously published works. The LEs show there are four positive
exponents, corresponding to four unstable CLV modes. The spectrum shows that
there are two neutral CLV modes. These CLVs can be thought of as being caused by
the property of the system and due to translational symmetry in the x direction
respectively, Ref. [67]. As in the KS system, the Kuptsov and Parlitz algorithm
struggles to disambiguate these modes and, therefore, the CLVs computed are linear
combinations of the two theoretical modes. The remaining LEs are found to be
negative. Unlike the KS system, the number of CLVs computed is argued here to be
well within the physical mode region as the high frequency modes are not found.
Further, due to the small domain investigated the resolution of the LE spectrum is
relatively “coarse” and increasing the domain size will resolve further modes and
likely lead to a reduced difference between consecutive LE values.

A range of CLVs, γk(x, y, t), are shown for k ∈ {0, 6, 12, 18} when t = 100 are shown in
Figure 8.14. While Ref. [67] uses a lower Re it is worth noting that the main CLV
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(A) Spatial structure of γ0(x, y, t) when t = 100.
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(B) Spatial structure of γ6(x, y, t) when t = 100.
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(C) Spatial structure of γ12(x, y, t) when t = 100.
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(D) Spatial structure of γ18(x, y, t) when t = 100.

FIGURE 8.14: Spatial structures of γk(x, y, t) for k ∈ {0, 6, 12, 18} when t = 100.

structures presented in Figure 4b in Ref. [67] are located around the main structures in
Figure 4a in Ref. [67]. There are similarities in the main CLV structures, Figure 8.14,
being around the two main structures around the banding at x = 2 and x = 5 in
Figure 8.1. These features are also shown in the KS CLVs presented in section 7.1.
While there has been little comparison of the CLVs to those presented in literature,
similar trends can be observed and the conclusion that CLVs computed here are
accurate can be drawn.

To the author’s knowledge there has been no publication of the adjoint CLVs,
γ̂k(x, y, t), for the Kolmogorov system and, therefore, these are presented in
Figure 8.15 for k ∈ {0, 6, 12, 18} when t = 100. As in the KS adjoint CLVs, there is very
little similarity between the adjoint CLVs and the non-linear solution, Figure 8.1. The
CLVs, which are computed with the forward/backward Lyapunov vectors, have been
validated against literature. Further, the adjoint CLVs, which cannot be validated
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(A) Spatial structure of γ̂0(x, y, t) when t = 100.
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(B) Spatial structure of γ̂6(x, y, t) when t = 100.
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(C) Spatial structure of γ̂12(x, y, t) when t = 100.
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FIGURE 8.15: Spatial structures of γ̂k(x, y, t) for k ∈ {0, 6, 12, 18} when t = 100.

against literature as there has been no publication of them, are computed using the
same forward/backward Lyapunov vectors. This provides reassurance that the
adjoint CLVs are accurate also. The structure of the adjoint CLVs has large scale
features and not the finer structures of those presented in Figure 8.14. This is similar
to the relation between the adjoint CLVs and CLVs found for the KS system providing
further validation that the adjoint CLVs presented here are accurate.

8.6 Impact of tuning parameters on the CLV decomposition

This section follows the analysis presented for the KS system where the forcing,
co-state and control fields are decomposed onto the CLVs. The rationale for this
analysis is to show that the conclusions drawn for the KS system and the statements
made are generalised across systems and are features of the methods and not of
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individual systems under investigation. Further analysis is also undertaken through
varying the tuning parameters α and µs for OCS and NV respectively. It is worth
noting that the forcing term of the adjoint formulation is 2χ(x,y,t)

T . Firstly, the value of
the forcing is a linear combination of the adjoint CLVs

2χ(x, y, t)
T

=
nv−1

∑
k=0

â f
k (t)γ̂k(x, y, t).

Taking the inner product of this with γk(x, y, t) along with using Equation (7.1) leads
to

â f
k (t) =

〈
γk(x, y, t), 2χ(x,y,t)

T

〉
〈γk(x, y, t), γ̂k(x, y, t, )〉 .

The time average value of |â f
k (t)| is presented in Figure 8.16. This decomposition

0 3 6 9 12 15 18

k

10−1

100

101

102

103

|â
f k(

t)
|

FIGURE 8.16: |â f
k (t)| for the Kolmogorov system. Yellow boxes denote the neutral

CLV modes.

shares similar features with those presented for the KS system where the forcing term
mainly decomposes onto the near neutral modes and has reduced influence outside
this region. This is in very good agreement with the analysis undertaken on the KS
system suggesting that the near neutral modes are important regardless of which
system or parameter is selected. It is worth noting, at this point, that due to the
relative coarseness of the LE spectrum that there are fewer near neutral modes, three
in this case, than investigated in the KS system, where there are approximately 10.
This results in fewer modes becoming dominant in the forcing term and likely in the
co-state and control decomposition also. The argument for the reduced dominance of
the near neutral modes is that the LE spectrum is relatively “coarse” in that there are
large gaps between successive exponents. It was shown in section 7.3 that increasing
the domain size “refines” the LE spectrum. Doing so resulted in the dominance
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around the near neutral modes increasing. It is expected that this would also be
beneficial here and the dominance around the near neutral modes would increase.
This impact of increasing the domain size would be that a larger number of CLVs
being required leading to an increase in ‘spin up’ time, computational cost and
memory. However, these trends do not show significant differences with those
observed for the KS system and can be concluded that these are features of the
methods and not due to the system under investigation.

It was presented in section 7.2.1 that the denominator, 〈γk(x, y, t), γ̂k(x, y, t, )〉 also
plays an important role in the decomposition. The time average of the absolute value
of this denominator is shown in Figure 8.17. This shows that the denominator shares
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FIGURE 8.17: | 〈γk(x, y, t), γ̂k(x, y, t)〉 | for the Kolmogorov system. Yellow boxes de-
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similar features to that presented for the KS system. The reason for this is due to the
tangency between the near neutral modes which results in orthogonality between the
kth CLV and its adjoint. Increasing the domain size, as suggested previously, would
increase the “resolution” of the LE spectrum which would increase tangencies
between the CLVs and their respective adjoints around the near neutral regime. This
results in an increasing orthogonality between CLVs and their adjoints. This implies
that this limitation is present regardless of which spatially distributed system is
investigated. To overcome this limitation the expected gain of the system, ratio of
output to input, are investigated as this removes the influence of the denominator.

The gain for the co-state for MSS, OCS when α = 500 and NV when µs = 0.5 is
presented in Figure 8.18. The reader is reminded that the gain expected gain of the kth

mode is proportional to 1
Λk

. This implies that near neutral CLVs have a larger gain
than those outside of the region. As in the previous cases, the gain is peaking around
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the near neutral modes for MSS and OCS. This implies that the expected gain is
generic between systems and only relies on the LEs of the system. The dominance of
the near neutral modes is smaller than that observed in the KS system. The reason for
this is that, due to the relative “coarseness” of the LE spectrum there are fewer modes
around the near neutral region and as such have larger LE exponents which results in
a smaller gain. To overcome this, increasing the domain, which would increase the
“resolution” of the LE spectrum would result in more modes with smaller Lyapunov
exponents which would lead to larger gains along these modes. Increasing the time
horizon is expected to increase the gain also and provide a bigger difference between
the near neutral modes and those that are outside this region. It can still be seen that
the expected gain seen here is similar to that seen in the KS system and the analysis
and conclusions drawn for the KS system are also valid here. The similarity in
expected gain between OCS and MSS is due to similarity in terminal conditions
between the methods. This results in minimal control being required which results in
the gain being similar to the expected value for both the methods, again similar to the
adjoint KS findings. NV, on the other hand, has gain along all modes. This is due to
the difference in terminal boundary conditions between MSS/OCS and NV which
results in mode control being applied which results in additional damping. This
implies that the NV methods investigated is non-optimal and the application of
control is not targeting the unstable sub-space.

The reader is reminded that for the adjoint formulation the control term for MSS/OCS
is 2v̂(x, y, t). The control gain for MSS, OCS when α = 500 and NV when µs = 0.5 are
shown in Figure 8.19. MSS has the least control gain along each CLV but still retains
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the peak in the near neutral modes. This suggests that MSS is providing a more
optimal control over the OCS and NV methods. OCS shares features with MSS in that
the largest gain is along the near neutral modes and decreasing slightly elsewhere.
The analysis for the Kolmogorov system is not as clear as for the KS system. This
again is due to the small domain investigated resulting in a “coarse” LE spectrum
which results in a smaller number of near neutral modes. The implication of this
reduced number of near neutral modes is that the dominance of the near neutral
modes is reduced and trends are less obvious. Increasing the domain size would
likely mean the near neutral gain becoming more dominant for the control terms also.
Finally, NV has almost constant gain along each mode. This implies that NV methods
are not targeting specific unstable sub-spaces and the NV method is non-optimal.

8.6.1 Influence of α on the CLV decomposition

In this section the tuning parameter α is varied and the impact on the solution
decomposition onto the CLVs is investigated. This is to show that the influence of α is
common between systems. Firstly, the value of the adjoint co-state is a linear
combination of the adjoint CLVs

λ̂(x, y, t) =
nv−1

∑
k=0

âk(t)γ̂k(x, y, t).
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Taking the inner product of this with γk(x, y, t) along with using Equation (7.1) leads
to

âk(t) =
〈
γk(x, y, t), λ̂(x, y, t)

〉
〈γk(x, y, t), γ̂k(x, y, t)〉 .

The time averaged value of |âk(t)| is shown in Figure 8.20. In general, it can be seen
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that regardless of which value of α is selected, in the range investigated here, all the
decompositions are again dominated by the near neutral modes. This implies that
OCS is finding the similar Shadowing directions regardless of which value of α is
selected. This is in very good agreement with that shown for the KS system. In
comparison to KS, the peak around the near neutral modes is orders of magnitude,
four or five, larger than the other modes whereas KS was only around two or three.
This may contribute to the relative similarities between solution decompositions and
decreased dependence on α.

When α = 1× 102 it can be seen that the solution is reduced along each CLV mode.
Further, this case is lower than that of MSS. This implies that the the solution is
over-damped. As α is increased the solutions converge to MSS in the stable modes,
k > 6. For the unstable modes, however, increasing α leads to increased projection
which, when α ≥ 1× 108, is closer and sometimes above that of MSS. This suggests
that OCS is unable to control the unstable modes which leads to them becoming
dominant and the solution becoming under-damped. This peak around the near
neutral modes is, again, due to 〈γk(x, y, t), γ̂k(x, y, t, )〉 and the time average of this
value is shown in Figure 8.17.
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Similarly, the control term, which for the adjoint formulation is 2v̂(x, y, t) for both MSS
and OCS, is a linear combination of the adjoint CLVs

2v̂(x, y, t) =
nv−1

∑
k=0

b̂k(t)γ̂k(x, y, t).

The value of the weighting factor can be found using

b̂k(t) =
〈γk(x, y, t), 2v̂(x, y, t)〉
〈γk(x, y, t), γ̂k(x, y, t)〉 .

The time averaged value of |b̂k(t)| is shown in Figure 8.21. In general, it is found that,
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again, the control solution is dominated by the near neutral modes for all values
investigated. This implies that NV methods should follow this structure also to be
optimal. In reality, it is difficult to know a priori if this will be the case for any NV
method as the computation of CLVs is expensive and may not be feasible. It is also
worth noting that the amount of control applied is orders of magnitude smaller than
the co-state decomposition, Figure 8.20. This implies that the adjoint formulation is
more optimal as the termporal boundary conditions are closer to a solution that has
been stabilised. When α ∈ {1× 102, 1× 104} the amount of control applied is larger
than that applied by MSS. This implies that the solution is over-damped. Conversely,
when α ≥ 1× 108 the control applied is smaller than that of MSS. This implies that
control is inadequate to stabilise the solution which results in under-damping. The
wider implications are that NV methods should not apply a smaller amount of control
than that applied by MSS. This may be difficult constraint to apply in practice as MSS
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is also computationally expensive. In between these values the control applied is in
good agreement with that applied by MSS. This suggests that OCS and MSS are very
similar in their application of control, similar to that found for the KS system, and
target control onto similar features of the unstable sub-space.

8.6.2 Influence of µs on the CLV decomposition

In this section the tuning parameter µs is varied and its impact on how the adjoint
co-state and control solutions decomposes onto the CLVs is investigated. This is
undertaken to increase the understanding of the NV methods and how they compare
to OCS. The time averaged value of |âk(t)| for multiple µs values is shown in
Figure 8.22. It can be seen, again, that there is a peak in all solutions around the near
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neutral modes for all values of µs investigated. When
µs ∈ {10× 10−3, 3.0× 10−2, 5.0× 10−2} the decomposition is larger than MSS,
suggesting the solution is under-damped. As µs is increased the solution tends to that
of MSS. Above a certain value the solution is lower than MSS which implies the
solution is over-damped. It is worth noting that this approach has a higher
dependence on the tuning parameter than OCS. The implication of this is that, where
OCS finds the similar solution for a large range of values for α, the solution found by
NV is highly dependent on the tuning parameter. This suggests that NV methods are
non-optimal and do not target the same features for all values of the tuning parameter.

Similarly, the control term which for the adjoint formulation is 2v̂(x, y, t) for MSS and
µs∇2λ̂(x, y, t) for NV is decomposed in a similar manner. The time averaged value of
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|b̂k(t)| is shown in Figure 8.23. In general, the control solution is found to be
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dominated by the near neutral modes for all cases investigated. For all values of µs the
amount of control applied is larger than that applied by MSS. Even in the cases when
the solution is adequately damped, µs = 1.0, the amount of control is larger. This
implies that the control applied by NV is non-optimal. It is also worth noting that the
decompositions when µs = 0.5 and µs = 1.0 are almost identical suggesting a limit to
the amount of control and solution stabilisation that these methods can achieve. The
conclusions drawn here are in good agreement with those for the KS system and it can
be concluded that the behaviour of NV methods are common between systems. This
implies that NV methods may not be able to achieve the same solution as MSS or
other Shadowing methods.

8.7 Summary

While the behaviour of OCS, MSS and NV on the Kolmogorov system is very similar
to that presented for the KS system all previous analysis is valid. Moving to a more
complex system leads to differences between the systems which are outlined here and
analysis as to their impact on the OCS, MSS and NV methods drawn.

The first major difference between the the Kolmogorov and KS systems investigated is
the correlation between J̄ and the parameter of interest. For the KS system the
sensitivity was approximately zero gradient, in the range of parameters investigated,
while the Kolmogorov system showed stronger correlation along with positive
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correlation between J̄ and parameter Re. Fundamental assumptions of OCS and MSS
rely on the attractor of the system being hyperbolic. The reason for this is that the
Shadowing lemma is derived for hyperbolic attractors which MSS and OCS are built
upon. For most engineering systems the attractor is quasi-hyperbolc which does not
cause significant concern for the validity of the methods. The value of the gradient is
not a significant concern as there are parameters which do not impact the value of J̄ in
the real world systems and these methods are able to accurately compute these.

The second major difference is the range of α for which accurate sensitivities are
computed. The Kolmogorov system had a larger range of α values which produced
accurate sensitivity than KS. One possible explanation is the increased dimension of
the Kolmogorov system enabled a larger space of control that could leverage physical
mechanisms to damp the unstable modes. The result of this is that a larger range of α

values can be utilised. One implication of this is that for 3D turbulent flow systems
the range of α values that produce accurate sensitivity values could increase and
would remove one of the limitations of the method in a priori selection of α that would
lead to accurate sensitivities.

One similarity between the systems was that both systems had two neutral CLV
modes. For both systems these modes theoretically corresponded to a translation in
time and a translation in the x coordinate. Kolmogorov does not have three neutral
modes which correspond to translation in y due to the forcing term in the primal
equations. OCS computes accurate sensitivities for systems with one neutral mode,
Lorenz, and two, both KS and Kolmogorov. It is expected that increasing the number
of neutral modes, from investigating a 3D Kolmogorov system for example, would
not impact the behaviour or accuracy of the OCS method. Many engineering system
do not have periodic boundaries and, therefore, would likely have only one neutral
CLV mode which does not pose any issues for OCS.

Increasing from one spatial dimension, KS, to two, Kolmogorov, increased the degrees
of freedom of the system leading to an increase in the memory requirements for the
OCS algorithm without impacting the accuracy of the method. The result of this was
twofold. Firstly, the number of segments required for Kolmogorov was larger than KS
to ensure the memory requirement of each segment was not larger than the compute
node. Computational time was increased due to more degrees of freedom and
convergence was slower for the CG/GMRES solvers. Secondly, the larger degrees of
freedom meant the CLVs required a longer ’spin up’ time to converge to their
respective sub spaces. For larger more industrially relevant systems could result in
CLVs or OCS being too computationally expensive.

A major difference between KS and Kolmogorov was that for KS the smallest domain
investigated generated both detailed information about the primal structures,
accurate sensitivity and a large number of positive LEs. The Kolmogorov system, on



8.7. Summary 173

the other hand, produced accurate sensitivities along with detailed infromation about
the primal structures but relatively few positive LEs. A result of this is that direct
comparison between KS and Kolmogorov was not achievable due to the “coarse” LE
spectrum for the Kolmogorov system. An appraoch to overcome this limitation is to
increase the domain of the Kolmogorov system to ensure a smoother LE spectrum.
The impact this would have on OCS is mainly time and memory related. A larger
domain leads to a larger number of degrees of freedom resulting in a larger memory
footprint. A result of this could be a larger number of segments being required which
negatively impacts convergence rates, leading to an increased time to solution.
Further, larger number of degrees of freedom will lead to a longer ’spin up’ time
required to ensure the CLVs have converged to their respective subspaces.

One final difference between KS and Kolmogorov is that Kolmogorov has rare
bursting events whereas KS does not. The impact this has is that around these
bursting events the CLVs all align. Sensitivities generated by OCS did not seem to be
negatively impacted by the bursting events and the control term was not significantly
altered by their presence. One argument as to why this was the case is that during the
bursting event all the CLVs align which would mean control is easier determine. This
could also be responsible for the larger range of α values that produce accurate
sensitivity. An argument for this is that the bursting events essentially split the time
domain in to sections determined by physical mechanisms which means a larger
space of control is applicable.
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Chapter 9

Conclusion

Traditional methods for sensitivity analysis either involve the tangent (forward)
formulation or the adjoint (backward) formulation. In chaotic systems these methods
fail due to the exponential growth of perturbations which is also known as the
“butterfly effect”. The sensitivity computed is unbounded and non-physical. To
overcome this limitation two classes of sensitivity analysis have been developed in the
literature.

The first approach is derived from the Shadowing lemma and are known as
Shadowing methods. These methods either require the computation of the covariant
Lyapunov vectors (CLVs), solve a minimisation problem in the case of LSS, MSS or
NILSS, or solve a boundary value problem in the case of Periodic Shadowing without
any a priori knowledge of the expected sensitivity. The limitation of these methods is
that they are typically computationally expensive. The main benefit is that these
approaches compute accurate sensitivities with no a priori knowledge of the expected
value.

The second approach is the numerical viscosity (NV) method where terms are added
to the linearised equations. The impact that these additional terms have is to stabilise
the solutions and control the exponential growth of perturbations when tuned
correctly. One of the main limitations of these methods is that a tuning parameter is
altered until the sensitivities generated match the expected value. The benefit is that
one non-linear solution is required along with one linear solution which makes these
methods computationally cheap.

Several questions arise from analysing these various approaches: The first main
question is how optimal are the current NV methods that have been proposed in the
literature? This relates to the amount of control that is required to be applied to
stabilise the solution and is there an alternative approach that could apply less and
still stabilise the solution. Further, are there specific structures or characteristics of
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control that could be utilised to provide a better, more selective NV term in stabilising
the solution? The current NV literature selects terms which dissipate energy and it is
unclear if this is the best strategy or is targeting production of energy terms more
effective? Another question that arises is how similar or dissimilar are the solutions
generated by the Shadowing approach to NV? It is clear that the two methods can
produce the same sensitivities but how do the solutions compare? It is currently
unclear if there are certain features of Shadowing that can be utilised to generate a
more optimal NV term. As all the current NV method are reactive, i.e. the application
of control is proportional to the linearised solution, is there an approach that is
proactive, for example a NV term that can apply control based on the future dynamics
of the non-linear solution?

9.1 Summary of findings and critical analysis

This thesis developed Optimal Control Shadowing, OCS, as a method to bridge the
gap between the computationally expensive and accurate Shadowing methods, and
the computationally cheap but potentially less accurate numerical viscosity, NV,
methods if tuned incorrectly. This was achieved through the introduction of a generic
control term into the tangent equation, and its structure is found utilising optimal
control techniques. The tangent OCS formulation, valid for a single parameter, and
the adjoint OCS formulation, valid for multiple parameters, were derived. For large
systems the optimal control problem becomes very memory intensive and, in extreme
cases, may not even fit on a compute node. To overcome this limitation, an approach
that decomposed the time domain into segments, section 3.6, such that the solutions
can be distributed across multiple compute nodes was derived for the tangent OCS
form but is equally valid for the adjoint formulation. This has the added benefit of also
conditioning the system. Finally, various algorithms and preconditioning methods for
the numerical solution of the optimality conditions were presented for the tangent
OCS formulation and the decomposed time domain formulation. These algorithms
and preconditioning methods are also applicable to the adjoint formulations.

As part of the derivation of OCS a tuning parameter, α, was introduced and
determines the accuracy of the method which is analogous to the tuning parameters
in the NV methods. Small values of α lead to solutions which are over-damped. In the
tangent OCS formulation these values lead to tangent solutions which are visually
similar to ones produced by MSS along with the angle between these solutions being
small, meaning they are aligned. It can, therefore, be concluded that OCS finds an
approximation to the Shadowing direction that is very similar to one found by MSS.
For the adjoint formulation, on the other hand, these values of α produced solutions
which were not visually similar to MSS and the angles between solutions were on
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average π
2 . The reason why this was the case is due to the initial and terminal

constraints on the MSS solutions impacting the solutions. One explanation for
discrepancy between tangent and adjoint formulations is that two approaches for the
adjoint form were presented for OCS. The first is to find the adjoint of the tangent
formulation where the tangent is minimised, section 3.4, and the second is to
minimise the adjoint, section 3.5. It was shown that, for OCS, these two are identical.
However, this may not be the case for MSS and that the adjoint OCS should be
compared to the equivalent MSS which minimised the adjoint field which could be a
cause of the discrepancy between adjoint solutions. Increasing α lead to
under-damped solutions. For the tangent formulation this led to solutions which
shared no visual resemblance to MSS along with the angles between solutions being
π
2 . The adjoint formulation led to solutions which visually looked similar to MSS but
the angles between solutions were again π

2 . This suggests that adjoint OCS may not be
as optimal in the application of control as the tangent formulation or MSS. For the NV
methods investigated here the solutions generated results which did not look visually
similar to MSS for both tangent and adjoint formulations, regardless of the tuning
parameter value used. Further, the angles between solutions and MSS were all π

2 for
both tangent and adjoint formulations and all tuning parameters investigated. The
implications of this is that NV methods are not as optimal as OCS and that their
control is applied that does not target the same features as OCS or MSS.

For the tangent formulation comparison between the control solutions generated by
OCS and NV was presented. For the adjoint case, however, MSS has a control term
and, therefore, comparison between MSS, OCS and NV control terms was undertaken.
In the tangent formulation OCS applied control that was initially large and decreased
throughout the time domain. For the adjoint formulation the control was largest
towards the end of the time horizon and decreased backwards in time. This implies
that OCS stabilises the solution onto the approximate Shadowing direction and then
applies minimal control that keeps the solution stabilised. Further, all control terms
shared visual similarities with MSS and the angle between OCS and MSS control was
around π

2 implying that OCS and MSS are targeting slightly different features. In both
tangent and adjoint formulations increasing α maintained this feature but reduced the
magnitude of control applied. This implies that when α is large the control can then
not stabilise the solution. Further, control was predominantly applied in
wavenumbers where production of tangent/adjoint energy dominated dissipation.
This suggests that as these wavelengths correspond predominantly to the unstable
sub-spaces, as shown by the power spectra of the covariant Lyapunov vectors, that
OCS and MSS target this sub-space and are minimal in the neutral and stable
sub-spaces. This implies that as OCS predominantly targets the production terms
future NV methods should have this feature. Increasing the wavenumber reduced the
amount of control applied as dissipation began to dominate. This behaviour was seen
in the adjoint MSS control term also but at a reduced magnitude. This suggests that
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OCS and MSS share similar features in that the production terms are targeted. This
analysis was repeated for the NV methods. In general, the amount of control applied
is proportional to the tangent or co-state solution for all values of tuning parameter.
When the tuning parameter is small the solutions are not stabilised and, therefore, the
amount of control grows exponentially in time. Increasing the tuning parameter leads
to smaller amount of control being applied which is able to control the solution. For
the tangent formulation NV applies zero control initially and increases in time. This
implies the NV methods are not finding the approximate Shadowing direction but
some other direction which is related to a slightly modified non-linear solution,
Ref. [49]. In the adjoint formulation control applied is zero at the terminal condition
and increases backwards in time. For all values of tuning parameters the control
solutions did not visibly resemble that of MSS and the angle between the control
solutions was, on average, π

2 . This implies that the NV methods investigated here are
not targeting the unstable sub-space but applying general control across all
sub-spaces.

From the decomposition of the solutions generated by the methods onto the CLVs it
was discovered that the near neutral modes play an important factor in the solutions
generated. A reconstructed solution was generated that was a linear combination of
six of the most influential modes for the tangent formulation and twenty for the
adjoint formulation. These reconstructions showed good agreement in the angle
between the reconstructed and computed solutions along with the ratio of norms
being around unity. This implies that having knowledge of these near neutral CLVs
could be used to create a good approximation of the solutions generated by the
various methods. The adjoint formulation required more modes was that the
influence of the near neutral modes was smaller than that of the tangent formulation
and the other modes play a larger role. One other reason was the difference in adjoint
formulations between OCS and MSS. It is argued that the adjoint MSS formulation
used in this thesis does not find an “adjoint Shadowing direction” but rather the
adjoint solution corresponding to the tangent Shadowing direction whereas adjoint
OCS finds an “adjoint Shadowing direction”. This suggests that, if the CLVs were
known a priori that a good approximation of the tangent/adjoint solution could be
achieved. The further implications of this is that, as the tangent/adjoint solutions are
used in the computation of the sensitivity, the near neutral modes also are important
for the sensitivity of the system under investigation.

The impact that the tuning parameters on the CLV decomposition was then
investigated. It was shown that for OCS that when α was small the decompositions
were similar to MSS in the near neutral modes and larger outside this region. As α

was increased the near neutral mode decomposition remained constant but the modes
outside this region tended towards the MSS decomposition. When α was increased
further the solution diverged away from MSS. The reason for this was that the amount
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of control applied decreased which led to the solution being under-damped and led to
the solution not being stabilised. Increasing α reduced the amount of control down
each of the other modes which moves the solution from over-damped to adequately
stabilised and, finally, under-damped solutions. This behaviour was not seen for NV.
For small values of the tuning parameter the decomposition had no resemblance with
MSS. Increasing the tuning parameter moved the decomposition closer to MSS until
increasing the tuning parameter further had no impact on the solution. Similar
behaviour was seen for the control decomposition. The suggestion for this is that OCS
acts in a very similar manner to MSS for a large range of tuning parameters. This
highlights that OCS and MSS are finding solutions with very similar features. Further,
this result implies that OCS is attempting to find the same approximate Shadowing
direction over a wide range of tuning parameters. The ramification is that this should
be a feature at NV methods should incorporate which is not seen from the methods
investigated here. Discovery of these features is computationally expensive as the
CLVs are, in general, computationally expensive and often unfeasible.

Increasing the domain size did not increase the largest Lyapunov exponent (LEs) but
reduced the difference between consecutive modes or, in other words, increased the
resolution of the spectrum. With the correct scaling of the mode index it was shown
that the LE spectra and decompositions collapsed onto the same curve. It was shown
that the expected gain along each of the CLV modes was found to be proportional to

1
Λk

which is the inverse of the Lyapunov exponent for mode k. This result had not
been discovered prior to this work, is a key finding and highlights the importance of
the near neutral modes in the Shadowing solution as they have smaller exponents
leading to larger gain. MSS had good agreement with this expected gain for both
tangent and adjoint formulations. This implies that MSS is targeting the unstable
sub-space to remove its influence and that as OCS produces similar results has this
feature also. Further, this gain was shown for two parameter of interest cases and
similar features were seen between them. OCS and NV did not follow this expected
gain profile for the tangent formulation due to the existence of the control terms in the
equations. The gain of the control terms for tangent OCS and NV were along the
modes outside the near neutral region. The reason for this was due to the initial
condition on the tangent solutions that were far away from the approximate
Shadowing direction. This resulted in the unstable modes requiring additional
damping which lead to a larger than expected gain. This was not the case for the
adjoint formulation as OCS and MSS shared identical terminal boundary conditions
which, it was argued, led to an terminal condition that was closer to a stabilised
solution which resulted in smaller amount of control being applied to stabilise the
solution. This suggests that the adjoint OCS formulation is more optimal than the
tangent formulation due to the terminal boundary condition. The implications of this
is that if the tangent solution has an initial condition closer to the Shadowing
direction, then smaller, more targeted amounts of control would be applied. In reality,
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finding the Shadowing direction is computationally expensive and as such results in
the modified initial condition being prohibitive. It was shown that increasing the
domain size leads to the resolution of the Lyapunov exponents increasing, i.e. the
difference between successive modes decreases. This led to an increased gain around
this region, highlighting the importance of the near neutral modes. These results were
shown on the Kuramoto-Sivashinsky system and to a lesser extent the Kolmogorov
system. The reason why the Kolmogorov did not show such strong results was due to
the number of CLVs calculated in the unstable sub-space regime. Increasing the
domain size would lead to larger number of unstable CLVs being computed and as
such should lead to more pronounced results.

In general, fewer segments used to decompose the time domain results in an
algorithm with smaller computational cost. In practice, however, fewer segments
results in the memory requirements of the optimal control problem on each segment
potentially being larger than the compute node they are allocated to. Therefore, the
number of segments is selected such that the memory requirements for the optimal
control problem is below the memory limit of each node and that the optimal control
problem on each segment is solved in a “reasonable” time. The value of α controls the
condition number of the optimal control problem. Large values mean that the
condition number is small and leads to fast convergence, whereas, small values leads
to slow convergence. The implication of this is that, as the system determines the
values of α that relate to under or over-damped solutions, the system impacts the
conditioning of OCS through the value of α. Finally, Forward Gauss-Seidel (FGS)
preconditioning, for the tangent formulation, produces the fastest convergence rates
of the preconditioning methods investigated, followed by Backward Gauss-Seidel
(BGS) and then Jacobi. The reason why FGS was fastest was due to an increased rate
of “information” transfer between segments and at each iteration control can be
applied more “appropriately”. The limitation of FGS and BGS is that the segments
must be solved sequentially whereas Jacobi and no preconditioning can be solved in
parallel. Therefore, the increased rate of convergence of the FGS method may have a
slower wall-clock time than Jacobi due to the parallel nature of Jacobi preconditioning.

In answer to the questions asked at the beginning of this thesis, the NV methods did
decompose onto the near neutral CLV modes which is similar to that of OCS and MSS.
The decomposition onto the modes outside of this region are larger than OCS and
MSS suggesting that these methods are not optimal. Further, sensitivities were
calculated which were in good agreement with the expected values. Comparison of
the norm, wavenumber and angle between solutions with MSS showed that the NV
methods investigated here were again not similar to MSS or OCS. The NV methods
investigated here did not find a solution that is close to the approximate Shadowing
direction where OCS did. It is clear that the NV methods are not optimal even though
accurate and similar sensitivity values are produced between the methods. Further,
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the OCS approach is “better” than the NV methods for the tangent and adjoint
formulations on systems investigated here due to the smaller amount of control
applied. As to specific characteristics and structures of the NV term, it was found that
OCS applies control that is predominantly in the wavenumbers where production of
energy dominates dissipation which relates to the unstable sub-space and implies that
this feature should be incorporated into future NV methods. OCS also decomposes
onto the near neutral CLVs in a more predictable manner than NV suggesting that
OCS attempts to find a solution that is very similar to the Shadowing direction for a
range of control solutions and should be a feature that NV methods have. Further,
OCS applied control initially, for the tangent formulation, whereas NV applies control
that is proportional to the linearised solution. This implies OCS attempts to stabilise
the solution onto an approximate Shadowing direction and applies minimal control to
ensure the solution remains close to the Shadowing direction. A recommendation for
selection of an NV term should have a combination and aspects of these features.

9.2 Future work

There are several directions that future research could take. The obvious direction is to
continue this investigation on larger, more complex and industrially relevant systems.
This avenue may not be significantly fruitful as the behaviour of OCS was shown to
be common between three different systems, and it is expected to have this behaviour
on all systems. Another obvious direction is to determine a method to find the value
of α with no a priori information of the expected sensitivity. Again, this avenue may
not be beneficial as the cost of these OCS methods are more expensive than MSS and,
therefore, if sensitivities are required then MSS would be a better suited method.

One of the major discrepancies between OCS and MSS was the difference in solution
similarity between the two when considering the adjoint formulations. In the analysis
of OCS it was shown that OCS and MSS find similar solutions in the tangent
formulation but was not the case for the adjoint formulation which is counterintuitive.
The adjoint OCS derived from the minimisation of the tangent solution has been
shown to be identical to the adjoint OCS formulation derived from minimisation of
the adjoint solution. It was argued that adjoint MSS derived from minimising the
tangent solution is different from the adjoint MSS derived from minimising the
adjoint solution, and that this difference could cause the difference in solution
between the adjoint formulations of OCS and MSS. Therefore, a suggestion for future
work is to compare adjoint OCS to adjoint MSS derived from the minimisation of the
adjoint solution to investigate if the “adjoint Shadowing direction” generated by OCS
has similar features with adjoint MSS.
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This thesis described the computational aspects of the OCS algorithm. From the
experience gained in this work two avenues of research have emerged. Firstly,
conjugate gradient and GMRES linear solvers have been utilised in this work. There
are a number of other linear system solvers available in the literature and selection of
a more appropriate one could lead to reduced computational costs. Secondly, simple
preconditioning methods were utilised which offered an increased convergence over
the standard case. A range of other preconditioning methods are covered in the
literature for alternative sectors/fields and some of these may be applicable to this
work.

Optimal control was investigated here as the solution generated was the “best” that
NV could achieve and provided a good measure of the NV methods. Alternative
non-optimal control methods are available in the literature. Two avenues arise from
using non-optimal control. Firstly, what is the impact that utilising non-optimal
control have on the solutions generated by OCS? Secondly, what computational
benefits does using non-optimal control generate? Are non-optimal control methods
significantly cheaper computationally or do they provide a memory improvement? If
these methods are beneficial then sensitivity analysis may be a step closer to being
adopted in an industrial setting.

The formulation presented in this thesis assumes that a control term is available at
every time-step. Two avenues of investigation arise from this. The first is what would
the impact be in “coarsening” the control solution, i.e. only have the control every n
time-steps or only at certain grid points if the solution is spatially distributed. The
second avenue is that multi-grid methods have been shown to provide improved
convergence rates in computational fluid dynamics and what, if any, benefit would
these approaches have in the solution and convergence rates of OCS.

In this work it was discovered that the near neutral CLVs are important in the
solutions generated by all methods. Several avenues of investigation arise from this.

Firstly, given a set of near neutral CLVs what is the best approach to combine these to
produce a solution that is a good approximation to the Shadowing direction. Granted,
this avenue is unlikely as the CLV are more computationally expensive than solving
the MSS minimisation problem. Researching this combination of CLVs could be
fruitful as it may provide insight into the structure of the solution.

Secondly, it is well known that the number of positive exponents is the main
limitation of the Shadowing methods. A method that could potentially make NV a
more attractive approach is to utilise information and structures within the first n
unstable CLV modes, or a subset thereof, to generate a NV term which specifically
targets the unstable subspace. This could be lead to a more generic NV approach that
could require less tuning than the current approaches.
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Thirdly, is there an approach to computation or extraction of the CLVs form the
solutions generated by MSS. Throughout the course of this investigation MSS was
significantly cheaper to compute than the CLVs. With this in mind and knowing that
MSS decomposes onto the near neutral CLV modes would it be possible to extract
these from the solution. This would be beneficial as having CLVs provides
information about the solution, the sub-spaces of the tangent space and could lead to
developments in understanding of turbulence, transition and vortex bursting for
example.

Finally, this work has already discussed the convergence rates of OCS and could that
convergence rate be improved by knowledge of the first n CLVs. This work has shown
that the unstable CLVs are damped and incorporation of these into the algorithms
could lead to faster convergence. Increased convergence would then mean that these
methods are more attractive to industry.
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Appendix A

Covariant Lyapunov vectors and
Lyapunov exponents

The covariant Lyapunov vectors (CLVs) and Lyapunov exponents (LEs) have been
proposed as a tool for analysis of the various time averaged sensitivity analysis
methods investigated. While their exact derivation is not required for the analysis,
their context and details which may not be well known are provided here. The CLVs,
along with LEs, can be utilised to determine the unstable, neutral and stable
sub-spaces, Ref. [72]. It is for this property that the CLVs are utilised as a tool for
analysing the time averaged sensitivity methods investigated in this thesis. By
decomposing the solutions generated onto these sub-spaces could inform features that
NV methods should take. The mathematical derivation and algorithms provided here
is a recap of the literature, Refs. [6, 7, 50, 51, 72, 95, 112, 131], and no additional
development in understanding or algorithms is provided. This Appendix has been
written in the form that is consistent with the remainder of this thesis. The CLVs were
initially developed in the 1970s and early 80s, Refs. [6, 7, 112], but have gained more
traction recently, Refs. [50, 51, 72, 95, 131], due to computational advancements.

Firstly, consider a linear perturbation, v(t) ∈ Rnv , to the trajectory of Equation (2.1)
which can be described by

dv(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
v(t). (A.1)

Utilising Equation (A.1), a matrix of perturbations, X(t) ∈ Rnv×nv , can be propagated
as

dX(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
X(t), (A.2)

where the initial conditions for Equation (A.2) is any non-singular matrix. From
Appendix B it is known that this perturbation matrix, X(t), can be used to form the
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state transition matrix
Φ(t1, t2) = X(t2)X(t1)

−1. (A.3)

A singular value decomposition of Φ(t1, t2) can be performed resulting in

Φ(t1, t2) = G−(t1, t2)σ(t1, t2)G+(t1, t2)
T, (A.4)

where G−(t1, t2) ∈ Rnv×nv and G+(t1, t2) ∈ Rnv×nv are the left and right singular
vectors respectively and σ(t1, t2) ∈ Rnv×nv are the singular values. Since Φ(t1, t2)

determines the growth of the perturbations the singular values, σ(t1, t2), determine
the local stretching/contraction ratios of these perturbations.

It is expected that for infinitely large time horizons that there will be a limit to these
stretching ratios and, therefore, the singular values, Ref. [72]. By taking t2 → ∞ the
right singular vectors reach a limit also, which are referred to as the forward
Lyapunov vectors, ψ+

k (t) ∈ Rnv for k = 0, 1, . . . , nv − 1. By taking t1 → −∞ the left
singular vectors reach a limit as well, which are the backward Lyapunov vectors,
ψ−k (t) ∈ Rnv for k = 0, 1, . . . , nv − 1. The action of Φ(t1, t2) on the backwards
Lyapunov vectors, Ψ−(t) = [ψ−0 (t), ψ−1 (t), . . . , ψ−nv−1(t)], is

Φ(t1, t2)Ψ
−(t1) = Ψ−(t2)R(t1, t2), (A.5)

where R(t1, t2) ∈ Rnv×nv is an upper triangular matrix with non-zero diagonal. The
values for Ψ−(t2) and R(t1, t2) can be computed using a QR decomposition of
Φ(t1, t2)Ψ

−(t1), Ref. [72]. The finite time Lyapunov exponents (LEs), Λk for
k = 0, 1, . . . , nv − 1, are computed using

Λk(t1, t2) =
ln |Rkk(t1, t2)|

t2 − t1
. (A.6)

For completeness, the LEs then can be thought of as the average rate at which the
perturbations grow/decay. Similarly, the action of Φ(t1, t2)−1 on the forward
Lyapunov vectors, Ψ+(t) = [ψ+

0 (t), ψ+
1 (t), . . . , ψ+

nv−1(t)], is

Φ(t1, t2)
−1Ψ+(t2) = Ψ+(t1)L(t1, t2), (A.7)

where L(t1, t2) ∈ Rnv×nv is lower triangular matrix. The values of Ψ+(t1) and L(t1, t2)

can be found using a QL decomposition of Φ(t1, t2)−1Ψ+(t2), Ref. [72]. Covariant
Lyapunov vectors are defined as being covariant to the dynamics and invariant with
respect to the time direction. The implication of this is that the forward and backward
Lyapunov vectors are non-covariant with the dynamics of the system due to the
presence of R(t1, t2) and L(t1, t2) in Equations (A.5) and (A.7), respectively.

This is behaviour is seen for the adjoint formulation also. Define the adjoint state
transition matrix as Φ̂(t1, t2) = Φ(t1, t2)−T. The action of Φ̂(t1, t2)−1 on Ψ+(t2) and
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Φ̂(t1, t2) on Ψ−(t1) is

Φ̂(t1, t2)
−1Ψ+(t2) = Ψ+(t1)R̂(t1, t2) (A.8)

and
Φ̂(t1, t2)Ψ

−(t1) = Ψ−(t2)L̂(t1, t2), (A.9)

where R̂(t1, t2) ∈ Rnv×nv and L̂(t1, t2) ∈ Rnv×nv are upper and lower triangular
matrices, respectively. Again, these are found with QR and QL decomposition. As
before, the implication is that the forward and backward Lyapunov vectors are
non-covariant with the dynamics due to R̂(t1, t2) and L̂(t1, t2) in Equations (A.8)
and (A.9), respectively.

Additional work and formulation is required to compute vectors which are covariant
to the dynamics and invariant with respect to the time direction. To achieve this let
γk(t) ∈ Rnv for k = 0, 1, . . . , nv − 1 be a covariant Lyapunov vector, Ref. [6, 7, 112], that
satisfies

dγk(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)
γk(t)−Λkγk(t) k = 0, 1, . . . , nv − 1. (A.10)

This derived in an identical manner to finding “eigenvector/value” pair for the
operator Equation (A.1). The implication of Equation (A.10) is that the
forward/backward Lyapunov vectors are found using Equation (A.1) and therefore
the term −Λkγk(t) is the main difference between the two which accounts for the
non-covariance with the dynamics of the forward/backward Lyapunov vectors. The
value of Λk is unknown a priori and is computed as part of the forward/backward
Lyapunov vector calculation and cannot, therefore, be added beforehand. This implies
that as the forward/backward Lyapunov vectors are utilised in the computation of Λk

they can be used to compute the covariant Lyapunov vectors. There exist an upper
triangular matrix, A−(t) ∈ Rnv×nv , and lower triangular matrix, A+(t) ∈ Rnv×nv , that
satisfy

Γ(t) = Ψ−(t)A−(t) = Ψ+(t)A+(t), (A.11)

where Γ(t) = [γ0(t), γ1(t), . . . , γnv−1(t)], Ref [72]. Similarly, let γ̂k(t) ∈ Rnv for
k = 0, 1, . . . , nv − 1 be the adjoint covariant Lyapunov vector, Ref [72], that satisfies

− dγ̂k(t)
dt

=
∂f(u(t, p), p)

∂u(t, p)

†

γ̂k(t)−Λkγ̂k(t) k = 0, 1, . . . , nv − 1. (A.12)

Equation (A.12) is found in an identical manner to finding the “eigenvector/value”
pair for the adjoint of Equation (A.1). Using similar reasoning as that used in the
computation of Equation (A.11) there exist an upper triangular matrix,
B+(t) ∈ Rnv×nv , and lower triangular matrix, B−(t) ∈ Rnv×nv , that satisfy

Γ̂(t) = Ψ+(t)B+(t) = Ψ−(t)B−(t), (A.13)
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where Γ̂(t) = [γ̂0(t), γ̂1(t), . . . , γ̂nv−1(t)], Ref [72]. Equations (A.11) and (A.13) give the
relationship between the forward and backwards Lyapunov vectors and covariant
Lyapunov vectors. These equations can be manipulated to give

P(t)A−(t) = A+(t) and P(t)TB+(t) = B−(t),

where P(t) = Ψ+(t)TΨ−(t). Computation of P(t) is found using the
forward/backward Lyapunov vectors and then LU factorisation is performed,
Ref [72], to obtain A−(t) and A+(t) which can be utilised to then compute Γ(t).
Similarly, the value of P(t)T can be utilised, again through LU factorisation, to obtain
B+(t) and B−(t) which can then be utilised to compute Γ̂(t).

To see how the CLVs help determine the unstable, neutral and stable sub-spaces they
are taken in conjunction with their Lyapunov exponent. It is known, Ref. [72], that

‖Φ(t1, t1 ± t)γk(t1)‖ ∼ e±Λkt,

as t→ ∞. This implies that when the kth Lyapunov exponent is positive perturbations
grow along this CLV suggesting an unstable direction. Similarly, when kth Lyapunov
exponent is zero this implies the perturbations along the corresponding CLV neither
grows nor decays. Finally, when Λk < 0 this implies perturbations decay. Therefore,
the unstable CLVs span the unstable sub-space, and similar behaviour is found for the
neutral and stable CLVs and their respective sub-spaces also.

A.1 The Kuptsov and Parlitz algorithm for the computation of
covariant Lyapunov vectors

While this thesis makes use of the CLVs/adjoint CLVs and the theory has been
outlined previously, it is somewhat unclear how those translate into algorithms. This
Appendix provides the algorithms, which have already been published, Ref. [72], to
provide completeness for the reader. In the derivation of the CLVs an initial value for
the backward Lyapunov vectors, Ψ−(tA), was provided, where tA is a start time. This
value was selected to ensure this matrix is non-singular. Random values are
commonly utilised, Ref. [131], which implies the backward Lyapunov vectors are not
aligned with their respective sub-spaces. To overcome this limitation they are
propagated forwards in time to tB under Equation (A.5) and a QR decomposition, or
re-orthogonalisation, of these vectors is preformed every n time steps, or more
formally when t (mod n∆t) ≡ 0. The difference between tB and tA is the ‘spin up’
time used in this thesis. This ‘spin up’ time must be sufficiently large to ensure the
backward Lyapunov vectors have properly aligned with their sub-spaces and is
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system dependent and required determining for each system investigated. This is
presented in Algorithm 11.

Algorithm 11: An algorithm for marching Ψ− forwards in time and computation of
Λk.
Input: u(t1, p), Ψ−(t1)
Output: Ψ−(t2), Λk(t1, t2)

1 Store the solution of u(t, p) on the interval t1 to t2 by solving Equation (2.1) from
initial condition u(t1, p).

2 t← t1
3 while t < t2 do
4 for k = 0, 1, . . . , nv − 1 do
5 March ψ−k (t), using Equation (A.1), one time step forwards in time.

6 if t (mod n∆t) ≡ 0 then
7 Ψ−(t) = Q(t)R(t)
8 Ψ−(t)← Q(t)
9 Λk ← Λk + ln |Rkk|

10 t← t + ∆t

11 Λk ← Λk
t2−t1

Similarly, the value of the forward Lyapunov vectors, Ψ+(tD), where tD is the final
time, are initialised as any non-singular matrix. This also implies that these vectors are
not aligned with their respective sub spaces and are marched backwards in time
under Equation (A.8) from tD to tC, where tC < tD, and is also referred to as the ‘spin
up’ time. As in the forward case a QR, or re-orthogonalisation, is preformed every n
time steps. As the kth forward/backward Lyapunov vectors have the same Λk it
follows that the ‘spin up’ times must be similar, i.e. tB − tA ≡ tD − tC. This is
presented in Algorithm 12.

Algorithm 12: An algorithm for marching Ψ+ backwards in time.

Input: u(t1, p), Ψ+(t2)
Output: Ψ+(t1)

1 Store the solution of u(t, p) on the interval t1 to t2 by solving Equation (2.1) from
initial condition u(t1, p).

2 Set t← t2
3 while t > t1 do
4 for k = 0, 1, . . . , nv − 1 do
5 March ψ+

k (t), using the adjoint of Equation (A.1), one time step backwards
in time.

6 if t (mod n∆t) ≡ 0 then
7 Ψ+(t) = Q(t)R(t)
8 Ψ+(t)← Q(t)

9 t← t− ∆t
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Once the forward/backward Lyapunov vectors have aligned with their respective
sub-spaces the CLVs and their adjoint counterparts can be computed on the time span
(tB, tC). The reason for this is that outside of this region the forward/backward
Lyapunov vectors have not aligned with their sub-spaces leading to inaccurate CLVs.
To compute the CLVs first the backward Lyapunov vectors are computed using
Algorithm 11 on the time span (tB, tC) along with the forward Lyapunov vectors,
Algorithm 12. This time domain can be seen in Figure A.1. Once the

tA tB tC tD

Ψ−(tA) Ψ−(tB) Ψ−(tC)
Ψ+(tB) Ψ+(tC) Ψ+(tD)

FIGURE A.1: A typical time domain for the computation of Γ(t) and Γ̂(t)

forward/backward Lyapunov vectors have been computed on the interval (tB, tC) the
value of P(t) can be computed and performing its LU decomposition to A+(t) and
A−(t) which can be used for computation of the CLVs, Γ̂(t), using Equation (A.11).
Similarly, performing the LU decomposition on PT(t) leads to B−(t) and B+(t) which
can be utilised to compute the adjoint CLVs, Γ̂(t), through Equation (A.13). This is
presented in Algorithm 13.

Algorithm 13: An algorithm for computation of Γ and Γ̂.

Input: u(t1, p), Ψ−(t1), Ψ+(t2)
Output: Γ, Γ̂

1 March Ψ−(t1) forwards using Algorithm 11 and store every tn
2 March Ψ+(t2) backwards using Algorithm 12 and store every tn
3 t← t1
4 while t < t2 do
5 Pij(t)←

〈
ψ+

i (t), ψ−j (t)
〉

6 P(t) = L(t)U(t)
7 A−(t)← U(t)−1

8 Γ(t)← Ψ−(t)A−(t)
9 t← t + n∆t

10 while t > t1 do
11 Pij(t)←

〈
ψ+

i (t), ψ−j (t)
〉

12 P(t)T = L(t)U(t)
13 B+(t)← U(t)−1

14 Γ̂(t)← Ψ+(t)B+(t)
15 t← t− n∆t
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Appendix B

Properties of the state transition
matrix

Throughout the development of OCS the state transition matrix (STM) has been
utilised. The exact properties of the STM are not required in the derivation, it is
merely utilised as a tool. However, details are outlined here to provide context as to its
meaning and behaviour. This Appendix recaps the basic information that has already
been published in the literature, Ref [57], and no additional development in
understanding is provided. This Appendix has been written in the form that is
consistent with the remainder of this thesis. The STM is derived as follows. Given a
system of the form

dv(t)
dt

= A(t)v(t) + g(t), (B.1)

where v(t) ∈ Rn is the state. A(t) ∈ Rn×n and g(t) ∈ Rn are known and continuous
in time. The homogeneous equation is defined as

dv(t)
dt

= Av(t), (B.2)

where the solution of this homogeneous equation is a linear combination of a set of
solutions vj(t) that satisfy Equation (B.2). Define the fundamental matrix solution,
X(t) ∈ Rn×n, as a matrix whose columns are solutions to Equation (B.2). A general
solution is v(t) = X(t)c, where c is a vector of arbitrary weights. One other important
feature is X(t0) = I. If v(t1) is known then c = X(t1)

−1v(t1). The difference between
the solution at time t1 and t2 of Equation (B.2) and Equation (B.1) is the influence of
g(t) which can be written as

X−1v
∣∣∣t2

t1
=
∫ t2

t1

X(τ)−1g(τ)dτ. (B.3)
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The solution to Equation (B.1) at t2 is

v(t2) = X(t2)

[
X(t1)

−1v(t1) +
∫ t2

t1

X(τ)−1g(τ)dτ

]
. (B.4)

The state transition matrix is defined as

Φ(t1, t2) = X(t2)X(t1)
−1 (B.5)

and can be thought of moving the solution v(t1) to v(t2) under the influence of
Equation (B.2) and is written v(t2) = Φ(t1, t2)v(t1). The state transition matrix also
satisfies Equation (B.2) and has the following relationships

Φ(t, t) = I, (B.6)

Φ(t1, t2)Φ(t0, t1) = Φ(t0, t2), (B.7)

Φ(t1, t2) = Φ(t2, t1)
−1, (B.8)

and
Φ̂(t1, t2) = Φ(t1, t2)

−T, (B.9)

where Φ̂(t1, t2) is the adjoint state transition matrix.
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Appendix C

Derivation of the closed form
expression of η̂(t)

Similar to the tangent formulation, the term η̂(t) was introduced as a Lagrange
multiplier which is a free variable. To find a solution to the optimality conditions its
value needs constraining and a closed form solution found. The solution to
Equation (3.31a) at time t can be written using its state transition matrix, Φ(t1, t2),
which results in

v̂(t) = Âv̂(ts) +

(∫ t

ts

η̂(τ)dτ

)
f(u(t, p), p) + B̂q̂(t), (C.1)

where
Âv̂(ts) = Φ(ts, t)v̂(ts), (C.2)

and
B̂q̂(t) =

∫ t

ts

Φ(τ, t)q̂(τ)dτ. (C.3)

By defining the solution to the tangent equation without the influence of the
η̂(t)f(u(t, p), p) term as

v̂′(t) = Âv̂(ts) + B̂q̂(t), (C.4)

Equation (C.1) can be re-written to give

v̂(t) = v̂′(t) +
(∫ t

ts

η̂(τ)dτ

)
f(u(t, p), p). (C.5)

Taking the inner product of Equation (C.5) with f(u(t, p), p) and utilising constraint,
Equation (3.31d), results in

〈v̂(t), f(u(t, p), p)〉 = 0 =
〈
v̂′(t), f(u(t, p), p)

〉
+(∫ t

ts

η̂(τ)dτ

)
〈f(u(t, p), p), f(u(t, p), p)〉 .

(C.6)
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Manipulation of Equation (C.6) leads to the closed form expression for η̂(t),

∫ t

ts

η̂(τ)dτ = − 〈v̂′(t), f(u(t, p), p)〉
〈f(u(t, p), p), f(u(t, p), p)〉 , (C.7)

which can be substituted combined with Equation (C.4) to give the adjoint tangent
solution at time t

v̂(t) = v̂′(t)− 〈v̂′(t), f(u(t, p), p)〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p). (C.8)
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Appendix D

Derivation of the closed form
expression of ω̂(t)

Similar to the tangent formulation, the term ω̂(t) was introduced as a Lagrange
multiplier which is a free variable. To find a solution to the optimality conditions its
value needs constraining and a closed form solution is found. This is achieved using a
very similar approach as used for ω(t). The solution to Equation (3.31b) at time t can
be written in terms of its adjoint state transition matrix, Φ̂(t1, t2), resulting in

λ̂(t) = −
∫ t f

t
Φ̂(t, τ)−1 [2v̂(τ)]dτ −

∫ t f

t
Φ̂(t, τ)−1

[
1
T

∂J(u(τ, p), p)
∂u(τ, p)

]
dτ+

D̂λ(t f ) +

(∫ t f

t
ω̂(τ)dτ

)
f(u(t, p), p),

(D.1)

where to ease the notation the terms∫ t f

t
Φ̂(t, τ)−1 [2v̂(τ)]dτ and

∫ t f

t
Φ̂(t, τ)−1

[
1
T

∂J(u(τ, p), p)
∂u(τ, p)

]
dτ

are denoted using the simplified notation

Ĉ� =
∫ t f

t
Φ̂(t, τ)−1�(τ)dτ to give Ĉ [2v̂(t)] and Ĉ

[
1
T

∂J(u(t, p), p)
∂u(t, p)

]
and

D̂λt f = Φ̂
(
t, t f

)−1
λ̂(t f ). (D.2)

Defining the solution to the co-state equation without the influence of ω̂(t)f(u(t, p), p)
as

λ̂
′
(t) = −Ĉ [2v̂]− Ĉ

[
1
T

∂J(u(t, p), p)
∂u(t, p)

]
+ D̂λ̂(t f ), (D.3)
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Equation (D.1) can be rewritten as

λ̂(t) = λ̂
′
(t) +

(∫ t f

t
ω̂(τ)dτ

)
f(u(t, p), p). (D.4)

By taking the inner product of Equation (D.4) with f(u(t, p), p) and using the co-state
constraint, Equation (3.31e), results in〈

λ̂(t), f(u(t, p), p)
〉
− 1

T
(J(u(t, p), p)− J̄) = 0 =

〈
λ̂
′
(t), f(u(t, p), p)

〉
+(∫ t f

t
ω̂(τ)dτ

)
〈f(u(t, p), p), f(u(t, p), p)〉 − 1

T
(J(u(t, p), p)− J̄) .

(D.5)

The closed form expression for ω̂(t) is

∫ t f

t
ω̂(τ)dτ = −

〈
λ̂
′
(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 +

1
T

J(u(t, p), p)− J̄
〈f(u(t, p), p), f(u(t, p), p)〉 . (D.6)

and can be substituted into Equation (D.4) to give the adjoint co-state solution at time t

λ̂(t) = λ̂
′
(t)−

〈
λ̂
′
(t), f(u(t, p), p)

〉
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p)+

1
T

J(u(t, p), p)− J̄
〈f(u(t, p), p), f(u(t, p), p)〉 f(u(t, p), p).

(D.7)
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Appendix E

Analytical structure of the linear
system from time domain
decomposition

The structures of F and c are not required in the derivation or solution of the
optimality conditions. This is due to the use of matrix-free methods and, therefore,
their structure does not require explicit implementation. Rather, the action of F on x is
found computationally and F is never constructed analytically. Similarly, c is found
through the action of F on x = 0 and never needs explicitly implementing. It is,
however, useful to show their structure for those who wish to implement these terms
which could be utilised in the development of alternative preconditioning methods,
which is outside the scope of this thesis. The analytical structure of F is

F =



F0,0 F0,1

F1,0
. . .

Fj,j−1 Fj,j Fj,j+1
. . .

FN−2,N−1

FN−1,N−2 FN−1,N−1


, (E.1)

with

F0,0 =

(
I A0

0 2αI + C0 (2B0)

)
, (E.2)

F0,1 =

(
0 0 0
0 0 −D0

)
, (E.3)
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decomposition

F1,0 =

 −A1 0
C1 (2A1) 0
C1 (2A1) 0

 , (E.4)

Fj,j−1 =

 −Aj 0 0
Cj
(
2Aj

)
0 0

Cj
(
2Aj

)
0 0

 , (E.5)

Fj,j =

I −Bj 0
0 2αI + Cj

(
2Bj
)

0
0 Cj

(
2Bj
)

I

 , (E.6)

Fj,j+1 =

0 0 0
0 0 −Dj

0 0 −Dj

 , (E.7)

FN−2,N−1 =

0 0
0 −DN−2

0 −DN−2

 , (E.8)

FN−1,N−2 =

(
CN−1 (2AN−1) 0 0
CN−1 (2AN−1) 0 0

)
, (E.9)

FN−1,N−1 =

(
2αI + CN−1 (2BN−1) 0

CN−1 (2BN−1) I

)
. (E.10)

The subscripts, Aj, represent the operator A on segment j. Finally, the analytical
structure of c is

c =
(

c0, . . . , cj, . . . , cN−1

)T
, (E.11)

with

c0 =

(
B0

∂f(u(t,p),p)
∂p +

(∫ t
t0

η(τ)dτ
)

f(u(t, p), p)

α0

)
(E.12)

where

α0 = C0

(
2
[

B0
∂f(u(t, p), p)

∂p
+

(∫ t1

t0

η(τ)dτ

)
f(u(t1, p), p)

])
−[∫ t1

t0

ω0(τ)dτ

]
f(u(t1, p), p),

cj =


Bj

∂f(u(t,p),p)
∂p +

(∫ tj+1
tj

η(τ)dτ
)

f(u(t, p), p)

αj

β j

 , (E.13)
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where

αj = Cj

(
2
[

Bj
∂f(u(t, p), p)

∂p
+

(∫ t

tj

η(τ)dτ

)
f(u(t, p), p)

])
−[∫ t

tj

ωj(τ)dτ

]
f(u(t, p), p)

and

β j = Cj

(
2
[

Bj
∂f(u(t, p), p)

∂p
+

(∫ tj+1

tj

η(τ)dτ

)
f(tj+1)

])
−[∫ tj+1

tj

ωj(τ)dτ

]
f(u(tj+1, p), p)

cN−1 =

(
δ

γ

)
(E.14)

where

δ = CN−1

(
2
[

BN−1
∂f(u(t, p), p)

∂p
+

(∫ t

tN−1

η(τ)dτ

)
f(u(t, p), p)

])
−[∫ t

tN−1

ωN−1(τ)dτ

]
f(u(t, p), p)

and

γ = CN−1

(
2
[

BN−1
∂f(u(t, p), p)

∂p
+

(∫ t f

tN−1

η(τ)dτ

)
f(u(t f , p), p)

])
−[∫ t f

tN−1

ωN−1(τ)dτ

]
f(u(t f , p), p)
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