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Decision-making from potentially unreliable advice is an important problem in many
settings, such as lending, investment, ensemble machine learning, and crowd-sourcing.
In such settings, advice can often be elicited from multiple advisers and aggregated to
make a more reliable decision, especially when the decisions have important conse-
quences. In addition, often, similar decisions are made over time using the same set
of advisers. Therefore, the reliability or trustworthiness of advisers can be utilized to
improve decision accuracy and learned and updated over time. However, this is chal-
lenging especially when there is no access to the ground truth, i.e., when there is no
information about the true or ideal decision, even after the fact, or this information is
only available after a considerable delay (e.g., in the case of a loan default). While there
is extensive work in decision-making from multiple advisers, existing work focuses
on single-shot static decision-making, and does not account for the sequential nature
of decisions. To address this gap, this thesis addresses settings where multiple deci-
sions are made sequentially over time, without access to the ground truth, and where
we have no prior information about advisors’ trustworthiness. We refer to this as the
multi-advisor sequential decision-making problem.

To address this problem, first, we propose the Multi-Advisor Binary Sequential Decision-
Making method (MABSDM). In this setting, a decision-maker needs to make decisions
on a sequence of problems, which includes the essential factors for making decisions.
For each problem, a set of advisors provides advice between binary options and the
decision-maker needs to aggregate their advice to make a decision. To be specific,
MABSDM (1) models the advisors’ trustworthiness sequentially without prior infor-
mation, (2) makes optimal decisions from the advice and trustworthiness of multiple
imperfect advisors without ground truth. In addition, our results show that MABSDM
has higher decision accuracy than benchmarks using state-of-the-art models including
Bayesian aggregation, weighted voting, and Beta distribution trustworthiness model.
Moreover, MABSDM outperforms benchmarks in terms of modeling the trustworthi-
ness of advisors in most results.
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Second, we then apply MABSDM to an interactive reinforcement learning setting whereby
proposing a method named Multi-Advisor Interactive Reinforcement Learning system
(MAIRL). In more detail, interactive reinforcement learning is an effective way to ac-
celerate agent learning by feedback from human advisors to agents. However, if the
human advisor is not always reliable, it often hinders the agent’s training. To address
this problem, we introduce multiple advisors to turn this problem into a multi-advisor
binary sequential decision-making problem. Specifically, in MAIRL, we use MABSDM
to aggregate the binary feedback from multiple imperfect advisors into a reliable re-
ward for agent training in a reward-sparse environment. In addition, the review model
in MAIRL can correct the unreliable reward from advisors. In particular, our experi-
ments for evaluating feedback forms show that the binary feedback outperforms other
feedback forms including ranking feedback, scaling feedback, and state value feed-
back. Finally, we conduct grid-world experiments to show that the policy trained by
the MAIRL with the review model is closer to the optimal policy than that without a
review model.

Third, we propose a utility maximization method based on MABSDM, namely Multi-
Advisor Dynamic Decision-Making (MADDM). In more detail, in practice, making a
correct decision often has great rewards while a failed decision has a significant cost,
and gathering advice from a set of advisors has a cost. We take into account bal-
ancing the value of decisions and the cost associated with querying advisors in the
multi-advisor binary sequential decision-making problem. Therefore, the challenge is
finding an advisor selection strategy that retrieves reliable advice and maximizes the
overall utility, which is the expected return of the decision-making. To address this
challenge, MADDM considers selecting advisors by balancing the advisors’ costs, ad-
visors’ trustworthiness, and the value of the problem and then using MABSDM to make
the optimal decision. Moreover, we evaluate our algorithm through several numerical
experiments. The results show that our approach outperforms two other methods that
combine state-of-the-art models.

Finally, we extend MABSDM to a general method, namely Multi-Advisor Sequential
Decision-Making (MASDM), which can make decisions among multiple options, not
just binary options. In addition, we evaluate MASDM through extensive experiments
in simulated environments. Moreover, we apply our method to ensemble machine
learning using the experiments by the MNIST database. The results show that MASDM
has better decision accuracy and the ability to trustworthiness assessment than the five
benchmarks that use state-of-the-art methods, achieving a maximum improvement of
22% in accuracy compared to Bayesian aggregation methods.
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Chapter 1

Introduction

In this chapter, we provide a comprehensive overview of our research. First, we ex-
plain the motivation for our research on sequential decision-making in Section 1.1. Sec-
ond, we introduce the current challenges associated with sequential decision-making
in Section 1.2. Third, we establish our research objectives in Section 1.3, highlighting
the goals we aim to achieve. Fourth, Section 1.4 introduces our contributions, outlining
the methods we propose for addressing the problems in sequential decision-making.
Finally, we offer a structure of the thesis in Section 1.5.

1.1 Motivation

The wisdom of crowds possesses extraordinary potential when diverse individuals
come together to make decisions. An intriguing instance occurred in 1906 at the Ply-
mouth Country Fair, where 800 participants engaged in a competition to estimate the
weight of a cow. The statistician Francis Galton observed that the guessed median of
1207 lbs was within 1% of the true weight of 1198 lbs (Galton, 1907). This example high-
lights the power of the wisdom of crowds, where aggregating opinions, perspectives,
and knowledge from different advisors can lead to surprisingly accurate results, even
if individuals’ knowledge is limited. An explanation for this phenomenon is that the
collective decision of multiple individuals reduces individual biases (Yi et al., 2012).
Throughout the thesis, we refer to individuals providing their advice for decision-
making problems as advisors.

Nowadays, aggregating advice from multiple advisors still is an important approach
for decision-making, especially in settings where there is no access to the ground truth.
For example, in loan approval, we have no way to know for sure whether the applicant
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will repay the loan on time, so loan reviewers need to aggregate the advice of mul-
tiple advisors to decide whether to agree with the applicant’s loan application. Sim-
ilarly, in America, approximately 150, 000 cases are tried each year by juries, where
members vote to determine whether a defendant is guilty (Barkan and Bryjak, 2011).
In addition, multi-advisor decision-making is not only applicable to human decision-
making but is also significant for ensemble machine learning (Zhou, 2012; Kuncheva,
2014), where multiple machine learning methods are combined to improve predictive
performance. For example, Random Forests, an ensemble machine learning algorithm,
enhances classification accuracy by aggregating the advice of multiple decision trees
(Breiman, 2001). Additionally, in interactive reinforcement learning, a method for ac-
celerating agents’ training by providing feedback from human advisors, human feed-
back is not always reliable. If the feedback accuracy of a single human advisor cannot
meet the requirements of the agent’s learning, introducing multiple advisors and ag-
gregating their feedback to improve the accuracy is effective.

However, it is unrealistic to assume that all advisors have the same level of knowledge,
so taking advisors’ reliability or trustworthiness into decision-making considerations
is an effective way to improve the accuracy of decision-making (Zheng et al., 2017;
Chen et al., 2022b). One example is crowdsourcing, which infers the true label of tasks
by aggregating the advice of multiple advisors. They model and utilize the advisors’
trustworthiness to increase the accuracy of decisions (Zheng et al., 2017). Another ex-
ample is the boosting method in ensemble machine learning. This method allocates
the weights for the weak classifiers to aggregate the advice by weighted voting for im-
proving the performance of decision-making (Freund et al., 1996). Nevertheless, such
works often assume that the prior information on advisors’ trustworthiness is acces-
sible, but we often cannot obtain any prior information in practice. For example, in
crowdsourcing, it is difficult for a decision-maker to know the expertise of new advi-
sors. Similarly, internet companies often improve their products by aggregating the
feedback from customers, but they cannot determine whether a new user will provide
malicious comments. Therefore, it is crucial to develop models for assessing advisors’
trustworthiness even in the absence of prior information.

In addition, decision-making is often sequential in practice, i.e., the decision-maker is
required to make decisions one after another on a sequence of problems, which include
the essential factors for making decisions. For instance, bank employees sequentially
evaluate multiple loan applications, while doctors also diagnose multiple patients dur-
ing their consultations one by one. Therefore, these scenarios consider sequentially
making optimal decisions without ground truth, i.e., when there is no information about
the true or ideal decision, even after the fact, or this information is only available af-
ter a considerable delay (e.g. in the case of a loan default). Additionally, in practice,
problems often hold value, and querying advisors is associated with a cost. Therefore,
finding an advisor selection strategy that retrieves reliable advice and maximizes the
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overall profits or utility is a challenging problem. However, previous studies do not
give targeted methods to address the above problems (see more details in Chapter 2).
These challenges, revolving around sequential decision-making are the main object of
study of this thesis and will be discussed in detail next.

1.2 Research Challenges

As highlighted in the preceding section, sequential decision-making holds a pivotal
role across numerous domains. Although considerable literature about decision-making
has been published over the past decades, many gaps persist in our understanding of
sequential decision-making (more details see Chapter 2). This thesis addresses a subset
of challenges in multi-advisor sequential decision-making, with a specific emphasis on
scenarios without ground truth. Specifically, the research challenges addressed in this
thesis are as follows:

1.2.1 Making Optimal Decisions Sequentially without Ground Truth

Optimal decision-making is an extensively discussed topic in various literature. How-
ever, existing methods frequently fall short of addressing the challenges in sequential
decision-making (see more details in Section 2.1). One key challenge involves mak-
ing optimal decisions in the absence of ground truth. For instance, whether a patient
will recover or not can be only based on statistical evidence of previous similar scenar-
ios. Hence, it becomes crucial to develop methods that can infer the ground truth for
decision-making.

In addition, another challenge is to develop online methods for decision-making. In
more detail, existing approaches often focus on making decisions by offline methods,
whereby the methods process the entire dataset (including all advice of all problems)
at once (Kittler et al., 1998; Zhou, 2012; Kuncheva, 2014; Kim and Ghahramani, 2012;
Venanzi et al., 2014; Li et al., 2019). In such works, the decision-making is often based
on relatively reliable advisors’ trustworthiness because the model can get the advice of
hundreds of problems for estimating the advisors’ trustworthiness (see Section 2.1.3).
In contrast, in sequential decision-making problems, the challenge is making reliable
decisions according to the changing trustworthiness, especially when the trustworthi-
ness is unreliable (e.g., at the beginning of the sequential decision-making or the ini-
tialization stage of modeling new advisors’ trustworthiness).

Moreover, the offline method often cannot adapt to new data as it arrives and requires
significant computing power and time for training, which causes additional costs and
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destroys the timeliness of new data. In contrast, online methods are better suited for se-
quential decision-making as they process data incrementally, enabling adaptive learn-
ing from new information in real time.

1.2.2 Modeling Advisors’ Trustworthiness without Prior Information

Taking advisors’ trustworthiness into consideration during the decision-making pro-
cess has been shown to enhance decision accuracy (Zheng et al., 2017; Chen et al.,
2022b) (see more details in Section 2.2). For example, in weighted voting, advisors’
trustworthiness is taken into account, assigning higher weights to more reliable advi-
sors and lower weights to less reliable ones. This approach ensures that decisions are
influenced more by trustworthy advisors, leading to more accurate and informed out-
comes compared to the majority voting method. However, obtaining prior information
about advisors’ trustworthiness is often infeasible, so we need to build the trustworthi-
ness without prior information.

In addition, without ground truth, we have no accurate way to evaluate the perfor-
mance of advisors. If the decision is wrong, updating advisors’ trustworthiness based
on that wrong decision can lead to increasingly misleading future decisions. Therefore,
a carefully designed trustworthiness modeling strategy is necessary because it can have
a profound impact on subsequent decisions.

1.2.3 Imperfect Advisors in Interactive Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method to train an agent to make se-
quential decisions in an environment to maximize cumulative rewards. However, one
common challenge in RL is the sparsity of rewards. In many RL scenarios, the agent
only receives a reward at the end of an episode or upon reaching specific states within
the environment. This limited availability of rewards slows down the agent’s explo-
ration process, as it takes a substantial amount of time for the agent to receive feedback
on its actions in all critical states of the environment (Arakawa et al., 2018). Therefore,
reward sparsity limits the application scenarios of RL (Knox and Stone, 2008b; Mac-
Glashan et al., 2017).

One approach to solve this problem is through interactive reinforcement learning (IRL),
where human advisors participate in the training process by providing rewards to the
agent (see more details in Section 2.3). Research has shown that human rewards can
accelerate the learning process of the agent (Knox and Stone, 2008b; MacGlashan et al.,
2017). Previous studies have primarily focused on the interaction between an agent
and a single human advisor (Knox and Stone, 2008b; MacGlashan et al., 2017; Knox and
Stone, 2010). However, a key limitation of relying on a single advisor is the requirement
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for a perfect advisor, whose reward is always correct. In situations where the quality
of rewards from a single advisor is not ideal, it can actually hinder the agent’s learning
instead of aiding it (Kurenkov et al., 2020).

Therefore, to mitigate the risk of unreliable feedback, employing multiple advisors be-
comes advantageous. By aggregating the advice of multiple advisors, the challenges
associated with unreliable feedback can be addressed. Specifically, in multiple advi-
sors IRL, at each time step, each advisor provides a reward and then a decision-maker
aggregates the advice of advisors to make a decision of what reward should be assigned
to the agent. This scenario includes decision-making in a time sequence, aggregating
advice of multiple advisors, and modeling the trustworthiness of advisors over time.
Consequently, multi-advisor IRL is a sequential decision-making problem.

1.2.4 Selecting Advisors by Maximizing the Utility

In practical decision-making scenarios, problems may vary in importance or value. For
example, deciding on a $10 million investment carries greater importance compared to
choosing what to have for dinner. In addition, querying different advisors may incur
distinct costs. For instance, querying an expert often involves a higher cost than query-
ing a layman. Therefore, a crucial problem is the selection of advisors. Specifically, if an
insufficient number of advisors is selected, the aggregated advice may lack the desired
accuracy. In contrast, selecting all available advisors may lead to excessive costs that
outweigh the benefits gained from the problem.

In addition, advisors often possess different levels of expertise, which directly impact
the quality of their responses. Given the value of problems, advisors’ trustworthiness,
and the cost associated with advisors, it becomes essential to consider how many ad-
visors to consult and whom to ask in order to make informed decisions. This can be
considered as a multi-armed bandit problem. In this problem, a decision-maker is faced
with a set of options (referred to as “arms” or “bandits”), each associated with an un-
known probability distribution of rewards, which can only be gradually learned by
taking actions over time. At each time step, the decision-maker needs to take an ac-
tion that selects a unique arm. The objective of the decision-maker is to maximize the
cumulative rewards over a series of sequential actions. Similarly, the “action” in our
problem is to select the advisors (arms) based on the price and present trustworthiness
of advisors and the decision’s value. In addition, we need to model advisors’ trust-
worthiness without prior information. Therefore, the challenge is to balance exploiting
the current reliable advisors and exploring potential advisors with high trustworthi-
ness. Finally, our aim is to maximize the cumulative utility (maximize the cumulative
rewards). However, previous works often consider advisor selection limited by a fixed
budget constraint (Tran-Thanh et al., 2012, 2014; Xia et al., 2015; Zhou and Tomlin, 2018;
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Cayci et al., 2020), but such works do not consider that decisions might have differ-
ent values and costs associated with getting them wrong. Accordingly, in sequential
decision-making, the challenge is finding an optimal advisor selection strategy that not
only ensures the retrieval of reliable advice but also maximizes the overall utility of the
decision-making process (more details see Section 2.4).

1.3 Research Objectives

To address the challenges above, we propose a series of research objectives. Our re-
search begins with binary decision-making, aiming to develop a multi-advisor binary
decision-making method. Next, we employ this method in IRL scenarios. In addition,
we consider the cost of querying advisors and the value of decisions to design an ad-
visor selection and decision-making method with the objective of maximizing utility.
Finally, we extend the binary decision-making method to make decisions among mul-
tiple options.

1.3.1 Sequential Binary Decision-Making without Ground Truth

To address the challenges presented in Section 1.2.1 and 1.2.2, our first objective is to de-
sign a Multi-Advisor Binary Sequential Decision-Making (MABSDM) method. Specif-
ically, MABSDM involves making decisions on the binary decision-making problem,
where multiple advisors make decisions on whether to agree or disagree with a given
problem. For instance, bank staff needs to decide whether to lend money to borrowers,
while advisors in investment agencies need to determine whether to invest in a project.
To address the challenges mentioned in Section 1.2.1, our specific aim is to aggregate
the advice provided by the multiple advisors in order to make decisions. Therefore,
our first objective is:

O1.1 Designing a method for aggregating advice of advisors to make the optimal deci-
sions for the binary decision-making problem.

In addition, following the challenges presented in Section 1.2.2, we aim to design a
trustworthiness modeling method. Therefore, the second objective is:

O1.2 Proposing a trustworthiness modeling strategy that can model the advisors’ trust-
worthiness over time.
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1.3.2 Multi-Advisor Interactive Reinforcement Learning

Based on the challenges described in Section 1.2.3, our second objective is to design a
Multi-Advisor Interactive Reinforcement Learning (MAIRL) system. The multi-advisor
IRL has five similar characteristics to the multi-advisor sequential decision-making
problem. First, MAIRL needs to aggregate the advice of multiple advisors for provid-
ing human rewards (decision-making of rewards given to the agent). Second, advisors
often cannot access the ground truth because of reward sparsity. Third, we often can-
not obtain prior information on advisors’ trustworthiness, so we also need to build
advisors’ trustworthiness over time. Fourth, IRL is a time series problem. The advi-
sors need to determine the rewards given to the agent at each time step, so it is also a
sequential decision-making problem. Lastly, we use binary feedback as the feedback
form in our IRL system. Therefore, we apply MABSDM (see Section 1.3.1) as a part
of MAIRL in this objective. However, in addition to the problems that MABSDM can
solve, we can still come up with some additional objectives to solve problems that exist
independently in IRL.

First, in MAIRL, we adopt a binary feedback system, where human advisors provide
two feedback signals, namely “good” or “bad” (Griffith et al., 2013; Arakawa et al.,
2018). This binary feedback setup aligns with the binary decision-making scenario dis-
cussed earlier. However, before employing binary feedback, it is essential to evaluate
its performance. Therefore, our first objective is:

O2.1 Evaluating the performance of binary feedback.

Second, we use MABSDM to aggregate the advice of multiple advisors to infer the
correct rewards and model the trustworthiness of advisors over time.

Third, we aim to design a review mechanism within the MAIRL system to correct incor-
rect rewards. In more detail, human feedback is often expensive and time-consuming.
In an IRL system, the designer often considers reducing the pressure on human advi-
sors as much as possible. One way to reduce the feedback burden is to avoid giving
rewards to the state-action pair that has been feedbacked before.

In the MAIRL system, the system records the feedback from advisors for each state-
action pair. When the agent encounters the same state again, it retrieves the reward
from memory, significantly reducing the need for human feedback. However, this ap-
proach introduces a challenge wherein future rewards are wrong if the previous re-
ward is incorrect. Therefore, the MAIRL system requires a review mechanism to cor-
rect the inaccurate reward by re-evaluating those state-action pairs that have unreliable
rewards. Thus, our second objective is:

O2.2 Designing a review model to correct the unreliable reward.
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1.3.3 Sequential Binary Decision-Making by Maximizing the Utility

To address the challenge in Section 1.2.3, we make the third objective: designing a
Multi-Advisor Dynamic Decision-Making (MADDM) system by maximizing the Util-
ity.

First, we design a strategy for advisor selection based on the problem value and advisor
cost. The first objective is:

O3.1 Designing an advisor selection model that can balance the cost and trustworthi-
ness of advisors and the value of decisions.

Second, to complete MADDM, we combine the advisor selection model with MABSDM
(see Section 1.3.1). Furthermore, to enhance the utilization of advisors’ advice, a review
model is introduced in MADDM. This model calibrates the trustworthiness of advisors
by incorporating more accurate evidence obtained from reviewing historical problems
based on the current advisors’ trustworthiness. The second objective is:

O3.2 Designing a review model that can calibrate advisors’ trustworthiness by review-
ing historical problems.

1.3.4 Sequential Decision-Making among Multiple Options

To further address the challenges in Section 1.2.1 and 1.2.2, the last objective is to design
a Multi-Advisor Sequential Decision-Making (MASDM) system to make sequential de-
cisions among multiple options.

Specifically, following the challenge in Section 1.2.1, we aim to design a method that
can aggregate the advice of multiple advisors. So the first objective is:

O4.1 Designing an aggregating method that can aggregate the advice of advisors to
make optimal decisions among multiple options.

Following the challenges presented by Section 1.2.2, we aim to design a trustworthiness
modeling method for the problems with multiple options, thereby the second objective
is:

O4.2 Designing a trustworthiness modeling strategy that can model the advisors’ trust-
worthiness over time for making decisions among multiple options.
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1.4 Contributions

The contributions of this thesis are introduced as follows:

• To develop a sequential binary decision-making method (Objective O1.1, O1.2 in
Section 1.3.1), we propose the MABSDM method. To be specific, our approach
considers (1) modeling the advisors’ trustworthiness sequentially without prior
information and ground truth, (2) automatically adjusting the aggregation strat-
egy according to the uncertainty of the advisors’ trustworthiness, and (3) making
optimal decisions from the advice of multiple imperfect advisors. We evaluate
our algorithm through several simulated experiments. The results show that our
MABSDM has a better performance than three other methods that combine state-
of-the-art models.

This contribution is described in the following paper [(Guo et al., 2022)]:

Zhaori Guo, Timothy J. Norman, Enrico H. Gerding, MTIRL: Multi-Trainer In-
teractive Reinforcement Learning System, PRIMA 2022: Principles and Practice
of Multi-Agent Systems

• To design a multi-advisor IRL system (Objective O2.1, O2.2 in Section 1.3.2), we
propose the MAIRL system, which can aggregate binary feedback from multiple
imperfect advisors into a reliable reward for agent training in a reward-sparse
environment. In addition, we employ binary feedback as the feedback form to
minimize feedback pressure on advisors. Moreover, the review model in MAIRL
can correct the unreliable reward advisors have given before. In particular, our
experiments for evaluating feedback forms show that binary feedback outper-
forms other feedback forms including ranking feedback, scaling feedback, and
state value feedback. Finally, we conduct grid-world experiments to show that
the policy trained by the MAIRL with the review model is closer to the optimal
policy than that without a review model.

This contribution is described in the following paper [(Guo et al., 2022)]:

Zhaori Guo, Timothy J. Norman, Enrico H. Gerding, Multi-Trainer Binary Feed-
back Interactive Reinforcement Learning System, Annals of Mathematics and
Artificial Intelligence (under review)

• To complete Objective O3.1 and O3.2 in Section 1.3.3 (developing a method for se-
quential binary decision-making by maximizing the utility), we propose MADDM,
which is a novel strategy for optimally selecting a set of advisers in a sequential
binary decision-making setting, where multiple decisions need to be made over
time. Specifically, based on the MABSDM method, the MADDM method consid-
ers how to select advisors by balancing the advisors’ costs, advisors’ trustworthi-
ness, and the value of making correct decisions. We evaluate MADDM through



10 Chapter 1. Introduction

several numerical experiments. The results show that our approach outperforms
two other methods that combine state-of-the-art models.

This contribution is described in the paper [(Guo et al., 2023a)]:

Zhaori Guo, Timothy J. Norman, Enrico H. Gerding, Multi-Trainer Binary Feed-
back Interactive Reinforcement Learning System, Proceedings of the 22nd Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2023)

These three contributions above also are described in paper [(Guo et al., 2023b)]:

Zhaori Guo, Timothy J. Norman, Enrico H. Gerding, Multi-Advisor Dynamic
Decision-Making, Proceedings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023, Doctoral Consortium)

• Following Objective O4.1, O4.2 in Section 1.3.4 (designing a method for the de-
cisions among multiple options), we present a novel method MASDM that ex-
tends and improves MABSDM, to further address the challenges in Section 1.2.1
and 1.2.2. Compared to MABSDM, MASDM can make decisions among multiple
options, not just binary options. To evaluate the performance of MASDM and
its models, we conduct extensive experiments using the MNIST dataset (LeCun
et al., 2010) and simulated data under different conditions. Specifically, we com-
pare MASDM to the methods that combine state-of-the-art approaches, including
the weighted voting method, the Bayesian method, and Beta distribution. The re-
sults show that MASDM outperforms the other methods in almost all simulated
experiments and in most MNIST dataset experiments.

This contribution is described in the paper [(Guo et al., 2023a)]:

Zhaori Guo, Timothy J. Norman, Enrico H. Gerding, Multi-Advisor Sequential
Decision-Making without Ground Truth, Journal of Autonomous Agents and
Multiagent Systems (under review)

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

• Chapter 2 introduces the literature review and the limitations.

• Chapter 3 analyses our MABSDM method and its performance evaluation.

• Chapter 4 details our MAIRL method and studies its performance in grid-world
experiments.

• Chapter 5 studies our MADDM method and its performance evaluation.
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• Chapter 6 presents our MASDM method. The performance of these algorithms is
tested by real data and simulated data experiments.

• Chapter 7 summarizes the thesis.
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Chapter 2

Background and Literature Review

In this chapter, we present the background and literature review of our research. The
chapter is structured as follows. First, in Section 2.1, we discuss advice aggregation
in decision-making. Next, we proceed to detail trustworthiness modeling methods in
Section 2.2. In addition, we focus on IRL in Section 2.3. Then, we introduce advisor
selection methods in Section 2.4. Finally, we summarize the gaps and limitations in the
present literature.

2.1 Advice Aggregation in Decision-Making

In this section, we focus on the challenge in Section 1.2.1 (making optimal decisions
sequentially without ground truth), discussing research on aggregating advice of mul-
tiple advisors for decision-making. Specifically, the aggregating method is a way of

Figure 2.1 This is an example of the aggregation method for decision-making, the
aggregation method needs to output a decision based on the advice of five advisors.
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decision-making by aggregating the advice of advisors. For example, in Figure 2.1,
there are five advisors who provide advice on a problem. But three of them think ”yes”
is the correct decision, while others believe ”no” is correct. The aggregation method
is required to aggregate their advice and give a final decision. Therefore, the input
of the aggregation method is the advice of five advisors (can have more information,
e.g., trustworthiness), while the output is the decision. In this section, we mainly intro-
duce three commonly used aggregation methods, which are voting, value average, and
Bayesian aggregation.

2.1.1 Voting

In the field of aggregating opinions from multiple advisors, voting is one of the most
commonly used methods (Zhou, 2012; Dong et al., 2020). Specifically, the majority
voting method is the simplest voting method, which uses the option with the most
votes as the decision (Zhou, 2012; Kuncheva, 2014). For example, the idea of voting is
used in the aggregation steps in Random Forests (Breiman, 2001). However, the majority
voting method assumes that all the advisors have the same trustworthiness, which is
often unrealistic in practice (Zheng et al., 2017; Chen et al., 2022b).

Figure 2.2 In this example, each advisor has a weight, which reflects his or her im-
portance in decision-making. For the weighted voting method, the value of option
‘’yes” is bigger than the value of option ”no”. Therefore, the final decision is ‘’yes”.

Considering the limitation of the majority voting method, an improved method, Weighted
Voting is often used. For instance, in the decision-making process, weighted voting
considers the weight of advisors, which reflects the impact of the advice of the advisor
on decision-making. Normally, a bigger weight of the advisor indicates more impor-
tant advice, and the option with the largest cumulative voting value is the decision
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(Kuncheva, 2014). For example, in Figure 2.2, there are five advisors with different
weights and they provide different advice for a problem. If we utilize the weighted
voting method for decision-making. We can obtain the value of the option ‘’yes” is 2.1,
which is bigger than 1.4, the value of the option ”no”. Therefore, the decision is the
option ”yes”.

There is considerable work related to the weighted voting method. For example, the
ensemble machine learning methods, AdaBoost and Gradient Boosting, use weighted vot-
ing for aggregating the advice of multiple classifiers (Freund et al., 1996; Friedman,
2001). In addition, Davani et al. (2022), Liu et al. (2021), and Chen et al. (2022b) employ
weighted voting to enhance the accuracy of decisions by modeling the trustworthi-
ness of advisors to obtain more accurate aggregated advice. Moreover, Krawczyk et al.
(2017) consider online aggregation by weighted voting. They continuously adjust the
weights assigned to advisors to improve the aggregating performance through the data
stream.

However, as we will show in this thesis (see more details in Chapter 3), weighted vot-
ing has low aggregating accuracy when each option is relatively independent and the
reliability of trustworthiness is high. In contrast, our work does not always rely on
WV, but instead uses it only when it is suitable, in order to maximize the aggregation
performance.

Figure 2.3 In the example of the value average method, the advice of five advisors
is number or value. The output of the value average method is calculated from the
average value of the advice of five advisors.
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2.1.2 Value Average

Another aggregation method often used in decision-making is averaging. As the name
suggests, averaging involves taking the average value of answers to arrive at the deci-
sion (Zhou, 2012; Perrone, 1993). Figure 2.3 provides an example of the value average
method. In more detail, five advisors provide a number or value as their individual
advice. Then, the decision made by the value average method is the average value of
their advice, i.e., the decision is 0.7.

For the work related to the value average method, in ensemble machine learning, Bag-
ging methods such as Random Forest use the averaging method for aggregation to pre-
dict the ground truth for regression problems (Breiman, 2001). In finance, averaging
methods can be applied to aggregate the advice for investment decisions. For exam-
ple, the mean-variance model in portfolio theory determines the optimal portfolio by
calculating a weighted average of the expected returns of different assets (Markowitz,
1952). Furthermore, in consensus decision-making, the decision is often obtained by
aggregating individual advice using the average method (Zhong et al., 2022).

However, the average method is primarily for decisions with continuous options, such
as regression problems, while it is not reliable when there is no relationship between
candidate options. For example, in a classification decision where advisors need to
identify an animal in a picture, with options being cat, dog, squirrel, and sheep, the av-
eraging method cannot be directly applied to average these categorical options. There-
fore, if the categorical variables, like animal types, do not have a natural numerical
scale or continuous relationship that allows for straightforward averaging, the averag-
ing method cannot work effectively.

2.1.3 Bayesian Aggregation

Another commonly used aggregation method for decision-making is the Bayesian ag-
gregation method, which uses the advice set and related information, e.g., advisors’
trustworthiness, to calculate the correct probability of each option, and then the option
with the highest probability is the decision (Kittler et al., 1998; Zhou, 2012; Kuncheva,
2014). In Figure 2.4, the Bayesian aggregation method calculates the correct probabil-
ity (posterior probability) over all options according to the advice of advisors, then the
option with the biggest probability is the decision.

The Bayesian aggregation method has been extensively studied and applied in decision-
making processes. For example, some works (Dawid and Skene, 1979; Demartini et al.,
2012; Karger et al., 2014; Sabetpour et al., 2021) estimate the correct decisions by the
maximum likelihood estimation and improve the decisions and advisors’ trustworthi-
ness by Expectation Maximization (EM) method. However, the Bayesian aggregation
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Figure 2.4 The Bayesian aggregation method utilizes the prior information, e.g., the
advice of advisors, to compute the correct (posterior) probability over all options. In
this example, the probability of the option ”yes” is bigger than ”no”, so the decision is
”yes”.

method is easily influenced by multiple factors such as the difficulty of problems, the
distribution of the ground truth of the options, and the correlation of advisors. There-
fore, other works (Whitehill et al., 2009; Kim and Ghahramani, 2012; Venanzi et al.,
2014; Li et al., 2019; Wu et al., 2023) consider such factors in the EM method to improve
the decision accuracy. Although the Bayesian aggregation method works well, it relies
heavily on prior knowledge of an advisor’s trustworthiness. If this is not available or
is unreliable, the Bayesian aggregation method may not work well (Ly et al., 2017).

Compared with previous works, our work is more challenging in we build the advi-
sors’ trustworthiness from zero without prior information. Therefore, in the initializa-
tion phase of the trustworthiness model, advisors’ trustworthiness is unreliable, so the
Bayesian aggregation method is not suitable for decision-making (see more details in
Chapter 3).

2.2 Trustworthiness Models

Based on the challenge in Section 1.2.2 (modeling advisors’ trustworthiness without
prior information), in this section, we introduce two commonly-used approaches for
modeling trustworthiness, which aim to quantify the trustworthiness of advisors. These
two methods are the Beta distribution methods and matrix trustworthiness methods.
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2.2.1 Beta Distribution

Beta Distribution is one of the most widely employed methods for modeling trustwor-
thiness (Demartini et al., 2012; Karger et al., 2011; Liu, 2012; Fang et al., 2016; Liu et al.,
2012). Beta Distribution expresses the advisor’s trustworthiness as a probability be-
tween 0 and 1, using two values α and β to represent the evidence of correctly and
incorrectly made decisions. The trustworthiness of the advisor can be expressed as α/
(α + β) (Johnson et al., 1995). Figure 2.5 provides an example of the trustworthiness

Figure 2.5 The Beta distribution method utilizes the number of times an advisor
makes correct and incorrect decisions to model trustworthiness. In this example, the
advisor provides 8 times of advice, which has 6 correct ones and 2 incorrect ones.
Therefore, α is 6 and β is 2. Then, we can obtain the trustworthiness of the advisor is
0.75.

modeling by Beta distribution. In more detail, there is an advisor who makes 8 deci-
sions. Among these decisions, 6 of them are right and 2 are wrong. Then we can obtain
his trustworthiness is 0.75. The higher the trustworthiness is, the advisor has a higher
probability of making a correct decision.

In addition, a method developed from the Beta distribution named Subjective Logic is
proposed (Jøsang, 2016). This method is a trust modeling method that is widely used
in artificial intelligence and decision theory (Burnett et al., 2010; Şensoy et al., 2013;
Cerutti et al., 2015; Güneş et al., 2017; Cheng et al., 2021). Compared to the Beta Distri-
bution, the advantage of Subjective Logic is that it directly quantifies the uncertainty of
trustworthiness and specifies the initial trustworthiness of advisors to express intuitive
beliefs (see more details in Section 3.1.2).

2.2.2 Matrix Trustworthiness

The matrix trustworthiness method is another method for trustworthiness modeling
(Dawid and Skene, 1979; Kim and Ghahramani, 2012; Venanzi et al., 2014; Cui et al.,
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2021a; Wu et al., 2023). Specifically, in problems with n fixed options, the shape of the
matrix is n× n. For example, in binary decision-making problems, there is a matrix of

advisor x τx =

[
0.1 0.9
0.7 0.3

]
. The value 0.9 (row 1 and column 2) indicates that he or

she has 90% probability to choose the second option when the ground truth is the first
option.

The trustworthiness model based on the matrix often performs better than those based
on a single value when the distribution of the ground truth is unbalanced. However, it
needs more evidence to support it than a single value. Its advantage cannot be guaran-
teed when the ground truth is relatively evenly distributed. Therefore, our work em-
ploys a single value to model trustworthiness because we focus on the general decision-
making problem instead of that with special conditions.

2.3 Interactive Reinforcement Learning

Following the challenge in Section 1.2.3 (imperfect advisors in IRL), we discuss the
literature about IRL in this section. IRL, also known as human-in-the-loop RL, is an
approach that combines RL algorithms with human expertise to solve complex tasks.
In this paradigm, humans participate in the learning process by providing guidance
to an AI agent. One of the key benefits of IRL is its ability to reduce training time.
Specifically, instead of relying solely on trial-and-error exploration, the agent can lever-
age human guidance to focus its exploration efforts on the most promising areas of the
task space. This interaction can lead to more efficient learning and faster convergence
toward optimal solutions (Knox and Stone, 2008a).

The interaction between humans and AI agents in IRL can take various forms. For ex-
ample, humans can provide explicit rewards or penalties to guide the agent’s behavior.
In addition, the human can also serve as an advisor, giving the agent action advice
when it is in a tricky state.

In this section, we describe the background and related work of IRL. Specifically, we
introduce the background of RL in Section 2.3.1. Section 2.3.2 discusses the methods
of reward shaping. Next, Section 2.3.3 proceeds to detail the work of advice-based IRL
methods. Moreover, we turn our attention to the work related to the feedback forms in
Section 2.3.4. Finally, we discuss the work related to multiple resource IRL in Section
2.3.5.



20 Chapter 2. Background and Literature Review

2.3.1 Background of Reinforcement Learning

RL is a paradigm of machine learning where an agent learns optimal behavior by in-
teracting with an environment and receiving feedback in the form of rewards or penal-
ties. The primary objective is to find a policy that maximizes the expected cumulative
reward over time. The foundational elements of a RL problem include:

• Agent: The entity that observes, learns, and makes decisions.

• Environment: The external context with which the agent interacts.

• State: A representation of the environment.

• Action: Decisions the agent can make.

• Reward: Immediate feedback from the environment, indicating the value of the
action taken.

• Policy: A mapping from states to actions, defining the agent’s behavior.

• Value Function: A function estimating the expected cumulative reward from a
given state or state-action pair.

The RL process can be visualized as a loop of interactions between the agent and the
environment. The typical steps are:

1. Initialization: Initialize the policy and the value function.

2. Observation: The agent observes the current state st of the environment.

3. Decision: Based on the policy and current state st, the agent selects an action at.

4. Interaction: The agent performs the action at in the environment.

5. Feedback: The environment transitions to a new state st+1 and provides a reward
rt to the agent.

6. Learning: The agent updates its policy and/or value function based on the ob-
served transition (st, at, rt, st+1).

7. Loop: The agent then uses state st+1 as the new current state and repeats the
process.

8. Termination: The process continues until a termination condition is met, such as
reaching a maximum number of steps, achieving a satisfactory level of learning,
or encountering a terminal state in the environment.
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2.3.2 Reward Shaping Method

Reward shaping refers to the process of modifying the reward function to guide the
learning agent toward desired behaviors and expedite the learning process. It adds
additional reward components or adjusts existing ones to provide more reward signals
to the agent. Based on the composition of rewards, the reward shaping method can
be classified into two categories: only human reward and integrating reward. We will
discuss the work related to these two methods in the following sections.

2.3.2.1 Only Human Reward

As early as 1998, Stern et al. (1998) discover that similar to animal trainers, virtual pets
can learn human preferences through rewards and interact in a friendly manner with
humans. Similarly, Isbell et al. (2001) apply human rewards to social dialogue robots
based on RL technology. By continuously providing rewards, people are able to correct
the robot’s policy, leading to the agent gradually understanding human preferences af-
ter more than 3,000 reward instances. In addition, Thomaz et al. (2005) extend this idea
and applies the reward shaping method to the robot. Specifically, they not only con-
sider human rewards but also introduce action guidance, allowing humans to correct
the robot’s past behavior and guide the agent’s future actions.

However, previous works often require a high knowledge level of human trainer (Knox
and Stone, 2008a). To address this problem, Knox and Stone (2008a) improve the way of
human reward and proposes the Training an Agent Manually via Evaluative Reinforcement
(TAMER) framework. Specifically, instead of requiring professional advice, humans are
only asked to provide scaling rewards (i.e., rewards from a range of values, e.g., from
1 to 100). This setting makes the task training process more effective. They conducted
experiments using the Tetris game and demonstrated that, with just three rounds of
rewards, the agent is able to achieve good performance in the game. This approach sig-
nificantly reduces the burden on non-expert participants and enhances the accessibility
of RL training. Furthermore, to enhance the sample efficiency of human reward, Lee
et al. (2021) propose a pre-training approach that updates the reward function based on
human preferences. This method is particularly applicable in complex tasks, such as
mechanical manipulation skills, where the agent can acquire new behaviors that stan-
dard reward functions alone may not effectively capture.

In addition, Warnell et al. (2018) employ convolutional neural networks to model a
value network and utilize human rewards to update the network’s parameters. This
approach enables the application of IRL in high-dimensional state spaces. Their results
show that the agent trained for only 15 minutes outperforms human players in the Atari
bowling game. Similarly, da Cruz et al. (2021) leverage human rewards to train a Deep
Q Network for labeling breast disease images. Furthermore, reducing the number of
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human queries is an effective strategy for alleviating feedback pressure. For example,
Bignold et al. (2021b) categorize different states based on distinct rules, assigning simi-
lar rewards to states governed by the same rules. This method significantly reduces the
amount of required human rewards.

However, relying solely on human rewards can lead to good short-term performance
for the agent, but the long-term performance is not ideal because it is challenging for
human rewards to cover all situations with limited feedback instances (Knox and Stone,
2015). Moreover, due to the substantial uncertainty and instability of human rewards,
if the accuracy of human rewards cannot be guaranteed, this method is likely to hinder
the agent in finding the best policy (Ng et al., 1999).

2.3.2.2 Integrating Reward

In IRL, the integrating reward method refers to the agent training by the rewards from
the environmental rewards and the human rewards. By integrating these rewards, the
agent can learn the policy effectively and take actions that align with both the environ-
mental objectives and the preferences expressed by human experts.

A pioneer work, Thomaz and Breazeal (2008) explore the compatibility of human re-
ward and environmental reward using RL robots. They find that human reward sig-
nals play a crucial role in guiding future action choices. In addition, Tenorio-Gonzalez
et al. (2010) incorporate human feedback signals as additional rewards. Specifically, de-
pending on the agent’s performance, their method allows humans to provide further
rewards, which are used as additional rewards to help the agent’s learning. Moreover,
the TAMER + RL method is a new attempt based on the TAMER framework (Knox
and Stone, 2010). In this method, the authors incorporate human reward into the fea-
ture vector of reward to enhance the learning process. Subsequently, Knox and Stone
(2015) improve this combination and proposed Value Iteration TAMER (VI-TAMER),
which combines human binary feedback with a value function and uses the Tempo-
ral Difference method to update the policy. Their results show that VI-TAMER has a
better performance in the mountain car and grid-world games than the benchmarks.
In more detail, VI-TAMER, especially in continuous tasks, consistently reaches the goal
more effectively compared to other algorithms. In addition, the agent using VI-TAMER
reaches the goal faster during the initial stages of training compared to the benchmarks.

Other works focus on giving reward signals through different interactive ways. For
example, Arakawa et al. (2018) propose the Deep Q Network TAMER (DQN-TAMER)
method. In more detail, they employed facial expressions as the reward signals, con-
verting them into binary signals within the neural network processor. The agent is
then trained by combining human and environmental rewards. Their results show that
DQN-TAMER outperforms the benchmark in a maze game scenario. Similarly, Li et al.
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(2020) also utilize facial expressions as the feedback way. They claim that facial reward
signals can improve training efficiency through a study involving 561 participants.

Furthermore, based on DQN-TAMER, Guan et al. (2020) employ a deep neural network
to model the policy function and extends the facial rewards to include voice rewards. In
addition, another work related to voice feedback is Jeon et al. (2021), which uses auto-
matic speech recognition to convert human commands into digital rewards for training
DQN. Moreover, Cui et al. (2021b) propose the general implicit rewards framework that
can map various forms of implicit human signals to the rewards for agent learning.

Overall, the integrating reward method can provide long-term effects on agent training
and can accelerate the learning process (Amir et al., 2016; Li et al., 2013; Fachantidis
et al., 2019). Even when humans no longer provide rewards after a certain period, the
agent can continue to learn the optimal policy solely based on environmental rewards.
However, determining appropriate human rewards remains a complex problem, and a
definitive criterion for setting them has yet to be established. When designing human
rewards, it is crucial to consider their consistency with environmental rewards in order
to ensure effective learning.

2.3.3 Action Advice Method

The action advice method involves humans providing advice on the next action for
the agent based on its current state. In contrast to the reward shaping method influ-
encing the policy of the agent, human action advice is often independent of the policy
and it does not require modifying the environmental reward structure. Specifically, in
the action advice method, humans indicate the optimal action to the agent, while the
agent still receives rewards from the environment. For example, Suay and Chernova
(2011) apply the action advice method to guide real robots in performing tasks. In more
detail, they evaluated the performance of the action advice method in state spaces of
varying sizes and found that this interaction method performed better in larger state
space environments than in smaller environments.

In addition, Krening and Feigh (2019) introduce the Newtonian action advice method,
which combines human advice with RL techniques. Specifically, this method facilitates
agent learning by incorporating human action suggestions at regular intervals. In addi-
tion, a distinctive feature of this approach is the decay of human-provided action sug-
gestions over time, ensuring their effectiveness for a certain duration. This mechanism
reduces the cognitive burden on humans while maintaining the learning efficiency of
the agent. Their results demonstrated that the Newtonian action advice method out-
performs IRL methods related to the reward shaping method. Furthermore, Krening
and Feigh (2018) compare the Newtonian action advice method with the binary feed-
back method, and the results indicate that the action advice method contributed to
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more efficient agent learning than the binary feedback method. Moreover, Frazier and
Riedl (2019) combine the Newtonian action advice method with a deep RL algorithm
and applies it in the Minecraft game. The experimental results demonstrate that this
combined approach outperforms the deep RL method alone.

In addressing the costs and limitations associated with human feedback, Bignold et al.
(2021a) adopt simulated users with explicit rules to assist the agent in improving learn-
ing efficiency instead of using clear action advice. Although the performance of simu-
lated users may not match that of real humans, they provide immediate advice to the
agent without any delay, thereby mitigating the drawbacks of human feedback. More-
over, the action advice method can also be applied in the domain of safe IRL, where
humans assist the agent in avoiding dangerous actions by providing advice on the
safest actions to take (Li et al., 2022).

However, the action advice method gives clear instructions to the agent, but it is pro-
vided often before the agent performs an action. Compared to the reward shaping
method, action advice is more likely to provide wrong guidance for the agent when
human trainers cannot predict the state after the agent executes an action (Arzate Cruz
and Igarashi, 2020).

2.3.4 Human Feedback Forms

There is no consensus on the best form of feedback to use in the IRL community. Specif-
ically, some studies employed binary feedback (Isbell et al., 2001; Arakawa et al., 2018;
Chisari et al., 2022), which needs human trainers to provide binary rewards for agent
training. The advantage of binary feedback is that it requires less feedback burden than
other forms. Other studies (Knox and Stone, 2008b; MacGlashan et al., 2017) adopt the
scaling reward, where the reward signal is a score within a specified range. Further-
more, the works (Fachantidis et al., 2019; Frazier and Riedl, 2019; Chen et al., 2022a)
have considered action advice methods, where humans need to provide the agent with
action advice rather than a reward.

However, there is no work that analyzes the impact of different feedback forms on the
training of RL agents, which highlights the need for further research to determine the
best feedback form in IRL. Specifically, a deeper understanding of the impact of differ-
ent forms of reward on the training process and the resulting performance of the RL
agent is crucial for the continued advancement of this field. In this thesis, we conduct
experiments to evaluate different feedback forms (see Section 4.2.2).
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2.3.5 Multiple Resource Interactive Reinforcement Learning

Some works (Zhan et al., 2016; Li and Zhang, 2018; Kurenkov et al., 2020) in the field of
IRL have enabled multiple trainers to participate in the training process. For example,
Li and Zhang (2018) focuses on source policy selection in transfer RL. Specifically, they
consider selecting source policies as a multi-armed bandit problem and employ the
Upper Confidence Bound method to solve it. Moreover, Kurenkov et al. (2020) propose a
filtering approach that compares Q-values to filter out bad advice from trainers.

However, these methods only select one trainer at a time, which can result in poor
training accuracy if the feedback provided by the selected trainer is inaccurate. In addi-
tion, the approaches rely on the availability of environmental rewards as ground truth,
which may not be feasible when the rewards are highly sparse. In contrast, our method
does not rely on ground truth and can effectively utilize all feedback from multiple
trainers and produce more accurate and cost-effective training results.

2.4 Introduction to Multi-Armed Bandit Problems

Following the Challenge in Section 1.2.4, we discuss the existing approaches and the
works related to the multi-armed bandit problem of advisor selection.

2.4.1 Existing Approaches for Multi-Armed Bandit Problem

In Chapter 5, in our methods and experiments, we use three methods for solving the
multi-armed bandit problem, they are: ϵ-greedy, Thompson Sampling, and Upper Confi-
dence Bound Algorithm (UCB). Therefore, we discuss them in the following.

2.4.1.1 ϵ-Greedy

ϵ-greedy (Sutton and Barto, 2018) is a widely employed algorithm used to solve the
multi-armed bandit problem. It is a simple and intuitive approach that strikes a balance
between exploration and exploitation. In the ϵ-greedy method, the decision-maker
maintains an estimate of the expected reward for each arm. At each time step, the
decision-maker chooses between exploration and exploitation based on a parameter
called ϵ. For example, if ϵ = 0.1, the decision-maker selects a random arm with the
probability of 10%, regardless of its estimated reward. This random exploration allows
the decision-maker to gather more information about the arms and their reward distri-
butions. It helps in identifying potentially better-performing arms that may be initially
underestimated.
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On the other hand, with a probability of (1 − ϵ), the decision-maker selects the arm
with the highest estimated reward by exploiting its current knowledge, to maximize
the decision-maker’s immediate reward. By adjusting ϵ, the decision-maker can con-
trol the trade-off between exploration and exploitation. A higher ϵ encourages more
exploration, while a lower ϵ prioritizes exploitation.

However, the ϵ-greedy method explores with a constant probability, regardless of the
current estimates or the potential for improvement. Therefore, the ϵ-greedy method
may continue to explore arms even after identifying high-reward arms. This can result
in wasting cost and delay the exploitation of the best arm, especially when the ϵ value
is set too high.

2.4.1.2 Thompson Sampling

Another extensively utilized method is Thompson Sampling (Thompson, 1933). It is
a Bayesian approach that balances exploration and exploitation by using probability
distributions to model uncertainty in the rewards of different arms. Specifically, the
algorithm starts by assigning a prior distribution (e.g., Beta distribution) to each arm’s
reward probability. As the decision-maker selects arms and receives rewards, the algo-
rithm updates these distributions based on the observed outcomes. Figure 2.6 provides

Figure 2.6 The x-axis represents the range of the mean or expected value of the Beta
distribution. The y-axis represents the value of the probability density function of the
Beta distribution at a given value of x.

an example of probability density images under three conditions in the Beta distribu-
tion. In the first condition, when α = 1 and β = 1, the horizontal line represents that
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we do not have any prior information, so a value from the Thompson Sampling is sam-
pled uniformly between 0 and 1. In addition, when α = 3 and β = 3, the probability
density image resembles a parabola with a peak at x = 0.5. In this case, the value from
the Thompson Sampling likely is a value close to the mean value 0.5 (exploitation),
but there is also a certain probability of obtaining some extreme values, e.g., 0.9 or 0.1
(exploration). Moreover, when α = 10 and β = 2, the curve gradually converges and
becomes narrower than the other two curves. The value from the Thompson Sampling
is most likely around 0.85, and it is unlikely to get a value below 0.4.

Therefore, to select arms for decisions, Thompson Sampling leverages the posterior dis-
tributions. It samples a probability from each arm’s posterior distribution and chooses
the arm with the highest sampled value. This random sampling process naturally en-
courages the exploration of arms with uncertain rewards and the exploitation of arms
with highly estimated rewards. By continuously updating the distributions and mak-
ing decisions based on random samples, the posterior distributions of arms become
more concentrated around the true probability, leading to more accurate decisions.

2.4.1.3 Upper Confidence Bound Algorithm

The UCB algorithm (Li et al., 2010) is another widely employed algorithm for solving
the multi-armed bandit problem. It is designed to strike a balance between exploration
and exploitation by leveraging the upper confidence bound to estimate the potential
rewards of different arms. The key idea of UCB is to balance exploitation (utilizing
known good arms) and exploration (trying unknown arms) by maintaining an upper
confidence bound for each arm.

In the UCB algorithm, each arm is associated with an upper confidence bound, which
represents the uncertainty in the estimated reward. The upper confidence bound is
calculated based on the arm’s observed rewards and the number of times it has been
selected. Specifically, at each time t, for each arm o, maintain the average reward r̄o

and the number of times selected no. At each step, calculate the UCB for each arm
o: UCBo = r̄o +

√
2 ln n

no
, where r̄o represents exploitation and

√
2 ln n

no
represents explo-

ration, and n is the total number of selections. Then, the decision dt is the arm with
maximum UCB, i.e., dt = arg maxo UCBo. Next, we receive the reward rt of arm o, and
update r̄o, n, and no. After that, we repeat the above steps at each time step.

Therefore, the selection of arms based on their upper confidence bounds ensures that
the algorithm systematically explores different arms in the early stages to gather infor-
mation and gradually shifts towards exploiting arms with higher estimated rewards as
more data is collected.
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2.4.2 Related Work of Multi-Armed Bandit Problem

Research grounded in multi-armed bandit methods is also relevant here (Kurenkov
et al., 2020; Tran-Thanh et al., 2014, 2012; Xia et al., 2015). Specifically, Kurenkov et al.
(2020) use Thompson Sampling to select advisors for agent training in RL. In their sce-
nario, there is a set of imperfect advisors with different trustworthiness, and the agent
needs to find the best advisor based on the advisors’ advice over time. In addition,
Tran-Thanh et al. (2012) propose an upper confidence method to solve budget–limited
multi-armed bandit problems. However, these works assume that the ground truth is
available following each decision, which means that advisors’ trustworthiness can be
reliably updated. Instead, our work infers the reliability of the advice by the decision
model, thereby avoiding the need for ground truth. In more detail, assessing the relia-
bility of the advice can help us give reasonable updated evidence for building models
of the trustworthiness of advisors.

In addition, some studies consider advisor selection limited by a fixed budget con-
straint (Tran-Thanh et al., 2012, 2014; Xia et al., 2015; Zhou and Tomlin, 2018; Cayci
et al., 2020). They often consider how to balance exploration and exploitation to maxi-
mize rewards in budget-constrained decision-making scenarios. However, such works
do not consider that decisions might have different values and costs associated with
getting them wrong. Consider the following lending decision scenario. If a $1,000 loan
at 9% interest is repaid, it will make a $90 profit, but it can result in a loss of $1,000
if the borrower defaults. Such high-risk decisions require a more reliable assessment,
potentially requiring multiple costly advisers, whereas low-value, low-risk decisions
may only need a single one. Therefore, we consider selecting a group of advisors with
different qualities and prices to balance potential profits and risks associated with a
decision.

Moreover, the cost of advisors is considered in the work (Tong et al., 2018; Wang et al.,
2018; Miao et al., 2022). In more detail, Tong et al. (2018) focus on pricing the advisors
in different regions and deciding by the relationship between supply and demand in
spatial crowdsourcing tasks. However, they do not consider advisors to have different
qualities. In addition, Miao et al. (2022) and Wang et al. (2018) also assume advisors cost
the same but give additional rewards to advisors with more contributions. However,
when there is no real-time feedback on the ground truth, it is difficult to determine who
should obtain additional rewards. Therefore, the same price for advisors with different
qualities is unrealistic; in contrast, our work considers advisors with different qualities
and prices.
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2.5 Summary

This chapter presents the literature review relevant to our research objectives and chal-
lenges. We start by providing an overview of advice aggregation in the multi-advisor
decision-making problem. This is associated with our research challenge in Section
1.2.1, making optimal decisions sequentially without ground truth. Specifically, al-
though the aggregation problem has been widely studied in recent years, most of them
fail to account for the impact of the changing trustworthiness, which is an important
feature in sequential decision-making. In addition, existing research mainly focuses on
offline methods, which cannot fit the dynamic nature of sequential decision-making.
In contrast, our work considers designing an online method to aggregate advice se-
quentially to make optimal decisions, which can automatically adjust the aggregation
strategy based on the change in advisors’ trustworthiness (Objective O1.1 and O4.1).

Next, we turn our attention to modeling advisors’ trustworthiness without prior infor-
mation (research challenge in Section 1.2.2). Specifically, existing methods for updating
trustworthiness often rely on knowing the ground truth, while our work considers sce-
narios without having access to this information. In addition, although some work
updates the trustworthiness without ground truth, they often depend on a big group
of data (a large number of problems and advice from advisors) to estimate the trustwor-
thiness. In contrast, our work considers gradually building advisors’ trustworthiness
from zero without ground truth and prior information (Objective O1.2 and O4.2).

Then, we present the background and literature in the IRL, which is an implement
area of multi-advisor decision-making problem (research challenge in Section 1.2.3).
Specifically, existing research mainly focuses on single trainer IRL because they assume
the trainer is perfect. However, the human trainer is hard to be perfect in practice,
so we consider aggregating the advice of multiple trainers to provide the aggregating
rewards for agent training. In addition, a few of the research consider multi-trainer
IRL, but they often require that they can access the ground truth. In addition, our work
also considers correcting unreliable historical advice to improve the reward accuracy
(Objective O2.2). Furthermore, there is no consensus on the best form of reward to
use in the IRL community. Therefore, our Objective O2.1 focuses on evaluating the
performance of different feedback forms.

Finally, we focus on a utility optimization problem in multi-advisor sequential decision-
making. In this problem, we consider advisor selection by balancing the advisors’ costs
and the value of decisions (research challenge in Section 1.2.4). In more detail, although
some works consider the budget limitation to control the cost of hiring advisors, they
assume that all the decisions have the same value, while our work considers the advisor
selection based on decisions that have various values (Objective O3.1 and O3.2).
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Chapter 3

Sequential Binary Decision-Making

In this chapter, we present a novel method, called Multi-Advisor Binary Sequential
Decision-Making (MABSDM), for binary sequential decision-making problems, with
the aim of addressing Objective O1.1, O1.2 (see Section 1.3.1). MABSDM is the basis
for subsequent extensions in the following two chapters. In more detail, MABSDM con-
siders (1) modeling the advisors’ trustworthiness sequentially without prior informa-
tion and ground truth, (2) automatically adjusting the aggregation strategy according
to the uncertainty of the advisors’ trustworthiness and, (3) making optimal decisions
by the advice of multiple advisors. Moreover, our problem-advice experiments show
that our MABSDM method outperforms the benchmarks using state-of-the-art meth-
ods including the weighted voting method, the Bayesian aggregation method, and the
Beta distribution trustworthiness model.

The rest of the chapter is structured as follows. First, we describe the MABSDM method
in Section 3.1. Second, we present the experiments and results in Section 3.2. Lastly, we
summarize our work in Section 3.3.

3.1 Model Description

MABSDM can aggregate the advice of multiple advisors to make the optimal decision
for problems with binary options. The design of MABSDM considers two parts. The
first part is the trustworthiness model. In more detail, the trustworthiness model can
build the trustworthiness of advisors without ground truth over time. The second part
is the decision model, which can make optimal decisions based on the advice of ad-
visors and the present trustworthiness of advisors. In particular, the trustworthiness
model and decision model are interdependent. For each problem, the decision model
requires the present trustworthiness of advisors to make a decision, while the update of
advisors’ trustworthiness relies on the inferred evidence from the decision. Moreover,
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the two models in MABSDM improve over time without the ground truth of problems
and prior information of advisors’ trustworthiness. Figure 3.1 shows its structure.

Figure 3.1 For each problem t, a subset of the advisor set X provides a set of advice
At. The decision model takes two inputs to make the decision: the advice set At from
advisors and the trustworthiness vector τ⃗t from the trustworthiness model. Moreover,
the decision model outputs the decision dt and an update value vector i⃗t. This value is
then passed to the trustworthiness model to update the trustworthiness values of the
advisors for the subsequent problem t + 1.

3.1.1 Problem Formalization

The binary decision-making problem is a prevalent type of decision wherein advisors
provide advice by choosing between two options. For instance, a bank decides whether
to approve a loan application, and a factory determines whether to produce a specific
commodity. More formally, the decision maker is faced with a sequence of problems
T = {1, 2, . . . , q} for which it needs to make a decision. For each problem t ∈ T, the
decision maker queries a set of advisors X. In sequential decision-making, problems
appear, and a decision needs to be made, in order and without knowledge of future
problems. Hence, we sometimes refer to t as a time step. In this chapter, we consider
binary decision-making problems, and so the outcome of each problem is a decision
dt ∈ {pos, neg} where pos is a positive decision (e.g. the loan is granted) and neg is a
negative one. Although all advisors are asked for each question, not all advisors will
respond, e.g., because they may not have appropriate expertise. Let Yt ⊆ X denote the
set of advisors responding to t. Furthermore, let Apos

Yt
⊆ Yt denote the set of advisors

that advise a pos decision. Similarly, let Aneg
Yt
⊆ Yt denote the set of advisors that believe

neg is the correct one. Let At = {Apos
Yt

, Aneg
Yt
} denote the advice set of problem t. For

any Apos
Yt

, Aneg
Yt

, we have Apos
Yt
∩ Aneg

Yt
= ∅ and Apos

Yt
∪ Aneg

Yt
= Yt.
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In addition, in cases where the advice of multiple advisors can conflict, decision-making
considers the trustworthiness of advisors, which represents the degree to which an ad-
visor’s participation influences decision-making. After decision-making for each prob-
lem, trustworthiness is updated. More formally, for each problem t ∈ T, the decision
dt also depends on the trustworthiness of the advisors (see Section 3.1.3). For each
advisor, x ∈ X, τx

t is the trustworthiness of x. Finally, we denote with τ⃗t the vector
containing all the advisors’ trustworthiness values.

Moreover, we use dt = f (At, τ⃗t) ∈ {pos, neg} to refer to the decision-making function.
For each problem t, let d∗t denote the ground truth of the problem t, but this ground
truth is never revealed to the advisors and decision-makers. If dt = d∗t , we consider
that the decision is correct. Let ν denote the number of correct problems, i.e., ν = |{t ∈
T|d∗t = f (At, τ⃗t)}|. Our goal is to maximize the number ν by the decision-making
function f (·).

3.1.2 Binary Cautious Trustworthiness Model

The Binary Cautious Trustworthiness (BCT) model is a trustworthiness model for build-
ing the trustworthiness of advisors over time. Specifically, trustworthiness is the degree
to which the advisor is accurate in terms of providing advice that matches the ground
truth. For instance, the advice provided by a highly trusted advisor holds greater sig-
nificance compared to that of someone with lower trustworthiness. In addition, the
challenge is that the BCT model needs to construct trustworthiness from zero without
preliminary information and reliable evidence because the advisors do not have access
to the ground truth. In this work, we utilize Subjective Logic and a cautious trustwor-
thiness update strategy to construct our BCT model.

To begin with, we recall that Subjective Logic is a trustworthiness modeling method
that is widely used in artificial intelligence and decision theory (see Section 2.2.1). Com-
pared to the Beta distribution, Subjective Logic possesses two properties that align with
our work: first, it can directly quantify the uncertainty of advisors’ trustworthiness in
the range (0, 1]. This uncertainty is used for building our decision model (see Section
3.1.3); second, we can specify the base rate (prior probability without any evidence)
of advisors’ trustworthiness to express cautious or intuitive beliefs because a cautious
base rate can reduce the risk of wrong assessment of advisors’ trustworthiness when
there is no ground truth of problems and prior information of advisors’ trustworthi-
ness (see later in this section for more details). In addition, the update of advisors’
trustworthiness often relies on the ground truth information. However, within our
context, the lack of observable ground truth renders us unable to ascertain the correct-
ness of decision dt. If we update the trustworthiness in the wrong direction, incorrect
updates could potentially propagate adverse effects on subsequent decisions. To solve
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this problem, we adopt a cautious strategy for updating advisors’ trustworthiness (see
later in this section for more details).

Specifically, for each advisor x ∈ X, for problem t, we define bx
t ∈ [0, 1] as the belief

in advisor x, and ex
t ∈ [0, 1] as the disbelief in advisor x. In a decision-making sce-

nario, bx
t ∈ [0, 1] indicates the belief that the advisor x will make the correct decision,

and it increases with the proportion of correct decisions. In contrast, ex
t ∈ [0, 1] indi-

cates the disbelief that the advisor x will make the correct decision. Moreover, we use
θx

t ∈ (0, 1] to denote the uncertainty of advisors’ trustworthiness, which decreases as
the evidence accumulates. The bigger θx

t reflects the lower reliability of the advisor’s
trustworthiness.

In addition, for each advisor x at problem t, we associate two strength parameters: αx
t ,

βx
t . Here, αx

t is the evidence of advisor x that agrees with the decisions. In contrast, βx
t

is the evidence of advisor x that disagrees with the decisions. In this work, these two
values are built through the accumulating evidence by sequential decision-making (see
in Equation 3.4 and 3.5). Then, bx

t , ex
t , and θx

t can be expressed as:

bx
t =

αx
t

αx
t + βx

t + 2
, ex

t =
βx

t
αx

t + βx
t + 2

, θx
t =

2
αx

t + βx
t + 2

(3.1)

where the number 2 in Equation 3.1 represents the non-informative prior weight (Jøsang,
2016; Jøsang et al., 2022). Then we have bx

t + ex
t + θx

t = 1. Moreover, let ηx denote the
base rate of the trustworthiness without any evidence. The advisors’ trustworthiness
τ(x) can be expressed as:

τx
t = bx

t + ηxθx
t (3.2)

Furthermore, if the model does not have any prior knowledge about the distribution
of the advisors’ trustworthiness, BCT adopts a cautious strategy to set ηx = 1/2, which
represents an equal probability for each advisor to choose any option. This approach
ensures that BCT does not place excessive trust or mistrust in any advisor in the absence
of any prior information. Of course, if there is reasonable prior knowledge available,
an appropriate base rate or an intuitive base rate can be set accordingly.

Moreover, the BCT model employs a cautious strategy for trustworthiness updating,
which is closely related to evidence αx

t and βx
t (the computation of αx

t and βx
t see Equa-

tion 3.4 and 3.5). Normally, the update of the trustworthiness relies on the ground
truth. Taking a coin flip as an example, if we observe 4 heads and 6 tails in ten flips,
then we can express αx

t and βx
t as αx

10 = 4, βx
10 = 6. If the result of the 11th coin toss

is a head, which indicates the new evidence is 1, then α increases by 1, i.e., αx
11 = 5,

and βx
11 = 6. However, there is no ground truth for obtaining the new evidence, so the

BCT model employs a cautious strategy for trustworthiness updating to reduce incor-
rect updates. The cautious strategy updates trustworthiness based on the confidence
of the decision. Specifically, our decision model outputs two probabilities Ppos

t ∈ [0, 1]
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and Pneg
t ∈ [0, 1], representing the advisors’ beliefs in the correctness of the ”positive”

and ”negative” advice, respectively (see more details in Section 3.1.3.3). Subsequently,
a confidence value it ∈ [0, 1], derived from Ppos

t and Pneg
t , can be expressed as follows:

it = |Ppos
t − Pneg

t | (3.3)

The confidence value it indicates the level of confidence associated with decision dt.
For example, if Ppos

t = 0.9 and Pneg
t = 0.1, then the resulting it = 0.8, implying a high

likelihood that decision dt is accurate. Conversely, if Ppos
t = Pneg

t = 0.5, it becomes
0, indicating a contentious decision dt. Therefore, we use it as the new evidence for
the evidence update. If Ppos

t > Pneg
t , it indicates the positive decision is more likely to

be correct, so the evidence αx
t and βx

t is updated for each advisor using the following
equation:

∀x ∈ Apos
Yt

, αx
t+1 ← αx

t + it

∀x ∈ Aneg
Yt

, βx
t+1 ← βx

t + it

(3.4)

Similarly, if Ppos
t < Pneg

t , the negative option is considered as the correct decision, and
so we update αx

t and βx
t using:

∀x ∈ Aneg
Yt

, αx
t+1 ← αx

t + it

∀x ∈ Apos
Yt

, βx
t+1 ← βx

t + it

(3.5)

Then we can update uncertainty θx
t+1 and trustworthiness τx

t+1 by Equation 3.1 and 3.2
based on αx

t+1 and βx
t+1.

3.1.3 Binary Bayesian and Weighted Voting Ensemble Decision Model

In this section, we introduce the Binary Bayesian and Weighted Voting Ensemble (BB-
WVE) decision model, which is the decision function f used within MABSDM. The
BBWVE method takes the advice set At and the trustworthiness vector τ⃗t as input, and
the output is a probability distribution over two options for decision-making.

In more detail, the BBWVE method combines two common decision-making meth-
ods: Bayesian aggregation and weighted voting (see details in Section 2.1). Specifically,
when the model lacks sufficient evidence to ascertain the trustworthiness of advisors,
the BBWVE method prioritizes the weighted voting method. As the evidence accu-
mulates, the BBWVE method transitions to the Bayesian aggregation method. In what
follows, we first explain the Bayesian and weighted voting methods. We then run an ex-
perimental evaluation comparing these two methods, showing that the weighted vot-
ing method has a higher decision accuracy than the Bayesian aggregation method when
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the trustworthiness of advisors is unreliable, while the Bayesian aggregation method
gradually outperforms the weighted voting method as the reliability of trustworthi-
ness increases, and motivating our combined approach. Finally, we detail the BBWVE
method which combines the two approaches.

3.1.3.1 Existing Methods

In this section, we detail two existing methods, the Bayesian aggregation method, and
the weighted voting method. They are also parts of the BBWVE method. To begin with,
for the Bayesian aggregation method, for each problem t, we recall that At denotes the
advice set. We recall that d∗t is the ground truth of problem t. Given the advice set At,
let Pb,pos

t := Pb,pos
t (d∗t = pos|At) denote the probability d∗t = pos obtained through ag-

gregating by the Bayesian aggregation method (b represents the Bayesian aggregation
method). Similarly, let Pb,neg

t := Pb,neg
t (d∗t = neg|At) denote the probability d∗t = neg.

We can express Pb,pos
t and Pb,neg

t as:

Pb,pos
t =

PposP(At|d∗t = pos)
PposP(At|d∗t = pos) + PnegP(At|d∗t = neg)

(3.6)

Pb,neg
t =

PnegP(At|d∗t = neg)
PnegP(At|d∗t = neg) + PposP(At|d∗t = pos)

(3.7)

where Ppos and Pneg are the basic probability. For example, if there is no prior informa-
tion, the advisor randomly selects the option “positive” or “negative” with the same
probability, i.e., Ppos and Pneg are 0.5. P(At|d∗t = pos) or P(At|d∗t = neg) represents
given the condition that the positive or negative option is correct, the probability that
the advice set At is correct. They can be computed using the trustworthiness τx

t men-
tioned in section 3.1.2. So it can be expressed as:

P(At|d∗t = pos) = ∏
i∈Apos

Yt

τi
t ∏

j∈Aneg
Yt

(1− τ
j
t ) (3.8)

P(At|d∗t = neg) = ∏
i∈Aneg

Yt

τi
t ∏

j∈Apos
Yt

(1− τ
j
t ) (3.9)

In addition, for the weighted voting method, the advisor’s trustworthiness τx
t is con-

sidered weight in the weighted voting method. The correct probability of the positive
and negative option can be denoted as Pw,pos

t := Pw,pos
t (d∗t = pos|At) and Pw,neg

t :=
Pw,neg

t (d∗t = neg|At), respectively (w represents the weighed voting method). These
two probability can be expressed as:

Pw,pos
t =

∑i∈Apos
Yt

τi
t

∑j∈Yt
τ

j
t

(3.10)
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Pw,neg
t =

∑i∈Aneg
Yt

τi
t

∑j∈Yt
τ

j
t

(3.11)

3.1.3.2 BBWVE Motivation Experiment

We conduct a comparative experiment between the Bayesian aggregation method and
the weighted voting method to explain the motivation behind the design of the BB-
WVE method. Specifically, we examine the performances of the Bayesian aggregation
method and the weighted voting method under varying levels of trustworthiness reli-
ability across 6 conditions.

To initiate the experiment, we create 50 simulated advisors. Each advisor is assigned
a real accuracy value, represented as τr

x, which is sampled from an Extended Rectified
Gaussian distribution (ERGd) (Palmer et al., 2017). The reason for using ERGd is that
it is possible to set different means and standard deviations to simulate the different
distributions of the real accuracy of advisors to comprehensively evaluate our method.
For instance, if τr

x = 0.8, it indicates that advisor x has an 80% probability of choosing
the correct option, while there is a 20% probability that advisor x randomly selects the
incorrect options.

In addition, for each advisor x, we generate a trustworthiness τu
x for practical use by

both the Bayesian aggregation method and the weighted voting method. Additionally,
we randomly generate a probability variable ranx ∈ [0, 1]. This allows us to calculate
τu

x as follows: τu
x = ranx + (τr

x − ranx) ∗ (dis/100), where dis is the distance coeffi-
cient that is used to control the error between τu

x and τr
x. As dis increases, τu

x gradually
approaches the real accuracy τr

x from a random value ranx, which simulates the trust-
worthiness of advisors transitioning from unreliable to reliable. Moreover, at each dis
that is from 0 to 99 (increases by 1 each time), the advisors need to complete 10, 000
problems using the Bayesian aggregation method and the weighted voting method for
aggregating. In addition, the number of problems that are correctly decided is the result
of the experiment.

Furthermore, we use ȳ to represent the average number of advisors per problem in
each experiment. For each problem, we randomly select ȳ = 5 advisors on average
from all advisors. In addition, µ and σ denote the mean and standard deviation of the
ERGd distribution used to generate τr

x. In different conditions, we set µ = 0.6, 0.7, 0.8,
and σ = 0.2, 0.3, respectively. In the experiments, we only consider the case where
µ is greater than 0.5. The reason is that advisors’ trustworthiness can be misled by
advisors whose real trustworthiness is less than 0.5 because we have no ground truth
and prior information. In addition, we do not choose µ > 0.8 as the setting because the
considerably high µ results in near-perfect decision accuracy, obscuring the nuanced
differences between the two decision-making methods.
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Figure 3.2 These figures show the results of the Bayesian aggregation method and
the weighted voting method comparison experiments at different conditions in binary
decision-making problems. The X-axis of the figures depicts the distance coefficient
dis, ranging from 0 to 100, while the Y-axis displays the average accuracy of two meth-
ods observed over 10, 000 problems. n is the number of options. The curve on the
figures is accompanied by a semi-transparent region, representing the 95% confidence
interval error bar.

Figure 3.2 presents six sets of results from the comparison experiments. In these results,
the weighted voting method generally outperforms the Bayesian aggregation method
when dis is small. However, as dis increased, the Bayesian aggregation method demon-
strate superior performance over the weighted voting method. Therefore, we combine
the Bayesian aggregation method and the weighted voting method by the uncertainty
of advisors’ trustworthiness, to adapt to the varying reliability of advisors’ trustwor-
thiness and improve the overall aggregation performance.
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3.1.3.3 Ensemble Decision-Making

The BBWVE method combines the Bayesian aggregation method and the weighted vot-
ing method by using the average uncertainty of advisors’ trustworthiness as a weight
to control the trust placed in each method. This uncertainty indicates the reliability of
the present trustworthiness of advisors. Let θ̄t ∈ (0, 1] denote the average uncertainty
of the advisor set Yt, and let |Yt| denote the cardinality of Yt, i.e., the number of advisors
in Yt. Let θi

t denote the uncertainty of advisor i. θ̄t can be expressed as:

θ̄t =
∑i∈Yt

θi
t

|Yt|
(3.12)

During the initialization stage, the BBWVE method places more trust in the weighted
voting method due to the low reliability of the advisors’ trustworthiness. As evidence
accumulates and the average uncertainty decreases, the reliability of the trustworthi-
ness increases. This results in a higher weight being assigned to the Bayesian aggrega-
tion method, gradually shifting the balance of trust from the weighted voting method
to the Bayesian aggregation method.

From ensemble method, given the advice set At, the probability that d∗t = pos and
d∗t = neg can be denote as Ppos

t := Ppos
t (d∗t = pos|At) and Pneg

t := Pneg
t (d∗t = neg|At),

which can be expressed as:

Ppos
t = (1− θ̄t)Pb,pos

t + θ̄tP
w,pos
t (3.13)

Pneg
t = (1− θ̄t)Pb,neg

t + θ̄tP
w,neg
t (3.14)

As θ̄t decreases, the weights of the weighted voting methods decrease, and the weights
of the Bayesian aggregation methods increase. For any Ppos

t and Pneg
t , we have Ppos

t +

Pneg
t = 1.

After aggregating the advice, the system needs to compare Ppos
t and Pneg

t . The option
with the bigger probability is the final decision of problem t, i.e., dt = arg max

o∈{pos,neg}
Po

t . If

Ppos
t = Pneg

t , the decision is randomly made between two options.

3.1.4 MABSDM

The MABSDM method is described in Algorithm 1. Line 1 describes the initialization
of parameters, including τ⃗, θ⃗, tmax, α⃗, β⃗, t, where τ⃗, θ⃗, α⃗, and β⃗ are the vectors con-
tain trustworthiness parameters of all advisors, and tmax is the maximum number of
problems. First, we obtain the answer set Apos

Yt
and Aneg

Yt
(Line 3). Then we calculate

Ppos
t , Pneg

t , it by Equation 3.13, 3.14, 3.3, respectively (Line 4). Next, the decision dt is
obtained according to Ppos

t and Pneg
t . If Ppos

t > Pneg
t , the decision dt is pos (Line 5-6). In
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contrast, the decision dt is neg if Ppos
t < Pneg

t (Line 7-8). Then, we can use the confidence
value it to update the evidence vector α⃗ and β⃗ by Equation 3.4 and 3.5. Subsequently,
the trustworthiness vector τ⃗ and the uncertainty vector θ⃗ can be updated using Equa-
tion 3.1 and 3.2 (Line 9). Then, we can make the decision of the next problem t + 1,
until t exceeds the maximum number of problems tmax (Line 11).

Algorithm 1 MABSDM algorithm

1: initialize τ⃗, θ⃗, tmax, α⃗ = β⃗ = 0, t = 0
2: while true do
3: obtain Apos

Yt
, Aneg

Yt

4: calculate Ppos
t , Pneg

t , it
5: if Ppos

t >Pneg
t do

6: dt = pos
7: else do
8: dt = neg
9: update α⃗, β⃗, τ⃗, θ⃗

10: t = t + 1
11: until t > tmax

3.2 Experiments

In this section, we design a problem-advice experiment, which is used to evaluate the
performance of MABSDM. Specifically, we compare MABSDM with five methods that
are combined with different aggregation methods: Bayesian aggregation (BYS) (see Sec-
tion 3.1.3.1), Weighted Voting (WV) (see Section 3.1.3.1), Binary Bayesian and Weighted
Voting Ensemble (BBWVE) (see Section 3.1.3), and trustworthiness modeling meth-
ods: Beta distribution trustworthiness model (Beta) (see Section 2.2.1), Binary Cautious
Trustworthiness model (BCT) (see Section 3.1.2). See Table 3.1 for the overview. Then,
the combined models are (1) BYS-Beta; (2) WV-Beta; (3) BBWVE-Beta; (4) BYS-BCT; (5)
WV-BCT, and our method MABSDM consists of BBWVE and BCT.

Table 3.1 the abbreviations of methods in MABSDM experiments

abbreviations list
BYS Bayesian Aggregation
WV Weighted Voting
BBWVE Binary Bayesian and Weighted Voting Ensemble
Beta Beta Distribution Trustworthiness Model
BCT Binary Cautious Trustworthiness Model

In addition, we use statistical hypothesis tests on the experimental results. The Mann–Whitney
U test (Mann and Whitney, 1947) combined with Bonferroni Correction (Bonferroni,
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1936) is used to test the difference between the results of MABSDM with five baseline
methods, respectively.

3.2.1 Setting

In this problem-advice experiment, we generate 50 simulated advisors with a different
real accuracy for each experiment. For each problem, the system randomly selects 5
advisors on average from 50 advisors to give advice to problems. For each problem,
the system randomly selects 5 advisors on average from 50 advisors to give advice to
problems. For this setting, if we select fewer than 5 advisors for each problem, it is
difficult to observe the performance of different aggregation methods. In addition, if
we select many advisors, e.g., 50 advisors, the decision accuracy of all methods is very
high, blurring the distinctions between individual strategies. In addition, recall that
τr

x denotes the real accuracy of advisor x. In order to observe the impact of the aver-
age real accuracy of advisors on performance, for each advisor x, τr

x is sampled from
ERGd whose mean µ ranges in the set {0.51, 0.52, ..., 1}. In addition, to simulate the dif-
ferent trustworthiness distributions, we design 6 groups of experiments with different
standard deviations σ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The advisors need to aggregate their
advice to make decisions on 1, 000 problems sequentially in each experiment. Table 3.2
presents the setting of the experiments in simulated environments.

In addition, after each feedback, the system can aggregate advice through six different
methods. Then, the aggregated advice is compared to the ground truth. If the ag-
gregated advice is the same as the ground truth, then the advice is considered correct.
Otherwise, it is considered an error. After the feedback of 1, 000 problems, we can know
how many correct decisions there are, and the accuracy of different methods can be ob-
tained. Moreover, to reduce the influence of the randomness, we run each experiment
with the same settings 1, 000 times (i.e., using the same mean and standard deviation
to generate the advisors’ real accuracy, and all methods use the same set of advisors in
the same experiment).

Table 3.2 the setting of MABSDM experiments

setting value
the mean of advisors’ real accuracy µ 0.51, 0.52,..., 1

the standard deviation of advisors’ real accuracy σ 0, 0.1, 0.2, 0.3, 0.4, 0.5
total number of advisors 50

average number of advisors of each problem ȳ 5
the number of problems in each problem set 1, 000

repeat running time of each setting 1, 000
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Table 3.3 This table presents the mean and standard deviation of the accuracy of six
methods in simulated experiments. The mean accuracy is calculated over all results
(50 ∗ 1, 000 results). The standard deviation is computed from 1,000 repeated experi-
ments.

σ MABSDM
BBWVE
-Beta

BYS
-BCT

BYS
-Beta

WV
-BCT

WV
-Beta

σ = 0
0.8167
±0.0017

0.8020
±0.0025

0.7535
±0.0143

0.7420
±0.018

0.8287
±0.0015

0.8283
±0.0014

σ = 0.1
0.8351
±0.003

0.8212
±0.0039

0.7701
±0.0168

0.7571
±0.0196

0.8359
±0.0027

0.8357
±0.8422

σ = 0.2
0.8725
±0.0075

0.8611
±0.0095

0.8041
±0.0238

0.7863
±0.0267

0.8408
±0.0049

0.8422
±0.0049

σ = 0.3
0.8955
±0.0151

0.8863
±0.0174

0.8262
±0.0334

0.8052
±0.0353

0.8388
±0.0074

0.8428
±0.0076

σ = 0.4
0.9008
±0.0208

0.8911
±0.0255

0.8270
±0.0387

0.8069
±0.0420

0.8332
±0.0102

0.8394
±0.0106

σ = 0.5
0.8972
±0.0259

0.8880
±0.0299

0.8192
±0.0425

0.8032
±0.0468

0.8257
±0.0129

0.8339
±0.0135

3.2.2 Results

Table 3.3 shows the results in each group of experiments. Overall, MABSDM exhibits
the best performance in almost all environments. Specifically, MABSDM achieved the
best performance in 6 groups of experiments, while only slightly lower than weighted
voting methods when σ = 0, 0.1. In addition, MABSDM outperforms BBWVE-Beta in
all sets of experiments, which indicates our BCT can further improve the performance
of BBWVE. Moreover, BBWVE methods have better stability than Bayesian methods,
because the standard deviations of BBWVE methods are lower than Bayesian methods.
In the following, we analyze the results of each group of experiments in detail.

First of all, Figure 3.3 shows the curve of the average accuracy (left) and the trustwor-
thiness error (right) of six methods as the mean of real accuracy µ increases where the
standard deviation of advisors’ trustworthiness σ is 0, i.e., all the advisors have the
same accuracy. In more detail, in terms of accuracy results, the two weighted voting
methods have the best performance, while MABSDM is a little worse than them and
Bayesian methods perform worst. Moreover, for the ability to model trustworthiness,
WV-Beta has the best performance the average error is only 0.1, whereas MABSDM
is a little worse than it. In contrast, BYS-Beta, BYS-BCT, and WV-BCT cannot model
trustworthiness well, because their error is around 0.13.

However, in practice, assuming that all advisors have the same trustworthiness is un-
realistic. In addition, advisors with the same trustworthiness greatly weaken the role of
trustworthiness in the aggregation method, and the same performance can be achieved
by using the majority voting method without the trustworthiness model.
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Figure 3.3 These figures show the accuracy curves (left) and trustworthiness error
curves (right) where the standard deviation σ between advisors is 0. In the left figure,
the X-axis of the figures depicts the mean of real accuracy of advisors µ, ranging from
0.51 to 1, while the Y-axis displays the average accuracy of six methods observed over
1, 000 experiments. In the right figure, the X-axis of the figures describes the decision
number, while the Y-axis displays the average error of six methods observed in all
ranges of real advisor’s accuracy over 1, 000 experiments (average value of 50 ∗ 1000
results). The curve on the figures is accompanied by a semi-transparent region, repre-
senting the 95% confidence interval error bar.

Figure 3.4 These figures show the accuracy curves (left) and trustworthiness error
curves (right) where the standard deviation σ between advisors is 0.1. More details
see in Figure 3.3.

Furthermore, Figure 3.4 illustrates the curves with σ set to 0.1. Specifically, MAB-
SDM, WV-BCT, and WV-Beta exhibit similar decision accuracy, while BBWVE-Beta
slightly lags behind them. Additionally, WV-Beta outperforms the other methods in
terms of model trustworthiness, with MABSDM as the second-best, showing only a
marginal difference from WV-Beta. Moreover, similar to the results obtained when
σ = 0, Bayesian methods demonstrate the poorest performance in both decision accu-
racy and trustworthiness modeling. However, the differences in the trustworthiness of
advisors are not big when σ = 0.1, so BBWVE does not exhibit an advantage in this
scenario.

Moreover, Figure 3.5 depicts the curves for σ values of 0.2 and 0.3. MABSDM has
the best performance in decision accuracy and trustworthiness modeling, while the
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Figure 3.5 These figures show the accuracy curves (left) and trustworthiness error
curves (right) where the standard deviation σ between advisors are 0.2 and 0.3. More
details see in Figure 3.3.

BBWVE-Beta is a little worse than MABSDM. Notably, MABSDM demonstrates a sig-
nificant advantage when the real accuracy of advisors is low. Particularly, at σ = 0.3,
the decision accuracy of MABSDM is approximately 10% higher than that of Bayesian
methods and weighted voting methods, where µ ranges from 0.55 to 0.75. Addition-
ally, as µ increases above 0.65, the advantage of MABSDM gradually diminishes. This
is expected since all methods tend to perform well when advisors have high accuracy.
As µ increases, the differences between different decision methods decrease, as the up-
per bound of accuracy is 1. In conclusion, the results indicate that MABSDM excels in
scenarios with low advisor accuracy, but its advantage diminishes as advisor accuracy
improves.

In addition, Figure 3.6 shows the curves where σ are 0.4 and 0.5. Specifically, MABSDM
still has the best performance in decision accuracy and trustworthiness modeling, while
the BBWVE-Beta follows closely. In addition, in general, weighted voting methods
outperform Bayesian methods, but the gap between them decreases as µ increases.

Finally, we conducted paired hypotheses tests using the Mann–Whitney U test com-
bined with Holm Bonferroni Correction to compare the accuracy results of MABSDM
and the five other methods. Specifically, the p-values revealed that out of a total of
1, 500 comparisons (50× 6× 5 = 1, 500). Among them, 1, 084 pair results show signifi-
cant differences, which supports our results. In addition, we observe that BBWVE-Beta
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Figure 3.6 These figures show the accuracy curves (left) and trustworthiness error
curves (right) where the standard deviation σ between advisors are 0.4 and 0.5. More
details see in Figure 3.3.

and MABSDM have only a few results that are significantly different, where σ = 0.3
and 0.4. Moreover, most of the results of MABSDM and Bayesian methods have signifi-
cant differences. Whereas the results between MABSDM and Weighted Voting methods
have significant differences where σ > 0.1. This is consistent with the results obtained
in our experiments.

3.3 Summary

In this chapter, we complete Objective O1.1, O1.2 (see Section 1.3.1). We propose MAB-
SDM, which is a multi-advisor binary sequential decision-making method. In more de-
tail, MABSDM considers (1) modeling the advisors’ trustworthiness sequentially with-
out prior information and ground truth and, (2) making optimal decisions by the advice
of multiple advisors. Moreover, the results show that our MABSDM method outper-
forms the benchmarks using state-of-the-art methods including weighted voting, the
Bayesian aggregation method, and the Beta distribution trustworthiness model.
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Chapter 4

Multi-Advisor Interactive
Reinforcement Learning

The previous chapter proposes the MABSDM method for binary decision-making prob-
lems. In this chapter, we extend the application of MABSDM to a multi-advisor IRL
system. Specifically, the multi-advisor IRL shares five key similarities with the multi-
advisor sequential decision-making problem. First, MAIRL involves aggregating ad-
vice of multiple advisors to provide human rewards (make decisions on the reward
provided to the agent). Second, due to reward sparsity, advisors often lack access to
the ground truth on whether rewards are reliable. Third, prior information on advisors’
trustworthiness is often unavailable, necessitating the development of trustworthiness
models over time. Fourth, IRL is a sequential decision-making problem because the
advisors need to provide rewards to the agent at each time point. Lastly, we use binary
feedback as the feedback form in our IRL system (see Section 4.1.2), aligning with the
binary decision-making focus of MABSDM.

In this chapter, in addition to using MABSDM to give rewards to the agent, MAIRL con-
siders reducing the human feedback burden and improving the utilization efficiency of
advice. To address the Objective O2.1 and O2.2, in this chapter, we propose a novel
interactive reinforcement learning system called Multi-Advisor Interactive Reinforce-
ment Learning (MAIRL). Specifically, MAIRL can aggregate the binary advice of mul-
tiple imperfect advisors into a reliable reward for agent training in a reward-sparse
environment. In addition, the review model in MAIRL can correct the unreliable re-
ward from historical feedback. Moreover, we use the binary feedback form in MAIRL.
In particular, our binary feedback experiments show that binary feedback outperforms
other feedback forms including ranking feedback, scaling feedback, and state value
feedback. Finally, we conduct grid-world experiments to show that the policy trained
by the MAIRL with the review model is closer to the optimal policy than that without
a review model.
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The rest of the chapter is structured as follows. First, we describe the MAIRL method
in Section 4.1. Second, we present the experiments and results in Section 4.2. Lastly, we
summarize our work in Section 4.3.

4.1 Model Description

MAIRL can aggregate the binary feedback of multiple advisors into a reward to help
the agent train, which greatly improves the learning efficiency of the agent. Within
the framework of MAIRL, we utilize the BCT model as the trustworthiness model (see
Section 3.1.2) and employ the BBWVE method to build the decision model (see Section
3.1.3).

In addition to employing MABSDM for deciding the rewards, MAIRL considers reduc-
ing the feedback burden of advisors. First, to reduce the cognitive burden, MAIRL uses
binary feedback as the feedback form. Under this setup, the advisors are only required
to provide ”positive” or ”negative” assessments of the performance of the agent. In ad-
dition, our experimental results show that binary feedback outperforms other feedback
forms. Second, to increase the utilization efficiency of human advice, MAIRL maintains
a record of historical advice, which is leveraged to assign rewards to state-action pairs
that were previously subjected to feedback. In particular, the review model in MAIRL
can assess the reliability of historical rewards and decide whether to query more advi-
sors to correct the unreliable ones. Figure 4.1 shows its structure.

Figure 4.1 The review model receives the state from the environment and decides
whether to query advisors according to historical feedback. Then, the decision model
decides the final reward given to the agent by the advisors’ advice and trustworthi-
ness. Lastly, the RL model updates the policy with human rewards and the trustwor-
thiness model updates the trustworthiness of advisors.
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4.1.1 Problem Formalization

In this chapter, we present a multi-advisor IRL system that aggregates the advice of
multiple imperfect advisors to decide rewards for the agent’s training. More formally,
the RL model is represented as a Markov Decision Process (MDP) with five key ele-
ments: ⟨S ,A, T , R, γ⟩, where S represents the set of states (state space), A denotes the
action space, T is the state transition function, and R represents the reward function.
Furthermore, the discount coefficient γ ∈ [0, 1] indicates the influence of future rewards
on the current state value. At each time t, the agent observes a state st ∈ S . Then, it
selects an action at ∈ A by policy π(at|st); After this, the agent receives a reward rt

from the reward function R such that rt = R(st, at). In IRL, we denote the rewards
provided by human advisors as r′t. In this Section, we use human reward r′t instead of
the environmental reward rt.

In multi-advisor IRL, at each time t, a set of advisors Yt ⊆ X gives advice according
to the state action pair (st, at). If an advisor believes the action taken by the agent in
the present state is the best action, then a pos advice is given. In contrast, an advisor
gives a neg advice if he or she believes the action is not the best action. In addition, for
tasks with continuous action spaces, the actions need to be discretized before applying
MAIRL. At each time t, we obtain the advice set At = {Apos

Yt
, Aneg

Yt
}.

In addition, advisors’ rewards can be incorrect. Therefore, the model needs to consider
the trustworthiness of advisors. Similar to Section 3.1.1, we denote with τ⃗t the vector
containing all the advisors’ trustworthiness values. Therefore, the system needs to use a
decision function to aggregate the answers to give the human reward r′t. Specifically, we
use r′t = f (At, τ⃗t) ∈ {pos, neg} to refer to the decision-making function. Let r∗t denote
the correct reward, which is the best reward for agent training among the rewards of
all actions in state st. If r′t = r∗t , we consider that the reward is correct. Let ν denote the
number of correct rewards, i.e., ν = |{t ∈ T|r∗t = f (At, τ⃗t)}|. Our goal is to maximize
the number of the correct rewards ν.

4.1.2 Binary Feedback

MAIRL uses binary feedback r′t ∈ {pos, neg} as the feedback form. At the current state,
if the human believes the action taken by the agent is the best, then a positive reward
pos is given. Otherwise, a negative reward neg is given. There are three reasons for
choosing binary feedback.

First, in the design of feedback forms, one important aim is to minimize the cognitive
burden on human advisors. Binary feedback achieves this by presenting advisors with
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a simpler choice between two options, rather than requiring them to select from mul-
tiple options or scores. This approach is intended to make the feedback process more
user-friendly for advisors, facilitating their participation in the training of the RL agent.

Second, binary feedback is beneficial for reducing feedback delay. In the context of
IRL, feedback delay refers to the time taken by a human advisor to provide a reward
after receiving the state-action information, and it is recognized as a challenging issue
(Knox and Stone, 2008b). Prolonged feedback delay can lead to the human advisor
missing the feedback for the correct state-action pair, potentially assigning the reward
to an incorrect one. However, utilizing binary feedback simplifies and accelerates the
decision-making process for advisors compared to other feedback forms, leading to
reduced feedback delay. As a consequence, humans are more likely to provide accurate
feedback between two actions when presented with binary options. Therefore, binary
feedback both reduces the feedback pressure on humans and ensures the quality of
rewards.

Third, our experiments demonstrate that binary feedback outperforms alternative feed-
back forms (see Section 4.2.2). To be specific, agents trained by binary feedback are
closer to the optimal strategy than those trained by other feedback forms. In RL, the
agent’s primary task is to discern the optimal action within each state compared to the
other available actions, thus rendering additional information inconsequential for ac-
celerating the learning of the optimal strategy. Moreover, the results show that binary
feedback exhibits greater robustness to incorrect feedback.

4.1.3 Review Model

In IRL, the agent is likely to encounter the same state-action pair at different times.
If we only rely on MABSDM, advisors are required to give advice endlessly. In IRL,
advisor feedback is often expensive and time-consuming, so unlimited query human
advisors are unrealistic. Therefore, we need to reduce the pressure of querying humans
as much as possible. To solve this problem, MAIRL uses a memory system, which can
record the advice of historical feedback. If the agent re-encounters the same state-action
pair, MAIRL uses the reward in the memory, greatly reducing the number of human
feedback.

However, the problem with doing this is that the future rewards are wrong if the previ-
ous reward is wrong. Therefore, to guarantee reward accuracy, a review mechanism is
applied in the MAIRL system to correct the wrong rewards. The system re-asks those
state-action pairs that have unreliable rewards. The MAIRL system is described in Al-
gorithm 2. Line 1 describes the initialization of parameters, including state s, action a,
the maximum number of training episodes nmax, and maximum steps T.



4.1. Model Description 51

Algorithm 2 MAIRL system algorithm

1: initialize ∀s ∈ S , a ∈ A(s), nmax, T
2: while true do
3: initialize state s0
4: a0 ← argmaxa(RLmodel(s0))
5: for step = 1 to T do
6: take action at, obtain st+1
7: calculate Ppos

t (r∗t = pos|Apos
s,a , Aneg

s,a ), Pneg
t (r∗t = neg|Apos

s,a , Aneg
s,a ), i′s,a, r′s,a,

Pre(st, at), generate random number Pq
t ∈ [0, 1]

8: if Pq
t < Pre(st, at) do

9: query advisors and obtain Apos
Yt

, Aneg
Yt

10: Apos
Yt
← Apos

s,a ∪ Apos
Yt

11: Aneg
Yt
← Aneg

s,a ∪ Aneg
Yt

12: recalculate Ppos
t , Pneg

t , it
13: Apos

s,a ← Apos
Yt

14: Aneg
s,a ← Aneg

Yt

15: if Ppos
t >Pneg

t do
16: r′t ← rpos
17: else do
18: r′t ← rneg
19: else do
20: it ← i′s,a
21: r′t ← r′s,a
22: RLmodel.update(st, at, r′t)
23: st ← st+1; at ← at+1
24: update τ⃗
25: is,a ← it
26: until task end
27: until n > nmax

Let Apos
s,a and Aneg

s,a represent the historical sets of positive and negative advice for the
state-action pair (s, a), respectively. At the time t, if the agent encounters a state-action
pair that has been previously queried, it needs to decide whether to ask the advisors
again (Line 8). Let Ppos

t (r∗t = pos|Apos
s,a , Aneg

s,a ) and Pneg
t (r∗t = neg|Apos

s,a , Aneg
s,a ) denote the

probability of option pos or neg is correct that based on historical advice. In this con-
text, due to the trustworthiness changing over time, the system needs to calculate the
probability Ppos

t (r∗t = pos|Apos
s,a , Aneg

s,a ) and Pneg
t (r∗t = neg|Apos

s,a , Aneg
s,a ) using the present

trustworthiness value.

Consequently, the system obtains the confidence value i′s,a and the reward r′s,a. The
probability of review Pre(st, at) ∈ [0, 1] can be defined as:

Pre(st, at) = 1− i′s,a (4.1)

If i′s,a is larger, it indicates that the historical reward is more reliable, leading to a lower
probability of review. Conversely, if i′s,a is smaller, it suggests that the historical reward
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is less reliable, resulting in a higher probability of review. When the decision is made
not to review, the system can utilize the new reward r′s,a as the updated reward r′t (Line
21).

On the other hand, if the system decides to query again, it needs to take two steps.
First, it combines the historical advice with the new advice to create a new advice set
Apos

Yt
← Apos

s,a ∪ Apos
Yt

(Line 10) and Aneg
Yt
← Aneg

s,a ∪ Aneg
Yt

(Line 11). Second, it recalculates
Ppos

t and Pneg
t to make the new decision. To avoid unnecessary updates, the last update

is,a needs to be removed, and τ⃗ is updated with the new evidence it (Line 24). Finally,
we record the new evidence is,a = it (Line 25).

4.2 Experiments

In this work, we evaluate MAIRL through two sets of experiments. To be specific,
we compare binary feedback with three baselines in Section 4.2.2. Second, to evaluate
MAIRL, we set up two other multi-advisor IRL methods to compare with our MAIRL
system in Section 4.2.3. In the next section, we introduce the experimental design (Sec-
tion 4.2.1).

4.2.1 Experimental Design

In this section, we present the experimental design, including grid-world environ-
ments, the training method, the parameter setting, and the approach to simulating
humans.

First, we employ grid-world as the experimental environment in two sets of experi-
ments. It is a classic environment for testing the performance of RL algorithms and
has been used in many studies (Coggan, 2004; Tizhoosh, 2005; Arakawa et al., 2018).
In addition, to guarantee the generalization ability of the results, we use two kinds of
grid-world as the environments. They are cliff grid-world and wall grid-world.

The first type of grid-world, cliff grid-world, comprises five parts: an agent, a start
point, an endpoint, normal cells, and cliff cells. As shown in Figure 4.2, the yellow
point is the agent, the green cell is the starting point, the blue cell is the endpoint, and
the red cell is the cliff. Specifically, in each time step, the agent can select one action from
four options (up, down, left, and right). The starting point is the cell where the agent
is at the beginning of each game episode. If the agent reaches the endpoint, it passes
the game successfully. The goal of the agent is to find the shortest way (taking the
minimum number of actions) from the start point to the endpoint. In addition, normal
cells can be traversed freely, and the start point is also a normal cell. If the agent reaches
the cliff grid, the agent dies, which indicates the task has failed. We construct two sizes
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Figure 4.2 An example of 5 ∗ 5 cliff grid-world. There are 25 cells in total. The green
cell is the starting point; the blue cell is the endpoint, and the red cell represents the
cliff.

of cliff grid-world, 5 ∗ 5 and 10 ∗ 10. These contain 5 and 10 fixed cliff cells, respectively.
In each episode, the agents start from a random position, but the endpoint is fixed.

The reason we chose the cliff grid-world is its ability to evaluate the safety performance
of the IRL method. Specifically, ensuring the agent’s safety is an important aspect of
the IRL method, particularly in applications like self-driving cars, where the risk of
accidents poses a threat to human life and incurs financial losses. Similarly, in the cliff
grid-world, if the agent goes to the cliff cells, it dies.

The second type of environment is the wall grid-world. It consists of 6 parts: an agent, a
start point, an endpoint, normal cells, flame cells, and wall cells. Specifically, as shown
in Figure 4.3, the yellow point is the agent, the green cell is the starting point, the blue
cell is the endpoint, the grey cell is the wall, and the red cell is the flame. Moreover, the
same as cliff grid-world, the starting point is where the agent is at the beginning of each
game episode. If the agent reaches the endpoint, it passes the game successfully. If the
agent reaches the flame grid, it obtains a big punishment, but it cannot die. The wall is
an inaccessible place and cannot be passed through. The agent can only go around and
find the target. In addition, we also construct two sizes of wall grid-world, 5 ∗ 5 and
10*10. In 5 ∗ 5 wall grid-world, we add 2 fixed walls and 3 fixed flame cells, while we
add 5 fixed walls and 5 fixed flame cells in 10*10 wall grid-world. In each episode, the
agents start from a random position, but the endpoint is fixed.

The reason we use the wall grid-world is that it can evaluate IRL’s ability to reduce
losses. For the IRL method, reducing training costs is one of its primary goals. For
example, in financial market transactions, every failed decision loses a lot of money. It
is not lethal, but it can cause losses to the agent.

Second, we employ the State-Action-Reward-State-Action (SARSA) algorithm as the basic
method to construct IRL methods for our experiments (Rummery and Niranjan, 1994),
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Figure 4.3 An example of 10 ∗ 10 wall grid-world. There are 100 cells in total. The
gray state represents the wall, the green cell is the starting point; the blue cell is the
endpoint, and the red cell represents the flame.

(Sutton, 1996). SARSA is an on-policy algorithm known for its stable performance in
online control tasks (Thorpe, 1997). In addition, SARSA learns online, meaning it up-
dates its knowledge while interacting with the environment, without the need for a
fixed dataset. This fits naturally with the online interaction method of IRL. For our
interactive methods, we replace the environmental rewards in SARSA with human re-
wards provided by advisors.

Let ep denote the number of episodes. The exploration probability is defined as 1/ep,
meaning that as the number of episodes increases, the agent’s exploration probability
decreases. Initially, during training, the agent’s actions are explored randomly. As the
agent learns a specific policy, it gradually reduces exploration and focuses on exploiting
the learned policy. In addition, regarding the learning rate l and future reward discount
coefficient γ, we set them to 0.1 and 0.9, respectively. Through experimentation, we
found that these values ensure the SARSA algorithm can converge to the best solution
effectively. In different grid-world scenarios, each method uses the same learning rate
and discount rate.

Third, we utilize simulated humans as advisors to provide rewards for agents. Specifi-
cally, a convergent Q-table trained by the SARSA algorithm is used to simulate humans
in the experiments. At each time step t, once the agent takes an action, the simulated
human evaluates the action based on its trained Q-table. It then provides a reward to
the agent in accordance with the policy in the Q-table. This reward serves as feedback,
guiding the agent toward optimal behaviors.

Simulated humans are well-suited for our experimental requirements as we can con-
trol their feedback. First, the convergent Q-table obtained from the SARSA algorithm
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serves as a reliable source to simulate optimal policies for different states in various en-
vironments. This guarantees the accuracy of the feedback provided. While real humans
might make errors in their judgments due to fatigue or cognitive biases, simulating hu-
mans ensures completely accurate feedback. Second, we can add a fixed proportion of
incorrect feedback to evaluate the robustness to noise of our method. This assessment
is challenging to conduct with real humans whose accuracy is difficult to control.

Fourth, noise refers to incorrect feedback from human advisors. It is a critical factor that
can limit the performance of IRL. In many real-world tasks, human feedback often is
imperfect and contains errors. To reproduce this, our experiments consider the noise
scenario. For example, 5% noise indicates that there is a 5% probability that humans
provide incorrect feedback.

Specifically, noise indicates that the human gives a reward r′t that does not match the
action at, i.e., the noise feedback randomly selects one of the non-original feedback.
Take grid-world as an example, there are four actions {up, down, le f t, right} for each
state. In state s, the agent takes action up, and up is the only worst action. Therefore,
the noise reward of state-action pair (s, up) is randomly selected from the reward of
(s, down), (s, le f t), or (s, right).

4.2.2 Binary Feedback Evaluation

In this section, we evaluate binary feedback by comparing it with three benchmarks in
four grid-world environments. In addition, to evaluate the noise robustness of binary
feedback, we conduct experiments with 0% and 5% noise, respectively.

Specifically, we conduct experiments using four different feedback forms, binary feed-
back, scaling feedback, ranking feedback, and state value feedback. Among all forms
of feedback, if the agent taking the action can make it closer to the endpoint without
dying, then its action is considered optimal. To begin with, we explain four feedback
forms used in binary feedback evaluation experiments. First, binary feedback involves
humans providing advice in the form of “positive” or “negative” (see Section 2.3.4).
Specifically, if the agent selects the best action of the state, it receives a “positive” re-
ward. Otherwise, it receives a “negative” reward. If there are two actions with the same
degree of good or bad for the same state, they obtain the same reward. For example, in
Figure 4.4, the up and right actions are equally the best actions for a state, so they both
receive the highest reward of 0, while the remaining actions receive a reward of −1.

Second, the scaling feedback method is also based on the value of the state-action pair,
but the reward setting for each state is not uniform, instead consisting of a range of
scores (see Section 2.3.4). The scaling feedback method requires a higher cognitive bur-
den compared to binary feedback, as it involves evaluating the score of each action.
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Figure 4.4 The orange dot is the agent, which can obtain a reward of 0 if it moves to
the right and up; it can obtain a reward of −1 if it moves down and left.

Figure 4.5 illustrates two examples of how the scaling feedback method works. Simi-
larly to binary feedback, if two actions have an equal positive or negative impact, they
will receive the same reward.

Figure 4.5 Human simulation for scaling feedback method. The orange dot is the
agent. In the first figure, the reward for moving right and upward is −20; the reward
for moving downward is−95 (because of death); the reward for moving left is−67; in
the second figure, The reward for moving to the right is −13; the other actions is the
sub-optimal, so the reward is −45.

Third, ranking feedback, inspired by the action advice method (see Section 2.3.3), in-
volves assigning a graded reward based on the value of the state-action pair. Specifi-
cally, we first sort all actions for a given state and then provide rewards from high to
low based on the action’s rank. The cognitive burden of ranking feedback is lower than
that of scaling feedback since it only requires ranking actions rather than providing ac-
curate scores for each action. Additionally, compared to binary feedback, the ranking
feedback method offers a more nuanced reward for the agent. While binary feedback
may not capture sub-optimal rewards, ranking feedback can effectively address this
limitation and provide a richer reward signal for the agent. As shown in Figure 4.6,
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Figure 4.6 The orange dot is the agent, the reward for moving right and upward is 0;
the reward for moving downward is −3; the reward for moving left is −2.

in the 5*5 cliff world, the reward can be divided into three levels. The first level is the
optimal action that can approach the endpoint. The second level is some sub-optimal
action far away from the endpoint. The third level is to fall off a cliff and die after
performing the action.

Finally, state value feedback is based on the value of the state where the agent is after
taking an action. For example, in Figure 4.7, in a grid-world environment, states closer
to the end state have higher values.

Figure 4.7 The orange dot is the agent, the reward is 0 if the agent arrive the endpoint.

In addition, we set the reward value for different methods. Binary feedback, ranking
feedback, and scaling feedback settings are shown in Table 4.1. The first is binary feed-
back. If the reward of the best action is set to be greater than 0, there is a risk that the
agent falls into a loop to obtain the maximum reward (Ng et al., 1999). Additionally,
during testing, it was observed that setting the maximum reward to less than 0 is not
consistently effective. This causes the agent to spend more time exploring other states
if the initial q-value is 0. Therefore, we set the value of “positive” feedback to 0. In
terms of other actions, the experiments randomly select the value from the range 0 to
−5, 0 to−10, and 0 to−100. Notably, the average results of 100 experiments in different
environments do not significantly differ. So we set the reward of “negative” feedback
as −1.
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Table 4.1 The table shows the assignment of each method to different ranked actions.
These values are based on experiments, and the performance of other values is not
better than the values in the table.

action ranking Binary Ranking Scaling
best action 0 0 0 to -25

second action -1 -1 -25 to -50
third action -1 -2 -50 to -75
worst action -1 -3 -75 to -100

The second is the ranking feedback method. The setting is shown in Table 4.1. For the
best action, the experiments have the same result as binary feedback, and a value of
0 has the best performance. For other actions, we select sequential values for the next
three actions in different ranges from 0 to −5, 0 to −10, and 0 to −100. The experimen-
tal results also show no significant difference between them. The third is the scaling
feedback method. The rewards of the scaling feedback method are set according to the
mapping of the converged Q-table. Finally, the state value feedback method uses the
value in the convergent state value as a reward. The noise of the state value method
is the value randomly selected from three states adjacent to st but not the value of the
state st+1.

Table 4.2 episodes number setting

Environment Cliff grid-world Wall grid-world
Size 5*5 10*10 5*5 10*10

Episodes 1,000 5,000 1,000 10,000

Moreover, we set different max episodes for different grid-world environments. Specif-
ically, we use the number of episodes required for SARSA (without human reward)
training to converge as the standard for setting max episodes. For example, if the
SARSA algorithm takes about 1, 000 episodes to find the best solution in an environ-
ment, the max episodes are set to 1, 000. If an IRL method cannot complete train-
ing before max episodes that find the best solution, we consider it a failed method.
As shown in Table 4.2, 5*5 cliff grid-world is 1, 000 episodes; 10*10 cliff grid-world is
5, 000 episodes; 5*5 wall grid-world is 1,000 episodes; 10* 10 wall grid-world is 10, 000
episodes.

The experimental results are measured using the number of training steps required to
find the best solution. Each time the agent moves (takes actions), the number of train-
ing steps increases by 1. For example, if binary feedback uses 500 steps to train the
agent to find the best solution, the number 500 is the result of binary feedback. Lower
numbers of steps indicate better performance. Using the number of training steps has
two advantages. First, it accurately reflects the training speed of the agent. Second, it
reflects the burden of human feedback, as each step requires simulating human feed-
back. Hence, the number of steps is equal to the number of human feedback instances.
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Table 4.3 The table shows the results in four different grid-world with 0% noise of
human feedback. The results are the means and standard deviation of steps used to
find the best solution in 100 experiments. “None” means cannot find the best solution.
The red results mean that it has the best result among all methods in an environment.

methods 5*5 cliff 10*10 cliff 5*5 wall 10*10 wall
SARSA 2153.35

+/- 328.95
43641.6
+/- 4420.46

2475.35
+/- 460.33

31497.15
+/- 3659.67

Binary 176.85
+/- 88.07

2831.25
+/- 1506.23

253.25
+/- 104.5

2239.65
+/- 802.63

Ranking 213.55
+/- 100.65

2781.65
+/- 1620.67

281.25
+/- 88.03

2067.25
+/- 687.21

Scaling 1455
+/- 541.32

None 1212.25
+/- 504.89

24605.1
+/- 5366.55

State Value 542.9
+/- 193.08

19972.8
+/- 2659.66

555.5
+/- 459.70

17173.65
+/- 6717.52

In addition, to determine whether the agent has found the best solution, the system
compares the agent’s policy with the optimal policy for all states at each time step. If
the agent’s action matches the optimal policy in each state or matches one of the best
actions in states with multiple optimal actions, it is considered to have found the best
action. When the agent finds the best action in all states, the system records the results
(the number of steps used to train the agent).

Table 4.3 shows the means and standard deviation of steps of five methods in four
environments without noise. Both binary feedback and ranking feedback methods ex-
hibit superior performance, achieving speeds around ten times faster than SARSA in
each environment. Particularly, in the 10 ∗ 10 grid-world, binary feedback, and ranking
feedback methods require only about 2, 000 steps to learn the best policy, while SARSA
needs 30, 000 steps. Moreover, these two methods demonstrate smaller standard devi-
ations than other methods, indicating more stable performance. Figure 4.8 displays the
learning curves of 0% noise experiments, which also reveal that binary feedback and
ranking feedback methods are comparable. Our hypotheses tests using Mann-Whitney
U test with Bonferroni Correction indicate that the p-values between the results of bi-
nary feedback and ranking feedback methods are always greater than 0.0125 (0.05/4),
signifying no significant difference between them.

Moreover, the state value feedback method, though relatively inferior, still achieves
rapid learning of the optimal policy in most cases. As for scaling feedback, it performs
the worst among the four IRL methods but still outperforms the SARSA method. In ad-
dition to ranking feedback, the results of hypotheses tests between binary feedback and
the other three benchmarks show that the p-values are all less than 0.0125, indicating
statistical significance.

Moreover, Table 4.4 shows the results in experiments with 5% noise. Overall, binary
feedback exhibits the best performance, consistently finding the best policy fastest in all
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Figure 4.8 The X-axis represents the training episodes. The y-axis represents the learn-
ing progress, which is the percentage of states that learned the best solution. Since all
the results are relatively stable, the standard error is difficult to visually distinguish
the difference between the different methods. Therefore, in order to reflect the stabil-
ity of different methods, we use standard deviation in our figure. The vertical line on
the curve represents the standard deviation of the learning progress at that point.

environments. This indicates that binary feedback demonstrates greater robustness to
the noise than other benchmarks. In addition, the ranking feedback method performs
slightly worse than binary feedback. However, it is the only method, apart from binary
feedback, capable of finding the optimal policy consistently even under the influence
of noise.

On the other hand, both scaling feedback and state value feedback methods perform
unsatisfactorily. Among them, the state value feedback method struggles to find the op-
timal policy under the influence of noise. In Figure 4.9, the state value feedback method
only manages to learn around 80% of the correct policy. Similarly, the scaling feedback
method fails to find the optimal strategy in the cliff grid-world. In more detail, the
presence of cliff traps in the cliff grid-world can directly lead to the death of the agent,
making wrong feedback in key states potentially fatal and hindering the agent’s abil-
ity to learn the correct strategy. Furthermore, hypotheses tests are conducted between
binary feedback and other benchmarks, and the test results show that all p-values are
less than 0.0125, indicating significant differences between binary feedback and the
other methods.
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Table 4.4 The table shows the form of reward signal experimental results in four dif-
ferent grid-world with 5% noise of human feedback. The results are the means and
standard deviation of steps used to find the best solution in 100 experiments. “None”
indicates that the agent cannot find the best solution. The red results mean that it has
the best result among all methods in an environment.

methods 5*5 cliff 10*10 cliff 5*5 wall 10*10 wall
SARSA 2153.35

+/- 328.95
43641.6
+/- 4420.46

2475.35
+/- 460.33

31497.15
+/- 3659.7

Binary 781.4
+/- 185.46

7040.85
+/- 2308.02

350.5
+/- 127.51

4360.85
+/- 1684.01

Ranking 1036.9
+/- 209.80

11788.25
+/- 4778.40

480.35
+/- 204.72

6437.55
+/- 2757.17

Scaling None None 1592.05
+/- 497.04

28235.55
+/- 8703.68

State Value None None None None

Figure 4.9 The X-axis represents the training episodes. The y-axis represents the learn-
ing progress, which is the percentage of states that learned the best solution. For the
details see the caption of Figure 4.8

In summary, binary feedback outperforms scaling feedback, ranking feedback, and
state value feedback. First, it imposes the smallest cognitive burden, as it only re-
quires distinguishing between “best actions” and “other actions”. In contrast, other
methods, such as ranking feedback, demand increased cognitive effort from humans to
provide more detailed reward signals. Additionally, binary feedback exhibits superior
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performance in both noisy and noiseless experiments, indicating that providing more
feedback details does not necessarily improve performance.

4.2.3 MAIRL Evaluation

In this set of experiments, we evaluate the performance of MAIRL and our review
model (see Section 4.1.3) using the 10∗ 10 cliff grid-world task (see Section 4.2.1). Specif-
ically, we set up two additional multi-advisor IRL methods to compare with our MAIRL
system. The first is MAIRL-no review. It does not use the review model and only pro-
vides feedback once for each state-action pair and remembers the past rewards. The
previous reward is used for the same state-action pair. The second is MAIRL-unlimited,
which indicates that the agent obtains feedback after each action but without recording
the historical advice. Table 4.5 shows the setting of MAIRL experiments. For each ex-
periment, there are five advisors, and the trustworthiness of advisors is sampled from
ERGd. The means of advisors’ trustworthiness are set in {0.51, 0.52, ..., 1}, and the stan-
dard deviation of advisors’ trustworthiness is set to 0.2.

Table 4.5 The max episodes are 500. Max number of actions in each episode is 200.
Each experiment runs 100 times. There are 5 advisors.

description value
max episodes 500
max actions 200
number of advisors 5
trustworthiness means of advisors 0.51, 0.52...1
trustworthiness standard deviations of advisors 0.2
experimental times 100

In addition, the maximum number of episodes of the 10*10 cliff grid-world is set to
500. This setting is based on the observation that the IRL method typically completes
training in approximately 150 episodes without noise interference. Also, we scale up
the maximum number of episodes considering the effect of noise. Moreover, the agent
easily goes into a loop because of the noise, so the agent can perform at most 200 actions
in each episode to save computational power costs. If the agent finds the best solutions,
it stops training and records the results. Moreover, each set of experiments needs to be
repeated 100 times. This repetition helps in obtaining statistically meaningful results
and validating the stability of the MAIRL system’s performance.

Figure 4.10 shows the results of MAIRL experiments. Overall, the results demonstrate
that the policy trained by MAIRL with the review model exhibits superior performance,
being closer to the optimal policy compared to MAIRL without a review model. Across
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Figure 4.10 The left figure shows the closeness to the best solution as the advisors’
trust increases in different methods. The X-axis represents the mean of advisors’ trust
from 0.51 to 1. The Y-axis represents the average closeness to the best solution at the
end of training in 100 experiments. There are 50 points in each curve. Each point is
the mean of 100 experimental results. The part with a transparent color is the 95%
confidence interval error bar. The right figure shows the number of best solutions in
100 experiments, as the advisors’ trust increases. The X-axis represents the mean of
advisors’ trust from 0.51 to 1. The Y-axis represents the number of the best solution of
different methods in 100 experiments. There are 50 points in each curve.

a range of advisors’ trustworthiness mean values from 0.55 to 0.9, MAIRL with the re-
view model outperforms both MAIRL-unlimit and MAIRL-no review methods. How-
ever, for mean values below 0.55 and above 0.9, three MAIRL methods exhibit similar
performance.

Out of 100 Mann-Whitney hypotheses tests conducted between MAIRL and the other
methods without a review model, 38 results show p < 0.0166 (0.05/3). This sug-
gests that MAIRL performs significantly better than the other methods in those cases.
While MAIRL-unlimit has the advantage of providing unlimited feedback, indiscrim-
inate feedback may lead to incorrect revisions of the correct feedback. As a result, its
feedback maintains a fixed accuracy rate, limiting its performance. This observation
highlights the importance of having a review model and relevant evidence to improve
the efficiency of agent learning in MAIRL.

Moreover, the review model utilizes a small amount of additional feedback to improve
the agent’s learning ability. Figure 4.11 (left) illustrates that MAIRL-unlimit has the
highest number of feedback instances, approximately ten times more than the other
two methods, MAIRL and MAIRL-no review. Both MAIRL and MAIRL-no review
exhibit relatively lower feedback costs, with MAIRL slightly higher than MAIRL-no
review. As depicted in the figure, the amount of feedback from MAIRL decreases as
the mean advisors’ trust increases. This is related to the real trust of advisors. In more
detail, when the trustworthiness of advisors is relatively low, the confidence value it

becomes very low, resulting in a higher probability of the review process taking place.
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Figure 4.11 The left figure shows the average number of queries in 100 experiments
as the advisors’ trust means increases. The X-axis represents the mean of advisors’
trust from 0.51 to 1. The Y-axis represents the average number of queries in 100 exper-
iments. There are 50 points in each curve. Each point is the mean of 100 experimental
results. The transparent color area is the 95% confidence interval error bar. The right
figure shows the average number of training steps in 100 experiments as the advisors’
trust means increases. Different from the left figure, The Y-axis represents the average
number of training steps in 100 experiments.

Furthermore, the review model reduces the risk of trapping the agent in a loop. Figure
4.11 (right) shows the average number of training steps for the three MAIRL methods in
100 experiments under varying means of advisors’ trustworthiness. MAIRL-no review
exhibits the highest average training steps. When the mean is less than 0.8, the average
training steps of MAIRL-no review are almost twice that of MAIRL. This indicates that
if we only trust the rewards of the first feedback of each state-action pair, then the agent
easily falls into a loop because of incorrect rewards. On the other hand, MAIRL-unlimit
requires the fewest steps, but it comes at a significant human cost. This is because if
the previous reward puts the agent in the loop, then the infinite queries have a big
likelihood of changing their reward, which can make the agent break out of the loop.
Similarly, MAIRL, with the assistance of the review model, can also break the loop
by potentially asking advisors for additional feedback, leading to a modification of
incorrect advice and enabling the agent to escape the loop.

Finally, MAIRL has a more powerful performance compared to single advisor IRL. In
Figure 4.10, experimental results show that when the average trust of advisors is 0.7,
the agent can learn the best solutions of 90%, while the single-advisor IRL can only
learn around 70%. Before the mean advisor’s trust was 95%, it was almost difficult for
the single-advisor IRL method to learn all the best solutions, but MAIRL can learn the
best solutions many times.
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4.3 Summary

In this chapter, we finish the Objective O2.1 and O2.2 in Section 1.3.2. We use our MAB-
SDM (see Chapter 2) to propose the MAIRL method, which is an IRL system that can
combine the advice of multiple advisors. It can aggregate a set of feedback from non-
perfect advisors into a more reliable reward for RL agent training in a reward-sparse
environment. Moreover, we conduct grid-world experiments to evaluate MAIRL. The
results of feedback form experiments show that binary feedback outperforms ranking
feedback, scaling feedback, and state value feedback in terms of training performance
and the robustness of incorrect feedback. Furthermore, the results of the MAIRL exper-
iments show that the policy trained by the MAIRL is closer to the optimal policy than
that without a review model.
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Chapter 5

Sequential Binary Decision-Making
by Maximizing the Utility

In this chapter, we adopt the MABSDM method for a utility-maximizing problem in
binary decision-making scenarios. Specifically, based on the multi-advisor binary se-
quential decision-making problem, we consider the value of problems and the cost
of querying advisors in sequential decision-making. In this setting, the challenge is
selecting a subset of advisors by balancing the value of each problem and the cost
of querying advisors, to make sequential optimal decisions (see Objective O3.1, and
O3.2). To complete this objective, we propose a novel strategy, Multi-Advisor Dynamic
Decision-Making (MADDM), for optimally selecting a set of advisers in a sequential
binary decision-making setting, where multiple decisions need to be made over time.
Specifically, our approach considers how to simultaneously (1) select advisors by bal-
ancing the advisors’ costs and the value of problems, (2) learn the trustworthiness of
advisers dynamically without prior information by asking multiple advisers, and (3)
make optimal decisions without access to the ground truth, improving this over time.

In addition, we conduct extensive experiments that compare MADDM to a variety of
methods that combine state-of-the-art approaches, including budget-limited decision-
making, ϵ-greedy selection, and the EM method, and we benchmark performance against
the optimal utility that could be gained with perfect knowledge. The results show that
MADDM outperforms the other two methods in almost all environments.

The rest of the chapter is structured as follows. Firstly, we describe the MADDM
method in Section 5.1. Secondly, we present the experiments and results in Section
5.2. Lastly, we summarize our work in Section 5.3.
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5.1 Model Description

In practice, a successful decision often comes with a reward, while a failed decision and
querying advisors have a cost. An expensive decision, such as an investment of 10 mil-
lion pounds, requires querying multiple experts to make a decision. On the other hand,
mundane decision, such as what to have for dinner, does not need external advice. The
challenge is querying a suitable set of advisors for decision-making by balancing the
value of the problem and the cost of querying advisors.

In this chapter, we propose MADDM to solve this problem. Specifically, the design of
MADDM consists of four interdependent components. The first is the advisor selec-
tion model, which assigns a set of advisors to each problem by balancing the value of
the problem and the cost and trustworthiness of advisors. The challenge is utilizing
the present evidence of advisors’ trustworthiness to select an optimal set of advisors
based on the query cost of advisors and the value of the problem. In more detail, the
advisor selection model selects advisors one by one by calculating the marginal utility
of each advisor until increasing utility cannot be obtained if continue to select more
advisors (see Section 5.1.2). The second component is our BCT trustworthiness model
(see Section 3.1.2), which can be used as a weight in the decision model and to calculate
the contributions of advisors in the advisor selection model. The third is our BBWVE
decision model (see Section 3.1.3), which makes a decision after receiving the advisors’
opinions. The last is a review update model. This model can improve the accuracy of
advisors’ trustworthiness by reviewing historical advice. Figure 5.1 provides a graphi-
cal overview of the structure of MADDM.

Figure 5.1 The advisor selection model can select a subset of advisors from all advi-
sors by considering the value and risk of problems, the advisors’ cost, and trustwor-
thiness. The decision model uses advisors’ trustworthiness and the advice set to make
the decision and the estimated evidence for updating the trustworthiness. The trust-
worthiness model builds and updates the advisors’ trustworthiness.
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5.1.1 Problem Formalization

Given a problem t, v+t ∈ R is the value that the decision-maker obtains if the decision
is correct. We denote with v−t ∈ R a cost of a wrong decision. Therefore, the value
of the problem is represented by the tuple v±t = (v+t , v−t ). Moreover, since we rely
on advisors’ advice to make decisions, we need to incentivize them by introducing a
payment system. For each advisor x ∈ X, cx is the fixed price of each query. In addition,
we denote with c⃗ the vector containing all the advisors’ prices.

Therefore, we describe any possible selection through a function fs that, to every tuple
I := (t, τ⃗, v±t , c⃗) ∈ T × [0, 1]|X| × [0,+∞]2 × [0,+∞]|X|, associates a subset of advisors
Yt ∈ P(X), where |X| is the cardinality of X and P(X) is the power set of X; we call fs

the selection function, so we have Yt = fs(I).

Moreover, we recall that At = {Apos
Yt

, Aneg
Yt
} denotes the advice set of problem t and dt

denotes the decision of problem t. Let ut( fs(I)) denote the utility of the decision t to the
decision-maker. Accordingly, for each decision, t, the total cost to the decision-maker
to query the advisors in fs(I) is Ct( fs(I)) = ∑x∈Yt

cx. Then we have:

ut ( fs(I)) =

{
v+t − Ct ( fs(I)) if dt = d∗t ,
v−t − Ct ( fs(I)) otherwise .

(5.1)

In particular, the sum of the utilities for all the decisions is u( fs(I)) = ∑t∈T ut( fs(I)).
Since each advisor has a different cost, the final utility depends on the advisor selec-
tion function adopted. In this framework, the goal of the decision-maker is to find the
selection function fs to maximize its utility.

5.1.2 Advisor Selection

The overall aim of the system is to maximize utility, which requires balancing the trade-
off between the cost of advisors and the value of problems. Typically, the costs of asking
all advisers may exceed the problem value, even if the decision is correct, so it is rarely
optimal. For example, for a problem with a value of $10, it is not worth spending $100
to query advisors.

Our method selects the set of advisors according to the value of the problem and es-
timates their contributions to a decision. We assume their trustworthiness is initially
unknown, and therefore all advisers have equal trustworthiness. This knowledge is up-
dated over time but is not reliable at first. Therefore, focusing too early on seemingly
good advisors can lead to sub-optimal decisions. To address this, our system solves a
multi-armed bandit problem in which it has to balance the exploration of new advisors
with the exploitation of the knowledge it has already gathered. Among many possible
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algorithms used to solve the multi-armed bandit problem, we use Thompson Sampling
(see Section 2.4.1), which samples a probability from a Beta distribution to compute the
marginal contribution of each advisor. This sampled probability encapsulates both the
advisor’s trustworthiness (exploitation) and potential (exploration). In addition, this
sampled probability serves as an input for calculating the advisor’s marginal contribu-
tion, which is quantified as a value for the model to determine whether selecting the
advisor is worthwhile (see more details in the following). In contrast, although other
multi-armed bandit approaches like UCB and ϵ-greedy can balance exploration and ex-
ploitation when selecting advisors, it is difficult to quantify the marginal contribution.

In Algorithm 3, we sketch the pseudo-code of our selection function fs. We recall that
τ⃗ denotes the trustworthiness vector that contains the trustworthiness of each advisor,
and c⃗ are their costs. Let α⃗ and β⃗ denote the estimated evidence vectors that contain the
evidence of all advisors. Given a problem t ∈ T, let Ppos

t and Pneg
t denote the probability

that d∗t = pos and d∗t = neg, respectively (see Section 3.1.3). We denote with Ut the
vector containing the advisors’ utilities.

Algorithm 3 Pseudo-code of the Advisor Selection algorithm

1: Input: t, τ⃗, α⃗, β⃗, v+t , v−t , c⃗
2: initialize Ppos

t , Pneg
t , Ut = Apos

Yt
= Aneg

Yt
= ∅

3: while true do
4: for advisor x in X do
5: τ′x ← ThompsonSampling(αx

t + 1, βx
t + 1)

6: ux
t ← UtilityComputation(τ′x, v+t , v−t , Ppos

t , Pneg
t , cx)

7: Ut.append(ux
t )

8: ux∗
t = Max(Ut)

9: if ux∗
t > 0 do

10: if dx∗
t = pos do

11: Apos
Yt

.append(x∗)
12: if dx∗

t = neg do
13: Aneg

Yt
.append(x∗)

14: Ppos
t , Pneg

t ← DecisionModel(Apos
Yt

, Aneg
Yt

, τ⃗)
15: Ut = ∅
16: X.remove(x∗)
17: until ux∗

t ≤ 0
18: Output: Apos

Yt
, Aneg

Yt

In more detail, after initializing the advice probabilities Ppos
t and Pneg

t , the advice sets
Apos

Yt
and Aneg

Yt
, the utility vector Ut, and the trustworthiness vector (Line 2), the model

enters a loop for selecting advisors (Line 3). Let Vx
t , ux

t denote the expected contribution
and the marginal utility of the advisor x in problem t (the calculation method of Vx

t

will be introduced in the following). Recall that cx is the price of advisor x. Their
relationship can be expressed as follows:

ux
t = Vx

t − cx. (5.2)
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In each round of advisor selection, we need to compute the marginal utility ux
t of each

advisor and select the advisor x with the most utility, i.e., x∗ = arg max
x∈X

ux
t , which is our

estimation of the advisor that maximizes the expected profit for the decision-maker
(Lines 4-8).

Computing the marginal utility ux
t is achieved in two steps. First, for each advisor,

x, we define a Beta distribution Beta(αx
t + 1, βx

t + 1) and sample from it to obtain the
Beta trustworthiness τ′x. We only use it to compute the utility ux

t of the advisor x (Line
5), whereas the model does not use τ′x for real decision-making. When there is little
evidence regarding an advisor, e.g. when α = 1 and β = 1, the Beta distribution has a
large variance, which can increase the risk of making incorrect decisions.

Second, we need to know the contribution Vx
t of each advisor x. Let us now assume that

advisor x gives pos to a problem t; the case in which the advisor advises neg follows
a similar routine. In order to compute its contribution, we first add x to the set Apos

Yt

and proceed to calculate the probabilities Ppos′
t and Pneg′

t by the BBWVE method (see
in Section 3.1.3). The value Ppos′

t and Pneg′
t describes the probability that d∗t = pos and

d∗t = neg, respectively. Therefore, the wider the gap between Ppos
t (the probability

without the advice of advisor x) and Ppos′
t , the larger the advisor’s contribution. Let

Ppos := P(d∗t = pos) and Pneg := P(d∗t = neg) denote the a priori probability that the
advice is positive or negative, respectively. In addition, let ∆Vx

t,pos denote the marginal
value if the new advisor x selects the positive option. It can be expressed as:

∆Vx
t,pos = Ppos|Ppos′

t − Ppos
t | ∗ (v+t + v−t ). (5.3)

where the value |Ppos′
t − Ppos

t | represents the change of the advice probability if advisor
x participates in the decision. In addition, the values v+t and v−t are utilized to calculate
the marginal value of making a correct decision and an incorrect decision, respectively.
Similarly, let ∆Vx

t,neg denote the marginal value if the new advisor x selects the negative
option. It can be expressed as:

∆Vx
t,neg = Pneg|Pneg′

t − Pneg
t | ∗ (v+t + v−t ). (5.4)

After we compute ∆Vx
t,pos and ∆Vx

t,neg, we compute the expected contribution Vx
t as:

Vx
t = (τ′x − (1− τ′x)) ∗ (∆Vx

t,pos + ∆Vx
t,neg). (5.5)

where τ′x indicates the probability that advisor x providing correct advice, while 1− τ′x
is the probability that advisor x providing an incorrect advice. Finally, the algorithm
computes the utility ux

t by Equation 5.2.

If ux∗
t > 0, the advisor x∗ is selected, which represents that the contribution is greater

than his or her cost. The selected advisor x∗ needs to provide the advice for problem
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t. Depending on the advice of the advisor x∗, he or she can be added to Apos
Yt

or Aneg
Yt

(Lines 9-13), which is used to update the advice probability Ppos
t and Pneg

t (Line 14).
After each selection, we need to recalculate the marginal utility of each advisor for
selecting the next advisor because their marginal utilities change. For example, there
are three advisors {A, B, C}. If we select advisor A, we can obtain the advice of advisor
A. Then, the probability Ppos

t and Pneg
t changes. Therefore, to select the next advisor, we

need to recalculate the marginal contributions of advisors B and C based on new Ppos
t

and Pneg
t . The model repeats Lines 4-16 to select advisors one by one until ux∗

t ≤ 0 (Line
17), and outputs the final advice set (Apos

Yt
, Aneg

Yt
) (Line 18).

5.1.3 Review Update

MADDM is an online problem without access to ground truth. Moreover, the reliability
of initial trustworthiness is low. Therefore, the update of the trustworthiness τ⃗ relies on
the evidence from new decisions. And the decisions, in turn, rely on the trustworthi-
ness τ⃗. This dynamic loop is used for building the model to make the trustworthiness
and the aggregating advice more accurate. Therefore, similar to the EM method, af-
ter each decision, we continuously update the trustworthiness of the advisors through
advice on past decisions.

Algorithm 4 describes how the review update works. Let A⃗pos
past, A⃗neg

past denote the vector
that contains the past advice set, and we recall that τ⃗ denote the trustworthiness vector
that contains all advisors’ trustworthiness. Let τ⃗0 denote the old trustworthiness vector,
and ∆τ denotes the sum of the difference between the old trustworthiness vector τ⃗0

and the new trustworthiness vector τ⃗. In addition, based on the present Ppos
t Pneg

t , the
trustworthiness can be updated (by Equation 3.4 and 3.5) (Line 7). Before updating
trustworthiness, the last update of the problem t needs to be removed. Furthermore,
let Vs denote the threshold of ∆τ for terminating the update. Vs usually is set to a
small value. In addition, we note that ∆τ is used to judge the update step size of τ⃗.
Specifically, when ∆τ is smaller than Vs, the model stops updating (Line 9).

Algorithm 4 Pseudo-code of the review maximization algorithm

1: Input: A⃗pos
past, A⃗neg

past, τ⃗, Vs

2: initialize ∆τ = 0, τ⃗0 = τ⃗
3: while true do
4: for Apos

Yt
, Aneg

Yt
in A⃗pos

past, A⃗neg
past do

5: Ppos
t , Pneg

t ← f (Apos
Yt

, Aneg
Yt

, τ⃗)
6: τ⃗0 = τ⃗
7: τ⃗ ← TrustworthinessUpdate(Ppos

t , Pneg
t )

8: ∆τ = sum(⃗τ − τ⃗0)
9: until ∆τ ≤ Vs

10: Output: τ⃗
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5.2 Experiments

In this section, we present the problem-advice experiments to evaluate our method.
Specifically, we compare our method with two cost-constraint-based methods. The first
is the Fixed Number of Advisors method (FNA), which means that the decision-maker
selects a fixed number of advisors for giving advice to each decision. The second is the
Budget-Constraint method (BC), which represents that there is a budget constraint to
stop selecting advisors for each problem. For both approaches, we combine these with
different advisor-selection criteria.

5.2.1 Setting

To the best of our knowledge, there is no standard environment to run decision exper-
iments. For this reason, we rely on synthetically generated ones. In more detail, the
environment we generate includes 1, 000 problems with binary options and different
values. The full set of advisors consists of 30 simulated advisors with different advice
accuracy and costs. Similarly, we employ the ERGd method (see Section 3.1.3.2) to sam-
ple both the profits and losses of each problem. Specifically, during the experiments,
the decision-maker selects a set of advisors to enquire and make decisions using differ-
ent methods. After making decisions on 1, 000 problems, the decision-maker obtains
the final utility. Due to the probabilistic nature of the experiments, each experiment
is repeated for 100 different runs to obtain statistically significant results. To reduce
variance and bias, all methods are run using the same conditions. That is, although the
conditions vary between runs, the same set of runs is used to compare the methods (i.e.,
using the same set of advisor qualities and prices, the same problem sequence, and the
same profits and losses of problems).

We consider different ratios between the decision’s value and the advisor’s cost, which
leads us to define two sets of experiments. In the first set, both the problem profits and
losses are sampled from an ERGd whose mean and standard deviation are equal to 100.
In the second one, the mean and the standard deviation of the ERGd are both changed
to 500. Due to the large deviation, the problem values are highly volatile. Hence, some
decisions may be worth more than 1000, and some may be worthless but the lower
limit is 0.

Furthermore, the real accuracy of advisor x, i.e. τr
x, is sampled from an ERGd whose

standard deviation σ is fixed at 0.3 while its mean µ ranges in the set {0.5 + 0.01 ∗ k}
where k = {1, 2, . . . , 50}. For example, if τr

x is 0.8, the advisor x has 80% probability
of giving correct advice. Hence, we consider 50 different frameworks in which the av-
erage trustworthiness increases every time. Finally, we assume that the cost of each
advisor is proportional to its real trustworthiness. In practice, higher quality often
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comes at a higher cost. For example, senior advisors are more costly than junior ones.
Similarly, more advanced machine learning algorithms typically require higher com-
putational costs. However, this is only a correlation and not always the case for each
instance. To achieve this correlation, the cost of each advisor is sampled from an ERGd
whose average is τr

x ∗ 20 and whose standard deviation is 10. Note that the correlation
makes the problem more challenging since the system has to make trade-offs between
cost and quality. Without such a correlation, there is a high likelihood of a cheap and
reliable advisor which makes the problem easier to solve but also less realistic.

Table 5.1 MADDM experiment setting

setting value

env1: problem profits v+t mean, std 100, 100
env1: problem loss v−t mean, std 100, 100
env2: problem profits v+t mean, std 500, 500
env2: problem loss v−t mean, std 500, 500
advisor cost cx mean, std 0 to 20,10
real trustworthiness mean, std from 0.51 to 1, 0.3

We used three different exploration methods, they are UCB, Thompson Sampling, and
ϵ-greedy (see Section 2.4.1), and two rules of the advisor selection (trustworthiness,
cost-effectiveness) to combine with FNA and BC, respectively. The aggregation method
of FNA and BC is EM, which can maximize the sample utilization and has been verified
multiple times in truth inference (Demartini et al., 2012; Gemalmaz and Yin, 2021).

In more detail, in terms of advisor selection strategies, UCB, Thompson Sampling, and
ϵ-greedy are effective for solving the multi-armed bandit problem. We experimented
with a range of values and found that the ϵ-greedy method has the best performance
when ϵ = 0.1 (we also tested ϵ = 0.05, 0.15, 0.2, 0.25) for all methods.

The criteria for advisor selection contain trustworthiness and cost-effectiveness. For
example, if trustworthiness is the rule, the greedy strategy always selects the advi-
sor with greater trustworthiness but ignores their cost. Cost-effectiveness is a method
we improved from work (Xia et al., 2015). The cost-effectiveness of the advisor x can
be expressed by cx/(τx − 0.5), which means how much cost is the improvement of
trustworthiness for advisor x. Our results show that it has a better performance than
trustworthiness.

For FNA and BC, we also test their performance under different hyper-parameters.
First, we test the performance of FNA by setting the number of advisors from 1 to 10.
The results show that five advisors have the best performance. Second, BC, we use 5%,
10%, 15%, 20%, 25% of the value (profit + loss) of each problem as the budget constraint,
and 10% has the best performance.
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Table 5.2 The meaning of the abbreviations is env1 (SD): environment 1 and standard
methods, env2 (SD): environment 2 and standard methods env1 (EF): environment 1
and all methods with exploration-first model, env2 (EF): environment 1 and all meth-
ods with exploration-first model.

MADDM FNA BC RV

env1 (SD) 5.19± 7.68 3.76±5.95 2.85±7.51 3.27±2.84
env2 (SD) 42.69± 27.38 30.89±33.03 35.46±28.11 34.16±16.31
env1 (EF) 7.09± 4.43 5.15±4.32 6.26±4.79 3.24±2.93
env2 (EF) 44.97± 22.84 38.89±24.11 37.58±22.68 34.14±16.20

To clearly understand the performance of our method, FNA, and BC, we selected two
other methods for comparison. The first is random voting (RV). It randomly selects
three advisors and combines them by majority voting. Another one is the best utility
(BU). It describes the maximum utility the decision-maker can obtain, which means all
the decisions are correct, and the advisor cost is 0.

In addition, the method with the trustworthiness model is easily misled by malicious
advisors when the mean advisors’ accuracy is low. In practical applications, the meth-
ods for solving the problem include adding some decisions with ground truth, selecting
several advisors with high accuracy to participate in decision-making, or considering
the prior information of advisors. In this chapter, our assumptions are no ground truth
and no prior information, so we design the exploration-first model to solve this prob-
lem. In the first few decisions, the model selects all advisors to give advice on problems
to increase the accuracy and then back to the method’s standard advisor selection strat-
egy. We use this model before rounds 1− 15, respectively, and the results show that the
three methods perform best when the model is used before the 10 round. Therefore,
we added the exploration-first model to our method, FNA, and BC, and did additional
experiments in two environments.

5.2.2 Results

Table 5.2 shows the mean and standard deviation of the utility in each environment.
Overall, our MADDM method has the best performance in terms of the average utility
in almost all environments. In all the experiments, the average utilities obtained by
the exploration-first methods are significantly bigger than the others. Moreover, the
standard deviation of the utilities is also reduced, which means that the result is more
consistent. We did 600 (3 ∗ 50 ∗ 4) pairs of Mann-Whitney Tests with Bonferroni Cor-
rection between MADDM and FNA, BC, and Random Voting (RV) with 50 different
average advisors’ accuracy in four different environments. We observe that 527 out of
the 600 results have significant differences (p < 0.05/3).
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Figure 5.2 In four figures, the X-axis represents the mean advisors’ accuracy from 0.51
to 1. The Y-axis represents the average utility of 100 experiments. The half-transparent
area, along with the curve, is the 95% confidence interval error bar. Two figures in the
first line show the results of Environment 1 (mean, standard deviation = 100, 100). Two
figures in the second line show the results of Environment 2 (mean, standard deviation
= 500, 500). In addition, the left two figures represent the standard methods, and the
right two figures are the exploration-first-based methods. MADDM = multi-advisor
dynamic decision-making(ours); FNA = ϵ-greedy fixed number of the advisor EM; BC
= ϵ-greedy budget-limited EM; RV = random voting.

Figure 5.2 describes the utility curves of different methods as the advisors’ accuracy
increases. In the vast majority of cases, MADDM obtains more utility than FNA and
BC for all the possible accuracy.

Specifically, MADDM automatically selects the advisors by balancing the advisor’s cost
and the problem values without any hyper-parameters, which makes MADDM less
prone to select an insufficient number of advisors or to waste costs. In the two meth-
ods based on cost-effectiveness, they need to set the number of advisors and budget
proportion to control the advisor cost. If the prior distribution is unknown, the values
of these hyper-parameters are difficult to determine. Furthermore, if the advisor cost
is too small, the reliability of the output is not enough. If the cost is too high, it causes
a waste of advisor costs. For example, in Figure 5.2, in Environment 2 (two figures in
the second line), we observe that FNA does not select enough advisors when the mean
advisors’ accuracy is less than 0.8, whereas the best performance of BC has a gap with
MADDM when the mean advisors’ accuracy is higher than 0.65.
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In addition, MADDM has stronger robustness to malicious advisors than FNA and BC.
In more detail, RV is better than the other three methods when the mean advisors’ ac-
curacy is low in the results of the standard methods (Figure 5.2 left). When there is no
ground truth and a significant proportion of bias, the methods with the trustworthi-
ness model are easily misled by malicious advisors. Once the trustworthiness model
is misled, then malicious users can sabotage future decisions. However, we observe
that MADDM is less prone to be sabotaged than FNA and BC. This is due to the fact
that MADDM selects more advisors than other methods at the beginning and decreases
as trustworthiness is updated. In addition, the BBWVE method can make more accu-
rate decisions than the Bayesian methods when the trustworthiness is unreliable (see
Section 3.2.2).

Similarly, we observe that the performances of MADDM are more robust to the ma-
licious advisors when the problem values are bigger. Since the decisions in the envi-
ronment 2 are more valuable than the ones in the environment 1, MADDM chooses
more advisors to make decisions together at the beginning in environment 2, which
helps to increase the reliability of the advice. However, this method causes some costs
when the real advisors’ accuracy is high. For example, if the trustworthiness of all ad-
visors is 100%, the model only needs to select one cheapest advisor. However, we do
not know the real distribution of the mean advisors’ accuracy before querying, so it is
worth using some cost at first to improve the method’s expected utility.

5.3 Summary

In this chapter, we complete Objective O3.1 and O3.2. Specifically, we introduce the
Multi-Advisor Dynamic Decision-Making method (MADDM), a novel decision-making
method by maximizing the utility based on MABSDM. The model takes into account
multiple variables, including the profits and losses of problems, advisors’ costs, and
trustworthiness. In more detail, it consists of three interdependent components: trust-
worthiness assessment, advisor selection, and decision-making. Trustworthiness as-
sessment builds and maintains models of the trustworthiness of each advisor. For each
sequential decision, advisor selection identifies which advisors to consult. This is sim-
ilar to a multi-armed bandit problem, which requires a balance of exploration and ex-
ploitation. We use Thompson Sampling combined with the decision-making model to
compute each advisor’s expected marginal contribution and select advisers until the
marginal contribution is negative. The third component uses the set of advice to make
a decision using the BBWVE method.

Moreover, we test our method through problem-advice experiments in a simulated
environment. We also introduce two benchmark methods, one using a fixed number of
advisors (FNA) and another one using a fixed budget (BC), which are combined with
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state-of-the-art sampling and aggregating methods. The results show that MADDM
significantly outperforms the benchmark methods.



79

Chapter 6

Sequential Decision-Making among
Multiple Options

In this chapter, to address Objective O4.1 and O4.2, we extend the MABSDM method to
a general method, called Multi-Advisor Sequential Decision-Making (MASDM). Com-
pared to MABSDM, MASDM can handle decisions among multiple options, not just
binary options. In decision-making among multiple options, the challenge is to deal
with conflicts of advisors’ advice among multiple options reasonably. Similar to MAB-
SDM, MASDM consists of two parts: a decision model and a trustworthiness model.
The decision model makes decisions among multiple options using the advice of advi-
sors by the Bayesian Weighted Voting Ensemble (BWVE) method. The trustworthiness
model builds and updates advisors’ trustworthiness using a Cautious Trustworthiness
(CT) model. Different from the BCT model (see Section 3.1.2)), the update strategy of
the CT model considers balancing the expected confidence value of multiple options.

In addition, we evaluate and explain our methods through extensive experiments in
simulated environments. Moreover, we apply our method to ensemble machine learn-
ing using the experiments by the MNIST database. The results show that MASDM
has better decision accuracy and the ability to assess trustworthiness compared to five
benchmarks that use state-of-the-art methods, in particular achieving a maximum im-
provement of 22% in accuracy compared to the Bayesian aggregation methods.

The rest of the chapter is structured as follows. First, we describe the MASDM method
in Section 6.1. Second, we present the experiments and results in Section 6.2. Lastly, we
summarize our work in Section 6.3.
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6.1 Model Description

We now introduce our method called MASDM. Similar to MABSDM, it is an online
method composed of a trustworthiness model and a decision model. In terms of the
decision model, the difference from the BBWVE method is that the BWVE method cal-
culates the correct probability distribution among multiple options, not binary options.
For the trustworthiness model, compared to the BCT model, the CT model considers
the expected confidence value, not the probability difference between the decision and
other options. Figure 6.1 provides an overview of how MASDM works. For each prob-
lem, first, the decision model utilizes the advice set and the trustworthiness vector from
the trustworthiness model to make decisions. Second, the decision model calculates the
new evidence (introduced in Section 6.1.2) for updating the advisors’ trustworthiness.

Figure 6.1 For each problem t, a subset of advisor set X provides a set of advice At.
The decision model takes two inputs to make the decision: the advice set At from
advisors and the trustworthiness vector τ⃗t from the trustworthiness model. Moreover,
the decision model outputs the decision dt and an update value vector i⃗t. This vector
is then passed to the trustworthiness model to update the trustworthiness values of
the advisors for the subsequent problem t + 1.

6.1.1 Problem Formalization

For each problem, the decision maker has to make decisions based on the advice of
advisors. In the binary decision problem, we recall that the decision is made between
”positive” and ”negative”. For the decision among multiple options, the outcome of
each problem is the decision dt from a fixed set of candidate options O = {1, 2, 3, ..., n}.
Similar to the binary decision problem, each advisor in advisor set Yt ⊆ X will respond
with an option. For each option o ∈ O, Ao

Yt
⊆ Yt is the set of advisors that state option
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o is the correct one. For any two Ai
Yt

, Aj
Yt

, we have Ai
Yt
∩ Aj

Yt
= ∅ for i ̸= j and

A1
Yt
∪ A2

Yt
∪ ... ∪ An

Yt
= Yt. In addition, we recall that τ⃗t is the vector containing all the

advisors’ trustworthiness values.

Moreover, let At = {A1
Yt

, A2
Yt

, ..., An
Yt
} denote the advice set of problem t. We use dt =

f (At, τ⃗t) ∈ O to refer to the decision-making function. If dt = d∗t , we consider that the
decision is correct. Let ν denote the number of correct problems, i.e., ν = |{t ∈ T|d∗t =

f (At, τ⃗t)}|. Our goal is to maximize the number ν by the decision-making function
f (·).

6.1.2 Cautious Trustworthiness Model

As in Chapter 3, we utilize Subjective Logic and a cautious trustworthiness update
strategy to construct our cautious trustworthiness (CT) model. Different from the BCT
model (see Section 3.1.2)), the update strategy of the CT method considers balancing
the conflicts of the advice of multiple options, not just binary options.

In more detail, for each advisor who selects option o, a cautious update value io
t ∈ [0, 1]

is used to update the evidence αx
t and βx

t . This value represents the expected differ-
ence in decision probability Po

t between o and other options, indicating how confident
MASDM is that option o is a better or worse choice than other options. We recall that
BCT directly uses the difference between Po

t and other options as new evidence (See
Equation 3.3), while when the number of options is more than two, we need to con-
sider the belief probability of all options. ix

t can be expressed as:

io
t = Po

t − ∑
i∈O−o

Pi
t

∑j∈O−o Pj
t

Pi
t (6.1)

In Equation 6.1, the part after the minus sign represents the expected probability of
other options except for option o and Pi

t

∑j∈O−o Pj
t

is the weight of Pi
t . For example, if a

problem t has “1, 2, 3” three options, the BWVE method calculates the probability that
they are right: P1

t = 0.7, P2
t = 0.2, P3

t = 0.1. Then, i1
t = 0.7− (0.2/(0.2 + 0.1) ∗ 0.2 +

0.1/(0.2 + 0.1) ∗ 0.1) = 0.53; i2
t = 0.2− (0.7/(0.7 + 0.1) ∗ 0.7 + 0.1/(0.7 + 0.1) ∗ 0.1) =

−0.42; i3
t = 0.1− (0.7/(0.7 + 0.2) ∗ 0.7 + 0.2/(0.7 + 0.2) ∗ 0.2) = −0.49. Therefore, for

any advisor x selecting option o, evidence αx
t and βx

t can be updated as:

αx
t+1 ← αx

t + ix
t ∀ix

t > 0,

βx
t+1 ← βx

t + |ix
t | ∀ix

t < 0

(6.2)
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6.1.3 Bayesian and Weighted Voting Ensemble Decision Model

In this work, we propose the BWVE method, which extends the BBWVE method (see
Section 3.1.3). Compared to BBWVE, it can make decisions among multiple options, not
only binary options. In MASDM, the BWVE method acts as the decision function f . To
be specific, the inputs of the BWVE method are advice set At and trustworthiness vector
τ⃗t, and the output is a probability distribution over options, which allows us to receive
the decision dt and the new evidence vector for updating the advisors’ trustworthiness.

As in the BBWVE method, the BWVE method combines the Bayesian aggregation
method with the weighted voting method by the average uncertainty of advisors’ trust-
worthiness (see details in Section 6.1.3.3). In more detail, when the model lacks suffi-
cient evidence to ascertain the trustworthiness of advisors, the BWVE method priori-
tizes the weighted voting method. As the evidence accumulates, the BWVE method
transitions its trust to the Bayesian aggregation method. Similar to the BBWVE moti-
vation experiments (see Section 3.1.3.2), we explain this design through a BWVE moti-
vation experiment between the Bayesian aggregation method and the weighted voting
method (see Section 6.1.3.2). We detail BBWVE in the later sections.

6.1.3.1 Existing Methods

In this section, we detail the Bayesian aggregation method and the weighted voting
method within problems involving more than two options.

To begin with, for the Bayesian aggregation method, for each problem t, we recall
that At denotes the advice set. Given the advice set At, for any option o, let Pb,o

t :=
Pb,o

t (d∗t = o|At) denote the probability d∗t = o that aggregating by the Bayesian aggre-
gation method will yield the optimal decision. We can express Pb,o

t as:

Pb,o
t =

PoP(At|d∗t = o)
∑i∈O PiP(At|d∗t = i)

(6.3)

Specifically, Po and Pi are the base rates of candidate options. As we mentioned be-
fore, if we do not have prior information, they can be set as 1/n. In addition, from
the Bayesian aggregation method, for each problem t, P(At|d∗t = o) represents the
probability that the aggregating advice of At is correct under the condition d∗t = o.
P(At|d∗t = o) can be calculated by advisors’ trustworthiness as follows:

P(At|d∗t = o) = ∏
i∈Ao

Yt

τi
t ∏

j∈Yt−Ao
Yt

(
Po(1− τ

j
t )

∑k∈O\oj
t
Pk

) (6.4)



6.1. Model Description 83

Specifically, we remember that in the binary decision, we directly use 1− τ
j
t to calculate

the probability (see Equation 3.8 and 3.9). It represents the probability that the option
selected by advisor j is wrong and the probability that another option is correct. But
when the number of options is greater than 2, we cannot directly use it to calculate
the probability of an option being correct. For example, for the problem t, there is an
advisor x with the trustworthiness τx

t = 0.25. Advisor x makes a decision for a problem
with four options, A, B, C, and D, and advisor x selects option A. If we directly utilize
1− τ

j
t to calculate the probabilities, we can obtain P(x|d∗t = A) = 0.25, P(x|d∗t = B) =

P(x|d∗t = C) = P(x|d∗t = D) = 0.75. This result indicates that options B, C, and D
are more likely to be the correct option than option A, but in fact the probabilities of
the four options should be equal, i.e., P(x|d∗t = A) = P(x|d∗t = B) = P(x|d∗t = C) =

P(x|d∗t = D) = 0.25, if options are uniformly distributed. Therefore, weights need to be
considered in options B, C, and D. In Equation 6.4, for each problem t, oj

t is the option
selected by advisor j, and k is the index of options except option oj

t. Moreover, we recall
that Po and Pk are the prior probabilities of candidate options. Therefore, Po

∑
k∈O−oj

t
Pk

is

the weight of option o, which represents the proportion of option o occupies in the
probability of other options correct if advisor j is wrong. If the base rates of candidate
options are uniformly distributed, this weight can be set to 1/(n− 1).

Moreover, for the weighted voting method, given the advice set At, for any option o, let
Pw,o

t := Pw,o
t (d∗t = o|At) denote the probability d∗t = o that aggregates by the weighted

voting method, which can be expressed as:

Pw,o
t =

∑i∈Ao
Yt

τi
t

∑j∈Yt
τ

j
t

(6.5)

Table 6.1 the setting of BWVE motivation experiments

setting value
distance coefficient dis 0, 1, ..., 99

the mean of advisors’ real accuracy µ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
the standard deviation of advisors’ real accuracy σ 0.2, 0.3

the average number of advisors ȳ 5, 10, 20
the number of options n 2, 3, 5, 10
total number of advisors 50

the number of problems for each experiment 10, 000

6.1.3.2 BWVE Motivation Experiment

Similar to the experiments in Section 3.1.3.2, we conduct a comparative experiment
between the Bayesian aggregation method and the weighted voting method to explain
the motivation behind the design of the BWVE method. In this work, we use the same
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approach of Section 3.1.3.2 to build the experimental environment. Also, we added
more conditions to compare the performances of the Bayesian aggregation method and
the weighted voting method.

Figure 6.2 These figures show the results of the Bayesian aggregation method and the
weighted voting method comparison experiments at different conditions. The X-axis
of the figures depicts the distance coefficient dis, ranging from 0 to 100, while the Y-
axis displays the average accuracy of two methods observed over 10, 000 problems.
“n” indicates the number of candidate options in the problem set. “ȳ” indicates the
average number of advisors selected by the model for each problem. “µ” and “σ”
respectively represent the mean and standard deviation by ERGd used to generate τr

x.

Specifically, we use ȳ to represent the average number of advisors per problem in each
experiment. For each problem, we randomly select ȳ advisors on average from all
advisors. Furthermore, µ and σ denote the mean and standard deviation of the ERGd
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distribution used to generate τr
x. Table 6.1 provides the setting of the BWVE motivation

experiment.

Figure 6.2 presents six results from the comparison experiments (more results see in
Section A.1). In these results, the weighted voting method generally outperforms the
Bayesian aggregation method when dis is small, although the advantage of the weighted
voting method is modest in some results. However, as dis increases, the Bayesian ag-
gregation method outperforms the weighted voting method. Therefore, we combine
the Bayesian aggregation method and the weighted voting method to adapt to the
varying reliability of advisors’ trustworthiness and improve the overall aggregation
performance.

6.1.3.3 Ensemble Decision-Making

Same as the BBWVE method (see Section 3.1.3.3), the BWVE method combines the
Bayesian aggregation method and the weighted voting method by using the average
uncertainty of advisors’ trustworthiness as a weight to control the trust placed in each
method. For each problem t, we recall that θ̄t is the average uncertainty of advisors’
trustworthiness. From ensemble method, given the advice set At, for any option o, the
probability that d∗t = o can be denote as Po

t := Po
t (d
∗
t = o|At), which can be expressed

as:
Po

t = (1− θ̄t)Pb,o
t + θ̄tPw,o

t (6.6)

All probabilities satisfy ∑o∈O Po
t = 1. In addition, for each problem t, we receive the

decision dt = arg max
o∈O

Po
t .

6.2 Experiments

In this section, we evaluate MASDM through experiments in simulated environments
(Section 6.2.1) and real dataset MNIST (Section 6.2.2), respectively. Similar to Section
3.2, we compare MASDM with five methods that are combined with different aggre-
gation methods: Bayesian aggregation (BYS), Weighted Voting (WV), Bayesian and
Weighted Voting Ensemble (BWVE), and trustworthiness modeling methods: Beta dis-
tribution trustworthiness model (Beta), Cautious Trustworthiness model (CT) (See Ta-
ble 6.2 for the overview). Then, the combined models are (1) BYS-Beta; (2) WV-Beta; (3)
BWVE-Beta; (4) BYS-CT; (5) WV-CT, and our method MASDM consists of BWVE and
CT.
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Table 6.2 the abbreviations of methods in MASDM experiments

abbreviations list
BYS Bayesian Aggregation
WV Weighted Voting
BWVE Bayesian and Weighted Voting Ensemble
Beta Beta Distribution Trustworthiness Model
CT Cautious Trustworthiness Model

6.2.1 Simulated Environment Experiments

In contrast to the MABSDM experiments where the number of advisors and options are
fixed, we evaluate the performance of MASDM under different numbers of advisors
and options, respectively.

6.2.1.1 Setting

Table 6.3 presents the setting of the experiments in simulated environments. In our
simulated environment, we conduct experiments in four sets based on the number of
candidate options n. Specifically, we considered n values of 2, 3, 5, and 10, respectively.
Moreover, we generate 50 advisors with different real accuracies for each experiment.
We recall that ȳ denotes the average number of advisors for each problem. Considering
the impact of the number of advisors on decision performance, for each set, we conduct
three groups of experiments where ȳ = 5, 10, and 15, respectively (randomly selected
from 50 advisors for each problem). In addition, we recall that τr

x denotes the real
accuracy of advisor x. In order to observe the impact of the average real accuracy of
advisors on performance, for each advisor x, τr

x is sampled from ERGd whose mean
µ ranges in the set {1/n + 0.01, 1/n + 0.02, ..., 1} with a fixed standard deviation σ =

0.3 (reflecting the difference of advisors’ trustworthiness). The advisors need to make
decisions on 1, 000 problems sequentially in each experiment with the same setting.

Table 6.3 In the experiments, we generate problem sets with four different numbers of
candidate options n (2, 3, 5, and 10). Each problem set has three groups of experiments
where the average number of advisors ȳ = 5, 10, 15. So there are a total of twelve
groups of experiments. In each group of experiments, we generate the real accuracy
of advisors by ERGd with the mean in the set {1/n + 0.01, 1/n + 0.02, ..., 1}.

setting value
the number of candidate options n 2, 3, 5, 10

the mean of advisors’ real accuracy µ 1/n+0.01, 1/n+0.02,..., 1
the average number of advisors ȳ 5, 10, 15

total number of advisors 50
the number of problems in each problem set 1, 000

repeat running time of each setting 1, 000
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After making decisions on all the problems, we receive the number of correct decisions
for different methods. This number is used to calculate the decision accuracy of dif-
ferent methods. To reduce the influence of the randomness, we run each experiment
with the same settings 1, 000 times (i.e., using the same mean to generate the advisors’
real accuracy, the same number of candidate options, and the same number of advisors
for each problem on average, and all methods use the same set of advisors in the same
experiment).

Table 6.4 This table presents the mean and standard deviation of the accuracy of six
methods in simulated experiments. The mean accuracy is calculated over all results
(e.g., in the experiments of n = 2 and ȳ = 5, the mean accuracy is the mean of 50 ∗
1, 000 results). The standard deviation is computed from 1,000 repeated experiments.

methods MASDM
BWVE
-Beta

BYS
-CT

BYS
-Beta

WV
-CT

WV
-Beta

n = 2

ȳ = 5
0.8962
±0.0144

0.8864
±0.0174

0.8282
±0.0318

0.807
±0.0344

0.839
±0.0073

0.843
±0.0074

ȳ = 10
0.9332
±0.0196

0.9112
±0.0266

0.8579
±0.0375

0.8266
±0.0446

0.8964
±0.0094

0.8987
±0.0096

ȳ = 15
0.942
±0.0224

0.9166
±0.0293

0.8781
±0.0384

0.8519
±0.0426

0.9202
±0.012

0.9216
±0.0123

n = 3

ȳ = 5
0.8564
±0.0088

0.8539
±0.0093

0.823
±0.0184

0.8526
±0.0102

0.8075
±0.0063

0.8133
±0.0065

ȳ = 10
0.9248
±0.0122

0.9169
±0.0151

0.8594
±0.0283

0.9134
±0.0162

0.8797
±0.0076

0.8847
±0.0079

ȳ = 15
0.944
±0.0138

0.9328
±0.0172

0.8737
±0.0293

0.9287
±0.0186

0.9122
±0.0085

0.9164
±0.0089

n = 5

ȳ = 5
0.8164
±0.006

0.8142
±0.006

0.8069
±0.0098

0.8168
±0.0062

0.7862
±0.0054

0.7928
±0.0054

ȳ = 10
0.9065
±0.0066

0.9028
±0.0076

0.8742
±0.0165

0.9033
±0.0077

0.8712
±0.006

0.8768
±0.0059

ȳ = 15
0.9383
±0.0071

0.9336
±0.009

0.8919
±0.021

0.9335
±0.0093

0.909
±0.0059

0.9141
±0.006

n = 10

ȳ = 5
0.7841
±0.0052

0.7829
±0.0051

0.7849
±0.0066

0.7861
±0.0052

0.7689
±0.0051

0.7771
±0.0049

ȳ = 10
0.8856
±0.0043

0.8826
±0.0046

0.8728
±0.0099

0.884
±0.0045

0.8668
±0.0047

0.8705
±0.0046

ȳ = 15
0.9242
±0.0036

0.9223
±0.004

0.9045
±0.0128

0.923
±0.004

0.9078
±0.0041

0.9103
±0.0039

6.2.1.2 Results

Table 6.4 shows the results in each group of experiments. Overall, MASDM exhibits
the best performance in almost all environments. Specifically, MASDM achieved the
best performance in 10 out of the total number 12 of experiments, while only slightly



88 Chapter 6. Sequential Decision-Making among Multiple Options

lower than BYS-Beta when n = 5, 10 and ȳ = 5. Especially in three results where n = 2,
MASDM exhibits an average accuracy that is approximately 8% higher than BYS-Beta.

Moreover, the CT model has the ability to further improve performance based on the
BWVE method, because MASDM has higher average accuracy than BWVE-Beta in all
experiments. Furthermore, MASDM exhibits a smaller standard deviation than BWVE-
Beta in almost all environments, which indicates that CT is more stable than the Beta
trustworthiness model. Therefore, for BWVE methods, when the distribution of the
advisors’ trustworthiness is unknown, using CT can receive higher expected accuracy
and stability than using the trustworthiness model built by the Beta distribution.

In addition, BWVE methods exhibit greater stability than Bayesian aggregation meth-
ods. The standard deviation of the two BWVE methods is consistently smaller than that
of the two Bayesian aggregation methods across all experiments, which indicates that
the BWVE method has not only superior performance but also outstanding stability.

The curves in Figure 6.3 show the average accuracy of six methods as µ increases (more
figures see Section A.2). In the majority of conditions, MASDM has higher accuracy
than other methods, especially in cases where µ is low.

First, compared to the BWVE method, the Bayesian aggregation method is easier to
mislead. In Figure 6.3, two Bayesian aggregation methods have larger error bars than
the two BWVE methods. In more detail, the Bayesian aggregation method is closely
dependent on the accuracy of trustworthiness. Where µ is small, it often happens
that multiple untrustworthy advisors provide incorrect options during the initializa-
tion stage of the trustworthiness model, which causes the wrong option to be selected
as the decision and update the trustworthiness incorrectly. Although other methods
can also be misleading, due to the nature of the Bayesian aggregation method, advi-
sors with high trustworthiness are more trusted than other methods. Therefore, these
untrustworthy advisors continue to be trusted, which can undermine the accuracy of
future decision-making.

Second, the weighted voting method does not effectively leverage trustworthiness when
the trustworthiness model is reliable. To be specific, in the weighted voting method, the
advice of multiple untrustworthy advisors usually outweighs those of trustworthy ad-
visors. For example, in a problem with binary options “A” and “B”, we assume that the
advisors’ trustworthiness is absolutely reliable in this problem. If 2 bad advisors with
the trustworthiness of 0.5 (randomly select an option) choose “A” and one advisor with
the trustworthiness of 0.9 chooses “B”, the weighted voting method considers “A” as
the correct response, while the Bayesian aggregation method undoubtedly chooses “B”.
The BWVE method prefers to leverage the Bayesian aggregation method more than the
weighted voting method when the advisors’ trustworthiness is reliable. Therefore, the
overall performance of the BWVE method is better than the weighted voting method.
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Figure 6.3 The X-axis of the figures depicts the mean of real accuracy of advisors µ,
ranging from 1/n + 0.01 (the base rate +0.01) to 1, while the Y-axis displays the av-
erage accuracy of six methods observed over 1, 000 experiments. The curve on the
figures is accompanied by a semi-transparent region, representing the 95% confidence
interval error bar.

Third, as the number of candidate options increases, the advantage of MASDM keeps
decreasing. When ȳ = 5 and n = 5, Bayesian aggregation methods and BWVE methods
have almost the same performance. The first reason is that when ȳ/n is relatively small,
the BWVE method cannot fully exert its advantages. For example, when ȳ = 5 and
n = 5, on average, only 1 advisor chooses each option, which means all the aggregation
methods have similar performance because there is hardly aggregation. Therefore, as
ȳ increases, the advantage of MASDM becomes more significant in two results when
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n = 3, 5 and ȳ = 15. However, there is an upper limit to the increase of this advantage,
all methods have good performance when ȳ is very large.

The second reason is that there is a saturation point in the performance of the six meth-
ods, beyond which increasing n does not significantly improve accuracy and reduces
the differences between the methods. For example, when µ = 0.55 and ȳ = 5, the ac-
curacy of weighted voting methods can reach 85% when n = 10, while the accuracy
rate is only 65% when n = 2. Furthermore, the increase in decision accuracy leads to
the effectiveness of CT decreasing. Specifically, the design of CT is mainly to increase
the stability of trustworthiness modeling. When trustworthiness is unreliable, CT can
reduce wrong updates. However, the decision accuracy is high when µ is big, and it is
more effective to set the step size of each updated evidence to 1 because the decision
has a high probability of being correct. However, when the distribution of advisors’
trustworthiness is unknown, it is more beneficial to utilize the CT model, which is also
supported by the results in Table 6.4.

The third reason is that as n increases, the aggregation methods become less susceptible
to being misled. In more detail, in the experimental setting, we recall that if an advisor
makes a mistake, he or she randomly chooses one of the wrong options as the advice.
In the problems with binary options, if the advisor is wrong, he or she can only choose
the wrong option, which increases the probability that the only wrong option becomes
the decision. However, when n is relatively large, such as n = 10, the wrong options
are distributed among all wrong options, making it more difficult for the model to be
misled. However, in real problems, the probability of wrong options being selected
often is not evenly distributed. When the wrong advice tends to focus on a certain
wrong option, the model also has the risk of being misled. In contrast, our MASDM
has more advantages in such conditions because it has a higher level of robustness in
preventing being misled.

We conducted paired hypotheses tests using the Mann–Whitney U test combined with
Holm Bonferroni Correction to compare the results of MASDM and the five other meth-
ods. The p-values revealed that out of a total of 4,290 comparisons ((50 + 66 + 80 +

90) × 3× 5 = 4, 290), 2, 170 showed significant differences, which supports our find-
ings. As shown in Figure 6.3, these significant differences tend to occur when the mean
advisors’ accuracy µ is relatively low. In addition, for cases where the mean advisors’
accuracy is high, some results often do not exhibit significant differences among the
methods. As we mentioned before, this is because the accuracy of the different methods
approaches the saturation point, resulting in smaller gaps between them, particularly
when n is large.

We also evaluate the performance of different methods in modeling trustworthiness.
Figure 6.4 shows the trustworthiness error curves as the number of problems increases
when µ is low (from 1/n + 0.01 to 1/n + 0.21). As mentioned above, when n is large
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Figure 6.4 These figures show the error of advisors’ trustworthiness curves from the
range of low-accuracy data (from (1/n+0.01) to (1/n+0.21)). The X-axis of the figures
depicts the number of problems, ranging from 1 to 1, 000, while the Y-axis displays the
error of the advisors’ trustworthiness of six methods observed over 1, 000 experiments.
The curve on the figures is accompanied by a semi-transparent region, representing
the 95% confidence interval error bar.

and µ is high, the differences between most methods become small and difficult to
distinguish, which is why we only show six figures in the low accuracy range in the
text (all range figures and others see A.3).

Overall, our MASDM method outperforms the other methods in most conditions in
terms of trustworthiness modeling. Specifically, when n = 2, our BWVE methods have
a significant advantage over the Bayesian aggregation methods and weighted voting
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methods. However, when n = 3 and ȳ = 5, MASDM has a similar performance as BYS-
Beta and BWVE-Beta. We recall that when ȳ/n is relatively small, our BWVE method
and CT model find it difficult to exert their advantage. However, this disadvantage
disappears as ȳ gradually increases, thereby we can see that MASDM outperforms the
BYS-Beta method when ȳ = 15.

6.2.2 MNIST Database Experiments

In this section, we use the MNIST handwritten digit database to conduct experiments
in order to test the performance of our MASDM on a real data set. MNIST is a com-
monly used machine learning dataset, which contains 70, 000 28 ∗ 28 pixel handwritten
digit pictures. These pictures come from numbers written by different people, covering
digits from 0 to 9.

6.2.2.1 Setting

We randomly selected n candidate options from 10 numbers for each set of experi-
ments, where n took on the values of 2, 3, 5, and 10, respectively. Also, for each set
of experiments, we set ȳ = 5, 10, and 15. Table 6.5 presents the setting of MNIST
database experiments. In addition, in order to reduce the correlation between clas-
sifiers to improve the performance of ensemble methods (Zenobi and Cunningham,
2001; Krawczyk et al., 2017), we employ seven machine learning algorithms to train 50
classifiers as the advisors. These classifiers need to sequentially classify 1, 000 randomly
selected pictures. The Scikit-Learn library (Pedregosa et al., 2011) is used to implement
seven machine learning methods, which are K-Nearest Neighbors, Decision Tree, Linear
Discriminant Analysis, Support Vector Machine, Gaussian Naive Bayes, Multinomial Naive
Bayes, and Logistic Regression.

In addition, as we mentioned before, advisors (classifiers) often have different relia-
bility because of the knowledge level or data limitation. Moreover, our method also
considers making reliable decisions when there are malicious advisors. Therefore, to
evaluate the ability to model the trustworthiness and recognize malicious advisors, we
classify advisors into three groups: good advisors, lazy advisors, and bad advisors.
Specifically, good advisors are trained on 50 ∗ n randomly selected pictures from the
database without replacement and their output is their advice. For example, in a five-
category problem (n = 5), each classifier is trained on 250 pictures. Lazy advisors ran-
domly select one of the candidate options as their advice, while bad advisors are also
trained on 50 ∗ n pictures from the database without replacement but they randomly se-
lect an option as their advice except for their output. According to the different average
performances of the classifiers, we conduct two sets of experiments: the low-accuracy
group and the high-accuracy group. The former contains 21 good advisors trained by
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each algorithm three times; 15 lazy advisors; and 14 bad advisors trained by each algo-
rithm two times. The latter contains 28 good advisors trained by each algorithm three
times; 8 lazy advisors; and 14 bad advisors trained by each algorithm twice.

Table 6.5 In the experiments, we generate four problem sets that the numbers of can-
didate options (categories) n are 2, 3, 5, and 10, respectively, and each problem set has
three groups of experiments that ȳ = 5, 10, 15. So there are a total of twelve groups of
experiments.

setting value
the number of candidate options n 2, 3, 5, 10

the average number of advisors for each problem ȳ 5, 10, 15
total number of advisors 50

the problem number in each problem set 1, 000
repeat running time of each setting 1, 000

After the decision-making on 1, 000 problems (classifying 1, 000 pictures), we obtain the
number of the correct decisions of different methods. Similar to simulated experiments,
we repeat each experiment with the same settings 1, 000 times, and all methods use the
same set of classifiers (advisors) in the same experiment setting each time.

6.2.2.2 Results

Table 6.6 shows the low-accuracy experimental results, and Table 6.7 shows the results
of high-accuracy experiments (figures see Section A.5). Overall, MASDM still exhibits
superior performance, which supports our results in simulated environments.

In low-accuracy experiments (Table 6.6), MASDM has the best performance out of all
methods. When n = 2, 3, MASDM has a significant advantage over other methods.
However, when n = 5 and 10, MASDM’s performance is comparable to that of BWVE-
BETA and BYS-BETA, but still slightly better than the other three methods. Further-
more, in high-accuracy experiments (Table 6.7), MASDM has the best performance
when n = 2, 3 except when n = 3 and ȳ = 5, where BYS-BETA has a slight advan-
tage. Moreover, BYS-BETA is slightly better than MASDM when n = 5, 10, but they
almost have the same performance that the gaps between them are less than 0.0006.
Overall, MASDM generally has the best performance across all experiment settings in
MNIST database experiments, although its advantage is slightly narrowed for larger
values of n.

In addition, similar to the results in simulated experiments, MASDM outperforms the
BWVE-Beta method in almost all experiments, except for one case with n = 3 and
ȳ = 5 in the high-accuracy experiments. This further demonstrates that the CT model
can further improve the decision accuracy based on the BWVE method. Additionally,
MASDM has a smaller standard deviation than BWVE-Beta in the experiments with
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Table 6.6 This table presents the mean and standard deviation of results in low-
accuracy experiments of the MNIST database. The mean and standard deviation are
calculated by the results of 1, 000 repeated experiments.

methods MASDM
BWVE
-Beta

BYS
-CT

BYS
-Beta

WV
-CT

WV
-Beta

n = 2

ȳ = 5
0.8905
±0.1453

0.7829
±0.3097

0.6754
±0.395

0.6323
±0.4082

0.7322
±0.0431

0.7458
±0.0522

ȳ = 10
0.9183
±0.1776

0.7574
±0.3779

0.7084
±0.4085

0.6481
±0.4343

0.8806
±0.0354

0.8793
±0.0602

ȳ = 15
0.9223
±0.1939

0.7577
±0.3886

0.7279
±0.4073

0.6819
±0.43

0.9215
±0.0265

0.9007
±0.128

n = 3

ȳ = 5
0.8489
±0.029

0.847
±0.042

0.7091
±0.3061

0.8444
±0.0736

0.7633
±0.0351

0.777
±0.0352

ȳ = 10
0.9103
±0.0229

0.9031
±0.0855

0.7482
±0.3439

0.8904
±0.1365

0.8732
±0.0274

0.8776
±0.027

ȳ = 15
0.9293
±0.0206

0.919
±0.1005

0.7974
±0.322

0.9092
±0.1376

0.9066
±0.0235

0.9083
±0.0233

n = 5

ȳ = 5
0.77
±0.027

0.7675
±0.0275

0.7193
±0.1763

0.7695
±0.0276

0.7362
±0.0295

0.7426
±0.0285

ȳ = 10
0.8529
±0.0232

0.8527
±0.0234

0.7654
±0.2553

0.8531
±0.0233

0.8367
±0.0243

0.8383
±0.024

ȳ = 15
0.881
±0.0212

0.881
±0.0212

0.8026
±0.2485

0.8812
±0.0211

0.8697
±0.0225

0.8706
±0.0222

n = 10

ȳ = 5
0.6687
±0.0168

0.6659
±0.0171

0.6452
±0.0995

0.6667
±0.0168

0.6556
±0.0176

0.6614
±0.0169

ȳ = 10
0.773
±0.0134

0.7725
±0.0135

0.74
±0.1484

0.7728
±0.0136

0.7664
±0.0135

0.7684
±0.0134

ȳ = 15
0.8116
±0.0123

0.8114
±0.0125

0.7709
±0.1742

0.8115
±0.0125

0.8068
±0.0123

0.808
±0.0125

n = 2 and 3, while the standard deviations are similar for both methods when n = 5
and 10. Therefore, in general, the CT model is more stable than the Beta trustworthi-
ness model for the BWVE method. Furthermore, compared to Bayesian aggregation
methods, MASDM is more robust for protecting against misleading. Specifically, in ex-
periments where n = 2, the average accuracy of MASDM is approximately 25% higher
than BYS-Beta.

However, in MNIST database experiments, the advantages of MASDM over other meth-
ods are not as pronounced as in simulation experiments when n > 2 in high-accuracy
experiments. We believe that there are two main reasons for this. First, the correlation
between advisors (classifiers) reduces the performance of aggregation methods, espe-
cially those that incorporate Bayesian aggregation methods. Although we attempted to
reduce the impact of correlation by using multiple algorithms and training the advisors
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Table 6.7 This table presents the mean and standard deviation of results in high-
accuracy experiments of the MNIST database. More information see the caption of
Table 6.6

methods MASDM
BWVE
-Beta

BYS
-CT

BYS
-Beta

WV
-CT

WV
-Beta

n = 2

ȳ = 5
0.9451
±0.0241

0.9109
±0.1738

0.8112
±0.3253

0.7463
±0.3746

0.8603
±0.0351

0.8676
±0.0364

ȳ = 10
0.965
±0.0194

0.9203
±0.201

0.8564
±0.3013

0.803
±0.355

0.9298
±0.0247

0.931
±0.0251

ȳ = 15
0.971
±0.0177

0.9233
±0.2081

0.8766
±0.2843

0.8363
±0.3313

0.9481
±0.0207

0.9485
±0.0211

n = 3

ȳ = 5
0.8909
±0.0257

0.8913
±0.026

0.7921
±0.2741

0.892
±0.0376

0.8487
±0.0292

0.8524
±0.0289

ȳ = 10
0.9295
±0.0214

0.9287
±0.0354

0.8416
±0.2699

0.9271
±0.0542

0.9104
±0.0234

0.9111
±0.0233

ȳ = 15
0.9416
±0.0199

0.9408
±0.0354

0.8789
±0.2344

0.94
±0.0458

0.9287
±0.0215

0.929
±0.0215

n = 5

ȳ = 5
0.8251
±0.0253

0.824
±0.0257

0.7998
±0.1339

0.8257
±0.0256

0.8061
±0.0261

0.8078
±0.0259

ȳ = 10
0.8812
±0.0216

0.8812
±0.0216

0.8525
±0.1558

0.8815
±0.0216

0.8714
±0.0224

0.872
±0.0224

ȳ = 15
0.9006
±0.02

0.9006
±0.0201

0.8704
±0.1625

0.9007
±0.0201

0.8935
±0.0205

0.8939
±0.0205

n = 10

ȳ = 5
0.7334
±0.0145

0.7322
±0.0147

0.7273
±0.0344

0.7331
±0.0146

0.7258
±0.0149

0.7289
±0.0146

ȳ = 10
0.8087
±0.0128

0.8086
±0.0128

0.7823
±0.1395

0.8089
±0.0128

0.8047
±0.013

0.8056
±0.013

ȳ = 15
0.8367
±0.0126

0.8366
±0.0126

0.8132
±0.1367

0.8366
±0.0126

0.8337
±0.0124

0.8341
±0.0125

with different datasets, some correlations still persist between advisors. Second, differ-
ent problems (i.e. classifying the pictures) have varying levels of difficulty. In the sim-
ulated experiments, the accuracy of advisors in deciding each problem is fixed, while
the accuracy fluctuates due to the difficulty of the problem in the MNIST dataset. If
some pictures are more difficult or easier to classify, the trustworthiness of the advisors
becomes less useful, which reduces the performance of our method. Nevertheless, the
results on the MNIST database are generally consistent with the results in simulation
experiments, indicating that our MASDM method has the best overall performance.

Similar to simulated experiments, we conduct paired hypotheses tests on the results
of MASDM and five other methods by the Mann–Whitney U test combined with the
Holm Bonferroni Correction. The p-value shows that there are 42/60 (12 ∗ 5 = 60)
groups of results in low-accuracy experiments and 34/60 groups of results in high-
accuracy experiments that have significant differences, which supports our findings.
However, as we analyzed earlier, the performance of MASDM in the real dataset is
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Figure 6.5 This is trustworthiness modeling results of low-accuracy experiments.
The X-axis of the figures depicts the number of problems, ranging from 1 to 1, 000,
while the Y-axis displays the error of the advisors’ trustworthiness of six methods
observed over 1, 000 experiments. The curve on the figures is accompanied by a semi-
transparent region, representing the 95% confidence interval error bar.

affected. In more detail, we do not find significant differences between the results of
MASDM and BWVE-Beta in high-accuracy experiments. Furthermore, the results with
significant differences between MASDM and BYS-Beta are concentrated in experiments
where n = 2.

Moreover, we compare the ability of different methods to model trustworthiness. Fig-
ure 6.5 and 6.6 show 6 representative results that the average error of advisors’ trust-
worthiness as the number of problems increases in low-accuracy and high-accuracy ex-
periments, respectively (more figures see Section A.5). Our method outperforms other
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methods in most conditions in terms of the ability to model trustworthiness. Specif-
ically, MASDM exhibits a significant advantage over other methods when n = 2. In
addition, MASDM generally models advisors’ trustworthiness faster than other meth-
ods and performs either slightly better or similar to other methods when n > 2.

Figure 6.6 This is the trustworthiness modeling results of high-accuracy experiments.
The X-axis of the figures depicts the number of problems, ranging from 1 to 1, 000,
while the Y-axis displays the error of the advisors’ trustworthiness of six methods
observed over 1, 000 experiments. The curve on the figures is accompanied by a semi-
transparent region, representing the 95% confidence interval error bar.
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6.3 Summary

In this chapter, we address Objective O4.1 and O4.2 that propose (MASDM) method,
a novel approach for making decisions in sequential decision-making settings. Com-
pared to MABSDM, it can make decisions among multiple options, not only binary
options. Specifically, MASDM (1) makes decisions by aggregating the advice of mul-
tiple advisors without ground truth, (2) automatically adjusts the aggregation strategy
according to the uncertainty of the advisors’ trustworthiness and, (3) sequentially mod-
els the advisors’ trustworthiness without prior information. Furthermore, we conduct
experiments on both the simulated environments and the MNIST database to evalu-
ate our approach. We compare our MASDM with five benchmark methods that are
combined with state-of-the-art aggregating methods and trustworthiness models. Our
results show that MASDM significantly outperforms five benchmark methods using
state-of-the-art models.
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Chapter 7

Conclusions and Future Work

This thesis is concerned with the challenge of multi-advisor sequential decision-making
problems. To this end, we present several studies that address distinct aspects of this
broad challenge. In addition, we provide three future research directions related to
multi-advisor sequential decision-making without ground truth.

7.1 Conclusions

Following Objective O1.1, O1.2 (see Section 1.3.1), we present a novel method, Multi-
Advisor Binary Sequential Decision-Making (MABSDM) for binary sequential decision-
making problems in Chapter 3. In more detail, MABSDM considers (1) modeling the
advisors’ trustworthiness sequentially without prior information and ground truth, (2)
automatically adjusting the aggregation strategy according to the uncertainty of the
advisors’ trustworthiness and, (3) making optimal decisions by the advice of multiple
advisors. Moreover, our results show that our aggregation method outperforms the
state-of-the-art aggregation methods including majority voting, weighted voting, and
the Bayesian aggregation method. In addition, the trustworthiness modeling results
support that our MABSDM outperforms the BBWVE-Beta method (use the Beta distri-
bution trustworthiness model instead of our BCT model).

Moreover, according to Objective O2.1 and O2.2, we propose a novel interactive re-
inforcement learning system called Multi-Advisor Interactive Reinforcement Learning
(MAIRL) (see Chapter 4). It consists of MABSDM and a review model. Specifically,
MABSDM can aggregate the binary advice of multiple imperfect advisors into a reli-
able reward for agent training in a reward-sparse environment. In addition, the review
model in MAIRL can correct the unreliable reward from advisors. Moreover, we con-
duct grid-world experiments to evaluate the binary feedback and MAIRL. The results
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of feedback forms experiments indicate that the binary feedback outperforms the rank-
ing feedback, scaling feedback, and state value feedback in terms of performance and
noise robustness. Furthermore, the results of the MAIRL experiments show that the
policy trained by the MAIRL with the review model is closer to the optimal policy than
that without a review model.

Thirdly, to address Objective O3.1 and O3.2, we adopt the MABSDM method for a
utility-maximizing problem in binary decision-making scenarios in Chapter 5. Specifi-
cally, based on the multi-advisor binary sequential decision-making problem, we need
to balance the value of each problem and the cost of query advisors to make sequen-
tial optimal decisions. To address this objective, we propose a novel strategy, Multi-
advisor dynamic decision-making (MADDM), for optimally selecting a set of advisers
in a sequential binary decision-making setting, where multiple decisions need to be
made over time. Specifically, our approach considers how to simultaneously (1) select
advisors by balancing the advisors’ costs and the value of problems, (2) learn the trust-
worthiness of advisers dynamically without prior information, and (3) make optimal
decisions without access to the ground truth, improving this over time. Moreover, we
test our method through problem-advice experiments in a simulated environment. We
also introduce two benchmark methods, one using a fixed number of advisors (FNA)
and another one using a fixed budget (BC), which are combined with state-of-the-art
sampling and aggregating methods. The results show that MADDM significantly out-
performs benchmark methods.

Finally, we turn our attention to Objective O4.1 and O4.2, and we extend the MAB-
SDM method to a general method, called Multi-Advisor Sequential Decision-Making
(MASDM) (see Chapter 6). Compared to MABSDM, MASDM can handle decisions
among multiple options, not just binary options. MASDM consists of two parts: a de-
cision model and a trustworthiness model. The decision model is to make decisions
using the advice of multiple advisors by Bayesian Weighted Voting Ensemble (BWVE)
method. The trustworthiness model builds and updates advisors’ trustworthiness us-
ing a Cautious Trustworthiness (CT) strategy. In addition, we evaluate and explain our
methods through extensive experiments in simulated environments. Moreover, we ap-
ply our method to ensemble machine learning using the experiments by the MNIST
database. The results show that MASDM has better decision accuracy and the ability
to assess trustworthiness than the five benchmarks using state-of-the-art methods, no-
tably achieving a maximum improvement of 22% in accuracy compared to the Bayesian
aggregation methods.
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7.2 Future Work

There are multiple interesting directions for future work. The first direction involves
addressing problems where the candidate options have a biased distribution. For ex-
ample, for a binary decision-making problem, if the positive advice accounts for 95%
and the negative advice only 5%, we often think of this as a biased decision. In this
example, if the advisor always selects positive advice, the trustworthiness (decision ac-
curacy) of he or she is 95%. However, in some practice scenarios, if a problem results
in a positive decision but a negative ground truth (false positive), the decision-maker
needs to pay huge costs. For example, the number of cancer cases in a hospital is usu-
ally much smaller than the number of non-cancer cases. If the hospital diagnoses a
cancer patient as non-cancer, the patient is likely to lose the opportunity for treatment
and lose their life, and the hospital also needs to pay huge compensation. In this case,
we cannot use decision accuracy to model the trustworthiness of advisors and consider
more appropriate evaluation indicators based on the nature of the problem. Therefore,
it is crucial to devise approaches that can appropriately consider the impact of the op-
tions distribution to improve the decision performance.

The second direction involves focusing on the problems with greater variance in dif-
ficulty. If the same decision strategy is applied to problems of varying difficulty, the
overall accuracy of the decision-making process is compromised. For example, in a
crowdsourcing problem of image recognition, some pictures may be difficult to iden-
tify, while others are easier. This difficulty prevents advisors’ trustworthiness from ac-
curately representing the impact of advisors on decisions, especially when the difficulty
of the images varies greatly. Therefore the challenge is developing effective methods to
accurately model and estimate the difficulty of each problem and integrate it into the
multi-advisor decision-making framework.

The third direction involves reducing the impact of advisor correlation, which can be
due to very similar knowledge levels or cheating. For example, two advisors often
give similar advice, which can potentially bias the decision-making process and lead
to less reliable outcomes. The challenge is modeling the correlation reasonably because
it is influenced by multiple factors. One of these factors is the number of decisions.
For instance, identical advice on 10 problems of two advisors should have a stronger
correlation than that on 3 problems. Therefore, the challenge is to develop techniques
that can eliminate or minimize the impact of advisor correlation, thereby improving
the overall accuracy and reliability of the decisions.
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Appendix A

MASDM Experiment Results

A.1 BWVE Motivation Experiment

Figure A.1 These figures show the results of the Bayesian aggregation method and
the weighted voting method comparison experiments at different conditions. The X-
axis of the figures depicts the distance coefficient dis, ranging from 0 to 100, while the
Y-axis displays the average accuracy of two methods observed over 10, 000 questions.
“n” indicates the number of candidate options in the question set. “ȳ” indicates the
average number of advisors selected by the model for each question. “µ” and “σ”
respectively represent the mean and standard deviation by ERGd used to generate τr

x.
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Figure A.2 These figures show the results of the Bayesian aggregation method and
the weighted voting method comparison experiments at different conditions. The X-
axis of the figures depicts the distance coefficient dis, ranging from 0 to 100, while the
Y-axis displays the average accuracy of two methods observed over 10, 000 questions.
“n” indicates the number of candidate options in the question set. “ȳ” indicates the
average number of advisors selected by the model for each question. “µ” and “σ”
respectively represent the mean and standard deviation by ERGd used to generate τr

x.
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A.2 Figures of the Accuracy Results in MASDM Simulated Ex-
periments

Figure A.3 The X-axis of the figures depicts the mean of real accuracy of advisors
µ, ranging from 1/n + 0.01 (the base rate +0.01) to 1, while the Y-axis displays the
average accuracy of six methods observed over 1, 000 experiments. The curve on the
figures is accompanied by a semi-transparent region, representing the 95% confidence

interval error bar.
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A.3 Figures of the Trustworthiness Error Results in MASDM
Simulated Experiments

Figure A.4 These figures show the error of advisors’ trustworthiness curves from all
range data. The X-axis of the figures depicts the number of questions, ranging from
1 to 1, 000, while the Y-axis displays the error of the advisors’ trustworthiness of six
methods observed over 1, 000 experiments. The curve on the figures is accompanied

by a semi-transparent region, representing the 95% confidence interval error bar.
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Figure A.5 These figures show the error of advisors’ trustworthiness curves from the
range of low-accuracy data (from (1/n+0.01) to (1/n+0.21)). The X-axis of the figures
depicts the number of questions, ranging from 1 to 1, 000, while the Y-axis displays the
error of the advisors’ trustworthiness of six methods observed over 1, 000 experiments.
The curve on the figures is accompanied by a semi-transparent region, representing

the 95% confidence interval error bar.
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A.4 The Figure Results of MNIST Database Experiments

Figure A.6 The figures show the accuracy results of MNIST Database Experiments
(low accuracy). The X-axis of the figures depicts the mean of real accuracy of advisors,
ranging from 1/n + 0.01 (the base rate +0.01) to 1, while the Y-axis displays the ac-
curacy of six methods observed over 1, 000 experiments. The curve on the figures is
accompanied by a semi-transparent region, representing the 95% confidence interval
error bar. In the title of each figure, “n” indicates the number of candidate options
in the question set, and ”ȳ” indicates the average number of advisors selected by the

model for each question in the group of experiments.
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Figure A.7 The figures show the accuracy results of MNIST Database Experiments
(high accuracy). More details see the caption in Figure A.6
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A.5 Figures of the Trustworthiness Error Results in MNIST Database
Experiments

Figure A.8 The figures show the error curves of 6 methods in low-accuracy MNIST
database experiments. The X-axis of the figures depicts the number of questions, rang-
ing from 1 to 1, 000, while the Y-axis displays the error of the advisors’ trustworthiness
of six methods observed over 1, 000 experiments. The curve on the figures is accom-
panied by a semi-transparent region, representing the 95% confidence interval error
bar. In the title of each figure, “n” indicates the number of candidate options in the
question set, and ”ȳ” indicates the average number of advisors for each question in

the group of experiments.
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Figure A.9 The figures show the error curves of 6 methods in high-accuracy MNIST
database experiments. For more information see the caption of Figure A.8
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