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Abstract. Reconstructing past sea-surface temperatures (SSTs) from historical mea-
surements containing more than 100 million ship-based observations taken by over 500,000
ships from more than 150 countries using a variety of methodologies creates a wide range
of historical, scientific, and statistical challenges. The reconstruction of historical SSTs
for studying climate change is particularly challenging because SST measurements are
uncertain and contain systematic biases of order 0.1◦C to 1◦C—these systematic biases
are in the range of the historical global warming signal of approximately 1◦C. The biases
are complicated and have generally been addressed using simplified corrections. In this
review, I introduce a history of SST observations, review a statistical method developed
for quantifying SST biases, and illustrate scientific insights obtained from adjusted SSTs.
This article also documents the scientific journey of my Ph.D. work. As a result, I report
personal stories on both successes, difficulties, and setbacks along the way. The statis-
tical method for correcting SSTs (i.e., a linear-mixed-effect intercomparison framework)
depends on identifying systematic offsets between intercomparable groups of SST obser-
vations. Combining estimated offsets with physical and historical evidence has allowed
for correcting discrepancies associated with SSTs, including the North Atlantic warming
twice as fast as the North Pacific in the early 20th century and anomalously warm SSTs
during World War II. Corrections also permit better hindcasting of Atlantic hurricanes. I
conclude with some discussion on how the SST records might be further improved. Given
the importance of SSTs for understanding historical changes in climate, I hope that this
review can help others appreciate challenges that are present and spark some interest and
ideas for further improvement.
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Media Summary11

To better predict what climate change will look like in the future, it is crucial to know how12

and why climate has changed in the past. One essential component of climate change is the13

ocean, for which we have more than 200 years of ship-based temperature measurements made14

at the ocean surface. However, biases in early sea-surface temperatures have limited their usage15

in climate studies. These biases are similar in magnitude to historical warming, and they vary16

with measurement methods, instruments, protocols, and even postprocessing and data-keeping17

practices. The question is, therefore, can we remove the complicated biases and obtain a sea-surface18

temperature estimate that is accurate enough to study past climate change?19

In this article, I review recent progress aimed at correcting sea-surface temperatures for individ-20

ual nations and data-collecting groups. I introduce a statistical framework that compares nearby21

measurements and estimates systematic offsets in temperatures among groups. Physical and his-22

torical evidence is then combined to understand the origins of significant groupwise differences23

detected by the statistical method. Correcting data leads to spatially more homogeneous warming24

in the early 20th century and removes anomalously warm sea temperatures during World War II,25

which reconciles existing model-data discrepancies and brings observations into consistency with26

current knowledge of climate forcing and variability. Beyond the ocean itself, adjusted sea-surface27

temperatures also allow atmospheric models to simulate more realistic historical variations in North28

Atlantic hurricanes, showing potential for improving predictions of these high-impact events. This29

review also demonstrates the importance of understanding the social context and history of how30

data are collected and postprocessed. When data and models disagree, keeping an awareness of31

potential flaws in the quality of data appears to be a necessary practice.32

1. Introduction33

Sea-surface temperature (SST), typically defined at ocean depth of 20–30 cm (Kennedy et al.,34

2019), is a crucial quantity for studying the Earth’s climate. Estimates of historical SSTs to an35

accuracy of 0.05◦C at the global scale and 0.1◦C at regional scales are required for a wide range of36

climate applications (Kent & Berry, 2008), which include depicting past climate change (Hartmann37

et al., 2013), attributing anthropogenic versus internal climate variability (Bindoff et al., 2013), and38

understanding changes in climate and weather events that have far-reaching societal impacts, such39

as El Niño (Yeh et al., 2009) and hurricanes (Vecchi et al., 2011). Moreover, SSTs are often used40

as boundary conditions in numerical models to reproduce or hindcast a variety of meteorological41

phenomena (e.g., Gates et al., 1999).42

Despite their importance for climate sciences, estimates of historical SSTs remain highly uncer-43

tain (P. Jones, 2016), with disagreements existing between observational estimates and climate-44

model simulations. One example of such data-model disagreement would be the recent warming45

hiatus, which refers to a slowdown in the increase of the observed global-mean surface tempera-46

ture since the late 1990s (Easterling & Wehner, 2009). The hiatus was one of the most popular47

climate-related research topics in the first half of the 2010s. At that time, state-of-art climate mod-48

els that were used in the latest Intergovernmental Panel on Climate Change report (IPCC AR5,49

Taylor et al., 2012) simulated significantly faster warming (p < 0.05) than observational estimates50

(Fyfe et al., 2013; Medhaug et al., 2017). One possible explanation, as suggested by many studies,51

involves natural climate fluctuations that can uptake heat from the surface into the deep ocean52

(e.g., X. Chen & Tung, 2014; Kosaka & Xie, 2013). Another plausible explanation, however, is that53
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recent trends in observed SSTs were underestimated by 0.064◦C/decade from 2000 to 2014 due to54

biases in ship-based measurements (Karl et al., 2015). Correcting SSTs reduces the so-called recent55

warming hiatus, making the estimate of warming rates since the early 2000s consistent with the56

rapid warming since the late 1970s (Hausfather et al., 2017; Karl et al., 2015). In another example,57

after removing contributions from major physical modes of climate variations, Thompson et al.58

(2008) detected a sudden drop of about 0.3◦C in global-mean SSTs immediately after World War59

II, which they attributed to insufficient corrections of instrumental SST biases.60

When data and models disagree, a common practice is to assume that data reflect reality and61

to look for new theories to enrich the model and explain the data (e.g., using natural climate62

fluctuations to explain the recent warming hiatus). However, there is always a second and often63

overlooked possibility: that data contain undetected problems. As we shall see in detail in later64

sections, in addition to the recent warming hiatus and the artificial temperature drop at the end of65

World War II, major data problems also exist in SST estimates in terms of patterns of warming in66

the early 20th century and temperature evolution during World War II. Observed historical SSTs67

are particularly likely to contain data problems because of complicated biases associated with using68

various crude methods to collect early measurements and also because of simplified bias corrections69

employed when generating SST estimates.70

1.1. A Brief History of Measuring SSTs since the 1800s. Instrumental SSTs have been71

measured on ships at the ocean surface for more than 200 years, yielding more than 130 million72

ship-based measurements since the 1850s (Freeman et al., 2017). Such a history is longer than73

that of studies on anthropogenic climate change; the first estimate of equilibrium warming once74

doubling atmospheric CO2 was made by Svante Arrhenius in 1896 (Lapenis, 1998). The history75

of SST measurement is also much longer than that of dedicated scientific efforts to systematically76

monitor ocean temperatures, which began in the late 1970s.77

Most of these early SST measurements were made not by dedicated researchers but by voluntary78

and nonscientist sailors from different countries who sailed, for example, as soldiers, merchants, or79

fishermen (Kennedy, 2014; Kent et al., 2017). These early SST measurements were made for variety80

of purposes, including pure scientific interest, facilitating navigation, predicting stormy weather,81

and mapping a climatological summary of the marine environment (Kennedy, 2014). Although82

not made for purposes of monitoring climate change, ship-based in-situ observations are the only83

available source of direct measurements of past states at the ocean surface.84

Historical SST values were originally recorded in ship logs and were rescued and digitized by a85

variety of projects and institutions (e.g., Wilkinson et al., 2011). Digitized data from various sources86

were later put together to construct the International Comprehensive Ocean-Atmosphere Data Set87

(ICOADS, the most comprehensive modern compilation of available marine meteorological mea-88

surements since the 1700s). The digitization of ship logs and the construction of ICOADS spanned89

several decades (Freeman et al., 2017; Woodruff et al., 1998; Woodruff et al., 1987; Woodruff et al.,90

2011; Worley et al., 2005), and this initiative was accompanied by revolutions in computer and91

data-storage technologies. ICOADS3 is the latest version, and efforts continue to recover lost his-92

torical data sets and to include missed metadata during initial digitizations by reprocessing existing93

data banks (Kent et al., 2017).94

In addition to the changing purposes of measurements and record-keeping efforts, instruments95

and associated systematic SST biases during measurement have also experienced major changes.96

The first instruments to systematically measure SSTs across large spatial scales were buckets and97
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Figure 1. Distinct methods used to take in-situ SSTs compiled under the In-
ternational Comprehensive Ocean Atmosphere Data Set (ICOADS). The overall
number of in-situ SSTs collected by different measurement methods (stacked bars) in indi-
vidual years from 1880 to 2014. In addition to bucket (blue), engine-room intake (ERI, red),
hull sensor (orange), and buoy (black), other methods (green) include radiation thermome-
ter, reversing thermometer, and electronic sensors, which are, however, not thought to be
representative of SSTs due to their limited numbers (Kent et al., 2010). Results are based on
version 3.0 of ICOADS. Method information is inferred for some unknown measurements,
following Kennedy et al. (2011b). For example, SSTs before 1941 come from buckets, if
not explicitly indicated otherwise, and U.S. and U.K. Naval SSTs during World War II are
assumed to be ERI measurements (Kennedy et al., 2011b). Also shown are photos of some
types of buckets used in SST collections, as well as images of moored and drifting buoys
that have been widely deployed since the 1980s.

thermometers. The procedure to measure SSTs involved hauling buckets of water from the ocean98

surface and measuring the temperature of water in buckets on ship decks. SSTs made by this method99

(hereafter bucket SSTs) are thought to dominate ICOADS before the 1940s, and the number of100

bucket SSTs gradually decreased after the mid-1970s (Figure 1). During the measurement process,101

water temperatures in buckets will generally become colder due to wind-induced evaporation, as102

well as sensible heat loss in the tropics and the subtropics (Folland & Parker, 1995). In midlatitudes,103

bucket biases are still expected to be cold in winter. During summer, evaporation is suppressed104

in humid air, and the direction of sensible heat flux can be reversed as air temperatures become105

warmer than SSTs, leading to less heat loss (Folland & Parker, 1995). Sometimes, bucket water106

can be heated by the sun, especially on a calm summer afternoon (Kennedy et al., 2019). When107

averaged annually and over the globe, early bucket SSTs are estimated to be biased cold to an order108

of 0.4◦C (Folland & Parker, 1995; Kennedy et al., 2011b). However, buckets of different materials109

and designs have been used under different protocols in history, which could lead to distinct biases110

among groups of bucket SSTs (Folland & Parker, 1995; Kent & Taylor, 2006). For example, a111
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less-insulated canvas bucket can be colder than a more-insulated wooden bucket by around 0.5◦C112

even measured under the same conditions (Folland & Parker, 1995). The time gap between water113

retrieval and measurement can also affect bucket bias.114

After the emergence of engine ships in the late-19th century, a second method of measuring115

SSTs was introduced, which is a byproduct when monitoring the temperature of inlet water before116

entering and cooling ship engines. SSTs made by the engine-room intake (ERI) method first appear117

in ICOADS in the 1930s (Figure 1) and are mainly from U.S. ships that dominated the Atlantic118

and the northeast Pacific. Later, the ERI method was adopted by more nations and gradually119

became the preferred method because of safety concerns associated with hauling buckets on fast120

engine ships (Kennedy, 2014). ERI SSTs typically come from a depth of 5–15 m where the ocean121

is less affected by solar heating and should consequently be colder than SSTs defined at 20–30 cm122

(Carella et al., 2018; Chan & Huybers, 2020b). However, because of the absorption of heat from123

ship engines, ERI measurements are estimated to have warm biases of 0.1◦C to 0.3◦C, depending124

on ship design and cargo (Kennedy et al., 2011b).125

In the modern era, a variety of new methods that give more reliable SSTs have been used126

(Figure 1). Since the 1970s, an increasing number of ships are equipped with specialized digital127

sensors (Kennedy, 2014). SSTs from hull sensors should be free of engine heating and are therefore128

expected to be less biased. Scientists have also been deploying drifting and moored buoys since129

the late 1970s, which has become the dominant data source since the 1990s (Figure 1). Similar130

to hull sensors, buoys make contact with seawater directly and are expected to give less biased131

SST measurements, although individual buoys could be problematic due to instrumental drift or132

biofouling (Kennedy et al., 2012; Kent et al., 2017). Biofouling refers to the accumulation of small133

ocean organisms on the wet surface of instruments, leading to structural or functional deficiencies.134

Whereas drifting buoys typically measure at a depth of 20–30 cm, most moored buoys measure at135

around 1 m deep (Kennedy, 2014). The deployment of drifting buoys substantially increased the136

spatial coverage of the observing system, especially in the southeastern Pacific and the Southern137

Ocean, which nonresearch ships rarely traverse. The majority of moored buoys are installed along138

the coastal United States as marine weather stations and over the tropical Pacific and the Indian139

Ocean to monitor El Niño evolution (Hervey, 2014). Combining different types of buoys, which140

sample at different depth, can result in biases due to vertical temperature gradients that often exist141

near the ocean surface. One cause of these gradients is solar heating in low-wind conditions, which142

can exceed 3◦C in some extreme cases (Kennedy et al., 2007). This depth effect may be damped143

by ship-induced turbulent mixing for ship-based SSTs and may appear small relative to bucket and144

ERI biases when averaged over seasons and weather conditions. However, recent ship-based SSTs145

are reported to be, on average, systematically warmer than collocated buoy SSTs on an order of146

0.1◦C (e.g., Huang et al., 2017; Karl et al., 2015), which needs to be accounted for when combining147

SSTs from both sources.148

In addition to in-situ observations collected at the ocean surface, satellite and other remote-149

sensing techniques became available in the 1980s. Remote-sensing techniques further increase the150

spatial and temporal coverage of SST measurements. Note that satellites observe the skin tem-151

perature in the upper several millimeters of the ocean (Kennedy et al., 2007), and this difference152

in sampling depth, again, needs to be accounted for when homogenizing with in-situ SSTs. Addi-153

tionally, SSTs retrieved from satellites can be biased due to changes in atmospheric optical depth154

associated with volcanic and anthropogenic aerosols and, therefore, have to be calibrated and cor-155

rected against in-situ measurements (T. M. Smith et al., 2008).156



Combining Statistical, Physical, and Historical Evidence to Improve Historical Sea-Surface Temperature Records6

In addition to instruments dedicated to measuring SSTs, near-surface temperatures are also157

available from ocean profiling instruments. Historical profiles have been made on research vessels158

for more than a hundred years (Meyssignac et al., 2019). Since the late 1990s, scientists have been159

deploying Argo floats that profile temperature and conductivity as functions of pressure (Roemmich160

et al., 1999). Since 2006, Argo floats have been able to provide temperatures within the upper five161

meters of the ocean with nearly global coverage (Huang et al., 2017). Some of the most recent162

Argo floats can provide temperatures at 0.1-meter resolution in the upper 200 meters of the ocean.163

Currently, there are approximately 4,000 Argo floats providing nearly global information on near-164

surface temperatures at a frequency of once every 10 days.165

1.2. Insufficient Metadata and Simplified Corrections. The shift from measuring SSTs from166

buckets to ERI to buoys is, therefore, accompanied by systematic biases varying on the order167

of 0.5◦C. Such a variation in bias has a similar magnitude to the less-than-1◦C global warming168

that is thought to have happened in the 20th century. On account of the irreplaceable nature of169

these early SST measurements, adjusting biases becomes crucial for quantifying and interpreting170

historical climate change. Such a problem, however, is difficult because biases associated with SSTs171

coming from the same method can be distinct due to different instrumental designs (e.g., different172

bucket materials) and measurement protocols used by various subsets of ships, which will interact173

with the uneven sampling to create regionally varying biases.174

Although biases are complicated, lack of metadata by which to make specific corrections has175

necessitated simplifying assumptions regarding the spatial and temporal structure of SST biases,176

which inevitably lead to insufficient corrections and SST estimates having higher uncertainty than177

land surface temperatures (P. Jones, 2016). SST products from the U.K. Met Office, for example,178

assumed that a transition from early wooden buckets to less-insulated canvas buckets happened179

with the percentage of canvas buckets increasing linearly, from 35% in 1880 to 100% in 1920 over180

the entire ocean (Folland & Parker, 1995; Kennedy et al., 2019; Kennedy et al., 2011b). In other181

words, all bucket measurements in the same year are assumed to be biased in the same way, as if182

they were measured by the same person using the same bucket. In other SST estimates, correc-183

tions do not distinguish between measurement methods. Rather, biases for SSTs from all methods184

are represented using a large-scale fixed pattern, with the amplitude of the pattern estimated by185

comparing SSTs with other temperature estimates, for example, nighttime marine air temperatures186

(Huang et al., 2015; Huang et al., 2017) or coastal station-based air temperatures (Cowtan et al.,187

2018).188

In addition to biases introduced during measurement, problems may also occur in the record-189

keeping and data-processing stage, as information is transferred over time and across technologies.190

One example is inaccurate metadata that leads to ERI SSTs being misclassified as coming from191

buckets (Carella et al., 2018; Kennedy et al., 2011b). Other postmeasurement problems may also192

exist but have not yet been quantified systematically.193

2. Toward refined corrections for individual nations and groups of data194

During my Ph.D. study, I aimed to refine SST corrections by resolving the regional biases that195

arise from different measurement and postprocessing characteristics due to distinct physical and196

historical reasons. Because ships from the same nation and data-collecting group would have used197

similar instruments, followed similar protocols, and experienced similar postprocessing practices, I198

corrected biases for individual nations and data-collecting groups, assuming data within the same199
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group have similar bias characteristics. Specifically, nation information is mainly identified using200

ICOADS country code (Freeman et al., 2017) and metadata from the World Meteorology Organi-201

zation No. 47 publication (Kent et al., 2007). Collecting groups are assigned using ICOADS deck202

number, which is the primary field to track ICOADS data collection and postprocessing (Freeman203

et al., 2017). Because available metadata is insufficient for physically constraining biases in indi-204

vidual groups, I turned the research question into a big-data problem and developed a statistical205

method to estimate corrections required for individual groups.206

Ship-based SSTs contain information of both physical SST variations and biases. Because nearby207

measurements tend to have similar physical SST variations, examining differences between nearby208

SSTs allows for focusing on data heterogeneity associated with distinct biases. SST measurements209

were, therefore, first paired if they came from different groups and were within 300 km and two210

days of one another. These scales were chosen to keep expected physical variability with biases211

on the order of tenths of a degree Celsius. The results are not qualitatively sensitive to scales212

used in pairing SSTs (Chan & Huybers, 2019). To prevent error covariance between pairs, each213

measurement was used only once, with an algorithm prioritizing measurements closest in space.214

Specifically, the method rank-orders all potential pairs within a given month according to distance215

and selects the closest pair. The next closest pair is selected after removing previously selected216

measurements. The process repeats until all paired measurements are selected (Chan & Huybers,217

2019).218

Because measurements in a pair are not perfectly collocated in space and time, we first removed219

expected physical differences arising from displacements in geographical locations, seasonality, and220

day-night differences (Chan & Huybers, 2019). For example, SSTs closer to the Equator or during221

daytime are expected to be warmer. Expected differences were estimated from the 1982–2014222

climatology of high-resolution satellite-based retrievals (T. M. Smith et al., 2008). Remaining223

differences in reported SSTs (δT) were represented using a linear-mixed-effect (LME) model,224

(2.1) δT = XXXα +ZZZrβr +ZZZyβy + ε,

where δT is represented as a fixed-effect term describing offsets between groups (α) and random225

effects describing regional (βr) and temporal (βy) variations. We constrain α such that the average226

offset of all compared measurements is zero. XXX, ZZZr, and ZZZy are design matrices that specify, respec-227

tively, common pairs of groups, years, and regions. See Figure 2 for an element-wise illustration of228

the LME model. Such a model is similar to an ANOVA approach. It makes use of random effects to229

give more conservative estimates. As the number of pairs available for constraining a random effect230

decreases, the estimate is relaxed toward zero such that estimates of regional and yearly variations231

in groupwise offsets are robust against noise (Chan & Huybers, 2019). The model is flexible in232

terms of controlling for specific effects and is easily extendable to account for variations in offsets233

associated with seasonality and day-night differences.234

In practice, to reduce computational cost, SST differences are aggregated according to combi-235

nations of pairs of groups, regions, and years before estimating offsets (Chan & Huybers, 2019).236

Pairs in an aggregate are assigned equal weights when taking the average. Errors of aggregated237

SST differences (ε) are budgeted to account for errors from different sources and heteroscedasticity238

associated with distinct group size (Chan & Huybers, 2019). See Figure 3a for an example of uneven239

numbers of pairs between different combinations of groups. The error of each aggregated pair (εk)240
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Figure 2. An element-wise illustration of the LME model in Eq. 2.1. Also shown is
the dimensionality of matrices and vectors (red), where p, g, and r are, respectively, numbers
of pairs, groups, and regions. X, Zr, and Zy are design matrices whose entries are one, zero,
or minus one. Regional effects (βr) are estimated for individual groups. These regional
effects are assigned as random effects and are assumed to follow a Gaussian distribution
such that each βrij ∼ N(0, σ2

r). Yearly effects, Zyβy, are also estimated for individual
groups and have a similar structure to Zrβr. Higher-order interactions that involve group,
year, and regions are not accounted for in this model to limit the number of free parameters.

is assumed to follow N(0, σ̄2
k), where241

(2.2) σ̄2
k =

2σ2
o

nk
+

2σ2
s

nxk
+

∑
σ2
c (l)

n2k
.

2σ2
o

nk
denotes the contribution of random observational errors, where nk is the number of pairs in the242

kth aggregate. Random observational error is denoted by σ2
o and is estimated to be 0.86±0.18◦C243

(2 SD, Chan et al., 2019) for individual bucket SSTs. Contributions of partially correlated obser-244

vational errors are denoted by 2σ2
s

nx
k
, with σ2

s estimated to be 0.38±0.14◦C (Chan et al., 2019). One245

possible source of σ2
s is systematic errors associated with individual ships. Because ship information246

is not always available in ICOADS, nxk is used to approximate effective numbers of ships within247

the kth aggregate, with x estimated to be 0.57 (Chan et al., 2019). Finally, σc(l) denotes uncer-248

tainties associated with physical SST variations for the lth out of nk pairs. The estimation of σc249

accounts for interannual variance and covariance of physical SSTs as a function of location, month,250

and displacement, with more details documented in section 5.a.1 of Chan and Huybers (2019). The251

robustness of offset estimates to a variety of model formulations and assumptions was explored in252

section 5.b of Chan and Huybers (2019).253

In the following sections, I will show that the LME method detects significant offsets among254

groups classified by both nation and deck number. Accounting for these systematic groupwise255

offsets improves the quality of historical SST estimates at regional and sub-basin scales, resolves256
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several existing data-model discrepancies, and brings in new opportunities for understanding ex-257

treme weather events and climate variations. Beyond the nation-and-deck level, the model in258

Equation 2.1 can be extended to resolve offsets associated with individual ships for more refined259

SST corrections. However, metadata of ship information and the algorithm used to fit the LME260

model need to be improved before estimating ship-level offsets. These steps will be carried out in261

future works, and associated plans will be discussed in section 7.1.262
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Figure 3. Schematics of an LME intercomparison. (a) Numbers of SST pairs between
nation-deck groups (in the unit of one thousand pairs) in the analysis that intercompares
SSTs thought to come from buckets. The comparison happens not only between different
nations (left) but also between distinct decks from the same nation (e.g., right; zooming
in the top-right box in the left and showing the comparison between German decks). The
number of pairs can be very different across combinations of groups, with ‘- -’ denoting that
no pairs are found between corresponding groups. Nation abbreviations are for Germany
(DE), France (FR), Great Britain (GB), Japan (JP), the Netherlands (NL), Russia (RU),
the United States (US), and unknown (- -). Nations that contribute to fewer than 500,000
are labeled as “other nations” (OT) for this visualization but are distinguished in the LME
analysis. Similarly, Germany decks that contribute to fewer than 50,000 pairs are shown
as “OT DE decks.” (b) The spatial distribution of paired measurements follows major ship
tracks.
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3. Offsets among bucket groups and more uniform early-twentieth-century263

warming264

When applied to measurements thought to come from buckets, the LME analysis intercompares265

17.8 million pairs coming from 162 groups from 1850 to 2014 (Figure 3).1 The LME methodology266

detects significant (p < 0.05) offsets between major collecting nations and ships sailing for different267

purposes (Chan & Huybers, 2019). Around 15% of groups remain highly significant after controlling268

for family-wise error rates using a Bonferroni correction (Chan et al., 2019). A file listing individual269

offsets and associated uncertainty estimates can be found in the supplement to this article. The270

identification of significant differences among nation-and-deck groups indicates that we can resolve271

region- and time-varying SST biases arising from groupwise offsets and varying sampling coverage272

of individual groups. We, therefore, can perform more detailed corrections that have not yet been273

accounted for in previous studies (Cowtan et al., 2018; Huang et al., 2017; Kennedy et al., 2011b).274

Removing these statistically constrained offsets provides refined SST corrections at regional275

scales. Central estimates of adjusted SSTs show higher interannual correlations (Pearson’s r) with276

nearby air temperatures from coastal land stations. For example, the correlation in the early 20th277

century increases from 0.67 to 0.85 after groupwise bucket adjustments over coastal East Asia278

(Chan et al., 2019). Station-based air temperatures are independently measured using more homo-279

geneous instruments and are expected to contain fewer spatially and temporally varying systematic280

biases (P. Jones, 2016). Moreover, previous corrections may have missed errors associated with281

groupwise offsets and, therefore, underestimated SST uncertainties at regional scales. Accounting282

for uncertainties of groupwise offsets increases the standard error of trend estimates to more than283

three times at basin scales, which, despite being higher, is a more comprehensive description of our284

current knowledge of uncertainties.285

More importantly, accounting for groupwise bucket SST offsets reconciles a long-standing data-286

model discrepancy regarding the spatial heterogeneity of the early-20th-century warming. Before287

groupwise bucket adjustments, whereas the North Pacific warmed by around 0.3◦C, the North288

Atlantic warming exceeded 0.8◦C (Figure 4; Hegerl et al., 2018). Such a big difference in warming289

rate, however, cannot be reproduced by any of the IPCC AR5 models given current knowledge of290

external forcing and internal climate variability.291

The magnitude of adjustments from individual groups depends both on the magnitudes of offsets292

and on the spatial and temporal coverage of distinct groups. In the early 20th century, one group293

that determines basin-scale SST estimates is a major subset of Japanese measurements compiled294

under the Kobe collection, which dominated the North Pacific before WorldWar II (Uwai & Komura,295

1992). Interestingly, Japanese Kobe SSTs, compared with nearby measurements from other nations,296

show a drop of around 0.35±0.07◦C (2 SD) in the 1930s (Chan et al., 2019). Such a drop could lead297

to a significant underestimation of the early-20th-century warming in the Pacific. It is, therefore,298

crucial to understand why Japanese Kobe SSTs experienced this drop. Is it because Japan used a299

new type of bucket in the 1930s or did something change in the postprocessing of Japanese data?300

To disentangle this mystery, I combined historical approaches and physical methods.301

Retrospectively, figuring out the cause is like detective work: it requires effort, persistence, and302

some good luck. My first hypothesis was that Japanese sailors measured SSTs on larger ships that303

1Data associated with this analysis are available at https://doi.org/10.7910/DVN/DXJIGA.
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Figure 4. Basin-scale SSTs in the early twentieth century (Chan et al., 2019).
(a) Without groupwise corrections, the annual-mean SST in the North Atlantic (red, 20◦N
poleward) warms more than twice as fast as that in the North Pacific (blue, 20◦N poleward).
Shown SSTs are based on ICOADS3.0 bucket measurements with only bulk bucket correc-
tions that do not distinguish groupwise offsets, following Kennedy et al. (2011b). SSTs are
shown as anomalies relative to the 1920–1929 average of each basin. (b) As (a) but after
adjusting for groupwise offsets in bucket SSTs. Uncertainties (2 SD, shadings) are for annual
average SSTs in each basin and are from a 1000-member ensemble of random adjustments
that perturb groupwise offsets using their error estimates from the LME analysis in keeping
with covariance and spatial structures.

have higher decks. Japanese ships could have increased size as circumstances deviated from the304

1922 Washington Naval Treaty that limited ship displacement, and as World War II approached,305

the Imperial Japanese Navy required large ships for longer voyages across the Pacific. When taking306

bucket measurements on higher decks, it generally takes longer to haul buckets, and SSTs tend307

to be collected in stronger winds, leading to colder biases. To test this hypothesis, I first went308

through individual ships in the Imperial Japanese Navy and mapped out the evolution of the309

average displacement of Japanese naval ships since the 1920s. The initial result was promising:310

Japanese ships increased in displacement at a rate that was approximately 40% faster than the311

U.S. and U.K. ships in the 1930s. 2312

Despite the confirmation of a rapid increase in the displacement of Japanese naval ships, follow-313

up analyses served to disprove the initial hypothesis, with two pieces of evidence. First, I used a314

thermal model of a bucket (Folland & Parker, 1995) to simulate the influence of higher ship decks on315

bucket bias by increasing the hauling time and the ambient wind. The bucket model indicates that316

water temperatures will be further biased cold by less than 0.1◦C, a magnitude that is insufficient317

to explain the 0.35±0.07◦C drop seen in Japanese SSTs. Second, most of these large Japanese naval318

2This is an unpublished result from my Ph.D. research, and it does not explain the drop in Japanese
SSTs in the 1930s. The displacement data are from the World War II database (P. Chen, 2004).
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Figure 5. Image of a U.S. Air Force Weather Service document detailing how
data from Japanese Kobe Collection deck 118 were digitized (Wilkinson et al.,
2011). On the right-upper corner, it indicates that when both SSTs and marine air temper-
atures from this group were digitized, the data was floored to whole degrees Celsius, with
all decimals dropped (https://icoads.noaa.gov/reclaim/pdf/dck118.pdf).

ships sank during battles with the U.S. Navy, and the replacement ships were small in size, yet the319

cold offsets remain in Japanese Kobe SSTs until the 1960s. The failure of my initial hypothesis320

reflects the difficulty of determining historical fact when faced with many possibilities. Fortu-321

nately, I discussed an initial manuscript with Dr. Elizabeth Kent, an expert from the U.K. National322

Oceanography Center who has been working on ICOADS for more than 30 years. She pointed me323

to an online library that documents digitization practices of many ICOADS decks. I was not aware324

of these documents before, and her deep expertise nudged me in the right direction. It turns out325

that SSTs from the Japanese Kobe collection were digitized during the recovery of logbooks and326

international marine data (RECLAIM) project (Wilkinson et al., 2011), with the data set divided327

into three subsets. The U.S. Air Force was in charge of the two parts that span from the 1930s to328

the early 1960s. During digitization, staff truncated Japanese temperatures and floored values to329

whole degrees Celsius (Figure 5), leading to the cold offsets that were prevalent in Japanese SSTs330

since the 1930s. Because SST measurements in ICOADS have a precision of 0.1◦C, the expected331

cold offset due to truncation is -0.45◦C when assuming that the 10th of degree digit is uniformly332

distributed on the values from zero to nine. The detected smaller magnitude of -0.35±0.07◦C could333

reflect the presence of additional offsets and biases between decks.334

Accounting for truncation errors in Japanese data, together with removing offsets in other groups,335

reveals a more homogeneous early-20th-century warming (Figure 4b). The difference in warming336

rates between the North Atlantic and the North Pacific decreases from 0.54◦C to 0.10±0.07◦C (2337
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SD) and becomes consistent with simulations from IPCC models (Chan et al., 2019). With quantifi-338

cation from the statistical method and confirmation from historical documents, we now understand339

that the long-standing warming discrepancy is not physical but a result of data problems as simple340

as truncation errors. What has happened is more consistent with physics-based expectations of341

uniform warming associated with anthropogenic activities (Chan et al., 2019).342

4. Tracing the origin of bucket offsets using physical evidence343

The reconciliation of discrepancies in the early-20th-century warming demonstrates the power of344

the LME method. It is also a good example of combining statistical methodologies and historical345

evidence to make convincing inferences and interpretations. However, despite the cause of the drop346

in Japanese Kobe SSTs being explained by limited historical metadata, the origin of offsets remains347

unclear for other groups. Due to limited metadata, the problem is approached by using features of348

the data. Specifically, we used a physical quantity (i.e., the diurnal cycle of SSTs) to explore the349

origin of groupwise offsets (Chan & Huybers, 2020b).350

The diurnal cycle is variation among individual hours in a day, which can be easily estimated351

for each group independent of the LME methodology. Diurnal cycles are used because differences352

in diurnal cycles may reflect differences in measurement characteristics and could affect daily mean353

SSTs through physical processes. Water in buckets is subject to heat loss from the wind but is354

heated additionally by the sun during the daytime. As a result, if a bucket stays longer on the355

ship’s deck before temperature is measured, it tends to have a higher day-night SST difference356

and overall a colder daily mean SST bias. Interestingly, when the amplitude of diurnal cycles and357

groupwise SST offsets are plotted against one another, the two quantities scale negatively for data in358

the 1980s and 1990s (Figure 6b; Chan & Huybers, 2020b), which strongly indicates the physicality359

of groupwise offsets detected by the LME methodology.360

However, varying time on the ship’s deck is not the only reason negative scalings emerge. To361

explore other possible origins, I extended the classic thermodynamical bucket model (Folland &362

Parker, 1995) to resolve bucket biases at individual local hours and simulate diurnal cycles of bucket363

water temperatures. Model simulations show that a negative scaling between diurnal amplitude364

and daily mean biases can emerge not only from varying time on deck but also from the type of365

bucket insulation or misclassification of ERI measurements (Chan & Huybers, 2020b). The latter366

arises because ERI measurements are biased warm by heat from ship engines and the ERI method367

samples at a depth of 5–15 m, which is less affected by diurnal variations in radiation from the368

sun (Carella et al., 2018). Contribution from each of these origins, however, cannot be determined369

from one single slope because expected slopes associated with individual origins can vary with other370

unknown factors, including wind and solar exposure.371

To further trace the origin, we turned to the historical evolution of observed amplitude–offset372

relationships, which reveals that negative scalings first emerge in the 1930s (Figure 6c; Chan &373

Huybers, 2020b). Data before 1930, however, have a smaller range in both amplitudes and offsets374

and show no significant scalings (Figure 6a). Interestingly, the 1930s is also the advent of ERI375

measurements in ICOADS. Moreover, groups having the warmest offsets also have amplitudes of376

diurnal cycles that are smaller than physical SSTs at a depth of 20–30 cm, which is consistent with377

characteristics of ERI measurements. In other words, the misclassification of ERI measurements,378

as from buckets, provides the simplest explanation and is also most consistent with the history of379

changing data characteristics.380
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Figure 6. Groupwise SST offsets and diurnal amplitudes for groups thought
to contain bucket SSTs (Chan & Huybers, 2020b). Shown results are over the
tropics (20◦S-20◦N) and are for 20-year periods: (a) 1910–1929 and (b) 1980–1999. Groups
(markers) are assigned according to nation (two-letter abbreviations, see the legend of Figure
3) and deck number. Diurnal amplitude is quantified as the amplitude of a once-per-day
sinusoid using least-squares fitting. LME analyses shown here include ERI SSTs as a single
group such that groupwise bucket offsets are evaluated against ERI measurements (details
in Chan & Huybers, 2020b). Slopes between diurnal amplitudes and groupwise offsets (red
lines) are based only on bucket groups and are estimated using York regressions (York et
al., 2004). In an update to Chan and Huybers (2020b), the uncertainty of regression slopes
is estimated using a stratified bootstrapping technique that resamples the entire history
of individual groups with replacement (see Appendix for more details). In panel (b), note
that the regression intersects the offset and diurnal amplitude of ERI measurements (double
circles), indicating that bucket groups on the warm end of the slope (such as Russian groups
shown in magenta markers) could contain misclassified ERI measurements. Also note that
numerous groups show a diurnal amplitude that is similar to or lower than that of drifter
SSTs (vertical black lines), which is consistent with the deep sampling depth of the ERI
method. (c) Evolution of the amplitude–offset relationship, which is based on an analysis
that uses a 20-year window and slides annually from 1880–1899 to 1990–2009. Results are
shown on the center year of each 20-year analysis. Whereas highly uncertain slopes are
found before the 1930s (estimates of the 2.5% quantile can be as negative as -56◦C/◦C
before the 1910s), significant negative slopes are found afterward. Shown are median values
(red curve), interquartile CI (dark shading), and 95% CI (light shading).
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Analyzing diurnal cycles reveals that the record-keeping problem of incorrect metadata that381

mixes up bucket and ERI measurements is prevalent in data thought to come from buckets after382

the 1930s (Chan & Huybers, 2020b). Moreover, examining the decimal distributions of individual383

groups indicates that in the whole ICOADS deck, truncation is only seen in the Japanese Kobe384

collection. Remaining offsets, including those before the 1930s, could still arise from differences in385

physical processes, although, without introducing evidence from further dimensions, the trade-off386

among different physical factors makes it hard to attribute offsets to individual processes.387

5. Beyond bucket-only SSTs — World War II warm anomaly388

The LME methodology detects significant groupwise offsets that arose from both physical pro-389

cesses during data collection and record-keeping problems, including truncation and misrecorded390

metadata. This method can be easily extended beyond bucket SSTs and provides refined internal391

homogenization for measurements coming from various instruments. When applied to all ship-based392

SSTs in ICOADS, the LME method resolves another major data-model discrepancy involving excess393

warming during World War II (Chan & Huybers, 2020a).394

Recent SST estimates feature warmer global-mean SSTs during World War II that well exceed395

climate-model reproductions (Figure 7a, b). Such warm anomalies are at the end of the early-20th-396

century warming and the beginning of the mid-20th-century hiatus and, therefore, have implications397

for quantifying decadal climate variations (Hansen et al., 2010; Morice et al., 2012; Vose et al., 2012),398

constraining uncertain aerosol forcing (Stevens, 2015), and attributing external anthropogenic forc-399

ing and internal climate variability in driving past climate change (Bindoff et al., 2013; Hegerl et al.,400

2018; G. S. Jones et al., 2013; Maher et al., 2014). Moreover, the World War II warm anomaly is the401

largest remaining data-model discrepancy in the global-mean surface temperature, given current402

knowledge of forcing and internal variability (Folland et al., 2018).403

Such an observed warm anomaly could indicate that current models missed important physical404

processes. The anomaly could also arise from a 58% drop in the amount of data collected during405

1942–1945 (Figure 1). Another plausible explanation involves the warm anomalies reflecting incom-406

plete corrections of SST biases. These biases have been hypothesized to arise from a rapid increase407

in the number of warm-biased ERI measurements during the war (Thompson et al., 2008). How-408

ever, tracing the origin of biases to specific sets of SST measurements and estimating the amount409

of required adjustments has not previously been possible. Existing corrections are limited by not410

being able to resolve offsets between groups and also due to the fact that more than 80% of wartime411

measurements have missing method information in raw ICOADS.412

The LME method is, however, suitable in this situation of missing metadata because it allows for413

groupwise quantification of data heterogeneity without the need for specifying method information414

(although methods can be inferred from offsets and cross-checked using diurnal amplitudes, e.g.,415

as in Figure 1b). In a recent work (Chan & Huybers, 2020a), we extended the estimation of416

groupwise offsets to all ship-based SST measurements in ICOADS, and the LME model quantifies417

that SSTs from some U.S. and U.K. naval ships that dominated data collections in World War II418

are, respectively, around 0.45◦C and 0.25◦C warmer than other groups before and after the war.419

These large and fast naval ships were likely to take ERI measurements (Kennedy et al., 2011b).420

Moreover, when further extended to resolve diurnal differences, the LME model detects an increase421

in nighttime measurements of around 0.3◦C for many wartime non-ERI measurements (Chan &422

Huybers, 2020a). Such an increase is consistent with warm biases arising from measuring nighttime423
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Figure 7. World War II SST anomalies in observational estimates and model
simulations (Chan & Huybers, 2020a). Most recent SST estimates from (a) the
U.S National Oceanic and Atmospheric Administration (ERSST5, green) and (b) U.K. Met
Office (HadSST4, blue) show warm anomalies in global-mean SSTs that exceed 0.2◦C during
World War II. The axes for (c) and (d) are as in (a), but (c) shows raw ship-based SSTs
in ICOADS (black) and (d) shows daytime ship-based SSTs after groupwise adjustments
(red). Shown time series are global-averaged SST anomalies relative to the 20-year average
over 1931–1940 and 1946–1955, where the global average is taken over grid boxes containing
major ship tracks in the early and mid-20th century. Uncertainties are 95% CI (blue and red
shading) from ensemble corrections of corresponding estimates. Also shown is an ensemble
of 94 historical all-forcing simulations from 39 IPCC models (light gray curves in c; Taylor
et al., 2012). In (e), the World War II warm anomaly in groupwise adjusted daytime SSTs
(red) becomes consistent with the range of internal variations estimated from IPCC mod-
els (gray distribution). The World War II anomaly is quantified as the difference between
averages over 1941–1945 and over the surrounding 10 years (1936–1940 and 1946–1950).

bucket SSTs inside ships to avoid detection, a wartime practice documented for the U.K. Navy424

(Folland et al., 1984).425

The effect of groupwise offsets and nighttime bucket biases contributes to, respectively, 0.26◦C426

(95% CI 0.15◦C–0.38◦C) and 0.05◦C (0.02◦C–0.08◦C) warm anomalies in raw ICOADS (Chan &427

Huybers, 2020a). Adjustments bring the World War II warm anomaly from 0.41◦C in raw ICOADS428

to 0.09◦C (-0.01◦C to 0.18◦C), which becomes consistent with the ±0.10◦C range (95% CI) of429

internal variability in IPCC models (Figure 7b, c; Chan & Huybers, 2020a). Groupwise adjustments430
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based on the LME methodology lead to more homogeneous spatial and temporal variations in SSTs431

and reconcile the largest remaining data-model discrepancy in global-mean surface temperatures.432

Fixing problems in the WWII warm anomaly confirms the hypothesis of data biases, as suggested433

by Thompson et al. (2008). This piece of work also provides us with a lesson that historical data434

may contain not only physical but also social aspects. When interpreting historical data, especially435

in the context of comparing with model simulations, it is often implicitly assumed that data reflect436

the physical, or broadly, the scientific dimension. This assumption could be valid when a small437

amount of data is calibrated carefully for a specific scientific purpose. But for massive data sets438

that pool information from heterogeneous sources and take generations to construct, it is crucial to439

keep an awareness of the social dimension and the people involved in data collection and processing,440

especially over periods having dramatic social changes.441

6. Beyond SSTs — Hindcasting of North Atlantic hurricanes442

Adjustments of groupwise offsets have been shown to improve historical SST estimates and443

reconcile major data-model discrepancies in surface temperature evolution. On account of the broad444

climatic applications of SSTs, the implication of improved SST corrections, however, is not limited445

to simple year-to-year variations or linear trends. Beyond surface temperatures, improvements446

associated with groupwise SST adjustments could also advance other fields in atmospheric and447

ocean sciences.448

One example is the hindcasting of North Atlantic hurricane activities. Decadal variations in the449

frequency of North Atlantic hurricanes are known to depend on patterns of tropical SSTs (Vec-450

chi, Msadek, et al., 2013; Vecchi et al., 2008). Compared with observational reconstructions of451

Atlantic hurricane counts, dynamical climate models prescribed with historical SSTs as boundary452

conditions,3 however, reproduce too few hurricanes in the late-19th century and too many in the453

mid-20th century (p <0.05, Figure 8a, Chan et al., 2020). The inability for models to skillfully454

reproduce a long-term evolution of hurricane counts that are statistically consistent with observa-455

tional estimates erodes the credibility of future projections based on these models (Vecchi et al.,456

2019). Possible causes for this low reproducibility include inaccurate hurricane reconstructions457

(Vecchi & Knutson, 2008) and model deficiency (Zhao et al., 2009). In addition, biases in SSTs458

may also undermine simulations of hurricane genesis.459

The SST value that is thought to affect North Atlantic hurricane frequency is the difference460

between the subtropical North Atlantic and the whole tropical ocean. This SST difference is also461

known as ‘relative SST’ (RSST) and is thought to influence hurricane genesis through affecting462

convective activities and potential energy (Vecchi, Fueglistaler, et al., 2013; Vecchi et al., 2011).463

Groupwise bucket SST corrections increase RSST in the late 19th century and decrease RSST in464

the mid-20th century. In a recent work in which I collaborated with colleagues from Princeton465

University (Chan et al., 2020), we incorporated groupwise bucket corrections to previous SST466

estimates and found that simulated hurricane counts also show increases in the late-19th century467

3Although SSTs are not entirely independent of hurricanes, these simulations should have partially
accounted for the effect that hurricanes lower SSTs by using observed monthly SSTs. Moreover, the response
of SSTs to hurricanes is not expected to change much with time (Vecchi et al., 2019). Thus, using monthly
SSTs as boundary conditions will not alter the active and inactive phases in the simulated decadal variability
of hurricane counts.
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Figure 8. 15-year running-averaged North Atlantic hurricane counts in observa-
tional reconstructions and model simulations (Chan et al., 2020). (a) Simulations
(blue, average of a five-member ensemble) using SST estimates without groupwise bucket
corrections give significantly (p < 0.05) lower hurricane counts than observational estimates
(black) in the late 19th century and higher counts in the mid-20th century. (b) Simulated
(red, average of a five-member ensemble) and observed (black) hurricane counts become
consistent using SSTs that include groupwise bucket SST corrections. Shown curves are
15-year running-averaged rather than raw integer counts because we are interested in the
decadal variability of North Atlantic hurricane frequency. Uncertainties (95% CI) account
for atmospheric internal variability and errors in hurricane adjustments (gray shading), at-
mospheric internal variability (blue shading in panel a), and atmospheric internal variability
and errors in uncertain groupwise SST corrections (red shading). Distinct types of errors
are assumed to be independent of one another. For estimates containing errors from two
sources (i.e., black and red lines), shown uncertainties are summations of squared errors
from both sources. A detailed description of the error model is in the method section of
Chan et al. (2020). Note that atmospheric internal variability arises from perturbations
to initial conditions, and that variability in observations is not expected to be reproduced
by models because of imperfect initial conditions. It is, therefore, necessary to consider
atmospheric internal variability as random error in both observation and simulation.

and decreases in the mid-20th century, consistent with expectations from adjusting RSST. More468

importantly, simulated hurricane counts become statistically consistent with independently recon-469

structed observational estimates of hurricane counts after accounting for groupwise SST offsets470

(Figure 8b; Chan et al., 2020).471

Showing that SST biases are the dominant limiting factor for models to recover historical Atlantic472

hurricane counts is exciting news for both the SST and hurricane communities. The diminishing473

data-model discrepancy in hurricane variability provides dynamical evidence to buttress the im-474

proved quality of SSTs after groupwise corrections. On the other hand, the more stable relationship475

between observed and simulated hurricane activity increases the credibility of dynamical models in476

making accurate predictions of future changes in hurricane activities.477
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7. What is next?478

Correcting national and groupwise offsets improves historical SSTs and reconciles a number of479

data-model mismatches. Despite these significant improvements, estimates of historical SSTs are480

still far from perfect, and there is much scope for further improvements. In addition to recovering481

lost data sets and missed metadata (as suggested in, e.g., Kent et al., 2017), opportunities exist to482

develop new techniques and further analyze existing data sets.483

7.1. Internal Homogeneity to the Level of Individual Ships. Further improvements could484

come from better resolving internal heterogeneity at more refined levels, such as quantifying offsets485

associated with distinct measurement characteristics of individual ships. Ship-level biases can lead486

to partially correlated errors across space and time as ships passing through different grid boxes487

(Kennedy, 2014). Ship-level biases were estimated to have a similar magnitude to random mea-488

surement errors by comparing with satellite (Kennedy et al., 2012) or observational-constrained489

model simulations (Kent & Berry, 2008) using data in recent decades. Ship-level biases, however,490

have not yet been explicitly quantified for data before the 1970s. In version 3 of the HadSST data491

set, biases of individual ships were assumed to follow a Gaussian distribution that has a zero mean492

and a standard deviation of ship-level biases (Kennedy et al., 2011a), where the ship-level standard493

deviation was estimated by comparing ship-based SSTs with collocated satellite retrievals since494

the 1990s (Kennedy et al., 2012). Uncertainties associated with ship-level biases were inferred for495

gridded data sets after estimating the effective number of ships in individual 5◦ boxes (Kennedy496

et al., 2011a). Such a treatment better accounted for error covariance but could not remove biases497

associated with individual ships. In version 4 of HadSST (the latest version), ship-based SSTs were498

compared against uppermost temperature measurements from ocean profiles for data after World499

War II, with the assumption that profile measurements are free of bias (Kennedy et al., 2019).500

Kennedy et al. (2019) assumed that ship-based SSTs and profile temperatures follow a multivariate501

normal distribution, which allows for estimating biases of gridded ship-based SST fields at the level502

of individual grid boxes. Such a method, to some extent, has implicitly accounted for ship-level503

biases.504

The LME method appears to be a suitable approach for estimating offsets between individual505

ships, which further increases internal homogeneity among measurements within ICOADS. Method-506

ologically, quantifying ship-level offsets can be realized by assigning random effects for individual507

ships. A systematic implementation, however, is currently limited by the quality of ship informa-508

tion. A total of 44% of paired bucket SSTs from 1850 to 1970 do not have ship identifiers in raw509

ICOADS. Moreover, around 85% of ships having IDs have no more than 25 paired measurements,510

which is too few for robust offset estimates because random observational errors are estimated to be511

0.74◦C (Kennedy et al., 2012). To improve ship information, Carella et al. (2017) tried to track mea-512

surements with missing ship IDs and combine short tracks into longer ones. The tracking algorithm513

of Carella et al. (2017), however, is uncertain at ship crossings on which the LME intercomparison514

entirely relies. A careful examination of the suitability of these tracked ships is, therefore, required515

before estimating ship-level offsets using the LME method. Other opportunities may come from516

redigitizing early ship logs or developing more robust tracking algorithms. In addition to improving517

metadata of ship information, the algorithm of fitting the LME model also needs to be modified to518

account for hundreds of thousands of additional parameters associated with individual ships.519
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7.2. External Consistency with Independent Instrumental Measurements and Paleo-520

proxies. Potential for further improvements may also come from improving external consistency521

with independent temperature measurements or proxies. Measurements from marine air tempera-522

tures (Huang et al., 2017; T. M. Smith & Reynolds, 2002) and coastal land stations (Cowtan et al.,523

2018) have been used to quantify SST biases at the global scale. Recent studies also use subsurface524

temperatures from ocean profiling data to estimate SST biases at both global and regional scales525

since the 1940s (e.g., Huang et al., 2018; Kennedy et al., 2019). In addition to these external data526

sources, I would like to call attention to the potential value of ocean temperatures at deeper depth527

and proxies from coral reefs.528

The deep ocean communicates with the surface through convective and diffusive processes (Geb-529

bie & Huybers, 2011). Deep-ocean temperatures largely reflect SST variations at high latitudes530

where ocean convection is most active (Gebbie & Huybers, 2011). Variability in deep-ocean tem-531

peratures, however, needs to be interpreted cautiously on account of possible smoothing associated532

with eddy diffusion, less constrained variability of ocean circulation, and a time lag between the533

surface and interior ocean. Alternatively, SSTs may contain information to constrain and recon-534

struct ocean circulation. Furthermore, similar to the SST problem, profiles that contain deep-ocean535

temperatures also come from various methods and nations (Meyssignac et al., 2019). Quality con-536

trols that involve group- or ship-level examination to profile data using the LME method appear537

necessary before calibrating SSTs.538

There could also be value in paleoclimate proxies, a data source often considered to have higher539

noise and be less reliable than instrumental measurements. Mechanistically, heavier isotopes tend540

to enrich in the condensed phase due to kinetic fractionation (Urey, 1947). Heavy oxygen isotopes541

(e.g., O18) in coral reefs will, therefore, decrease with water temperature, providing long-term and542

homogeneous approximations of SSTs (e.g., Gagan et al., 2000). Pfeiffer et al. (2017) showed that543

proxy temperatures from coral reefs in the Indian Ocean do not show abrupt changes during World544

War II, which is consistent with our groupwise corrections. Coral reefs have the benefit of a broader545

coverage in tropical oceans, including the eastern Pacific, which is not frequently sampled by ships.546

Caution is required when interpreting oxygen isotopes. In certain regions that have abundant547

rainfall, such as the intertropical convergence zone, the concentration of O18 in rainwater (thus548

seawater and coral reefs) decreases strongly with increasing rainfall, which could mask temperature549

signals (Gagan et al., 2000; Lee & Fung, 2008; Pfeiffer et al., 2017).550

7.3. New Mapping Techniques. In addition to correcting SST biases, an equally important551

problem in SST reconstructions involves mapping and infilling grids without observations to have552

global coverage. Unlike typical kernel functions that have decaying covariance with increasing553

displacement, kernels preferred in climate sciences should account for covariance associated with554

large-scale variations in ocean and atmosphere (e.g., El Niño and Southern Oscillation). Most555

previous SST estimates use principal component analysis (PCA) to learn patterns of covariance556

from satellite observations since the 1980s and assume stationarity (e.g., Hirahara et al., 2014;557

Huang et al., 2017; Rayner et al., 2003), even though satellite retrievals show that the details of558

the SST patterns are distinct across El Niño events in the past 40 years (Timmermann et al.,559

2018). Variational Bayesian methods have been proposed to learn patterns from ship-based SSTs560

that have a longer history (Ilin & Kaplan, 2009). Reconstructions from this method, however,561

contain patterns of ship tracks that we do not expect to exist in physical SSTs (Kennedy et al.,562

2013). The most recent advance involves using inpainting techniques in artificial intelligence and563
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learning patterns from climate model simulations (Kadow et al., 2020), but whether such a method564

gives reliable error estimates remains questionable. As a result, a statistically rigorous mapping565

technique that accounts for physical climatic covariance assuming potentially nonstationary spatial566

covariance is necessary for reconstructing past climate variability and budgeting uncertainties.567

7.4. A Unified Statistical Framework. Quantification and correction of SST biases are often568

treated as separate steps from mapping and infilling for existing SST estimates (e.g., Hirahara569

et al., 2014; Huang et al., 2017; Rayner et al., 2003). Moreover, the mapping procedure is often570

further divided into separately performed substeps according to spatial scales of infilling. Such571

frameworks, however, make it difficult to budget and synthesize uncertainties in SST estimates572

arising from distinct analyzing steps.573

Developing a holistic statistical framework that unifies distinct steps appears to be a solution.574

Such a framework should incorporate random error, systematic biases, and physical variations of575

global SSTs simultaneously with fully resolved covariance. Moreover, on account of potentially576

large uncertainties in estimates of physical SST covariance and observational errors and biases,577

a Bayesian method may be a more suitable framework for comprehensive quantification of SST578

uncertainties. Ideally, this framework should also take in biases and uncertainties we have learned579

from existing works and other pieces of useful information from independent external measurements.580

The Bayesian framework developed by Tingley and Huybers (2010) appears to be a valid starting581

point.582

8. Conclusion583

Understanding the history of data is crucial, and one needs to be particularly careful when584

using data outside their historical context. Most historical SSTs were not collected for studying585

climate change. These measurements contain various biases due to distinct physical and historical586

reasons during data collection and postprocessing. Although these SSTs have irreplaceable value587

for understanding past climate variations, they are undercalibrated to have sufficient accuracy for588

climatic use. Contrary to complicated biases, previous SST corrections that assumed homogeneous589

bias structures appear oversimplified, which motivated our scrutinizing historical data. Insufficient590

corrections have led to substantial remaining errors that result in discrepancies between observations591

and model simulations of the historical period. When data and models disagree, one can almost592

always adjust the models so that they better reproduce the data, but being aware of the underlying593

assumption that data reflect reality and being skeptical about data quality appears to be a good594

practice.595

My Ph.D. work is one step forward toward better resolving complicated SST biases and toward596

a more accurate depiction of the past climate. Our LME method is ignorant of the existence597

of data-model discrepancies, but accounting for data heterogeneity among nations and groups of598

collectors reconciles several data-model discrepancies and provides a more comprehensive estimate599

of SST uncertainties. These improvements will not be achieved and consolidated without combining600

evidence from statistical, physical, and historical aspects. Even though not assumed or built-in,601

the updated SST estimates show simpler spatial and temporal variations and are more in line602

with expected patterns of warming. Bringing observational estimates into accord with our current603

knowledge of forcing, climate sensitivity, and internal variability leads to greater confidence in future604

predictions of global warming made by climate models.605
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Appendix868

Stratified Bootstrapping for Estimating Uncertainties in the Evolution of the Amplitude–869

Offset Relationship. Similar to Figure 6c, Chan and Huybers (2020b) also investigated the evo-870

lution of the amplitude–offset relationship using a sliding 20-year window. The bootstrapping in871

Chan and Huybers (2020b) resamples available groups in each 20-year analysis independently, which872

gives a reasonable uncertainty estimate within each 20-year analysis but may not be optimal for873

intercomparing slopes across 20-year analyses. Here, I supplement earlier estimates by resampling874

groups with their entire history of diurnal amplitudes and groupwise offsets, which also estimates the875

path-wise uncertainty. Moreover, to account for the reduced number of groups before the 1950s, a876

stratified resampling scheme (Shankar, 2020) is used to guarantee that the resampled groups better877

reflect the prevalence of groups throughout the history of marine observation. Specifically, groups878

are divided into two strata based on whether they were present in 20-year windows before 1940–879

1959. The resampling is then performed within each stratum with replacement and repeated 10,000880

times. On average, updating the bootstrapping technique slightly increases the 95% CI of York fit881

slopes by 6%, and the interquartile range by 1%. Among the 10,000 time series of bootstrapped882

York regression slope, 9,306 of them have, on average, positive values over 1910–1929 but negative883

values afterward, indicating that the relationship between diurnal amplitudes and groupwise off-884

sets changed sign significantly (p < 0.1) in the 1930s. A Matlab script to reproduce this updated885

bootstrapping analysis is in the supplement to this article.886
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