

HOW GAS HYDRATE SATURATION AND MORPHOLOGY CONTROL SEISMIC ATTENUATION: A CASE STUDY FROM THE SOUTH HYDRATE RIDGE

Journal:	Interpretation
Manuscript ID	INT-2020-0137.R2
Manuscript Type:	2020-01 Gas Hydrates
Date Submitted by the Author:	17-Nov-2020
Complete List of Authors:	Ji, Aoshuang; Pennsylvania State University, Department of Geosciences Zhu, Tieyuan; Pennsylvania State University, Department of Geosciences Marin-Moreno, Hector; Norwegian Geotechnical Institute Lei, Xiong; China National Oil and Gas Exploration and Development Corporation
Keywords:	hydrates, attenuation, rock physics
Subject Areas:	Case studies

https://mc.manuscriptcentral.com/interpretation

Interpretation

1	HOW GAS HYDRATE SATURATION AND MORPHOLOGY CONTROL SEISMIC
2	ATTENUATION: A CASE STUDY FROM THE SOUTH HYDRATE RIDGE
3	Aoshuang Ji ¹ , Tieyuan Zhu ^{1,2} , Héctor Marín-Moreno ³ , Xiong Lei ⁴
4	¹ Department of Geosciences, Pennsylvania State University, USA
5	² EMS Energy Institute, Pennsylvania State University, USA
6	³ Norwegian Geotechnical Institute, Norway
7	⁴ Formerly Department of Energy and Mineral Engineering, Pennsylvania State
8	University, USA; Presently China National Oil and Gas Exploration and Development
9	Corporation, China
10	E-mail addresses: azj64@psu.edu (A. Ji), tyzhu@psu.edu (T. Zhu),
11	hector.marin.moreno@ngi.no (H. M. Moreno), leixiong@cnpcint.com (X. Lei)
12	

13

1 2 3

ABSTRACT

14 Prior studies have shown an ambiguous relationship between gas hydrate 15 saturation and seismic attenuation in different regions, but the effect of gas hydrate 16 morphology on seismic attenuation of hydrate-bearing sediments was often overlooked. Here we combine seismic data with rock physics modeling to elucidate how gas hydrate 17 saturation and morphology may control seismic attenuation. To extract P-wave 18 19 attenuation, we process both the vertical seismic profile (VSP) data within a frequency 20 range of 30 - 150 Hz and sonic logging data within 10 - 15 kHz from three wells in the 21 south Hydrate Ridge, offshore of Oregon (USA), collected during Ocean Drilling 22 Program (ODP) Leg 204 in 2000. We calculate P-wave attenuation using spectral matching and centroid frequency shift methods, and use Archie's relationship to derive 23 gas hydrate saturation from the resistivity data above the bottom simulating reflection 24 25 (BSR) at the same wells. To interpret observed seismic attenuation in terms of the effects of both gas hydrate saturation and morphology, we employ the Hydrate-Bearing Effective 26 27 Sediment (HBES) rock physics model. By comparing the observed and model-predicted 28 attenuation values, we infer that: (1) seismic attenuation appears to not be dominated by 29 any single factor, instead, its variation is likely governed by both gas hydrate saturation 30 and morphology; (2) the relationship between seismic attenuation and gas hydrate saturation varies with different hydrate morphologies; (3) the squirt flow, occurring at 31 different compliances of adjacent pores driven by pressure gradients, may be responsible 32 33 for the significantly large or small attenuation over a broad frequency range.

https://mc.manuscriptcentral.com/interpretation

Bownlgaded 01/1 1/2 to 217.8, 141.190. Redistribution subject to SEG license or convirint, see Terrors of Use at https://library.seg.org/page/policies/terrors_ c

60

Interpretation

3

34	INTRODUCTION
35	Gas hydrates are ice-like crystalline compounds of water and gas (mainly
36	methane) molecules, existing naturally in sediments within a limited depth range on the
37	continental margins and permafrost environments at high pressure (>0.6 MPa) and
38	moderately low temperature (<300 K) conditions when methane exceeds its solubility
39	(Brooks et al., 1986; Kvenvolden et al., 1993; Sloan, 1998). Due to its widespread
40	occurrence in the continental margins and permafrost settings, numerous studies, in
41	particular, seismic surveys, have been carried out to investigate the effects of gas hydrate
42	on climate and seafloor stability as well as its important role as a potential energy
43	resource (Dickens, 2003; Bohannon, 2008; Collett et al., 2014a). In recent decades,
44	measurements of seismic velocity, attenuation and gas hydrate saturation have been
45	carried out in the Blake Ridge site off the southeast coast of the United States (Holbrook
46	et al., 1996; Guerin et al., 1999; Hornbach et al., 2008), at the Mallik site in the
47	Mackenzie Delta, Canada (Dallimore and Collett, 2002; Guerin and Goldberg, 2002;
48	Guerin et al., 2005; Bellefleur et al., 2007), in the Nankai Trough, offshore central Japan
49	(Matsushima, 2006), on the western Svalbard continental margin (Carcione et al., 2005;
50	Madrussani et al., 2010), in the Krishna-Godavari (KG) Basin off the eastern coast of
51	India (Jaiswal et al., 2012; Collett et al., 2014b; Shankar, 2016; Jyothi et al., 2017) and in
52	the Gulf of Mexico (Brooks et al., 1986; Phrampus and Hornbach, 2012; Wang et al.,
53	2017).
54	Generally, gas hydrate growth in the pore space alters the elastic properties of
55	host sediments, allowing us to characterize hydrate-bearing sediments with seismic

56 methods. Previous studies showed that gas hydrate growing in the pore space can stiffen

https://mc.manuscriptcentral.com/interpretation

2
3
<u>4</u>
Ĕs
dte Dte
Tes.
8d)
36
0ର୍ଷ୍ଣ
ਰੂ1
32
Ø13
<u>≥</u> 14
ے 15
16
∯17
- <u>20</u>
ω ΓΣ
<u>–</u> 23
<u>%</u> 24
25
229
ତି2ଛି
ଚ୍ଚିତ୍ର
este te
ese Boo
. <u></u>
ШA
00 <u>3</u>
±on Tor
356
^{°37}
.≝38
.ē39
. <u>54</u> 0
<u>9</u> 41
42
0 43
544
45
∞ ⁻⁵
~40 ~47
₽ ⁴⁷
~48 N
2 49
20
چ 51
చ్రా 2
<u>چ</u> 3
₹54
<u>ط</u> 55
56
57
58
59
60

1

57	the matrix of the bearing sediments by increasing their bulk and shear moduli, thereby
58	leading to higher P-wave and S-wave velocities (Yuan et al., 1996; Chand et al., 2004;
59	Liu et al., 2020). However, the degree at which the elastic properties are altered depends
60	on both hydrate saturation and morphology (Riedel et al., 2010; Liu and Liu, 2018; Liu et
61	al., 2020). Hydrate morphology can be divided into two main types depending, mainly,
62	on the grain size of the host sediment (Ren et al., 2020). Hydrate growing in fine-grained
63	sediments tends to create particle displacing morphologies such as lenses, nodules, and
64	chunks or veins. In coarse-grained sediments hydrate growth tends to be pore invasive
65	(does not displace the grains) and can be subdivided into (i) pore-floating or pore-filling
66	and (ii) matrix-supporting, including load-bearing, contact-cementing and grain-coating
67	hydrate (Waite et al., 2009; Pan et al., 2019, 2020). For gas hydrate floating in the pore
68	space without any grain contact, the P-wave velocity increases while the S-wave velocity
69	remains almost unchanged due to unaffected shear modulus and minor decrease in bulk
70	density, as the density of gas hydrate is only slightly smaller than that of pore water.
71	When gas hydrate cements grains or acts as part of the load-bearing frame, both the P-
72	wave velocity and the S-wave velocity increase (Chand et al., 2004; Sava and Hardage,
73	2006; Sahoo et al., 2018, 2019).
74	Seismic attenuation provides complementary information to velocity on
75	constraining gas hydrate saturation and morphology. However, until now, the

76 investigation of seismic attenuation of hydrate-bearing sediments is scarce partly because

- 77 good field measurements are limited. As a result, how seismic attenuation varies with gas
- hydrate properties is still poorly understood. In the field, the effect of gas hydrate
- saturation on attenuation varies from region to region. For example, in the Mallik field in

https://mc.manuscriptcentral.com/interpretation

Page 5 of 61

1

Interpretation

60

Canada, where gas hydrate occurs in subpermafrost occupying up to 60% - 80% of the 80 81 pore space, the high gas hydrate saturation is associated with high attenuation with Q 82 values of less than 20 for P-waves (Guerin and Goldberg, 2002). A similar observation of 83 high attenuation has been shown in the Nankai Trough in Japan, where gas hydrate locates on the continental margin occupying 20% - 30% of the pore space (Matsushima, 84 85 2006). In contrast, the high attenuation is associated with the low gas hydrate saturation 86 observed in the west Svalbard in Norway (Madrussani et al., 2010) and the KG basin in 87 India (Nittala et al., 2017). The measurements of these studies are summarized in Table 1. 88 We find that these measurements exhibit an ambiguous relationship between the 89 attenuation and gas hydrate saturation.

90 While previous studies attempted to derive the relationship between gas hydrate 91 saturation and seismic attenuation in hydrate-bearing sediments, gas hydrate morphology, 92 which may greatly impact the attenuation in hydrate-bearing sediments, was mostly 93 ignored due to the difficulties of conducting morphology measurements from limited field samples. Therefore, it is challenging to systematically establish a database of gas 94 95 hydrate morphology from field studies. To explain this gas hydrate morphology-seismic 96 puzzle, rock physics modeling and laboratory measurements have been used. For 97 example, an early study by Lee and Collett (2000) used rock physics modeling to find the 98 relationship between morphology and seismic velocity; Choi et al. (2014) synthesized a 99 non-cementing form of gas hydrate in sandy sediments in the laboratory, measuring the 100 P-wave velocity of the sample during the synthesizing process, and trying to determine 101 gas hydrate morphology at each transition through rock physics modeling. Liu et al. 102 (2020) proposed a joint analysis of P-wave velocity and resistivity to identify hydrate

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

5

103	morphology and estimate hydrate saturation in a continuous depth profile. They
104	successfully used the cross plot of P-wave velocity and resistivity to identify fracture-
105	filling gas hydrate-bearing sediments (GHBS) from pore-filling GHBS in the South
106	China Sea based on the observations that fracture-filling gas hydrate-bearing sediments
107	exhibit higher resistivity but lower P-wave velocity than those of pore-filling GHBS in
108	the case of identical hydrate concentration. Recently, Zhan and Matsushima (2018) used
109	the Marín-Moreno's et al. (2017) Hydrate-Bearing Effective Sediment (HBES) model
110	and the Guerin and Goldberg's (2005) model to quantify the attenuation due to a single
111	morphology and multiple morphologies in the Nankai Trough, Japan. Their results
112	confirmed that the occurrence of gas hydrate in different morphologies can better explain
113	the seismic attenuation measurements. However, some questions remain: does the
114	attenuation mechanism behave the same at different hydrate sites and at different hydrate
115	saturation? Our study provides insights into this aspect at a relatively lower hydrate
116	saturation site compared to that of the Nankai Trough in Japan.
117	In this study, we aim to extend the understanding of how gas hydrate saturation
118	and morphology can alter seismic attenuation and finally elucidate the possible
119	attenuation mechanism in the south Hydrate Ridge. In this work we assume that hydrate
120	growth is pore invasive. We choose high quality vertical seismic profiling (VSP) and
121	sonic logging data to extract P-wave attenuation. We process the VSP data within a
122	frequency range of $30 - 150$ Hz and sonic logging data within $10 - 15$ kHz from three
123	wells in the south Hydrate Ridge, offshore of Oregon, collected during Ocean Drilling
124	Program (ODP) Leg 204 in 2000 (Tréhu et al., 2004). P-wave attenuation is estimated

using spectral matching and centroid frequency shift methods. Different models have

Page 7 of 61

1

Interpretation

2 3 Bownlgaded 01/1 1/2 to 217 & 141 190. Redistribution subject to SFG license or convright, see Terros of Use at https://library.seg.org/page/pglicies/Jerros A 56 57 58

59

60

126 been proposed to interpret attenuation measurements on hydrate bearing sediments 127 (Chand and Minshull, 2004; Guerin et al., 2005; Best et al., 2013; Marín-Moreno et al., 128 2017). To interpret the estimated attenuation from VSP and sonic logging data in terms of 129 the effects of both gas hydrate saturation and morphology, here we employ a frequency 130 dependent HBES rock physics model (Marín-Moreno et al., 2017). The HBES has been 131 recently proven successful in capturing VSP and sonic logging attenuation measurements 132 from natural hydrate bearing sediments in the eastern Nankai Trough (Zhan and 133 Matsushima, 2018). Then we discuss the possible attenuation mechanisms on the gas 134 hydrate sites.

Overall, our study helps elucidate the interaction between gas hydrate saturation and morphology in the field, and bridge the gap between gas hydrate and seismic attenuation, which underpins the pivotal role of combining rock physical modeling and field observations in future gas hydrate studies.

139 GEOLOGY AND DATA DESCRIPTION OF THE HYDRATE RIDGE

140 The Hydrate Ridge is located on the Cascadia continental margin which overlies 141 the subduction zone where the Juan de Fuca plates is subducting beneath the North 142 American plate (Figure 1a). Along this margin, two main basins (Cascadia Basin and 143 Gorda Basin), several fans and an accretionary complex have developed. A wide variety 144 of Pleistocene and Holocene turbidites generated most of the deposits in which bottom-145 simulating reflections (BSRs) are widely recognized. To investigate gas hydrates, a suite 146 of well log data including caliper, gamma ray, resistivity, sonic and VSP was acquired 147 during ODP Leg 204 in the south Hydrate Ridge. The ODP Leg 204 scientific report

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

7

2 3 Bownlgaded 01/1 1/2 to 217.8, 141.190, Redistribution subject to SFG license or oppyright, see Terms of Use at https://library.seg.org/page/pglicies/terms, of the set of the set or 200 is the set of 56 57 58 59 60

1

148 (Tréhu et al., 2006c, 2006b) indicated the presence of gas hydrate and revealed its 149 occurrence within turbiditic silty layers. The strong BSR suggests the presence of gas 150 hydrate bearing sediments overlying sediments hosting free gas. An average gas hydrate saturation of ~10% has been estimated in the targeted formations of Leg 204. However, it 151 152 can reach 20% - 30% in specific locations (e.g. southern summit of the ridge) (Milkov et 153 al., 2003; Tréhu et al., 2004). In this study, we process the VSP (30 - 150 Hz) and sonic 154 logging data (10 - 15 kHz) from three selected sites (Site 1244, 1247 and 1250) (Figure 155 1b) due to their high data quality to calculate the P wave attenuation over different 156 frequency bands. We obtain hydrate saturation from the resistivity logging data in those 157 wells (Tréhu et al., 2006b) using Archie's relationship (Archie, 1942).

158 SEISMIC DATA AND ATTENUATION CALCULATION

159 Field data

160 Figure 2 shows a two-dimensional (2-D) seismic profile across the location of one 161 of our selected wells. The seismic profile clearly reveals a BSR at 100-150 m depth 162 beneath seafloor (seafloor is at 905 m depth in 1244E well). In this study, we choose high 163 quality near-offset (55 m) VSP data (Figure 3) and monopole sonic data (Figure 4) for 164 attenuation calculation in two frequency bands. Taking 1244E well as an example, VSP data was collected from 85-245 m depth beneath seafloor with a receiver interval of 5 m. 165 In order to make a more reliable calculation, we first apply a median filter to separate the 166 167 upgoing and downgoing waves, then used a bandpass filter with a frequency of (20-40-168 80-100 Hz) to filter out noises of downgoing waves. Filtered downgoing waves are

https://mc.manuscriptcentral.com/interpretation

Page 9 of 61

Interpretation

9

169	windowed with a cosine window (length = 0.025 s) centered at the first peak for later
170	attenuation calculation (Figure 5a). Regarding to sonic data, the transmitter is 108 inches
171	(2.74 m) away from the first receiver and the interval between each receiver is 6 inches
172	(0.15 m). Due to the significant energy concentrating in the relatively lower frequencies
173	(Figure 5b), we apply a bandpass filter (5-6-7-8 kHz) and then a cosine taper window
174	(length = 0.45 ms). Figures 5c and 5d show amplitude spectra of VSP data (Figure 5c)
175	and sonic data (Figure 5d), respectively. The above-mentioned data processing was done
176	using open-source MATLAB software CREWES.
177	The fact that high frequencies are attenuated more than lower frequencies
178	motivates us to explore the spectra-based methods to calculate seismic attenuation. In this
179	study, we use the spectral matching method proposed by Blias (2012) to estimate VSP
180	attenuation and the centroid frequency method (Quan and Harris, 1997) to estimate sonic
181	attenuation following the workflow as stated below (Figure 6).
182	Attenuation (1/Q) estimation
183	Seismic attenuation is often referred to 1/Q, including the scattering and intrinsic
184	attenuation. When the heterogeneities and wavelength are comparable, scattering which
185	is the reflection of the wave in directions other than its original propagation direction will
186	occur. The intrinsic attenuation is the absorbed wave energy converted to heat, often
187	quantified with the inverse of quality factor of the media (Q_{intr}^{-1}) . The estimated

188 attenuation which we call effective attenuation (Q_{eff}^{-1}) is the combination of the scattering

189 (Q_{scat}^{-1}) and intrinsic attenuation (Q_{intr}^{-1}) , i.e., $Q_{eff}^{-1} = Q_{scat}^{-1} + Q_{intr}^{-1}$. In practice, we are most

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

60

190 interested in the intrinsic attenuation which can be compared by calculating its inverse –

191 the quality factor *Q* for mathematical simplification.

192 Spectral Matching Method

The spectral matching method is one of the most popular methods for estimating attenuation where data from two receiver depths are selected. Let us assume that a seismic wavelet with amplitude spectrum $S_1(f)$ has an amplitude spectrum $S_2(f)$ after travelling in an attenuating medium for an interval time t. Then, we can describe the seismic attenuation process as:

$$|S_2(f)| = G|S_1(f)|e^{\frac{-\pi ft}{Q}},$$
 (1)

where $S_1(f)$ and $S_2(f)$ are amplitude spectra of downgoing waves at the depth z_1 and z_2 , f is the frequency and G represents all the frequency independent amplitude loss in total, including spherical divergence, reflection and transmission loss.

Equation 1 is based on the following assumptions: (1) the source and geophone coupling does no change between the two levels; (2) there is no interference from reflected waves; (3) *Q* is frequency independent (Tonn, 1991; Harris et al., 1997; Blias, 2012). This formula can be treated as the foundation for most spectral methods to estimate *Q*. To process VSP data, we use the spectra matching method proposed by Blias (2012). $S_1(f)$ is modified by varying *Q* until an optimum approximation to $|S_2(f)|$ is obtained:

$$Q_{test} = \min_{Q} |||S_2(f)| - G|S_1(f)| e^{\frac{-\pi f(t_2 - t_1)}{Q}}||^2, \qquad (2)$$

208 where G addresses the frequency independent energy loss and can be calculated as:

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition.

© 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

Page 11 of 61

1 2 3

60

Interpretation

11

$$G = \frac{\int_{-\infty}^{\infty} |S_2(f)| |S_1(f)| e^{\frac{-\pi f(t_2 - t_1)}{Q}} df}{\int_{-\infty}^{\infty} |S_1(f)|^2 e^{\frac{-2\pi f(t_2 - t_1)}{Q}} df}.$$
(3)

Equation 2 was applied to the windowed VSP data described above. The downgoing arrivals at receivers spaced by different intervals (5, 10, 20, 30 m) were tested for *Q*

estimation. We find that the 10 m interval works the best even though they all contain

some negative values largely due to scattering or equipment coupling.

213 Centroid Frequency Shift Method

With observations of significant frequency down-shift in sonic data, we select the centroid frequency shift method (Quan and Harris, 1997) to estimate sonic data attenuation.

With the assumption of Gaussian wavelet, the centroid frequency shift can belinked to wave attenuation as:

$$\int \frac{\pi}{Qv} dl = \frac{f_1 - f_2}{\sigma_1^2}.$$
(4)

219 Where f_1 is the centroid frequency of reference seismogram, f_2 is the centroid frequency 220 of the seismogram at target receivers, and σ_1^2 is the variance of the seismogram at 221 receiver. Therefore, following Quan and Harris (1997), *Q* between the i_{th} and $(i + 1)_{th}$ 222 receiver is defined as:

$$Q = \frac{\pi \sigma_i^2 \Delta t_i}{\Delta f_i}.$$
(5)

https://mc.manuscriptcentral.com/interpretation

223	In equation 5, $\Delta f_i = (f_i - f_{i+1})$ is the centroid frequency difference between the i_{th} and
224	$(i + 1)_{th}$ layers, $\Delta t_i = t_i - t_{i+1}$ is the traveltime difference between the two layers, and
225	σ_i^2 is the variance at the i_{th} receiver. Equation 5 is applied to the windowed sonic data
226	described above with the centroid frequencies between 6 kHz to 7 kHz.

VSP AND SONIC ATTENUATION RESULTS

228 The logging data, including sonic attenuation, of three wells are shown in Figure 229 7, Figure 8 and Figure 9 for 1244E, 1247B and 1250F, respectively. The gas hydrate 230 zones are identified above the BSR (grey dashed lines) at three wells, which are around 1025 m in 1244E, 976 m in 1247B and 917 m in 1250F below sea level (Tréhu et al., 231 232 2006b). In these wells, changes in lithology with depth are likely small, based on the 233 small depth variation of gamma ray (green lines) between 50-70 API. Therefore, we 234 assume that the variation of seismic attenuation with depth in this study area is mainly 235 caused by gas hydrate properties varying with depth.

The gas hydrate saturation is derived from resistivity data using Archie's equation (details in Appendix A). The calculated VSP attenuations range between 0.004 – 0.013 at site 1244E, and 0.004 at site 1247B and 1250F (red dots). They are calculated at certain layers and are generally smaller than the sonic attenuation (black lines in Figure 7, Figure 8 and Figure 9). The uncertainty analysis is implemented using a Monte Carlo method (Riedel et al., 2013; Wang et al., 2017) and errors are illustrated in terms of the standard deviation and 95% confidence interval of average attenuation (details in Appendix B).

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

227

Interpretation

13

2	
3 3 4 5 6	243
cięs <i>t</i> leru	244
gę(pgli	245
org/pa	246
-6-2 S-13 214	247
://ipra 5 6	248
	249
واھ 20 1©1	250
622 623	251
924 S2 5 .	252
2002/rig 20-01 30	253
	254
03 <u>5</u> 93 <u>6</u> 93 <u>6</u>	255
33 23 23 23 23 23 23 23 23 23 23 23 23 2	256
signs 6 7 7	257
ribution 8	258
140 140 140 140	259
642 643 544	260
2,45 ∞,45 1,246	261
747 48 48	262
749 750 751	263
paga 2 3	264
ي 255 255	265
56 57 58	

60

244 To further quantify the effect of gas hydrate saturation and morphology on 245 seismic attenuation, we employ the frequency dependent HBES model (Marín-Moreno et 246 al., 2017) that builds on Best et al.'s (2013) model. The HBES formulation considers that 247 fluid inclusions in the hydrate, which are inclusions of water and/or methane in the 248 hydrate connected to the intergranular pores, can modify the elastic moduli of the hydrate 249 and sediments; fluid inclusions in the hydrate are ellipsoidal, one-sided connected to the 250 intergranular pores, homogeneously distributed in the hydrate, and independent on 251 hydrate morphology; contact-cementing, grain-coating and pore-filling/floating hydrate 252 morphologies as defined by Ecker et al. (1998, 2002). Regarding the application of the 253 HBES to this work, we consider that the pore space above the BSR contains only gas 254 hydrate and water in the pore space and that the hydrate is homogeneously distributed in 255 the pore space.

The two categories of gas hydrate morphology were defined based on whether the hydrate exists adhering to host grains or floating in the pore space and initially deduced from the effect of gas hydrate morphology on the elastic wave velocity (Ecker et al., 1998). The idealized conceptual model of the microstructure of hydrate-bearing sediments is shown in Figure 10.

This model uses the Biot-Stoll poro-elastic theory (Biot, 1956a, 1956b), gas hydrate morphologies as defined by Ecker et al. (1998) and the formulation for squirt flow given by Leurer (1997) to predict seismic attenuation of hydrate bearing sediments. Let us consider the gas hydrate as a compliant composite porous material with inclusions like gas or water, rather than as a solid. The inclusions are a consequence of isolated

https://mc.manuscriptcentral.com/interpretation

2	
3	
.4	
Ĕs	
d ei	
es/	
ici,	
8d2	
eg eg	
<u></u>	
<u>j</u> 2	
ຜູ້13	
≧ 14	
<u>jā</u> 15	
<u>;</u>]6	
<u>₿</u> 17	
÷_18	
∽ <u>~</u> 20	
°21	
222	
<u>دو</u>	
₽ <u>2</u> 2	
02-T	
22	
<u>28</u>	
0294 a E	
No.	
<u>_83</u>	
୴ୖ୵ୄୄୄ	
W2	
<u>a</u> gg	
tg35	
- 3 6	
م 37	
50 C	
040	
<u>م</u>	
6 ⁴²	
4 3	
\ 44	
م ;45	
546	
°∕47	
, 48	
₩49	
∑ 50	
ç 51	
₩ 852	
<u>653</u>	
₹54	
Ő55	
56	
50	
57	
20	
22	
00	

1

266 pockets of gas or water trapped during gas hydrate formation. In this case, the gas hydrate 267 can behave like other microporous, compliant minerals like clay assemblages (Leurer, 1997). When an elastic wave passes through it, the compliant porous host (e.g., host grain 268 269 framework) and the porous gas hydrate grains create local fluid pressure gradients 270 between the gas hydrate inclusions and the sand frame pores, leading to viscous fluid 271 flow (squirt flow) of water/gas and corresponded wave energy loss. The HBES model 272 allows seismic attenuation to be estimated as a function of frequency, gas hydrate saturation and different combinations of gas hydrate morphologies. A simplified version 273 274 of the HBES model workflow is shown in Figure 11. The input parameters and symbols 275 of this model are shown in Table C1 and C2 in Appendix C.

276 COMPARISON AND DISCUSSION

277 Relation between attenuation and the hydrate properties

278 Figure 12 shows calculated attenuation from sonic logging data and gas hydrate 279 saturation with depth. Since gas hydrate exists only above the BSR indicated by the grey 280 dashed line in Figure 12 and the VSP data is limited, we only focus on the sonic 281 attenuation above the BSR. Some negative values of attenuation may be resulted from 282 scattering of background or equipment coupling (Matsushima, 2006). The trend between 283 saturation and attenuation is not obvious in Figure 12. We quantify the trend by 284 calculating the correlation coefficients between seismic attenuation and gas hydrate 285 saturation. Small coefficients (-0.34, -0.09 and 0.32 for 1244E, 1247B and 1250F, 286 respectively) imply that there may not be a strong linear relation between seismic

https://mc.manuscriptcentral.com/interpretation

Page 15 of 61

Interpretation

15

1 2 3 Bownlgaded 01/1 1/2 to 217 & 141 190. Redistribution subject to SFG license or convright, see Terros of Use at https://library.seg.org/page/pglicies/Jerros. 56 57 58

59

60

attenuation and gas hydrate saturation. In order to see if there is a regional pattern
between the seismic attenuation and saturation, we also make a scatter plot of the seismic
attenuation and saturation from 1244E (blue circles), 1247B (red circles), and 1250F
(yellow circles) in Figure 13. Not surprisingly, there is no clear correlation between gas
hydrate saturation and seismic attenuation though we do observe that the attenuation
values are more concentrated at lower hydrate saturation and relatively scattered at higher
hydrate saturation.

294 To combine the effect of gas hydrate morphology on the attenuation, we overlay 295 rock physics modeling results on the scatter plot representing different combinations of 296 gas hydrate morphologies between two end-members: cementing and pore-filling hydrate 297 (Marín-Moreno et al., 2017). Then, the modeled attenuations from the HBES model 298 (solid lines) are compared with our calculated attenuations from three wells (Figure 13). 299 For the modeled results shown as solid lines in Figure 13, we clarify that the 300 fraction attached with pore-filling or cementing means a fraction of the total hydrate 301 saturation, i.e., percentage × hydrate saturation. The attenuation-versus-hydrate saturation 302 curves predicted from the HBES model based on different hydrate morphologies clearly 303 indicate that P-wave attenuation is strongly dependent on gas hydrate morphology. We 304 note that the modeled P-wave attenuation curve with 100% cementing hydrate (red line) 305 appears to capture the upper boundary of calculated sonic attenuations with the increasing 306 of the hydrate saturation, while the modeled P-wave curve with 60% cementing hydrate 307 (vellow line) seems to define the lower boundary of calculated sonic attenuations, in 308 particular at lower saturation. For both the pure pore-filling hydrate (green line) and the 309 multiple morphologies (containing both the pore-filling hydrate and the cementing

https://mc.manuscriptcentral.com/interpretation

2	
3	
ൃ4	
Ъ.	
¦s∜	
ici.	
180 180	
Jee	
ອາ ວ່າ	
-1-2 -1-2	
دي ≥1⊿	
רים 15	
16	
£17	
±18	
ซ อู19	
∽̃20	
<u>م</u> رّ	
<u></u> 222	
23ط	
<u></u> 24	
<u>.</u> 2 5 .	
29	
<u>528</u>	
02 9	
Site Site	
<u>5</u>	
<u></u> Сод.	
က <u>ာ</u> က	
±25 525	
<u>5</u>	
م مر	
538	
50	
941	
<u>4</u> 2	
0 43	
5 44	
<u>~</u> 45	
546	
<u>47</u>	
, 48	
2 49	
250 250	
-51 9-2	
βαβ	
503	
»34 ℃	
درب ۲۲	
50	
52	
59	
60	

1

310	hydrate) with more pore-filling hydrate (purple and blue lines), the predicted attenuation
311	has a monotonic increase with the saturation. For the multiple morphologies with more
312	cementing hydrate (yellow and black lines), the predicted attenuation can be separated
313	into three stages: (1) at very low saturation (below $\sim 2\%$), the attenuation increases with
314	the saturation and reaches the peak at around 2%; (2) with saturation increasing from 2%
315	to $10 - 15\%$, the predicted attenuation decreases gradually; (3) at higher saturations, the
316	predicted attenuation slightly increases. For the pure cementing hydrate model, the
317	predicted attenuation shows the same trend, but the attenuation peak occurs around 6%,
318	then it shows a very smooth decrease at a relatively wider saturation range.
319	To consider possible frequency effects on attenuation, we compare VSP and sonic
320	attenuations with those modeled at certain layers having gas hydrate saturations of 30%,
321	24%, 16% and 4% as a function of frequency (Figure 14). Since the VSP attenuations are
322	much smaller and closer for all the three sites, we use the same yellow symbol to display
323	all of them (Figure 14). In general, the VSP attenuation is smaller than the sonic
324	attenuation. Considering the scattering of calculated attenuation from the field data, the
325	modeled results could be treated as a good fit with our measured sonic attenuation. The
326	possible gas hydrate morphologies at some depth in the south Hydrate Ridge in the
327	Cascadia Margin could be around 85% cementing hydrates, which is consistent with the
328	observation of most attenuation data being well represented by hydrate with 60% to
329	100% cementing morphology (Figure 13).

Page 17 of 61

1 2 3

Interpretation

17

330 Discussion

331 Our results show that the effect of gas hydrate saturation on seismic attenuation 332 can be different: (1) when the percentage of pore-filling hydrates is larger than that of 333 cementing hydrates (see 100%pore-filling, and 20% and 40% cementing curves in Figure 334 13), in general the attenuation increases with the increasing of saturation; (2) when the 335 percentage of cementing hydrates is larger than pore-filling hydrates (see 60%, 80% and 336 100% cementing curves in Figure 13), the increase of saturation can lead to a decrease of 337 the attenuation at a certain saturation range controlled by the percentage of cementing 338 hydrate (i.e. more cementing hydrate leads to a decrease of attenuation at a wider 339 saturation range), and then the attenuation increases again as the saturation keeps 340 increasing.

341 Priest et al. (2006) proposed a reasonable theory for the case with more cementing 342 hydrates: (1) at the first stage (Figure 15a), let us consider a dry sediment specimen with 343 a small volume of adsorbed water, which tends to condense at grain contacts due to 344 surface tension and capillary pressure. When a seismic wave passes through, the 345 generated pressure leads to squirt flow at grain contacts, resulting in energy loss. 346 However, since the amount of adsorbed water is not large enough to fill many grain 347 contact micropores, the energy loss is very small and so minimal attenuation occurs; (2) 348 at the second stage (Figure 15b), hydrate starts to grow in the pore space at grain contacts 349 as a cement, which causes the increase of effective area of the grain contacts followed by 350 more squirt flow. Therefore, more energy could be lost and the attenuation increases 351 rapidly until a critical hydrate saturation; the first two stages are consistent with our 352 results at low saturation (below about 5%); (3) when reaching the third stage (Figure

https://mc.manuscriptcentral.com/interpretation

2
3
.4
Ĕs
fet
₽s/
io.
8
39
ស្ដី0
512
ŏ! ۲
<u>⊊</u> 14
<u>jā</u> 15
<u>;</u>]16
₽́17
<u></u> 18
to 10
S S
<u>_20</u>
₂₂₁
<u>E</u> 22
<u>2</u> 3
\$ <u>2</u> 4
<i>м</i>
-54°. -512
0200
29
୪2ର୍ଷ
ଚିଥିଡ଼ି
and and and and and and and and and and
ere Beeler
. <u></u>
0°6
ಸ್ತಾ
£38
រ ដ្ឋ35
- 3 6
ر مر
5
, T O O O O
539
. <u>9</u> 40
₩41
42
<u>643</u>
544
1246
<u>`</u> 47
, 48
₩49
50
$\tilde{c_1}$
e e f
ک مط
53
₹54
<u> </u>
56
57
58
50
75

1

353 15c), beyond the critical hydrate saturation, increasing growth of hydrates starts to 354 envelop the host grains and impede the movement of squirt flow, which in turn leads to a 355 reduction in attenuation. However, gas hydrate also has a porous structure (Staykova et 356 al., 2003; Stern et al., 2004), which may still contribute to attenuation caused by squirt 357 flow. Therefore, the attenuation could be close to constant during a certain range of 358 hydrate saturation. In this case, this may correspond to our results at saturations from 5% 359 to 20%; (4) finally, at the fourth stage (Figure 15d), the hydrate starts to create a well-360 formed interconnected grain-hydrate network resulting in a larger increase in the 361 effective area of the grain contacts, and consequently more energy loss caused by squirt flow, so the attenuation increases again. Our results shown in Figure 13 seems to be 362 363 consistent with Priest et al. (2006) in that when gas hydrate saturation is pretty low (< 364 5%), gas hydrate exhibits more likely cementing behavior; once gas hydrate saturation 365 exceeds \sim 5%, the effects of pore-filling and cementing hydrate on seismic attenuation 366 cannot be distinguished. That is why we cannot observe a linear relationship between 367 hydrate saturation and seismic attenuation: effects of hydrate morphology and saturation 368 on seismic attenuation overlap with each other. However, several studies (Tohidi et al., 369 2001; Yun, 2005; Lee et al., 2010) contradict this, in that cementing behavior cannot be 370 observed at low hydrate saturation (ca. <40%) based on laboratory work. The 371 disagreement may result from the difference between sand specimens most used in the 372 laboratory and the more complicate lithologies in the field, which in our case are clays and silty turbidites. In addition, our study site on the south Hydrate Ridge is located in the 373 374 subduction zone which could cause more uncertainties than in the laboratory due to the 375 heterogeneity and complexity of the subduction zone setting. Thus, further investigation

https://mc.manuscriptcentral.com/interpretation

Page 19 of 61

Interpretation

376	on the different scales between laboratory and field work combined with rock physics
377	modeling need to be conducted in order to understand the contribution of hydrate to the
378	elastic properties of sediments, particularly seismic attenuation.
379	Regarding the limitation of the HBES model, as we mention in the previous
380	section, it only assumes two idealized hydrate morphologies, contact-cementing and
381	pore-filling and weights their individual contribution based on their concentration.
382	Though, it could be the case that their average contribution to changes in elastic response
383	of sediments which is not volumetric. In addition, the model assumes initial elliptical
384	macropores and only one aspect ratio of ellipsoidal pores when hydrate forms, whereas in
385	natural environments, it is more likely that a range of aspect ratios are generated.
386	Fundamentally, estimating seismic attenuation of hydrate-bearing sediments
387	remains challenging. Seismic attenuation comes not only from the intrinsic attenuation of
388	the hydrate-bearing sediments, but also from the scattering due to the heterogeneity of
389	natural sediments. In different hydrate sites, the estimated attenuation values exhibit
390	different ranges even if they were estimated at the same frequency range, as shown in
391	Table 1. Our estimated VSP attenuation values for the Cascadia Margin and the
392	attenuation values at the Nankai Trough (Matsushima, 2006) are lower than those at the
393	Mallik site in Canada (Dvorkin and Uden, 2004) but larger than those in the Krishna-
394	Godavari Basin (KG) in India (Nittala et al., 2017) and offshore Svalbard (Rossi et al.,
395	2007). At different frequency bands, the VSP and sonic attenuation are very different, as
396	shown in Figure 14. However, they are similar to those at the Mallik site in Canada
397	(Dvorkin and Uden, 2004; Pratt et al., 2005). Because of different lithologies in different
398	sites, the dominant attenuation mechanisms can be also different. For example, at the

2	
3	
s ⁴	
erg	
₿s(†	
^{gli} cie	
3d/8	
000	
ō,12	
ର୍ଡ <u>୍</u> ମ 3	
ភ្លា4	
310 917	
±18	
ອ ຢູ່19	
<u>∽</u> 20	
⁷ 021	
E22	
j≝23	
0 24 ۵٫۲	
:, 1200 1200	
<u>ତି</u> 2୍ବିଷ୍	
S C	
<u>5</u> 36	
00 <u>6</u> .	
39 39	
ដ្ <u>ឋ</u> ន្ល	
- - - - - - - - - - - - - - - - - - -	
°37	
interest and the second	
eri 639	
.940 0/1	
-42	
2 43	
\ 44	
~ 45	
<u>≻</u> 46	
247 2	
-48 N/0	
~ 49 ∑50	
51	
မီ <u>၂</u>	
စ္ထား	
₹54	
Ō55	
56 57	
57 58	
50 59	
60	

1

399	Mallik site, hydrate saturations up to 60%-80% are inferred in individual sand layers of
400	up to 40 m thick (Bellefleur et al., 2007), and macroscopic squirt flow from elastic
401	heterogeneity in the rock frame elastic moduli may be responsible for the significant
402	attenuation (Dvorkin and Uden, 2004). In the KG Basin in India, there are mainly shale
403	layers, and Nittala et al. (2017) explained the attenuation by accounting for horizontal
404	transverse isotropy. In the Nankai Trough, Zhan and Matsushima (2018) suggested squirt
405	flow due to fluid inclusions in a microporous hydrate and the Biot-squirt (BISQ)
406	mechanism in pore spaces between hydrates and host grains might be the dominant
407	attenuation mechanism in the sonic frequency range, while squirt flow might be the
408	dominant attenuation mechanism in the seismic frequency range. The different thickness
409	of hydrate-bearing sediments may be a factor that influences the attenuations at different
410	hydrate sites. Moreover, gas hydrate can be stored either in marine sediments or
411	permafrost regions, which could result in various hydrate morphologies. We should also
412	note that the free gas coming out from the dissociation of gas hydrate may be captured
413	into a new gas hydrate on its way upwards given proper conditions. Therefore, different
414	lithologies and tectonic settings in different natural hydrate sites can provide significant
415	insights for more comprehensive studies about hydrate morphologies which always show
416	localized characteristics.
417	Additionally, the laboratory experiments by Priest et al. (2006) indicate that
418	significant seismic attenuation can be caused by the squirt flow due to the adsorbed thin
419	water film between host grains and cementing hydrates. Combining the modeled

420 attenuation using the HBES model with our calculated attenuation from field data, we

421 suggest that squirt flow in the microporous hydrate could play a significant role in

https://mc.manuscriptcentral.com/interpretation

Page 21 of 61

Interpretation

1 2 Bownlgaded 01/1 1/2 to 217 to 141 190. Redistribution subject to SFG license or convirint, see Terrors of Use at https://library.seq.org/page/policies/terros_ to 2 b to 2 56 57 58 59

60

422	seismic attenuation over a broad frequency range in the south Hydrate Ridge. In this
423	study, the VSP attenuation is pretty low compared with the sonic attenuation, which may
424	result from its lower frequency. There are other possible causes, e.g., scattering energy
425	mixing with first arrivals due to strong heterogeneity in the gas hydrate zone, even over
426	shot distance (Tréhu et al., 2004). Moreover, inspired by previous studies mentioned
427	above (Dvorkin and Uden, 2004; Matsushima, 2006; Rossi et al., 2007; Nittala et al.,
428	2017), source-coupling of VSP and sonic equipment could also be a factor. However,
429	since the VSP data is limited and hydrate saturation is only up to about 40%. Hence, for a
430	more comprehensive understanding on the potential role that different seismic
431	frequencies play in regulating the seismic attenuation at gas hydrate sites, complementary
432	studies elsewhere that consider low frequency surface seismic (10 Hz) and/or higher gas
433	hydrate saturations are required.
434	Compared to the frequent investigation of P-wave attenuation of gas hydrate,
435	lesser quantifications were conducted with S-wave attenuation because the frame rigidity
436	and shear modulus are unaffected if gas hydrate simply fills the space with little grain
437	contact. Future work is needed to fill the gap through comparing different characteristics
438	of P and S-wave in different gas hydrate sites.

439

CONCLUSION

We have presented a case study using field seismic attenuation measurements and rock physics modeling to investigate the effect of gas hydrate saturation and morphology on seismic attenuation in the south Hydrate Ridge in the Cascadia Margin. We derived seismic VSP and sonic attenuation from field data and interpreted the interrelation

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

21

2
3
.4
Ĕ
e d
es/
00
<u> </u>
010
ਰੂ1
<u></u>
Ø13
<u>≥</u> 14
<u>م</u>
<u></u> ≣16
∯ 17
S S S S S S S S
- <u>-</u> 20
°∠1
<u>–</u> 23
<u>%</u> 24
<u>25</u>
229
<u> ସେହ</u> ୍
ୖୢୢୢୢୢୄ୵ୄୖ
ent ent
ese Boo
. <u></u>
ш у Шу у
<u> </u>
≍o <u>A</u>
ಕ್ಷ್ಮೆ6
<u></u> 37
. <mark>2</mark> 38
<u>.</u> ē39
.540
941
42
<u>643</u>
5.44
5/15
∞ ⁺ J
1240 Na 7
2 ⁴ /
-48 N
2 49
250
<u>5</u> 51
ဆ္ဆီ2
<u></u> 253
₹54
a 655
56
57
50
20
27
60

1

444	between attenuation and gas hydrate saturation and morphology using rock physics
445	modeling, namely HBES hydrate model. The limited data on VSP attenuation shows
446	relatively small values compared to the sonic attenuations. The sonic attenuation shows a
447	scattered distribution with hydrate saturation, suggesting that attenuation is not only
448	controlled by gas hydrate saturation but also likely by morphology. The joint analysis of
449	seismic attenuation measurements and the HBES modeling results demonstrates the
450	theoretical possibility of multiple morphologies coexisting in the pores and the effect of
451	both gas hydrate saturation and morphology in the hydrate-bearing sediments. We
452	propose that in the south Hydrate Ridge (1) cementing hydate may be predominant at low
453	hydrate saturation (<5%), whereas the effects of cementing and pore-filling hydrate
454	cannot be distinguished at relatively higher hydrate saturation; (2) gas hydrate
455	morphology may change with the gas hydrate saturation; (3) squirt flow is responsible for
456	the attenuation changes in the hydrate-bearing sediments at sonic frequencies. Overall,
457	this study provides insights into interpreting the seismic attenuation in the hydrate-
458	bearing sediments using theoretical rock physics models.
459	ACKNOWLEDGEMENTS

- 460 All well log data in this study are available to download in the public data
- 461 repository of the Ocean Drilling Program
- 462 (https://mlp.ldeo.columbia.edu/data/odp/leg204/1244E/,
- 463 https://mlp.ldeo.columbia.edu/data/odp/leg204/1247B/ and
- https://mlp.ldeo.columbia.edu/data/odp/leg204/1250F/). VSP and sonic data processing 464
- 465 and attenuation estimation were done using open-source MATLAB codes from the

https://mc.manuscriptcentral.com/interpretation

Interpretation

58 59

60

466 Consortium for Research in Elastic Wave Exploration Seismology (CREWES). This 467 research was supported by the Dr. Zhu's startup funding from the Institute of Natural Gas 468 Research at the Pennsylvania State University. We thank Dr. Tao Liu for his help on data 469 processing and Xiaoni Hu for reading the draft. We also thank Drs. Charles Ammon, 470 Sridhar Anandakrishnan and Elizabeth Hajek for their constructive suggestions on the 471 early manuscript. We also appreciate our anonymous reviewers and editors for their 472 invaluable remarks and suggestions.

473

APPENDICES

474 Appendix A

475 Archie's relationship

476 Archie's equation is used to calculate the hydrate saturation according to477 resistivity logging profile.

$$S = 1 - (R_t/R) \tag{A1}$$

$$R_t = a R_w \emptyset^{-j} \tag{A2}$$

478 where *a*, *j* are Archie parameters, \emptyset is the porosity, R_t is the resistivity of formation, R_w 479 is the resistivity of connate water and *R* is the recorded resistivity with depth. We choose 480 $aR_w = 0.55 \Omega m$ and j = 1.3 based on Leg204 gas report (Tréhu et al., 2006a). Note that 481 better saturation calculation could be obtained from recent work (Pan et al., 2019).

https://mc.manuscriptcentral.com/interpretation

482 Appendix B

483 Uncertainty analysis of results

Attenuation can be calculated with centroid frequency shift method: $Q = \frac{\pi \sigma_i^2 \Delta t_i}{\Delta f_i}$, 484 485 changes of the centroid frequency Δf_i , velocity, distance (t=distance/velocity) between two receivers and the variance of centroid frequency (σ_i^2) can cause the uncertainty on the 486 487 attenuation calculations. Since variance is also associated with the frequency, and 488 distance can be measured very accurately, we only consider the uncertainty caused by the 489 frequency and the velocity. To this end, we apply the Monte Carlo method for calculating 490 the attenuation with three receiver pairs (receiver1-6, receiver1-7 and receiver1-8). We 491 randomly select the reasonable frequency range 1000 times, i.e., low frequency and high 492 frequency, which is the same for seismic traces at two receivers. Low frequency 493 randomly changes between 5 - 7 kHz while high frequency randomly changes between 9 494 - 10 kHz. Arrival time is determined by distance/velocity and velocity is assumed to have 495 an uncertainty of 7.5% (Baron and Holliger, 2010). Therefore, for each interval at each 496 well (1244E, 1247B and 1250F), we can get 3000 Q values (i.e., 1000 × three receiver 497 pairs). To make sure there are enough data samples (>300) for analysis, we filter the 498 interval with more than 300 infinite Q values which are invalid. 499 The next step is to combine the selected Q values with hydrate saturation at the 500 same depth. In order to quantify the reliability of the results, we plot all the results with 501 their standard deviations shown as different colors (Figure B1), from which we can see 502 most of the results have the standard deviation lower than 0.1. In addition, higher

503 attenuation shows a higher standard deviation which means lower attenuation is much

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

1

Page 25 of 61

Interpretation

1 2 Bownlgaded 01/11/21 to 217.8,141.190, Redistribution. Subject to SFG license or convright, see Terros of Use at https://library.seg.org/page/policies/lerms__ user_ conversed.org/page/policies/lerms__ user_ conversed.org/page/policies/lerms__ user_ conversed.org/page/policies/lerms__ user_ conversed.org/page/policies/lerms_ 56 57 58

59

60

504	more reliable. However, the standard deviation cannot provide a reliable range of our
505	calculated attenuations. We therefore apply the 95% confidence interval of the mean
506	attenuation to quantify the range. For this purpose, we employ two approaches: (1) Since
507	my sample size is large enough (>100) to use the z-distribution directly, we can simply
508	use the formula: $\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$, where z equals 1.96 after looking for 95% confidence interval;
509	\overline{x} is the sample mean, σ is the sample standard deviation and n is sample size; (2) To
510	verify the 95% confidence interval from approach (1), we use 'bootstrap' to calculate the
511	95% confidence interval again: at each depth, there are n ($300 < n < 3000$) valid <i>Q</i> values,
512	we randomly choose 1000 Q values for 3000 times and calculate mean Q values each
513	time, then we can get 3000 mean Q .
514	The mean Q are normally distributed, and the 95% confidence interval can be
515	easily calculated, which is the same as approach (1) and the results are shown in Figure
516	B2. The black dots in Figure B2 are mean attenuations after resampling selected

attenuations at each interval 1000 times, the error bar shows the 95% confidence intervalfor each mean.

To see the mean attenuation confidence interval in each well and if the resampled results show a similar pattern with Figure 13, we plot these dots in different colors in Figure B3, which still show the same trend and distribution as Figure 13. The modeled results are also plotted in Figure B4, the upper boundary (cementing hydrate) and lower boundary (60% cementing hydrate) restrict the scattering results from the field, the same as Figure 13.

https://mc.manuscriptcentral.com/interpretation

525 Appendix C

526 Parameters in the HBES model

527 The description of input parameters in the HBES model are shown in Tables C1528 and C2.

529

530

REFERENCES

531 Archie, G. E., 1942, The Electrical Resistivity Log as an Aid in Determining Some

532 Reservoir Characteristics: Transactions of the AIME, **146**, 54–62.

Baron, L., and K. Holliger, 2010, 9. Analysis of the Velocity Dispersion and Attenuation

534 Behavior of Multifrequency Sonic Logs, *in* Advances in Near-surface Seismology

and Ground-penetrating Radar, Society of Exploration Geophysicists, American

536 Geophysical Union, Environmental and Engineering Geophysical Society, 153–166.

537 Bellefleur, G., M. Riedel, T. Brent, F. Wright, and S. R. Dallimore, 2007, Implication of

538 seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie

539 Delta, Canada: Journal of Geophysical Research: Solid Earth, **112**, 1–11.

540 Best, A. I., J. A. Priest, C. R. I. Clayton, and E. V. L. Rees, 2013, The effect of methane

541 hydrate morphology and water saturation on seismic wave attenuation in sand under

shallow sub-seafloor conditions: Earth and Planetary Science Letters, **368**, 78–87.

543 Biot, M. A., 1956a, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous

544 Solid. I. Low-Frequency Range: The Journal of the Acoustical Society of America,

545 **28**, 168–178.

https://mc.manuscriptcentral.com/interpretation

Bownlgaded 01/1 1/2 to 217 & 141 190. Redistribution subject to SFG license or convright, see Terros of Use at https://library.seg.org/page/pglicies/Jerros A

Interpretation

\mathbf{a}	7
1.	1
_	'

546	Biot, M. A., 1956b, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous
547	Solid. II. Higher Frequency Range: The Journal of the Acoustical Society of
548	America, 28 , 179–191.
549	Blias, E., 2012, Accurate interval Q-factor estimation from VSP data: Geophysics, 77,
550	WA149-WA156.
551	Bohannon, J., 2008, ENERGY: Weighing the Climate Risks of an Untapped Fossil Fuel:
552	Science, 319 , 1753–1753.
553	Brooks, J. M., H. B. Cox, W. R. Bryant, M. C. Kennicutt, R. G. Mann, and T. J.
554	McDonald, 1986, Association of gas hydrates and oil seepage in the Gulf of Mexico:
555	Organic Geochemistry, 10, 221–234.
556	Carcione, J. M., D. Gei, G. Rossi, and G. Madrussani, 2005, Estimation of gas-hydrate
557	concentration and free-gas saturation at the Norwegian-Svalbard continental margin:
558	Geophysical Prospecting, 53, 803–810.
559	Chand, S., and T. A. Minshull, 2004, The effect of hydrate content on seismic
560	attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada:
561	Geophysical Research Letters, 31 , 2–5.
562	Chand, S., T. A. Minshull, D. Gei, and J. M. Carcione, 2004, Elastic velocity models for
563	gas-hydrate-bearing sediments-a comparison: Geophysical Journal International,
564	159 , 573–590.
565	Choi, J. H., S. Dai, J. H. Cha, and Y. Seol, 2014, Laboratory formation of noncementing
566	hydrates in sandy sediments: Geochemistry, Geophysics, Geosystems, 15, 1648-
567	1656.
568	Collett, T., J. J. Bahk, R. Baker, R. Boswell, D. Divins, M. Frye, D. Goldberg, J. Husebø,

569	C. Koh, M. Malone, M. Morell, G. Myers, C. Shipp, and M. Torres, 2014a, Methane
570	hydrates in nature-current knowledge and challenges: Journal of Chemical and
571	Engineering Data, 60 , 319–329.
572	Collett, T. S., R. Boswell, J. R. Cochran, P. Kumar, M. Lall, A. Mazumdar, M. V.
573	Ramana, T. Ramprasad, M. Riedel, K. Sain, A. V. Sathe, and K. Vishwanath, 2014b,
574	Geologic implications of gas hydrates in the offshore of India: Results of the
575	National Gas Hydrate Program Expedition 01: Marine and Petroleum Geology, 58,
576	3–28.
577	Dallimore, S. R., and T. S. Collett, 2002, Summary and implications of the mallik 2002
578	gas hydrate production reserch well program: Scientific Results from the Mallik, 1-
579	36.
580	Dickens, G. R., 2003, CLIMATE: A Methane Trigger for Rapid Warming? Science, 299,
581	1017–1017.
582	Dvorkin, J., and R. Uden, 2004, Seismic wave attenuation in a methane hydrate reservoir:
583	The Leading Edge, 23 , 730–732.
584	Ecker, C., J. Dvorkin, and A. Nur, 1998, Sediments with gas hydrates: Internal structure
585	from seismic AVO: Geophysics, 63, 1659–1669.
586	Ecker, C., J. Dvorkin, and A. M. Nur, 2002, Estimating the amount of gas hydrate and
587	free gas from marine seismic data: GEOPHYSICS, 65, 565–573.
588	Guerin, G., and D. Goldberg, 2002, Sonic waveform attenuation in gas hydrate-bearing
589	sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada: Journal
590	of Geophysical Research, 107, EPM-1.
591	Guerin, G., and D. Goldberg, 2005, Modeling of acoustic wave dissipation in gas
	https://mc manuscriptcentral com/interpretation

Bownlgaded 01/11/22 to 217.8.141.190. Redistribution subject to SFG license or convirient, see Terms of Use at https://library.seg.org/page/pglicies/Jerms, convirience/lerms, convirien

Interpretation

592	hydrate-bearing sediments: Geochemistry, Geophysics, Geosystems, 6, 1–16.			
593	Guerin, G., D. Goldberg, and A. Meltser, 1999, Characterization of in situ elastic			
594	properties of gas hydrate-bearing sediments on the Blake Ridge: Journal of			
595	Geophysical Research: Solid Earth, 104, 17781–17795.			
596	Guerin, G., D. Goldberg, and T. S. Collett, 2005, Sonic attenuation in the			
597	JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well:			
598	GEOLOGICAL SURVEY OF Canada- Bulletin, 1–9.			
599	Harris, P. E., C. Kerner, and R. E. White, 1997, Multichannel estimation of frequency-			
600	dependent from VSP data: Geophysical Prospecting, 45, 87–109.			
601	Holbrook, W. S., H. Hoskins, W. T. Wood, R. A. Stephen, and D. Lizarralde, 1996,			
602	Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling:			
603	Science, 273 , 1840–1843.			
604	Hornbach, M. J., D. M. Saffer, W. S. Holbrook, H. J. A. Van Avendonk, and A. R.			
605	Gorman, 2008, Three-dimensional seismic imaging of the Blake Ridge methane			
606	hydrate province: Evidence for large, concentrated zones of gas hydrate and			
607	morphologically driven advection: Journal of Geophysical Research, 113, B07101.			
608	Jaiswal, P., P. Dewangan, T. Ramprasad, and C. A. Zelt, 2012, Seismic characterization			
609	of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full			
610	waveform inversion: Journal of Geophysical Research: Solid Earth, 117.			
611	Jyothi, V., K. Sain, V. Pandey, and A. K. Bhaumik, 2017, Seismic attenuation for			
612	characterization of gas hydrate reservoir in Krishna-Godavari basin, eastern Indian			
613	margin: Journal of the Geological Society of India, 90, 261–266.			
614	Kvenvolden, K. A., 1993, Gas hydrates-geological perspective and global change:			

615 Reviews of Geophysics, 31, 173–187. 616 Kvenvolden, K. A., G. D. Ginsburg, and V. A. Soloviev, 1993, Worldwide distribution of subaquatic gas hydrates: Geo-Marine Letters, 13, 32-40. 617 618 Lee, J. Y., F. M. Francisca, J. C. Santamarina, and C. Ruppel, 2010, Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-619 620 strain mechanical properties: Journal of Geophysical Research, 115, B11105. 621 Lee, M. W., and T. S. Collett, 2000, Comparison of elastic velocity models for gashydrate-bearing sediments, in Geophysical Monograph Series, Vol. 124., 179-187. 622 623 Leurer, K. C., 1997, Attenuation in fine-grained marine sediments: Extension of the 624 Biot-Stoll model by the "effective grain model" (EGM): GEOPHYSICS, 62, 1465-625 1479. Liu, T., and X. Liu, 2018, Identification of morphologies of gas hydrate distribution 626 627 based on amplitude variation with angle analysis: GEOPHYSICS, 83, B143–B154. 628 Liu, T., X. Liu, and T. Zhu, 2020, Joint analysis of P-wave velocity and resistivity for 629 morphology identification and quantification of gas hydrate: Marine and Petroleum 630 Geology, 112, 104036. 631 Madrussani, G., G. Rossi, and A. Camerlenghi, 2010, Gas hydrates, free gas distribution 632 and fault pattern on the west Svalbard continental margin: Geophysical Journal 633 International, 180, 666-684. 634 Marín-Moreno, H., S. K. Sahoo, and A. I. Best, 2017, Theoretical modeling insights into 635 elastic wave attenuation mechanisms in marine sediments with pore-filling methane 636 hydrate: Journal of Geophysical Research: Solid Earth, 122, 1835–1847. 637 Matsushima, J., 2006, Seismic wave attenuation in methane hydrate-bearing sediments

https://mc.manuscriptcentral.com/interpretation

This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

60

Page 31 of 61

Interpretation

638	vertical seismic profiling data from the Nankai trough exploratory well, offshore
639	Tokai, central Japan: Journal of Geophysical Research: Solid Earth, 111, 1–20.
640	Nittala, S., K. Sain, and D. Nara, 2017, Seismic vis-a-vis sonic attenuation in gas hydrate
641	bearing sediments of Krishna-Godavari basin, Eastern Margin of India: Geophysical
642	Journal International, 209, 1195–1203.
643	Pan, H., H. Li, J. Chen, Y. Zhang, X. Liu, S. Cai, and C. Cao, 2019, Evaluation of gas
644	hydrate resources using hydrate morphology-dependent rock physics templates:
645	Journal of Petroleum Science and Engineering, 182, 106268.
646	Pan, H., H. Li, J. Chen, Y. Zhang, S. Cai, Y. Huang, Y. Zheng, Y. Zhao, and J. Deng,
647	2020, A unified contact cementation theory for gas hydrate morphology detection
648	and saturation estimation from elastic-wave velocities: Marine and Petroleum
649	Geology, 113 , 104146.
650	Phrampus, B. J., and M. J. Hornbach, 2012, Recent changes to the Gulf Stream causing
651	widespread gas hydrate destabilization: Nature, 490 , 527–530.
652	Pratt, R. G., F. Hou, K. Bauer, and M. Weber, 2005, Waveform tomography images of
653	velocity and inelastic attenuation from the Mallik 2002 crosshole seismic surveys:
654	GSC Bulletin, 585 , 1–14.
655	Priest, J. A., A. I. Best, and C. R. I. Clayton, 2006, Attenuation of seismic waves in
656	methane gas hydrate-bearing sand: Geophysical Journal International, 164, 149–159.
657	Quan, Y., and J. M. Harris, 1997, Seismic attenuation tomography using the frequency
658	shift: Geophysics, 62 , 895–905.
659	Ren, X., Z. Guo, F. Ning, and S. Ma, 2020, Permeability of hydrate-bearing sediments:
660	Earth-Science Reviews, 202, 103100.

661	Riedel, M., T. S. Collett, P. Kumar, A. V. Sathe, and A. Cook, 2010, Seismic imaging of				
662	a fractured gas hydrate system in the Krishna-Godavari Basin offshore India:				
663	Marine and Petroleum Geology, 27, 1476–1493.				
664	Riedel, M., J. J. Bahk, H. S. Kim, N. A. Scholz, D. G. Yoo, W. S. Kim, B. J. Ryu, and S.				
665	R. Lee, 2013, Seismic facies analyses as aid in regional gas hydrate assessments.				
666	Part-II: Prediction of reservoir properties, gas hydrate petroleum system analysis,				
667	and Monte Carlo simulation: Marine and Petroleum Geology, 47, 269–290.				
668	Rossi, G., D. Gei, G. Böhm, G. Madrussani, and J. M. Carcione, 2007, Attenuation				
669	tomography: An application to gas-hydrate and free-gas detection: Geophysical				
670	Prospecting, 655–669.				
671	Sahoo, S. K., L. J. North, H. Marín-Moreno, T. A. Minshull, and A. I. Best, 2019,				
672	Laboratory observations of frequency-dependent ultrasonic P-wave velocity and				
673	attenuation during methane hydrate formation in Berea sandstone: Geophysical				
674	Journal International, 219, 713–723.				
675	Sahoo, S. K., B. N. Madhusudhan, H. Marín-Moreno, L. J. North, S. Ahmed, I. H.				
676	Falcon-Suarez, T. A. Minshull, and A. I. Best, 2018, Laboratory Insights Into the				
677	Effect of Sediment-Hosted Methane Hydrate Morphology on Elastic Wave Velocity				
678	From Time-Lapse 4-D Synchrotron X-Ray Computed Tomography: Geochemistry,				
679	Geophysics, Geosystems, 19, 4502–4521.				
680	Sava, D., and B. A. Hardage, 2006, Rock physics characterization of hydrate-bearing				
681	deepwater sediments: The Leading Edge, 25, 616–619.				
682	Shankar, U., 2016, Gas hydrate saturation from seismic data constrained by log data in				
683	the Krishna-Godavari Basin: Journal of Petroleum Exploration and Production				

Bownlgaded 01/11/22 to 217.8.141.190. Redistribution subject to SFG license or convirient, see Terms of Use at https://library.seg.org/page/pglicies/Jerms, convirience/lerms, convirien

Interpretation

684	Technology, 6, 13–23.
685	Sloan, E. D., 1998, Gas hydrates: Review of physical/chemical properties: Energy and
686	Fuels, 12 , 191–196.
687	Staykova, D. K., W. F. Kuhs, A. N. Salamatin, and T. Hansen, 2003, Formation of
688	Porous Gas Hydrates from Ice Powders: Diffraction Experiments and Multistage
689	Model: The Journal of Physical Chemistry B, 107, 10299–10311.
690	Stern, L. A., S. H. Kirby, S. Circone, and W. B. Durham, 2004, Scanning electron
691	microscopy investigations of laboratory-grown gas clathrate hydrates formed from
692	melting ice, and comparison to natural hydrates: American Mineralogist, 89, 1162-
693	1175.
694	Tohidi, B., R. Anderson, M. Ben Clennell, R. W. Burgass, and A. B. Biderkab, 2001,
695	Visual observation of gas-hydrate formation and dissociation in synthetic porous
696	media by means of glass micromodels: Geology, 29, 867.
697	Tonn, R., 1991, The determination of the seismic quality factor Q from VSP data: A
698	comparison of different computational methods: Geophysical Prospecting, 39 , 1–27.
699	Tréhu, A. M., P. E. Long, M. E. Torres, G. Bohrmann, F. R. Rack, T. S. Collett, D. S.
700	Goldberg, A. V. Milkov, M. Riedel, P. Schultheiss, N. L. Bangs, S. R. Barr, W. S.
701	Borowski, G. E. Claypool, M. E. Delwiche, G. R. Dickens, E. Gracia, G. Guerin, M.
702	Holland, J. E. Johnson, Y. J. Lee, C. S. Liu, X. Su, B. Teichert, H. Tomaru, M.
703	Vanneste, M. Watanabe, and J. L. Weinberger, 2004, Three-dimensional distribution
704	of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204:
705	Earth and Planetary Science Letters, 222, 845–862.
706	Tréhu, A. M., M. E. Torres, G. Bohrmann, and F. S. Colwell, 2006a, Leg 204 synthesis:

Page 34 of 61

Interpretation

707	gas hydrate distribution and dynamics in the central Cascadia accretionary complex:
708	Proceedings of the Ocean Drilling Program, 199 Scientific Results, 204.
709	Tréhu, A. M., G. Bohrmann, M. E. Torres, F. S. Colwell, M. W. Lee, and T. S. Collett,
710	2006b, Gas Hydrate and Free Gas Saturations Estimated from Velocity Logs on
711	Hydrate Ridge, Offshore Oregon, USA:
712	Waite, W. F., J. C. Santamarina, D. D. Cortes, B. Dugan, D. N. Espinoza, J. Germaine, J.
713	Jang, J. W. Jung, T. J. Kneafsey, H. Shin, K. Soga, W. J. Winters, and TS. Yun,
714	2009, Physical properties of hydrate-bearing sediments: Reviews of Geophysics, 47,
715	RG4003.
716	Wang, J., S. Wu, J. Geng, and P. Jaiswal, 2017, Acoustic wave attenuation in the gas
717	hydrate-bearing sediments of Well GC955H, Gulf of Mexico: Marine Geophysical
718	Research, 39 , 509–522.
719	Yuan, T., R. D. Hyndman, G. D. Spence, and B. Desmons, 1996, Seismic velocity
720	increase and deep-sea gas hydrate concentration above a bottom-simulating reflector
721	on the northern Cascadia continental slope: Journal of Geophysical Research: Solid
722	Earth, 101, 13655–13671.
723	Yun, T. S., 2005, Compressional and shear wave velocities in uncemented sediment
724	containing gas hydrate: Geophysical Research Letters, 32 , L10609.
725	Zhan, L., and J. Matsushima, 2018, Frequency-dependent P-wave attenuation in hydrate-
726	bearing sediments: A rock physics study at Nankai Trough, Japan: Geophysical
727	Journal International, 214, 1961–1985.
728	

https://mc.manuscriptcentral.com/interpretation This paper presented here as accepted for publication in Interpretation prior to copyediting and composition. © 2021 Society of Exploration Geophysicists and American Association of Petroleum Geologists.

Bownlgaded 01/11/22 to 217.8.141.190. Redistribution subject to SFG license or convirient, see Terms of Use at https://library.seg.org/page/pglicies/Jerms, convirience/lerms, convirien

60

Interpretation

35

729	LIST OF FIGURES
730	Figure 1. Location of Leg 204 on the South Hydrate Ridge on the Cascadia continental
731	margin which overlies the subduction zone of Juan de Fuca plates thrusting beneath the
732	North American plate. Seismic data is from Sites 1244, 1247 and 1250; black circles
733	represent other drillings; red line shows the surface seismic line crossing site 1244
734	(Modified after Leg 204 Report, 2006).
735	Figure 2. Seismic section across Site 1244 where BSR (indicated by arrows) can be
736	recognized at 100 – 150 m depth.
737	Figure 3. Raw z-component near-offset (55 m) VSP seismic data in (a) 1244E; (b)
738	1247B; (c) 1250F.
739	Figure 4. Raw sonic logging data in (a) 1244E; (b) 1247B; (c) 1250F.
740	Figure 5. (a) Z component of near offset (55 m) VSP downgoing recording after pre-
741	processing; (b) Monopole seismic traces obtained from sonic logging; (c) Spectrum of
742	VSP traces for shallower trace (blue) and deeper trace (red); (d) Spectrum of sonic traces
743	at receiver 1 (blue) and receiver 8 (red).
744	Figure 6. The data processing procedure for (a) the VSP and (b) the sonic logging to
745	estimate the seismic attenuation.
746	Figure 7. 1244E well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate
747	saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity
748	and (e) attenuation. The dashed line represents BSR.
749	Figure 8. 1247B well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate
750	saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity
751	and (e) attenuation. The dashed line represents BSR.

З
<u>,</u> 4
Ĕ
s/fe
licie
199 1980
oj 2
%13 >∎⊿
° ∯17
91 <u>و</u>
 ත1
Ĕ22
<u>م</u>
<u>82</u> 4
_2 5 ⊆r⊵
0100 0100
528
ō29
SS E
<u>9</u> 90
<u>т</u>
1023
38 033
165t 13 2.00 2.00 2.00 2.00
subject to S subject to S
ijon_subject to S 2 9 5 190 190
ribution subject to S 6 & 2 9 5 DO
distribution subject to S 0 6 8 2 9 5 00
Redistribution subject to S 1 0 6 8 2 9 5 00
Lao Redistribution subject by S
41.190. Redistribution subject 18 S 4 . 5 . 1 . 6 . 6 . 8 . 2 . 9 . 9 . 190 .
-8-141-190, Redistribution, subject 10 S -14 - 15 - 15 - 16 - 26 - 2 - 9 - 5 - 150 -
212.8.141.190. Redistribution.subject to S
to_217.8,141.190, Redistribution.subject 10 S
ሄ2 ኢሳደ 10 212 ዓ. ዓ. 141 . 190. Redistribution subject to S ው ው ላ ው ና ተት ር እስ ከ 1 ው ው ወ ወ ወ ው ው
14.1 ¥2 \$ to 213.8,141.190, Redistribution Subject 10 S
Pd.01/11/24to_217.84141.190. Redistribution.subject to S
3aded 01/1 1/2 1 to 2 17 .8 .141 . 190, Redistribution subject to S
wnlgaded.01/11/24.to_217.8.141.190. Redistribution.subject to S
ይංሦስgaded 01/1 1/2 μο 212 . ዓ. 1 41 . 190. Redistribution subject to S 2 ት ස ස ස ස ස ස 2 ዓ. 5 ዓ. 5 ዓ. 5 ዓ. 5 ዓ. 6 ዓ. 6 ዓ. 6 ዓ. 6
S Bownloaded 01/1 1/2 to 217.8.141.190. Redistribution subject to S to 2 to 2 to 2 to 2 to 2 to 2 to
2 2 9 2 9 2 9 2 4 2 4 4 5 4 5 4 7 9 7 8 4 4 1 7 3 6 4 8 4 8 4 9 1 7 9 7 8 9 6 1 9 9 8 9 9 1 9 9 9 1 9 9 1 9 9 1 9 9 1 9 9 9 1 9 9 9 1 9 1 9 9 1 9
3 8 2 5 2 9 Wingaded 01/1 1/2 4 to 217. 8 141. 190. Redistribution subject to 3 8 9 9 5 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0 6 8 2 9 9 9 9 9 1 2 8 7 9 7 7 8 9 9 9 1 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9

1

752 Figure 9. 1250F well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate

saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity

and (e) attenuation. The dashed line represents BSR.

755 Figure 10. Idealized conceptual illustration of the microstructure of hydrate-bearing

sediments. A = Cementing at grains contact; B = Pore-filling hydrates framework.

757 **Figure 11.** Simplified workflow of the Hydrate-Bearing Effective Sediment (HBES)

model. More detailed descriptions and procedures can be referred to Marín-Moreno et al.

759 (2017).

760 Figure12. Comparison between the seismic attenuation and gas hydrate saturation above

the BSR (grey dotted line) at (a) 1244E, (b) 1247B and (c) 1250F, respectively.

Figure 13. Measured attenuation (dots) and modeled attenuation (lines) as a function of

763 gas hydrate saturation of 1244E (blue circles), 1247B (red circles) and 1250F (yellow

circles), respectively. Note that the summation of pore-filling and cementing hydrate adds100%.

766 Figure 14. Measured attenuation (dots) and modeled attenuation (lines) of P wave as a

function of frequency at (a) 4%, (b) 16%, (c) 24% and (d) 30% gas hydrate saturation.

768 Note that 85%, 90% and 95% cementing refer to the fraction of cementing of the total

hydrate saturation, i.e., 85% (or 90%/95%) × hydrate saturation.

Figure 15. Conceptual model of cementing hydrates growing at grain contacts with

increasing gas hydrate saturation. (a) Host grains without hydrates; (b) Hydrates growing

at grain boundaries; (c) Enveloped grains with hydrates; (d) Interconnected grain-hydrate

network (Modified after Priest et al., 2006).

https://mc.manuscriptcentral.com/interpretation

Interpretation

Figure B1. Scattering plot of the seismic attenuation and gas hydrate saturation above the

BSR from 1244E, 1247B and 1250F. Different colors represent the standard deviation of

776 P wave attenuation.

Figure B2. Measured mean attenuation (dots) with error bar showing the 95% confidence

778 interval as a function of gas hydrate saturation.

Figure B3. Measured mean attenuation (dots) with error bar showing the 95% confidence

interval as a function of gas hydrate saturation for 1244E, 1247B and 1250F,

781 respectively.

782 Figure B4. Measured mean attenuation (dots) with error bar showing the 95% confidence

783 interval and modeled attenuation (lines) as a function of gas hydrate saturation.

784

https://mc.manuscriptcentral.com/interpretation

- **Table 1.** Published and this study's seismic attenuation (Q value is the inverse of the
- 787 attenuation) for hydrate-bearing sediments.
- **Table C1.** Fixed input parameters used in the HBES model.
- **Table C2.** Case dependent input parameters used in the HBES model.

Figure 1. Location of Leg 204 on the South Hydrate Ridge on the Cascadia continental margin which overlies the subduction zone of Juan de Fuca plates thrusting beneath the North American plate. Seismic data is from Sites 1244, 1247 and 1250; black circles represent other drillings; red line shows the surface seismic line crossing site 1244 (Modified after Leg 204 Report, 2006).

269x284mm (300 x 300 DPI)

https://mc.manuscriptcentral.com/interpretation

Figure 2. Seismic section across Site 1244 where BSR (indicated by arrows) can be recognized at 100 - 150 m depth.

Figure 3. Raw z-component near-offset (55 m) VSP seismic data in (a) 1244E; (b) 1247B; (c) 1250F.

1192x266mm (600 x 600 DPI)

Figure 4. Raw sonic logging data in (a) 1244E; (b) 1247B; (c) 1250F.

1202x290mm (600 x 600 DPI)

Figure 5. (a) Z component of near offset (55 m) VSP downgoing recording after pre-processing; (b) Monopole seismic traces obtained from sonic logging; (c) Spectrum of VSP traces for shallower trace (blue) and deeper trace (red); (d) Spectrum of sonic traces at receiver 1 (blue) and receiver 8 (red).

1242x839mm (600 x 600 DPI)

https://mc.manuscriptcentral.com/interpretation

Figure 6. The data processing procedure for (a) the VSP and (b) the sonic logging to estimate the seismic attenuation.

https://mc.manuscriptcentral.com/interpretation

Figure 7. 1244E well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity and (e) attenuation. The dashed line represents BSR.

Figure 8. 1247B well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity and (e) attenuation. The dashed line represents BSR.

https://mc.manuscriptcentral.com/interpretation

Figure 9. 1250F well logging data: (a) gamma ray, (b) resistivity, (c) gas hydrate saturation derived from the log of resistivity using Archie's equation, (d) P-wave velocity and (e) attenuation. The dashed line represents BSR.

890x441mm (600 x 600 DPI)

Figure 10. Idealized conceptual illustration of the microstructure of hydrate-bearing sediments. A = Cementing at grains contact; B = Pore-filling hydrates framework.

134x95mm (300 x 300 DPI)

1 2

Figure 11. Simplified workflow of the Hydrate-Bearing Effective Sediment (HBES) model. More detailed descriptions and procedures can be referred to Marín-Moreno et al. (2017).

615x515mm (600 x 600 DPI)

https://mc.manuscriptcentral.com/interpretation

Figure 12. Comparison between the seismic attenuation and gas hydrate saturation above the BSR (grey dotted line) at (a) 1244E, (b) 1247B and (c) 1250F, respectively.

626x443mm (600 x 600 DPI)

Figure 13. Measured attenuation (dots) and modeled attenuation (lines) as a function of gas hydrate saturation of 1244E (blue circles), 1247B (red circles) and 1250F (yellow circles), respectively. Note that the summation of pore-filling and cementing hydrate adds 100%.

841x479mm (600 x 600 DPI)

Figure 14. Measured attenuation (dots) and modeled attenuation (lines) of P wave as a function of frequency at (a) 4%, (b) 16%, (c) 24% and (d) 30% gas hydrate saturation. Note that 85%, 90% and 95% cementing refer to the fraction of cementing of the total hydrate saturation, i.e., 85% (or 90%/95%) × hydrate saturation.

817x484mm (600 x 600 DPI)

1 2 3

https://mc.manuscriptcentral.com/interpretation

Figure 15. Conceptual model of cementing hydrates growing at grain contacts with increasing gas hydrate saturation. (a) Host grains without hydrates; (b) Hydrates growing at grain boundaries; (c) Enveloped grains with hydrates; (d) Interconnected grain-hydrate network (Modified after Priest et al., 2006).

737x477mm (600 x 600 DPI)

https://mc.manuscriptcentral.com/interpretation

Figure B1. Scattering plot of the seismic attenuation and gas hydrate saturation above the BSR from 1244E, 1247B and 1250F. Different colors represent the standard deviation of P wave attenuation.

881x538mm (600 x 600 DPI)

2 Bownlgaded 01/1 1/2 to 217 & 141 190. Redistribution subject to SFG license or convirint, see Terrors of Use at https://library.seq.org/page/pglicies/terros. c 56 57 58 59 60

1

Figure B2. Measured mean attenuation (dots) with error bar showing the 95% confidence interval as a function of hydrate saturation.

838x479mm (600 x 600 DPI)

Figure B3. Measured mean attenuation (dots) with error bar showing the 95% confidence interval as a function of gas hydrate saturation for 1244E, 1247B and 1250F, respectively.

839x482mm (600 x 600 DPI)

60

Figure B4. Measured mean attenuation (dots) with error bar showing the 95% confidence interval and modeled attenuation (lines) as a function of gas hydrate saturation.

838x479mm (600 x 600 DPI)

Table 1. Published and this study's seismic attenuation (Q value is the inverse of the attenuation) for hydrate-bearing sediments.

Location	Frequency (Hz)	Q value	Saturation
Blake Ridge, US	20-150 (Single-channel)	200-300	3%-4%
(Wood et al., 2000)	10-120 (VSP)	>20	
	10k-20k (Sonic logging)	No data	
Mallik field, Canada	10k-15k (Sonic logging)	6-20	60%-80%
(Dvorkin & Uden 2004,	10-200 (VSP)	7-13	
Bauer et al., 2008)	150-500 (Crosshole)	5-11	
Nankai Trough, Japan	10k-20k (Sonic logging)	25-100	20%-30%
(Matsushima et al., 2006)	30-110 (VSP)	>100	
Western Svalbard,	20-200 (3D seismic)	150-200	6%-10%
Norway			
(Madrussani et al., 2010)			
Krishna-Godavari, India	8k-15k (Sonic logging)	344.82	50%-80%
(Nittala et al., 2017)	5-50 (3D seismic)	80-81	
	5-120 (Multi-channel at 01-10 site)	160-320	
Gulf of Mexico	8k-24k (Sonic logging)	50	40%-75%
(Wang et al., 2017)			
Cascadia, Oregon	25-200 (3D seismic)	>50	8%-10%
(this study)	30-150 (VSP)	>80	
	3k-15k (Sonic logging)	>90	

Parameter	Value	Unit	Reference
Confining pressure (P_c)	1.14×10^{7}	Pa	
Pore fluid pressure (P_p)	0.92×10^{7}	Pa	
Temperature (T)	9	°C	
Hydrate bulk modulus (K_H)	7.9 × 10 ⁹	Pa	(Best et al., 2013)
Hydrate shear modulus (G_H)	3.3×10^{9}	Pa	(Best et al., 2013)
Hydrate Possion's ratio (ν_H)	0.32		(Marín-Moreno et al.,
			2017)
Hydrate Density (ρ_H)	925	Kg/m ³	(Helgerud et al., 2009)
Methane bulk modulus (K_{CH_4})	<i>К_{СН4}(Р_р, Т)</i>	Pa	(Millero et al., 1980)
Methane density (ρ_{CH_4})	$\rho_{CH_4}(P_{p}, T)$	Kg/m ³	(Millero et al., 1980)
Methane viscosity (μ_{CH_4})	$\mu_{CH_4}(P_p, T)$	Pa s	(Millero et al., 1980)
Methane irreducible saturation	0.02		(Reagan and Moridis,
(S_{rCH_4})			2008)
Grain bulk modulus (<i>K</i> _s)	36×10^{9}	Pa	(Ecker et al., 2000)
Grain shear modulus (G_s)	45×10^{9}	Pa	(Ecker et al., 2000)
Grain Poisson's ratio (ν_s)	0.062		(Marín-Moreno et al.,
			2017)
Grain density (ρ_s)	2650	Kg/m ³	(Ecker et al., 2000)
Grain diameter (d_s)	1 × 10 ⁻⁴	m	(Best et al., 2013)
Grain coordination number (<i>n</i>)	8.5		(Ecker et al., 2000)

Table C1. Fixed input parameters used in the HBES model.

Water bulk modulus (K_W)	$K_W(P_p, T)$	Pa	(Setzmann and Wagner,
			1991)
Water density (ρ_W)	$\rho_W(P_P, T)$	Kg/m ³	(Setzmann and Wagner,
			1991)
Water salinity (s)	3.5	% wt	
Water irreducible saturation (S_{rW})	0.2		(Reagan and Moridis,
			2008)
Porosity without hydrate (φ_0)	0.40		(Daigle et al., 2015)
Critical porosity (φ_c)	0.38		(Best et al., 2013)
Intrinsic permeability without	10 ⁻¹³	<i>m</i> ³	(Daigle et al., 2015)
hydrate (K_0)			

Parameter	Value	Unit	Reference
Aspect ratio of inclusions	α { <i>iCH</i> ₄ , <i>iW</i> }		
containing methane or water			
Concentration of cementing	<i>c</i> { <i>C</i> , <i>PF</i> }		
hydrate (<i>C</i>) and pore-filling			
hydrate (PF)			
Concentration of inclusions in	Ci	Pa	
hydrate			
Frequency	f	Hz	
Porosity	φ		
Saturation of hydrate, methane,	<i>S</i> { <i>H</i> , <i>CH</i> ₄		
and water in the pore space	, W}		

Table C2. Case dependent input parameters used in the HBES model.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be obtained by contacting the corresponding author.