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ABSTRACT: To date, experimental and theoretical works have been unable to
uncover the ground-state configuration of the solid electrolyte cubic Li7La3Zr2O12 (c-
LLZO). Computational studies rely on an initial low-energy structure as a reference
point. Here, we present a methodology for identifying energetically favorable
configurations of c-LLZO for a crystallographically predicted structure. We begin by
eliminating structures that involve overlapping Li atoms based on nearest neighbor
counts. We further reduce the configuration space by eliminating symmetry images
from all remaining structures. Then, we perform a machine learning-based energetic
ordering of all remaining structures. By considering the geometrical constraints that
emerge from this methodology, we determine that a large portion of previously
reported structures may not be feasible or stable. The method developed here could be
extended to other ion conductors. We provide a database containing all of the
generated structures with the aim of improving accuracy and reproducibility in future
c-LLZO research.

The use of solid electrolytes in Li-ion batteries promises
higher energy densities, improved safety, longer life-

times,1 and reduced production costs compared to the current
generation of commercial liquid electrolyte cells.2,3 However,
poor electrochemical and chemomechanical stability present a
significant issue for a number of superionic solid-state
conductors;4 for example, dendrite formation through the
electrolyte, which causes batteries to short-circuit, has been
reported even for the most stable solid electrolytes.5−9

Li7La3Zr2O12 (LLZO) has the best interfacial stability out of
all of the popular fast ion conducting solid electrolytes against
metallic Li.10 LLZO has two primary polymorphs: the highly
conducting disordered cubic LLZO (c-LLZO) and the ordered
tetragonal LLZO (t-LLZO), which has a Li diffusivity that is
more than 2 orders of magnitude smaller than that of the cubic
phase.11,12 c-LLZO has a Hermann−Mauguin space group of
Ia3̅d with Li atoms partially occupying the 24d and 96h sites
(Figure 1b). c-LLZO is not stable at room temperature, but it
has been stabilized with a number of substitutional dopants on
its 24d sites.13−16 The 24d site is tetrahedral, and the 96h site
occurs at a tetrahedral/octahedral interface.
Despite the technological relevance and intensive

study36,41−45 of c-LLZO, there is no consensus of its Li
occupancy (Figure 1c). Here, we present a combinatorial study
to find and rank all possible Li site occupancies. Previous
computational studies have often used one of the experimental
values in Figure 1 as a starting point to obtain an idealized unit
cell using a variety of methods (see Table S2). The range of
predicted structures in the literature indicates some disagree-

ment about the ground state. Without knowing whether the
structures that are used are close to the ground state, more
complicated thermodynamic and observable properties that are
calculated from these structures may not be well-described.
To find the most stable structures, we intend to produce all

possible structures of a c-LLZO unit cell and order them
energetically to ascertain the presence of a significant energy
difference in the choice of the structure. We also hope to elicit
whether some of the structural properties, such as the 24d:96h
ratio, are indicative of a structure’s energy. We do not include
the 48g site that occurs between the 96h sites, as it is not
reported in most of the refinements we found (see Table S1 for
references). The structures produced in this work are to be
published alongside our results (see Section S1 in the
Supporting Information (SI)) in the hope that we can provide
further clarity and improve reproducibility in this field of
research.
The number of ways to populate 120 sites with 56 Li is

×( )120
56 7.4 1034, rendering a brute-force combinatorial

method unviable. To reduce this configuration space, we begin
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by eliminating all overlapping Li atoms (see Figure 1a)46 by
imposing a minimal Li−Li distance. Here, we use a distance of
1.7 Å (see Section S9), which is less than 2 times the ionic
radius of a Li atom, smaller than the minimum distance in t-
LLZO (2.56 Å),47 and significantly less than the Li−Li
distances in metallic Li. In practice, any minimal distance
between 1.67 and 2.3 Å would be suitable for a numerical
implementation.
This constraint on allowable Li−Li distances immediately

limits the physically possible 24d:96h ratios. To describe the
possible structures available under this simple geometric
constraint, we outline the two major consequences this limit
imposes.

1. A maximum of 48 of the 96h sites can be occupied at
any one time: each 96h site exists as a pair within 0.68 Å
of each other, so at most, one site can contain a Li atom.

2. Each 24d site occupation eliminates four of the 96h sites,
as they are within 1.67 Å of this site.

We can use this information to narrow the range of Li site
occupations with the following equations:

y
N

2h
h

96 occupancy
96 sites

(1)

y N x4h h d96 occupancy 96 sites 24 occupancy (2)

where N96h sites is the number of total 96h sites, y96h occupancy is
the number of occupied 96h sites, and x24d occupancy is the
number of occupied 24d sites. The area described in eqs 1 and
2 (i.e., the unshaded area in Figure 1c) is the region with
sufficient Li spacing at a given Li concentration. The full region
is shown in Figure S1. Outside of this area, the structures (by
necessity) will have a Li−Li interaction that is smaller than

what we would expect to find in reality. For the stoichio-
metrically predicted case (56 Li atoms per unit cell), we
observe that 8 ≤ x24d occupancy ≤ 13.3. This means that for a
single unit cell, the only stoichiometric 24d:96h ratios that are
possible are 8:48, 9:47, 10:46, 11:45, 12:44, and 13:43. This is
how we refer to specific ratios throughout the rest of this
Letter.
Figure 1c shows that a significant number of studies have

reported structures that imply overlapping Li atoms with Li−Li
distances smaller than 1.7 Å. For example, a structure with a
24d:96h ratio of 17:39 has a population of 17 occupied 24d
sites, which necessitates that 68 (4 × 17) of the 96h sites fall
within 1.7 Å of an occupied 24d site. Trying to distribute 39 Li
atoms among the remaining 28 (96 − 68) sufficiently spaced
96h sites is impossible; thus, 11 of these Li atoms would
occupy sites within 1.7 Å of another Li atom.
Having established the possible 24d:96h ratios, we could

then generate all of the allowed structures. We initially
generated all of the possible 24d permutations for a given 24d
occupancy, eliminating directly neighboring 96h sites from
consideration. We then populated the remaining 96h sites such
that no two nearest neighbors were occupied simultaneously.
The number of structures for each 24d:96h ratio (for one unit
cell) is given in Table 1. We used the crystal structure sites
reported by Buschmann et al.19 as the framework to perform
our generation in.
This method generated all possible structures, approximately

2.3 × 108, including duplicates having equivalent symmetries.
To further reduce our large data set to unique conformations,
we constructed the upper triangular connectivity matrix of the
Li sublattice for each structure. First, we defined a connectivity
matrix as the distances between each Li atom to every other Li

Figure 1. (a) Examples of the three shortest site interactions from the center of each atom. The first and second neighboring Li sites are too close
and cannot simultaneously contain a Li atom. (b) Unit cell of c-LLZO with all of the 24d (dark purple) and 96h (light purple) sites highlighted. O
and La atoms are represented by red and green spheres, respectively, and Zr atoms are represented by blue polyhedra. (c) Experimental and
theoretical site assignments and/or starting structures in the literature: a,17 b,13 c,12 d,18 e,19 f,20 g,21 h,22 i,22 j,22 k,23 l,24 m,21 n,7−9,25−29 o,30 p,31,32

q,33 r,34 s,35 t,35 and u.36 Asterisks (*) indicate that the experimental assignments used neutron diffraction; the rest of the structures were solved
with X-ray diffraction. The region in red indicates the 24d:96h ratios that cannot exist without a Li−Li interaction below the crystal ionic diameter.
The data that were used for this image are provided in the Supporting Information (Tables S1 and S2). (d) A scale showing important Li−Li
interaction distances that have been recorded in the literature: the crystal ionic diameter,37 min literature distance,38 metal,39 dimer (in a vacuum)
(cf. Figure S6), and average Li−Li distance in a liquid electrolyte,40 as well as our chosen cutoff point at 1.7 Å (red dashed line).
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atom. The matrix was then flattened and sorted to ensure
uniformity in all of the matrices. This preprocessing of our
structures decreased the memory required to store them,
especially compared to that which is required for the full
atomic structure of the crystal. A direct comparison of all the
structures to check the symmetry would be computationally
costly. Thus, we used local sensitive hashing (LSH)48 to
perform fast approximate similarity searches with further lower
memory requirements than the unhashed data. The use of LSH
optimizes the pairwise comparison from scaling at N( )2 to

N( ), where N is the number of structures. This symmetry
comparison method is designed to work for large data sets of
similar data, which allowed us to perform symmetry checks on
over 100 million structures in a reasonable time frame and with
attainable memory requirements, something that would be
impractical to attempt with conventional methods.49−51 The
trade-off for increased speed and lower memory costs is the
high specificity of the method. In practice, this method is
limited to the comparison of monatomic sublattices with
predefined positions.
We validated this method for both the 13:43 and 12:44

ratios (see the SI for further discussion). By employing this
technique, we found that only ∼1% of our structures were
symmetrically unique, allowing for a reduction by a further
factor of ∼100 (see Table 1).

Having reduced the configuration space to around 2 × 106
structures (Table 1), we were then able to energetically order
our structures. To achieve this in a reasonable time frame, we
performed density functional theory (DFT) calculations on
small subsets of the total number of structures. The results
were then used to fit a multiple linear regression (MLR)
model. The DFT calculations were performed on two major
subsets of the structures. The first subset was the 200
energetically lowest structures, according to the COMPASS III
force field52 (see Section S6). The second subset was a random
selection of approximately 1000 structures across the entire
configuration space to ensure good coverage. In total, 1235
single-point DFT calculations were performed.
All of the DFT calculations were performed with the

ONETEP code, where the computational cost scales linearly
with the number of atoms, as opposed to the cubic scaling in
conventional DFT.53,54 We used the PBE GGA exchange
correlation functional55 and a kinetic energy cutoff of 830 eV.
Further details, including all of the input files, can be found in
the SI, Sections S1 and S7.
Because some structures had Li distributed in such a way

that nonidentity symmetry operations were possible, there was
variation in the contribution of configurational entropy to the
total energy. We calculated the configurational entropy for all
structures and have included it in all results presented in this
work, unless stated otherwise. A discussion of how we
calculated the configurational entropy is provided in Section
S11 of the SI.
Because we are working with only crystallographically

predicted structures, the base LaZrO structure remains
unchanged with each configuration; therefore all energetic
changes are due to the placement of Li. We acknowledge that
in reality, the geometry does change considerably depending
on the Li environment.32 However, this is a suitable
assumption to make to energetically order the crystallo-
graphically predicted structures we generated. Therefore, an
expression of all types of Li interactions would be a sufficient
descriptor for predicting the energies of c-LLZO structures.
The DFT energies were paired with a numerical representation
of the structure and fit using a MLR model. The structures

Table 1. Total Number of c-LLZO Structures for Every
Possible 24d:96h Ratio after Limiting to the Specific
24d:96h Ratio(s) (SI, Section S5), Mandating That All Li−
Li Interactions Must Be >1.7 Å, and Ensuring the Generated
Structures Are Symmetrically Unique

24d:96h ratio limited >1.7 Å spacing symmetry unique

8:48 1.8 × 1025 80 019 456 816 454
9:47 9.3 × 1023 98 304 000 905 216
10:46 4.4 × 1022 41 754 624 366 971
11:45 1.9 × 1021 7 176 192 65 958
12:44 7.6 × 1019 427 176 4162
13:43 2.6 × 1018 1056 11
total 1.9 × 1025 227 682 504 2 158 772

Figure 2. (a) Parity plot of the test set of the ONETEP total energies compared to the MLR-predicted energies for each 24d:96h ratio. (b) The
relative frequency of energy occurrences for each 24d:96h ratio. Configurational entropic contributions are not included in the energies here.
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were represented by a frequency occurrence list of all possible
Li−Li interactions. This representation is a reformulation of
the connectivity matrix of the Li sublattice that was used for
the symmetry reduction described above. The data were split
into test and training sets with a 1:3 ratio. For further details
regarding this methodology, we refer the reader to Section S8
of the SI.
By applying this model to our test set, we found a correlation

of 0.9996 (see Figure 2a) with DFT energies with a mean
average error of 0.0325 eV.
All structures were found to occur within a range of 5.7 eV

from our lowest-energy structure. Seventeen of the 20 lowest-
energy structures had a ratio of 8:48 (Figure 2b), while the
17th, 19th, and 20th lowest-energy structures had a ratio of
9:47. The average energy for all of the structures occurred at an
energy that was 1.47 eV higher than the ground-state
structures. The average energy for each ratio increased with
increasing 24d occupancy, indicating an energetic preference to
avoid 24d occupation where possible. There were five
structures, all 8:48, within 0.026 eV (1 kT at 298 K) of the
lowest-energy structure (Figure 3). The five lowest-energy
structures have very similar atomic coordinates, all having the
same 24d configuration with only slight variations in the 96h
configuration, except for the fourth lowest-energy structure,
which has different 24d and 96h structures. We performed
geometry optimization calculations on the final five structures
and found that the energy gap between them narrowed further.
We note that our energetic ordering procedure does not

include vibrational entropic contributions and assumes a
reasonable retention of ordering upon geometry relaxation,
which are both approximations. We acknowledge the necessity
of finding a good energetic ordering for the optimized
structure of c-LLZO and have made preliminary efforts toward
that. Specificallly, we tested the effect of geometry relaxation
on a small data set of 20 structures (SI, Section S12). However,
a large-scale energy prediction of the geometry optimized
structures requires considerable computational effort and
therefore falls outside the scope of this Letter.
It should be stressed that pure c-LLZO is not stable at room

temperature and requires dopants (typically Al or Ga on the
24d sites).56 That being said, the structures we provide
alongside this work should give an excellent starting point for
all future studies on dopants. The addition of dopants will
significantly increase the complexity of this problem. Before
attempting such a feat, though, we believe that understanding

the potential energy surface of the geometry optimized
structures is a more pressing matter.
In summary, we created a fast evaluation procedure to

generate and energetically order all crystallographically
predicted structures for crystals with partially occupied sites.
We then used the basis of this procedure, disallowing
structures with atoms too close to each other, to highlight
that a large proportion of experimental and theoretical
literature are predicting or working with structures that are
not reflective of a real system (Figure 1). It is our hope that, in
providing all possible structures, we can bring further accuracy
and reproducibility to future computational LLZO research.
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