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OPINION Microbiotoxicity: antibiotic usage and its

unintended harm to the microbiome
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Purpose of review

Antibiotic use is associated with development of antimicrobial resistance and dysregulation of the
microbiome (the overall host microbial community). These changes have in turn been associated with
downstream adverse health outcomes. This review analyses recent important publications in a rapidly
evolving field, contextualizing the available evidence to assist clinicians weighing the potential risks of
antibiotics on a patient’s microbiome.

Recent finding

Although the majority of microbiome research is observational, we highlight recent interventional studies
probing the associations between antibiotic use, microbiome disruption, and ill-health. These studies include
germ-free mouse models, antibiotic challenge in healthy human volunteers, and a phase III study of the
world’s first approved microbiome-based medicine.

Summary

The growing body of relevant clinical and experimental evidence for antibiotic-mediated microbiome
perturbation is concerning, although further causal evidence is required. Within the limits of this evidence,
we propose the novel term ‘microbiotoxicity’ to describe the unintended harms of antibiotics on a patient’s
microbiome. We suggest a framework for prescribers to weigh microbiotoxic effects against the intended
benefits of antibiotic use.
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Antibiotics, when appropriately prescribed, are life-
saving, indispensable weapons in our clinical
armoury. However, decades of inappropriately
broad, lengthy or even unnecessary antibiotics have
led to the global emergence of antimicrobial resist-
ance (AMR) [1

&

]. The WHO deemed AMR one of the
10 greatest threats to global health, and resistant
infections are implicated in nearly five million
deaths worldwide each year. The spectre of an
’antibiotic apocalypse’ has entered public con-
sciousness, with AMR featuring regularly in the
news and social media [2]. The drivers underlying
AMR, and the barriers to addressing it, are diverse
and complex [3]. Paradoxically, the enormity and
pervasiveness of AMR may make it difficult for
clinicians to factor into individual prescribing
decisions, when faced with the more tangible and
immediate problem of the patient in front of them.

In recent years, there has been exponential
growth in research into and interest in the human
microbiome. Such research has highlighted
uthor(s). Published by Wolters Kluwe
perturbation, and adverse health outcomes. This
review analyses the role of the microbiome as a
complex immunological, endocrine and neurologi-
cal organ system, and the potentially harmful effects
of antibiotics on this microbial ecosystem. We pro-
pose the novel term ‘microbiotoxicity’ to encompass
r Health, Inc. www.co-infectiousdiseases.com
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KEY POINTS

� The human microbiome is involved in the regulation of
immunity and inflammation, energy metabolism, barrier
integrity, containment of potential pathogens,
and neurotransmission.

� Antibiotics can cause significant and prolonged
changes to a patient’s microbiome, which have been
associated with adverse health outcomes including
obesity, asthma, diabetes, inflammatory bowel disease,
colorectal cancer and neurodevelopmental disorders.

� Broad-spectrum, lengthy, and repeated antibiotic
courses disrupt the microbiome most, especially during
pregnancy, early life, elderly age and intercurrent
illness; however, even narrow-spectrum and single
doses of antibiotics alter the microbiome.

� The risk of microbiotoxicity should be weighed against
the risk of infection and benefits of antibiotics when
making individual prescribing decisions.
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the unintended side effects of antibiotics on a
patient’s microbiome. In doing so, we urge clinicians
to weigh the benefits of antibiotics in treating infec-
tion against these microbiotoxic effects when mak-
ing individual prescribing decisions.
THE MICROBIOME AS A HUMAN ORGAN
SYSTEM

The microbiome is the total community of living
microorganisms colonizing all outer and inner body
surfaces, along with their microbial metabolites,
organic compounds and genetic material [4]. There
are at least as many bacterial cells as human cells in
the body [5], and 150 times more bacterial genes
than human genes [6]. The majority of these 30
trillion resident bacteria usually pose no threat to
their host; quite the opposite, they are integral to
human life (Fig. 1). Many experts now liken the
microbiome to an organ in its own right, or even
an inextricable component of a human-microbial
superorganism called a holobiont [7].

Gut microbes are involved in a wide range of
physiological functions, including production of
essential vitamins, bile salts and short-chain fatty
acids (SCFAs) such as butyrate [8]. These SCFAs
suppress oncogenesis, inflammation and appetite;
regulate glucose, lipid and energy metabolism; and
orchestrate adaptive immunity. Resident microbes
are important in the production of neurotransmit-
ters, including dopamine, serotonin and g-amino-
butyric acid, and hormones like glucagon-like
peptide 1, and the complex network of neurological,
endocrinological and microbial systems involved in
372 www.co-infectiousdiseases.com
homeostasis is termed the ‘gut–microbiota–brain
axis’ [9]. Mucosal and skin microbes also play a
central role in developing immune tolerance to both
microbial and nonmicrobial antigens, and main-
taining barrier integrity [10].

Like any organ system, the microbiome demon-
strates predictable developmental trajectory. New-
borns are born virtually free of bacteria, becoming
rapidly colonized with a diverse pioneermicrobiome
derived largely from their mothers’ vaginal, faecal,
skin, mucosal and breastmilk flora [11]. Within days
and throughout infancy, themicrobiota at each ana-
tomical nichematures until a relatively stablemicro-
biome has been established, with adaptation to
environmental and host conditions.

Some argue it is inappropriate to consider
themicrobiomeanorgan system, becauseof itsmuta-
bility and inter-individual variability [12]. However,
while microbiome composition may vary signifi-
cantly between healthy individuals, the functional
and metabolic profiles associated with a healthy
microbiomeare farmoreconserved, suggestingahigh
degree of redundancy [13]. Put anotherway, there are
many ways to construct a healthy microbiome. And
there are many ways to harm the microbiome. . .
ANTIBIOTICS ARE INHERENTLY
MICROBIOTOXIC

It might appear redundant to point out that anti-
biotics kill bacteria; and yet we see no redundancy in
warning our patients of the side effects of antibiotics
on their ownmicrobiota. We already warn oncology
patients of the cytotoxic effects of chemotherapy,
and consider liver and renal function tests before
prescribing hepatotoxic or nephrotoxic agents.
So why not pay heed to our patients’ microbiomes
when prescribing microbiotoxic agents (Fig. 2)?

The association between antibiotic use and
microbiome perturbation is becoming increasingly
compelling, and has been most intensively studied
for the gut microbiome [14–16]. Immediately fol-
lowing a course of antibiotics, there is rapid reduc-
tion in the total numbers of bacteria (biomass) and
bacterial species (alpha-diversity or richness), partic-
ularly health-associated keystone bacteria like
Bifidobacterium, Lactobacillus and Bacteroides species
[16]. This is accompanied by an initial bloom of
potential pathogens that can cause healthcare-asso-
ciated infections, including Enterobacterales, Enter-
ococcus, Clostridium and Candida [17]. There is also a
significant increase in the total burden of AMR
genes (the so-called ‘resistome’) in the host’s gut
following a course of antibiotics [18

&

,19
&&

]. This may
lead to infections with AMR pathogens, and onward
transmission of bacteria carrying AMR genes.
Volume 36 � Number 5 � October 2023



FIGURE 1. Overview of the microbiome in human health.
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In many cases, antibiotic-associated micro-
biome perturbations stabilize within a few weeks
[15]. However, some studies report much longer
recovery time and even incomplete recovery up to
a year later [18

&

,20], depending on the type, spec-
trum, duration and historic use of antibiotics.While
the long-term effect of antibiotic-associated micro-
biome perturbation remains unclear, a growing
body of evidence has linked antibiotic-associated
microbiome changes with subsequent development
of obesity, asthma, diabetes, inflammatory bowel
disease and colorectal cancer [21

&

], as well as neuro-
developmental conditions such as schizophrenia,
depression and bipolar disorders [22]. Antibiotic-
0951-7375 Copyright © 2023 The Author(s). Published by Wolters Kluwe
mediated perturbation is not limited to the gut
and has also been demonstrated for the respiratory
tract [23] and the vagina [24], with the latter asso-
ciated with downstream bacterial vaginosis and
vulvovaginal candidiasis.

One of the starkest examples of antibiotics driv-
ing microbiome dysregulation and remains Clostri-
dium difficile diarrhoea, a debilitating acute or
chronic infection associated with significant mor-
bidity and cost. Faecal microbiota transplants,
which restore host microbiota, are curative in over
80% of treated patients with recurrent C. difficile
infection, compared with less than one-third of
patients treated with vancomycin alone [25],
r Health, Inc. www.co-infectiousdiseases.com 373



FIGURE 2. Balancing microbiotoxicity against the need to treat infection.
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highlighting the importance of overall bacterial
communities in keeping pathogens at bay.

It is difficult to estimate the precise morbidity
and mortality because of antibiotic-mediated
374 www.co-infectiousdiseases.com
microbiotoxicity. Individual complications such as
C. difficile diarrhoea have a case fatality rate over
13%, rising to over 26% in elderly patients [26],
while 1.27 million deaths worldwide per year are
Volume 36 � Number 5 � October 2023
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directly attributable to bacterial AMR [1
&

]. However,
the global burden of microbiotoxicity could be
much greater indeed, if contributions to noncom-
municable diseases such as obesity, cancer and auto-
immunity are included [21

&

].
HOST FACTORS MATTER

The associations between antibiotic use, micro-
biome perturbation and ill-health are particularly
relevant in early life. Antibiotics in infancy are
associated with reduced gut microbiota diversity,
AMR gene enrichment and altered longitudinal
microbiome evolution relative to untreated infants
[27

&

]. Meta-analyses show that infants receiving
antibiotics are 37% more likely to develop asthma
than untreated infants, and 82% more likely if anti-
biotics are given in the first week of life [28

&&

].
Significant microbiota changes are also seen in
babies whose mothers received peri-partum antibi-
otics, even if the babies themselves were untreated
[29

&&

]. The impact of antibiotics on microbiota are
also pronounced in the elderly, and in acute inflam-
mation, such as intercurrent infection or comorbid-
ities [14]. And yet, it is our sickest, oldest and
youngest patients who receive most antibiotics;
indeed, 80% of children aged under 2 years and
up to 25% of pregnant women receive at least one
course of antibiotics [30]. In amultinational study of
over 750000 full-term and late-preterm neonates,
3% of all newborns received antibiotics for sus-
pected early-onset sepsis; however, for every 58 neo-
nates treated (amounting to 273 antibiotic days),
only one case of sepsis was confirmed, suggesting
that antibiotic use may have been avoidable in at
least some of these neonates [31

&

]. The effects of
antibiotics have also been explored in immunosup-
pressed patients, such as stem cell transplant recip-
ients, whose immune disturbances and high
exposure to antibiotics and healthcare facilities
make them particularly prone to antibiotic-
mediated dysbiosis [32].
ANTIBIOTIC CHOICES MATTER

When it comes to your patient’s microbiome, some
antibiotic choices appear more harmful than others.
Antibiotics with broad activity against Gram-nega-
tive bacteria, such as ciprofloxacin, are associated
with a greater disruption from baseline microbiota
than narrower spectrum antibiotics, such as amox-
icillin [14]. Broad-spectrum antibiotics and those
with activity against health-associated gut anae-
robes, including cephalosporins, clindamycin, co-
amoxiclav and carbapenems, also carry a greater risk
of C. difficile infection [33]. Further, combination
0951-7375 Copyright © 2023 The Author(s). Published by Wolters Kluwe
antibiotics, such as gentamicin with ampicillin, are
associated with greater reduction in bacterial rich-
ness compared with gentamicin or ampicillin alone
[16]. Repeated or longer antibiotic courses also cause
greater perturbation, with each additional day of
treatment associated with 16–18% reduction in
health-associated anaerobes and butyrate-produc-
ing bacteria in neonatal ICU patients [34]. That
being said, the decision to start antibiotics at all
has a greater impact onmicrobiome disruption than
course duration [35]. In fact, microbiota-associated
adverse health outcomes have been associated with
even a single dose of antibiotics, and with antibi-
otics not traditionally thought of as high-risk or
broad-spectrum, such as macrolides [35].
ASSOCIATION, CAUSATION AND FUTURE
DIRECTIONS

Although most evidence to date is observational,
there is interventional data indicating that antibi-
otics are causally related with downstream micro-
biome perturbation, including comparisons
between different antibiotic regimes [18

&

]. A pro-
spective trial of 20 healthy volunteers with no clin-
ical indication for antibiotic treatment confirmed
that the changes in microbiota diversity and AMR
genes are due to antibiotics themselves rather than
intercurrent illness [19

&&

]. The mechanisms under-
lying microbiotoxicity are becoming increasingly
understood, including direct and indirect effects:
bacteria targeted by antibiotics may have co-
dependence with other resident bacteria, either pro-
ducing metabolites required by their symbionts, or
degrading waste products toxic to their symbionts
[36]. Thus, antibiotics can indirectly harm multiple
players in a complex network of symbionts, even
beyond their direct spectrum of activity. Antibiotics
may also drive ill-health by altering host immune
development in early life, including skewing
immune development towards T-helper 2-domi-
nant profiles, which may explain the association
between antibiotics and downstream allergic sensi-
tisation and autoimmune diseases [21

&

].
Such studies, however, do not prove a causal

relationship between microbiotoxicity and down-
stream health outcomes in humans, although sev-
eral mechanisms have been proposed to explain the
associations seen (Fig. 3). In-vitro and animal data
suggest that pro-inflammatory bacteria are associ-
ated with impaired mucosal barrier integrity and
even systemic inflammation [37,38]. A causal role
for microbiota dysregulation in disease is also sup-
ported by germ-free mouse models. Compared with
conventional mice, germ-free mice display pro-
found immune defects and impaired growth [39

&

].
r Health, Inc. www.co-infectiousdiseases.com 375



FIGURE 3. Overview of evidence included: arrows indicate direction of causality implied by evidence. Numbers indicate
study cited in reference list.
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Moreover, in mouse models for obesity, inflamma-
tory bowel disease and asthma, germ-free mice
develop the disease phenotype after receiving stool
transplantation from diseased mice, with some evi-
dence of clinical improvement following microbial
restoration [40

&

]. Antibiotics can induce or worsen a
pathological phenotype in mice (such as allergic
sensitization [41

&

] or experimentally induced colitis
[42]). More compellingly, this phenotype can be
recapitulated in germ-free mice receiving stool
transplantation from the antibiotic-treated mice
[42], or even the offspring of recipient mice [41

&

].
These findings suggest a causal link between anti-
biotics and adverse health outcomes, and pinpoint
microbiome perturbation (rather than direct
376 www.co-infectiousdiseases.com
antibiotic effects) as the mediator of these down-
stream phenotypes. However, it remains unclear to
what extent findings from germ-free mice can be
extrapolated to humans.

As sequencing technologies and bioinformatic
analyses continue to improve in efficiency and
accessibility, more nuanced research quantifying
microbiotoxicity is within reach, and even clinical
diagnostic tests based on a patient’s microbiome
may be on the horizon [43]. Looking ahead, micro-
biome-based therapies are being investigated tomit-
igate antibiotic-induced microbial perturbation.
RBX2660 (trade name Rebyota) is the first live
biotherapeutic product to receive approval (US Food
and Drug Administration) for clinical use in
Volume 36 � Number 5 � October 2023
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recurrent antibiotic-refractory C. difficile infection
[44]. This consortium of microbes derived from
human stool has demonstrated clinical efficacy
(treatment success rate 70.6% compared with
57.5% for placebo) in a double-blind randomized
placebo-controlled phase III study [45

&&

]. However,
the real-word utility of such interventions remains
unclear.
CONSIDERING MICROBIOTOXICITY WHEN
PRESCRIBING ANTIBIOTICS

Wepropose the term ‘microbiotoxicity’ whenweigh-
ing antibiotic side effects on this multitudinous,
complex and oft-neglected organ system. By
acknowledging the indispensable role of the micro-
biome in human health, the duty of care of prescrib-
ers should be extended to include their patients’
microbiomes. In cases of severe infection, these
unfortunate microbiotoxic effects may be entirely
justified and unavoidable, and we do not suggest
withholding antibiotics when clinically indicated.
Rather, each antimicrobial prescription should
involve careful weighing of the risk of infection
against the risk of antibiotic-induced microbiotoxic-
ity (Fig. 2). Current antimicrobial prescribing guide-
lines rarely consider these bystander effects on the
human microbiome. Although we do not propose
ignoring such guidelines, we do recognize that cur-
rent guidance is necessarily incomplete until micro-
biome considerations are incorporated. Future
strategies for mitigating microbiotoxic effects may
includeuseofprobiotics alongside antibiotic courses,
with meta-analyses suggesting a role for probiotics
in preventing antibiotic-associated diarrhoea [46]
and upper respiratory tract infections [47], although
further evidence is needed before these can be
widely recommended.

The drivers underlying AMR are multifactorial
and deeply entrenched, including antibiotic overuse
in animal agriculture, population pressure, sanita-
tion and public health infrastructure [3]. Although
clinicians may perceive their own patient’s clinical
needs to be in conflict with tackling the global AMR
crisis, invoking the concept ofmicrobiotoxicitymay
help reframe this by focussing on their own patient’s
microbial health. This framework may also assist
clinicians communicate and negotiate shared deci-
sion-making with their patients, especially as public
awareness of the microbiome has increased with
news and social media reporting [48].
CONCLUSION

The microbiome is a complex immune, metabolic,
endocrine and neurological organ system, integral
0951-7375 Copyright © 2023 The Author(s). Published by Wolters Kluwe
to the human-microbial superorganism. Antimicro-
bials are associated with harm to the microbiome
and downstream ill-health, although these
bystander effects vary with host and antibiotic fac-
tors. We hope that the concepts and framework
presented here will help clinicians make more
nuanced and individualized antimicrobial choices,
and even empower them to challenge inappropriate
prescribing practices around them. We, therefore,
urgently invite our colleagues to add the term
‘microbiotoxicity’ to their clinical vocabulary as a
call to arms: a reminder to first do no harm,
microbes and all.
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