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Stand first 

AI tools usually aim to maximise predictive accuracy, but personalised measures of 

uncertainty, using new techniques such as conformal prediction, are needed for clinical AI to 

realise its potential.   

Main text 

Artificial intelligence (AI) is a powerful and rapidly developing technology with the potential to 

revolutionise personalised medicine and dramatically improve human health1. Yet, although 

thousands of papers are published each year on AI in healthcare, it remains strikingly absent from 

clinical practice – a fact that is widely acknowledged, but incompletely understood2. Unlocking the 

clinical potential of AI requires a firmer understanding of the strengths and weaknesses of AI tools in 

the clinic, and the technical, clinical, economic, and sociological barriers to their use in healthcare 

contexts.  

Population-level accuracy 

There are many reasons for lack of translation of AI to the clinic, including biased study design3, poor 

clinical performance2, clinician scepticism4, and concerns over patient data misuse5. A more 

fundamental issue is that the standard pipelines used to develop AI tools are often adapted from other 

disciplines, such as computer vision and natural language processing, and are designed to optimise 

population level accuracy metrics that are meaningful for those disciplines but are mismatched to the 

clinical context. AI tools built in this way do not capture the vital clinical fact that each patient is a 

unique individual.  

Patient populations are diverse. Individual differences in drug metabolism can give rise to serious 

side-effects in some patients but be lifesaving in others6; women with myocardial infarction have a 

different clinical presentation to men7; prognosis in most malignancies is linked to personalised 

characteristics8.  

AI models anchored on population-level accuracy metrics risk undervaluing these differences. While 

they may be accurate on average, such tools cannot provide reliable advice for all individual patients. 

When a patient, enquiring about their own health, asks their clinician ‘Are you sure?’ such AI tools 

cannot consistently provide an accurate answer.  

The ability of clinicians to convey uncertainties to patients with sensitivity is central to clinical 

medicine. Taking AI tools into the clinic will therefore require new approaches to model development, 



that use clinically relevant metrics2 , recognise the distinctiveness of each individual patient, and 

provide personalised measures of performance. Successful clinical AI tools cannot simply maximise 

predictive accuracy; they must also convey uncertainty.  

When assessing an AI model for accuracy, for example, to diagnose a new patient or offer a 

prognosis, we measure how close its predictions are to the truth, typically using a characterised 

patient test population for whom clinical outcomes are known. However, when applying AI in the 

clinic, the truth is a priori unknown and so the clinician must also assess the factors that interfere with 

the model’s ability to make an informed decision. Understanding these uncertainties, and how the 

model has handled them, is much more useful to the clinician and meaningful to the patient than 

providing a single “most likely” recommendation.  

Personalised uncertainty 

In the data science literature, two types of uncertainty are commonly considered9: epistemic (or 

knowledge) uncertainty arises when clinical knowledge (or an AI model) does not fully capture the 

relationships between the patient’s data and the clinical outcome being predicted. Since knowledge 

and models can be updated with new evidence, epistemic uncertainty can potentially be reduced, for 

instance, by carrying out additional diagnostic tests. By contrast, aleatoric (or data) uncertainty arises 

from measurement variations due to the inherent uniqueness of every individual, as well as the 

randomness or noise associated with the data capture processes. Aleatoric uncertainty therefore 

cannot be fully eliminated. 

Although useful, this dichotomy is somewhat artificial, since epistemic and aleatoric uncertainties may 

be (and often are) interrelated. For example, as technology improves, new and varied ways to collect 

ever-more healthcare data are developed, from spatial transcriptomics to wearable devices. While 

these new sources of information can provide knowledge about healthcare outcomes and reduce 

epistemic uncertainty, they may also be imprecise, and this imprecision can increase aleatoric 

uncertainty. As patients are empowered to monitor their own health, and inevitably do so 

inconsistently, such data-driven uncertainty may vary depending on the patient and become 

increasingly personalised. 

The ability to distinguish between different kinds of uncertainty is important in healthcare because 

clinical decision-making requires knowledge of not only how uncertain a model is, but also why it is 

uncertain. By revealing data or model weaknesses, properly quantified uncertainty can therefore be 

profoundly beneficial, and provide rationale for model improvement over time.  

Uncertainty drives improvements 

Many poignant examples of uncertainty driving improved clinical care arose during the COVID-19 

pandemic, when the emergence of a new, uncharacterised pathogen introduced significant epistemic 

uncertainty. For example, a shift in associations between clinical variables led to spurious alarms in 

automated sepsis alert systems. These false positives were so ubiquitous that some hospitals 

decommissioned their alert systems10. A subsequent meta-analysis showed that as many as 75% of 

COVID-19 patients were prescribed antibiotics despite only 8.6% having bacterial co-infection11. The 

reduced ability to discriminate serious bacterial infection from SARS-CoV-2 infection drove 

widespread investigation of biomarkers for antimicrobial stewardship12, improving clinical knowledge, 

reducing epistemic uncertainty and positively impacting patient care. 

Similarly, in a non-clinical setting, it has been long recognized that a range of facial recognition 

algorithms can be highly accurate in identifying lighter-skinned, male faces but are uncertain in 

recognising darker-skinned, female faces13.This uncertainty is due to under-representation of darker-

skinned subjects in training data, which prevents AI models from accurately learning features related 

to this group. Because this is an issue of epistemic uncertainty, it can be addressed by more 

scrupulous collection of representative data, and careful training of models13,14. In this case model 



uncertainty again imparts useful information since it highlights shortcomings in the data collection 

processes that can, and should, be rectified. 

Conformal prediction 

Good clinicians see uncertainty as an opportunity to deepen their understanding and improve care of 

their patients. For AI tools to be truly useful in the clinic, they must be used judiciously by clinicians, to 

identify and quantify sources of uncertainty, understand how they affect clinical outcomes and thereby 

improve clinical decision-making.  

The idea that there is information in uncertainty is an emerging and rapidly growing theme in modern 

data science15 and in recent years new tools have emerged that can produce personalised measures 

of uncertainty16–19. One suite of methods, known as conformal prediction, may provide the bridge 

needed to take clinical AI from theory to practice. 

Conformal prediction encompasses a set of robust statistical processes to convert a heuristic notion 

of uncertainty, determined at the population level, to a rigorous assessment of uncertainty for each 

individual. To illustrate how conformal prediction works, consider diagnosing the cause of a headache 

from a set of clinical variables (Figure 1). The standard AI approach to this problem is to build a 

computational model using a training dataset to learn how patterns in clinical variables associate with 

different underlying pathologies. Using this trained model, any new patient presenting with a 

headache can be offered a diagnosis depending on how the trained model interprets their clinical 

presentation.  

When making judgements, AI models typically produce measures of their certainty. For instance, our 

AI model may be 95% sure that the underlying cause of headache for a given patient is migraine. 

However, these measures of uncertainty are only heuristic: they do not concern the true diagnosis of 

the individual patient, but rather the model’s own internal assessment of the patient’s characteristics, 

based on the data it has seen previously. While apparently useful, these measurements of certainty 

can therefore be misleading. For example, if the model is poorly trained it may offer confident, but 

incorrect, advice. For complex “black box” models that are not easily interpreted, the reasons for this 

confidence may also be opaque. Conformal prediction is designed to resolve this issue. 

Confidence through experience 

The inventors of conformal prediction, Alex Gammerman and Vladimir Vovk, have said that 

“conformal prediction uses past experience to determine precise levels of confidence in new 

predictions”. This has a clear parallel to learning through clinical practice. The technique compares 

predictions made by an AI model for a new observation to the predictions of a group of similar 

observations for whom outcomes are known. It does so by calibrating the model’s predictive accuracy 

against its level of certainty for all possible outcomes. This process translates the output of the model 

from a single most-likely outcome to a shortlist of possible outcomes that are all feasible. Using the 

example of a patient presenting with headache, rather than being assigned one diagnosis (e.g., the 

patient most likely has migraine), using conformal prediction each new patient presenting with a 

headache is provided a list of personalised possible diagnoses, depending on the model’s heuristic 

certainty for each possible outcome.  

Subject to some general assumptions, this shortlist of possible diagnoses is guaranteed to contain the 

patient’s true diagnosis with a level of confidence that can be specified by the clinician that reflects the 

clinical situation (e.g., 95%) – regardless of the properties of the data or kind of AI model used to 

make predictions20. Conformal prediction calibrates model accuracy against certainty, and so if the 

model is either unsure of the correct clinical diagnosis or is over-confident, then the list of possible 

diagnoses will be long, which indicates to the clinician that more information is needed to correctly 

identify the underlying pathology and appropriately treat the patient. Conversely, if the model is 

confident, and this confidence is based on reliable clinical evidence, then the list will be short, giving 

the clinician confidence of an accurate diagnosis (Figure 1).  



When making decisions, clinicians must consider not only how likely a diagnosis is, but also how 

consequential it would be for the patient. Conformal prediction can also be adapted to account for 

severity of outcome, so that relevant serious conditions are “upweighted” and appropriately presented 

to the clinician, even if they are less likely. By so-doing, conformal prediction shifts the focus of the AI 

model from trying to find one accurate clinical recommendation to offering the clinician a range of 

possibilities, tailored to the individual patient, which can then be investigated further. Not only is this 

technically more robust, it also circumvents many of the practical hindrances to deployment of AI into 

the clinic, providing confidence in AI-enabled decisions both for clinicians and for patients.  

Widespread use of AI in the clinic will require AI tools to move away from simply maximizing predictive 

accuracy toward harnessing uncertainty, and supporting the clinician in making well-informed 

decisions for each individual patient. New methods such as conformal prediction are making this 

transition possible and will be critical to truly integrating AI into clinical practice, helping doctors 

improve healthcare for all patients.  
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