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Abstract. In the field of medical imaging, 3D deep learning models play
a crucial role in building powerful predictive models of disease progres-
sion. However, the size of these models presents significant challenges,
both in terms of computational resources and data requirements. More-
over, achieving high-quality pretraining of 3D models proves to be even
more challenging. To address these issues, hybrid 2.5D approaches pro-
vide an effective solution for utilizing 3D volumetric data efficiently using
2D models. Combining 2D and 3D techniques offers a promising avenue
for optimizing performance while minimizing memory requirements. In
this paper, we explore 2.5D architectures based on a combination of con-
volutional neural networks (CNNs), long short-term memory (LSTM),
and Transformers. In addition, leveraging the benefits of recent non-
contrastive pretraining approaches in 2D, we enhanced the performance
and data efficiency of 2.5D techniques even further. We demonstrate
the effectiveness of architectures and associated pretraining on a task of
predicting progression to wet age-related macular degeneration (AMD)
within a six-month period on two large longitudinal OCT datasets.

1 Introduction

3D imaging modalities are routinely employed in clinics for diagnosis, treatment
planning and tracking disease progression. Thus, automated deep learning (DL)
* These authors contributed equally to this work
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based methods for the classification of 3D image volumes can play an important
role in reducing the time and effort of medical experts. However, the training
and design of 3D classification models are challenging as they are computa-
tionally expensive, consume large amount of GPU memory during training and
require large training datasets to prevent over-fitting. These issues are further
exacerbated by the more recent Vision Transformer (ViT) architectures which
have been shown to require significantly larger amounts of training data to out-
perform CNNs. Yet, in the medical domain, there is often a scarcity of labeled
training data, especially in the case of 3D imaging modalities.

The gold-standard 3D imaging modality in ophthalmology is retinal Optical
Coherence Tomography (OCT). It is of particular value in the management of
patients with Age-Related Macular Degeneration (AMD), the leading cause of
blindness in the elderly population. Although asymptomatic in the intermedi-
ate stage (iAMD), it may progress to a late stage known as wet-AMD, which
is characterized by a significant vision loss. Thus, development of an effective
personalized prognostic model of AMD using OCT would be of large clinical rel-
evance. Given an input OCT scan of an eye in the iAMD stage, we aim to develop
efficient 3D prognostic models that can predict whether the eye will progress to
the wet-AMD stage within a clinically relevant time-window of 6 months, mod-
eling the problem as a binary classification task. The lack of well-defined clin-
ical biomarkers indicative of the future risk of progression, large inter-subject
variability in the speed of AMD progression and large class imbalance between
the progressors (minority class) and non-progressors (majority class) makes it a
challenging machine learning task.

Given the above limitations, 2.5D architecture may be an effective approach
for building prognostic models from volumetric OCT: it comprises a 2D network
applied to each slice of the input volume followed by a second stage to aggregate
the feature representations across the slices. Compared to 3D models, the 2D
ones can be more effectively pretrained on large labeled natural image datasets
such as ImageNet or on an unlabeled in-domain dataset of images of the same
imaging modality using Self-Supervised Learning (SSL).

In this work, we analyze the impact of different DL architectures and pre-
training schemes in the context of developing an effective prognostic classifi-
cation model using OCT volumes of patients with AMD. We first address the
problem of limited data availability with an effective in-domain SSL to pretrain
2D CNN weights. We then address the challenge of processing volumetric data
by transferring the pretrained 2D CNN weights to a hybrid 2.5D deep learning
framework. Our evaluation on two large longitudinal datasets underscores the
advantages of such hybrid approach in 3D medical image analysis, and highlights
the importance of in-domain pretraining in low data scenarios.

1.1 Related Work

Deep neural network architectures for 3D predictions 3D CNNs employ
large 3D isotropic convolutions, making them computationally expensive with a
significantly increased number of trainable parameters. This makes them prone
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to over-fitting with limited training data. Moreover, pretrained models weights
are more commonly available for 2D CNNs and they cannot be directly used to
initialize the 3D networks for fine-tuning. To tackle these limitations, two main
directions have been explored: inflating pretrained 2D CNNs into 3D networks or
using Multiple Instance Learning (MIL) in a 2.5D setting. The first approach is
based on the Inflated 3D Convnets [3] which were proposed as a new paradigm for
an efficient video processing network using 2D pretrained weights. They achieved
this by inflating 2D convolutional kernels along the time dimension with a scaling
factor.

MIL is an efficient way of processing 3D volumes or videos [6]. The main
idea is to process each 2D component (slice in a 3D volume or frame in a video)
of the 3D data individually using a 2D CNN and then pool their output fea-
ture embeddings to obtain a single feature representation for the entire 3D data.
Average Pooling is commonly employed to integrate the features from each 2D
slice/frame in a linear and non-parametric manner. Alternatively, more complex
architectures based on LSTMs have also been explored for pooling. Due to their
directionality, vanilla LSTMs are better suited for processing videos by model-
ing the forward flow of time, and using the output from the last time-step as
the feature for the entire video. However, a Bidirectional LSTM (BiLSTM) is
required to capture the non-directional nature of 3D OCT volumes [12].

Recently, ViTs replaced CNN based models as state-of-the-art. One down-
side of ViTs is that they require large training datasets and extensive training
duration, which are even amplified with 3D modalities. Indeed, the patch-based
3D/video processing ViTs [1, 8, 19] process videos through spatio-temporal at-
tention, and 3D volumes with isotropic 3D images of voxels. On the other hand,
it has been repeatedly demonstrated that ViTs benefit from the application of
convolutional kernels in the earlier blocks [5, 21]. Similar to the LSTM based ap-
proaches, hybrid ViTs have been successfully applied to video recognition tasks
for memory efficiency and speed. In [16], the video frames are treated as patches
and their embeddings are extracted using a ResNet18 which are forwarded to
a transformer model. ViT hybrids focus on efficiency by first processing 2D in-
stances (frames, cross-sectional volume slices), then obtaining a final score from
the ViT which is used as a feature aggregator. In medical imaging, CNN + Trans-
former hybrids are already being used to address the MIL problems such as in
whole-slide images [17] or histopathology images [14]. A 3D transformer ViV-
iTs [1] were proposed for video analysis. They deploy different strategies to model
the interactions between spatial and temporal dimensions at various levels of the
model. One of the modes of ViViT denoted as Factorised Self-Attention (FSA),
consists in factorizing the attention over the input dimensions. Each transformer
block processes both spatial and temporal dimensions simultaneously instead of
two separate encoders which makes the network adaptable for 3D volumes.

Self supervised pretraining SSL pretraining aims to generate meaningful
data representations without relying on manual labels. Utilizing pretrained net-
work weights obtained through SSL reduces the requirement for labeled data
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while simultaneously boosting performance in downstream tasks. It is partic-
ularly useful when dealing with noisy and highly imbalanced class labels, as
it helps prevent overfitting [2]. Contrastive learning [4] has emerged as one of
the most successful SSL approaches. They aim to learn representations that are
robust to expected real-world perturbations, while encoding distinctive struc-
tures that enable the discrimination of different instances. To achieve invariance
against these perturbations, contrastive methods heavily rely on augmentations
that create two transformed images, which the models try to bring together while
pushing apart the representations of pairs from different instances.

Emre et al. [7] adapted contrastive augmentations for 2D B-scan character-
istics. Additionally, they proposed to use two different scans of a patient from
two different visit date as inputs to the contrastive pipeline. The extra tempo-
ral information was exploited through a time sensitive non-contrastive similarity
loss, termed as TINC loss, to induce a difference in similarity between the pairs
based on the time difference between them. In the end, they showed that the
time sensitive image representations were more useful in longitudinal prediction
tasks. In this study, we used TINC as the main pretraining method.

2 Methods: Predictive Model from Retinal OCT Volume

Predicting the progression to wet-AMD inherently involves a temporal aspect, as
patients typically undergo multiple follow-up scans. However, the practicality of
capturing temporal information is constrained by factors such as the availability
of regularly scanned patients and computational costs. Therefore, we tackled the
task as a binary risk classification problem from a given visit.

We explored two hybrid 2.5D architectures (Fig. 1), that utilize 2D CNN
to generate B-scan embeddings, followed by either an LSTM or a Transformer
network to produce volume-level predictions. The CNNs are based on ResNet50
and a B-scan representation is obtained by applying Global Average Pooling
on the final feature map of the ResNet50 model, yielding a vector of size 2048.
The CNNs were either pretrained in a non-contrastive manner, using TINC [7]
on temporal OCT data, or ImageNet ResNet50 weights from the torchvision
library [15] were used.

CNN + BiLSTM Such networks have already been proposed for 3D OCTs [12].
Unlike standard LSTMs, BiLSTMs provide two outputs for each “time step” (in
our case B-scan). Each output can be used for B-scan level prediction, if such
labels are available as in [12]. However, wet-AMD progression prediction task is
a MIL problem where the labels are available per OCT volume. The straight-
forward choice for aggregating the outputs would be average pooling but we
hypothesised that OCT biomarkers indicative of wet-AMD progression are sub-
tle and scarce. Thus, in order to make the predictions more robust, an attention
layer attached to the end of BiLSTM. The goal is to enforce B-scan level spar-
sity with attention such that subtle biomarkers do not blur out due to the global
pooling operations. Moreover, we believe the B-scans with the highest attention
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Fig. 1. Architecture of the two evaluated 2.5D approaches: (top) CNN + BiLSTM with
attention, (bottom) CNN + Transformer

weights will serve as ideal candidates for clinical inspection to discover novel
biomarkers and phenotypes associated with progression to wet-AMD.

The BiLSTM comprises 32 time-steps (the number of B-scans used from
an OCT volume) and a hidden state representation of size 512. For the final
attention layer, we used a Squeeze-and-Excitation layer [11] adapted for stacked
representations (Fig. 1). We will refer to this model as CNN + BiLSTM without
explicitly mentioning the attention layer.

CNN + Transformer ViTs are known for requiring longer training and larger
datasets [13]. Moreover, in-domain pretrained weights for medical images are
not as commonly available as they are for natural images. Motivated by this,
we developed a hybrid CNN + Transformer model that leverages pretrained
weights for the 2D CNN backbone. We attached a small Transformer on top of
the 2D B-scan representations to obtain the final prediction. In this approach,
each representation is treated as a patch embedding, representing one of the
B-scans. Similar to BiLSTM, Transformers can capture the relation between
the B-scans. However, unlike BiLSTM, Transformers do not require a pooling
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operation before the prediction head because they learn a single classification
token that encapsulates the necessary information for making the prediction
(Fig. 1). Additionally, self-attention inherently provides attention scores over
the B-scans.

The Transformer network consists of 4 blocks, each with 2 self-attention
heads. To handle the large dimension of the patch embedding (2048), the MLP
output size in the transformer blocks is reduced to 1024, unlike in standard ViTs
that scale up the dimensions in the MLP with respect to the patch embedding
dimension. To prevent over-fitting on the small downstream dataset, we inserted
Drop Path layers (Stochastic Depth [20]).

3D ViViT We selected FSA ViViT that follows slow-fusion approach as op-
posed to hybrid models (late-fusion), where each Transformer block models
both spatial and temporal interactions simultaneously. For ViViT, the model
is first pretrained for binary OCT volume classification on the public DukeAMD
dataset [9] that includes 269 intermediate age-related macular degeneration
(iAMD) and 115 normal patients acquired with Bioptigen OCT device.

I3D When using 2D weights for 3D convolutional kernels, we followed the
paradigm of [3], and inflated a pretrained ResNet50 to process OCT volumes.

3 Experiments

The scans for the downstream predictive modeling task were manually labeled
by ophthalmologists using a clinically relevant time interval of six months. All
scans that convert to wet-AMD within the next 6 months have a positive label,
while all scans that do not convert within the interval have a negative label.

Datasets: The models are trained and evaluated on the fellow-eye dataset from
the HARBOR clinical trial9. It is a longitudinal 3D OCT dataset where each
patient is imaged monthly for a duration of 24 months with a Cirrus OCT
scanner. Each OCT scan consists of 128, 2D cross-sectional B-scan slices covering
a field of view of 6×6 mm2. We split the dataset into pretraining and downstream
(progression prediction) sets. The pretraining dataset comprises 540 patients and
12,506 scans and also includes images of the late stages of AMD. Among 463
patients, 113 are observed to progress to wet-AMD, yielding only 547 scans with
a positive label out of a total of 10,108 scans. The extreme class imbalance makes
the progression prediction a very challenging task.

A second longitudinal dataset, PINNACLE [18], is used only for the down-
stream task of progression prediction. Unlike HARBOR, the PINNACLE dataset
was acquired with a TOPCON scanner. This resulted in a domain shift due to the
difference in the acquisition settings and noise characteristics between the OCT
scanner types. With the same labeling criteria, PINNACLE provided 127 con-
verter patients out of 334 (536 positive scans out of 2813). Since the pretraining
9 NCT00891735. https://clinicaltrials.gov/ct2/show/NCT00891735
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is only performed on unlabelled scans from the HARBOR dataset, experiments
on the PINNACLE set are used to evaluate the performance of the pretraining
method when the downstream dataset undergoes a domain shift.

In downstream tasks, both datasets were split in the following way: 20% of
the patients were kept for hold-out test set, while the remaining scans in each
dataset formed the training sets. A stratified 4-fold cross-validation at a patient-
level was carried out on the training sets for hyper-parameter tuning. Treating
each of the 4 folds as the validation set and the remaining data for training,
resulted in an ensemble of 4 models. The mean and standard deviation of the
performance of the 4 models on the hold-out test set is reported in Table 1.

Image Preprocessing The curvature of the retina was flattened by shifting each
A-scan (image column) in the volume such that the Bruch’s membrane (ex-
tracted using the method in [10]) lies along a straight plane. Next, we extracted
the central 32 B-scans, which were then resized to 224×224. During the progres-
sion prediction training, the input intensities were min-max scaled, followed by
translation, small rotation, and horizontal flip as data augmentations. The same
preprocessing was applied to both HARBOR and PINNACLE datasets. For the
in-domain SSL-based pretraining, we followed the contrastive transformations
outlined in [7].

Training Details CNN+BiLSTM models were fine-tuned using an ADAM opti-
mizer with a batch-size of 20, a learning rate of 0.0001, which is updated using
cosine scheduler, and a weight decay of 10−6. Similarly, in I3D experiments, we
used ADAM with a batch-size of 64, a learning rate of 0.001, which is updated
using cosine scheduler, and a weight decay of 10−6. In CNN+Transformer, SGD
optimizer with momentum was used, as it was found to perform better than
ADAM, with a learning rate of 0.001 which is updated using cosine scheduler,
no weight decay was used. We tested 2.5D models with frozen and end-to-end
fine-tuning setup and picked the best. For ViViT, we used Adam optimizer with
an initial learning rate of 10−5 which is updated by the cosine scheduler, no
weight decay was used. For this experiment, the batch size is set to 8.

4 Results

The performances of four distinct architectures, I3D [3], ViViT with FSA [1], and
the two proposed hybrid 2.5D models, i.e. CNN+BiLSTM and CNN+Transformer,
are presented in Table 1. Each architecture was initialized either with ImageNet
or TINC weights, with an exception of ViViT transformer,which was pretrained
on DukeAMD dataset.

Firstly, comparing the two initialization strategies confirms the superiority
of TINC pretraining in terms of AUROC score in all cases (Table 1). This find-
ing highlights the advantage of in-domain pretraining with limited amount of
data over pretrained weights coming from a natural image dataset. Although it
is probable that both natural and medical images share low-level features, we
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Table 1. Predictive performance of the evaluated models on the internal HARBOR
and the external PINNACLE datasets.

Model #Params Pretraining
HARBOR PINNACLE

AUROC PRAUC AUROC PRAUC

I3D 46M ImageNet 0.727± 0.012 0.134± 0.007 0.602± 0.036 0.157± 0.026

I3D 46M TINC 0.750± 0.037 0.162± 0.034 0.644± 0.039 0.170± 0.023

CNN+BiLSTM 34M ImageNet 0.742± 0.028 0.153± 0.012 0.622± 0.042 0.164± 0.028

CNN+BiLSTM 34M TINC 0.766± 0.012 0.153± 0.003 0.646± 0.019 0.190± 0.025

CNN+Transf. 108M ImageNet 0.738± 0.032 0.152± 0.035 0.617± 0.055 0.156± 0.031

CNN+Transf. 108M TINC 0.752± 0.022 0.145± 0.023 0.656± 0.027 0.179± 0.020

ViViTFSA 34M DukeAMD 0.628± 0.064 0.098± 0.023 0.566± 0.054 0.121± 0.019

should emphasize on the drastic effects of the underlying noise characteristics
originating from differences in modalities, standard views of the internal organs
and tissues, and limited number of expected variances in medical images, on the
model performance. Most of the cases, TINC improves PRAUC. On HARBOR
dataset, CNN + Transformer with TINC is not better than ImageNet in terms
of PRAUC score. This can be due to the fact that PRAUC is more sensitive
to differences in probabilities, while AUROC is more concerned with the cor-
rect ranking of predictions, which is more relevant for progression prediction.
The PINNACLE dataset, characterized by a strong domain shift caused by the
intrinsic properties of the scanner, showed that TINC pretraining consistently
outperformed ImageNet pretraining, despite a significant drop in AUROC range
compared to the HARBOR dataset (Table 1).

When we compared the architectures, it is clear that 2.5D approaches out-
perform both of the 3D models. The CNN + BiLSTM model has significantly
fewer trainable parameters than the CNN + Transformer model (34M vs 108M)
with a similar number of FLOPs (130G and 133G, respectively). Despite its
smaller size, CNN + BiLSTM outperformed CNN + Transformer in Table 1 for
AUROC and PRAUC. In external data experiments on PINNACLE, it achieved
comparable results for AUROC while outperforming CNN + Transformer for
PRAUC in Table 1. This suggests that BiLSTM methods still have merit in the
era of Transformers, especially under conditions such as limited and imbalanced
3D data. This can be attributed to the more data requirement of ViTs which
affects CNN + Transformer model as well. It is important to highlight that both
hybrid models outperformed the I3D model due to their explicit modeling of the
relationship between individual B-scans and their better utilization of high-level
representations. Similar to I3D, experiments regarding FSA ViViT also confirm
that the simultaneous processing of both dimensions in the input volume did not
provide extra benefit over the corresponding counterparts with the same num-
ber of parameters (∼34M), indicating the advantage of less complicated models
(CNN + BiLSTM/Transformer) for this specific task.
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5 Conclusion

In this work, we performed a systematic evaluation of hybrid 2.5D models which
utilize already available pretrained 2D backbones. Our results demonstrate that
2.5D approaches not only exhibit efficient memory and label usage, but also out-
perform larger 3D models when suitably pretrained. The addition of an attention
layer to CNN + BiLSTM provides attention scores which in turn can facilitate
model explainability. Thus, we conclude that deep learning models consisting of
2D CNNs in combination with LSTM continue to offer merits in predictive medi-
cal imaging tasks with limited data, outperforming both 2.5D and 3D ViTs. Fur-
thermore, the in-domain pretraining approach TINC consistently outperformed
the approaches with ImageNet-pretrained weights, highlighting the importance
of domain information for predictive tasks. These findings provide valuable in-
sights for further development of accurate and efficient predictive models of AMD
progression in retinal OCT.
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