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A B S T R A C T 

We demonstrate two new approaches that have been developed to aid the production of future hard X-ray catalogues, and 

specifically to reduce the reliance on human intervention during the detection of faint excesses in maps that also contain 

systematic noise. A convolutional neural network has been trained on data from the INTEGRAL/ISGRI telescope to create a 
source detection tool that is more sensitive than previous methods, whilst taking less time to apply to the data and reducing 

the human subjectivity involved in the process. This new tool also enables searches on smaller observation time-scales than 

was previously possible. We show that a method based on Bayesian reasoning is better able to combine the detections from 

multiple observations than previous methods. When applied to data from the first 1000 INTEGRAL revolutions these impro v ed 

techniques detect 25 sources (about 5 per cent of the total sources) which were previously undetected in the stacked images used 

to derive the published catalogue made using the same data set. 

Key words: catalogues – surv e ys. 
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 I N T RO D U C T I O N  

hanks to the current generation of space telescopes with surv e y
apabilities, the sky in the hard X-ray/soft gamma-ray band (approx- 
mately 10 keV–1 MeV energy) has shown itself to be both well-
opulated and highly variable. Surv e ys in this band are normally
arried out using coded aperture telescopes that provide a good 
ensitivity across a wide field of view (typically > 100 square 
egrees), and as such allow frequent returns to the same sky region,
roducing rich data sets with information in both spatial and temporal 
imensions. 
Ho we ver, the analysis of data from coded aperture telescopes is not

rivial, as it is an indirect imaging method and sky images can contain
ystematic noise as a result of an imperfect instrument model, and 
lso when an adequate description of the source distribution cannot 
e determined, as is sometimes the case in crowded regions where 
ources cannot be fully resolved. The sources in the hard X-ray 
ky display a huge dynamic range, and are thus detectable on many
ifferent time-scales. While the brightest sources can be detected 
n a single observation, the faintest sources may require 1000s of
mages to be co-added. More recent surv e ys (Bird et al. 2010 , 2016 )
ave searched for ways to detect sources on all time-scales in an
fficient way, but these are generally e xpensiv e in operator effort,
nd as the data from such surv e ys is ev er increasing, there is a need
or automated techniques that can scale with the data when it exceeds
he capacity to be processed manually. 

In this paper, we look at new methods to efficiently search for
 xcesses in sk y maps that may also contain systematic artefacts
f the imaging process, and how to intelligently combine lists of
xcesses found in multiple maps. These maps may be generated in 
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ifferent energy bands, in different sky orientations, or at different 
imes – but all may be considered potential information concerning 
ach putative source. Due to the dynamic range across the source
opulation, a bright persistent source may be detected 1000s of times
n indi vidual observ ations (as well as in any co-added maps) whereas
nformation on a fainter source may be determined from just co-
dded images. Conversely a bright transient may be seen in just
 few observations, and be completely undetectable in a co-added 
mage mosaic. The challenge is to combine all the excess detections
nto a coherent source catalogue, suppressing statistical noise in the 
resence of systematics ef fects, ef ficiently and without introducing 
he subjective biases that human intervention can produce. 

Specifically for this study, we use the images produced by the
NTEGRAL/IBIS telescope in the ∼18–100 keV band, but the 
ethods would be equally applicable to the Swift /BAT telescope 

mages. 
The European Space Agency’s (ESA) International Gamma Ray 

strophysics Laboratory (INTEGRAL) was launched in 2002 and 
as performed o v er 18 yr of observations in the energy range 5 keV
o 10 MeV. It has a complement of three primary high energy instru-

ents: the SPectrometer on INTEGRAL (SPI), the Joint European X- 
ay Monitor (JEM-X), and the Imager on Board INTEGRAL (IBIS).
BIS is composed of the INTEGRAL Soft Gamma Ray Imager 
ISGRI) and Pixellated Imaging CaeSium Iodide Telescope (PICsIT) 
etectors surrounded by an active veto. IBIS/ISGRI uses a tungsten 
oded mask to determine source astrometry through de-convolution 
f the mask pattern (shadow) projected on to the detectors. 
IBIS (Imager on Board the INTEGRAL spacecraft) (Lebrun et al. 

003 ) in particular has been optimized to produce data for surv e ys
Ubertini et al. 2003 ) as it has a large (30 deg) field of view (FoV)
nd good resolution thanks to the coded mask. Surv e y catalogues
xploiting data obtained from ISGRI have been published at regular 
ntervals (Bird et al. 2004 , 2006 , 2007 , 2010 ). The most recent,
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Figure 1. Data analysis and source selection flo wchart, sho wing the filtering criteria applied at each stage during the cat1000 process (adapted from Bird et al. 
2010 ). The steps that are distinct to this work are shown in the highlighted box to left. While the general chain of steps is similar, this work is distinct in several 
ways: (1) source detection is done at a ScW level and uses a CNN trained to classify 11 × 11 pixel windows rather than search for sources across an entire 
image, (2) excesses are merged to each other in a Bayesian fashion that prioritizes by goodness of cluster rather than chronological disco v ery date, and (3) only 
merges in a reference catalog as the final stage in the process to a v oid introducing initial biases. 
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Catalogue of 1000 orbits’ (hereafter cat1000 Bird et al. 2016 ), is
n all-sky, soft gamma-ray source catalogue which uses data from
NTEGRAL’s first 1000 orbits. This surv e y had a total exposure time
f approximately 3.5 yr and included 939 sources. This catalogue
sed a light curve based method to search for transient events, but
id not attempt to search for sources on the shortest time-scales
ue to the size of the data set that would have created. The shortest
ime-scale mapped corresponded to the ∼3 d orbit of INTEGRAL.
ther INTEGRAL-based catalogues have been produced, and focus
n specific sky areas such as the Galactic Plane (Krivonos et al.
010 , 2012 ) and generally only use co-added maps of the data set
n search of the faintest persistent sources. JEM-X and SPI also use
oded masks, and observations from these were used to produce a
atalogue in 2007 and 2008 (Westergaard et al. 2007 ; Bouchet et al.
008 ). 
The techniques employed to generate ISGRI catalogues (such as

at1000) are no longer adequate as they do not scale well to the ever
ncreasing data set. Cat1000 took 9 domain experts to spend 2.5 yr
o produce and as INTEGRAL is now approaching 2500 orbits there
s a clear need to impro v e the techniques and tools used. 

This paper introduces two new tools we have developed using
eep learning and Bayesian reasoning to impro v e how we search
ultiple ISGRI maps for sources and combine these detections to

efine catalogue sources, respectively. We will first introduce the data
et, then a description of the architecture of the deep learning method
nd the training process including how the test and training set were
enerated is presented. We compare this new method to the source
etection tools used in producing recent catalogues. We then present
NRAS 510, 4031–4039 (2022) 
n impro v ed merging algorithm based on Budav ́ari & Szalay ( 2008 )
sed to combine excess detections from multiple maps and compare
his new method to the one previously used in generating ISGRI
atalogues. Fig. 1 shows how the previous catalogues have been
roduced and how these new tools would complement the process.
hese methods not only reduce the human time needed to create

hese catalogues but also allow us to search the ISGRI maps on a
cience-window (ScW) scale, which until now was not feasible. 

Cat1000 used both the standard astronomy package SEXTRACTOR

Bertin & Arnouts 1996 ) and a custom-made piece of software
alled peakfind to detect sources in stacked ISGRI maps. We have
eveloped a new tool using a deep learning technique – specifically,
 convolutional neural network (CNN) – to search ISGRI maps to
etect sources. This paper will compare our new tool to the traditional
ethods for source detection. 
Cat1000 used a custom-built piece of software called megamerge

o combine the detections found in multiple maps. We have employed
 new method using Bayesian matching (Budav ́ari & Szalay 2008 )
hat remo v es some of the bias that was inherently part of the
egamerge process. 
This paper is organized as follows. Section 2 provides a brief

ummary of the ISGRI data, and Section 3 summarizes the previous
ethods for detecting sources. We briefly introduce CNNs and

escribe our new CNN-based approach to source detection in
ection 4. We then discuss previous methods for merging detected
ources in Section 5 before describing our new Bayesian matching
echnique in Section 6. We analyse the performance of our tools in
ection 7 and summarize our results in Section 8. 
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 T H E  DATA  SET  

n order to develop these two new tools and also to test their
erformance against the traditional catalogue tools, we have used 
he original cat1000 data set, which is all publicly available IN-
EGRAL/ISGRI data obtained up to the end of 2010. INTEGRAL 

as an orbit (or revolution) of approximately three days and each 
evolution is broken down into Science Windows (ScWs), short 
ointings which have a duration of ∼2 ks. ScW images have a
ixel size of 4.8 arcmin (0.08 deg), and the typical resolution of the
nstrument is 12 arcmin. As in cat1000, we include all revolutions 
rom 45 onwards and all pointed observations up to revolution 1000 
2010 December) unless flagged as Bad Time Intervals (flagging is 
rovided by the INTEGRAL Science Data Centre, ISDC) for a total 
f ∼67 000 ScW. Revolutions up to 45 were excluded from cat1000
s data from the instrument up to this point were extremely noisy. 

 P R E V I O U S  M E T H O D  F O R  ISGRI  S O U R C E  

ETECTION  

n cat1000 approximately 67000 ScWs were used to create stacked 
aps using a purpose-built image mosaic tool which was developed 

o statistically average the images from multiple input maps. This 
llowed all-sky maps (these all-sky maps have a pixel size of 2.4
rcmin) to be created from a large number of input ScWs. Fig. 1
hows the entire cat1000 process from the ScW images to the final
ources list. Mosaics were constructed for five energy bands and in 
our sky projections: centred on the Galactic Centre, on the Galactic 
nticentre, north Galactic polar, and south Galactic polar. These 
rojections were chosen in order to reduce PSF distortion which 
mpedes the source detection algorithms used. 

60 all-sky maps and over 19 000 revolution maps were constructed 
nd searched for flux excesses indicating an astrophysical source to 
roduce an initial excess list. Two different techniques were used 
o search the mosaics maps, the standard SEXTRACTOR tool, and 
eakfind which was developed specifically for use on ISGRI maps 
hich takes into account the varying levels of systematic background. 

EXTRACTOR has sophisticated algorithms for pre-filtering the image 
o enhance detection of specific PSFs, and is capable of de-blending 
ome complex source regions, both of which are important for ISGRI
aps. Ho we ver, it does not work so well with local variations in

ystematic noise levels, which are a feature of the ISGRI maps. 
eakfind uses a recursive search around the peak position to detect 
xcesses, maintaining some de-blending capability but performing 
nly limited tests on the shape of the PSF detected. The main benefit
f peakfind is that it performs a local assessment of the image
ms and assesses excesses relative to that local background. As 
uch it is much less vulnerable to o v erdetection in noisy areas of
he maps. 

The use of multiple excess detection algorithms was valuable 
n cat1000 production as the different methods used could be 
ompared and an excess appearing in both lists could be treated 
ith higher confidence. Ho we ver, the dif ferent underlying ap- 
roaches meant that all excesses still needed manual checking 
s comple x re gions were often interpreted differently by the two
lgorithms, and this was a natural path for operator bias to be
ntroduced. 

During cat1000 production, both SEXTRACTOR and peakfind had 
o be run on a large number of maps in five individual energy bands,
or different sky projections and on different time-scales – revolu- 
ion le vel, observ ation sequences, and whole-archive. Although the 
erformance of the methods was similar, the time taken for this and
he subsequent combination of the excesses found in these maps was
 complex task. 

For future catalogues, it is hoped that new techniques can be
eveloped to make this task more tractable – and indeed extend it to
he ScW time-scale data which has not been attempted so far. The use
f HEALPIX (Hierarchical Equal Area isoLatitude Pixelation) based 
aps will reduce the number of sky projections needed, and an image

earch that combines multiple energy bands will not only save time
ut may also provide a more robust detection as the energy bands are
ot completely independent and we would expect a source appearing 
n one energy band to appear in some, but not necessarily all, others.
uch combination logic was part of the manual inspection of the
xcesses, and an automated method which took the same approach 
hould be less vulnerable to random image noise. Unfortunately this 
s still not fool-proof, as systematic noise and ghost sources appear
t the same position in every energy band. In principle, an automated
ethod could also recognize sensible ratios of flux in different energy 

ands as the typical X-ray source spectra give rise to fairly predictable 
uxes across the energy bands. 

 DEEP  L E A R N I N G  M E T H O D  

.1 Convolutional neural networks 

onvolutional neural networks (CNN) developed in recent years are 
ost commonly applied in the field of image processing because they

erform well at dealing with image recognition and classifications 
asks and are considered to be one of the leading techniques in
he field (LeCun et al. 1995 ). In the absence of domain knowledge
hey can work well with raw features; a CNN automatically learns
he underlying features required to detect when a source is present
Schmidhuber 2015 ). These distinct advantages make a CNN the 
deal choice for source detection in high energy astronomy images. 
 CNN is a supervised method and thus requires a training set to
e run through a CNN many times, adjusting the CNN’s parameters
sing backpropagation to minimize a loss function (LeCun et al. 
988 ). 
In image classification, pixels that are near each other are quite

ikely to be more related than two pixels that are further away. This
eans that the pixels’ proximity to one another is an important

actor whilst classifying and CNNs specifically take advantage of 
his fact (LeCun, Bengio & Hinton 2015 ). In a standard neural
etwork, ev ery pix el is linked to every single neuron, in the case
f image classification this added computational load makes training 
ore difficult and resulting models are often less accurate. A CNN

emo v es a lot of these less significant connections, and makes the
mage processing computationally manageable through filtering the 
onnections by proximity. In a given layer, rather than linking every
nput to every neuron, CNNs restrict the connections intentionally so 
hat any one neuron accepts the inputs only from a small subsection
f the previous layer. Therefore, each neuron is responsible for 
rocessing only a certain portion of an image. Combined with 
f fecti ve training methods for deep layer networks this provides
 powerful approach. An image in a CNN is passed through a
ombination of successi ve layers, e very channel of the image is
resented to the network at once: 

(i) Convolutional layer : here the filters can be thought of as feature
dentifiers. 

(ii) Non-linear layer : the CNN uses ReLu (ne gativ e input are ze-
oed) (Hahnloser et al. 2000 ). This allows the network to approximate 
MNRAS 510, 4031–4039 (2022) 
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Figure 2. The architecture of the final source detector CNN. The CNN uses two convolutional layers with kernels of v arious sizes, follo wed by a multilayer 
perceptron and softmax function to determine final classification of the image as containing a source or not. A visual representation of the CNN applied to an 
example image is presented in Fig. 3 . 
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rbitrary functions by introducing non-linearities. (Nair & Hinton
010 ) 
(iii) Max Pooling layer : this down-samples the input, thereby

ncreasing the network’s efficiency and allowing the network to train
uicker (Nagi et al. 2011 ). 
(iv) Fully connected layers : neurons in a fully connected layer

ave connections to all acti v ations in the previous layer. The CNN
an then use a softmax acti v ation function to produce the final output:
 probability of the input being a source and not a source (and ensure
 partition of unity) (Bishop 2006 ). 

(v) Categorical cr ossentr opy : This is a loss function that is used
n multiclass classification tasks where an example can only belong
o two or more label classes, and the model must decide which one.
t computes the loss between the labels and predictions (Zhang &
abuncu 2018 ). 

A CNN is a very powerful and efficient model which, unlike
ome other machine-learning methods, performs automatic feature
xtraction. The network picks out the important features in an image
n order for it to make highly accurate classifications. In fact CNNs
an outperform humans in image classification due to the networks’
bility to pick out underlying patterns and structures that domain
xperts can be unaware existed. 

.2 Training the CNN 

undamentally, our source detection approach is an image classifica-
ion task where the CNN learns the features which separate a window
ontaining a source from the background. Unlike other source
etection approaches, the CNN does not require the entire image
ecause the 11 × 11 pixel windows contain sufficient information to
rain a CNN to distinguish source from background. To enable the
NN to have enough information to classify we needed to train it
ith labelled examples of both sources and background. 
The CNN was trained using ∼25 000 examples of both sources and

ackground extracted in 11 × 11 pixel windows from 11 channels:
ntensity and significance across five energy bands (17–30, 30–60,
8–60, 20–40, and 20–100 keV), plus the exposure map. All the
mages from the five energy bands are stacked and sent through the
etwork at once. This allows the CNN to be able to see a whole
pectrum of information about the source at once. we also have
ncluded the exposure map as our 11th channel. This gives the CNN
nformation about how near to the centre of the map a window is as
n an ISGRI ScW image, as the centre of the image has the highest
xposure and the edges of the map the least. 

Once the network was fully trained, a 11 × 11 pixel window could
e mo v ed across an entire ISGRI ScW image which could contain
any sources. Fig. 3 shows how the network takes the input window

mage, passes it through a series of convolution, non-linear acti v ation
ReLu), pooling (downsampling), and fully connected layers and
hen returns an output for each window, with the assumption that
ach window contains only one source. In all but the galactic centre,
NRAS 510, 4031–4039 (2022) 
ources are sparse enough that you would have a very low chance of
etecting more than one in a 11 × 11 pixel window. 
To generate our training set we used ∼200 ScWs ( ∼a fifth of the

cWs in cat1000) and in each ScWs used the results file generated
rom the IBIS pipeline (Goldwurm et al. 2003 ) to select any sources
hat were present with a significance of o v er 5 sigma. An y machine
earning model trained on a human-labelled data set could potentially
earn the biases of the labeller. The IBIS pipeline uses The General
eference Catalog as the master table listing all known high-energy

ources of rele v ance to INTEGRAL. These objects are all those
hat have been detected by INTEGRAL or that are known to be
righter than 1mCrab in the 1 keV to 10 MeV band. The objects
n the catalogue were compiled from several sources so we have
onfidence in the validity of these training examples and that any
ndividuals’ bias would have limited impact. 

F or ev ery source we also selected a random window of background
o include in the training set. The resulting training set contained

25 000 examples of source and background. 70 per cent of this was
sed to train the CNN while 30 per cent was left out of the training
rocesses and used as a test set to measure performance. 

.3 CNN ar chitectur e 

e trained several CNN networks with different architectures with
he aim of designing the simplest architecture as possible without
ffecting the network’s performance. We found that by increasing
he number of filters and layers from the architecture chosen and
hown in Fig. 2 there was no impro v ement in performance but when
e reduced the number of filters we saw a noticeable change in
erformance. F or e xample a network with six filters in the first
onvolutional layers and 14 in the second convolutional layer found
 false ne gativ es and 4 false positives when applied across the test
et, this is in contrast to just 2 false ne gativ e and no false positives
rom the final network. Fig. 3 breaks down our network layer by
ayer and illustrates how an 11 × 11 pixel window that includes a
ource would be passed through the network. 

.4 Testing the CNN 

ig. 4 show the confusion matrices for the CNN for both the training
nd the test set. From all these 11 × 11 pixel windows none of the
ackground sources were classified incorrectly and only four sources
ere not detected. 
We also trained another five CNNs with the same architecture, with

imilar performances, each using a different fifth of the ScWs used
n cat1000. This was to ensure we had produced a stable network
hat would have a similar high level of performance regardless of
hich ScW were used in the training stage and that the model was
ot o v erfitting. 
The CNN takes ∼6 h to train using Keras with a TensorFlow

ackend on a NVIDIA TITAN Xp with 12 gigabits of ram and took
1 d to apply to the whole cat1000 data set. 

art/stab3770_f2.eps
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Figure 3. The architecture of the source detector CNN, which shows how a 11 × 11 pixel window with a source present is processed through the CNN resulting 
in its detection. The first convolutional layer applies eight 4 × 4 filters to the pixels windows from each of the 11 energy bands producing the feature map shown. 
A max pooling layer and ReLu function applied to these maps produce the eight outputs from the first convolutional layer shown as the centre row of images. 
The next convolutional layer applies a similar sequence of processing, as do any subsequent layers in a CNN. The outputs from the convolutional layers are 
passed through a multilayer perceptron and a softmax function to decide the final classification of the image as containing a source or not. 
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Figure 4. Confusion matrices for the data sets used to train and test the 
final CNN. For both data sets, each row represents the truth for the labelled 
11 × 11 pixel windows, while each column corresponds to the predictions 
of our CNN. Correctly classified sources (shown in dark orange boxes on 
the diagonal) dominate o v er misclassifications (light yellow boxes on off- 
diagonal). 
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 P R E V I O U S  M E T H O D  F O R  M E R G I N G  

XCESSES  

EXTRACTOR and peakfind will detect sources in every map, so every
ource will most probably be detected multiple times across the
ntire data set. A method to merge the excesses into a unique set
f sources is therefore required. An algorithm called megamerge
teratively merges the excess lists from each map into a base list
hich takes the cleaning catalogue (only the sources in the ISGRI

eference catalogue that have been previously detected by IBIS) as a
tarting point. It should be noted that SEXTRACTOR and peakfind are
pplied to each of the five energy bands individually. 

The first drawback from using megamerge is that as it uses the
eference catalogue as a starting point for the merging it adds a
ias into the process. This can be compounded when the source
as originally disco v ered by INTEGRAL. A further problem is that

he result is dependent upon the order in which the excesses to
erge are presented to the algorithm. New excesses are presented

o the merging algorithm and a decision on whether to merge with
n e xisting e xcess in the data base is made purely on position –
n whether the two excesses lie within a given merge radius. The
catalogue’ position of the excess may be updated if the newly merged
xcess has higher significance than those previously used – the point
ource location accuracy of a coded mask imager depends strongly
n the detection significance. The inherent risk though is that a strong
ew detection at the limit of the merger radius cannot only ‘steal’ an
xisting detection but also cause its coordinates to change. Clearly
he order in which the excesses are presented can have a significant
nfluence on the outcome of the process. No attempt was made to
ptimize or mitigate this during cat1000 production, so as a result
ignificant effort was required to check results manually. 

The megamerge algorithm makes no use of pre-existing infor-
ation (beyond the position) to decide if two sources separated by

he merger limit are likely matches. As a simple example, two 50 σ
xcesses separated by 8 arcmin are very unlikely to be the same
ource, but would be erroneously merged by megamerge . On the
ther hand, two 4.5 σ excesses separated by 8 arcmin may be the
ame source, since the point source location accuracy at 50 σ and 5 σ
re ∼0.5 and ∼5 arcmin, respectively (Scaringi et al. 2010 ). 
NRAS 510, 4031–4039 (2022) 
As a result of these limitations, and concerns o v er how robust
he outcome was, we searched for a better approach to merging the
ource lists. 

 BAY ESIA N  M AT C H I N G  

e have tailored a method used by XMM to work on ISGRI data
Rosen et al. 2016 ). This method first merges individual observations
nto points using Bayesian probability before matching the merged
oint to a source in the reference catalogue – this remo v es the bias
e noted in megamerge as the reference catalogue is no longer being
sed as a starting point and the order the excesses are presented to
he algorithm are now irrelevant as it uses Bayesian probability to
ecide which order to merge in. 
First the algorithm searches for any pairs of ScW detections that

re less than 8 arcmin a way. An y detections found within the same
cW are excluded from this matching process as they will be different
ources. Each pair has a Bayesian match probability ( p match ) assigned
o it using equation (1) where σ 1 and σ 2 are the position error radii
f each detection in the pair (radians), ψ is the angular separation
etween the pair, p o = N 

∗/ N 1 N 2 where N 1 and N 2 are the number
f objects in the sky based on the surface densities in the two fields.
ach N value is derived from the number of detections in the two
bservations and then scaled to the whole sky and N 

∗ = number of
bjects common between them. 
This allows the algorithm to make a first cut and remo v e an y pairs

ith p match < 0.5 then determine the order to match the detections.
 goodness of cluster (GoC) is also used to do this by prioritizing

he detections that have the smallest error radius and most amount of
air matches. The algorithm sorts the excesses in order of ascending
oC and iterates down the list. For each excess the algorithm sorts

hat excess’s matching pairs in ascending order. We then progress
own this GoC-sorted list to merge sources by assigning a common
ource ID to sources matched in a pair. The process concludes when
ach cluster has an unique source ID. 

 match = 

[
1 + 

1 − p 0 

B · p 0 

]−1 

(1) 

 = 

2 

σ 2 
1 + σ 2 

2 

exp −
[

ψ 

2 

2( σ 2 
1 + σ 2 

2 ) 

]
. (2) 

 P E R F O R M A N C E  

o measure the performance of our new tools we have applied them
o the cat1000 data set, and we have also applied the traditional tools.
n this section, we discuss the outputs from each method and how
hey compare. We also provided a list of detections to domain experts
or manual inspection. Also we take a detailed look at the galactic
entre as the most difficult region to catalog in cat1000. 

It is important to note that comparisons between this work and
at1000, while instructive, are not meant to be direct comparisons of
xactly parallel approaches. Indeed, our ScW-based search is ideal
or finding significant transient events on small time-scales and strong
ersistent sources, while weaker persistent sources are better suited
or disco v ery in stacked images such as those analysed for cat1000. 

.1 Method comparison 

ach of the three source detection methods was applied across
he entire data set to generate an excess list. While peakfind and
EXTRACTOR were applied to each energy band separately, our CNN
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Table 1. Sources detected by each method. CNN detections utilize all five energy bands simultaneously and produce a single detection for each source, 
whilst SEXTRACTOR and peakfind search each energy band individually meaning a single source could be detected separately in all five energy bands 
(which ultimately requires significantly more time to perform the merging process). 

Detection method Excesses found o v er 5 σ Merging method Cat1000 sources Non cat1000 sources 

CNN ∼100 000 Megamerge 434 14 
Bayesian matching 448 25 

SEXTRACTOR ∼200 000 Megamerge 93 1 
Bayesian matching 96 2 

Peakfind ∼500 000 Megamerge 175 0 
Bayesian matching 179 5 

Figure 5. Histograms showing the proportion of cat1000 sources found (blue) versus not found (red) and their fluxes in cat1000 for every combination of 
the three source detection techniques and the two merging techniques. While other source detection approaches produce a detection efficiency that decreases 
(generally) monotonically as source brightness decreases, our method is able to detect fainter sources by leveraging the subtler source signatures captured by 
the CNN. These sources can hav e e xceptionally low av erage flux es (0.1 mCrab) in the stacked images used for cat1000, but will be bright enough in some ScW 

images to be detected using these methods. 
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tilised the five bands simultaneously. Thus the CNN finds about 
/5 as many excesses as peakfind , which makes similar judgements 
bout the PSF as the CNN ( SEXTRACTOR does not perform as well in
his regard) These three excess lists were then passed through both 
erging methods to generate a list of merged sources. Table 1 breaks

own each method and shows how many cat1000 sources were found 
nd also how many sources were found that were not included in
at1000. Not only do the new CNN and Bayesian matching methods 
eco v er more sources, but Fig. 5 sho ws ho w these methods have
 lower flux threshold compared to the traditional tools. Overall 
he CNN can detect sources at a lower flux than the other two 
ethods. o  
All of the methods presented here find fewer sources than the
ull cat1000 due to the fact we are applying these methods on
ingle ScW images, whereas cat1000 was applied to stacked images. 
hese stacked images were ideal for finding faint persistent sources, 
hich is not possible on a ScW le vel. ScW-le vel analysis finds
right persistent sources or fainter transient sources, and our CNN 

erformed best at finding such sources missed in cat1000. 
It is noteworthy that 25 sources that were not included in cat1000

ere found using the new CNN and Bayesian matching methods. 
n example of one of these sources, IGR J17467 −2848 is shown in
ig. 6 . These sources were presented to domain experts that were part
f the cat1000 surv e y team for them to manually inspect the sources
MNRAS 510, 4031–4039 (2022) 
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Figure 6. Our detections of a source (IGR J17467 −2848) detected with our 
method but missed in cat1000. Blue circles denote our detections, with marker 
size indicating detection significance, and the weighted final position of the 
source (with its uncertainty) is shown as a red square with error bars. Other 
nearby cat1000 sources are shown as magenta triangles, and the resolution of 
ISGRI is shown as the large grey circle. 
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nd provide an e v aluation of the performance of the CNN. Out of the
5 sources the domain experts agreed that all but two were sources.
hese two sources were both found in the noisy borders of the ISGRI

mages which exist due to the coded-mask of the instrument. A
ember of the surv e y team would reject this on manual inspection

ut due to the localized nature of the CNN it would have been hard
or the CNN to have picked these out as noise. To a v oid this problem
n the future, the CNN could either be just applied to a small section
f the ScW image that a v oided this area, or these detections could
e flagged for manual inspection. While the addition of the exposure
ap as the 11th channel significantly reduces this effect, it does not

ntirely remo v e all artefacts from the e xtreme edges of the image. 

.2 Blended sources and Galactic centre 

2 of the sources in cat1000 were labelled as blended, in other
ords their positions were considered unreliable due to nearby

ources within the angular resolution of the telescope. In some
ases there was ambiguity in the identification of what appeared
Figure 7. Galactic centre region of stacked ISGRI all-sky map in the 18–60 k

NRAS 510, 4031–4039 (2022) 
s one source, whereas other pairs of sources showed clear extension
eyond a single point source. All cases were subject to lengthy
isual inspection to determine their best representation in the final
atalog ̄ue. In addition to simple blended pairs, 13 sources in the
rowded Galactic Centre region were also listed as blended – in this
ase the true determination of the emitters was impossible due to
he crowded and highly variable nature of the region. Some of these
egions may prove useful test cases to understand if the Bayesian
atching method is better able to untangle these complex regions,

ut unfortunately all of the blended sources in cat1000 are faint, with
ersistent fluxes below 10 mCrab. Nevertheless, some pairs are of
ources that are variable in nature, so de-blending may be possible
s precise positions with small uncertainties can be obtained from
cience windows during which the sources are bright. As our method
earches for sources at the ScW-level, we frequently reco v er sources
hat may appear blended in a stacked image (see Fig. 7 ). If the point
ource location is sufficiently robust, these sources should not be
erged during subsequent analysis. 

 C O N C L U S I O N  A N D  PROSPECTS  F O R  

E N E R AT I N G  F U T U R E  C ATA L O G U E S  

ur CNN-based approach to source detection in IBIS/ISGRI has
ielded several key advantages. First, our method utilizes all five
nergy bands simultaneously – not only does this impro v e the
ccuracy and allow the network to detect sources at a lower flux
hreshold, it also speeds up the merging process as it results in
 single excess for each astrophysical source instead of one from
ach energy band. Secondly, the speed on which the CNN can be
pplied to the entire data set allows us now to look on a ScW
ime-scale and detect sources that only appear in a single ScW
ut fall below the detection threshold in all-sky maps stacked
rom images spanning a revolution time-scale. Finally, our CNN-
riv en approach remo v es human biases from the source detection
rocess, making our list of sources more impartial than previous
pproaches. 

Bayesian matching reco v ers marginally more sources than
egamerge – but has the ‘right’ set of answers and has remo v ed
 bias from the process by not using the reference catalogue as a
tarting point. Another limitation remo v ed is that the order in which
xcesses are presented to the algorithm no longer impacts the end
esult. 
eV energy band, with (merged) sources detected in this work labelled. 
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Looking on a ScW level allows us to detect sources that have out-
ursts on smaller time-scales than previous studies of the IBIS/ISGRI 
ata set. This approach also helps us to resolve the emission from the
C – detection at ScW level is easier to do than with stacked images

s sources are not all ‘on’ at the same time. 
The combination of the CNN and Bayesian matching produces 

 very accurate merged list of detections with very few detections 
eeding to be manually checked – compared to the old method which 
ook 2.5 yr for 9 people to manually check each source for inclusion
nto the catalogue. 

If we wanted apply these tools to generate future catalogs we 
ould also need to extend this work to include revolution maps and

ll-sky maps, enabling us to find the weak persistent sources that are
ot detected at a high enough significance in a single ScW. When
he ScW images are stacked currently using a mosaic tool, the point
pread functions (PSF) of the sources become distorted and we may 
nd the CNN’s performance drops when applied to these images. 
ne way to o v ercome this would be to use HEALPIX , which produces
 subdivision of a spherical surface in which each pix el co v ers the
ame surface area as every other pixel. This would maintain the PS
f the sources and allows us to use our CNN in order to source detect
n stacked images although we would need to take care to maintain
he same resolution. 

One possible setback of this method is that because the CNN 

ooks on a local 11x11 pixel window it does not know how noisy
he entire map is. In most cases this should not be a shortcoming,
s the local noise level will be more important for informing the
NN of the likelihood of a source being present. Ho we ver there
re some isolated cases where the global noise map is useful.
hen domain experts make a decision about a source the ‘flatness’

f the map is taken into account. In addition to this, two false
ositives were still detected in the extremities of the partially coded 
OV, although such excesses would normally be suppressed by 

he low exposure in that area. This problem could be o v ercome
y not applying the CNN in the border region of the ScW maps,
r a flag applied to any detections in this area for a manual
nspect. 

Our ne wly de veloped source detection and merging method is
eliable, scalable, remo v es need for continuous human intervention 
nd eliminates some of the human subjectively that previously 
xisted. This will be ideal for application to help generate future 
SGRI catalogues. 
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