
Ecological Informatics 78 (2023) 102363

Available online 7 November 2023
1574-9541/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

One size fits all? Adaptation of trained CNNs to new marine 
acoustic environments 

Ellen L. White a,*, Holger Klinck b, Jonathan M. Bull a, Paul R. White c, Denise Risch d 

a School of Ocean and Earth Science, University of Southampton, UK 
b K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, NY, USA 
c Institute of Sound and Vibration, University of Southampton, UK 
d Marine Science Department, Scottish Association of Marine Science, Oban, UK   

A R T I C L E  I N F O   

Keywords: 
Bioacoustics 
Deep learning 
Domain adaptation 
Marine acoustics 
Marine mammal detection 
Soundscapes 

A B S T R A C T   

Convolutional neural networks (CNNs) have the potential to enable a revolution in bioacoustics, allowing robust 
detection and classification of marine sound sources. As global Passive Acoustic Monitoring (PAM) datasets 
continue to expand it is critical we improve our confidence in the performance of models across different marine 
environments, if we are to exploit the full ecological value of information within the data. This work demon
strates the transferability of developed CNN models to new acoustic environments by using a pre-trained model 
developed for one location (West of Scotland, UK) and deploying it in a distinctly different soundscape (Gulf of 
Mexico, USA). In this work transfer learning is used to fine-tune an existing open-source ‘small-scale’ CNN, which 
detects odontocete tonal and broadband call types and vessel noise (operating between 0 and 48 kHz). The CNN 
is fine-tuned on training sets of differing sizes, from the unseen site, to understand the adaptability of a network 
to new marine acoustic environments. Fine-tuning with a small sample of site-specific data significantly improves 
the performance of the CNN in the new environment, across all classes. We demonstrate an improved perfor
mance in area-under-curve (AUC) score of 0.30, across four classes by fine-training with only 50 spectrograms 
per class, with a 5% improvement in accuracy between 50 frames and 500 frames. This work shows that only a 
small amount of site-specific data is needed to retrain a CNN, enabling researchers to harness the power of 
existing pre-trained models for their own datasets. The marine bioacoustic domain will benefit from a larger pool 
of global data for training large deep learning models, but we illustrate in this work that domain adaptation can 
be improved with limited site-specific exemplars.   

1. Introduction 

Climatic and human pressures are leading to shifts in the size, 
structure, spatial range and seasonal abundance of marine populations, 
knowledge of which is essential for effective wildlife conservation. 
Sound provides a mechanism for communication and a source of in
formation which is exploited by a wide range of marine taxa (Haver 
et al., 2017). Passive acoustic monitoring (PAM), a technique which 
allows us to eavesdrop on the marine environment, is being increasingly 
used to continuously monitor temporal and spatial variation in the 
characteristics of regional soundscapes. Ocean soundscapes are the 
characterisation of ambient noise in terms of spatial, temporal and fre
quency attributes, and the types of sources contributing to the sound 
field, with the aggregation of geophysical, biological and anthropogenic 

sounds present (Pijanowski et al., 2011; IOS, 2014). 
Advances in data acquisition, storage, battery power, and processing 

techniques (Howe et al., 2019); has resulted in a widespread adoption of 
PAM globally, recording the oceans soundscape over larger temporal 
and spatial scales (Wall et al., 2021; Wang et al., 2019). As the volume of 
acoustic data recorded globally increases, the time required to extract 
ecologically important information from the soundscape grows (Sugai 
et al., 2018). The information derived from PAM data often gets deliv
ered to the research community and stakeholders long after the sensor 
has been recovered. 

Machine learning (ML) solutions for analysing acoustic signals are 
effective tools for long-term ecological monitoring over timescales 
appropriate for marine management. ML can be used to classify sounds 
within a recording according to the source that generate them. In this 
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way ML allows the automation of tasks previously considered as 
requiring manual processing (Stowell, 2022). For instance, marine 
mammal calls have been classified with a wealth of ML algorithms 
including support vector machines (Jarvis et al., 2008; Roch et al., 
2008), generalised linear models, hidden Markov models (Brown et al., 
2010; Pace et al., 2012; Roch et al., 2011) and classification and 
regression tree analysis (Oswald et al., 2003). These advances have led 
to a rise in the number of published trained CNN models available for 
researchers to download and use as tools. The performance of these 
CNNs has been found to rival human performance at signal recognition 
(LeCun et al., 2015). CNNs can learn to discriminate spectro-temporal 
information directly from a labelled spectrogram, used as an image 
input. The success of CNNs within the marine bioacoustic field has been 
demonstrated by studies for binary and multi-class species classification 
(Belgith et al., 2018; Harvey, 2018; Liu et al., 2018; Bergler et al., 2019; 
Bermant et al., 2019; Shiu et al., 2020; Yang et al., 2020; Zhong et al., 
2020; Allen et al., 2021; White et al., 2022). 

Although CNNs can provide good performance in adverse conditions, 
the underlying assumption is that the training and testing datasets used 
to develop the model are extracted from the same distributions. Whilst a 
model may perform well on the test data, it may not hold up in real- 
world applications where data has a different underlying distribution 
(Farahani et al., 2021). Acoustically active species reside in all ocean 
bodies, ranging from shallow coastal habitats to offshore deep waters, 
with acoustic repertoires varying geographically (Tyack and Miller, 
2002). Recorded soundscapes vary significantly between sites, they are 
dependent upon site-specific bathymetry, sediment type, mooring 
depth, hydrophone type, and local anthropogenic activity, as well as 
natural physical processes such as currents, tides, surge, storms and 
winds. 

There is a lack of labelled data within the marine bioacoustics’ 
domain, available training sets for CNN models tend to be biased to
wards specific geographic locations. Data can span multiple years, 
moorings, depths and method of collection and the characteristics of this 
recording system becomes learned features within the model. Post 
model development, the question of ‘domain transferability’ remains – 
how well does a model perform in a novel environment with differing 
ambient conditions and new acoustic sources present? The ability to 
transfer knowledge learned by a CNN to a new marine domain is critical 
for researchers to harness the power of existing models. 

Within the field of marine bioacoustics few studies have considered 
the performance of broadband CNNs in environments outside those in 
which they were trained (Shiu et al., 2020; Padovese et al., 2023). Best 
et al. (2020) demonstrate the difficulty of improving model performance 
on new data collected within the same geographic region as the original 
training data for orca vocalisation detection, determining the recording 
system itself considerably disturbs the previously successful model. The 
terrestrial domain currently has several ‘global’ acoustic species classi
fication systems e.g. BirdNet (Kahl et al., 2021) where the training data 
is extracted from a global corpus of acoustic recordings, from which 
training samples vary in terms of hardware, species present, geography 
and seasonality. The diversity within these large-scale training sets al
lows for the feature representations to be more generalisable to new 
acoustic environments. Lauha et al. (2022) describe how large global 
models can benefit from fine-tuning (re-training) on local data, collected 
in the same acoustic environment the model is to be used in. Fine-tuning 
allows the model to generalise to the specific habitat it is to be used in. 
Learning the feature representation of the local soundscape can increase 
the confidence we have in model output. 

This work explores the transferability of CNNs to unseen ocean 
soundscapes. Domain adaptation of CNN models refers to the process of 
training a deep learning model on a particular environment (source 
domain) and then transferring the knowledge learned to another envi
ronment (target domain) to improve the generalization and accuracy of 
the model in the target domain (Csurka, 2017). We take a base model 
developed using data from the West coast of Scotland (White et al., 

2022) and deploy it on PAM data collected in the Gulf of Mexico, USA 
(Fig. 1), considering its performance in the new environment with 
limited re-training. Starting with a pre-trained model (EfficientNet B0, 
Tan and Le, 2019), we freeze the networks original feature extractor. We 
then train fully connected layers, which operate on the output of the 
EfficientNet B0 network, to classify the PAM data frames into the 
specified sound source classes. Audio data is input to the network in a 
novel spectrogram representation (White et al., 2022). Networks pre- 
trained on image data have been proven to perform well on classifica
tion tasks using spectrograms as image input, transformed from raw 
audio data (Allen et al., 2021; Shiu et al., 2020; Stowell, 2022). In this 
work we fine-tune the parameters of the fully connected layers itera
tively on small batches of training data acquired from a new region. 
Through an experimental approach to retraining we demonstrate the 
performance capabilities of a domain-specific CNN when trained and 
applied to new marine environments. We demonstrate the ability to 
utilise existing bioacoustic models in new and unseen marine 
environments. 

2. Methods 

This section provides a detailed summary of (i) Experimental design, 
(ii) Data acquisition and (iii) Model Evaluation. 

2.1. Base model 

The base model used in this work was originally developed to aid 
processing of a large PAM dataset (COMPASS project) from the west 
coast of Scotland (White et al., 2022). Input frames to the model 
comprise spectrogram representations of 3 s clips of acoustic data, 
sampled at 96 kHz and are classified them into one of four broad classes: 
Ambient Noise (AN), Biological Clicks (BC), Delphinid Tonal (DT) and 
Vessel Noise (VN). The spectrogram amplitudes are displayed on a dB 
scale and employ a linear frequency axis. 

The base model makes use of a ‘stacked’ spectrogram input, devel
oped to take advantage of the amount of information available to the 
model for a single input, per channel (White et al., 2022). Each channel 
of the input RGB image corresponds to a single spectrogram computed at 
one of three different time-frequency resolutions (frequency bins of 
widths 93.75 Hz, 46.88 Hz and 23.44 Hz corresponding to FFT sizes of 
1024, 2048 and 4096) standardized for the sampling rate 96 kHz. The 
spectrogram values are standardized to correspond to the range − 80 to 
0 dBfs. 

A diverse training set, utilising data collected by a variety of orga
nisations, under differing survey protocols and across a range of 
geographic locations and temporal scales was used; see White et al. 
(2022) for details. The training and test sets for this work made use of 
acoustic data collected at three moorings: Stanton Banks (56.097◦N, 
− 8.022◦W), Tolsta (58.394◦N -6.012◦W) and Garvellachs (56.235◦N 
-5.756◦W), collected between 2017 and 2019 (Fig. 1). The physical 
conditions at each site are quite different, contributing to distinct 
soundscapes (Fig. 2). 

To enhance the robustness of the base model to seasonal variation 
within the local soundscape, evaluation data used during model devel
opment has been used to re-train the model on a larger pool of local data. 
The final training set is made up of 46,749 training frames and 4673 
validation frames (Table 1). Classes are imbalanced, reflecting their 
presence within the local soundscape during manual annotation. 

The model is constructed using the EfficientNet B0 network (Tan and 
Le, 2019) which had been trained for generic image classification. The 
EfficientNet feature extraction layers are frozen (transfer learning) with 
only the weights of the final dense classification layers updated during 
training. Training was conducted within the Google Collaboratory 
‘Colab’ platform (Bisong, 2019), using the Tesla K80 GPU, accessed 
through cloud computing. An Adam optimizer was used to control 
gradient descent during training (Kingma and Ba, 2014), with 
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parameters set to: learning rate of 0.001, decay factor of 0.75 and a step 
size of 8. A dropout rate of 0.5 is used to regularise this network. Cat
egorical cross-entropy was employed as the loss function (Koidl, 2013). 
The base model trained for 37 epochs, with a training loss value of 0.32 
(validation loss 0.22) and categorical accuracy 0.84 (validation cate
gorical accuracy 0.95). 

2.1.1. Experimental design 
To evaluate the effect of local training data on model performance 

we fine-tune a base model with randomly pooled training sets of 
increasing size (sets of 50, 100, 200, 300 and 500- frames) from the Gulf 
of Mexico acoustic data collected December 3rd 2019 (Fig. 3). An extra 
training set is considered consisting of 500 frames of randomly sampled 
ambient noise from December 3rd 2019. 

The models are validated during training by combining the original 
base model validation set (Table 1) with 100 frames per class from the 
labelled December 3rd 2019 training set, randomly pooled per experi
ment. In this way the model’s performance is assessed across both 

environments simultaneously(Fig. 4). 

2.2. Model fine-tuning 

To fine-tune the base model with Gulf of Mexico data the feature 
extractor remains frozen. Models are trained with the same parameters 
as the base model but we use a cyclical learning rate of 0.0004 and is set 
to run for 50 epochs, with early stopping set to deploy if the validation 
loss does not improve within 10 epochs. A dropout rate of 0.2 is used 
during fine-tuning, and DropConnect is employed. Drop out layers 
randomly discard the output of the hidden nodes during training, 
DropConnect randomly discards the input of the hidden layer (Sun et al., 
2022). 

2.2.1. Data acquisition 
The data used to carry out fine-tuning experiments in this work is 

collected from the northern Gulf of Mexico, at the mooring S7 (28.92 N, 
− 89.26 W, Fig. 1). These data were collected between November 2019 

Fig. 1. a) Map of the locations used to collect PAM data used in this study. b) The location of the hydrophone mooring, within the Gulf of Mexico, USA, depth of 440 
m, used in this work. The inset map depicts the location of the mooring within the larger setting of the Gulf Mexico, adjacent to the Mississippi Canyon. c) The 
location of the PAM moorings in the West of Scotland used to collect training data for the base model, depths ranging 25 m – 150 m. The inset map displays the 
moorings location within British and Irish waters. Bathymetry data was sourced from GEBCO. 
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and January 2020 using a Rockhopper unit, deployed on the seabed, the 
hydrophone located approximately 10 m above the seafloor in a water 
depth of 440 m (Klinck et al., 2020). PAM data was recorded continu
ously, at a sampling rate of 197 kHz and 24 bit resolution. The dynamic 
range of the system is approximately 107 dB, the system noise floor is 
below 35 dB re 1μPa2/Hz at frequencies above 1 kHz (Klinck et al., 
2020). 

2.3. Training data 

A training set was developed from the Gulf of Mexico data consisting 
of data from a single day: December 3rd 2019 (selected arbitrarily). The 
24 h of PAM data was divided into frames of 3 s, reviewed visually 
(spectrograms) and aurally using Audacity software (version 3.0.02, 
2021) and classified into one of the four sound source categories. 
Following the principles detailed in White et al., 2022, frames were 
assigned a single label based on a hierarchy of rules: (i) If a whistle is 
present in the 3 s frame the label is ‘Delphinid Tonal’, regardless of the 
presence of another sound source; (ii) biological clicks are only labelled 
as such in the absence of whistles; (iii) a sound source is labelled if any 
detection is made by an analyst regardless of signal strength in the frame 
in respect to the ambient noise. After annotation a training set of 28,800 
frames is available across the four classes. 

Within the soundscape of the Gulf of Mexico there are signals present 
which are not present in the base model training data, or the Scottish 
soundscape, specifically Sperm Whales, airguns and delphinid harmonic 
burst pulses (Fig. 5). Sperm whale acoustic signals present during Dec 

3rd were included within the biological click class, and make up 42% of 
the frames labelled biological clicks (Fig. 5). Airguns are present within 
the training data across all classes, no separate class was created to 
represent them. Harmonic burst pulses are labelled as ‘delphinid tonal’ 
and make up 11% of training frames in that class. 

The existence of class noise in the training set, due to mislabelling, is 
a common issue and results in a marginal decrease in the accuracy of the 
classifier when the mislabelling error rate is low (Nazari et al., 2018). To 
ensure consistent labelling, a subset of the training data was blindly 
reviewed by an analyst. An error rate of 2% is estimated within the 
training set based on the manual verification. 

To fine-tune the base model, we required 600 frames per class (500 
training, 100 validation), (Fig. 2). Data augmentation is applied to 
ensure sufficient frames per class from December 3rd 2019 are available. 
Specifically, augmentation is applied only to the delphinid tonal and 
biological click classes for which only 497 and 163 frames were avail
able respectively. Augmentation was performed by applying three 
randomly selected signal transformations to the audio prior to forming 
the spectrogram: pitch shift, time-shift and added noise, not limited to 
one per category. The parameters for each transformation were 
randomly selected from a pre-defined range: pitch-shift 0.5–1.5, time- 
shift − 300 ms and 300 ms and Gaussian white noise added with 
powers between 1 and 2. After augmentation all frames were manually 
reviewed to ensure the class label remained appropriate. 

Stacked spectrograms processed for the Gulf of Mexico were 
computed as per the base model. RGB images were created by 
combining three spectrograms created using different window lengths 
and stacking each spectrogram into a three-channel matrix. The con
stituent spectrograms were computed using FFT sizes of 1024, 2048 and 
4096, for RGB channels respectively, with a sample rate of 197 kHz and 
employing a Hanning window, with 50% overlap. Each spectrogram was 
transformed onto a decibel energy scale and normalised, whereupon 
they were resized to 224 × 224 pixels, the required input size of the 
network, and inserted into the appropriate colour channel of the image. 

2.4. Test data 

To evaluate the performance of each fine-tuned base model a test set 

Fig. 2. Comparison of soundscapes used in training the base model and the Gulf of Mexico. a) Median Broadband sound pressure level (SPL) (10 Hz – 1 kHz) for the 
seasonal periods used in White et al. (2022), extracted from PAM data spanning December 2018 – November 2019. The median broadband SPL is compared to that of 
the Gulf of Mexico training data (yellow) and test sets (orange) to demonstrate variation in the ambient low frequency spectra between the two environments. b) 
Median power spectral density (PSD) (10 Hz – 1 kHz) for each seasonal period and Gulf of Mexico training and test sets. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Contribution of sound sources to the training and validation sets for developing 
the base model.   

Training data Validation data 

Ambient 14,826 1482 
Biological Clicks 4675 467 
Delphinid Tonal 11,841 1184 
Vessel 15,407 1540 
Totals 46,749 4673  
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is created, comprising four full days of annotated data from the Gulf of 
Mexico; Day A: 23rd November 2019, Day B: 18th December 2019, Day 
C: 30th December 2019 and Day D: 4th January 2020, Table 2. The 
minimum time between test datasets is 4 days. Each 24-h period of PAM 
data equates to 28,800 frames, a total of 115,200 frames for the four 
days (Table 2). In this dataset the delphinid tonal class is least repre
sented, accounting for only 0.6% of the frames. 

2.4.1. Model evaluation 
Each fine-tuned model’s performance was evaluated using Precision 

(P), Recall (R) and Accuracy (A), (Mesaros et al., 2016). These are 
calculated based on the number of true and false positive detections, NTP 
and NFP, along with the number of true and false negative detections, 
NTN and NTP: 

P =
NTP

NTP + NFP
(1)  

R =
NTP

NTP + NFN
, (2)  

A =
NTP + NTN

NTP + NFP
. (3) 

The F1 score, the harmonic mean of the precision and recall, is also 
considered. Further we consider the one-vs-all Receiver Operating 
Characteristic (ROC) curves to summarise performance (Hildebrand 
et al., 2022). ROC curves are especially useful for domains with skewed 
class distribution, as found in our test sets (Table 2). The area-under- 
curve (AUC) is used as a summary statistic for these curves, per class 
(Stowell, 2022). Models are randomly initialised and re-trained 5 times 
per batch size. The standard error reported is the variance of the mean 
performance metrics for models within each batch size. 

To understand the effect local fine-tuning has on the model’s ability 
to classify a sound source we used the final convolution feature map of 
each model to identify which parts of the input spectrogram impact the 
classification score. In particular we are interested in the evolution of the 
feature map with more site-specific training data added. Gradient- 
weighted Class Activation Mapping (Grad-CAM, Selvaraju et al., 
2017), is used to create importance maps to highlight the critical regions 
of the spectrogram, critical to forming classification outputs. 

Fig. 3. Experimental design. a) A training set is developed by manually labelling 3 s frames of PAM data collected on December 3rd 2019 in the Gulf of Mexico. The 
training set is amplified using data augmentation to create 600 frames per class. Three-channel RGB stacked spectrograms are produced per frame. A randomly 
sampled training set is computed per experimental batch size; 50, 100, 200, 300 & 500 frames, repeated five times per batch size. Similarly, a validation set of 100 
frames is extracted from the randomly sampled pool. An ambient only experimental batch is randomly sampled, taking 500 ambient frames from the larger pool. The 
base model is fine-tuned on each individual training set. b) A comparison of the mean pixel intensity of 100 randomly sampled spectrograms per class, compared 
between the base model and the Gulf of Mexico training sets. The base model mean per class is marked with a dotted line, demonstrating the intensity shift present 
across all classes between the two domains. 
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3. Results 

Here we evaluate the base model performance as a result of fine- 
tuning on local data by (i) assessing variability between soundscape 
characteristics, (ii) analysing performance metrics across the whole test 
set and (iii) inspecting per day variation within the test set. 

3.1. Variation in soundscape characteristics 

Ambient sound levels differ between the base model training sites 
and the Gulf of Mexico (Fig. 2a). Overall median broadband SPLs (10 Hz 
– 1 kHz) are higher in the Gulf of Mexico than the Scottish sites: median 
broadband SPLs are between 118 and 125 dB re 1 μPa for the training 
and testing periods (Fig. 2a). Scottish broadband SPLs were computed 
for two low pressure and two high pressure weather periods, per site, 
representing the extremities of the soundscape characteristics (Fig. 2). 
High pressure conditions generate the lowest ambient sound conditions, 
with a median broadband SPL between 89 and 110 dB re 1 μPa. Low 
pressure conditions report the highest SPLs, ranging between 100 and 
112 dB re 1 μPa. The acoustic data used for training and testing 
demonstrate diurnal variation in ambient conditions, with a 17 dB dif
ference between November 23rd 2019 (testing) and December 3rd 2019 
(training), due to variation in seismic activity. Fig. 3b illustrates the 
variation in median spectrum levels between 10 Hz and 1 kHz within 
each local soundscape. The median spectrum comparison highlights the 
variability between the Gulf of Mexico and the west of Scotland. 

3.2. Entire test set 

Site-specific fine-tuning significantly improves the performance of 
the model in a new environment (Fig. 6). The original base model re
ports AUC scores of 0.51–0.57 across the four classes (Table 3). Adding 
50 frames per class of site-specific data to the training set during fine- 

tuning improves mean AUC scores by >0.30 across the classes (Fig. 6). 
The AUC score is above 0.75 for all classes with ≥50 training frames 
added. Batch sizes of 500 frames result in the highest mean AUC scores 
across all classes, with the lowest variation between model runs, Fig. 6. 
Increasing the number of frames per class used for fine-tuning from 50 to 
500, improved F1 scores by 0.01, 0.08, 0.27 and 0.30 for AN, BC, DT and 
VN, respectively (Table 3). However, the F1 score standard error for 500 
frames is greater than observed when 50 frames are employed. 

The mean AUC score per class for 100 frames is lower than scores for 
50 frames, with a greater standard error for all classes, (Fig. 6). As batch 
sizes increase to 200 and 300 frames per class there is no improvement 
in mean AUC score for ambient noise and biological click frames. AUC 
scores for the vessel noise class fluctuate between 100 and 300 frames, 
reporting a mean AUC 0.06 lower than models trained on 50 frames and 
0.11 lower than models trained on 500 frames. A severe decrease in 
recall is reported for the vessel class (Table 3). There is subtle difference 
between the AUC and F1 scores for the models trained on ambient or 50 
frames of each class (Table 3), for AN, BC and VN. For the delphinid class 
the ambient only model has a higher AUC score, 0.86, than the 50 frames 
model. The 500 frames mean AUC score for the delphinid class also 
reports 0.86. 

3.3. Spectrogram regions of importance 

Using GradCam to inspect model predictions shows that our model is 
capable of focusing on important regions of the spectrogram for each 
class (Fig. 7). Fine-tuning with local data allows the model to adapt, 
learning to extract specific regions of the image to improve classification 
of data from a new domain. Fine-tuning with 50 frames improves the 
models class prediction (Fig. 7a), with increasing classification scores 
(confidence) after increasing site-specific data. Low SNR and temporal 
overlap with other signals of interest can result in poorer model per
formance. As batch sizes increase to 500 frames the regions of 

Fig. 4. Workflow of model development and experimental retraining. The original base model is trained on multiple global datasets. The base model is used as the 
framework for experimentation on the Gulf of Mexico dataset. PAM files from December 3rd 2019 are used as a training set. Each experimental run is tested on four 
days of data: November 23rd, December 18th, December 30th 2019, and January 4th 2020. 
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importance of the input spectrogram become apparent and class acti
vation scores improve (Fig. 7). Detection of new and unfamiliar sound 
sources is complex, the delphinid harmonic pulses output high classifi
cation scores (>0.90) for the incorrect class (Fig. 7d). 

3.3.1. Inspecting per day performance 
In this section we inspect model performances for each individual 

test day to evaluate model performance when fine-tuned on data from 
one day, 3rd December 2019, and tested on data from other days. 

Day A represents the richest soundscape, Table 2, with the ambient 

sound spectra significantly lower between 10 Hz and 200 Hz than the 
training data (Fig. 2). Performance metrics for are high across all sound 
sources for all batch sizes, outperforming the base model (Fig. 8a). All 
classes report AUC scores above 0.70 after training with 50 frames per 
class. Training using ambient only data improves the class prediction by 
>0.11 from the base model (Fig. 8a). The biological click class mean 
AUC score improves by 0.25 with ambient only training data, equivalent 
to the mean AUC score 0.89 after training with 50 frames per class. Fine- 
tuning on site-specific data adds the biggest performance boost to the 
delphinid class, from an AUC score of 0.59 by the base model, to 0.78 ±
0.04 with 50 frames and 0.84 ± 0.01 with 500 frames per class. Preci
sion and recall become more balanced for each class by using fine- 
tuning, with the greatest performance improvements within the del
phinid class (Fig. 9). 

The frequency spectra of Day C subjectively mirrors that of the 
training data, with an increase of 4–6 dB between 10 Hz – 100 Hz, and a 
median broadband SPL 5 dB higher than the training data (Fig. 3). The 
base model is not able to detect biological clicks or delphinid tonal calls 
within the soundscape (Fig. 9). Fine-tuning using site specific data im
proves mean AUC scores by 0.24, 0.31, 0.35 and 0.21 for AN, BC, DT and 
VN, respectively, with only 50 frames per class. The detection of vessel 
noise signatures is poor resulting in a high number of false positives and 
negatives (Fig. 9c). Fine-tuning on increasing batch sizes reduces per
formance scores for each class when 200 and 300 frames per class are 
used (Fig. 8c). Training sets consisting of ambient only frames 

Fig. 5. Representative spectrograms of the four classes used as input for training; Ambient noise, Biological clicks (echolocation, burst pulses and sperm whales), 
Delphinid tonal (whistles and harmonic pulses) and Vessel noise. Each spectrogram computed with a Hanning window, 75% overlap and an FFT size of 4211. Time 
and frequency are on the horizontal and vertical axis, respectively. 

Table 2 
Test set class distribution. Number of frames per class labelled for each test day.  

Day Date Ambient 
Noise 

Biological 
Clicks 

Delphinid 
Tonal 

Vessel 
Noise 

Day 
A 

23rd Nov 
2019 

22,934 
(79.6%) 

2077 (7.2%) 346 (1.2%) 3443 
(12%) 

Day 
B 

18th Dec 
2019 

27,582 
(95.7%) 

363 (1.3%) 0 (0%) 828 (3%) 

Day 
C 

30th Dec 
2019 

20,492 
(71.3%) 

715 (2.6%) 360 (1.4%) 7101 
(24.7%) 

Day 
D 

4th Jan 
2020 

24,052 
(83.6%) 

1511(5.2%) 12 (0.04%) 3199 
(11.1%)  

Totals 95,060 
(82.4%) 

4666 (4%) 718 (0.6%) 14,571 
(13%)  
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outperform both of these batch sizes scoring >0.75 AUC. 
for each class (Fig. 8c). Fine-tuning with 500 frames per class pro

duces mean AUC scores >0.80 for all classes with small standard error 
ranges. The precision and recall scores are most balanced for 500 

training frames per class, across all of the classes (Fig. 9c). 
Test days B and D have less diverse soundscapes, both dominated by 

sperm whale activity. Sperm whale clicks make up the vast majority of 
the biological click class rather than delphinid click types. No delphinid 

Fig. 6. The importance of site-specific data demonstrated across each of the four sound source classes. Mean AUC scores per training set are plotted per class: a) 
Ambient Noise, b) Biological Clicks, c) Delphinid Tonal, d) Vessel Noise. Confidence intervals plotted represent the standard error of the mean. Model performance is 
evaluated for acoustic data collected on November 23rd, December 18th, December 30th 2019 and January 4th 2020. Fine-tuning with 50 frames provides an 
improvement across all classes from the base model, fine-tuning with 500 frames per class results in lower error rates. 

Table 3 
Mean performance metrics for each experimental batch size, with standard error, for the entire test set.  

Batch size Sound source Precision Recall F1 Score Mean AUC (Roc curve) 

Base Model (BM) Ambient 0.49 – 0.96 – 0.66 – 0.57 ±0.00 
Clicks 0.65 – 0.45 – 0.55 – 0.57 ±0.00 
Delphinid 0.55 – 0.25 – 0.35 – 0.51 ±0.01 
Vessel 0.73 – 0.76 – 0.75 – 0.54 ±0.01 

50 Frames Ambient 0.89 ±0.00 0.98 ±0.00 0.93 ±0.00 0.87 ±0.01 
Clicks 0.58 ±0.01 0.58 ±0.00 0.58 ±0.00 0.87 ±0.00 
Delphinid 0.59 ±0.02 0.34 ±0.00 0.43 ±0.00 0.83 ±0.03 
Vessel 0.78 ±0.05 0.26 ±0.02 0.38 ±0.02 0.84 ±0.01 

100 Frames Ambient 0.88 ±0.01 0.98 ±0.00 0.93 ±0.00 0.79 ±0.04 
Clicks 0.48 ±0.04 0.53 ±0.07 0.50 ±0.05 0.83 ±0.04 
Delphinid 0.35 ±0.06 0.32 ±0.06 0.33 ±0.06 0.81 ±0.04 
Vessel 0.85 ±0.02 0.19 ±0.01 0.30 ±0.02 0.78 ±0.05 

200 Frames Ambient 0.89 ±0.00 0.97 ±0.00 0.93 ±0.00 0.80 ±0.02 
Clicks 0.54 ±0.02 0.57 ±0.01 0.55 ±0.01 0.86 ±0.00 
Delphinid 0.23 ±0.07 0.36 ±0.07 0.24 ±0.06 0.77 ±0.03 
Vessel 0.83 ±0.03 0.25 ±0.01 0.38 ±0.02 0.79 ±0.02 

300 Frames Ambient 0.89 ±0.00 0.95 ±0.03 0.92 ±0.01 0.81 ±0.02 
Clicks 0.53 ±0.04 0.55 ±0.03 0.54 ±0.01 0.86 ±0.01 
Delphinid 0.34 ±0.10 0.47 ±0.08 0.32 ±0.07 0.76 ±0.03 
Vessel 0.86 ±0.00 0.25 ±0.00 0.39 ±0.00 0.78 ±0.03 

500 Frames Ambient 0.91 ±0.01 0.67 ±0.01 0.94 ±0.01 0.90 ±0.00 
Clicks 0.66 ±0.05 0.67 ±0.06 0.66 ±0.04 0.89 ±0.00 
Delphinid 0.77 ±0.03 0.67 ±0.09 0.70 ±0.07 0.86 ±0.00 
Vessel 0.79 ±0.03 0.63 ±0.11 0.68 ±0.07 0.89 ±0.00 

Ambient Only Ambient 0.90 – 1.00 – 0.90 – 0.86 – 
Clicks 0.50 – 0.60 – 0.60 – 0.88 – 
Delphinid 0.60 – 0.30 – 0.40 – 0.86 – 
Vessel 0.90 – 0.20 – 0.30 – 0.84 –  
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tonal signals are found on Day B and only 12 low SNR whistles (0.04%) 
are found throughout Day D (see Supplementary Fig. 1). Both days B and 
C report a median broadband SPL of 125 dB (Fig. 3). The lower diversity 
soundscapes benefit from site specific fine-tuning, improving mean AUC 
scores across all classes after fine-tuning on 50 frames, (Fig. 8). Results 
for Day B show a large performance increase for ambient noise (0.43) 
and vessel noise (0.42), with a smaller improvement in the biological 
click class (0.11). Fine-tuning on 500 frames per class, or ambient only 
frames reports high performance metrics, with ambient only frames 
outperforming 500 frames by 0.11 for the vessel class (Fig. 8b). Fine- 
tuning on increasing batch sizes has a lesser effect on overall perfor
mance for the Day D soundscape (Fig. 8d). Fine-tuning with ambient 
frames only does not offer a benefit over using 50 frames per class 
(Fig. 8d), with 500 frames per class scoring the highest for all classes 
(Fig. 8d). Fine-tuning offers minor improvements over the base model 
for the delphinid class but AUC scores are low across all batch sizes 
(Fig. 8d). The precision and recall scores provide insight to the poor 
performance with and without fine-tuning on local data of any quantity, 
with no correct delphinid detections in nearly all experiments (Fig. 9). 

Overall, our results demonstrate that local site-specific data is 
necessary for successful deployment of the detection model, with per
formance improving significantly after only 50 frames. 

4. Discussion 

Data labelling in sufficient quantities to train deep neural networks 
demands significant manual effort, and so the ability to apply a trained 
model on a specific ocean soundscape to other recording configurations 
and locations is greatly beneficial to the bioacoustic community. Here 
we consider the challenge of deploying a CNN developed for one marine 
environment in a new environment, for acoustic detection where class 

distribution shifts are significant. Our results illustrate that addition of 
site-specific training data improves the performance of a CNN model 
across all defined classes. With as little as 50 frames per class we 
demonstrate a significant improvement in model performance, out
performing the base model AUC score by 0.30. The addition of greater 
site-specific frames to the training set reduces the variation in model 
performances between runs. Fine-tuning with randomly selected data 
from the local soundscape improves performance in the new marine 
habitat without cherry-picking data. 

There have been relatively few prior studies on fine-tuning for 
domain adaptation with which we can compare our work. Lauha et al. 
(2022) found that additional site-specific training frames were necessary 
for improving global bird detection CNN models on local environments 
with niche species present. We demonstrate similar degrees of success to 
Lauha et al. (2022) with a small-scale model (fewer parameters) and a 
restricted training set. By fine-tuning regional models on subsets of data 
from the local soundscape we aim to move the field towards utilising 
CNN models in regions for which they are not trained, to extract signals 
of interest which could be advantageous to the development of global 
models. Matching quantitative success of small-scale models with global 
models should encourage researchers to tailor existing marine CNN 
networks to their own regions through fine-tuning as a form of domain 
adaptation. 

Fine-tuning on local data is challenging: There is a balance between 
maintaining the learned features from the original base model, while 
presenting new information for the model to learn from which is in
clusive of the numerical ranges present within spectrograms from the 
new domain. In the common case that labelled data is scarce for the site 
of interest or the signal of interest is rare, training with only ambient 
noise frames proves beneficial where signal types between marine en
vironments are comparable. The Gulf of Mexico is subject to high levels 

Fig. 7. Exemplar model classifications, illustrated with GradCAM. GradCAM extracts the activation map of the final convolutional layer of each model, highlighting 
regions of importance within the spectrogram to the model’s classification prediction for a) vessel noise, b) low SNR delphinid whistle, c) delphinid clicks within 
vessel noise and d) delphinid harmonic burst pulse. Each GradCAM plot displays the predicted class label and score by the model, coloured in red if the label is 
incorrect and green if the label is correct. Darker green indicates a more confident prediction. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 8. The importance of fine-tuning on site-specific training data, demonstrated across each of the four sound source classes per individual test day. Mean AUC 
scores are plotted per class for each test day, a) Day A, b) Day B, c) Day C & d) Day D when the training data is fed in in batches of 50/100/200/300/500 frames, plus 
ambient only frames. Confidence intervals plotted represent the standard error of the mean of the AUC scores across model runs. In a diverse soundscape performance 
metrics are high, with mean AUC scores 0.10–0.30 higher than those reported by the base model (a & b). See supplementary Table 2 for raw data. 

Fig. 9. The success of site-specific fine-tuning demonstrated by the precision (P) and recall (R) scores for each of the four sound source classes for each individual test 
period: a) November 23rd, b) December 18th, c) December 30th and d) January 4th 2020. Mean precision and recall scores are plotted per class for the base model, 
50, 500 and Ambient only frames. Error bars are plotted for each batch size, representing the standard deviation of the mean for the precision and recall scores across 
each model run. Some standard deviation values are so small error bars are not visible, due to the axis range 0–1, see supplementary table 2. Site specific training data 
improves precision and recall scores above the base model, with scores most balanced for 500 training frames across all classes. 
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of seismic activity, with airguns found throughout the training and test 
periods, a loud contributor to the soundscape not present within the base 
model training set (Klinck et al., 2020). We found that through fine- 
tuning with 500 frames of ambient noise we can achieve similar re
sults across all classes as when the model is trained on batches of each 
class. Performance metrics indicate that by using ambient noise data to 
fine-tune the base model we optimise the learned feature representation 
to the local environment, improving performance across all classes after 
only 50 frames per class (2.5 min of data). 

Our results show that selecting a diverse set of training frames for 
local fine-tuning is essential to capture the variability in local sound
scape characteristics. Where a signal is not present within the selected 
24-h training period, we do not show the signal to the model. Sperm 
whale activity is high in the Gulf of Mexico (Collum and Fritts, 1985; 
Farmer et al., 2018; Miller et al., 2009), a species not found in the data 
from the West of Scotland. Successful model deployment here is 
dependent on the training batches including both delphinid and Sperm 
whale clicks to allow the model to learn the salient features across a wide 
frequency spectrum. Within 50 frames the model is capable of detecting 
sperm whales, with increasing batch sizes the precision and recall for 
click detection improve. Within the training data, a novel type of whistle 
was present, not found in the original training data, specifically a har
monic buzzing tonal call (see Supplementary fig. 1). This buzzing call 
occurs at high frequencies, occupying a similar spatial region within the 
spectrogram as the biological click class. Model predictions across the 
test set are mixed with respect to this signal type. After 500 frames of 
fine-tuning the model still found difficulty detecting high SNR signals, 
illustrated by the results of Day D (Supplementary fig. 1). The random 
pooling used to curate each training set allows for the possibility that 
scarce or novel signals are not included, resulting in a large degree of 
error between model runs with small batch sizes. CNNs are robust to 
signal fluctuations but for unique and complex signal types found within 
the new environment it is critical that efforts are taken to label a pool of 
frames representative of the specific signal under various local condi
tions, for optimum model performance. Knowledge of the long-term 
temporal and spatial characteristics of a soundscape could be used to 
select training frames, and maximise the information contained in the 
training spectrograms. Future efforts will explore the performance 
benefits of selecting training periods based upon soundscape analyses. 

The variability between ambient spectra is attributed to be the 
reason for poor precision and recall scores within specific classes. The 
ambient noise and vessel classes are closely coupled, such that we 
observe similar trends in performance metrics across test sets. Within the 
Gulf of Mexico there is a high level of anthropogenic activity which 
varies day-to-day, resulting in the ambient soundscape fluctuating on 
short temporal periods. The point at which a vessel becomes a vessel, 
and is no longer ambient noise remains difficult to pinpoint, and can 
cause irreducible error as a result of annotation bias. The low precision 
and recall scores for the vessel class are a result of the model depicting 
the start and end of a vessel passing as different to that of a manual 
annotator, as a result the performance metrics are penalised. Future 
efforts on automated solutions for marine signal analysis will aim to 
define more concrete boundaries for the distinction between vessels and 
ambient noise, to improve overall performance metrics. 

In this work we use two environments that are significantly different 
with respect to their soundscape. The training and testing protocol used 
is restricted to five 24-h periods of acoustic data, within which we do not 
select periods of high quality, or high activity data. Although training 
batches are equal across classes, the contributing frames to each training 
batch cannot be equal due to overrepresentation of ambient frames. We 
attribute the variable results between batch sizes 100 and 300 across all 
performance metrics to the bias-variance trade-off (Neal et al., 2018). 
Specifically, at small sample sizes, noise can create fluctuations in the 
data that look like genuine patterns. Here we are using a small-scale 
model pre-trained on 40,000 frames. During fine-tuning, as the num
ber of frames per class reaches 500, the model is able to learn to separate 

the noise from the patterns within each signal type across the two ma
rine environments, improving performance. 

Our results show that as fine-tuning batch sizes increase, the AUC 
scores and confidence intervals converge across the signal types. We 
demonstrate that fine-tuning on even small portions of local PAM data 
enables the classifier to reach good performance with a considerably 
smaller training volume, helping to overcome the data bottleneck within 
marine bioacoustics. 

5. Conclusion 

Automated analysis of passive acoustic data is essential if we are to 
take advantage of the large volumes of acoustic data available to exploit 
the ecological information they contain. We demonstrate that with small 
subsets of site-specific data researchers can harness the power of existing 
bioacoustic detection models and tailor them to other recording envi
ronments, without cherry-picking high-quality data. We report a 0.30 
improvement to AUC scores after fine-tuning with only 50 frames per 
class. Our approach highlights the ability to detect new signal types not 
found within the original marine environment, aiding the detection of 
new species and signal types with minimal annotation effort. Fine- 
tuning using only ambient noise frames can produce results which 
rival training on larger pools of training data representing each class. 
This is beneficial in the absence of labelled data, or when working with 
sparsely occurring signal types. Our analysis shows that models trained 
on one geographic region can be applied to another specific region with 
a small amount of additional labelled data, and that an initial globally 
trained model is not required. We hope to encourage the adaptation of 
existing bioacoustic CNN architectures to new marine regions and 
soundscapes in order to exploit the wealth of information which is held 
in PAM datasets globally. 
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