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Abstract: With increasing devices supporting the recording of binaural audios, binaural audio processing methods
become a field of possible exploration in acoustic scene classification (ASC). Therefore, we would like to investigate the
primary ambient extraction (PAE), a binaural audio processing method which decomposes a binaural audio sample into
four channels using the phase information. Features carrying binaural phase information were therefore extracted. An
ensemble of convolution neural networks (CNNs) was adopted as the classifier. Compared to existing works, the ASC
system proposed in this paper can generate features with additional phase information and make full use of the
advantages of binaural audios. The evaluation results validate that the performance of our ASC system can be improved
by taking the binaural phase information into account. Our ASC system outperforms the baseline system provide by the
2019 IEEE AASP Challenge Detection and Classification of Acoustic Scenes and Events (DCASE) by 18.3% in terms of
the classification accuracy.
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Fig. 1 Geometric representation of PAE in a complex plane
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Fig.2 Mel frequency filter bank
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tab. 1 CNN structure for raw features
N 431x128x1 B 431x128>2 Y 431x128>4
77 Conv2D (pad=1, stride=1)-32-BN-ReLU
77 Conv2D (pad=1, stride=1)-32-BN-ReLU
2>2 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-64-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-64-BN-ReLU
2>2 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-128-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-128-BN-ReLU
5>5 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-256-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-256-BN-ReLU
GlobalAveragePooling2D

Dense (512, activation="relu’)

Dense (10, activation='softmax’)
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tab. 2 CNN structure for cropped features
N 129%128x1 B 129%128>2 Y, 129x128>4
3>3 Conv2D (pad=1, stride=1)-32-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-32-BN-ReLU
2>2 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-64-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-64-BN-ReLU
2>2 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-128-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-128-BN-ReLU
5>5 MaxPooling2D
3>3 Conv2D (pad=1, stride=1)-256-BN-ReLU
3>3 Conv2D (pad=1, stride=1)-256-BN-ReL.U
GlobalAveragePooling2D

Dense (512, activation="relu’)

Dense (10, activation='softmax’)
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Fig. 3  Architecture of proposed ASC system
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SEIGREAS S Intel(R) Core(TM) i5-9600K CPU (3.70GHz). 64 GB Y f¥. Nvidia GeForce RTX 2070 GPU,
AR EE N Windows10 1809 #4t, Python3.6.8. Tensorflow1.8.0. Keras2.2.2.
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6 SCIGLER
6.1 AEHHEZEIAIXTEE

BATEE A A5 R E IR T AR T43 2588, EATTME— P 22 Sl 76 5 N SRR IE P 38 BORN sz B 1 K
AN, AR E [ i BEN LR TR EL T 4 BRI ZR B R 2 7 3R, BJR PP RS 3 Fian. X
B 5 R 1 RRAS 58 4 mT 0 H T R s SRV TR .

B3 TARB AR

tab. 3 The classification accuracies of sub-classifiers

o 1 I N1
Wl sl ol
CNN-1(F i iH) 0.743  0.751  0.663
CNN-2(@EERY) 0771 0.779  0.677
CNN-3(XLiliE) 0.721  0.731  0.575
CNN-4(XCEEHY)  0.758  0.769  0.630
CNN-5(VY @) 0.734  0.742  0.610

SES

CNN-6(JUIEEHYT) 0759 0771  0.632
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tab. 4 The classification accuracies of ASC system

BRLEE/IES
TFREAEEITTHE  HAT B (Kaggl
DERSE ' TRRRERED g e eaem)
s Ba Rm ATF N B 3 i CL ARH
Bl R Wbl HETEY HETEE (9S%EEXIAD LAl Wt
BE&RS% 0.625 0.648  0.438 0.643 0.630  0.633(0.622~0.645)  0.667 0.461
HEBP AR S / / / 0.775 0.765  0.762(0.752~0.772) 0.775 0.696
RF1234 0.772  0.780  0.682 0.833 0.806  0.812(0.803~0.821)  0.834 0.698

Averagingi,2,3,4,5,6 0.778  0.785  0.693 0.830 0.808 0.799(0.789~0.808) 0.822 0.681

,,,,,

RF123456 0.778 0.788  0.674 0.840 0.806 0.816(0.807~0.825) 0.838 0.707
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T 0, 2006, 2019 =ANBEHUR X e S 24T Rl 70 JFAE LA EEAT 4 3752 RAIE, R 45 ROV & Fif
ARRID THPHEER XTSRS, FERROREENHLRLET T ATE B =TI, &



AR ANIET S, B E T RPN UL G201 WRBIRATATAE AR T CNN-5 Al
CNN-6 [ 2 GE AU HERA 2 2 B o X — R EIE 1 DY I8 R AE L XU SE R AE S AP M R B 1 3L A o
MRS R . Ferp R TS M FR S PUNMER R AN LE R 2 R GUHETH T 18.3%, ML MBI R GH 5.4%H
eI, M0 95% EAS X Ja] th/N TR RGEAHEL A B R St

7 g

ASLOSERNARFE R E IR R ARG NN R, T893 BB AR B AL L A B R 5 (PR oK
PR R SEARFEARALAS B AOIE REAT TIRST, BRI G I T IR AL B BB AL, SRS
T MERIRFHE N FE SR RAG . LRG0 RIERE 2019 4 IEEE 2215 S A BEHORZR i 22 07
B S REE AR AR IR T A SR RBFHRZN A TR B =T7 b, 57
— 7 I — RPN S A HEAT R B VT AL . SEIXT U RIRAE SN TR MR RE . A IR 77 U Ay o
MIPERE, EPAE 7 DUEERFAE LESOE RS AL EaF IR 7 AR A i AR OLE B, AR 1AL B A 2L
.

SE 3k

[1] Mesaros A, Heittola T, Virtanen T. DCASE 2017 challenge setup: tasks, datasets and baseline system[J]. |[EEE/ACM
Transactions on Audio, Speech, and Language Processing, 2019, 27(6): 992-1006.

[2] Stowell D, Giannoulis D, Benetos E,et al. Detection and classification of acoustic scenes and events[J]. IEEE Transactions on
Multimedia, 2015, 17(10): 1733-1746.

[3] Sawhney N, Maes P. Situational awareness from environmental sounds[R]. Boston: Massachussets Institute of Technology,
1997: 1-7.

[4] Eronen A J, Tuomi J T, Klapuri A, et al. Audio-based context awareness-acoustic modeling and perceptual
evaluation[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2003: 529-532.

[5] Eronen A J, Peltonen V T, Tuomi J T, et al. Audio-based context recognition[J]. IEEE Transactions on Audio, Speech, and
Language Processing, 2006, 14(1): 321-329.

[6] Virtanen T, Plumbley M D, Ellis D. Computational Analysis of Sound Scenes and Events[M], Springer, 2018: 3-41.

[71 He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]/IEEE Conference on
Computer Vision and Pattern Recognition, 2016: 770-778.

[8] BisotV, Essid S, Richard G. Hog and subband power distribution image features for acoustic scene classification[C]//European
Signal Processing Conference, 2015: 724-728.

[91 Mesaros A, Heittola T, Virtanen T. TUT database for acoustic scene classification and sound event detection[C]//European
Signal Processing Conference, 2016: 1128-1132.

[10] Rakotomamonjy A, Gasso G. Histogram of gradients of time-frequency representations for audio scene classification[J].
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1): 142-153.

[11] Mun S, Park S, Han D, et al. Generative adversarial network based acoustic scene training set augmentation and selection using
svm hyper-plane[R]. Tampere: Tampere University of Technology, 2017: 1-5.

[12] Mesaros A, Heittola T, Virtanen T. A multi-device dataset for urban acoustic scene classification[C]//Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2018 Workshop, 2018: 9-13.

[13] Chen Lu, Shi Chuang, Li Huiyong. Primary ambient extraction for random sign Hilbert filtering decorrelation[C]//International
Congress on Acoustics, 2019: 7239-7246.

[14] He Jianjun, Gan W, Tan E. Primary-ambient extraction using ambient phase estimation with a sparsity constraint[J]. IEEE

Signal Processing Letters, 2015, 22(8):1127-1131.



[15]

[16]

[17]

[18]

[19]

[20]

Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[C]//Neural Information
Processing Systems, 2012: 1097-1105.

HHVE, kB, TR, . BRI S A Z R TR R R[], 15 S ALEE, 2018, 34(3), 357-367

Hu Tao, Zhang Chao, Cheng Bing, et al. Research on abnormal audio event detection based on convolutional neural
networks[J]. Journal of Signal Processing, 2018, 34(3), 357-367. (in Chinese)

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]/Computational and
Biological Learning Society, 2015: 1-14.

Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift[ C]//International Conference on Machine Learning, 2015: 448-456.

Zhang Hongyi, Cisse M, Dauphin Y N, et al. mixup: Beyond Empirical Risk Minimization[C]//International Conference on
Learning Representations, 2018: 1-13.

Vapnik V, Chervonenkis A Y. On the uniform convergence of relative frequencies of events to their probabilities[J]. Theory of

Probability & Its Applications, 1971, 16(2): 264-280.

EE-N

igEe B, 1995 4EE, PUJIGRFHA . HFRIECEE B S5 TS LR A, RV
N ET S T -

E-mail: yanghaocong@std.uestc.edu.cn

8] 5, 1986 44, WTH#HA A, HEREREELEBE LRSI ZEEE, M5, RE
AATMNFESOI S0, HENGESOE, LMS5IEsiEmE Y. B k5.
E-mail: shichuang@uestc.edu.cn

FE 5, 1975 4, WHEEWN . PR RFHEESEE TSR0, M5, FEmRA
T ECNESIE S AR, HIENE S AR,
E-mail: hyli@uestc.edu.cn



