The University of Southampton
University of Southampton Institutional Repository

Designing hollow-core multi-mode anti-resonant fibers for industrial high-power laser delivery

Designing hollow-core multi-mode anti-resonant fibers for industrial high-power laser delivery
Designing hollow-core multi-mode anti-resonant fibers for industrial high-power laser delivery
We investigate the design of hollow-core fibers for the delivery of 10s of kilowatt average power from multi-mode laser sources where delivery through solid-core fibers is typically limited by nonlinear optical effects to 10s of metres of distance. A technique is presented for the design of multi-mode anti-resonant fibers that can efficiently capture and deliver light from these lasers. We analyze, by numerical simulation, the performance of two anti-resonant fibers designed using this technique to target lasers with M2 up to 13 and find they are capable of delivering MW-level power over multi-kilometres distances with low leakage loss, and at bend radii as small as 35 cm. Pulsed lasers are also investigated and numerical simulations indicate that optimized fibers could in principle deliver nanosecond pulses with pulse energy greater than 100 mJ over more than 1 km. This would be orders of magnitude higher power and longer distances than in typical machining applications using state-of-the-art solid core fibers.
Anti-resonant fiber, High-power laser, Hollow-core, Multi-mode, Power delivery
1068-5200
Shere, William
e52eb8bd-32a5-4fb8-a343-69cb306070d0
Jasion, Gregory T.
16cfff1d-d178-41d1-a092-56e6239726b8
Numkam Fokoua, Eric
6d9f7e50-dc3b-440a-a0b9-f4a08dd02ccd
Poletti, Francesco
9adcef99-5558-4644-96d7-ce24b5897491
Shere, William
e52eb8bd-32a5-4fb8-a343-69cb306070d0
Jasion, Gregory T.
16cfff1d-d178-41d1-a092-56e6239726b8
Numkam Fokoua, Eric
6d9f7e50-dc3b-440a-a0b9-f4a08dd02ccd
Poletti, Francesco
9adcef99-5558-4644-96d7-ce24b5897491

Shere, William, Jasion, Gregory T., Numkam Fokoua, Eric and Poletti, Francesco (2023) Designing hollow-core multi-mode anti-resonant fibers for industrial high-power laser delivery. Optical Fiber Technology, 81, [103550]. (doi:10.1016/j.yofte.2023.103550).

Record type: Article

Abstract

We investigate the design of hollow-core fibers for the delivery of 10s of kilowatt average power from multi-mode laser sources where delivery through solid-core fibers is typically limited by nonlinear optical effects to 10s of metres of distance. A technique is presented for the design of multi-mode anti-resonant fibers that can efficiently capture and deliver light from these lasers. We analyze, by numerical simulation, the performance of two anti-resonant fibers designed using this technique to target lasers with M2 up to 13 and find they are capable of delivering MW-level power over multi-kilometres distances with low leakage loss, and at bend radii as small as 35 cm. Pulsed lasers are also investigated and numerical simulations indicate that optimized fibers could in principle deliver nanosecond pulses with pulse energy greater than 100 mJ over more than 1 km. This would be orders of magnitude higher power and longer distances than in typical machining applications using state-of-the-art solid core fibers.

Text
1-s2.0-S1068520023003310-main - Version of Record
Available under License Creative Commons Attribution.
Download (2MB)

More information

Accepted/In Press date: 7 October 2023
e-pub ahead of print date: 17 October 2023
Published date: 17 October 2023
Additional Information: Funding Information: This work was supported by funding from the Royal Academy of Engineering (RAE) and the Engineering and Physical Sciences Research Council . ENF acknowledges support from a RAE University Research Fellowship . FP gratefully acknowledges funding from the ERC project Lightpipe (grant number 682724 ).
Keywords: Anti-resonant fiber, High-power laser, Hollow-core, Multi-mode, Power delivery

Identifiers

Local EPrints ID: 484556
URI: http://eprints.soton.ac.uk/id/eprint/484556
ISSN: 1068-5200
PURE UUID: 09c9ff0a-e30e-42a6-a07a-c970d8ad542d
ORCID for William Shere: ORCID iD orcid.org/0000-0001-5159-7132
ORCID for Gregory T. Jasion: ORCID iD orcid.org/0000-0001-5030-6479
ORCID for Eric Numkam Fokoua: ORCID iD orcid.org/0000-0003-0873-911X
ORCID for Francesco Poletti: ORCID iD orcid.org/0000-0002-1000-3083

Catalogue record

Date deposited: 16 Nov 2023 14:57
Last modified: 18 Mar 2024 03:25

Export record

Altmetrics

Contributors

Author: William Shere ORCID iD
Author: Eric Numkam Fokoua ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×