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Unravelling the history of range shifts is key for understanding past, current
and future species distributions. Anthropogenic transport of species alters
natural dispersal patterns and directly affects population connectivity.
Studies have suggested that high levels of anthropogenic transport homogen-
ize patterns of genetic differentiation and blur colonization pathways.
However, empirical evidence of these effects remains elusive. We compared
two range-shifting species (Microcosmus squamiger and Ciona robusta) to exam-
ine howanthropogenic transport affects our ability to reconstruct colonization
pathways using genomic data. We first investigated shipping networks
from the 18th century onwards, cross-referencing these with regions where
the species have records to infer how each species has potentially been
affected by different levels of anthropogenic transport. We then genotyped
thousands of single-nucleotide polymorphisms from 280M. squamiger and
190 C. robusta individuals collected across their extensive species’ ranges
and reconstructed colonization pathways. Differing levels of anthropogenic
transport did not preclude the elucidation of population structure, though
specific inferences of colonization pathways were difficult to discern in
some of the considered scenario sets. We conclude that genomic data in com-
bination with information of underlying introduction drivers provide key
insights into the historic spread of range-shifting species.

This article is part of the theme issue ‘Species’ ranges in the face of
changing environments (part I)’.
1. Introduction
The ever-increasing rate of globalization of trade is intensifying the anthropogenic
transport of species [1,2], leading to introductions ofmany species to regions away
from their native ranges. As non-indigenous species (NIS) cause major impacts on
ecological communities around theworld, understanding the underlyingmechan-
isms facilitating NIS’ spread is fundamental for biodiversity conservation and
management [3]. One way of studying NIS’ spread is through identifying genetic
patterns across different spatial scales [4–6]. Such studies have suggested that
anthropogenic transport geographically reshuffles genotypes [7–10], and/or
causes regional or global genetic homogenization [11–14]. Because unravelling
colonization pathways is key for understanding NIS’ spread [15] and for planning
mitigation strategies [16], understanding how anthropogenic transport of species
may dampen our ability to reconstruct invasion routes is fundamental.
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Anthropogenic transport of species, by definition,
increases population connectivity across species’ ranges. The
genetic composition of colonizing populations can be affected
by numerous different processes and scenarios. For example,
genetic bottlenecks and founder effects in recent colonizations
may lead to population structure across the species range [17].
Conversely, genetic homogenization among populations may
be expected if local adaptation within introduced ranges is
weak, or if high levels of gene flow (through frequent introduc-
tions) persists [18]. Furthermore, the timing and magnitude
of anthropogenic transport may affect population structure.
For example, ‘recolonizations’ of introduced genotypes back
to the native range may result in reduced genetic structure
throughout the species range. A similar pattern of homogeniz-
ation could also occur due to variation in effective population
size, Ne. Previous work has found a positive correlation
between Ne in the introduced range and time since invasion
[19]. LargeNe would prevent genetic drift, slowing divergence
between populations, even in the absence of ongoing gene
flow via continuing introductions. Conversely, an ancient
invadermight be expected to develop strong population struc-
ture throughout its range if local adaptation of introduced
populations has evolved and/or if reduced gene flow has
led to genetic drift. Anothermechanism enhancing population
structure may be through multiple introductions of genotypes
from genetically divergent source populations, increasing the
propensity for intraspecific genetic admixture [20]. Changes in
transportation routes of species, in the absence of natural
population connectivity, can also lead to a subset of intro-
duced populations becoming disconnected from other
populations, resulting in a rapid change in allele frequencies
[21] or a reduction in genetic diversity due to drift [22].

High-throughput sequencing (HTS) enables scientists to
obtain a substantial genomic coverage and capture patterns
of genome-wide variation [23] and this HTS offers signifi-
cantly higher resolution of fine-scale gene flow than studies
analysing a few loci [24]. HTS has been used to reconstruct
invasion histories [16,25,26], inferring the presence of multiple
and sequential introductions [27,28], as well as revealing the
presence of genetic admixture that may have fitness conse-
quences on colonizing populations [25,29]. In addition,
studies of neutral loci have analysed population genomic pat-
terns of NIS in both introduced and native ranges [30,31],
identified secondary contacts [32] and detected genetic bottle-
necks [33]. However, no study using HTS has to date tested
how anthropogenic transport of species affects our ability to
infer colonization pathways of NIS [26].

Herewe used a comparative approach to unravel the effects
of different levels of anthropogenic transport on the reconstruc-
tion of introduction pathways using HTS data. For this, we
studied two biologically similar sessile marine NIS that have
widespread distributions but have presumably been affected
by different levels of anthropogenic transport. Both species
belong to the class Ascidiacea (phylum Chordata) and have
limited natural dispersal capabilities with the duration of
motile early life-history stages being only a few days [34,35].
Ascidiacea species are among the most prolific groups of inva-
sive species on the planet [36], often causing negative economic
impacts on important human activities [37]. We first analysed
historical inter-regional shipping to detect patterns of anthro-
pogenic transport among the regions where the study species
were present. We then sequenced samples collected from
across the ranges of the study species to explore range-wide
connectivity patterns. Finally, we inferred the most likely colo-
nization pathways using Bayesian methods and determined
the putative impact of anthropogenic transport on our ability
to reconstruct invasion routes.
2. Material and methods
(a) Study species and field sample collection
We studied two ascidian species, Microcosmus squamiger
(Michaelsen, 1927) and Ciona robusta (Hoshino & Tokioka,
1967) for which species records suggest differing levels of anthro-
pogenic transport (electronic supplementary material, table S1).
Briefly, M. squamiger is native to Australia [38,39] and was first
reported outside of its native range in the mid-twentieth century
in the Mediterranean Sea and South Africa [39,40]. Ciona robusta
is putatively native to the northwest Pacific [41] and has been
recorded in the Mediterranean Sea from the nineteenth century
[42], followed by records in South Africa [43], northeast Pacific
[44], Australia [45,46], New Zealand [47] and Hong Kong [48]
throughout the twentieth century, and the south coast of England
[49] since the early twenty-first century. Both species’ population
genetics have previously been studied using a relatively small
number of genetic markers [31,41,42], and thus no study to
date has reconstructed the invasion routes of these NIS using
genome-wide tools.

We sampled individuals from both the native and introduced
ranges of the study species (figure 1; electronic supplementary
material, tables S3 and S4). Sampling siteswere chosen tomaximize
distributional coverage and to include geographical areas that were
not covered in previous genetic studies [31,42]. Specifically, we
made a concentrated effort to sample regions where little sampling
was conducted in previous studies (e.g. [42]), such asAustralasia or
South Africa (figure 1). At each site, we collected 20–30 individuals
by hand from ropes and marina buoys/pontoons, or from artificial
rocky substrata using SCUBA. We enforced a spacing of a few tens
of centimetres among sampled individuals to minimize the collec-
tion of closely related individuals. We then dissected a piece of the
mantle (muscle tissue) from each individual and immediately fixed
the tissue samples in greater than 99% ethanol. Samples were then
transported to the laboratorywhere theywere stored at−80°C until
DNA extraction.

(b) Historical shipping data
We obtained historical shipping data from global regions across
the study species’ ranges. These data came from two independent
datasets that spanned two sequential time periods: the Climatolo-
gical Database for the World’s Oceans (CLIWOC, 1750–1850,
http://webs.ucm.es/info/cliwoc/) and the International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS, 1865–2014,
http://icoads.noaa.gov/). The CLIWOC dataset draws from digi-
tized British, Dutch, French and Spanish ships’ logbooks, with a
focus on ships sailing in the Atlantic and theWestern Indo-Pacific.
The ICOADS data derive fromvarious sourcesworldwide (http://
icoads.noaa.gov/). Both datasets were originally constructed to
reconstruct historical ocean and atmospheric conditions, and not
shipping dynamics. As a result, they do not include all shipping
activity, but give a good representation of general shipping
dynamics at that time.

Both datasets provided ship location dates and geographical
details during their travel, enabling the reconstruction of individual
ship trajectories and shipping intensities. TheCLIWOCdataset pro-
vided additional information about anchor points, which can be
interpreted as port calls of that ship. The ICOADS dataset did not
provide information about anchor points, and it was thus necessary
to infer port calls from ship trajectories. To determine actual port
calls, we calculated the shortest distance of each ship coordinate

http://webs.ucm.es/info/cliwoc/
http://webs.ucm.es/info/cliwoc/
http://icoads.noaa.gov/
http://icoads.noaa.gov/
http://icoads.noaa.gov/
http://icoads.noaa.gov/
http://icoads.noaa.gov/
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Figure 1. Sampling sites and ranges of (a) Microcosmus squamiger (boxes show enlarged Iberian and South African sites) and (b) Ciona robusta (boxes shows
enlarged South African, Iberian and northwest Pacific sites). Coloured areas show status of their ranges and years next to each region when each species was first
recorded as introduced. Orange dots indicate sampling sites (see electronic supplementary material, table S2 for full details of these sites). Site abbreviations are as
follows: (a) BU, Bunbury; AL, Albany; MEL, Melbourne; BF, Bahía Falsa; AZ, Azores; SA, Santander; CA, Cascais; CAD, Cádiz; CHI, Chiclana; CU, Cubelles; PB, Port
Barcelona; MAT, Mataró; AR, Arenys de Mar; MB, Mossel Bay; KNY, Knysna; PE, Port Elizabeth; PA, Port Alfred; EL, East London; RB, Richards Bay; (b) FK, Fukuoka;
BUS, Busan; PO, Pohang; TG, Tongyeong; NEL, Nelson; MEL, Melbourne; KNY, Knysna; PE, Port Elizabeth; EL, East London; SB, Saldanha Bay; TB, Table Bay; HB, Hout
Bay; RAV, Ravenna; PLY, Plymouth. (Online version in colour.)
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to a list of 1620 ports obtained from the World Port Index 26th
Edition (https://opendata-esri-de.opendata.arcgis.com/datasets/
esri-de-content::world-port-index/explore). We only considered
large ports (i.e. not recreational marinas which are mostly recent
developments) that we could assume persisted over the past 250
years. Geographical details of ship locations were only provided
once a day and no records were available when a ship stayed in
the actual port. We therefore considered a port call if a ship sailed
within 10 kmdistance from a port. We checked individual ship tra-
jectories and used different distances to test the sensitivity of the
reconstruction of shipping routes. In total, we obtained 7238 indi-
vidual ship movements from the CLIWOC dataset and 210 423
ship movements from ICOADS. For both datasets, the temporal
and spatial coverage was not always consistent and thus data
were only analysed on coarse temporal (50-year intervals) and
spatial (regional) scales. To visualize historical shipping data, we
created chord diagrams using the R package ‘circlize’ [50], to
show the number of direct ship travels between regions where the
study species occur for each 50-year period between 1750 and 2000.

(c) DNA extraction and genotyping
Total genomic DNAwas extracted from all tissue samples using the
ReliaPrepTM gDNA Tissue Miniprep System (Promega, Madison,
WI,USA).DNAwas sent for sequencing atCornellGenomicsDiver-
sity Facility (Cornell University, Ithaca, NY, USA). The restriction
enzymes PstI, EcoT221 and ApeKI were trialled to identify the one
that created suitable libraries (fragments less than 500 bp, presence
of non-repetitive DNA), and thus PstI was used for M. squamiger,
and EcoT221 for C. robusta. Genotyping was performed using the
genotyping-by-sequencing protocol (GBS) [51], and took place on
an Illumina HiSeq 2500, using single-end 100 bp reads.
(d) Data processing
We processed data from each species independently using the
same bioinformatics pipeline. Briefly, sequence data were first
passed through FastQC [52] to investigate read quality. After suc-
cessfully passing quality checks, the GBS reads were assembled
de novo using ipyrad v. 0.7.30 [53] using parameters rec-
ommended for single-end GBS data (http://ipyrad.
readthedocs.io/). We then conducted read assembly, single-
nucleotide polymorphism (SNP) filtering and loci selection (see
full description in the electronic supplementary material).
(e) Genomic summary statistics, population structure
and differentiation

Within-population indices of genetic diversity (expected hetero-
zygosity (HE), observed heterozygosity (HO), and the inbreeding

https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::world-port-index/explore
https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::world-port-index/explore
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http://ipyrad.readthedocs.io/
http://ipyrad.readthedocs.io/
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Figure 2. Temporal development of the global shipping network from 1750 to 2000, considering the regions where the study species can be found. (a–e) Chord
diagrams showing the number of ship travel events between marine regions over approximately 50-year intervals. The arrows at the end of the flows represent
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coefficient (FIS)) were calculated using the ‘diversity v.1.9.90’ pack-
age [54] within R [55]. To provide a graphical representation of
between-site genetic differentiation, and to test for population
structure within our datasets, we used two genetic clustering
methods. Firstly, we used the ‘adegenet v. 2.1.3’ package [56] in R
to perform a Principal Component Analysis (PCA) using the func-
tion dudi.pca. Secondly, we used the software ADMIXTURE v. 1.3
[57] to group individuals into one of K putative clusters, using a
maximum-likelihood estimation. For both species, the number of
tested clusters ranged from 1 to n, where n = the number of sites
individuals were sampled from. The R package ‘hierfstat v. 0.5-7’
[58] was used to calculate genomic differentiation, as inferred
through pairwise-population values of FST.

( f ) Combining genomic indices and shipping data
For each period of shipping data available we assessed the corre-
lation between the number of shipping events (hereafter referred
to as shipping intensity) and genomic differentiation. We
grouped our study sites into regions corresponding to the spatial
scale of our shipping data analysis, and calculated mean FST
values of sites among these regions, before performing a
Spearman’s rank correlation between shipping intensity and
FST in R using the package ‘ggpubr v. 0.4.0’ [59].

(g) Reconstructing colonization pathways
We used DIYABC Random Forest v. 1.0 [60], which uses Approxi-
mate Bayesian Computation to evaluate different evolutionary
scenarios, to infer colonization pathways. For all scenarios, training
sets were generated using 2000 simulations per model. Note that
supervised machine learning methods such as random forest (RF)
use all simulations to learn themapping of data tomodels, and sub-
sequently a smaller training set is required compared to ABC
methods [60]. Current knowledge of the study species’ global dis-
tribution and historical species records (figure 1) were used to
inform model construction. In addition, the results of the PCAs
and population differentiationwere used to pool genomically simi-
lar geographical sites and guide the building of the models (for a
detailed description of the model sets, see the electronic sup-
plementary material). We identified the most likely scenario of
each set using the ‘RF analysis’ module of DIYABC-RF (see full
details in the electronic supplementary material).
3. Results
(a) Historical inter-regional shipping patterns
We found a clear pattern of increasing complexity and mag-
nitude of global shipping over recent time (figure 2). Indeed,
the total number of shipping events was small initially but
showed a sharp increase from the beginning of the twentieth
century, with the period between the years 1750 and 1800
containing 155 events, 1801–1850 containing 88 events,
1851–1900 containing 68 events, 1901–1950 containing 1010
events and 1951–2000 containing 1624 events. Among the
regions of interest for this study, most intense shipping was
consistently recorded in the northeast Atlantic, representing
around 40% of shipping between 1750 and 2000 (figure 2f ).
South Africa was also a major shipping donor/recipient
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particularly before 1850 and was involved in minor shipping
trade with the northwest Pacific prior to the 1800s. Shipping
within the M. squamiger native range (i.e. Australia), while
being present at low intensity in the eighteenth century,
intensified from the mid nineteenth century onwards.
Mediterranean shipping steadily increased from 1750, repre-
senting 20% of shipping traffic from the 1950s onwards.
These shipping data indicate that from the 1750s, shipping
was prevalent among regions across the range of C. robusta
(Australia, Mediterranean Sea, northwest Pacific, northeast
Pacific and South Africa; figure 2b,c). Thus, the combined
used of historical shipping data and the species records (elec-
tronic supplementary material, table S1) suggested a longer
history of anthropogenic transport in C. robusta compared
to M. squamiger.
(b) Genotyping of neutral single-nucleotide
polymorphisms

We genotyped 365 M. squamiger and 214 C. robusta individ-
uals from across their species ranges. Of these, 280 M.
squamiger and 190 C. robusta successfully passed our sequen-
cing QC (electronic supplementary material, tables S3 and
S4). Following our filtering protocol, we retained 2115 SNPs
and 3227 SNPs for M. squamiger and C. robusta, respectively.
We then identified putatively non-neutral SNPs using
BAYESCAN and pcadapt and removed those that were pre-
sented in either method, leaving a dataset of 1994 SNPs
and 3139 SNPs for M. squamiger and C. robusta, respectively.
(c) Genomic summary statistics
ForM. squamiger, expected and observed heterozygosities were
consistent across the range (native range mean HE= 0.111 and
mean HO = 0.064; introduced range mean HE= 0.114
and mean HO = 0.065; electronic supplementary material,
figure S1 and table S5) and the mean number of private alleles
per site was greater in the native range (mean = 31.3 private
alleles per site) than the introduced range (mean = 6.2 private
alleles per site). For C. robusta, HE was higher in the putative
native ranges (mean HE = 0.191) than in the introduced range
(mean HE = 0.148; electronic supplementary material, figure
S2 and table S6); however, for Ravenna (the Mediterranean
site) in the introduced range, HE was higher than all other
sites (0.241). The number of private alleles across the range
showed the opposite pattern to HE, with sites within the
native range having fewer private alleles (mean = 10.0) than
the introduced range (mean = 35.6). All sites, for both species,
exhibited positive FIS values (for values of genetic diversity
indices for each site, see electronic supplementary material,
tables S5 and S6).
(d) Population structure and differentiation
Genomic differentiation was high among native sites of
M. squamiger, but low within the introduced range (figure 3a).
The optimum number of clusters identified by ADMIXTURE
was K = 2, with one cluster containing three native sites (BU,
AL and MAN) and the second cluster containing the native
site MEL and all introduced sites. Owing to the heuristic
nature of ADMIXTURE, we also plotted K = 3–5, which
recovered further potential structure within the introduced
range, separating South African sites and the Eastern Pacific
from those in the Atlantic and Mediterranean and blurring
the initially inferred structure (electronic supplementary
material, figure S3A). The PCA identified four main clusters,
each corresponding to one of the four Australian sites (AL,
BU, MEL and MAN) with individuals from all introduced
sites clustered with those individuals from Melbourne. The
first axis of the PCA recovered groupings matching the
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ADMIXTURE result at K = 2 (electronic supplementary
material, figure S4A). This close relationship between MEL
and the introduced sites was reinforced by the pairwise
genetic differentiation FST values (electronic supplementary
material, figure S5A).

A greater separation of clusters was identified in C. robusta
than M. squamiger, as seen in the both the higher optimal
value of K in the ADMIXTURE analysis (figure 3b), and PCA
(electronic supplementary material, figure S4B). The ADMIX-
TURE analysis recovered three distinct genomic clusters, with
one group containing the native range and NEL, a second
group containing the European sites (RAV and PLY) and the
western South Africa sites (SB, TB and HB), with the third
group containing the eastern South Africa sites (KNY, PE and
EL) (figure 3b). Interestingly Australian site MEL contained
individuals composed of all three clusters (figure 3b). Unlike
M. squamiger, increasing values of K did not result in blurring
of inferred structure (electronic supplementary material,
figure S3B). The PCA recovered a similar picture, however it
recovered four clusters (electronic supplementary material,
figure S4B). Individuals collected from the northwest Pacific
(i.e. the native range) once again clustered together, individuals
fromSouthAfricawere found in two clusters, corresponding to
either the east (KNY, PE and EL) or west coast (SB, TB andHB),
and both the site within the English Channel (PLY) and the site
within the Mediterranean Sea (RAV) clustered closely to the
western South African cluster. However, the PCA recovered
the site fromNew Zealand as a unique cluster (NEL), and gen-
otypes from theAustralian site (MEL) encompassed all clusters
except the native range (electronic supplementary material,
figure S4B). Considering population differentiation (see elec-
tronic supplementary material, figure S5B), northwest Pacific
sites were genetically similar (average FST = 0.01), but strongly
differentiated from other sites (average FST = 0.13).

Regarding the correlation between historical shipping and
genomic differentiation, values of FST were slightly negatively
correlated with average shipping intensity between 1750 and
2000, though not significantly (electronic supplementary
material, figure S6), for both species.
(e) Inference of colonization routes
Preliminary analyses showed that 2000 simulated datasets per
model were suitable for inferring model choice by computing
error metrics from both the entire training set and a subset.
Likewise, evaluations for each DIYABC-RF run showed that
the number of RF trees produced for each model set was suffi-
cient (i.e. error rates stabilizedwith increasing number of trees).
We thus tested a comprehensive variety of models for each
species (electronic supplementary material, figures S7 and S8).

For M. squamiger, DIYABC-RF was able to confidently
identify a split between western and eastern Australian sites
(electronic supplementary material, figure S7.1 and table S7,
models 17 and 18), followed by admixture between thewestern
site AL and an eastern site MEL. This admixture originated the
other western site BU (figure 4amodel 2; mean posterior prob-
ability = 0.601—note the mean prior and mean posterior error
rates for the chosen model were high (0.476 and 0.400 respect-
ively, electronic supplementary material, table S8)). Strong
evidence of admixture between MEL and BU (figure 4a
model 3) was also found. Though the final colonization to
the introduced range was unresolved, a consensus of poten-
tially suitable models included a split between SA and MED
(see the mean number of votes and standard deviations per
model in electronic supplementary material, table S7, and
posterior probabilities and error rates in electronic supplemen-
tary material, table S8), with these two populations being a
bridgehead for the BF and ATL populations, respectively.

Regarding C. robusta, the DIYABC-RF found that NWP
split initially from an unsampled population, with MED
(figure 4b 1) and ESA (figure 4b 2) also being sourced from
unsampled populations. WSA was found to be sourced
from the MED group (figure 4b 3), AUS was identified to
be a result of admixture between the east and west coasts
of South Africa (figure 4b 4), and NZ was recovered to be a
secondary introduction from NWP (figure 4b 5). The most
recent grouping, EC, was identified as sourced from MED
(figure 4b). See electronic supplementary material, table S9
for posterior probabilities and error rates, and electronic sup-
plementary material, table S10 for the mean number of votes
and standard deviations per model.
4. Discussion
Our results provide evidence that putatively varying levels of
anthropogenic transport do not preclude our ability to recover
patterns of population structure across species ranges that
have undergone complex introduction histories. Such patterns
would not be expected if anthropogenic transport consistently
eroded the geographical distribution of genotypes across the
species’ ranges, and effectively homogenized genomic diver-
gence across the species’ ranges. Additionally, we showed
that differing histories of anthropogenic transport can provide
a suitable explanation for observed genomic differences
between native and introduced ranges.

(a) Historical patterns of shipping intensity and
connectivity

Our temporal analysis of historical shipping networks
showed a clear pattern of increasing complexity and intensity
of shipping with time [61]. In addition, the results supported
our initial assumption that the two studied species have
been affected by different levels of anthropogenic transport.
Both shipping data and species records suggested that
C. robusta was subject to anthropogenic transport earlier than
M. squamiger, providingmore opportunities to be redistributed
from its original range and a greater time to differentiate from
the source populations. For example, the putative native range
of C. robusta (the northwest Pacific), was an important region
for shipping throughout all the time periods studied, becoming
a sizeable contributor to shipping from themid-nineteenth cen-
tury (figure 2). The observed patterns of historical shipping
suggest that C. robusta was initially transported during a time
with lower shipping intensity and connectivity among distant
regions. Regarding the native range of M. squamiger (i.e. Aus-
tralia), it appeared in our initial time period (1750–1800) but
was not present again until 1854–1900 (figure 2), suggesting
that in the early nineteenth century Australasia may not have
been an important source or recipient of global shipping
from or to the other study regions. By the time M. squamiger
was being transported, shipping patterns were complex and
thus one source population could spread quickly throughout
the introduced range, possibly through a stepping-stone dis-
persal, which could explain the inferred high levels of



4

MEL BFSA BUATL MED

MAN ALMEL BU

(a) (b)

MAN INTMEL BU AL

3

Microcosmus squamiger Ciona robusta

NWP MED NWP MED ESA

NWP MED ESAWSA NWP MED ESAAUSWSA

NWP NZ AUS ESAWSAMED NWP ECNZ AUS ESAWSAMED

1&2

5 6

43

1 2

Figure 4. Models of invasion routes identified as most likely using Approximate Bayesian Computation implemented in DIYABC-RF v. 1.0 for the study species
(Microcosmus squamiger and Ciona robusta). Progression through tree is backwards in time, so labelled terminal branches are present day. Numbers in circles indicate
scenario set, as in Methods (but see electronic supplementary material, figures S7 and S8 for visual representation of all models), with each set increasing in
complexity. Labels are as follows: (a) MAN, Manly; MEL, Melbourne; AL, Albany; BU, Bunbury; INT, all introduced sites; SA, grouped sites from South Africa
(Mossel Bay, Knysna, Port Elizabeth, Port Alfred, East London and Richards Bay); MED, grouped sites from the Mediterranean (Cubelles, Port Barcelona, Mataró
and Arenys de Mar); ATL, grouped sites from the Atlantic (Azores, Santander, Cascais, Cádiz and Chiclana); BF, Bahía Falsa; (b) NWP, grouped sites from northwest
Pacific (Fukuoka, Busan, Pohang, Tongyeong); MED, Ravenna; ESA, grouped sites from eastern South Africa (Knysna, Port Elizabeth, East London); WSA, grouped sites
from western South Africa (Saldanha Bay, Table Bay, Hout Bay); AUS, Melbourne; NZ, Nelson; EC, Plymouth. (Online version in colour.)
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population connectivity acrossmuch of the introduced range of
M. squamiger. This may have subsequently led to an increased
likelihood of repeated introductions [22]. Such a situation
could have occurred when the Suez Canal opened in 1869,
rapidly reducing the importance of South Africa as a transpor-
tation hub, as seen in the reduction of shipping intensity in the
region between 1851 and 1900 (figure 2c). Footprints of founder
effects, such as the reduction in genetic diversity observed in
some C. robusta populations, could be explained by introduc-
tions of few individuals into the introduced range (as in [62]).

A fundamental assumption made in interpreting our
results was the close association between NIS’ introductions
and shipping intensity. It would be unreasonable to assume
every ship included in our dataset of shipping intensity
would lead to an introduction, and our data cannot resolve
the magnitude of ongoing, recurrent introductions. However,
a higher intensity of ship traffic increases the likelihood of indi-
viduals being transported along a certain route and makes it
therefore more likely that individuals colonize new sites
[61,63]. Indeed, ascidians have been identified in approxi-
mately 6% of the ballast waters of ships sailing from the
western Pacific to eastern Pacific coastlines [64], and over
time such a percentage will likely lead to high levels of propa-
gule pressure. Our analyses including shipping dynamics were
limited by the availability of historical data. Shipping datawere
obtained from two independent datasets spanning two differ-
ent time periods (i.e. before and after 1850), which differ in their
spatial coverage and comprehensiveness. While the early data-
set (CLIWIC) has a stronger focus on the Atlantic region, the
latter (ICOADS) provides a more comprehensive global cover-
age, which explains the abrupt changes of shipping dynamics
among time periods. Despite these caveats, the datasets gave a
good representation of the overall development of the shipping
network [65].
(b) Genomic patterns within native ranges
Species’ native ranges are expected to show a clear population
structure [66] as the accumulation of mutations [67], genetic
drift [68] and/or development of geographical barriers [69]
increase population differentiation and the frequency of pri-
vate alleles over time [70]. Our analyses recovered separate
genomic clusters within the native range of M. squamiger,
with the number of clusters ranging between two and three
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depending on the analysis. Additionally, the number of private
alleles presentwithin siteswithin the native rangewas approxi-
mately six times greater than those found in the introduced
range (electronic supplementary material, table S5). By con-
trast, the putative native range of C. robusta showed limited
population structure. This could be due to high levels of gene
flow within the native range [71], high effective population
size [72] or insufficient sampling. Indeed, it is known that
C. robusta can be found further east along the coast of Japan
than the sampling conducted here [42]. Despite this, the sites
from the NWP in the present study portray a similar picture
to that from Bouchemousse et al. [42], that is, the NWP sites
are similar to each other, though are reasonably genomically
diverse too. Further sampling across the NWP would provide
clarification as towhether the genomic homogeneity present in
the native range is due to the genomic homogenization of
populations within the native range through anthropogenic
transport [73].
 oc.B

377:20210023
(c) Genomic patterns within introduced ranges
While genetic bottlenecks are often mentioned in the literature
of biological invasions [74], it is becoming increasingly appreci-
ated that introduced populations do not regularly undergo a
significant reduction in genomic diversity [20]. Multiple
introductions [75], high gene flow [76] and/or genetic admix-
ture [77] often overcome any reduction in genetic diversity
associated with bottlenecks. We did not find evidence of a
reduction in genomic diversity between the native and intro-
duced range of M. squamiger, possibly either due to increased
propagule pressure owing to intense anthropogenic transport,
or genetic admixture between native sites (see results of
the DIYABC analyses). The extensive introduced range of
M. squamigerwas highly homogeneous, both in terms of popu-
lation structure and genomic diversity patterns. Global
genomic homogeneity within the introduced range could be
the result of the introduction of genotypes from a single-
source population from the native range [78] or high levels of
population connectivity within the introduced range due to
intense anthropogenic transport [79] promoting stepping-
stone dispersal. By contrast, we found evidence of population
structure within the introduced range of C. robusta. Population
structure within introduced ranges has been found in other
ascidians [80], and can be attributed to multiple independent
introduction events [62]. The observed population structure
inC. robustawas present at differing spatial scales. For example,
geographically distant regions such as Europe and western
South Africa were genomically homogeneous, supporting pre-
vious results found by Zhan et al. [79]. Historical records of
C. robusta identify the ascidian as being present along the wes-
tern coast of South Africa since the 1950s [81]. Whether the
observed similarity in genomic makeup between these two
regions is a result of ongoing anthropogenic transport, or the
result of highNe supressing the effects of genetic drift, remains
unknown, though we recovered a drop in HE in western South
Africa sites compared to those found in eastern South Africa
(electronic supplementary material, figure S2). It is unclear
whether the limited natural dispersal potential of ascidians,
coupled with their affinity to inhabit artificial environments
(i.e. marinas, ports, harbours), has an effect on Ne. However
previous work on the congener C. savignyi showed a large
effective population size as inferred in San Francisco Bay
[82]. On a regional scale, we found clear structure along the
South African coastline. Strong regional differentiation in
South Africa could be due to demographic processes or intro-
ductions from multiple independent source populations.
Regarding genomic diversity, we observed a decrease from
the putative native range to western South Africa populations,
whichmay provide evidence for demographic processes contri-
buting to genomic differentiation.AsC. robustahas beenpresent
along the western coast of South Africa since at least the 1950s
[81], it is unlikely that the low levels of genomic diversity is the
result of a recent introduction. Finally, the DIYABC-RF analyses
identified different introduction sources for both the eastern
and western coasts of South Africa. Taken together, C. robusta
displays population structure in SouthAfrica likely due to exist-
ing marine biogeographic provinces, demographic processes
and/or independent introductions.
(d) Reconstructing invasion routes
The species with the shorter history of anthropogenic trans-
port, M. squamiger, showed limited confidence in the
reconstruction of invasion routes, with only one scenario set
having a prior error rate of less than 45% (electronic sup-
plementary material, table S8). In accordance with previous
work using microsatellite and DNA sequence data [31], we
found strong evidence that M. squamiger is native to Australia.
Furthermore, we found evidence that the genomic homogen-
eity of the introduced range of M. squamiger resulted from a
single-source introduction from an unsampled site comprising
individuals from eitherMelbourne or from admixture between
Melbourne and Bunbury sites, with subsequent stepping-stone
dispersal. Such a signature of high homogeneity across the
introduced range has been observed in other marine organ-
isms. For example, genetic homogeneity has been identified
within the introduced range of the invasive lionfish (Pterois
volitans) with the conclusion that gene flow can quickly erode
previous signals of genetic divergence [13].

While we found evidence of population structure between
introduced populations of M. squamiger and the native range
outside Melbourne, we could not discount the possibility of
introduced alleles re-entering thenative range. This is suggested
by the discord between the clustering and the DIYABC-RF ana-
lyses, with the former indicating that Melbourne was the sole
source. Further evidence for Melbourne being the source of all
the introduced populations came from the fact that the lowest
number of private alleles across all native sites were found in
Melbourne. We know from historical data that Melbourne and
Bunbury opened as ports from the 1850s onwards [83,84], and
just over a century later M. squamiger individuals were found
in California [85] and the Mediterranean Sea [39]. This was
reinforced by our shipping history data, which showed that
Australia only started increasing its shipping activity from the
1850s, and indeed only became a significant global contributor
after the 1900s. This further indicates that over the twentieth
century, M. squamiger colonized distant regions around the
globe, demonstrating how rapidly anthropogenic transport
can facilitate the establishment and spread of NIS.

Poorly documented species records from the literature
posed a challenge for guiding our analyses of the colonization
history of C. robusta. While the prior error rates of the scenario
sets were lower (i.e. higher confidence in model choice) than
those for M. squamiger, they still ranged between 14 and 36%
(electronic supplementary material, table S9). This in part
may be the reason why our DIYABC-RF analyses were



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210023

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 N

ov
em

be
r 

20
23

 

unable to identify the source of the Mediterranean and eastern
South Africa sites (both coming from an unsampled popu-
lation). In turn, we were able to find evidence for multiple
introductions and potential admixture (e.g. figure 4) events
promoting the expansion of the species. A previous genetic
study of C. robusta also sampled a large part of the species
range [42] and found that, in line with previous work, the
northwest Pacific is the putative native range; although an
introduced status of C. robusta in the northwest Pacific could
not be disproved based on their evidence, consistent with the
results presented here.

Until recently, little has been known regarding the effects of
anthropogenic transport on genetic patterns across species
ranges, but a growing number of studies are unravelling inva-
sion routes despite an intensification of anthropogenic
transport in recent decades/centuries (figure 2). For example,
Manni et al. [14] were able to accurately define the source popu-
lations of the Japanese Asian tiger mosquito (Aedes albopictus)
despite exhibiting chaotic propagule dispersion associated
with trans-continental anthropogenic transport. Similarly,
Lesieur et al. [86] found that despite a complex invasion history
and long-distance dispersal owing to anthropogenic transport
of species, the invasion pathway of the Western conifer seed
bug (Leptoglossus occidentalis) could still be tracked. Our geno-
mic results showed that invasion routes of NIS with high
historical anthropogenic transport can be studied with similar
confidence as NIS with both shorter residence times in the
introduced range, and lower levels of anthropogenic transport.
We therefore conclude that although considering anthropo-
genic transport remains important, it does not preclude
inference with genomic data, providing that sampling is of
sufficient geographical breadth.

With anthropogenic transport of species being a major
factor dictating the distribution of many range-shifting species
[4,7,87], it is essential to consider artificial connectivity
pathways among populations to plan both management and
mitigation actions [88]. Specifically, knowledge of source/s of
prolific range-shifting populations may aid planning manage-
ment actions such as vector/NIS eradication. Our study results
unravelled how anthropogenic transport changes the geo-
graphical distribution of genetic lineages, as well as provided
applied knowledge particularly relevant to stakeholders with
an interest in mitigating the effects of NIS.
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