
 

 

 
 

 

 

 

University of Southampton Research Repository  
 

 

 

 

Copyright © and Moral Rights for this thesis are retained by the author and/or other 

copyright owners. A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge. This thesis and the accompanying data cannot be 

reproduced or quoted extensively from without first obtaining permission in writing from 

the copyright holder/s. The content of the thesis and accompanying research data (where 

applicable) must not be changed in any way or sold commercially in any format or medium 

without the formal permission of the copyright holder/s. 

 

When referring to this thesis and any accompanying data, full bibliographic details must be 

given e.g. 

 

Thesis: AUTHOR (year of submission) “Full thesis title”, University of Southampton, 

name of the University Faculty or School or Department, PhD Thesis, pagination. 

 

Data: Author (Year) Title. URI [dataset] 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  



 

 

 

UNIVERSITY OF SOUTHAMPTON 
 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

 

INSTITUTE OF SOUND AND VIBRATION RESEARCH 

 

 
 

MODELLING OF RAIL CORRUGATION GROWTH IN 

CURVED TRACK 

 

by 

 

Jiawei Wang 

ORCID: 0009-0000-7844-6238 

 

 

 

Thesis for the degree of Doctor of Philosophy 

 

 

 

November 2023 
 

 

 

 

 

 



 

 

 



 

v 
 

UNIVERSITY OF SOUTHAMPTON 
 

ABSTRACT 
 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

Institute of Sound and Vibration Research 

 

Doctor of Philosophy 

 

Modelling of rail corrugation growth in curved track 

 

by Jiawei Wang 

 

Railway corrugation is a frequent wavy wear pattern on the running surface of the rails. 

The corrugation generated on curved tracks is investigated through numerical modelling. A 

time-domain simulation model is developed that allows the growth of the corrugation to be 

simulated through models of the coupled vibration of the railway vehicle-track system and 

the wheel-rail rolling contact mechanics. The simulation tool that is developed consists of 

several models connected in a feedback loop to account for both the short-term dynamic 

vehicle-track interaction and the long-term damage. Steady-state curving conditions of the 

railway vehicle-track system are first obtained by means of a steady-state curving model. 

The vehicle-track interaction model comprises a finite element wheelset model, a 

frequency-domain semi-analytical track model with discrete supports and a non-Hertzian 

non-steady-state 3D wheel-rail contact model based on the variational theory by Kalker. 

The wheel-rail interaction forces are also obtained from the contact model. Wear 

calculations are performed using the contact parameters obtained from the wheel-rail 

contact model. Several case studies applying the current prediction model are also 

investigated. The frequency range of interest for the dynamic response is up to about 5000 

Hz while for corrugation it is up to around 1000 Hz. 

 

Multiple mechanisms can contribute to the formation and development of the rail 

corrugation, such as transient dynamic interaction and stick-slip self-excited vibration 

caused by falling friction or mode coupling. The relative contribution of each mechanism 

is investigated using the simulation model by comparisons of results from different cases 

and the dominant resonances of the system are identified. In addition, the effect of the 

coupling between the two rails and wheels as well as the effect of multiple wheel/rail 
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interactions are investigated. The coupling between the two rails and wheels is found to 

have little effect on the resultant roughness growth. The multiple wheel/rail interaction 

effect has a significant effect on the track responses. Wave reflections between the wheels 

generate fluctuations in the track responses at high frequency. However, from the time 

domain results, the presence of multiple wheels also has little effect on the roughness 

growth. 

 

A series of case studies are carried out to investigate the influences of operational, track 

and vehicle parameters on the resultant wear and roughness growth on the low rail of 

curves. In this situation, the creep force at the wheel/rail contact is usually in the saturation 

region. Thus, in most cases, the self-excited vibration caused by falling friction is the main 

mechanism. The corresponding frequencies of the corrugation are related to wheelset 

modes which are associated with rutting corrugation or to the P2 resonance. 
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1 Introduction 

1.1 Background 

Since the introduction of steam locomotives in the 1820s, railways have always been an 

important form of transportation. In recent decades, high-speed trains and metros have 

developed rapidly and become more and more popular and widespread. Gradually, the 

level of development of high-speed trains and metros becomes a criterion to measure the 

social and economic growth level of a city, region or country. Due to the high capacity and 

high efficiency of railways, the population becomes increasingly mobile. There are higher 

demands for travel and tourism as well as fast logistics for diverse products. For example, 

the freight transport volume and average number of kilometres travelled by people increase 

year by year. In addition, railways are also an environmentally friendly form of 

transportation compared to road vehicles and air traffic. Under the need to reduce carbon 

emissions in recent years, railways are more desirable as a priority choice. 

 

Nevertheless, the railway has negative impacts on the environment, which mostly concern 

noise and vibration. Furthermore, concerning the physiological response of humans, 

vibration and noise can have significant effects for people living near railway and metro 

lines as well as for passengers and staff. High noise levels are not only harmful to mental 

health, but also interfere with the performance of daily activities and sleep at night. Thus, 

great attention should be paid to the noise levels when developing railways and metros in 

densely populated areas.  

 

There are various sources of railway noise and two main mechanisms can be identified [1]. 

One is the aerodynamic fluctuations due to air turbulence. This kind of noise only 

dominates the noise of high-speed trains with an operational speed of 300 km/h or above. 

The other is the rolling noise generated by the vibration of wheel and rail. This is the main 

noise source for most trains that run below 300 km/h. This vibration is induced by the 

vertical relative displacements between wheel and rail because of the roughness on their 

surfaces. A particularly severe form of roughness is known as corrugation (examples are 

shown in Figure 1.1). 

 

Relative vertical motion at the contact due to rail and wheel roughness results in dynamic 

interaction forces and thus, vibration and noise of the wheel and track. High roughness 

levels lead to high vibration and noise levels. Thompson [2] presented experimental 
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evidence from a number of sources to confirm the linear relation between roughness and 

noise. The assumption made in theoretical models that the wheel and rail roughness spectra 

may be added to give the total excitation was therefore also confirmed. Grassie [3] found a 

satisfactory correlation between ground-borne noise levels and railhead roughness in the 

100-1000 mm wavelength range. From measurements carried out on different types of 

railway system, the largest irregularities were found on the low rail of metro curves (i.e. on 

the inside of the curve) while lower levels were found on the high rails or on high-speed 

lines. 

 

  
(a) on tangent track (b) on curved track 

Figure 1.1 Rail corrugation examples [4] 

 

The maintenance of railways includes re-profiling the wheels and grinding the rails [5]. 

But the process of rail grinding to reduce roughness is time-consuming and expensive and 

corrugation can re-appear. Thus, it is important to understand the mechanisms of rail 

roughness development in order to optimize the methods to minimise rail roughness 

growth as well as the costs of noise and vibration control and maintenance. 

1.2 Rail corrugation 

Rail corrugation is an important type of surface roughness, which refers to the undesirable 

periodic wave-shaped irregularities on the contact surface of the rails. A series of dynamic, 

vibration, and noise problems are caused by rail corrugation. Rail corrugation is typically 

caused by uneven wear [5], due to the variations of wheel-rail contact stresses. The 

wavelength and severity of corrugation are dependent on the track structure, track 

geometry, traction system, rail vehicle behaviour, and wheel-rail interaction. Often such 

irregularities can be observed on the low rail (inner rail of a curve) of small-radius curves 

(further examples are shown in Figure 1.2). Rail corrugation is difficult to study because of 

the variety of initiation and evolution mechanisms, and also the variety of operational 
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situations. Different types of track generate corrugation with different wavelengths and 

amplitudes according to different wavelength fixing mechanisms and damage mechanisms 

[5] as shown in Table 1.1.  

 
Figure 1.2 Different types of short-pitch rail corrugation on low rail of curves [7] 

Table 1.1 Types of rail corrugation and their characteristics according to Grassie [5] 

Type Wavelength-fixing 

mechanism 

Where Typical 

frequency (Hz) 

Damage 

mechanism 

Pinned-pinned 

resonance 

(‘roaring rails’) 

Pinned-pinned 

resonance 

Straight track, 

high rail of curves 

400-1200 Wear 

Rutting Second torsional 

resonance of axles 

Low rail of curves 250-400 Wear 

Other P2 

resonance 

P2 resonance Straight track or 

high rail in curves 

50-100 Wear 

Heavy haul P2 resonance Straight track or 

curves 

50-100 Plastic flow in 

troughs 

Light rail P2 resonance Straight track or 

curves 

50-100 Plastic bending 

Trackform-

specific 

Trackform-specific Straight track or 

curves 

- Wear 

 

Although it is a problem that has been known since the beginning of the railways, the 

mechanisms that cause corrugation are still not fully understood, so there are no decisive 

measures to control its growth. Understanding of the initiation and development 

mechanisms of rail corrugation is essential for the long-term noise control and railway 

maintenance. Through investigating the factors that affect rail corrugation, it will be 

possible to find appropriate strategies to control rail corrugation growth and, thus, result in 

a reduction in the generated noise and vibration. 
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Among the many known rail corrugation forms, the most common ones are those 

associated with the pinned-pinned resonance (also known as roaring rails), P2 resonance, 

and rutting (Table 1.1) [5]. The pinned-pinned resonance corrugation is associated with a 

resonance of the vertical vibration of the rails as if they were pinned at the sleepers and 

occurs at frequencies around 1000 Hz depending on the sleeper spacing. P2 resonance 

corrugation is associated with the vibration of the unsprung mass of the vehicle (i.e. the 

wheelset and axleboxes) on the track stiffness and occurs at frequencies between 50 and 

100 Hz. These two corrugation types are commonly found in straight lines or on the high 

rail in curves. More recently, Grassie has suggested that rutting corrugation is more likely 

associated with a bending mode of the leading wheelsets of a bogie around 80-110 Hz [6]. 

Rutting corrugation is typically found on sharp curves, although it can also be found in 

straight lines when the traction or braking forces are sufficiently high. It appears most 

commonly on the low rail of curves. The damage mechanism for rutting, pinned-pinned 

resonance corrugation and P2 resonance corrugation is most commonly identified as wear.  

 

The mechanisms of rail corrugation have been investigated using field observations and 

measurements, theoretical and numerical modelling, and laboratory experiments [5]. Based 

on the test results and field observations, the opinion is widely accepted that the transient 

dynamic interaction of the wheel-rail system induced by the original roughness of the rail 

and wheel surfaces leads to the formation of corrugation. It is thereby assumed that 

variations in the frictional work, due to lateral or longitudinal relative motion, and caused 

by the transient dynamic interaction, lead to the appearance of corrugation. Some 

corrugation phenomena can be reasonably well explained based on these existing 

generation mechanisms, but there are still situations that cannot be explained satisfactorily. 

 

Recently, many researchers have supported the hypothesis that the corrugation on curves is 

probably caused by a stick-slip process of the wheel on the rail [4,7]. When the creepage 

(ratio of relative velocity to the vehicle speed) at the wheel-rail contact patch is large 

enough to overcome the friction limit at the wheel-rail interface, the wheel will slide on the 

rail. If the kinetic friction coefficient is lower than the static friction coefficient, this would 

result in a reduction of the friction force. The reduction of the wheel-rail friction force 

during wheel sliding sometimes triggers a resonant response, reducing forces and making 

the wheel stick to the rail again. The stick-slip process would generate rail corrugation on 

the running surfaces of rails. Oscillation of the wheel load caused by wheel-rail 

irregularities and rail rolling vibration can also cause stick-slip oscillation and periodic 

wear. 
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A negative slope of the traction-creep curve for saturated creep forces brings about 

friction-induced oscillation of the wheel-rail system. Additionally, the wheel/rail coupling 

can also cause stick-slip oscillation. The oscillation of the rail is coupled with that of the 

wheels in the action of the saturated creep forces. When the wheel/rail coupling is strong, 

self-excited oscillation of the wheel-rail system occurs which causes variation of the 

contact forces between the wheels and rails. Vertical/lateral coupling of the wheel and rail 

may also give contributions to this self-excited oscillation. Then the frictional work also 

varies and if it is in phase with the existing roughness, corrugation will develop. Mode 

coupling is also a form of instability that has become a focus of attention in curve squeal 

research and may also play a role in corrugation.  

 

In order to explain some corrugation phenomena, such as the short-pitch corrugation that 

generally occurs on the low rail of tightly curved tracks and the fact that a reduced friction 

coefficient can eliminate rail corrugation, the mechanism of self-excited vibration of the 

wheelset-track system induced by the saturated creep force has been presented by a group 

of researchers [8-9]. 

 

A possible alternative mechanism to describe the cause of short-pitch corrugation is the 

wheel-rail dynamic flexibility difference, demonstrated in [10-12]. This mechanism means 

the excitation in the wheel/rail contact is due to the variation of the wheel and rail stiffness 

over a sleeper span. In some other contexts, this is also called ‘parametric excitation’. This 

possible mechanism still needs further investigation and validation. Categorised by the 

mechanisms described above, models of rail corrugation initiation and development are 

reviewed in the next section. 

1.3  Review of rail corrugation prediction models 

As the transient dynamic interaction and the slip-stick vibration are widely accepted among 

several wavelength-fixing mechanisms of short-pitch rail corrugation, the discussion of rail 

corrugation initiation and growth is divided into these two categories. Since the slip-stick 

vibration can be generated by falling friction and wheel-rail dynamic mode coupling, 

models in this part are further divided into two categories. Finally, research on a possible 

mechanism associated with wheel-rail dynamic flexibility difference is also shown. An 

overview table is shown in Table 1.2. 
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Table 1.2 Summary of mechanisms of corrugation assumed in the literature 

Mechanism Description Corrugation type 

applied 

Typical 

frequency (Hz) 

Review in 

Transient dynamic 

interaction 

The original roughness of 

the rail surface causes 

transient dynamic 

interaction and then 

induces variation of 

frictional work 

Roaring rails, 

rutting or ‘other P2 

resonance’ 

corrugation 

50-1200 Section 1.3.2 

Falling friction 

stick-slip vibration 

Large creepage causes 

wheel sliding and friction 

force reduction, which 

lead to stick-slip 

oscillation 

Roaring rails or 

rutting 

250-1200 Section 1.3.3 

Mode coupling 

stick-slip vibration 

Saturated creep force 

causes coupling between 

the oscillations of rail and 

wheels. Strong coupling 

causes self-excited 

oscillation and then leads 

to variation of contact 

forces 

Roaring rails or 

rutting 

250-1200 Section 1.3.4 

Wheel-rail dynamic 

flexibility 

difference 

Dynamic flexibility 

difference of different 

positions of action points 

lead to the change and 

cyclical fluctuation of 

wheel-rail contact force  

Roaring rails 400-1200 Section 1.3.5 

1.3.1 Wheel-rail contact 

An important aspect of the modelling of rail corrugation initiation and growth is the 

representation of the wheel-rail contact. One of the most widely used models for tangential 

wheel-rail contact problems is called FASTSIM [13]. It was developed by Kalker for 

calculating the total force in rolling contact from a given creepage and spin. The model 

divides the contact area into strips, treating each strip as a two-dimensional problem. The 

method neglects the interaction between the strips and works best if the contact patch 

width is much greater than the length in the rolling direction. The surface displacement at a 

point is determined only by the surface traction at the same point in this model, whereas in 

reality the displacement at a point depends on the traction at all points on the surface. The 

main advantage of FASTSIM is its calculation speed and accuracy for cases where the 
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normal problem can be described by the Hertzian model. However, it is less accurate when 

the Hertzian assumptions do not apply. The Hertzian assumptions include: the contact 

surface profiles must be parabolic and any higher terms are neglected; surfaces must be 

smooth, non-conforming and frictionless; elastic half-space theory must be valid, that is the 

contact dimensions must be small compared with radii of curvature of the undeformed 

surfaces; the contact stress must not depend on the shape of the bodies away from the 

contact patch. 

 

Kalker also developed an exact method for all contact problems of bodies that can be 

described by half-spaces, as described in [14]. The computer program implementing the 

method is called CONTACT. CONTACT works by a variational method, minimising a 

strain energy function subject to the constraint that the contact pressure is positive 

everywhere and approaches zero at the edges of the contact. It can be used for both 

Hertzian or non-Hertzian contact problems, and takes account of transient effects by 

calculating step by step from given initial conditions, following the loading history of the 

particular problem. The main limitation of CONTACT is the computation time. An 

extremely fine discretisation of the potential contact area is required to deal with micro-

roughness of the surface. Also, CONTACT is limited to elastic problems and does not 

include plastic deformation of any asperities. 

1.3.2 Transient dynamic interaction 

Many scholars have carried out numerous investigations into the modelling of rail 

corrugation initiation and growth based on the mechanism of transient dynamic interaction. 

Grassie and Johnson [15] proposed approximate methods for calculating wear which 

results in roaring rails above 200 Hz, in terms of frictional dissipation as a wheel rolls over 

a sinusoidal corrugated rail, but they did not find any mechanism. This was because the 

frictional dissipation was not maximum at the corrugation troughs, which they suggested 

may be because of the omission of flexible dynamics in the contact plane. Many aspects of 

the causes of rail corrugation were discussed by Frederick [16], such as the initial surface 

roughness, the impedance of the rails and the lateral creep of the wheel. The pinned-pinned 

frequency was pointed out to have undesirable effects on short-pitch corrugation and 

roaring rails.  

 

Based on this investigation, Hempelmann and Knothe [17] developed a linear model to 

predict short-pitch corrugation and roaring rails in the range 160-1600 Hz based on the 

idea of feedback between structural dynamics and wear. The structural dynamics model 
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only considered lateral and vertical dynamics and only excitation by profile irregularities. 

They found that stiff situations caused by anti-resonances within the structures, mainly in 

the vertical structural dynamics of the track, cause high contact forces and can lead finally 

to corrugation.  

 

The statement that the cause of corrugation is related to the vertical track dynamics started 

to draw attention. Müller [18] linked the presence of high lateral rail receptance and low 

vertical rail receptance to short-pitch corrugation development in the range 80-2000 Hz. A 

contact mechanical filtering function was proposed, to limit the corrugation wavelength to 

a particular band. This may explain the observation that corrugation wavelengths are 

largely independent of train speed in some cases. Nielsen et al. [19] presented a time-

stepping model for the interaction force to predict the short-pitch rail corrugation growth in 

the range 200-2000 Hz. The P2 resonance was also considered. The wear constant and 

model parameters were obtained from measurements. The corrugation growth they 

predicted showed good agreement with measured data. A strategy of adding damping to the 

rail to increase the track receptance around the pinned-pinned frequency above a sleeper 

was proposed to prevent the corrugation growth. They also pointed out the possibility of 

other damage mechanisms apart from wear. 

 

Andersson and Johansson [20] developed a three-dimensional time-domain interaction 

force model based on Hertz theory. Kalker’s algorithm program FASTSIM [13] was used 

to assess the spatial variations of creep and traction. The overall wear was calculated by 

multiplying the wear for each wheel passage by the number of passages. It was found that 

vertical dynamic properties are of greater importance to short-pitch corrugation initiation 

in the range 200-1200 Hz in tangent track compared to the lateral motion. For rail 

corrugation in curves, the importance of the lateral track dynamics was believed to 

increase. Robles et al. [21] introduced a combined vertical/lateral model which includes the 

vertical wheel-rail dynamic interaction with a Hertzian spring and the FASTSIM [13] 

algorithm is used to study tangential contact. The importance of the consideration of lateral 

dynamics in models studying corrugation in sharp curves was validated by experimental 

measurements. 

  

Jin et al. [4,22] presented a three-dimensional train-track system model. The combined 

influences of the corrugation development, the vertical and lateral coupled dynamics of the 

vehicle and the curved track were taken into account. The discrete track support caused 

fluctuations of the normal loads and creepages at the passing frequency of the sleepers. The 
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excited track resonance frequencies resulted in the initiation and development of rail 

corrugation with several specific wavelengths. Gomez and Vadillo [23] presented a linear 

model using the finite element (FE) method to explain short-pitch rail corrugation 

formation in the range 100-1000 Hz. The main mechanism of corrugation initiation was 

identified to be vertical anti-resonances and regions of high lateral dynamics of the wheel-

rail structure. 

 

By investigating four types of slab track under identical operational conditions through 

field measurements and numerical simulation, Li et al. [7] found that the characteristics of 

the tracks were associated with the formation of short-pitch corrugation below 1000 Hz 

rather than high-frequency torsional or bending resonances of wheelsets. Wheel-rail 

interaction and creepage together with track resonances also contribute to the initiation.  

 

Different from former authors’ conclusions, other causes of rail corrugation have been 

investigated. Nielsen [24] used a pure contact model considering a cylinder rolling over a 

periodically varying surface to study the initiation of corrugation. He found that the 

characteristic wavelength of corrugation development in the range of 0.025-0.1 m is 

determined by the creep magnitude and contact patch length of the passing wheels, and is 

independent of the initial amplitudes of the surface irregularities. 

 

An alternative mechanism for the initiation of rail corrugation in the wavelength range 20-

80 mm has been proposed by Ciavarella [25-26]. The simple analytical model suggested a 

pure longitudinal creepage mechanism. The presence of much larger values of longitudinal 

creepage compensates for the effect that lateral creepage shows more growth than 

longitudinal creepage. For corrugation at high frequency, the mechanism is more like a 

constant-wavelength one than a constant-frequency one and this wavelength only depends 

on the geometry and loading conditions. The vertical resonances of the systems, even the 

pinned–pinned resonance associated with the effect of discrete supports, showed little 

effects on the growth of corrugation. 

 

Consideration has also been given to the unsteady rolling effect. Wu and Thompson [27] 

used the two-dimensional quasi-static contact approach from Grassie and Johnson [15] in a 

frequency domain model to study the effect of multiple wheel passages on rail corrugation 

in the range 400-1500 Hz. The unsteady rolling contact problem was considered in which 

the normal contact force and surface curvature vary. The wheel-rail contact forces were 

assumed to be responsible for the rail corrugation. It was found that wear is heavier at 
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shorter wavelengths and increases with the amplitude of the dynamic contact force. This 

also confirmed the conclusion that stiff rail pads would result in higher corrugation growth 

than soft pads [28]. 

 

Baeza et al. [29-30] investigated the importance of applying a transient rolling contact 

model. When the forces applied are constant, the results obtained from transient and 

stationary models are identical, but when applying varying forces, significant differences 

occur and thus the wear estimation is affected. Alonso and Gimenez [31] and Knothe and 

Gross-Thebing [32] also studied the effects of transient contact mechanics. However, apart 

from Kalker’s CONTACT program [14], most models assume that the stress distribution 

between the wheel and rail at one position inside the contact is independent of the 

distribution at previous locations.  

 

Xie and Iwnicki [33] developed a three-dimensional contact model based on Kalker’s 

variational method which included non-linear effects, transient effects and non-Hertzian 

effects. It was found that when these effects are included, the maximum wear always 

occurred close to corrugation peaks and thus resulted in roughness being suppressed rather 

than developing into a sinusoidal pattern. When the model was extended with the time-

domain wheel-rail interaction [34], calculations were presented of a free wheel subject to a 

constant longitudinal creepage and a driven wheel subject to a dynamic longitudinal 

creepage and a broadband roughness. The wear spectrum was found to be mostly 

independent of both the wheel speed and the initial roughness spectrum. 

 

Wheelset dynamics should also be considered. A simulation tool comprising a cyclic finite 

track model, a flexible and rotating wheelset model and a wheel-rail contact model has 

been presented by Vila et al. [35-36] to study the evolution of the rail roughness in the 

range 50-1500 Hz. They identified the vibration modes of the wheelset responsible for a 

complex dynamic behaviour able to produce high forces and wear at the wheel-rail contact. 

The coupled influence of the third bending mode of the wheelset and various wheel modes 

on the growth of rail corrugation was analysed and it was found that the possible 

wavelength-fixing mechanism that was identified depends on the speed of the vehicle. It 

was also found that when a mean positive longitudinal creepage is considered, roughness 

growth is predicted only on the low rail. 

 

A model which comprises a finite element (FE) track model, rigid vehicle, flexible 

wheelset and non-Hertzian non-steady contact model was applied by Torstensson et al. [37-
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38] to predict long-term roughness development on small radius curves in the range 25-

1500 Hz and was validated by measured data. It was found that corrugation wavelengths 

on curves are related to excitation of the first symmetric and antisymmetric bending modes 

of the leading wheelset in a bogie. 

1.3.3 Stick-slip self-excited vibration due to falling friction 

Clark et al. [39] investigated self-excited vibration of a flexible wheelset and a discretely 

supported track system under high creepage conditions. They derived the interaction force 

including vertical and lateral dynamics, since they found that lateral creep had more effect 

on the short wavelength corrugation development than longitudinal creep. A significant 

improvement in their model was the wear prediction which considered varying lateral 

creep as well as varying random speeds of wheel pass-bys. It was found that a friction 

characteristic with a negative slope leading to self-excited vibration could promote short 

pitch corrugation growth.  

 

An analytical model based on Clark et al.’s work [39] was introduced by Brockley and Ko 

[40] to derive a formula linking corrugation wear with friction-induced vibration and to 

investigate its effect on corrugation initiation and development. They found that 

corrugations in the range 40-80 mm are formed by wear resulting from torsional vibration 

of the driven wheels and by longitudinal vibration of the rails. 

 

More recently, Matsumoto et al. [41] studied the growth process of short wavelength 

corrugation on curved track by numerical simulation together with full-scale stand tests 

and commercial line experiments. It was found that the wheelset vertical vibration induced 

by wheel-rail irregularities would cause a fluctuation of the normal force between wheels 

and rails. This fluctuation, and a large creepage, would generate stick-slip vibration in the 

contact of the wheel-rail system with the torsional vibration of the axle and thus generate 

rail corrugation in curved sections of track. They also gave an explanation of the 

phenomenon that corrugation occurs on the low rail. As the normal wheel load on the low 

rail is smaller, the stick-slip process happens more easily. 

 

Considering the varying normal forces caused by track features such as welds and joints, 

Grassie and Edwards [42] used a simplified analytical model to investigate the effect of 

normal force fluctuation. It was found that a varying normal load with constant tangential 

load, where the tangential load is a small fraction of those which can be sustained by 

friction, would result in variations of slip in the contact and thus, affect the corrugation 
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growth. If a wheel is close to slipping, corrugation in the 100–300 mm wavelength range is 

more likely to arise from variations in tangential forces that would be associated with a 

torsional resonance of wheelsets. 

 

Sun and Simson [43] developed a nonlinear vehicle-track model which comprised a 

wheelset with two wheels coupled in torsion and bending, a discretely supported 

distributed-parameter track model and a wheel-rail interaction model based on Kalker’s 

linear creep theory [14]. It was found that the frequency of the wheel stick-slip process 

corresponded to the wavelength of rail corrugation. This was related to the sleeper-passing 

frequency and the combined torsional and bending frequency of the wheelset. If the static 

friction coefficient has a low value, the creepage can easily overcome the wheel–rail 

interface’s ability to accommodate it, leading to the wheel stick-slip process. Furthermore, 

a low kinetic friction coefficient intensifies the wheel stick-slip process. 

1.3.4 Stick-slip self-excited vibration due to mode coupling 

The falling friction characteristic discussed above was also believed to be the main cause 

of the stick-slip self-excited vibration in curve squeal, but recently the mode-coupling 

mechanism has also gained popularity as another possible cause [44]. Similarly, in rail 

corrugation, the mode-coupling mechanism may also be an important mechanism. 

Coupling between different wheel modes, also known in other contexts as flutter, results in 

instability at a frequency which is normally between those of the two coupled modes [44]. 

In such a situation, vertical and lateral vibrations exhibit a phase difference and can be 

characterised by beating. 

 

Kurzeck [45] set up a vehicle-track simulation model using the commercial multi-body 

software SIMPACK. Through numerical simulations, the initiation mechanism for 

corrugation at a frequency of 80 Hz was identified as the bending mode-coupling 

instability in friction-induced oscillations. The oscillation of the rail was coupled with that 

of the wheels under the action of the saturated creep forces. When the coupling was strong, 

self-excited oscillation of the wheel-rail system occurred which caused variation of the 

contact forces between wheels and rails. The oscillation was characterized by high vertical 

amplitudes at the axle-box of the inner wheel of the leading wheelset without the need of 

an excitation by the rails. 

 

At a similar time, Chen et al. [8,46,47] used a finite element model to investigate the 

formation mechanism of rail corrugation from the viewpoint of mode-coupling self-excited 
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vibration of the wheelset-track system. Creep forces were assumed to be saturated. A 

complex eigenvalue method and a transient dynamics method were utilized to study the 

stability of the wheel-rail system and the unstable transient dynamics. The normal contact 

force between the wheel and rail fluctuated at the same frequency as the wheel and rail 

vibration when the self-excited vibration occurs, leading to corrugation in the range 50-600 

Hz. A negative friction–velocity slope was found to have a small influence on the 

occurrence of rail corrugation. Besides, it was found that when the vertical rail fastener 

stiffness was increased, the possibility of wheel slipping decreased and the propensity for 

rail corrugation to occur also decreased.  

 

Later field measurements and numerical studies were carried out by Cui et al. [9]. Vertical 

vibration acceleration had significant fluctuations when a wheelset passed. They suggested 

this implies the occurrence of frictional-coupling self-excited vibration caused by a 

saturated creep force. This was linked to unstable vibration mainly on the low rail of 

curves causing rail corrugation in the range 100-500 Hz. Cui et al. [48] further showed that 

friction-induced oscillation was the main cause of rail corrugation through a study of a 

particular phenomenon in which corrugation wavelengths differ in different track sections 

when using Cologne egg fasteners and fixed dual short sleepers. Unstable oscillation 

occurs on the low rail of the Cologne egg section at a frequency of about 422 Hz, but 

occurs on the low rail of the fixed dual short sleeper section at a frequency of about 201 

Hz. They also stated that the reason why rail corrugation rarely occurred on the rails of 

tangential or curved track of larger radius was that the creep forces are not saturated. 

1.3.5 Alternative mechanism based on flexibility differences 

Apart from the wheel-rail contact, another viewpoint to investigate the corrugation 

mechanism has been considered in [10-12]. Previously, for the pinned-pinned resonance 

corrugation, it has been widely accepted that this is associated with a mode of the track in 

which the rail vibrates as if it is a beam almost pinned at the periodic sleepers or rail 

fastenings. Then the rail vibration causes the variation of dynamic loads and thus 

corrugation. However, through an experimental study of rail dynamic frequency response 

functions for different trackforms,  

 

Vadillo et al. [49] examined a case of inside rail corrugation where curvature is sharp. The 

corrugation was found to develop quickly in the area between one sleeper and the next. 

The explanation lay in the high lateral creep of the first bogie wheelset on the curve, 

especially in the mid-span between sleepers. Modal analysis indicated the first mode of 



 

14 
 

lateral bending in the rail was the wavelength-fixing mechanism. 

 

Wang et al. [10] considered that variations of dynamic loads or contact force were not only 

due to rail vibration. They found that the transfer functions clearly showed opposite trends 

when the wheels are running above the fasteners and at the middle of a span between two 

fasteners and demonstrated that the discontinuous support could be a main cause of short-

pitch (25–80 mm) corrugation of the rail. This is the basis of the proposed mechanism of 

wheel-rail dynamic flexibility difference. 

 

Zhao et al. [11] later studied the relationship between the change of discontinuous support 

stiffness of the track system and the dynamic flexibility (receptance) of wheel and track. 

Due to dynamic flexibility difference between different positions, a cyclical fluctuation of 

the wheel-rail contact force was generated. The mechanism of wheel-rail dynamic 

flexibility difference for corrugation initiation was then presented. To control the growth of 

rail corrugation below 1200 Hz, the optimal vertical and lateral stiffness of the fastener was 

calculated through numerical examples. Later, Zhao et al. [12] verified this mechanism 

through field observations and simulation analysis. It was found that installation of a novel 

rail damper can shift the pinned-pinned frequency to a lower frequency and reduce the 

difference in wheel-track receptance which sharply minimises the wheel-rail interaction 

force and thus the rail corrugation. 

 

This mechanism is similar to the mechanism of the pinned-pinned resonance since they 

both consider the wheel-rail system vibration which results in corrugation, and they both 

correspond to sleeper or fastening spacing and fastener stiffness. However, there is a 

difference in the vibration generation mechanism. The mechanism of wheel-rail dynamic 

flexibility difference may be able to explain the corrugation initiation when the train speed 

is fixed and the frequency is away from the pinned-pinned resonance of the rails. 

1.4 Research on effects of critical aspects 

As well as investigations of the mechanism and prediction of rail corrugation, figuring out 

and understanding the effects of possible critical aspects is also important to set appropriate 

strategies for rail corrugation prevention and control. Many parameter studies and 

sensitivity analyses have been carried out by various authors. Initial sinusoidal roughness 

is often used to excite particular modes of the wheelset, track system or the coupling of the 

wheel and rail to investigate the effects of the particular modes on the development of the 

rail corrugation. The sinusoidal roughness is assumed to be present on the running surfaces 
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of rails with a wavelength calculated as the velocity divided by the frequency 

corresponding to the particular modes. Here, only recent works are reviewed, some 

considering new aspects and some verifying the influence of critical aspects found by 

former authors. These aspects are listed in Table 1.3. 

 
Table 1.3 List of critical aspects that affect the rail corrugation investigated in the literature 

Critical aspects Reference 

Friction coefficient [50],[53],[61],[62],[63],[68] 

Modal damping of wheel-rail system [50],[64],[65],[68] 

Wheel-rail profile  [43] 

Wheel-rail contact angle [67] 

Direction of saturated creep force [67] 

Coupled bogie/track system [55] 

Bogie design [66] 

Multiple wheels [27],[56],[57],[58],[59] 

Operational speed [52],[53],[58],[59],[60],[61] 

Train axle load [52] 

Track parameters [43] 

Fastening parameters [6],[27],[28],[51],[52],[53] 

Discrete supports [6],[22],[52],[54] 

1.4.1 Discussions in the literature 

Meehan et al. [50] developed an analytical model based on the mechanism of transient 

dynamic interaction and performed a sensitivity analysis to determine the influence of 

various railway parameters on the growth rate of wear-type corrugation (such as rutting 

and roaring rails). It was shown that the wear coefficient, friction coefficient and the ratio 

of tangential load to the friction limit had positive correlation with the corrugation growth 

rate, whereas the modal damping of the wheel-rail system had a negative correlation with 

rail corrugation growth.  

 

Sun and Simson [43] used a nonlinear vehicle-track model based on the mechanism of 

stick-slip vibration to investigate the effects of the curved track parameters, the wheel-rail 

friction characteristics and the wheel-rail profiles on the wheel stick-slip process and thus 

on corrugation. Among the parameters investigated, larger track curvature, higher static 

friction coefficient, higher kinetic friction coefficient and worn wheel-rail profiles were 

found to have significant effect in suppressing the rail corrugation growth (assuming the 

creep force remains constant in all cases). 
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Yan et al. [51] introduced the floating ladder track to control track vibration in the Beijing 

subway and found the second-order bending resonance of the ladder sleeper occurred at 

134 Hz that causes vibration and trackform-specific corrugation. Change of the fastening 

parameters and resilient material affected the high and low frequency range separately. 

Thus, increasing the vertical damping and decreasing vertical fastening stiffness could 

improve the vibration and reduce rail corrugation. 

 

Song et al. [52] investigated the effect of several factors on wear-type rail corrugation, 

including operational speed, rail pad stiffness, rail pad damping, sleeper spacing and train 

axle load. Among these, changing the rail pad stiffness was considered the most practical 

and effective solution and was verified by field measurements. A lower rail pad stiffness 

was shown to reduce roughness growth as found in previous studies [27,28]. Robles et al. 

[53] predicted the development of corrugation using a new developed time/space domain 

model. Apart from the founding that lower pad stiffness reduces corrugation growth rate, it 

is also found that the greater the deviation of the vehicle speed distribution, the smaller the 

extent of wear and the less corrugation is developed. Different friction coefficients were 

also studied. 

 

Apart from component parameters, other aspects also draw much attention. Sheng et al. 

[54] used a two-dimensional Hertzian-based wear model, which was different from Jin et 

al. [22], to investigate the effect of discrete supports but the results led to the same 

conclusion that the discrete supports significantly affect the initiation of short-pitch rail 

corrugation. This conclusion was obtained because the Hertzian contact stiffness varied 

due to discrete supports when the wheels moved on periodically supported rails. Maximum 

corrugation growth was found to occur near the pinned-pinned frequency.  

 

Igeland [55] used a linear vehicle model with a nonlinear Hertzian contact stiffness moving 

over a linear track model, discretely supported by flexible sleepers to calculate the vertical 

wheel/rail contact forces. The vertical dynamic behaviour was assumed to be independent 

of the friction forces and creep. It was found that resonances in the coupled bogie/track 

system, occurring due to wave reflections between the two wheels on the rail, may have a 

considerable influence on the vertical dynamic interaction between the vehicle and the 

track and thus on the roaring rail corrugation growth. Later, Manabe [56] used an 

analytical model without discrete rail supports to investigate the effect of the standing 

waves in the rail between multiple wheels. Wu and Thompson [27] also investigated the 

effect of multiple wheels. The significant effect of the standing waves in the rail between 
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two wheels of a bogie was further verified by Johansson and Nielsen [57]. 

 

The effect of train speed and the frequency of successive wheels on wear-type rail 

corrugation formation were investigated by Meehan and Daniel [58] and Bellette et al. 

[59]. It was found that in some cases a wider spread of vehicle speeds was effective in 

controlling rail corrugation growth while the wheel passing frequency (wheels passing per 

second within a train) also had some effects on it. Nonlinear behaviour was not taken into 

account so the influence was limited to small amplitude corrugation growth. Later Meehan 

et al. [60] used a frequency-domain corrugation growth model to investigate the effects of 

asymmetric speed distribution on maximum growth rate for trains in cornering. Positive 

skew (higher distribution at low speeds) caused a decrease in rail corrugation, thus speed 

control via manipulation of the distribution skew was believed to be effective. 

 

Bellette and Meehan [61] carried out validation experiments and showed that speed 

variation and the use of friction modifiers can have a great effect on the reduction in 

corrugation growth rates which is consistent with theoretical predictions. High steady wear 

would increase the corrugation growth at first, but it would also quickly create a more 

conformal contact, which resulted in a reduction in the change in steady-state profile per 

pass, thus limiting the corrugation growth. The effect of friction modifiers on short-pitch 

corrugation growth in curves was also studied by Eadie et al. [62]. The friction modifiers 

can change the friction coefficient of the rail contact surface and eliminate the negative 

slope at high creepage. Field measurements showed that a friction modifier was effective 

in controlling the corrugation growth rate and the effectiveness would not be much 

influenced by changes in contact conditions.  

 

Grassie [6] described a metro project and identified the types of corrugation that were 

considered to be most likely to occur. To avoid trackform-specific corrugation and P2 

resonance corrugation, the fastening system of the track was used with a relatively stiff 

railpad and a resilient baseplate pad. The choice of the fastener spacing was also justified 

to mitigate pinned-pinned resonance corrugation. No specific preventions were made to 

mitigate rutting corrugation which could best be treated by installing friction modifier in 

the sections of track where it occurred. The measures proposed and adopted were indeed 

successful to minimize corrugation occurrence as the results of monitoring were 

undertaken [63]. 

 

Croft et al. [64] developed a simple time-stepping FE model to calculate the interaction 



 

18 
 

forces between the wheel and the rail for a track with and without rail dampers to study the 

effects of rail dampers on short-pitch rail corrugation growth. Through numerical analysis, 

it was found that the rail dampers could reduce the dynamic interaction forces and shift the 

force spectrum to lower frequencies, i.e. longer wavelengths. Thus, the short-pitch 

corrugation growth was attenuated. Wu [65] used a time-domain model including the track 

with rail dampers to reach similar conclusions. He studied short-pitch rail corrugation from 

the viewpoint that friction-induced self-excited vibration of a wheel–rail system causes 

corrugation.  

 

Later Wu et al. [66] established an FE model based on the commercial software ABAQUS 

with bogies with different axlebox arrangement to obtain parameters of interest to study the 

effects of several aspects by complex modal analysis. A design of bogie with inner 

axleboxes was found to be favourable for suppressing the rail corrugation. The lateral 

spacing between the primary suspension points of a bogie with inner axleboxes had a 

positive correlation with the possibility of rutting rail corrugation occurrence. Lower 

vertical stiffness of the primary suspension was also found to be beneficial in the 

suppression of the corrugation. Too low or too high vertical damping of the primary 

suspension or a heavier vehicle or bogie increased the possibility of corrugation 

occurrence.  

 

Based on the viewpoint of frictional-coupling self-excited vibration of the wheelset-track 

system, the effect of wheel-rail contact angle and direction of saturated creep force on 

short-pitch corrugation were studied by Cui et al. [67] through an FE model and analysed 

by the complex eigenvalue method. Contact angles smaller than 8.41° would result in self-

excited vibration and then rail corrugation. Higher longitudinal creep resulted in a lower 

propensity for corrugation. It was shown that the creep force in the lateral direction more 

easily generates corrugation than the force in the longitudinal direction. Corrugation more 

easily occurred in tightly curved track than tangent track. Beshbichi et al. [68] used an FE 

wheelset and track model in ABAQUS to investigate the formation of railhead corrugation 

in sharp curves. The effective damping ratio of the coupled system was obtained through 

complex eigenvalue analysis. For higher values of friction coefficient, the effective 

damping ratio associated with unstable vibration increased in magnitude while the 

frequency shifted towards lower values. 

1.4.2 Summary of critical aspects 

Many possible aspects of the wheel-rail system have been identified over the years with 
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varying success based on the mechanisms introduced in Section 1.3. Thus, many effective 

treatments and methods related to these aspects have been developed to control the 

initiation and growth of the wear-type rail corrugation. 

 

Since the damage mechanism of the various types of rail corrugation, such as roaring rails, 

rutting and track-form specific corrugation, is wear, improving these aspects related to 

frictional work is directly effective in suppressing the initiation and growth of rail 

corrugation. This treatment includes lubrication, which improves the wear coefficient, 

static and kinetic friction coefficient, and the use of friction modifiers, which reduces or 

eliminates the falling friction characteristics. Increasing the modal damping of the wheel-

rail system is also an alternative treatment. 

 

When the corrugation generation mechanism is considered to be stick-slip self-excited 

vibration caused by falling friction, the parameters that are related to the track, such as the 

track curvature, the rail pad stiffness and rail vibration absorber, have a significant effect 

on roaring rails or rutting corrugation. The fastener spacing, however, has a significant 

effect on the pinned-pinned resonance. The vehicle speed, wheel passing frequency, wheel-

rail contact angle, the direction of saturated creep force and the worn wheel-rail profile 

also contribute to the wheel-rail system dynamics and therefore affect the initiation and 

growth of roaring rails or rutting corrugation. 

 

When the dominant corrugation generation mechanism is considered to be stick-slip self-

excited vibration caused by mode-coupling, the aspects which affect the vehicle and track 

vibration modes should be taken into account to control the initiation and growth of roaring 

rails or rutting corrugation. For the track, the parameters of the discrete supports are 

important. For the vehicle, the design of bogies with inner axleboxes with reduced lateral 

spacing between the primary suspension points, the vertical stiffness and damping of the 

primary suspension and the mass of the bogie are critical. 

 

For trackform-specific corrugation, increasing the damping of vertical resilient supports 

and decreasing the vertical fastening stiffness can improve the vibration performance and 

reduce rail corrugation in low and high frequency range, respectively. 

 

The choice of a treatment for a specific situation requires many considerations to be taken 

into account, especially the generation mechanism of the rail corrugation. Thus, identifying 

the dominant mechanism of the rail corrugation is the key point and will contribute to the 



 

20 
 

decision of corrugation growth control strategy. 

1.5  Research target and contributions 

So far, short-pitch rail corrugation including roaring rails, rutting and other wear-type 

corrugation has been widely investigated, but some railway roughness phenomena are still 

not satisfactorily explained. There are still considerable difficulties in identifying the 

causes of the rail corrugation at particular locations. That means further investigations and 

research are needed to solve this problem. One of the most damaging types of corrugation 

is known as rutting which usually appears on the inner rail of curves and produces intense 

noise in a low frequency range. 

 

 
Figure 1.3 Structure of simulation tool 

 

 

In this research, the aim is to develop a time domain model of the wheel-rail coupled 

system that allows a thorough investigation of rutting corrugation. In Figure 1.3, the time 

domain model of the wheel and rail are obtained from their frequency domain models. 

Then together with other sub-models, these models are assembled and used all in the time 

domain. Such model is then used to perform extensive parametric studies that allow 

evaluating and comparing the most important parameters that are associated to roughness 

growth. Hence, the objectives of the work are set out below: 

 

1) To develop a simulation tool to predict corrugation growth through models of the 

coupled vibration of the railway vehicle-track system and the wheel-rail rolling 

contact mechanics. The developed simulation tool will consist of several models 
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connected in a feedback loop (as shown in Figure 1.3) to account for both the short-

term dynamic vehicle-track interaction and the long-term damage. 

2) To develop a track dynamic model based on the existing rail model developed by 

Kostovasilis [84] and obtain the impulse responses in the time domain, combining 

them with a state-space modal model of the wheelset in a time-stepping approach. 

3) To extend the steady-state curving model developed by Huang [69] to include the 

effects of falling friction and traction force. 

4) To implement the 3D contact model to obtain the contact forces and then the wear, 

then to identify the dominant resonance and mechanism of the corrugation initiation in 

a specific case. 

5) To investigate the effect of wheel/rail couplings between two wheels and rails, and 

also the effect of multiple wheel/rail interactions on the corrugation initiation. 

6) To investigate the effects of some key parameters in order to mitigate rail corrugation.  

 

Most vehicle-track interaction models may be categorized as either time-domain or 

frequency-domain models. Historically, time-domain models have required a large 

computational capacity whereas frequency-domain models are usually more efficient, 

albeit less flexible. Frequency-domain models can take account of multiple wheels and 

parametric excitation, but their main limitation is the inherent assumption of linearity, 

which is valid only when the roughness excitation of the system is low. They also usually 

neglect spatial variations in track properties. In comparison, time-domain models are 

developed to study cases where non-linear effects are significant such as in modelling rail 

corrugation. As advances occur in computational capabilities, it is becoming possible to do 

time-domain analysis for increasingly complex models. Considering the frequency range 

and parameters of interest, a time-domain vehicle-track interaction model is used in this 

research. 

 

The time-domain vehicle-track interaction model should comprise a flexible wheelset 

model, a semi-analytical track model with discrete supports and the non-Hertzian non-

steady-state 3D wheel-rail contact model based on the variational theory by Kalker [14]. 

The dynamic interaction between the vehicle and the track is solved in the time domain to 

take into account the nonlinearities of the coupled vehicle-track system. Wear calculation is 

performed with Braghin’s wear model [134] by using the contact parameters obtained from 

the wheel-rail contact model, which is able to represent adequately the distributions of 

contact stress and slip velocity. These distributions are required as input data to the wear 

model to compute the material loss on the running surfaces of the two rails. The frequency 



 

22 
 

range of interest for the rail corrugation is up to about 1500 Hz. Due to the use of a time-

domain prediction model, to get more precise results, the sampling frequency used in the 

time-domain model is higher. Thus, the frequency range of interest for the wheelset and 

track need to be up to about 5000 Hz. 

 

The main original contributions in this thesis can be summarised as follows: 

1) An existing steady-state curving model is extended to include the effects of falling 

friction and applied traction on the calculation of contact forces, contact positions and 

creepages. 

2) A new analytical track model is developed based on an existing rail model and the 

receptance-coupling method to account for discrete supports. The transfer responses 

between the two rails of the track are also obtained. The dynamic responses of the new 

track model are validated by measured results. The effects of the inclusion of torsion 

and warping for the rail on the overall lateral track responses are investigated. 

3) A new combination of the time-domain track and wheelset responses is applied in the 

wheel/rail interaction model. For the track, a moving Green’s function method is used 

to get the track response in the time domain, while for the wheelset, the state-space 

method is used based on modal coordinates. This combination is found to be effective 

and sufficient to model the wheel/rail interaction. 

4) For a vehicle with a specific speed passing a curved track with a specific radius, 

different mechanisms are evaluated and the dominant mechanism for the corrugation 

initiation is identified. The dominant resonances in such a case are also identified. 

5) The effects of the coupling between the two wheels and rails, and also of the presence 

of multiple wheels on each rail on the dynamic responses and on corrugation growth 

are investigated.  

6) Parametric studies are performed, including varying the friction coefficient, radius of 

curved track, vehicle speed, rail pad stiffness, cant angle, wheelset design and axle 

load. For a wide range of conditions, the dominant mechanism is determined. 

Furthermore, some general conclusions in determining the dominant mechanism are 

obtained. 
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2 Steady-state curving model 

2.1 Introduction 

The wheelsets of railway vehicles usually consist of two wheels joined by a rigid axle. The 

bogie is a frame in which two such wheelsets are mounted. When trains are travelling 

through a curve, the wheelsets (especially the leading one) exhibit a non-zero angle of 

attack to the rail and consequently a sliding velocity is generated in longitudinal and lateral 

directions at the wheel-rail contact. The lateral sliding motion causes lateral creep forces, 

and the longitudinal sliding causes longitudinal creep forces. These forces also change the 

wheel/rail contact positions and normal load applied to the rail. 

 

In a curve of constant radius, without any external input, the vehicle-track system would 

achieve a steady-state behaviour. The contact position between the wheel and rail, the 

creepages and the normal load in the steady state are needed for the following calculations. 

The steady-state curving model used in this thesis was established by Huang [69] and is 

extended in this thesis to include falling friction and applied traction. A general description 

of this model will be given in this chapter. Detailed information about this steady-state 

curving model is given by Huang [69]. 

2.2 Review of railway vehicle dynamics 

In modelling rail corrugation for curved track, some steady-state curving parameters, such 

as creepages, contact positions and normal loads, are required. A steady-state curving 

model presented in this section can provide these parameters. This is mainly based on the 

description in the book of Wickens [70].  

 

The theoretical analysis of railway vehicle dynamics started in the 19th century. First 

theoretical analysis represented the situation of the unconstrained wheelset in a moderate 

curve. To maintain stability in practical situations, the wheelsets of the vehicle must be 

constrained by the suspension stiffness, which connects the wheelset to other parts of the 

vehicle, or by the wheel flange. In the unconstrained wheelset case, the guidance is 

provided by the linear conicity only for slightly curved track. For tightly curved tracks, the 

essential mode of guidance is found to be the wheel flanges [70]. Mackenzie [71] later 

developed the first practical theories, which considered the friction forces. He investigated 

this based on sliding friction, neglecting the effect of wheelset conicity on curving. It was 

assumed that the wheelsets run under flange contact on the outer rails of curves.  
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The principal consideration is that a vehicle is supported on multiple wheelsets, and in 

each wheelset, two wheels are connected rigidly by the axle. Their running surfaces have 

conicity. Wheel/rail forces are developed by sliding friction forces at all the wheel treads 

and at the flange contacts (where applicable). The curving behaviour can be divided into 

two kinds [72]. One is referred to as constrained curving for small curve radii where the 

leading outer and trailing inner flanges contact the rail. The other is referred to as free 

curving where only the leading outer wheel is in flange contact. 

 

On most curves, the analysis of curving behaviour of conventional vehicles must involve a 

consideration of important nonlinearities, i.e. the saturation of the friction forces and 

realistic wheel-rail geometric interaction in flange contact [70]. Elkins and Gostling [73] 

gave a comprehensive nonlinear treatment of practical vehicles on curves. The numerical 

solutions were found to have a good agreement with experimental results. The 

nonlinearities caused by the contact patch movement along the rail and subsequent change 

in contact patch shape, friction saturation and large wheel/rail contact angle in flange 

contact were considered, while the inertia terms were not included as the research was 

focused on steady-state behaviour. 

 

From the 1980s, the simulations of vehicle dynamics gradually became available in 

powerful, validated and user-friendly commercial software packages, such as ADAMS, 

VAMPIRE and SIMPACK with which it is possible to carry out simulations of the dynamic 

behaviour of the railway vehicles running on the track. Although the commercial software 

packages are available, to satisfy the demands of curve corrugation research and provide 

insight into the mechanism of the corrugation initiation, it is useful to have a self-contained 

vehicle simulation model. 

 

In this steady-state curving model, rigid bodies representing the vehicle are connected to 

each other by flexible components of the suspensions, i.e. springs and dampers. The 

vehicle is considered to run on a constant track section, which has a fixed curve radius and 

cant angle. The cross-section profiles of the wheel tread and railhead are based on 

measured data and assumed constant through the whole simulation process. The nonlinear 

creepage-creep force relationship is also considered in the steady-state curving but this 

does not include the falling region. The definitions of sliding velocities and creepages are 

slightly different from the linear creepage-creep force relationship. Under most 

circumstances, the rigid motion of a wheelset is much more significant than that of the 
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track. Therefore, the rail motion can be ignored for determining the vehicle dynamics. This 

is a treatment consistent with the definitions in the commercial software. 

2.3 Steady-state curving model from Huang [69] 

The steady-state curving model used here is based on Huang’s work [69]. Here a brief 

introduction is given to state the basic structure, settings and assumptions. 

2.3.1 Creepages 

As defined by Johnson [74], rolling is a relative angular motion between two bodies in 

contact about an axis parallel to their tangent plane, as shown in Figure 2.1. In the contact 

frame, the contact surfaces ‘flow’ through the contact zone with tangential velocities in the 

x (longitudinal) and y (lateral) directions. The bodies can also have angular velocities about 

the z (vertical) direction which are in the x-y plane. In tractive rolling contact, which refers 

to the cases with non-zero tangential force, tangential loading can lead to a difference in 

elastic deformation of the two bodies. The difference in elastic deformation or strain in the 

contact yields the overall relative slip, which is known as creep [74]. Creep can occur in 

the longitudinal and lateral directions and in the form of spin, where the relative slip 

between wheel and rail is rotational. For rolling without sliding or spin, the motion is 

called ‘pure rolling’ which is an ideal case. 

 

 
Figure 2.1 Rolling contact of two elastic bodies [75] 

 

Johnson [74] defined the creep ratio γ as the difference between the distance travelled in 

one revolution by the deformed and undeformed wheels, divided by the undeformed 

circumference. It may also be expressed in terms of the velocities of the contact surfaces 

and is also known as creepage. If the velocity of a point on the surface of the wheel, 

relative to the contact patch, is vw and the contact moves along the rail with an overall 

velocity vr, then the longitudinal, lateral creepages and spin can be written as 
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where V0 is the vehicle speed. The longitudinal and lateral creepages are dimensionless 

whereas the spin creepage has a dimension of m-1. 

2.3.2 Rolling friction 

Consider first a body at rest on the ground, as shown in Figure 2.2. The normal force FN 

given by the ground to the body is equal in magnitude and opposite in direction to the 

gravity force acting on the body Gg. The external force Fe gives the body a trend to move 

forward. The static friction force Fs is equal in magnitude and opposite in direction to the 

external force applied to the body until the friction limit between the two contact surfaces 

is reached; this is equal to the value of the static friction coefficient multiplied by the 

normal force µsFN. Thus, the friction force can take any value from zero to the friction 

limit before the body starts to slide. When the external force Fe is larger than the friction 

limit µsFN, sliding motion occurs. At this point, the friction force is equal to the friction 

limit.  

 

 
Figure 2.2 Body on the ground [44] 

 

For a rolling wheel, the wheel and rail are not rigid. When the two elastic bodies are in 

contact, a deformation exists in the contact area which is fundamental to rolling friction 

[76]. In the contact area, there is some local slip before gross sliding occurs. This 

phenomenon is called micro-slip [77]. At this micro-slip stage, there are areas of adhesion 

and slip in the contact area, as shown in Figure 2.3. When entering the contact area, the 

surface particles of the wheel and rail lock together and move towards the rear. The front 

zone of the contact area is the adhesion zone. In the trailing zone of the contact area, where 

surface particles leave the contact area, a slip region occurs. When the global sliding 

velocity (or creepage) is very small, the contact is mainly in adhesion, with elastic 

deformation that builds up through the contact zone until micro-slip occurs near the trailing 

edge. As the creepage is increased, the size of the slip zone increases and the tangential 

force in the contact increases linearly from zero, until it reaches its saturation value. When 
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reaching saturation, the rolling contact is under gross sliding and the tangential force is 

equal to the friction limit (shown as dashed line in Figure 2.4). 

 

It is widely known that friction coefficients are different in static and dynamic situations. 

The dynamic friction coefficient depends on the sliding velocity between the surfaces and 

higher slip velocities can result in a lower friction coefficient. Consequently, the slope of 

the curve of tangential force against creep ratio is not always positive. For high values of 

creep, the falling friction coefficient causes the slope of the creep-force relationship to 

become negative (shown as solid line in Figure 2.4. In the figure, the line has a positive 

slope due to the sign convention adopted. In this region, with increasing sliding velocity, 

the magnitude of the force is decreasing but with a negative sign). In the following 

calculations, the friction coefficient is assumed to be either constant or velocity dependent. 

The velocity-dependent friction is introduced in detail in Chapter 6. 

 

 
Figure 2.3 Slip and adhesion area in wheel-rail contact [44] 

 
Figure 2.4 Creep force with micro-slip and saturation [44] 

2.3.3 Wheel-rail interaction 

Figure 2.5 shows the rear view of a wheelset on a track in a right-hand curve with a cant 

angle ϕ0. The wheelset reference frame oxyz is defined on the track, with the origin o at the 

centre point of the line that connects the top points on the two rail profiles. The z-axis is 

normal to the cant plane and the y-axis is parallel to the cant plane. The lateral offset of the 
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wheelset in the reference coordinates is u2, and the roll angle about the x-axis is ϕ. 

 

 
Figure 2.5 Lateral offset of a wheelset on a canted track [69] 

 

The lateral offset of the wheelset will result in variations in the wheel-rail contact 

positions. Using an iterative process, the roll angle and the contact positions for a specific 

value of the lateral offset can be found. Variations in the wheel-rail contact positions will 

also lead to changes in other contact parameters. These contact results are calculated using 

the measured profiles of a S1002 wheel profile and a standard UIC 60 rail (with 1:20 

inclination, installed on a canted ground plane). The wheel-rail contact results are 

smoothed with a curve fitting method and tabulated in terms of the lateral offset of the 

wheelset. In the simulations in this vehicle dynamics model, the contact results for each 

wheelset are found from the table according to the lateral position of the wheelset. 

 

In the wheel-rail contact, the normal load is applied, and the contact area is formed. The 

elastic deformation in the vicinity of the contact area is small enough to be neglected in the 

geometrical analysis compared to the wheel and rail profiles. Then assuming the wheel and 

rail surfaces are smooth, their curvatures are approximately constant in the vicinity of the 

contact patch and the conditions for using the Hertz theory for the contact patch calculation 

are satisfied. This is not necessarily true for worn profiles, but the Hertz theory can be used 

as an approximation. The contact patch size depends on the normal load applied. For the 

measured wheel and rail profiles adopted in the current simulations, the curvatures of the 

wheel and rail are not continuous. Therefore, the form of the contact patch may be 

discontinuous at some positions. When flange contact occurs, the Hertz theory is not 

satisfied. But since the error caused by using Hertz theory for the curving analysis is 

acceptable, the Hertz theory is adopted in the steady-state curving model. 

 

The steady-state creepages at the wheel-rail contacts are important input parameters in the 
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rail corrugation prediction model. The detailed realisation of the creepages in the steady-

state curving calculation is presented in [69]. In the curving analysis, flange contact with 

large spin may occur at some wheel-rail contacts. Hence, FASTSIM [13] which accounts 

for the effects of large spin, can be used for the friction model in the steady-state curving 

model instead of the full variational method which is more computationally demanding.  

 

When a vehicle is running on the track, the external forces are mainly due to the 

interaction between the wheel and rail. The wheel-rail interaction forces exist in the 

contact plane, including the contact force normal to the contact plane, the spin moment 

about the normal to the contact plane and the tangential forces in the contact plane. To 

calculate the tangential forces, the normal contact force is determined first; this also 

determines the size of the contact patch. In steady-state curving analysis, if the position of 

a wheelset is near the track centreline, the contact angles of both left and right contacts are 

small and the normal forces are approximately equal to the resultant value of gravity and 

centripetal forces. However, if one of the contact points is close to the flange zone, the 

difference between left and right wheel/rail contact angles is large enough to make the 

normal force at each contact patch different. The assumed normal force is therefore 

adjusted using an iterative process. 

2.3.4 Vehicle dynamics 

Most modern railway vehicles are four-axle vehicles with a car body and two bogies. Each 

bogie has a frame and two wheelsets. The wheelsets and the bogie frame are connected 

through a primary suspension. The bogies support the vehicle body, usually by means of a 

secondary suspension, but there is no direct connection between the bogies. In Figure 2.6 

and Figure 2.7, a bogie vehicle is shown under its initial conditions in a curve. The curving 

behaviour of all components, including the four wheelsets (denoted ‘1’ to ‘4’), the two 

bogies (denoted ‘b’ and ‘d’) and the vehicle body (denoted ‘c’), are analysed in their local 

coordinates, with the origins at their mass centre, the y-axes pointing inwards along the 

radial direction of the curved track, and the z-axes normal to the canted track plane and 

pointing downwards. The positions of the suspension components are shown in Figure 2.6 

and Figure 2.7 by springs (with dampers, not shown, installed in parallel). The bogie 

vehicle under these initial conditions may not be in equilibrium. The steady-state curving 

behaviour can be obtained by step-by-step integration.  

 

The minimum number of degrees of freedom (DOF) required to describe the steady-state 

curving behaviour of this bogie vehicle is 17, including the lateral motion y, yaw ψ and roll 
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φ of the vehicle body, the two bogies, and the lateral motion and yaw of the four 

wheelsets1. The vertical and pitch motions mainly result from the vertical undulation of the 

track in the running direction. This is avoided in the steady-state curving analysis by 

assuming a constant smooth profile of track. Hence, the motion of the bogie vehicle is 

defined by a set of 17 generalised coordinates. The equations of motion in these 

generalised coordinates are 

                 [ ]{ } [ ]{ } [ ]{ } { }+ + =v v v v v v vA Q D Q E Q F                (2.2) 

where [Av] is the inertia matrix, [Dv] is the damping matrix, [Ev] is the stiffness matrix and 

{Fv} is the external force vector. 

 

 
Figure 2.6 Definition of the reference points and coordinate systems of main components of an idealised 
bogie vehicle, under the condition in which the primary suspension springs are relaxed and the secondary 

suspension springs are in their initial positions [69] 

 

 
Figure 2.7 Rear view of the bogie vehicle [69] 

2.3.5 Curving behaviour 

To introduce the curving behaviour, first a free wheelset is considered. The running surface 

of the wheel has an approximately conical geometry to keep the motion of the train aligned 

 
1 In the commercial software or other models, a conventional vehicle model will include the vertical motions 
of the wheelsets, bogies and vehicle body, and the pitch motions of the bogies and vehicle body, as well as 
the motions included in the current steady-state curving model.  
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with the track. A schematic view of a free wheelset running on a curved track is shown in 

Figure 2.8. 

 

 
Figure 2.8 A free wheelset passing the curve [44] 

 

To achieve the radial steering and to pass the curve, the wheelset axis points outwards from 

the centre of the curve. Thus, the outer wheel of the wheelset rolls a longer distance 

compared with the inner wheel. To balance this distance difference, the wheel radii of outer 

and inner wheels should also have a difference and satisfy the relationship: 

                         Rout
Rin

= R+l
R-l

                           (2.3) 

where Rout and Rin are the wheel radii of the outer and inner wheels, respectively, l is half 

the lateral distance between the contact points of the two wheels and R is the curve radius. 

 

If the wheel is conical, as indicated in Figure 2.6, the wheel radii of the outer and inner 

wheels can also be given as: 

                             Rout=r0+δ0∆y                         (2.4) 

                           Rin=r0-δ0∆y                          (2.5) 

where r0 is the nominal wheel radius, ∆y is the lateral displacement of the wheelset, and δ0 

is the conicity of the wheel (see Figure 2.9 as an example for the outer wheel). Substituting 

Equations (2.4) and (2.5) into Equation (2.3), the lateral displacement ∆y of the wheelset 

can be written as: 

                             ∆y= r0l
δ0R

                             (2.6) 

 

 
Figure 2.9 Outer wheel rolling radius when running in a curve [44] 

 

If the lateral displacement ∆y is achieved exactly, the free wheelset would curve along the 
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equilibrium rolling line. 

 

As observed by Wickens [70], when a free wheelset is running on a straight track, it would 

exhibit a kinematic oscillation instead of stable running. Thus, the wheelsets of railway 

vehicles are mounted in bogies. To ensure the stability, usually two wheelsets are 

connected by a rigid frame within a bogie. Therefore, the curving behaviour of a bogie will 

differ from that of a free wheelset. 

 

Due to the rigid frame of the bogie, the wheelsets are fixed in the longitudinal direction. 

The axles of the two wheelsets are also constrained and cannot take up a radial position in 

the curve. This will cause a considerable angle of attack (yaw angle of the wheelset relative 

to the rail) of the wheelsets. In practice, the wheelsets, as well as the rigid frame, are 

connected by the suspensions including springs and dampers in the vertical, lateral and 

longitudinal directions. They not only stabilize the tendency of the wheelsets to oscillate, 

but also facilitate the motion of the vehicle when negotiating curves. 

 

Many parameters can affect the curving behaviour of a bogie or vehicle, such as the curve 

radius, the cant angle and the vehicle speed. Cant deficiency is present when the cant angle 

of the track in a curve provides less centripetal acceleration than that required to achieve 

the balanced cant by a specific curve radius R and vehicle speed V0: 

𝜙𝜙0 < tan−1 � 𝑉𝑉0
2

𝑅𝑅0𝑔𝑔
�                       (2.7) 

 

Cant (and therefore cant deficiency) is often defined in terms of the height difference 

between the two rails. The usual maximum allowed cant is 150 mm. Thus, for some cases, 

zero cant deficiency is not realistic. If the required cant to achieve zero cant deficiency is 

larger than the maximum value, the cant angle (which is the inverse tangent of the ratio of 

the cant to the gauge) is smaller than required and cant deficiency exists.  

 

For a small radius curve, if the vehicle runs at a low speed, the leading wheelsets move 

outwards in the curve while the trailing wheelsets move inwards. Thus, the outer wheel of 

the leading wheelset and the inner wheel of the trailing wheelset are very likely to be in 

flange contact. When the vehicle runs at a much higher speed, the trailing wheelset would 

also tend to move outwards. From this it can be seen that the angle of attack of the leading 

wheelset in small radius curves is higher than that in larger radius curves. 
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2.4 Modification of the steady-state curving model 

In the steady-state curving model described above, the creep forces are calculated by the 

FASTSIM algorithm [13]. In Huang’s work [69], the conventional FASTSIM algorithm 

without falling friction is adopted and no traction or braking forces are applied. In some 

practical analyses, the traction applied to the wheel is also considered as it is an important 

factor in the formation of the rail corrugation [3]. In addition, large creepages or spin may 

be present. In this situation, some modifications are needed in FASTSIM to consider the 

contact nonlinearity and falling friction coefficient. 

2.4.1 Applied traction under constant friction 

Firstly, the effect of an applied traction is considered under a constant friction coefficient in 

the steady-state curving model. The effect of braking can be found in a similar manner. To 

include the effect of the applied traction, an iteration process is added in the FASTSIM 

algorithm. The exact relationship between the creepage and the creep force is not known, 

so an estimated additional longitudinal creepage is initially added to the original one. 

Through the iteration process, the resultant longitudinal creepage is obtained for which the 

longitudinal creep force attains an increase of the same value as the applied traction.  
 

This iteration process is effective whether the longitudinal creep force saturation is reached 

or not and used to find the estimated resultant longitudinal creepage. When the sum of the 

original longitudinal creep force and the applied traction is beyond the saturation, the exact 

value of the longitudinal creepage is hard to obtain since the relationship between the 

creepage and the creep force is nonlinear here. Fortunately, the final parameter needed for 

the following calculation is the creep force, not the creepage. As Figure 2.4 shows, when 

the creep force saturation is reached under a constant friction coefficient, the ratio of the 

creep force to the normal load is also constant. The resultant longitudinal creep force is 

then equal to the value of saturated creep force in this case. Since the outputs of the 

FASTSIM algorithm used for the steady-state curving simulation are the creep forces, the 

error of the resultant longitudinal creepage can be neglected. 

2.4.2 Applied traction under velocity-dependent friction 

For large creepage, including the situations with tractions applied to the wheels, the wheel-

rail friction coefficient is considered as velocity-dependent, reducing with increasing slip 

velocity. An assumption has been made that the velocity-dependent friction coefficient is 

different for each point in the contact patch since the local slip is different on each point in 
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the contact area. This is described in more detail later in Section 6.2.2.  

 

Since the FASTSIM algorithm is used for tangential creep force calculation in the current 

steady-state curving model, the local slip of each point on the contact area is hard to obtain. 

The friction coefficient for each point is also hard to determine. Thus, the assumption 

above has been adjusted and the variable friction coefficient can instead be taken as the 

same for each point in the contact [79]. In FASTSIM, cij, the creep coefficient which is a 

function of the contact aspect ratio, is used to get the contact flexibility coefficient L 

defined by Kalker [13] and further the creep force. The creep coefficients cij apply to the 

linear region of the creep force-creepage relation. When using these coefficients, 

FASTSIM is sufficient in the linear region. The creep coefficient values are tabulated by 

Kalker [13] and are plotted in Figure 2.10 for a Poisson’s ratio of 0.3. 

 

 
Figure 2.10 Creep coefficients 

 

To realise the creepage-creep force relationship under a velocity-dependent friction 

coefficient in the FASTSIM algorithm, a replacement of contact flexibility parameter L 

used in the algorithm is carried out. For very small creep values in the micro-creep domain, 

the contact deforms elastically, and the traction stress distribution corresponds to Kalker’s 

theory [13]. With increasing traction, the contact deforms elastically and plastically, and 

the contact flexibility parameter L becomes lower. The nonlinear deformation and 

corresponding nonlinear tangential stress distribution which exist when the creep force 

saturation is reached, can be represented by a linear deformation using a lower flexibility 

parameter. To achieve the effect of the contact nonlinearity, a variable reduction factor k 

[80,81] is applied to reduce Kalker’s coefficients c11, c22, c23. 

 

It is assumed that the factor k reduces with increasing ratio of the slip area to the adhesion 

area. Therefore, it requires a mathematical description of the change of the ratio between 
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the slip area and the adhesion area as a function of creepage. For the variable stiffness 

reduction factor kre the expression proposed in [79] is used  

                        𝑘𝑘re = 𝑘𝑘0 �𝛼𝛼inf + 1−𝑘𝑘inf
1+𝛽𝛽re𝜀𝜀𝑟𝑟𝑟𝑟

�                    (2.8) 

where k0 is the initial value of Kalker’s reduction factor at creep values close to zero, 

0<k0≤1; Kalker’s reduction factor is dependent on the surface roughness [82,83] and 

contamination [82]; αinf is the ratio of the reduction factor at creep values approaching 

infinity to Kalker’s initial value, 0< αinf ≤1; βre is a non-dimensional parameter related to 

the decrease of the contact stiffness with the increase of the slip area size, 0≤ βre; εre is a 

parameter describing the gradient of the tangential stress in the stress distribution 

transformed to a hemisphere which also represents the ratio of the slip area to the area of 

adhesion: 

𝜀𝜀re = 1
4
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘0𝑐𝑐11𝛾𝛾total

𝑄𝑄𝑄𝑄
                     (2.9) 

where G is the shear modulus, a is the semi-axis of the contact ellipse in the longitudinal 

direction; b is the semi-axis of the contact ellipse in the lateral direction; c11 is Kalker’s 

coefficient; Q is the wheel load; μ is the coefficient of friction; 𝛾𝛾total is the total creepage, 

which can be defined as  

𝛾𝛾total = �𝛾𝛾𝑥𝑥𝑥𝑥2 + 𝛾𝛾𝑦𝑦2                      (2.10) 

where γxφ = γx+aγφ, in which γφ is the relative spin, rad/m. If the values of lateral creepage 

and spin have opposite signs and the total lateral creepage is lower than the pure lateral 

creepage, the higher absolute value of γφ and γx is selected. 

 

Finally, the contact flexibility coefficient L defined by Kalker [13] is increased and the new 

value L∗ is calculated as 

                               𝐿𝐿∗ = 𝐿𝐿
𝑘𝑘re

                          (2.11) 

or Kalker’s coefficients c11, c22, c23 are reduced through multiplying by the stiffness 

reduction factor kre.   

2.5 Steady-state curving results 

The steady-state curving simulation involves simulating a quasi-steady time-history of 

vehicle motion in a curve; convergence at the steady state is achieved via step-by-step 

integration. If the simulation process is convergent, the integration process can start from 

arbitrary reasonable initial conditions and will finally provide the quasi-steady results. 

Considering the nonlinear characteristics of the wheel-rail contact forces, a fourth order 

Runge-Kutta integration algorithm is applied in the integration. 
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Table 2.1 Bogie vehicle parameters provided by Wickens [70] 

Parameter Value Units 

Nominal wheel radius r0 0.45 m 

Half distance of the track gauge l0 0.75 m 

Half distance between two wheelsets in a bogie h 1.25 m 

Half distance between two bogies in a vehicle c 8.75 m 

Vertical distance between the bogie and primary suspension d1 0.20 m 

Vertical distance between the bogie and secondary suspension d2 0.40 m 

Vertical distance between the vehicle body and primary suspension d3 1.00 m 

Mass of the wheelset mw 1250 kg 

Yaw inertia of the wheelset Izw 700 kgm2 

Mass of the bogie mb 2500 kg 

Yaw inertia of the bogie Izb 3500 kgm2 

Roll inertia of the bogie Ixb 1000 kgm2 

Mass of the vehicle body mc 22000 kg 

Yaw inertia of the vehicle body Izc 106 kgm2 

Roll inertia of the vehicle body Ixc 30000 kgm2 

Lateral stiffness of the primary suspensions ky 40 MN/m 

Lateral damping of the primary suspensions Cy 0 kNs/m 

Yaw stiffness of the primary suspensions kψ 40 MNm 

Yaw damping of the primary suspensions Cψ 0 kNms 

Roll stiffness of the primary suspensions kφ 1 MNm 

Roll damping of the primary suspensions Cφ 10 kNms 

Lateral stiffness of the secondary suspensions kyb 0.45 MN/m 

Lateral damping of the secondary suspensions Cyb 1 kNs/m 

Yaw stiffness of the secondary suspensions kψb 0 MNm 

Yaw damping of the secondary suspensions Cψb 0 kNms 

Roll stiffness of the secondary suspensions kφb 1 MNm 

Roll damping of the secondary suspensions Cφb 60 kNms 

 

In curving, the wheelsets in the bogie cannot move freely to the equilibrium position or 

rotate to achieve radial alignment like unconstrained wheelsets, but they are constrained by 

the stiffness between the bogie frame and the wheelsets. The steady-state curving 

behaviour of the bogie can be reached when all the external forces and torques acting on 

both wheelsets are balanced. For a bogie vehicle, since the resistance of the secondary 

suspension to the bogie rotation is relatively low, the curving behaviour of the leading and 

trailing bogies is similar. 

 

For verification, a bogie vehicle described by the parameters in Table 2.1 is simulated. It 

has two bogies connected to the vehicle body through secondary suspensions. The right-
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hand curve radius is of R0 = 150 m, which is tight enough to generate rail corrugation. The 

vehicle speed is V0 = 10 m/s and the cant deficiency is zero (i.e. the cant angle is set such 

that the resultant of gravity and centripetal accelerations is directed normal to the track 

plane). The Coulomb friction coefficient is taken as μ0 = 0.3. The tangential force model is 

based on the modified FASTSIM [79] described in Section 2.4.2. The simulation is started 

from initial conditions with every coordinate in its zero position and lasts 1 second until 

steady-state conditions are reached. In this case, the yaw stiffness between the bogies and 

the vehicle body is set to zero, so that the curving behaviour of the leading and trailing 

bogies is identical. Only the results of the leading bogie are shown in Figures 2.11-2.13. 

 

 
Figure 2.11 Convergence to steady-state curving behaviour of the leading and trailing wheelsets of a bogie 

 

The lateral displacements and yaw angles of the two wheelsets are shown in Figure 2.11. 

The leading wheelset moves outward into flange contact and has a yaw angle of -14 mrad, 

while the trailing wheelset moves inward in the curve without flange contact and has 

almost zero yaw angle. The behaviour of the bogie frame (not shown) is almost the average 

of that of the two wheelsets. The steady-state results are reached after about 0.5 seconds. 
 

Figure 2.12 shows the steady-state creepages at each contact. In Figure 2.12(a), as in the 

discussion of curving behaviour of the bogie (given in [69]), the left and right longitudinal 

creepages of the leading wheelset are opposite to the corresponding ones in the trailing 

wheelset. Thus, two frictional torques with opposite directions are in balance within the 

bogie. In Figure 2.12(b), the negative yaw angle of the leading wheelset produces negative 

lateral creepages at both left and right wheel/rail contacts. As the leading left (outer) wheel 

is in flange contact with a large contact angle, the lateral creepage at the leading left 
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contact is greater than that at the leading right contact. Due to the zero yaw angle of the 

trailing wheelset there is no lateral creepage (Lateral creepage of trailing left and right 

wheels are identical). As shown in Figure 2.12(c), significant spin can be found in the 

leading outer (left) wheel/rail contact. 

 

 
Figure 2.12 Convergence to steady-state creepages at wheel-rail contacts of a bogie vehicle 

 

The normal load is obtained through an iteration process starting from the nominal normal 

load value, as shown in Figure 2.13. The nominal normal force in the current case is 39.2 

kN which is the one-eighth of the weight of the whole vehicle. Usually, the greater the 

contact angle, the larger the normal force, i.e. there is a large normal force at the leading 

outer contact due to flange contact. Additionally, the flange contact at the leading outer 

wheel can induce a roll angle of the leading wheelset, and consequently the bogie. The 

contact angle is not considered in the wheel-rail interaction model. 
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Figure 2.13 Convergence to steady-state normal loads of the wheels of a bogie vehicle 

 

The steady-state curving simulation given above considers the vehicle running on a curved 

track without any external forces or moments. In practice, traction or braking forces are 

often applied to the wheelset. It is known that the traction or braking forces can also 

exacerbate the rail corrugation. So, the modification described in Section 2.4 has been 

applied in the steady-state curving model.  
 

  
Figure 2.14 Convergence to steady-state creepages of the wheels of a bogie vehicle at wheel-rail contacts 

with applied traction 
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Figure 2.15 Convergence to steady-state longitudinal creep force of the wheels of a bogie vehicle with 

applied traction 

 

Normally, the traction would be applied to both wheelsets of a bogie. For demonstration, 

however, the traction is assumed here to be applied only to the leading wheelset of the 

leading bogie. The traction will directly increase the longitudinal creepage and creep force. 

Since equilibrium within the bogie needs to be achieved, when an external traction force 

applied, the wheelsets will generate higher longitudinal creep forces. An example is shown 

in Figure 2.14-2.15 in which a 2 kN traction force is applied (for simplicity the vehicle is 

assumed not to accelerate). Other parameters used in the simulation are the same as 

previously. 

 

The leading wheelset which has the applied traction shows obvious differences. The 

longitudinal creepage and creep force of the left and right wheel of the leading wheelset 

are no longer opposite to each other. The value of the longitudinal creepage is shifted to a 

larger negative value, which makes the longitudinal creep force increase in the direction 

opposite to the running direction. For the trailing wheelset, for which no traction was 

applied, the longitudinal creepage and creep force of the left and right wheel are also 

affected in order to achieve the balance within the bogie. The falling of the friction forces 

at large sliding velocities does not play a significant role in the vehicle dynamics [78] 

2.6 Summary 

This chapter gives a general introduction to the steady-state curving model developed by 

Huang [69], including the wheel-rail interaction and vehicle dynamics. The curving 

behaviour of a free wheelset and bogie are also briefly introduced. To give better 
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understanding of the steady-state curving model, the definitions of creepage and rolling 

friction are also introduced. The difference between static and dynamic friction is 

explained and will be used in Chapter 5 to explain stick-slip phenomena. In the steady-

state curving model, the vehicle dynamics are more important than the track system 

dynamics. Thus, the results, i.e., contact position, creepages, spin and normal loads, are 

mainly dependent on the vehicle dynamics. Some modifications are also applied to the 

steady-state curving model developed by Huang [69] in this work. As the model will be 

applied in a tightly curved track, a velocity-dependent friction coefficient and reduction 

factor are applied in the calculation of the creep force. The effect of traction forces applied 

to the wheelset is also considered in the current work since the traction is also believed to 

be an important factor in the initiation of rail corrugation. 
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3 Track model 

3.1 Introduction 

A mathematical representation of the track dynamic behaviour is required in modelling the 

high frequency dynamic interaction between the vehicle and the track. Much work has 

been done in this area and many track system models have been established in both 

frequency and time domains. The complexity of these track system models has a wide 

range, starting from simple beams on a continuous elastic support to complex multiple 

degree-of-freedom models with discrete supports beneath each rail including variable 

constraints and additional components applied to the rail. 

 

A combination of two previously-established modelling approaches in the frequency 

domain [84,85] is firstly used as the basis for the work in the current research. Kostovasilis 

[84] represented the rail as an infinite Timoshenko beam including bending, torsion (with 

warping) and extension. The modelling of the rail dynamic behaviour considered 7 degrees 

of freedom (3 displacements, 3 rotations and 1 for the warping). The sleeper was similarly 

represented as a finite Timoshenko beam, including bending, torsion and extension, 

considering 6 degrees of freedom. It is supported on a continuous foundation representing 

the ballast. The rail was supported by an equivalent continuous support consisting of the 

sleepers, ballast and rail pads. In the present model, the rail is instead attached to discrete 

sleepers. The coupling between the rail and the sleepers through the rail pads is based on 

the method of Zhang et al. [85]. Then the frequency response functions of this analytical 

track model are transformed from the frequency domain to the time domain by applying a 

Fourier transform. These time-domain impulse responses are sampled appropriately to 

obtain moving Green’s functions using the method of [86]. The time-domain moving 

Green’s functions are used throughout the thesis to determine the dynamic displacement of 

the rail, required as the input to calculate the dynamic normal interaction force in the 

contact model. 

 

In this chapter, the development process of the track model is presented in detail. For each 

part of the model, numerical examples are presented. To validate the current model, results 

are compared with published results. 

3.2 Review of track models 

A typical ballasted track consists of rails, rail pads, sleepers and ballast. A suitable model 
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for this kind of railway track should consider the discrete nature of the support as well as 

the coupling between the vertical and lateral directions. Many authors have used analytical 

beam models to study the vertical dynamics of the rail and have commonly assumed an 

equivalent continuous support, e.g. [87,88]. They mainly focused on the vertical vibration 

but paid less attention to the lateral vibration or the coupling between the vertical and 

lateral directions [89]. Thompson et al. [90,91] used a Timoshenko beam on a two-layer 

foundation to model both the vertical and lateral track dynamics and estimated the cross 

receptance between vertical and lateral directions from the geometrical average of the 

vertical and lateral receptances, using an empirical scaling factor. 

 

The effect of the discrete nature of the support is most evident around the ‘pinned-pinned’ 

frequency, at which the sleeper spacing corresponds to half a bending wavelength in the 

rail. Grassie et al. [92] proposed a discretely supported track model, in which the sleepers 

were represented by lumped masses and the rail pads and ballast by damped springs. 

Compared with the continuously supported track model, a resonance peak was found at 

the pinned-pinned frequency for excitation between sleepers and a corresponding dip for 

excitation above the sleepers. Heckl [93] introduced a discretely supported track model in 

which an infinite Timoshenko beam was used to represent the vertical vibration of the rail, 

while a finite number of discrete supports were considered, which were replaced by point 

reaction forces acting on the infinite rail. Heckl [94] later developed a model of a 

Timoshenko beam, including torsional and extensional waves, with an infinite number of 

periodically spaced supports, and studied coupled waves in all three directions. Wu and 

Thompson [95,96] developed continuously supported multiple beam models to explore 

the vertical and lateral response including an approximation for cross-sectional 

deformation. However, the effect of vertical/lateral coupling was not considered.  

 

At higher frequencies cross-sectional deformation of the rail becomes important [97]. 

Numerical methods can be used to include the effects of cross-sectional deformation in 

the track response. Thompson [97] modelled a short slice of rail on a continuous support 

using finite elements and used periodic structure theory to obtain the dispersion 

relationship and receptances. Knothe et al. [98] used the finite strip method, in which only 

the cross-section of the rail is discretised, to study the free wave propagation in a rail. 

Similarly, Ryue et al. [99] determined the waves propagating in a continuously supported 

rail up to 80 kHz using the waveguide FE method (also known as the 2.5D FE method). 

Nilsson et al. [100] used the waveguide FE and boundary element methods to calculate 

the vibration and sound radiation of an infinite continuously supported rail. A similar 
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approach has been used for a continuously supported rail with multiple layer support 

[101]. 

 

Numerical methods also have disadvantages, however, particularly the more extensive 

computational capacity and increased calculation time required compared with analytical 

or semi-analytical models. The rail is effectively infinite in length but a finite element 

model necessarily has to be truncated, leading to reflections from the ends, although this 

can be avoided with 2.5D models. Besides that, analytical models have their own 

advantages of offering increased physical insight.  

 

Bhaskar et al. [102] introduced an analytical model that accounted for the lateral and 

torsional motion of the rail up to around 2 kHz. The rail head was represented as a beam 

which was allowed to bend in three directions and rotate around the axial direction. The 

rail web and foot were represented by three plates, one for the web and one for the foot on 

each side of the web. The rail responses were obtained by Fourier integrals. Betgen et al. 

[103] showed, in comparison with measurements and a detailed finite element (FE) 

model, that the analytical beam models of [92] were unable to capture some key 

characteristics of the response, particularly the vertical-lateral cross mobility and track 

decay rates. The lateral position of the vertical excitation force was shown to have a great 

influence on the cross mobility. To overcome the disadvantages of numerical models, 

Kostovasilis et al. [84] introduced a semi-analytical rail model which accounts for vertical 

and lateral bending, extension and torsion. Although cross-section deformation was not 

considered, the inclusion of torsion and corrections for shear deformation, shear centre 

eccentricity and warping improved the lateral response of the track. In comparison with 

measurements and the results from a waveguide FE model, good agreement was found for 

the vertical and lateral mobilities for frequencies up to 3 kHz and for the decay rates up to 

2 kHz. There was also generally good agreement for the vertical-lateral cross mobility. 

 

In the track models discussed above, the sleeper was either neglected or was modelled as 

a rigid mass. This simplification ignores the bending modes that monobloc sleepers 

exhibit in the frequency range above 100 Hz. Grassie and Cox [104] modelled the sleepers 

as finite uniform Timoshenko beams supported by an elastic layer, while Nielsen and 

Igeland [105] used beam finite elements to account also for the variable cross-section. 

Grassie [106] proposed a simple uniform Timoshenko beam model for a freely suspended 

sleeper and a similar model was subsequently used in the TWINS model [91], but 

including an elastic layer beneath the sleeper to represent the ballast. Usually, the rail pads 
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are presented by a model with a single spring-damper or a spring using a loss factor 

damping. The effects of using loss factor on causality have been verified. Ferrara et al. 

considered the rail pads as a series of massless spring-damper finite elements placed 

across the width of the sleepers and along the rail [107]. Zhang et al. [85] established a 

rail model by applying the 2.5D finite element method and predicted the overall track 

system responses and decay rates by using a receptance-coupling approach similar to [93]. 

The effects of different sleeper models and the number of springs used to represent the rail 

pad on the responses of the track system were also studied. 

 

In the present work, a semi-analytical model of a discretely supported track is introduced 

with the aim of better predicting the track dynamics without resorting to fully numerical 

models. The model includes both rails and considers the vertical/lateral coupling as well 

as the axial dynamics. Infinitely long rails are modelled using the semi-analytical 

approach of Kostovasilis et al. [84]. The rails are connected to a finite number of sleepers 

through damped springs. The sleepers are represented by flexible beams, supported on a 

viscoelastic layer representing the ballast. A receptance coupling method [85, 93] is used 

to couple the rails to the sleepers. The point mobilities and track decay rates are obtained 

using this model and compared with results from measurements. The effect of the 

inclusion of torsion and warping on the lateral track response is also investigated. Finally, 

the response of one rail to excitation on the other is presented. 

3.3 Frequency domain model 

For mainline tracks the rail cross-section, for example 60E1 rail, is symmetric about the 

vertical mid-plane but is asymmetric about the horizontal mid-plane. This results in the 

shear centre, through which the shear forces are considered to act, not being coincident 

with the centroid through which the inertial forces are considered to act, as shown in 

Figure 3.1. This introduces a coupling between the lateral bending and torsion.  

 

 
Figure 3.1 The coordinate system, shear centre S and centroid C of the rail cross-section 
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Various methods are available to model the vibration of a track with discrete supports, Figure 

3.2(a). The approach applied here is based on the advanced beam model of Kostovasilis et 

al. described in Appendix B, which includes bending, torsion, warping and extension [84]. 

This beam model is implemented in the discrete support framework proposed by Heckl [93]. 

This latter approach replaces the discrete rail supports by a set of point forces acting on an 

infinite free rail. To implement this method, the point and transfer receptances of the free rail 

are required, as well as the receptances of the sleepers and rail pads. In the current model, 

two rails are coupled to flexible sleepers, as shown in Figure 3.2(b). 

 

 

 

(a) (b) 

Figure 3.2 (a) Side view of track model, where Ls is the sleeper spacing; Fi is the force transmitted at the ith 
discrete support; (b) front view of track model, showing two rails connected to the sleeper 

3.3.1 Rail model 

The semi-analytical rail model developed by Kostovasilis [84] is used, which considered 

various sources of vertical-lateral coupling. Cross-section deformation is not taken into 

account but instead the rail is treated as a simple beam cross-section, accounting for 

vertical and lateral bending, extension and torsion. This is sufficient for the frequency 

range of interest up to 3000 Hz. Corrections for shear deformation, shear centre 

eccentricity and warping are included. 

 

By extending the classical Timoshenko beam model and taking the sum of the stress 

resultants including forces and moments acting on the centroid of an infinitesimal element 

in all three directions, as well as the bi-moment in the axial direction due to warping, seven 

equations of motion for the fully coupled rail are obtained in matrix form [84]: 

        K0U+K1
∂U
∂x

+K2
∂2U
∂x2 +M ∂2U

∂t2
=F                   (3.1) 

where U(x,t) is a vector of the seven components (i.e. 3 displacements, 3 rotations and 1 

warping) of vibration at the centroid. The matrices K0, K1, K2, M for the fully coupled 

model are given by 
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            K0=

⎣
⎢
⎢
⎢
⎢
⎢
⎡0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦

0
0
0
0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦
𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧

0
0
0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦
𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧
𝐺𝐺𝐽𝐽𝑡𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

            (3.2)                             

K1=

⎣
⎢
⎢
⎢
⎢
⎢
⎡0
0
0
0
0
0
0

0
0
0
0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦
𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧

0
0
0
0

−𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧
0

−𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦

0
0
0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦
𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧
𝐺𝐺𝐽𝐽𝑡𝑡

0
0

𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧
−𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦

0
0
0

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧

0
0
0

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧
𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦
−𝐺𝐺𝐽𝐽𝑡𝑡

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (3.3) 

                 

K2=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝐸𝐸𝐺𝐺

0
0
0
0
0
0

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧

0
0
0

0
0

−𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧
𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦

0
0
0

0
−𝐺𝐺𝐺𝐺𝜅𝜅𝑦𝑦𝑒𝑒𝑧𝑧
𝐺𝐺𝐺𝐺𝜅𝜅𝑧𝑧𝑒𝑒𝑦𝑦

−𝐺𝐺(𝐽𝐽𝑡𝑡 + 𝐽𝐽)
0
0
0

0
0
0
0

−𝐸𝐸𝐼𝐼𝑦𝑦
𝐸𝐸𝐼𝐼𝑦𝑦𝑧𝑧
𝐸𝐸𝐼𝐼𝑤𝑤𝑦𝑦

0
0
0
0

𝐸𝐸𝐼𝐼𝑦𝑦𝑧𝑧
−𝐸𝐸𝐼𝐼𝑧𝑧
−𝐸𝐸𝐼𝐼𝑤𝑤𝑧𝑧

0
0
0
0

𝐸𝐸𝐼𝐼𝑤𝑤𝑦𝑦
−𝐸𝐸𝐼𝐼𝑤𝑤𝑧𝑧
−𝐸𝐸𝐼𝐼𝑤𝑤 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

    (3.4) 

        M=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜌𝜌𝐺𝐺

0
0
0
0
0
0

0
𝜌𝜌𝐺𝐺
0
0
0
0
0

0
0
𝜌𝜌𝐺𝐺
0
0
0
0

0
0
0
𝜌𝜌𝐼𝐼𝑝𝑝
0
0
0

0
0
0
0

𝜌𝜌(𝐼𝐼𝑦𝑦 + 𝐼𝐼𝑤𝑤𝑦𝑦)
0

−𝜌𝜌𝐼𝐼𝑤𝑤𝑦𝑦

0
0
0
0
0

𝜌𝜌(𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑤𝑤𝑧𝑧)
𝜌𝜌𝐼𝐼𝑤𝑤𝑧𝑧

0
0
0
0

−𝜌𝜌𝐼𝐼𝑤𝑤𝑦𝑦
𝜌𝜌𝐼𝐼𝑤𝑤𝑧𝑧
𝜌𝜌𝐼𝐼𝑤𝑤 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

      (3.5) 

where K0 is the classical stiffness matrix, K1 and K2 contain stiffness terms related to the 

first and second derivatives in the x direction and M is the inertial matrix. 

   

In the matrices presented in Equation (3.2)-(3.5), E is the Young’s modulus, G is the shear 

modulus, A is the cross-section area, ρ is the density, κy and κz are the lateral and vertical 

shear coefficients, ey and ez are the lateral and vertical shear centre eccentricity, J is the 

torsional constant, Iy and Iz are the second moments of area about the y-axis and z-axis, Iyz 

is the product moment of area, Ip is the polar moment of area, Iw is the warping constant, 

Iwy, Iwz are warping product moments of area, and Jt is the second torsional constant, 

representing the effective shear due to restrained warping shear stresses including the 

effects of eccentricity in the y and z axes, which is calculated by  

                            Jt=Jrs+Aκzey
2+Aκyez

2                  (3.6) 

 

The effective shear area is given by Equation (B.23). Since the value of the correction 

factor will not affect the response of the beam significantly, the κs =1 is used here. 
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The responses are assumed to be harmonic both in space and time with circular frequency 

ω and complex wavenumber ξ as  

                                U=U�eiωte-iξx                       (3.7) 

in which U�=[U�x,U�y,U�z,θ�x,θ�y,θ�z,U�w]T is a vector of complex amplitudes, consisting of 

seven components of vibration (three displacements, three rotations and warping) at the 

centroid. F is the corresponding vector of the external forces and moments, which is 

assumed to act at 𝑥𝑥 = 0, and is given as 𝐅𝐅 = F�ei𝜔𝜔𝑡𝑡𝛿𝛿(𝑥𝑥) with F� the vector of the 

corresponding amplitudes in the wavenumber domain. 

   

By substituting above expressions for U(x,t) and F, the equation of motion is obtained in 

the wavenumber domain as 

    ((K0-ω2M)-iξK1-ξ2K2)U�=F�                  (3.8) 

which can be written as A(ξ,ω)U�=F�. 

 

To solve Equation (3.8), the case of free vibration, 𝐅𝐅� = 𝟎𝟎, is first considered. This can be 

viewed as a linear eigenvalue problem in squared frequency ω2 for a given wavenumber ξ, 

or equivalently as a quadratic eigenvalue problem in squared wavenumber ξ2 for a given 

frequency ω. Equation (3.8) is rewritten as: 

                           A1v+iξA2v=0                        (3.9) 

where v=[𝐔𝐔�,iξ𝐔𝐔�]T, 

                          A1= �K0-ω2M −K1
07×7 I7×7

�                   (3.10) 

and  

A2= � 07×7 K2
−I7×7 07×7

�                    (3.11) 

Equation (3.9) can be solved to give complex wavenumbers 𝜉𝜉𝑛𝑛, which occur in pairs (±𝜉𝜉𝑛𝑛), 

and the corresponding (1×7) left eigenvectors U𝑛𝑛𝐿𝐿, and (7×1) right eigenvectors, U𝑛𝑛𝑅𝑅, for 

each frequency. To obtain the response in the spatial domain, the inverse Fourier transform 

is used: 

   U(x)= 1
2π∫ U�e-iξxdξ∞

-∞                      (3.12) 

 

This integration is performed analytically using the contour integration method from the 

theory of complex variables. For x ≥ 0, the solution to the integral is given by the sum of 

the residues of the poles lying in the lower half plane, Im(ξn) < 0. The poles are the 

eigenvalues determined from equation (3.9). The solution in the spatial domain is given for 
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x ≥ 0 as [90] 

  U=-i∑ UnLF�

UnLA'(ξn)UnR
UnRe-iξnxN

n=1                 (3.13) 

where the dash means the derivative with respect to ξ and ξn are the N eigenvalues on the 

lower half-plane with ( )Im 0nξ < . From Equation (3.8) the derivative can be written as 

A'(ξn)=-2ξnK2-iK1. x is the longitudinal distance between excitation and response points. 

 

Finally, if the force vector in Equation (3.13) is set to unity in one direction and zero in the 

others, the mobility can be calculated from the response as V= ∂U
∂t

=iωU. 

 

To validate the implementation of the model, the forced response is firstly considered in 

terms of the point mobility in both vertical and lateral directions and compared with 

Kostovasilis’s results. The rail section parameters used are listed in Table 3.1. As 

Kostovasilis’s results included the support from rail pads, the above equations are extended 

to include an additional stiffness matrix Kp to represent the effect of the rail pads. The 

support stiffness matrix Kp includes the effect of the vertical and lateral distance between 

the rail centroid and the centre of the top surface of the rail pads which is shown in Figure 

3.1 as zf and yf. The matrix can be given as: 

                           Kp=Tf
TKpfTf                       (3.14) 

where 

                        Kpf=diag�kx,ky,kz,kxr,kyr,kzr,kw�              (3.15) 

contains the stiffness in each direction, and Tf is a transformation matrix similar to 

Equation (B.26).  

 

The rail pad parameters used are listed in Table 3.2. Damping loss factors are introduced 

for the rail and rail pads, making the corresponding Young’s modulus, shear modulus and 

rail pad stiffness complex. The stiffness values in three directions given in Table 3.2 are for 

a single pad. For a continuously supported track, the equivalent stiffness per unit length is 

derived from the stiffness per pad divided by the sleeper spacing. For a discretely 

supported track, the stiffness of the pad can be used directly without finding the equivalent 

value.  

 

For simplicity the rotational stiffnesses are estimated from the translational stiffness per 

pad, assuming a homogeneous material for the pad [93], as 

                              kxr=kyr=
lp2

12
kz                      (3.16) 
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in which it is assumed that the pad is square with length lp. Similarly, the rotational 

stiffness about a vertical axis can be given by 

                              kzr=
lp2

12
kx + lp2

12
ky                     (3.17) 

 

The foundation resistance to warping is similarly defined as  

                             kw=(κwes)2 lp2

12
kx                      (3.18) 

where κw is a factor relating the axial deformation of the rail foot due to warping to the 

warping amplitude (assuming a linear profile) and es is the vertical distance between the 

rail foot and the rail shear centre (zf - ez) as shown in Figure 3.1. 

 

Table 3.1 Rail section parameters for 60E1 rail (inertial properties relative to centroid) [84] 

Parameter Value Units 

Young’s modulus E 210 GPa 

Shear modulus G 80.769 GPa 

Density ρ 7860 kg/m3 

Poisson’s ratio ν 0.3 - 

Cross-section area A 7.670×10-3 m2 

Second moment of area about z-axis Iz 512.7×10-8 m4 

Second moment of area about y-axis Iy 3037×10-8 m4 

Product moment of area Iyz 0 m4 

Polar moment of area Ip 3.550×10-5 m4 

Torsional constant J 2.212×10-6 m4 

Vertical shear coefficient κz 0.393 - 

Lateral shear coefficient κy 0.538 - 

Vertical shear centre eccentricity ez 0.033 m 

Lateral shear centre eccentricity ey 0 m 

Warping constant Iw 2.161×10-8 m6 

Warping product moment of area Iwz 1.6971×10-7 m5 

Warping product moment of area Iwy 0 m5 

Warping factor for rail foot kw -0.6016 - 

 

Table 3.2 Properties used for the rail pads [84] 

Parameter Value Units 

Rail pad axial stiffness kp
x 40 MN/m 

Rail pad vertical stiffness kp
z 120 MN/m 

Rail pad lateral stiffness kp
y 40 MN/m 

Pad damping loss factor 0.25 - 

Rail pad width (rail foot) lp 150 mm 

Foot to centroid distance zf 81 mm 
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Foot to centroid distance yf 0 mm 

Sleeper spacing lsp 0.65 m 

 

To validate the current rail model, numerical examples from [84] are considered. The 

parameters for the rail section and the rail pads are listed in Table 3.1 and 3.2. As 

Kostovasilis did in Ref. [84], the 60E1 rail is excited at various positions as shown in 

Figure 3.1. The calculation results are shown in the form of mobility, including three 

directions and the vertical-lateral cross mobility. 

 

The first case (Figure 3.3(a)) shows the vertical point mobility at the rail centreline on the 

railhead (Position 1). The peak which occurs at about 290 Hz in the mobility curve is at the 

cut-on frequency of the vertical bending wave. The result from the Timoshenko beam 

model has a good agreement with the current model. However, for vertical excitation at 

Position 2, which is 10 mm from the web centreline, as well as the peak at about 290 Hz, a 

small peak at 100 Hz is also seen in the current model.  

 

  
(a) (b) 

Figure 3.3 Point mobilities for 60E1 rail: (a) Vertical mobility; (b) Lateral mobility 

 

The second case (Figure 3.3(b)) shows the lateral point mobility at Position 1, i.e. at the top 

of the railhead, and at Position 2, a point whose distance from the rail centreline on the 

railhead is ∆y=36 mm, ∆z=20 mm. Two peaks can be identified at low frequencies in both 

curves, one at about 100 Hz corresponding to the cut-on frequency of the lateral bending 

wave and the other at about 300 Hz corresponding to the torsional wave. The phase is 

similar in each case, but the magnitude of the lateral mobility at the top of the railhead is 

higher than at the side of the railhead. 

 

Figure 3.4 shows the axial (longitudinal) mobility of the rail when excited at the centre of 
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the railhead (Position 1). A peak is seen at about 170 Hz, corresponding to the cut-on 

frequency of the first-order axial wave. A further peak occurs at about 5 kHz, 

corresponding to the cut-on of a higher order wave in the Timoshenko beam.  

 

The cross mobility is the response in one direction when excited at the same position in 

another direction. Figure 3.5 shows the lateral response at the side of the railhead due to a 

vertical force for an offset of 10 mm or 20 mm from centre of the railhead. The results for 

20 mm offset are a factor of 2 larger than the ones for 10 mm offset; for an offset of 0 the 

cross mobility is zero. For frequencies above 1 kHz, especially for an offset of 20 mm, 

cross-section deformation starts to become important and to influence the response of the 

rail [86]. Since the current model does not contain cross-section deformation, the results 

above 1 kHz will have some differences compared with practical results. 

 

 
Figure 3.4 Axial point mobility for track 

 
Figure 3.5 Vertical-lateral cross mobility for track excited in vertical direction 

 

The mobilities presented above are calculated using the same parameters as Kostovasilis 

including the rail pad as a continuous support. The results show good agreement with those 

from Kostovasilis [84]. The implementation of this beam model in a discretely supported 

track will now be described. 
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3.3.2 Rail pad model 

The rail pad connects the rail to the sleeper dynamically. Measurements have shown that the 

rail pad damping is well approximated by using a dynamic stiffness with a constant loss 

factor [97].  

 

Each rail pad is considered here as a single damped spring in each direction. The dynamic 

stiffness of the rail pads has six components. 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧  are used to represent the 

longitudinal, lateral and vertical stiffness as introduced in Equations (3.16-18).  

3.3.3 Flexible sleeper model 

The sleeper is represented as a finite uniform Timoshenko beam [106] with length L and is 

assumed to be supported on a continuous viscoelastic foundation which represents the 

ballast. The modelling approach for the sleeper is similar to that described by Thompson 

[97], in which the receptance is obtained from a wave approach. This model assumes a 

uniform cross-section of the sleeper along its length and was extended by Kostovasilis [84] 

to account for the sleeper flexibility not only in vertical bending, but also in the axial, 

lateral and torsional directions. This has been achieved in a similar manner to that for the 

rail modelling, i.e., considering models for the extension, torsion and bending in vertical 

and lateral directions but in this case with no coupling between them through the beam. As 

the sleeper cross-section is symmetric, the sleeper model can be seen as two separate 

models, one involving the axial sleeper response (lateral to the rail) and vertical sleeper 

bending, and the other involving the torsional response and lateral sleeper bending (axial to 

the rail). Note that the axial direction of the sleeper is coincident with the lateral direction 

of the rail, while the lateral direction of the sleeper is coincident with the axial direction of 

the rail. Thus, the receptance of the sleeper needs to be transformed to match the 

coordinate system of the rail when assembling the track model. 

 

In the sleeper model, there is coupling between vertical and axial responses and between 

lateral and torsional responses; this originates from the foundation eccentricity, in which 

the ballast is assumed to act at the bottom of the sleeper as a continuous damped elastic 

foundation. Finally, appropriate consideration of the boundary conditions is taken into 

account to accommodate the finite length of the sleeper. The detailed modelling process is 

presented in Appendix A.  

 

In order to validate the sleeper model, a pre-stressed type G44 concrete sleeper is 
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considered. Kostovasilis [84] conducted a series of mobility measurements using an impact 

hammer on such a sleeper. The design of the G44 sleeper is depicted in Figure 3.6. 

 

 
Figure 3.6 G44 sleeper design [84] 

 

The parameters used for the monobloc sleeper are listed in Table 3.3. All the geometric 

parameters are derived from the actual geometry of the sleeper. The only exception was the 

torsional constant which, due to the varying cross-section of the sleeper, was selected to 

provide a good fit with the measured data for the torsional resonances. In the model, the 

elastic layer below the sleeper is continuous, here with a constant stiffness value. This 

mainly affects the rigid body mode of the sleeper. The sleeper support stiffness was 

adjusted accordingly to provide a good fit to the first peak from the measured data. The 

fitting was performed accounting for the three displacement directions as well as the 

torsional responses. The parameters in Table 3.3 will also be used for the monobloc sleeper 

in subsequent chapters. 

 

In the measurements of Kostovasilis [84], the sleeper was supported on soft rubber mounts 

under each rail seat giving a bounce mode natural frequency of 20 Hz. An example of the 

mobility of the sleeper when it is excited vertically at one end is shown in Figure 3.7. 

Figure 3.7 shows the prediction obtained by the current model with the foundation stiffness 

assumed as 5 MN/m. The first peak at 20 Hz corresponds to the rigid body mode of the 

sleeper while the peaks at 100 Hz and above correspond to the vertical bending modes. 

Good agreement is found between it with the measured results obtained by Kostovasilis 

[84]. 
 

Table 3.3 Monobloc sleeper properties [84] 

Parameter Value Units 

Young’s modulus E 57.0 GPa 

Shear modulus G 23.8 GPa 

Density ρ 7860 kg/m3 
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Mass (full sleeper) m 303 kg 

Poisson’s ratio ν 0.2 - 

Length L 2.5 m 

Damping loss factor η 0.0083 - 

Second moment of area about z-axis Ip,z 1.27×10-4 m4 

Second moment of area about y-axis Ip,y 2.24×10-4 m4 

Polar moment of area Ip 3.51×10-4 m4 

Torsional constant J 2.70×10-4 m4 

Vertical shear coefficient κz 0.83 - 

Lateral shear coefficient κy 0.83 - 

Vertical shear centre eccentricity ez 0 m 

Height at centre hc 0.172 m 

Height at rail seat hs 0.197 m 

Breadth at centre (top) bc,t 0.210 m 

Breadth at centre (bottom) bc,b 0.282 m 

Breadth at rail seat (top) bs,t 0.203 m 

Breadth at rail seat (bottom) bs,b 0.283 m 

 

 
Figure 3.7 Point mobility of concrete monobloc sleeper for vertical excitation at the centreline of the sleeper 

upper surface 

 

A visco-elastic model is used for the ballast. Here the stiffness (per unit length of the 

sleeper) is chosen to be 50 MN/m2 and damping is 120 kNs/m2. As the stiffness and 

damping of ballast vary considerably from one position to another, they will be chosen in 

the following section according to the site measurements in [90].  

 

Using the sleeper properties listed in Table 3.3, the point mobility of the sleeper at the rail 

seat when located in ballast is presented in Figure 3.8. Compared with the result shown in 

[85] this has a good agreement. The ballast support causes the sleeper natural frequencies 
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to increase compared with the free sleeper (in Figure 3.7), and their damping is also much 

greater. 

 

 
Figure 3.8 Predicted vertical point mobility at the rail seat of the sleeper in ballast 

 

 
Figure 3.9 Source and receiver structures coupled at multiple connection points through massless resilient 

elements [85] 

3.3.4 Receptance-coupling 

There are various ways to model the vibration of a track with discrete supports. The 

approach adopted by Zhang et al. [85] is based on that proposed by Heckl [93]. The 

discrete rail supports are replaced by corresponding reaction forces, so that the rail is 

considered as an infinite structure with many point forces acting on it. This has not 

previously been combined with the rail model of Kostovasilis [84]. 

 

For a coupled system, consisting of a source structure and a receiver, connected by flexible 

isolators, the dynamic response can be determined in terms of the receptances of the 

various systems at the interface. This is illustrated in general terms in Figure 3.9.  
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In the present case, the source structure represents the rail, the receiver the sleepers and the 

isolators the rail pads. An external force Fe is applied on the rail at an arbitrary point O. 

Interactions occur between the source, the isolator and the receiver as shown in Figure 3.9. 

For simplicity this shows vertical interaction forces but at each connection point the forces 

can act in multiple directions. The isolators are assumed to be massless so that the same 

forces act on both the source and receiver structures but in opposite directions. 

   

Assuming harmonic motion at circular frequency ω, the displacement of a point i on the 

rail can be expressed as  

 ui
r=αie

r Fe-∑ αij
r Fjj                       (3.19) 

where αie
r  is the transfer receptance of the free rail, giving the response at the 

connection point i due to a unit force at the excitation point; αij
r  is the transfer 

receptance of the free rail, giving the response at the connection point i due to a unit 

force at the connection point j; Fj is the interaction force at point j, and Fe is the 

external force at the excitation point. 

   

The relative displacement of the springs connecting the rail and the sleepers is given by 

  ui
r-ui

s=∑ αij
pFjj                       (3.20) 

where s
iu  is the displacement of the sleepers at the point i; p

ijα  is the receptance of the 

spring connection giving the relative displacement at the point i due to the force acting at 

the attachment point j. In practice 0p
ijα =  for i j≠ . For the sleepers, the displacement at 

the connection points is given by 

  ui
s=∑ αij

s Fjj                         (3.21) 

 

For the connection points on different sleepers, which are assumed to be uncoupled from 

one another, αij
s  = 0, but multiple connection points on one sleeper are allowed in which 

case αij
s  would be non-zero. Considering all the connection points, the equations of motion 

can be written in matrix form for the three structures 

                            ur=αe
rFe − αrF                        (3.22) 

                             ur − us=αpF                         (3.23) 

                               us=αsF                           (3.24) 

where ur are the displacements on the rail foot at the positions of every rail pad, while us 

are the displacements on the top surface of the sleepers at the corresponding points. αr, αp 

and αs are matrices of the receptances at every connection point of the rail, rail pad and the 
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sleeper respectively due to the force at the rail pad positions. αe
r is the vector of 

receptances of the rail at the connection points due to the external force Fe. 

 

Adding Equations (3.23) and (3.24) gives  

                            ur=(αp + αs)F                        (3.25) 

Substituting Equation (3.25) into Equation (3.22) and rearranging, the rail displacement 

can be obtained as  

 ur=(I+αr(αp + αs)-1)-1αe
rFe                  (3.26) 

where I is the unit matrix. 

 

It should be noted that the cross receptance between the axial direction (also some 

rotations) and other directions at the connection positions at the left side of the excitation 

position should have opposite signs compared with the cross receptance at the connection 

positions at the right side of the excitation position. This is due to the wave propagation 

assumption.  

 

Equation (3.26) can be used to obtain the interaction forces F from Equation (3.25). The 

displacement at an arbitrary point k on the rail can finally be calculated as 

 uk
r=αke

r Fe − αk
rF                       (3.27) 

where αk
r is the vector of receptances giving the response at point k on the rail to a unit 

force at each spring location on the rail foot; αke
r  is the transfer receptance from the 

external force Fe to the response point k. Note that the sleeper spacing is not specified in 

the above formulation; this implies that the coupled track system could have discrete 

supports with arbitrary spacing.  

 

To apply this coupling method to a discretely supported railway track, the infinite rail is 

coupled to a finite number of sleepers as shown in Figure 3.5. The infinite free rail is 

modelled by using the rail model introduced in Section 3.4.1. It is connected through 

elastic supports for each rail pad to a flexible sleeper model including the ballast beneath it. 

For the coupling of the rail and the sleeper, the top surfaces of the monobloc sleepers are 

connected to the rail via springs attached to the bottom of the rail foot. Each rail pad is 

initially considered as a single damped spring in each direction. To ensure the waves 

generated are sufficiently attenuated at the ends of the finite supported region, 120 rail 

supports are used in the longitudinal direction to represent the infinite supported rail. 
 



 

60 
 

Table 3.4 Parameters used for the predictions 

Rail parameters Value Units 

Rail cross section 60E1 - 

Rail mass per unit length 60 kg/m 

Rail loss factor 0.02 - 

Rail pad parameters Value Units 

Pad vertical stiffness 300 MN/m 

Pad axial and lateral stiffness 40 MN/m 

Sleeper parameters Value Units 

Sleeper spacing 0.63 m 

Ballast parameters 

(per unit length along the sleeper) 

Value Units 

Ballast vertical stiffness 68 MN/m2 

Ballast axial and lateral stiffness 58 MN/m2 

Ballast vertical damping 82 kNs/m2 

Ballast axial and lateral damping 68 kNs/m2 

 

The receptance-coupling method is applied to obtain the response of the discretely 

supported railway track. At this stage only a single rail is included. The rail type is CEN 

60E1. Table 3.4 lists the parameters used for the rails and rail pads, which are mainly 

derived from [84], although the rail pad properties are adjusted to match the measurements 

described below. The frequency range used in the predictions is from 50 Hz to 6000 Hz, 

with a constant spacing of 1 Hz.  

 

For a vertical force, the excitation position is at the centre of the rail head (position 1 in 

Figure 3.1). Figure 3.10(a) compares the point mobilities of the track, for vertical 

excitation at mid-span between sleepers and directly above a sleeper. Pronounced 

differences can be seen between the results for the two excitation points, especially in the 

frequency range between 500 Hz and 2000 Hz. For the vertical mobility at mid-span, three 

obvious peaks can be identified. The first peak at 100 Hz corresponds to the resonance of 

the rail and sleeper mass on the vertical ballast stiffness, while the second peak at 470 Hz 

is the resonance of the rail mass on the vertical rail pad stiffness. There are also some 

oscillations due to the bending modes of the sleepers. The peak at 980 Hz is the vertical 

‘pinned-pinned’ frequency; a dip appears just above this frequency in the mobility above 

the sleeper.  

 

Corresponding measured results are shown in Figure 3.10(b). These were measured on a 

test track of length 32 m at Chilworth, Southampton, UK. The track consists of 60E1 rails 

and monobloc concrete sleepers. A PCB 086C03 hammer and an accelerometer with a 
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magnetic fixing attached to the rail were used in the measurement. The mobilities were 

obtained using an average of 5 impacts in each case. The coherence was always above 0.8 

above 50 Hz and close to 1 for most frequencies. The predictions show good agreement 

with the measured results below 4 kHz. Similar comparisons of vertical track dynamics 

were done between whole-track FE model and experiments by Oregui et al [111]. 

 

  
(a) (b) 

Figure 3.10 Vertical point mobility of the track. (a) Predicted; (b) measured 

 

For the lateral direction, the excitation position is at the side of the rail head (position 2 in 

Figure 3.1). The predicted lateral point mobility is shown in Figure 3.11(a) and the 

corresponding measured results in Figure 3.11(b). A distinct peak can be observed in the 

lateral mobility at 140 Hz, corresponding to the resonance of the rail and sleeper mass on 

the lateral ballast stiffness. The peak at 470 Hz at mid-span is the lateral ‘pinned-pinned’ 

resonance and that at 670 Hz is the torsional ‘pinned-pinned’ resonance. Dips are found at 

these two frequencies in the point mobility above the sleeper. The large oscillations in the 

measured results between 600 and 1500 Hz are due to the finite length of the test track, as 

there is a low decay rate in this frequency region. Apart from this, there is reasonably good 

agreement between measurements and predictions. 

 

  

    



 

62 
 

(a) (b) 

Figure 3.11 Lateral point mobility of the track. (a) Predicted; (b) measured 

 

  
(a) (b) 

Figure 3.12 Predicted mobility of the track excited at different positions. (a) Axial mobility; (b) vertical-
lateral cross mobility 

 

Figure 3.12(a) shows the predicted axial mobility at mid-span and above a sleeper for 

excitation at the centre of the rail head (position 1 in Figure 3.1). This rises to a peak at 200 

Hz, which is the cut-on frequency of longitudinal waves. Above this frequency it is 

approximately flat, apart from the influence of the sleeper modes, until rising to a sharp 

peak at 5 kHz, which is the cut-on of the higher order wave of the Timoshenko beam. 

 

Figure 3.12(b) shows the predicted cross mobility (lateral response due to a vertical force) 

at a position with an offset of 10 mm from position 1 and at a position with an offset of 20 

mm. For the offset of 10 mm, results are shown at mid-span and above a sleeper. The 

characteristics are very similar to the vertical and lateral point mobilities, with clear 

differences between mid-span and above a sleeper at the pinned-pinned resonances. For the 

larger offset, the magnitude of the cross mobility increases at all frequencies. 

3.3.5 Track decay rate 

The track decay rate is determined from the transfer mobilities at different positions along 

the rail [112]. The overall decay rate in each one-third octave band is evaluated from 

predicted transfer mobilities according to the standard measurement method as [113]: 

                     Δtot = 4.343

∑ |𝑌𝑌(𝑥𝑥𝑛𝑛)|2

|𝑌𝑌(𝑥𝑥0)|2
𝑥𝑥max
𝑥𝑥=0 𝛿𝛿𝑥𝑥𝑛𝑛

 (3.28) 

where 𝑌𝑌(𝑥𝑥𝑛𝑛) is the transfer mobility in one-third octave bands at a distance 𝑥𝑥𝑛𝑛 away 

from the excitation point, 𝑌𝑌(𝑥𝑥0) is the mobility at the excitation point and 𝛿𝛿𝑥𝑥𝑛𝑛 is the 

distance between the midpoints of each grid interval on either side of the location n.  
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The vertical decay rate is plotted in Figure 3.13(a), and the lateral one in Figure 3.13(b). 

These results are compared with measurements obtained on the same test track by 

Kostovasilis et al. [84]. 

 

  
(a) (b) 

Figure 3.13 Track decay rate compared with measured results from [84]. (a) Vertical direction; (b) lateral 
direction 

 

Although the track was the same as used for the measurements of point mobilities, the 

measured decay rates were obtained in warmer weather, which results in the rail pad being 

softer. Thus, the pad stiffnesses used in these predictions are adjusted to 120 MN/m for the 

vertical direction and 40 MN/m for the longitudinal and lateral directions, as given in [84]. 

At low frequencies, the vertical decay rate is high due to the blocking effect of the support 

stiffness. It drops at around the cut-on frequency of the rail vertical bending wave, which is 

around 300 Hz for these parameters. The lateral decay rate drops at a lower cut-on 

frequency. The agreement with measurements is very good up to 2 kHz, but at higher 

frequencies the measurements rise more rapidly due to cross-section deformation of the 

rail, which is not included in the model. 

3.3.6 Transfer mobility under excitation on the other rail 

In the above, following the method of Refs [85, 93], the infinite rail is coupled to a finite 

number of sleepers through the rail pads, see Figure 3.5(a). This approach is extended here 

to include both rails. The two rails are denoted left and right and it is assumed that the 

external force Fe is applied to the left rail. 

 

The vectors of displacement on the rail foot of the left and right rail at the connection 

points with the rail pads (three displacements and three rotations) are denoted u𝑟𝑟𝐿𝐿 and 
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u𝑟𝑟𝑅𝑅. The corresponding displacement vectors on the sleepers are denoted u𝑠𝑠𝐿𝐿 and u𝑠𝑠𝑅𝑅. If 

there are N sleepers, these vectors have dimension 6N×1. These are combined into 12N×1 

vectors u𝑟𝑟 = [u𝑟𝑟𝐿𝐿T  u𝑟𝑟𝑅𝑅T]T and u𝑠𝑠 = [u𝑠𝑠𝐿𝐿T  u𝑠𝑠𝑅𝑅T]T. F𝐿𝐿 and F𝑅𝑅 are the corresponding 

vectors of interaction forces at the left and right connection points, which are combined 

into a single force vector 𝐅𝐅 = �F𝐿𝐿
T  F𝑅𝑅

T�
T
. The sleepers are represented by 12N×12N 

matrices of receptances (displacement for a unit force) 

   𝛂𝛂𝑠𝑠 = � α𝐿𝐿
𝑠𝑠 α𝐿𝐿𝑅𝑅𝑠𝑠

α𝑅𝑅𝐿𝐿𝑠𝑠 α𝑅𝑅𝑠𝑠
� (3.29) 

in which α𝐿𝐿𝑠𝑠  is the matrix of receptances of the sleepers at the points connected to the left 

rail, which are given by  

                   𝛂𝛂𝐿𝐿𝑠𝑠 = �
⋱ 0

𝛂𝛂𝐿𝐿,𝑖𝑖
𝑠𝑠

0 ⋱
� (3.30) 

where 𝛂𝛂𝐿𝐿,𝑖𝑖
𝑠𝑠  is the 6×6 receptance matrix for a single sleeper. Similarly, α𝑅𝑅𝑠𝑠  are the 

matrices of receptances of the sleeper at the points connected to the right rail and α𝐿𝐿𝑅𝑅𝑠𝑠 , α𝑅𝑅𝐿𝐿𝑠𝑠  

contain the transfer receptances between the left and right connection points. 

 

Similarly, the connection points on the left rail are described by the matrix α𝐿𝐿𝑟𝑟 and those 

on the right rail by α𝑅𝑅𝑟𝑟 , giving a combined receptance matrix for both rails as: 

                      𝛂𝛂𝑟𝑟 = �α𝐿𝐿
𝑟𝑟 𝟎𝟎
𝟎𝟎 α𝑅𝑅𝑟𝑟

� (3.31) 

 

The rail pads are represented by a 12N×12N diagonal matrix of receptances 𝛂𝛂𝑝𝑝. 

 

Considering all the connection points on both rails, the equations of motion can be written 

in matrix form as: 

                     𝐮𝐮𝑟𝑟 = 𝛂𝛂𝑒𝑒𝑟𝑟𝐹𝐹𝑒𝑒 − 𝛂𝛂𝑟𝑟𝐅𝐅 (3.32) 

                       u𝑟𝑟 − u𝑠𝑠 = 𝛂𝛂𝑝𝑝𝐅𝐅 (3.33) 

                         u𝑠𝑠 = 𝛂𝛂𝑠𝑠𝐅𝐅 (3.34) 

where 𝛂𝛂𝑒𝑒𝑟𝑟 is the vector of transfer receptances of the rail from the external force 𝐹𝐹𝑒𝑒 at a 

position on the left rail head to the responses at the connection points (for positions on the 

right rail it contains zeros). Combining Eq. (3.33) and (3.34) gives  

                      𝐮𝐮𝑟𝑟 = (𝛂𝛂𝑝𝑝 + 𝛂𝛂𝑠𝑠)𝐅𝐅 (3.35) 

 

Substituting this into Eq. (3.32) and rearranging, the rail displacements at the connection 

points can be obtained as: 
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                 𝐮𝐮𝑟𝑟 = (𝐈𝐈 + 𝛂𝛂𝑟𝑟(𝛂𝛂𝑝𝑝 + 𝛂𝛂𝑠𝑠)−1)−1𝛂𝛂𝑒𝑒𝑟𝑟𝐹𝐹𝑒𝑒 (3.36) 

where I is the unit matrix.  

 

The rail displacements 𝐮𝐮𝑟𝑟 are used to obtain the interaction forces F by inverting Eq. 

(3.57). The displacement at an arbitrary point k on the left rail can finally be calculated as 

                   𝑢𝑢𝐿𝐿,𝑘𝑘
𝑟𝑟 = 𝛼𝛼𝐿𝐿,𝑘𝑘𝑒𝑒

𝑟𝑟 𝐹𝐹𝑒𝑒 − 𝛂𝛂𝐿𝐿,𝑘𝑘
𝑟𝑟 𝐅𝐅𝐿𝐿 (3.37) 

where 𝛂𝛂𝐿𝐿,𝑘𝑘
𝑟𝑟  is a vector of transfer receptances of the free rail, giving the response at the 

point k to a unit force at each rail pad location on the rail foot; 𝛼𝛼𝐿𝐿,𝑘𝑘𝑒𝑒
𝑟𝑟  is the transfer 

receptance of the free rail from the external force 𝐹𝐹𝑒𝑒 to the response point k. By applying 

a unit force on the rail head, in each direction in turn, the responses 𝑢𝑢𝐿𝐿,𝑘𝑘
𝑟𝑟  correspond to 

the receptances of the assembled track. They can be expressed as mobilities by using 𝑌𝑌 =

i𝜔𝜔𝑢𝑢𝑘𝑘𝑟𝑟 . Similarly, the responses at an arbitrary point k on the right rail to excitation on the 

left rail are given by 

                      𝑢𝑢𝑅𝑅,𝑘𝑘
𝑟𝑟 = −𝛂𝛂𝑅𝑅,𝑘𝑘

𝑟𝑟 𝐅𝐅𝑅𝑅 (3.38) 

 

The model is now used to predict the response of the right rail to a force on the left rail. 

The same parameters are used as shown in Table 3.4. For the vertical direction, the 

excitation is at position 1 on the left rail and the response is at position 1 on the right rail. 

For the lateral direction, the excitation is at position 2 on the left rail head and response is 

at position 2 on the right rail head. 

 

Figure 3.14 compares the transfer mobility with the point mobility for both vertical and 

lateral directions for excitation above a sleeper. The magnitudes of the point and transfer 

mobilities have a roughly constant difference at low frequency but the difference increases 

at high frequency. Nevertheless, there are some narrow frequency regions where the 

difference between point and transfer mobilities is rather small, for example around 400 Hz 

and 1 kHz for the vertical direction. 

 

In Figure 3.14 the predicted transfer mobility between the two rails is also compared with 

the corresponding measured results which were obtained on the test track. Good agreement 

can be seen between the measured and predicted mobilities. As the transfer mobility 

between the two rails is much lower than the point mobility, the coupling between the two 

rails is found to have little effect on the track mobilities on the excited rail or on the track 

decay rates. 
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(a) (b) 

Figure 3.14 Comparison of the predicted transfer mobility between two rails with the measurement and with 
the predicted point mobility, all results for excitation above a sleeper. (a) Vertical direction; (b) lateral 

direction. 

3.3.7 Effect of the torsion and warping on the track response 

The beam model used includes the effects of torsion and warping on the lateral responses 

[84]. To investigate their effects, results are obtained from the current model with and 

without the torsion and warping. The track parameters from Table 3.4 are used and the 

excitation and response points are the same as considered above. 

 

  
(a) (b) 

Figure 3.15 Lateral results with or without torsion and warping. (a) Lateral point mobility above a sleeper, (b) 
lateral track decay rate 

 

The vertical point mobility and decay rate are unaffected by the inclusion of torsion and 

warping, so are not shown here. Figure 3.15(a) shows the lateral point mobility above a 

sleeper and Figure 3.15(b) shows the corresponding track decay rate. The inclusion of 

torsion and warping both have significant effects on the lateral response over the whole 

frequency range. The inclusion of torsion lowers the cut-on frequency of the lateral wave 

from 200 Hz to 150 Hz, which can be seen in both the mobility and the decay rate. The 

inclusion of warping then leads to a further increase in the magnitude of the mobility. The 
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dip related to the lateral pinned-pinned resonance can be found even when only lateral 

bending is considered but the one related to the rotational pinned-pinned resonance is only 

found when warping is introduced. For groove rails in trams, the rail section is asymmetric 

which is different from the rail investigated here. The effect of torsion and warping would 

be more important to the track response of the groove rails in trams in the vertical and 

lateral directions. 

3.4 Time-domain model 

To predict corrugation growth with a time-domain approach, a track model is required in 

the time domain. Clark et al. [114] used a rail model with 20 sleeper bay length, 

represented by Euler beam elements with fixed boundary conditions at the ends. The track 

was assumed to be finite in length and a modal summation technique was used in this time-

domain model. Baeza et al. [115] proposed a modal substructuring approach, where the rail 

and sleeper are modelled by modal coordinates. Other components such as the rail pads 

and ballast are introduced by means of the forces in connecting elements. The drawback of 

this method is its high computational cost. 

 

In this thesis, Pieringer’s method [86], which is based on Heckl’s work [116], is used. In 

the frequency domain, the track system is presented by its receptances 

                              𝛼𝛼�R(f)= uR(f)
F(f)

                         (3.39) 

which indicate the displacement response, uR(f), to a harmonic excitation force, F(f) at 

frequency f. The tilde ~ above the parameter signifies non-moving functions, the 

superscript R signifies the rail. 

 

This method uses inverse fast Fourier transformation to transform the receptance of the 

discretely supported track system from the frequency domain into the time domain. The 

impulse-response functions obtained are the so-called Green’s functions:  

                           g�ij
R(t)=F-1 �𝛼𝛼�ij

R(f)�                      (3.40) 

where the subscript i,j = x,y,z. When i = j, it is the Green’s function of the point receptance. 

When i ≠ j, it is the Green’s function of the cross receptance. 

 

The non-moving Green’s functions, in which the excitation and response points are fixed, 

can be obtained directly from Equation (3.40) as a continuous function. However, for an 

excitation point that is moving along the rail, moving Green’s functions are required, for 

which the excitation (or response) points are moving at a particular speed. The moving 
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Green’s functions can be obtained from a discrete version of Equation (3.40) with values 

extracted at each time step corresponding to different positions. Depending on the track 

system, the moving and non-moving Green’s functions may have significant differences. 

The Green’s functions presented in this chapter are all obtained by transforming the point 

receptances in the vertical direction but the same approach can be used for other directions. 

3.4.1 Continuously supported track  

For a continuously supported track, the non-moving Green’s functions are independent of 

the excitation and response point positions, and depend only on the distance between them.  

 

The continuously supported track considered here uses the same rail as in the example 

presented in Section 3.3.1, while the supports under the rail are two-layer supports with 

parameters equivalent to the rail pad and sleeper examples presented in Section 3.3.2 and 

Section 3.3.3. Non-moving vertical Green’s functions of the continuously supported track 

are shown in Figure 3.16 for three different distances between the excitation and response 

points: 0 m, 0.325 m (half the sleeper spacing for discrete supports) and 0.65 m (the 

sleeper spacing for discrete supports). Figure 3.16 shows that the amplitude of the non-

moving Green’s functions is decreasing with increasing distance between the excitation 

and response points. This corresponding receptances are shown in Figure 3.17. Since a 

constant loss factor model has been used for the damping, the impulse responses will be 

non-causal – i.e. the impulse response has a nonzero value before t=0. This effect is small, 

and can be neglected when the impulse response value is set to 0 before t=0. 

 

 
Figure 3.16 Non-moving vertical Green’s functions for different distances between the excitation and 

response points 
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Figure 3.17 Vertical receptances for different distances between the excitation and response points 

 

The moving Green’s functions of the continuously supported track are constructed from a 

series of track transfer receptances, G� ij
R,∆xer(f). Here the superscripts specify the distance 

between the excitation point and the response point, Δxer. The Green’s functions, g�ij
R,∆xer(t) 

corresponding to these track receptances, are obtained by inverse Fourier transform 

                         g�ij
R,∆xer(t) = F-1 �𝛼𝛼�ij

R,∆xer(f)�                 (3.41) 

 

Exploiting the relation, Δx = vΔt, between the time increment, Δt, and the spatial 

increment, Δx, the discrete moving Green’s functions are constructed as [86]  

                          gij
R(t) = g�ij

R,[n-1]∆x([n-1]∆t)                 (3.42) 

Thus, at each time step, a different non-moving Green’s function is sampled. The moving 

Green’s function consists of the values of different non-moving Green’s functions at 

different time. The total number of samples NR is chosen such that the moving Green’s 

functions have decayed sufficiently at NRΔt. 

 

 
Figure 3.18 Moving Green’s functions of the continuous track system in the vertical direction for different 

moving speeds 
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Figure 3.18 shows the moving Green’s functions of the continuously supported track under 

different moving speeds. Under different moving speeds, the moving Green’s functions of 

the continuously supported track do not change much. 

3.4.2 Discretely supported track  

For a discretely supported track, the non-moving Green’s functions depend on both the 

excitation and response point positions, as well as the distance between them.  

 

For the discretely supported track model presented in Section 3.3.4, the magnitude of the 

vertical point receptances are shown in the Figure 3.19. In Figure 3.19(a), the excitation 

point is above the sleeper. The vertical point receptance is shown along with two examples 

of transfer receptances. In Figure 3.19(b), the excitation point is changed to the mid-span 

between the sleepers. The vertical point receptance is again shown along with two 

examples of transfer receptances. For excitation at mid-span between two sleepers, a sharp 

peak is observed at around 1000 Hz, which is the pinned-pinned resonance frequency. 

Correspondingly, the receptances for excitation over a sleeper show an anti-resonance in 

this frequency range, at a slightly higher frequency. Additionally, the point receptances for 

both excitation positions have an anti-resonance at about 2400 Hz, which is the second 

pinned-pinned frequency. 

 

  
(a) (b) 

Figure 3.19 Magnitude of the track point and transfer vertical receptances for excitation: (a) above a sleeper 
position; (b) at mid-span between two sleeper positions 

 

Examples of the non-moving Green’s functions are presented in Figure 3.20. The 

excitation and response points of the non-moving Green’s functions are at the same 

location. Two cases are considered, in which the excitation points are above the sleeper and 

at mid-span between sleepers. Results show large differences in amplitude and decay rate, 
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with a strong oscillation at around 1000 Hz at the mid-span position.  

 

 
Figure 3.20 The vertical non-moving Green’s functions of the discretely supported track system for different 

excitation points (response point coincides with the excitation point) 

 

Figure 3.21 compares the non-moving Green’s functions for the same response point but 

different excitation points, one of which is above the sleeper and the other is at mid-span 

between sleepers. In Figure 3.19(a) when the response point is above the sleeper, the non-

moving Green’s functions do not vary much in amplitude and decay rate for the different 

excitation points. But in Figure 3.19(b) when the response point is at the mid-span between 

sleepers, the non-moving Green’s functions show larger differences. 
 

  
(a) (b) 

Figure 3.21 The vertical non-moving Green’s functions of the discretely supported track, (a) response point is 
fixed above the sleeper; (b) response point is fixed at the mid-span between sleepers 

 

As in the previous section, the discrete version of the moving Green’s functions g�ij,V0

R,x0(t), 

denoted gij,V0

R,x0(n), is constructed from a series of the track system transfer receptances, 

𝛼𝛼�ij
R,x0,x0+χ(f). Here the superscripts specify the excitation point, x0, and the response point 

x0+χ. The Green’s functions, g�ij
R,x0,x0+χ(t) corresponding to these track receptances, are 
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obtained by inverse Fourier transform 

                      g�ij
R,x0,x0+χ(t) = F-1 �𝛼𝛼�ij

R,x0,x0+χ(f)�                (3.43) 

 

Exploiting the relation, Δx = V0Δt, between the time increment, Δt, and the spatial 

increment, Δx, the discrete moving Green’s functions are constructed as  

                     gij,V0

R,x0(n) = g�ij
R,x0,x0+[n-1]∆x([n-1]∆t)                (3.44) 

 

The total number of samples NR=325 is again chosen such that the moving Green’s 

functions of the rail have decayed sufficiently at NRΔt. 

 

Examples of the moving Green’s functions for two different excitation positions are 

presented in Figure 3.22. The moving speed is 20 m/s. The response points are moving 

away from the excitation point with each time step. The additional high-frequency 

oscillations for excitation at mid-span between sleepers in comparison with excitation 

above the sleeper are again related to the pinned-pinned resonance. Figure 3.23 shows the 

moving Green’s functions of the discretely supported track excited at the same position but 

with different moving speeds. The moving Green’s functions at the same excitation 

position with different moving speeds have little difference in the time domain when 

excited above the sleeper, as shown in Figure 3.23(a). In Figure 3.23(b), the moving 

Green’s functions have differences in the decaying part when excited at the mid-span 

between sleepers. When the distance passed is considered instead of the time, the resultant 

moving Green’s functions at the same excitation position with different moving speeds 

show obvious differences, as shown in Figure 3.24. 

 

 
Figure 3.22 The vertical moving Green’s functions of the track with different excitation points and moving 

velocity 20 m/s 
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(a) (b) 

Figure 3.23 The vertical moving Green’s functions of the track with different moving velocity and the same 
excitation point which is above the sleeper: (a) excited above the sleeper; (b) excited at the mid-span between 

sleepers 

 

 
Figure 3.24 The vertical moving Green’s functions of the track for excitation above the sleeper under 

different moving speeds plotted against distance 

 

Due to the periodicity of the track, for a particular moving speed v and a particular time 

interval Δt, the number of different moving Green’s functions required to represent the 

dynamics of the discretely supported track system is equal to Ls/Δx, where Δx is the 

distance passed in one time interval Δt, Δx= V0Δt. For example, with the parameters Ls = 

0.65 m and Δx = 1 mm, this leads to 650 moving Green’s functions that are required to 

represent fully the dynamics of the discretely supported track system.  

3.5 Summary 

For the purpose of calculating the interaction forces between the wheel and rail, a 

discretely supported track model is established. The rail model is developed in the 

frequency domain by using a semi-analytical method considering seven degrees of 

freedom, including three displacements, three rotations and warping. The rail pad is 

modelled using damped springs with a constant value of stiffness and damping loss factor. 
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The sleeper is modelled using a similar method to the rail with a continuous support layer. 

By applying the receptance-coupling method, the frequency domain response of the 

discretely supported track system is obtained. Each part of the model is validated with the 

examples from the literature. 

 

Based on this railway track model, the point and transfer responses in different directions 

on one rail can be accurately obtained, as well as the cross responses between different 

directions. The decay rates of the track in different directions are obtained based on the 

transfer mobility at different positions along the track. Besides these, the transfer responses 

between two coupled rails are also investigated based on the receptance coupling approach. 

Thus, the effect of this coupling between rails on the decay rate can also be investigated. 

Moreover, the inclusion of torsion and warping are found to have significant effects on the 

lateral track responses. 

 

By applying the inverse FFT, the frequency domain response of the discretely supported 

track is transformed into the time domain, allowing the moving Green’s functions to be 

obtained. The time-domain results of the continuously and discretely supported track are 

presented. With a specific value of the sleeper spacing and distance interval, the dynamic 

behaviour of the discretely supported track can be represented by a series of moving 

Green’s functions. These can be pre-calculated for use in the time-domain wheel-track 

interaction model, which is introduced in the next chapter.  
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4 Wheel/rail interaction model 

4.1 Introduction 

This chapter establishes the interaction model to calculate the normal interaction force 

between the wheel and rail. The tangential problem will be solved in the next chapter. To 

calculate the normal interaction force, the dynamic displacements of the wheel and rail 

need to be calculated. The penetration between the wheel and rail, which is the difference 

between wheel and rail vertical displacements, is used as input to the wheel-rail contact 

model that follows to find the normal interaction force. A representation of the vehicle 

dynamic properties and the coupling between the wheel and the rail are needed together 

with the track model. 

 

The semi-analytical model of the discretely supported track system has been described in 

Chapter 3. In this chapter, a finite element model of the wheelset is introduced. The 

coupling between the wheelset and the track system can take place through the nonlinear 

Hertzian contact spring between the wheel and the rail. Another way to calculate the 

interaction force between the wheel and rail is to apply the detailed wheel-rail contact 

model that follows. The Hertzian contact spring is used in this chapter for presenting the 

contact force results and the detailed contact model for following calculations is introduced 

in the next chapter.  

 

After the Hertzian contact spring is introduced, the interaction force between the wheel and 

rail can be obtained. The method using time-domain models to get the penetration between 

the wheel and rail and to apply the Hertzian spring to calculate the interaction force is 

based on Pieringer’s work [86]. Here, however, although the moving Green’s functions are 

used for the track system, the state-space method is used for the wheelset; this combination 

is believed to be innovative. 

4.2 Wheelset model 

The wheelset is a fundamental component of the train system. It consists of two wheels 

that are rigidly connected to a common axle, and is the part of the vehicle which is directly 

in contact with the track. The structural flexibility of the wheelset has a major influence on 

the high frequency vehicle-track interaction, such as the fluctuation of wheel-rail forces. A 

flexible but non-rotating wheelset model was presented by Gomez and Vadillo [23]. Fayos 

et al. [117] presented a method for obtaining the dynamic response of rotating flexible 
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solids. This model takes account of the inertial and moving load effects due to rotation. 

The technique was applied to the case of a railway wheel in [118]. In [38], the flexibility 

was taken into account, but only the wheelset axle was modelled as flexible and rotating 

whereas the wheels were represented as rigid bodies. 

 

The methods used to model the structural flexibility of wheelsets include continuous 

models [119,120], finite element models [121,122] and lumped models [123]. The 

continuous models use analytical approaches to obtain exact solutions for the structural 

flexibility. The lumped models use discrete masses and springs to represent the structural 

flexibility and the characteristics of the natural damping. The FE models consider different 

element types, such as beam elements for the axle, plate or shell elements for the wheel 

disc or three-dimensional solid elements. Axisymmetric models are particularly useful in 

which only the cross-section is meshed. The structural flexibility of wheelsets is usually 

considered in numerical simulations in terms of eigenmodes derived from the respective 

models. Considering the frequency range of interest and the number of modes of the 

wheelset in this range, a finite element model is used in this research. 

4.2.1 Finite element model 

In this thesis, a typical wheelset from a multiple unit train is studied. This wheel has a 

straight web and a diameter of 0.84 m. The finite element axi-symmetric model is 

produced by using the FE analysis software ANSYS. Modal analysis can provide modal 

parameters (natural frequencies and mode shapes) from which the mobility or receptance at 

the wheel-rail contact point can be obtained.  

 

Half of the axisymmetric cross-section of the wheelset established in ANSYS is shown in 

Figure 4.1, making use of symmetry at the centre of the axle. The rigid body modes of the 

wheelset with non-zero natural frequencies are included which are adjusted afterwards as 

well as the axle modes. To obtain modes that include motion of the axle, a complete model 

of the wheelset is required. To achieve this, symmetric and antisymmetric boundary 

conditions are invoked at the centre of the axle between the two wheels. The frame of 

reference is positioned with the origin of the lateral axis located at the nominal contact 

point and the origin of the vertical axis at the axle centre.  
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Figure 4.1 Half of the rotating cross-section of the wheelset in ANSYS 

 

From the modal analysis, several modes are obtained for each applicable number of nodal 

diameters in the mode shape. The mode shapes are mass-normalized. From the modal 

information of the wheelset a modal parameter file is created, as used for the input to the 

TWINS [91] software. The eigenfrequencies and corresponding eigenmodes from this 

finite element model are calculated in the range up to 5 kHz.  
 

Figure 4.2 Mode shapes of some identified modes 
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In addition to the number of nodal diameters, the mode types are identified by viewing the 

mode shapes in the solution in ANSYS. The eigenmodes of the wheelset are classified 

according to their predominant motion into axial, radial and circumferential modes, which 

have n nodal diameters and m nodal circles [97]. Within the frequency range of interest, the 

mode types are identified such as 0 nodal circle mode, 1 nodal circle mode, 2 nodal circle 

mode, radial mode and circumferential mode. Some examples of mode shapes are shown 

in Figure 4.2.  

 

The eigenmodes are assigned a modal damping ratio ζ using the approximate values 

proposed by Thompson [97]: 
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 ≥

                     (4.1) 

 

Considering the importance of the wheelset rigid body modes for the dynamics of the 

wheelset, their natural frequencies and damping ratios are adjusted to the expected values 

according to the primary suspension for the current wheelset; the adjusted frequencies are 

20 Hz, 30 Hz and 40 Hz, while the corresponding damping ratios are 0.01. Starting from 

the modal basis, the mobilities of the wheel at the pre-determined contact point on the 

wheel tread are calculated by modal superposition. According to the superposition 

principle of modal summation [125], the frequency response function between a force at 

location c and the velocity response at location d can be found as  

                          Ydc=∑
iωφdrφcr

mr�ωr
2-ω2+2iζrωωr�r                     (4.2) 

where φdr is the modeshape of mode r at location d, mr is the modal mass, ζr is the 

damping ratio, ωr is the angular natural frequency, ω is the frequency of the external 

force, and i is the imaginary unit given by i2 = -1. Regardless of the modal identification, 

radial and axial mobilities at the nominal contact point on the wheelset are calculated using 

the modal superposition method based on all modes obtained from the modal analysis in 

ANSYS. The point mobilities in the radial and axial directions are shown in Figure 4.3. 

The cross mobility, which refers to the coupling between radial and axial directions, is also 

presented. 

 

The corresponding mobilities at the nominal contact point for a single wheel are also given 

for comparison with the results for the full wheelset. In this case the axle is omitted, and 

the wheel is constrained at the inner edge of the hub. Although these results neglect the 

axle bending modes, the rigid body modes of the full wheelset have been included in the 
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modal summation. Comparing these results with the results for the wheelset, the peaks 

below 300 Hz are different from those for the wheelset because of the exclusion of the 

flexible axle. For frequencies above 300 Hz, the mobilities in both cases are similar 

because the wheel-dominated modes frequencies are dominant. Some peaks in the wheelset 

mobilities cannot be found in the wheel-only mobilities since these peaks correspond to the 

dynamic characteristics of the axle. Thus, in the frequency range of interest, the results 

from the full wheelset model contain more modal information than the wheel model and 

the response of the wheelset model will be more accurate. Around 30 modes are included 

in wheel model below 5 kHz while there are more than 40 modes in the wheelset model. 

 

  
(a)  (b)  

 
(c)  

Figure 4.3 Radial, axial and cross mobilities of wheelset: (a) radial mobilities; (b) axial mobilities; (c) cross 
mobilities 

4.2.2 State-space model 

For a nonlinear problem, the method of step-by-step integration in the time domain is 

appropriate. Although the wheelset model is linear, the contact model contains 

nonlinearities. Thus, besides the mobilities, a time-domain model of the wheelset is 

required. In this thesis, a state-space model derived from the modal analysis method is 

adopted. This model can retain recognizable modal information, which is of benefit to the 
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analysis. Impulse responses could also be used, as for the rail, but due to the light damping 

of the wheel modes, they would be impracticably long. 

 

Consider a wheelset with n modes, j input dynamic forces {fw}= �f1
w,f2

w,⋯,fj
w�

T
, and i output 

dynamic velocities{vw}=[v1
w,v2

w,⋯,vi
w]T. This can be represented by a state equation and an 

output equation: 

                          {ẇ}=[Aw]{w}+[Bw]{fw}                    (4.3) 

                              {vw}=[Cw]{w}                       (4.4) 

where the 2n-order state-variable vector consists of the modal velocity q̇r and the modal 

displacement qr of modes r (1 to n) 

                 {w} = �q̇1,q̇2,⋯q̇n,q1,q2,⋯,qn�
T
=[w1,w2,⋯w2n]T         (4.5) 

 

The system matrix [Aw] is given by 

        

   [Aw] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−2𝜁𝜁1𝜔𝜔1

0
⋮
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0
−2𝜁𝜁2𝜔𝜔2

⋯
0

⋯
⋯
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⋯
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0
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2

⋯
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⋯
⋯
⋱
⋯
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0
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⋯
⋯
⋱
⋯

0
0
0
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−
0
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⋮
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0
⋯
0

⋯
⋯
⋱
⋯

0
0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (4.6) 

where ζr is the damping ratio of mode r (1 to n) and ωr is the natural frequency (in rad/s) of 

mode r. The input matrix [Bw] can transform external forces into modal forces for each 

mode, while the output matrix [Cw] sums modal velocities of each mode into velocities in 

physical coordinates. Both matrices are formed with mode shapes of the wheelset: 

              [Bw] =

⎣
⎢
⎢
⎢
⎡
ϕ11
ϕ21
⋮

ϕj1

ϕ12
ϕ22⋯
ϕj2

⋯
⋯
⋱
⋯

ϕ1r
ϕ2r
⋮

ϕjr

0
0
⋮
0

0
0
⋯
0

⋯
⋯
⋱
⋯

0
0
⋮
0⎦
⎥
⎥
⎥
⎤
T

           (4.7) 

              [Cw] =

⎣
⎢
⎢
⎡
ϕ11
ϕ21
⋮

ϕi1

ϕ12
ϕ22⋯
ϕi2

⋯
⋯
⋱
⋯

ϕ1r
ϕ2r
⋮

ϕir

0
0
⋮
0

0
0
⋯
0

⋯
⋯
⋱
⋯

0
0
⋮
0⎦
⎥
⎥
⎤
            (4.8) 

where ϕir and ϕjr are the mass-normalised mode shapes of the mode r in the i and j 

directions. In a Cartesian coordinate system, there are up to three forces and three moments 

at a point and six corresponding motions. Hence, i and j = 1 to 6. 

 

For the wheelset considered in the previous section, the impulse response in the time 
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domain is obtained from the state-space matrix of the wheelset and is shown in Figure 4.4. 

The dominant frequency of the impulse response is around 5 Hz corresponding to the rigid 

body modes. 

 

 
Figure 4.4 Impulse response of the wheelset in the radial and axial directions 

4.3 Dynamic interaction model   

4.3.1 Wheel/rail displacements 

In the literature, many models of the interaction between the wheel and the rail have been 

developed and refined. The vertical interaction problem in particular has been studied in 

great detail, including the experimental validation of a two-dimensional time-domain 

model by Nielsen [126]. Andersson and Abrahamsson [127] carried out a three-

dimensional analysis using a more complex time-domain model. In addition, the impulse 

response function approach of Pieringer et al. [128] has the potential to make a significant 

reduction in calculation times compared with more established time-domain techniques. 

 

Based on the dynamic characteristics obtained from the wheelset (Section 4.2.2) and track 

models (Section 3.5) presented in previous sections, the wheel-rail contact forces can be 

expressed as a function of the wheelset and track displacements. The calculation of the 

displacements and contact forces is performed within the time stepping integration of the 
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equations of motion for the wheelset and the track. Using the time-domain models of the 

wheelset and the rail, the vectors of wheel and rail displacements at the contact points are 

computed including the initial irregularities of wheel and rail. 

 

In order to describe the variables in the contact zone, a moving reference frame (x', y', z') is 

introduced, shown in Figure 4.5, which moves with the nominal contact point along the 

rail. The nominal point is the point where the rigid profiles of wheel and rail would touch 

first, when contact is initiated. Its lateral position is assumed constant in the simulation. 

The x'-axis points in the rolling direction along the rail, the lateral direction is the y'-

direction pointing towards the field side of the wheel and the vertical z'-coordinate points 

downwards into the rail. Fz, Fy and Fx represent the vertical, lateral and longitudinal 

contact forces acting at the nominal contact point between the wheel and rail. 

 

 
Figure 4.5 Moving reference frame containing the wheel-rail interactions 

 

In the interaction model, for a wheel rolling velocity of V, the vertical displacement of the 

track at the nominal contact point, ξz
R(t), is calculated by a convolution of the vertical 

contact forces with the moving Green’s functions of the discretely supported track  

                        ξz
R(t)=∫ ∑ Fi(τ)giz,V

R,Vτ(t-τ)dτ3
i=1

t
0                  (4.9) 

where here 1= x, 2=y, 3=z. The discrete version of Equation (4.9) formulated at time step m 

reads 

              ξz
R(m)=∑ ∑ ∆tgiz,V

R,V[m-n]∆t(n)Fz(m-n+1)3
i=1

min(NR,m)
n=1           (4.10) 

where the moving Green’s functions of the discretely supported track giz,V
R,𝑥𝑥0(n) are 

presented in Section 2.4. 

 

The vertical displacement of the wheel at the nominal contact point, ξz
W(t), is calculated by 

the state-space matrix of the wheel and the fourth order Runge-Kutta integration algorithm 

between each time interval. Different from the track system, the axle load is applied to the 

wheel. Taking the effect of the axle load into account, the resultant force that leads to the 
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vertical displacement of the wheel is P-Fz, where P is the axle load applied to the wheel 

due to the vehicle weight. If the wheel displacement is given by a convolution, it can be 

written as  

                   ξz
W(t)=∫ ∑ �𝑃𝑃-Fi(τ)�giz

W(t-τ)dτz
i=x

t
0                  (4.11) 

where i= x,y,z. The discrete version of Equation (4.11) formulated at time step α reads 

                 ξz
W(α)=∑ ∑ ∆tgiz

𝑊𝑊(n)�𝑃𝑃-Fz(α-n+1)�z
i=x

min(NR,α)
n=1          (4.12) 

where the impulse response of the wheelset giz
W(n) is given in Section 4.2.2. However, this 

method described by Equation (4.11) and (4.12) is not used here. The wheel displacement 

is obtained as follows. 

 

In the time stepping procedure to calculate the wheel displacement, the rail displacement 

obtained by Equation (4.10), initial wheel displacement, the state-space matrix of the 

wheel and the equivalent contact spring stiffness are used as inputs to the fourth order 

Runge-Kutta integration algorithm. Meanwhile, a self-established function used inside the 

fourth order Runge-Kutta integration algorithm is then used to obtain the wheel/rail contact 

forces. Here ‘ode45’ solver is used for numerical convergence and the time step is constant 

throughout the calculation to obtain the correct rail displacement. 

 

Inside the self-established function, the output matrix [Cw] is adjusted to sum modal 

displacement of each mode into displacements in physical coordinates. 

              [Cw] =

⎣
⎢
⎢
⎡0
0
⋮
0

0
0
⋯
0

⋯
⋯
⋱
⋯

0
0
⋮
0

ϕ11
ϕ21
⋮

ϕi1

ϕ12
ϕ22⋯
ϕi2

⋯
⋯
⋱
⋯

ϕ1r
ϕ2r
⋮

ϕir ⎦
⎥
⎥
⎤
            (4.13) 

 

Then this physical wheel displacement is combined with rail displacement obtained in 

advance and the surface roughness to obtain the contact force as introduced in detail in the 

next section. The contact force is used in Equation (4.3) to obtain the 2n-order state-

variable vector {w} consisting of the modal velocity q̇r and the modal displacement qr of 

modes r (1 to n). Since the wheelset modal damping is low, when using the convolution foe 

the wheelset to get its impulse response, it takes more time than using the state-space 

method. For efficiency, the state-space method is used for the wheelset. 

4.3.2 Contact forces 

In most wheel-rail interaction models to calculate the contact forces, the effect of the 

discrete size of the contact patch is limited to filtering the roughness excitation of the 
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system. Hertz’s solution [129] is often used for the contact patch calculation. This solution 

is based on the linear elastic relation between the stress and small deformation of the 

contacting bodies.  

 

The Hertz theory is restricted to frictionless surfaces and is based on a half-space 

assumption (semi-infinite elastic body bounded by the contact surfaces) and the 

assumption that the surfaces can be approximated by a constant radius of curvature in 

orthogonal directions. According to this theory, the contact area is elliptical since the 

contact surfaces are continuous and non-conforming. Its shape and orientation are sensitive 

to the wheel/rail curvatures in the vicinity of the contact. The size of the contact area is 

determined by the normal load. The strains are assumed to be small, so linear elasticity 

theory is applicable; only normal stress is considered in the contact region.  

 

As the contact area increases with increasing normal load, the local elastic deformation at 

the wheel/rail contact has a non-linear relationship to the normal load. Hertz [129] first 

defined the load-deflection relation between contacting bodies described by their radii of 

curvature at the contact. The contact area is commonly replaced by a non-linear Hertzian 

spring acting at a single point. This is adequate for the determination of the overall normal 

force. By applying the Hertzian contact spring and the initial roughness of the wheel and 

rail, r, the normal wheel-rail contact force Fz can be calculated by 

                    
3/2

0
00

w Rw R
H

z w R

rC rF
r

ξ ξξ ξ
ξ ξ

   − − >− −  = 
− − ≤

          (4.14) 

where CH is the Hertzian constant which depends on the radii of curvature [129], in the 

study of this thesis, according to the radius curvature, the Hertzian constant value is 93.7 

GN/m3/2.  

 

These models which apply the Hertz theory for the normal problem are usually applied in 

the FASTSIM algorithm to solve the tangential problem. FASTSIM is developed based on 

the Hertz theory for the normal problem. For the simple cases studied in this chapter, the 

Hertz theory and FASTSIM algorithm are used which are sufficient. 

 

However, for curved track the contact conditions are not as ideal as assumed in the Hertz 

theory. Kalker’s variational method [14] considers the wheel/rail contact as a 3-D contact 

problem and can solve both the normal and tangential problems. It considers the 

displacements in the wheel/rail contact as a penetration in the normal direction and a 

sliding in the tangential direction. The stress distribution in the contact patch is predicted 
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and the sum of the stresses would be the resultant contact forces. This wheel-rail contact 

model for more realistic situations is described in detail in the next chapter and applied for 

the calculations of the rest of this thesis. 

 

Kalker’s variational method [14] can also be used to calculate the interaction contact forces 

between the wheel and the rail. Prior to the simulation, the wheel-rail contact geometry is 

processed starting from measured or theoretical wheel and rail profiles. The contact 

parameters required, such as contact position, normal load and steady-state creepages, to 

compute wheel-rail contact forces are obtained from the steady-state curving model, which 

was described in Chapter 2. An undeformed distance calculated from the transverse 

profiles, which is equal to zero for the geometric contact point and greater than zero for the 

other potential contact points, is also needed.  

 

The position of the contact point and the contact parameters at each time step of the 

numerical integration are computed considering the vibration of the wheelset and the track. 

Then an elastic penetration is computed by projecting the relative wheel-rail displacements 

in the contact point along the direction normal to the contact plane. Together with the 

roughness of the wheel and rail, the distance between the wheel and rail is modified. The 

points inside the potential contact area, for which the distance between wheel and rail is 

negative, form the actual contact area. Through the contact model which follows, the 

normal pressure of all the points inside the potential contact area can be obtained. By 

multiplying the normal pressure of each element in the contact area by the corresponding 

area of the element and summing the normal force of each element, the total normal and 

tangential contact forces between wheel and rail can be obtained. 

4.3.3 Contact filter 

In both kinds of interaction model (single-point contact model and distributed contact 

model), the surface roughness is assumed to excite the wheel/rail system at the contact 

point or inside the contact patch. This roughness may be present on the wheel or the rail 

with the same effect. A relative displacement between the wheel and rail is introduced. 

When the roughness is present on both surfaces, they can be safely assumed to be 

incoherent [92]. To obtain the response due to both the wheel and rail surfaces roughness, 

their spectra can be added in terms of mean-square values. 

 

In three-dimensional analysis, the contact between the wheel and rail exists over an area. In 

Hertz theory, this contact area is assumed to be elliptical with semi-axes a, and b, while in 
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practice the geometry of the contact area can be more complex. Roughness with 

wavelengths shorter than the contact length in the rolling direction, 2a, tends to be 

attenuated in its excitation of the wheel/rail system. This effect is known as the ‘contact 

filter effect’. Moreover, in the lateral direction, the roughness profile differs across the 

width of the contact area. Its effect will be averaged out to some extent. 

 

In the literature, there are two ways to introduce the contact filter. Remington [130] 

developed an analytical model for the contact filter. For a circular contact patch with radius 

a, the filter transfer function can be approximated in a simple way: 

                          |H(k)|2= �1+ π
4

(ka)3�
-1

                   (4.15) 

where k=2π/λ is the roughness wavenumber in the longitudinal direction, λ is the 

wavelength.  

 

A numerical method for the contact filter was developed in [130], in which the contact 

zone between the wheel and rail is approximated by a series of distributed point-reacting 

springs (DPRS). The stiffness behaviour of these springs is assumed to be nonlinear in 

which the force is assumed to be proportional to the square root of the local deflection. In 

this way, the correct overall relationship between force and deflection is given. To maintain 

the correct contact area, the radii of curvature of the wheel and rail also have to be 

modified. The DPRS model produced a blocked force induced by the roughness passed 

between the wheel and rail. To avoid the excessive forces or loss of contact due to large 

amplitudes at long wavelengths, a high pass filter was built into the model by representing 

the wheel as a mass supported on a damper [131]. 

 

The contact filter effect should be added to the roughness used in the point contact models. 

The distributed contact models, such as the variational method used in the wheel/rail 

contact model in this research, implicitly include a dynamic contact filter. Thus, in the 

following calculations using this model there is no need to add an external contact filter. 

4.3.4 Validation by simple cases 

Previous models have used either the Green’s functions [86] or the state-space method 

[116] to obtain the dynamic response of the track system and wheelset. The present 

approach involves the combination of these two approaches. This can keep the accuracy of 

the results, and also save computation time. The current model can be validated by 

comparison with these two established methods through some simple cases. Only the 

normal interaction problem is solved in the results presented here; the tangential problem 
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will be solved by the following wheel-rail contact model in Chapter 5. Thus, for the simple 

cases in this section, the Hertzian contact spring is used instead of Kalker’s variational 

method for solving the normal contact force problem. 

 

In the first case the wheelset is considered as a simple mass-spring-damper system. Since 

the damping of the wheelset is small compared with the track, it takes longer for the 

impulse response of the wheelset to decay to zero. This means the length of the Green’s 

function used for the wheelset would be longer. Here, the wheelset is considered as single-

degree-of-freedom system. Under this assumption, the full Green’s functions for both the 

wheelset and the track can be adopted without high demand of computation capacity. The 

mass of half the wheelset mw considered here is 550 kg, while the damping cw is 13.2 

kNs/m and the stiffness kw is 1.12 MN/m, chosen to give a natural frequency of about 7 Hz 

and a damping ratio of 0.012. 

 

For the simple mass-spring-damper system considered here, its receptance is given by: 

                            Gw= 1
-mwω2+kw+icwω

                      (4.16) 

where ω is the angular frequency and i is the imaginary unit given by i2 = -1.  

 

 
Figure 4.6 Impulse response of the mass-spring system 
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Figure 4.7 Roughness in the time domain used in simple cases of this section 

 
Figure 4.8 Predicted interaction contact force, WSS-RGF: combination of the Green’s function with the state-

space method; Green’s Function: the full Green’s function method 

 

The impulse response, or Green’s function, of the simple mass-spring-damper system 

obtained from the Fourier transform of Equation (4.16) is shown in Figure 4.6. In the 

following example simulations, the dynamic displacement of the mass-spring-damper 

system is calculated by a convolution of the normal contact forces with this impulse 

response. 

 

The dynamic behaviour of the discretely supported track system is the same as in Section 

3.4, using the moving Green’s functions. The roughness is assumed to be an instantaneous 

dip with amplitude of 0.02 mm over 5 mm as shown in Figure 4.7. This is input at 0.6 

second in the simulation in the Hertzian contact between the discretely supported track 

system and the single DOF system which represents the wheelset. The simulation under a 

speed of 20 m/s lasts for one second and the result is shown in Figure 4.8. 

 

In the Figure 4.8, the legend ‘WSS-RGF’ represents the state-space method for the 

wheelset and the moving Green’s functions for the track. ‘Full GF’ indicates that the 

Green’s functions are applied to both the wheelset and the track. Before the roughness dip, 
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the wheel/rail contact force reaches steady-state. After the impulse roughness input, the 

contact force hardly oscillates and quickly returns to the steady-state value. The results of 

the two methods to calculate the interaction forces show good agreement, with a root 

mean-square error of 3.3 N. 

 

In the second case, both systems are represented by a state-space formulation. The 

discretely supported track is too complex to be represented by a state-space matrix, so it is 

replaced by an equivalent two degree-of-freedom system. The rail and the sleeper are 

considered as masses while the rail pad and the ballast are considered as damped springs. 

Under this assumption, the full state-space method for both the wheelset and the track 

system can be adopted.  

 

For the simple 2 DOF mass-spring-damper system considered here, using the state-space 

method, the system matrix [Ar], input matrix [Br] and output matrix [Cr] are: 

                      

Ar=

⎣
⎢
⎢
⎢
⎢
⎡

0
0

0
0

1
0

0
1

- kp

mr
kp

ms

kp

mr
-(kp+kb)

ms

- cp

mr
cp

ms

cp

mr
-(cp+cb)

ms ⎦
⎥
⎥
⎥
⎥
⎤

Br=

⎣
⎢
⎢
⎡
0
0
1

mr

0 ⎦
⎥
⎥
⎤

Cr=[1 0 0 0]

               (4.16) 

where mr = 60×0.65 kg and ms = 300 kg are the masses, kp = 400 MN/m, cp = 400 kN/m are 

the stiffness and damping between two masses and kb = 104 MN/m, cb =215.8 kN/m are 

the stiffness and damping between the lower mass and the ground. These values are 

derived from Table 3.1 and 3.4 for a single sleeper bay. The impulse response of the 2-

DOF system which contains the main features of the impulse responses in Section 3.4, is 

shown in Figure 4.9. 
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Figure 4.9 Impulse response of the two degree-of-freedom mass-spring system representing the track 

 

 
Figure 4.10 Interaction contact force predicted in the combination of the Green’s function with the state-

space method and the full state-space method 

 

The system matrix of the 2-DOF system is combined with the system matrix of the 

wheelset. The system matrices are used in the fourth order Runge-Kutta integration 

algorithm to obtain the dynamic interaction force between these two systems. 

 

In this case, the dynamic behaviour of the wheelset corresponds to the full set of wheelset 

modes, obtained from the finite element model in Section 4.2.2. With an input roughness of 

an instantaneous dip with amplitude 0.02 mm at 0.6 second (as shown in Figure 4.8), the 

simulation lasts for 1 second and the result is shown in Figure 4.10. 

 

In Figure 4.10, the legend ‘WSS-RGF’ represents the state-space method for the wheelset 

and the moving Green’s functions for the track system as previously. ‘Full SS’ indicates 

that the state-space method is applied to both the wheelset and the track. After the dip 

roughness input, the interaction contact force hardly oscillates and quickly returns to the 

steady-state value. The results of the two methods used to calculate the interaction forces 

again show good agreement, with a root mean-square error of 3.27 N. 

      



 

91 
 

 

After the calculation of these two cases, the current method, using the combination of the 

state-space and moving Green’s function methods, can be considered to be verified. 

4.3.5 Comparison of Hertzian spring and variational contact model 

In this section a comparison is given between results obtained using the nonlinear Hertzian 

spring model and the full variational contact model. Only normal contact is considered. 

Two cases are considered: one with a continuously supported track and the other with a 

discretely supported one. 

4.3.5.1 SDOF wheel model and continuously supported track  

This case considers the wheel as a mass supported by a damped stiffness in contact with a 

continuously supported track. The train speed is 20 m/s. The steady-state curving 

parameters, i.e. normal wheel load, wheel-rail contact position based on the yaw angle and 

the lateral displacement of the wheelset, longitudinal creepage in the wheel-rail interaction, 

are obtained for a case in Section 2.3 and are listed in Table 4.1.  
 

Table 4.1 Steady-state curving parameters used 

Parameter Value Units 

Normal load 38.08 kN 

Lateral displacement 7.595 mm 

Yaw angle 7.222 mrad 

Longitudinal creepage 0.2381% - 

Lateral creepage 0.7211% - 

Spin -0.03561 1/m 

Speed 20 m/s 

Curve radius 300 m 

Longitudinal semi-length a 5.1 mm 

Lateral semi-length b 3.7 mm 

 

For the time-domain model of the continuously supported track system, a single moving 

Green’s function is used. This is because the track is on a continuous support, so the 

impulse responses are independent of the position of the excitation and response point, and 

only depend on the distance between them. The dynamic displacement of the track is 

obtained by the time-stepping integration of the dynamic wheel-rail interaction force 

together with the Green’s function. Due to starting transients in the numerical integration, 

the dynamic interaction force needs to be calculated for a long enough time period to reach 
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a steady-state value, before calculating the response to the roughness. This procedure done 

here is to obtain the time history in steady-state of these necessary parameters. 

 

The calculations are performed using both the Hertzian and variational contact models. The 

SDOF wheel system is considered to move over the continuously supported track system 

for around 200 m. Figure 4.11 shows the normal interaction force between the wheel and 

rail in the time domain obtained by the two interaction models. The simulation is run for 

4 s with a smooth rail to allow the process to reach a steady-state and then the broadband 

initial roughness obtained based on the limit curve given in ISO 3095-2013 [133] is 

introduced. The way to generate the roughness profile and its spectrum in comparison with 

the ISO 3095-2013 curve are introduced in detail in Appendix C. The broadband initial 

roughness obtained here is applied on all lines across the width of the contact zone. The 

fluctuation of the interaction force obtained by the variational contact model is smaller 

than that obtained by the Hertzian contact spring model. The corresponding 1/3 octave 

band force spectra from the two models are shown in Figure 4.12, from which it can be 

seen that the differences are mainly at high frequencies due to the contact filter effect. 

Figure 4.13 gives the difference between these two spectra which can be taken as the 

contact filter effect of the current variational contact model. This is compared with the 

DPRS contact filter result [97]. 

 

 
Figure 4.11 Interaction force in time domain for the contact between SDOF system and the continuously 

supported track  
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Figure 4.12 Interaction force spectrum for the contact between SDOF system and the continuously supported 

track 

 
Figure 4.13 Contact filter effect derived from current results compared with DPRS results 

4.3.5.2 SDOF wheel model and discretely supported track 

This case again considers the wheel as a mass supported by a damped stiffness, but it is 

now in contact with a discretely supported track in a tight curve. The steady-state curving 

parameters are again obtained from the case without applied traction in Section 2.3. Since 

the steady-state curving model mainly considers the dynamic behaviour of the vehicle, not 

the track, the same steady-state curving parameters are used as in the last section. The train 

speed is 20 m/s, as in the previous section. 

 

For the time-domain model of the discretely supported track, a certain number of moving 

Green’s functions are used (here 325) to describe the dynamic behaviour of the track. As in 

the previous case, the dynamic interaction force is calculated for a long enough time period 

to reach a steady-state value before calculating the response to the roughness.  
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Figure 4.14 Normal interaction force in time domain for the contact between SDOF system and the discretely 

supported track  

 

 
Figure 4.15 Normal interaction force spectrum for the contact between SDOF system and the discretely 

supported track 

 

Both Hertzian and variational contact models are again used for this case. Figure 4.14 

shows the normal wheel/rail interaction force in the time domain obtained by the two 

interaction models. As before, an initial calculation is performed with a smooth rail for 4 s 

to reach steady-state and then the broadband initial roughness obtained based on the limit 

curve given in ISO 3095-2013 [133] is introduced. Similar to the previous case, the 

fluctuation of the interaction force obtained by the variational contact model is smaller 

than that obtained by the Hertzian contact spring. The spectra of the normal interaction 

force from the two models shown in Figure 4.15, showing similar trends to those in Figure 

4.12. 

4.4 Summary 

The semi-analytical track model described in Chapter 3 has been combined with a 

numerical wheelset model to obtain the wheel-rail interaction forces. The equations of 

motion of the wheelset are solved in the time domain using a state-space approach.  
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Two methodologies to calculate the dynamic interaction force are introduced. Both of them 

need the dynamic penetration in the wheel-rail contact. The dynamic penetration is 

calculated using the moving Green’s functions for the track system and the state-space 

approach for the wheelset. After obtaining the dynamic penetration at each time step, the 

wheel-rail interaction force can be calculated by either the Hertzian contact spring used in 

this chapter or the wheel-rail contact model used here as well but introduced in detail in the 

next chapter. The interaction model has been validated for two example cases, one based 

entirely on the Green’s functions and the other based entirely on the state-space approach. 

The normal interaction force between the wheel and the rail is required as an input to the 

contact model which follows to solve the tangential problem and to the wear model which 

follows to predict the wear depth. 

 

When a railway vehicle negotiates a tight curve, high levels of vibration and noise usually 

arise. The rolling noise radiated by the vibration of the wheel and rail is generally more 

severe than on straight track. The effect of track curvature on rolling noise is also 

investigated based on the current wheel/rail interaction model. This is introduced in 

Appendix C. 
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5 Contact and wear model 

5.1 Introduction 

The previous chapter has concentrated on describing the model of the overall normal 

interaction force between the wheel and the rail. For this purpose, it is sufficient to model 

the wheel-rail contact as a Hertzian spring. However, to predict the wear of the rail surface 

resulting from the passage of the wheels, a more detailed model of the wheel-rail contact is 

required. The size and shape of the contact area and the distribution of normal and 

tangential stresses throughout the wheel-rail interface are then obtained. 

 

In the current wheel-rail contact model, the variational method [14] is used which is more 

universal than the simpler Hertz theory. Starting from static cases, which consider constant 

normal and tangential forces in stationary contact, the method of calculating the stress 

distribution in the wheel-rail contact is introduced. The rolling contact problem is 

considered as an extension of the model for static contact, which includes transient effects. 

For rolling, the model is applied in a ‘time-stepping’ fashion and the contacting surface is 

stepped along the wheel and railhead surfaces. The stresses and displacements at each 

time-step in rolling depend on the values at the previous position. 

 

The distribution of normal and tangential stresses in the contact and the identification of 

stick and slip zones when rolling are also of interest. In the situation that parts of the 

contacting surfaces slip, the relative sliding velocity of the contacting structures in the slip 

zone is important for the calculation of rail (and wheel) wear (In the current study only the 

effect on rail wear is considered). Thus, the calculation of the slip velocity at each location 

in the contact area is described. Tangential loading of the wheel-rail contact occurs 

especially during acceleration, braking or during curving. 

 

When using the variational method, steady rolling can be considered as a special case that 

develops over a period of time through transient rolling from a set of initial conditions with 

unchanging external loads. Considering non-Hertzian effects in the form of rail roughness 

is important when determining the distribution of normal and tangential stresses which will 

be included at end of this chapter. 

 

In this chapter, various wear models are also introduced. A common feature of these wear 

models is that the amount of material removed in the contact patch is determined by the 
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severity of normal and tangential stresses and the slip displacement or velocity in the slip 

region. These parameters can be obtained from the wheel/rail contact model and are linked 

to the wear models described in this chapter. In this thesis, the wear model developed by 

Braghin [134] is used, which contains several wear mechanisms. 

5.2 Review of contact models 

Hertz theory is widely used for the calculation of normal stress distributions in contact. 

However, it has many restrictions or assumptions [136]: the contact surface profiles must 

be parabolic in two dimensions and any higher terms are neglected; the surfaces must be 

smooth, non-conforming and frictionless; elastic half-space theory must be valid, that is the 

contact dimensions must be small compared with the radii of curvature of the undeformed 

surfaces; the contact stress must not depend on the shape of the bodies away from the 

contact patch. 

 

Due to these restrictions, Hertz theory is not strictly applicable for the wheel-rail contact 

since the roughness of the surface in practice is likely to contain wavelengths (including 

corrugation) that are of comparable length to the dimensions of the contact patch. Kalker 

developed a variational method [14] which was based on minimising a strain energy 

function subject to the constraint that the contact pressure is positive inside the contact 

patch and presumed to be zero outside the contact. It can be used for both Hertzian and 

non-Hertzian contact problems and takes account of transient effects. Its main limitations 

are the computational time and neglect of plastic deformation. 

 

Johnson [135] presented an approximation to the elastic half-space assumption in which 

the contact between the two bodies was replaced by a Winkler elastic foundation. This 

approximation avoided the difficulty in elastic contact stress theory that the displacement 

at any point on the contact surface depends on the distribution of pressure throughout the 

whole contact. Instead, it was assumed that the contact pressure at any point depends only 

on the displacement at that point. However, it had the difficulty that the contact area was 

not calculated correctly, similar to the DPRS method [97]. 

 

Surface adhesion effects in rolling contact have been analysed by Hao and Keer [136]. 

These effectively contribute to friction in the contact. However, in railway applications, the 

normal forces are high and the surface adhesion effects are not significant. The effect of 

surface roughness in a rolling contact analysis has also been studied [137]. It was found 

that a high roughness level reduced the tangential force that can be supported in the contact 
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and effectively modified the stress distribution and creep. 

 

Among these models, non-Hertzian models give better and more practical results than the 

Hertzian ones, within the elastic half-space assumption. The accuracy of the results is 

limited by the computational capacity and the element size used to solve the problem. 

Transient effects are also considered to be important since high frequency responses are of 

interest. Thus, a non-Hertzian non-steady-state rolling contact model is used in this 

research based on Kalker’s variational theory [14]. The friction coefficient is assumed to be 

constant, at least initially.  

5.3 Stress distribution in the wheel-rail contact 

The work of Johnson [135] has been used as a source for much of the background material 

to describe the contact problem. The variational method developed by Kalker [14] is used 

for the analysis of wheel-rail contact. Kalker implemented this theory in his CONTACT 

program, which remains recognized as the benchmark solution to the rolling contact 

problem [138]. However, until recently, the application of CONTACT to determine the 

distribution of stresses in three dimensions between railway wheels and rails in the time 

domain has been limited by the calculation time required for the analysis. This section 

describes the implementation in MATLAB of a contact model explained by Kalker in his 

variational theory in three-dimensional form. For verification of the model only static cases 

are considered here, such as stationary contact with constant normal and tangential forces. 

Rolling contact is considered in the next section. 

 

The minimum inputs to a wheel/rail contact model are the overall normal forces between 

the wheels and rails, and the initial profiles of the wheel and rail surfaces which refer to the 

undeformed state before contact. The overall normal force between the wheels and rails 

can be obtained from the interaction force model presented in Section 4.3. For model 

verification at this stage, the normal and tangential forces are assumed to be constant. 

5.3.1 Contact geometry 

The original undeformed surface profiles of the wheel and rail are defined as zw(x,y) and 

zr(x,y) as shown in Figure 5.1. The undeformed distance between the wheel and rail 

surfaces is then given by h(x,y), as the difference between zw(x,y) and zr(x,y).  

                         h(x,y)=zw(x,y)-zr(x,y)                       (5.1) 
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Figure 5.1 Geometry of wheel and rail in the contact  

 

When the wheel and rail come into contact, the contact area is generated due to the normal 

interaction force. The relative motion of two surfaces in contact may be defined in terms of 

sliding, rolling and spin [86]. Sliding occurs when a relative linear velocity Δv is present 

between the two surfaces at the contact point. 

                                ∆v=vw-vr                         (5.2) 

where vw(x,y) and vr(x,y) are the linear velocities of the wheel and rail surfaces relative to 

the origin O. The sliding velocity ∆v may have components in the x and y directions, but 

not in the z direction as the bodies are assumed to remain in contact. Rolling is a relative 

angular velocity ∆ω between the two bodies about an axis lying in the tangent plane. Spin 

is a relative angular velocity about the common normal, here the z axis. 

 

The overall forces that may be transmitted through the contact area S are the compressive 

normal force P and the tangential force Q due to friction. The tangential force includes 

components in the longitudinal direction along the x axis and in the lateral direction along 

the y axis. The forces P and Q are related by the coefficient of friction μ such that the 

magnitude of Q is less than or equal to the friction limit.  

                                |Q|≤μP                           (5.3) 

The normal force P and the tangential force Q are the resultants of stresses distributed 

across the interface area which lies in the x-y plane. This distribution corresponds to a 

normal pressure vector p(x,y) and a tangential stress vector q(x,y) across the surface area 

such that 

                              P=∫ pdSS                           (5.4) 

                              Q=∫ qdSS                           (5.5) 
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5.3.2 Stick and slip zones 

If the magnitude of the tangential force is less than μP, then the contact is not purely 

sliding. A relative movement or slip can occur between the surfaces in part of the interface, 

and another part of the interface will stick, or deform without relative motion between 

wheel and rail surfaces. The contact patch is then divided into stick and slip zones as 

shown in Figure 5.2, based on a calculation by FASTSIM for illustration.  

 

At points in the stick zone, the tangential stress must be less than the limiting value due to 

friction,  

                             |q(x,y)|<μp(x,y)                       (5.6) 

 

whereas in the slip zone the tangential stress is at its maximum and is equal to the friction 

limit. 

                             q(x,y)=μp(x,y)                       (5.7) 

 

 

 
Figure 5.2 Contact area under a longitudinal creepage calculated by FASTSIM [13] 

Upper: tangential stress distribution; Lower: tangential stress for the centreline,  

--- limit stress μp, — tangential stress q 

 

 

The slip s is defined as the relative tangential displacement between two initially 

coincident points in the contacting structures. Slip is taken to be positive when the upper 

structure moves in the positive x direction or y direction relative to the lower structure. The 

tangential stress is in the direction opposing the direction of slip, 

                          q(x,y)
|q(x,y)| =- s(x,y)

|s(x,y)|                         (5.8) 
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while the slip is zero in a stick region. The solution of the contact problem gives the 

distribution of normal and tangential stresses as well as the location of the stick and slip 

regions in the contact area. In general, the normal stresses depend on the tangential stresses 

due to the presence of friction. In this case, the identification of the stick and slip zones 

would be more complex and slip may occur even when the tangential force does not reach 

the friction limit. However, if the materials of the two contacting structures are identical, 

an assumption can be made that the tangential displacements resulting from the normal 

force are identical in both structures. That means the normal stress distribution is 

independent of the tangential stress [13]. 

5.3.3 Calculation of stress distribution 

Hertz developed his analytical theory describing the contact between parabolic surfaces in 

1880. The normal stress distribution throughout the contact area can be obtained by this 

theory. The equations are summarized by Johnson [135] for general profiles within the 

limitations of the theory. From Hertzian contact, if the undeformed surface profiles of two 

structures zw(x,y) and zr(x,y), and the overall normal force P over the contact area, are 

known, it is possible to evaluate the size and shape of contact area and the distribution of 

the normal stresses. However, for surfaces which are rough or not parabolic, the Hertz 

theory is no longer applicable. 

 

For more general contact geometry, numerical methods for the evaluation of the stress 

distributions are usually either a direct method such as [135], where boundary conditions 

are satisfied exactly at specified matching points, or a variational method such as [14], 

where the values of traction at the elements are chosen to minimize an appropriate energy 

function. For both kinds of method, a potential area of contact is first defined in the x-y 

plane that is greater than the actual contact area. 

 

The direct method is also known as the matrix inversion method. However, it is not 

suitable for calculating the contact stress distribution in detail at many positions due to the 

computational cost required for the inversion of large matrices at each position of interest. 

Thus, in the present research, the variational method based on Kalker’s CONTACT 

algorithm [14] is used. 

 

In the variational method (also in the direct method), the potential contact area is divided 

into N elements, each of length ∆x and width ∆y. The normal elastic displacement uz at the 
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centre of each element satisfies the relation 

                     uz+h(x,y)-δ �=0              in contact
>0      outside contact                (5.9) 

where δ is the approach distance of distant points in the two bodies and h is the 

undeformed distance between the bodies as shown in Equation (5.1). The centre of each 

element may also undergo a tangential elastic displacement ux or uy. To determine the 

elastic displacements uz, ux and uy, normal and tangential ‘influence coefficient’ matrices 

Cij and Dij are required. The expressions of the influence coefficients are described here 

based on the approach of Kalker [14]. 

 

Figure 5.3 shows the relevant geometry of the potential contact area. ae is defined as the 

half length of each element in the x direction and be as the half length of each element in 

the y direction. For each of the N×N possible combinations of elements, influence 

coefficients Cij and Dij are calculated as follows. The distance in the x and y directions 

between the centres of elements i and j is denoted xij and yij. The distances in the x and y 

directions between the centre of one element and the four corners of another element are 

then given by 

                             

x1=xij+ae y1=yij+be

x2=xij-ae y2=yij-be

x3=xij-ae y3=yij+be

x4=xij+ae y4=yij-be

                   (5.10) 

 

 
Figure 5.3 Geometry of the potential contact area in the x-y plane 

 

The straight-line distances between the centre of one element and four corners of another 

element are expressed as: 
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L1=�x1
2+y1

2

L2=�x2
2+y2

2

L3=�x3
2+y3

2

L4=�x4
2+y4

2

                       (5.11) 

 

The normal influence coefficient Cij between any two elements is given by: 

                   Cij=
(1-ν)
πG

[�f1+g1�+�f2+g2�-�f3+g3�-�f4+g4�]          (5.12) 

and the tangential influence coefficient Dij between any two elements is given by: 

               

           Dij=
1

πG
[�f1+g1�+�f2+g2�-�f3+g3�-�f4+g4�-ν �f1+f

2
-f3-f4� ]       (5.13) 

 

Here ν is Poisson’s ratio and G is the shear modulus of the material. The functions f1-4 and 

g1-4 represent terms involving the geometrical distances derived in Equation (5.10) and 

(5.11). The functions f1-4 and g1-4 are defined as 

                     

f1=x1 loge (L1+y1)
f2=x2 loge (L2+y2)
f3=x3 loge (L3+y3)
f4=x4 loge (L4+y4)

g1=y1 loge (L1+x1)
g2=y2 loge (L2+x2)
g3=y3 loge (L3+x3)
g4=y4 loge (L4+x4)

            (5.14) 

 

These influence coefficients are valid for contact between identical materials. With 

different materials, or cases involving spin, combined lateral and longitudinal forces occur 

as well as normal forces. The element displacement in each direction is then affected by 

forces acting in other directions. The influence coefficients are then more complicated. 

Here just the simpler case is described. 

 

These influence coefficient matrices give the displacement of the centre of an element i on 

the contact surface due to a unit pressure applied at another element j. The total 

displacement of each element can then be determined from the sum of the displacements 

due to the normal pressure p or tangential stress q acting on all the elements in the potential 

contact surface: 

                              uzi=∑ Cijpj
N
j=1                        (5.15) 

                              uxi=∑ Dijqxj
N
j=1                       (5.16) 

                              uyi=∑ Dijqyj
N
j=1                       (5.17) 



 

105 
 

 

To find the values of normal stress pj and tangential stress qj for each element j in the 

potential contact area, a quadratic minimization problem is solved involving the total 

complementary energy V*. For this, the internal complementary energy UE* is introduced, 

also known as the complementary strain energy or the stress energy. For linear elastic 

materials UE* can be expressed in terms of normal stresses and displacements of the 

elements in the contact surface. 

 UE
* = 1

2∫ puzdSS                      (5.18) 

 

The total complementary energy V* for a normal load can be written in terms of the 

internal complementary energy of the two stressed bodies and expressed as 

 V*= 1
2∫ puzdSS +∫ p(h-δ)dSS                (5.19) 

Substituting the expression for displacements from equation (5.15), equation (5.19) can be 

written as 

V*= 1
2
∑ Aipi

N
i=1 ∑ Aipi

N
i=1 +∑ Aipi

N
i=1 (hi-δ)             (5.20) 

The approach of the two bodiesδ is assumed to be the same for all elements, and Ai is the 

area of each element. These do not affect the minimization problem and the function to be 

minimized for the distribution of normal stress p in the contact patch may be written as 

min Fnorm= 1
2
∑ ∑ piCijpj+∑ hipi

N
i=1

N
j=1

N
i=1              (5.21) 

   

For the tangential stress, the function to be minimized has a similar form to that of the 

normal stress distribution. The term for the undeformed distance between the bodies h is 

replaced by a rigid tangential shift Wiτ and the prior displacement difference between the 

surfaces due to elastic deformation uʹ
iτ: 

min Ftan= 1
2
∑ ∑ qxiDijqxj+∑ (Wiτ-uiτ

, )qxi
N
i=1

N
j=1

N
i=1           (5.22) 

 

This is also valid for the y direction. As the materials of the contact surfaces are assumed 

identical, the normal stress distribution is not affected by the tangential stress distribution. 

 

Two constraints apply to the solution of the minimization problem for the normal case. The 

first is that the normal contact pressure pj must be positive (compressive) within the 

contact area and zero outside the contact area. The second is that the sum of the normal 

stresses pj on all the elements multiplied by the element area Aj must be equal to the total 

normal force P, 
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  P=∑ Aipi
N
i=1  and pi≥0                    (5.23) 

 

In the tangential direction the constraint on the solution is that the magnitude of the 

tangential stress within the contact area must be less than the friction limit. In addition, if 

the overall tangential traction Q is known it must be equal to the sum of the stresses on the 

individual elements multiplied by the element area Aj, similar to the normal case.  

Q=∑ Aiqi
N
i=1  and  �qi�≤μpi                 (5.24) 

5.3.4 Results 

A simple case is considered in which a smooth sphere of radius 0.46 m is in contact with a 

flat plane. Thus, the contact area is circular and it is suitable to apply Hertz theory for 

comparison. The stress distribution obtained from the variational method is compared with 

the analytical solution based on the Hertz theory, calculated with a resolution of 0.5 mm. 

Firstly the overall normal force P in the contact is set to be 100 kN. The material of the 

contacting bodies is chosen to be steel with Young’s modulus E = 210 GPa and Poisson’s 

ratio ν = 0.3. For shortening the calculation time, the element size of the potential contact 

area for the numerical method is chosen to be 1 mm. Results in three-dimensional form are 

shown in Figure 5.4. The two-dimensional form on the centre line, which is the cross-

section of the three-dimensional form, is shown in Figure 5.5. 

 

The results obtained from the variational method and Hertz theory are in good agreement. 

The noticeable difference between them is at the edges of the contact patch which is due to 

the coarser discretization of the contact area used in the variational method. 

 

  
(a) Hertz theory (b) Variational method 

Figure 5.4 Normal stress distribution results in three-dimensional form 
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Figure 5.5 Normal stress distribution results on the centreline in the potential contact area  

   

When applying a constant tangential force with value 0.25μP, the division into stick and 

slip zones can be derived from the tangential stress distribution. The friction coefficient μ 

is set equal to 0.3. An analytical expression for the tangential stress distribution is given by 

Johnson [102] based on a Hertzian normal stress distribution. Figure 5.6 shows the results 

obtained from the variational method and the analytical result from Johnson based on 

Hertz theory. 

 

 
Figure 5.6 Tangential stress distribution results on the centreline in the potential contact area, Q=0.25μP, 

μ=0.3 

 

The differences between the variational method and Hertz theory in both normal and 

tangential cases are due to the discretization of the contact patch. The result accuracy can 

be improved by reducing the element size in the potential contact area; results for different 

element sizes are shown in Figure 5.7. 

 

        



 

108 
 

 
Figure 5.7 Tangential stress distribution results on the centreline in the potential contact area for different 

element size, Q=0.25μP, μ=0.3 

5.4 Rolling contact 

5.4.1 Transient stress distribution 

Analytical methods are limited to steady rolling contact problems. However, a wheel 

rolling over a rough rail is an unsteady or transient rolling contact problem since the forces 

and stresses in the contact vary with time. A quasi-static method is used in some models 

[27], in which the tangential stress distribution is calculated as steady state at each time 

step.  

 

Actual transient effects are considered by using the variational method to calculate the 

stress distribution in rolling contact. In the variational method, the stress distribution in the 

contact patch at each time step depends on the stresses and displacements at the previous 

position. Steady rolling contact may then be considered as an extension or special case of 

the transient rolling contact theory. 

 

The frame of reference is assumed to move with the contact patch. Rolling is assumed to 

take place in increments of time ∆t with the current time given by t and the previous time 

by tʹ. In each time-step the wheel rolls forward a distance ∆x=v∆t which is chosen to 

correspond to the length of an element in the potential contact area. The tangential loading 

on a rolling system may be represented by either an imposed overall tangential force Q, or 

an imposed rigid shift Wiτ. Acceleration or braking of a wheel corresponds to imposing an 

overall tangential force Q, while an imposed longitudinal creep may be described in terms 

of a rigid shift. 

 

In general, if corresponding points on the rail and wheel are in contact in their deformed 

state at time tʹ=t-∆t, then the slip between their positions that occurs in a time-step ∆t is the 
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sum of the rigid shift and the deformation shift given by 

( ) ( ) ( ) ( ) ( )i wi wi ri ri wxi wxi rxi rxis t t x x x x u u u u′ ′ ′ ′ ′− = − − − + − − −          (5.25) 

where the x terms represent the rigid shift and the ux terms represent the deformation shift. 

The deformation shift is the difference in the elastic displacement occurring in time ∆t of 

the corresponding particles on the wheel and rail. The displacement difference uxi is 

defined as the difference between the points on the two bodies at a particular time and is 

taken to be positive when the wheel moves in the positive longitudinal direction relative to 

the rail. The displacement difference uxi is necessarily zero by definition in the stick zone 

although the tangential stress q and the deformations uwxi and urxi are not zero. 

 

At time tʹ=0, the stress distribution q in the contact area is determined from the initial 

conditions of overall tangential loading or rigid shift. The elastic displacement difference 

in each element may then be determined, along with the division into stick and slip zones. 

The wheel then rolls forward a distance ∆x in time ∆t. The frame of reference moves along 

with the wheel. A slightly modified influence coefficient matrix Dʹij is required to relate the 

tangential stress at time tʹ to the displacement of the elements in the potential contact at 

time t. Dʹij is calculated by adding the distance ∆x to the distance in the x direction between 

each element combination. In fact, the matrix Dʹij is identical to Dij but with the first row 

dropped and an additional row added. Figure 5.8 shows the shift in terms of the potential 

contact area for a three-dimensional analysis. 

 

 
Figure 5.8 Shift in potential contact area in each time-step [64] 

 

In each time-step, an element i of the N elements in the potential contact area is either in 

the contact zone or outside it. The normal stress of the elements outside the contact zone is 

zero while the normal stress of elements inside it is positive. In the contact zone, each 

element is also in either a stick zone or a slip zone. The tangential stress of the elements in 

the slip zone is equal to the friction limit value qi = μpi while the tangential stress of the 

elements in the stick zone is below the friction limit value. 
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5.4.2 Numerical example 

A simple case is considered that is a smooth sphere with radius 0.46 m, as before, that is 

initially at rest on a flat plane. A normal load P of 100 kN is applied to the contact and this 

remains constant throughout rolling. The tangential force is considered in two directions: 

the longitudinal force Qx has a value of 0.75μP while the lateral force Qy has a value of 

0.5μP. The friction coefficient μ is 0.3. The initial rigid shift is zero. The sphere is then 

permitted to roll in the longitudinal direction upon the plane with a constant velocity V = 1 

m/s.  

 

 
Figure 5.9 Transient tangential stress distribution under constant normal, longitudinal and lateral force from 

static to steady-state conditions, --- limiting stress μp, — tangential stress distribution at centreline of the 
potential contact area 

 

The potential contact area is defined as a 20 mm × 20 mm square. This gives 400 elements 

in total, of length 1 mm in each direction, and the wheel will roll 1 mm in each time step. 

The development of the tangential stress distribution over 11 positions as rolling proceeds 

is shown in Figure 5.9. The stress distribution after rolling 10 mm is approaching a steady-

state condition. In this case, the creep is initially zero when the sphere is at rest and 

increases to reach a constant value in the steady state. 

 

In another case, only longitudinal creep is considered, which is assumed constant during 

rolling, while the initial tangential force applied is zero. With a constant assumed creep γ in 

a time-step of duration ∆t, the rigid shift of the system Wiτ (i expresses the ith element, τ 

expresses the tangential direction which can be longitudinal or lateral direction) is given by 

iW xτ γ= ∆                          (5.26) 
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It is the same for all the elements in the potential contact area. The tangential stress 

distribution is non-zero at first due to the existence of the longitudinal creep. There is no 

overall tangential stress Q applied and no constraint on the sum of the tangential stress 

over all the elements of the potential contact. Then the tangential force increases and 

becomes constant when steady-state conditions are reached. All other parameters are the 

same as in the previous example. The results are shown in Figure 5.10. 

 
Figure 5.10 Transient tangential stress distribution under constant longitudinal creepage from static to steady-

state, --- limiting stress μp, — tangential stress distribution at centreline of the contact area 

 

With constant imposed creep, the system requires a longer time to reach a steady state than 

for the previous case with a constant imposed tangential traction Q. In each step shown in 

the figure the wheel has rolled 5 mm. The calculation step size is 1 mm, the same as in the 

previous example, but not all steps are shown. The steady state is reached after a distance 

of nearly twice the contact patch length. 

5.4.3 Application of real contact surface profile 

Model verification in the previous sections only considers simple contact surfaces. In 

practice, the wheel and rail surfaces are not just simple shapes and the initial roughness 

(corrugation) should also be included. Here, the S1002 wheel surface transverse profile and 

UIC60 rail surface profile are applied. Rail inclination is also included with a value of 

1:40. The wheel and rail surface shape profiles without roughness, drawn in MATLAB, are 

shown in Figure 5.11.  
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(a) (b) 

Figure 5.11 Practical wheel and rail smooth contact surface profiles in MATLAB: (a) cross-section; (b) 3D 
view 

 

  
(a) 0 mm offset (b) 12 mm offset 

Figure 5.12 Normal stress distribution obtained from variational methods in three-dimensional form for 
practical wheel and rail profiles. Units in figures are all millimetre. 

 

The normal stress distribution is shown in Figure 5.12. In the first case the nominal contact 

point on the wheel coincides with the vertical axis of symmetry of the rail. In the other case 

a lateral offset of 12 mm is applied to the wheel in the positive x direction compared with 

the first case. All other parameters are the same as in the previous example. The results 

show good agreement with results in the literature [139].  

5.4.4 Calculation of slip and slip velocity in the contact patch 

At each position as the wheel rolls along the rail, the relative slip distance s between 

corresponding elements on the two bodies is given by the slip across the element Wiτ added 

to the change in the elastic displacement difference occurring in each time step. This is 

given by the elastic tangential displacement in the current time step uiτ minus that from the 

previous time-step u'iτ. Hence 

                              si=Wiτ+uiτ-uiτ
'                        (5.27) 
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The slip velocity ṡ is determined by dividing the slip distance by the time-step interval Δt: 

                                 ṡi=
si
∆t

                           (5.28) 

 

In the stick zone there is no slip and the slip velocity is zero. In the slip zone, the slip 

velocity increases up to its maximum value at the trailing edge. Outside the contact zone 

the slip velocity is not considered. Although those elements which are outside the contact 

zone would experience elastic deformation as a result of the stresses on the elements within 

the contact zone, this cannot result in friction or wear. Therefore, the slip velocity in 

elements outside the contact patch is set to zero before calculating the wear depth in each 

time-step. This is not necessary if the stresses outside the contact are exactly zero, but the 

numerical minimisation technique can result in very small non-zero stresses outside the 

contact patch. 

 

Figure 5.13 shows the slip velocity and corresponding tangential stress distribution 

calculated using the variational method after reaching a steady state under constant normal 

and tangential loading. The parameters are the same as used previously with a normal load 

of 100 kN, a constant tangential traction Q=0.25μP, a sphere wheel of radius 0.46 m, a 

contact width of 14 mm and a smooth flat plane. The coefficient of friction μ is 0.3 and the 

rolling velocity v=1 m/s. It can be seen that the slip is zero outside the contact patch. (The 

slip velocity in Figure 5.13 between -7 mm and -8 mm, as well as 7 mm and 8 mm is zero, 

but due to the element size chosen is 1 mm, the values shown is not zero) 
 

 
Figure 5.13 Slip and stress distribution in steady-state rolling with Q=0.25μP and 1 mm element size. Upper: 

slip velocity; Lower: tangential stress distribution, where --- is the friction limit.  

5.4.5 Normal interaction force in rolling with a rough rail 

In Chapter 4 it is mentioned that the wheel-rail contact model introduced by Kalker in his 
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theory can be used to find the normal interaction force between the wheel and rail instead 

of the Hertzian contact spring. The normal problem is introduced in Section 5.3 and the 

tangential problem is introduced in Section 5.4. For practical investigation, the calculation 

of the contact force should take the roughness of the wheel and rail into consideration, as 

in the results shown in Section 4.3.5. Thus, in this section the wheel rolling on a rough rail 

is considered and the normal interaction force is obtained to check if the wheel-rail contact 

model introduced by Kalker in his theory is appropriate to be used. 

 

However, in Section 5.3, the wheel-rail contact model is presented with the normal load 

known. In a time step of the time-domain model, the normal load is an output of the wheel-

rail contact model. Before introducing the rough rail, it should be shown that the wheel-rail 

contact model is effective to calculate the normal stress distribution and resultant 

interaction force using vertical wheel-rail penetration instead of the normal load. A simple 

case is considered as previously of a sphere with 0.46 m radius in contact with a smooth 

plane. The initial distances between the wheel and rail of the elements inside the potential 

contact area are all positive and zero for the nominal contact point. A penetration of 0.1 

mm is given to the potential contact area, which reduces all the initial distances between 

the two surfaces of the elements inside the potential contact area by 0.1 mm. Thus, the 

distance of the nominal contact point between the two surfaces is -0.1 mm. The distance 

after penetration obtained here is not the real value between the contact surfaces, it is a 

distance vector for the quadratic minimisation method to find stress distribution, which is 

based on the assumption that the contact surfaces do not deform. The elements with 

negative distance inside the assumed potential contact area between the wheel and rail 

would form the initial contact area.  

 

  
(a)  (b) 

Figure 5.14 Normal stress distribution of the potential contact area in three-dimensional form: (a) calculated 
by penetration; (b) calculated by normal load 
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The constraints used to solve the quadratic minimization problem are therefore changed. 

The new initial distance vector is entered and the constraint of the normal load is removed. 

Figure 5.14(a) shows the normal stress distribution calculated by applying the penetration 

between the wheel and rail. The total normal load is calculated by the sum of the normal 

stress multiplied by the area of each element in the potential contact area. The total normal 

load calculated here is 104.46 kN.  

 

 
Figure 5.15 Normal stress distribution of the potential contact area centre line in two-dimensional form 

 

By modifying the constraints used to solve the quadratic minimisation problem to use the 

previous initial distance vector, and applying a normal load with a value of 104.46 kN, the 

normal stress distribution calculated by applying the normal load is obtained, which is 

shown in Figure 5.14(b). Figure 5.15 compares the normal stress distribution on the centre 

line in these two cases and the results show good agreement. It is found that applying the 

penetration instead of the normal load in the wheel-rail contact model is effective to 

calculate the normal interaction force. 

 

From Section 4.3.5 it can be seen that the roughness of the wheelset and the track is a 

factor that has a great effect on the normal interaction force. For a rough rail or wheel, the 

normal force varies in each time-step. The contact length and the distribution of the 

stresses and slip in the contact also vary with the contacting profile between the wheel and 

rail. For extreme contacting profiles, the nominal contact point may not be at a constant 

position in the lateral direction or longitudinal direction, as assumed in Chapter 4. The 

contact may also occur at more than one location in the potential contact area and there 

may be several zones of stick and slip.  
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5.5 Wear model  

The wear model is an important part of the rail corrugation prediction since it directly 

determines the wear depth on the rail surface and affects the predicted rail corrugation 

growth. The wear only occurs in the slip region inside the contact patch between the wheel 

and rail. As the contacting surfaces have roughness and the contact force between the 

wheel and rail varies with the position and time, the amount of material removed also 

varies along the rail and with time. This uneven wear eventually results in the change in the 

surface profile of the rail after multiple wheel passages and may form corrugation on the 

rail surface. 

 

The wear can occur by several different mechanisms depending on the contact conditions. 

It is common in roughness growth predictions to assume a single wear coefficient at all 

locations representing the frictional abrasive wear, or mild wear. However, the inclusion of 

non-Hertzian effects in the contact means that stress concentrations may arise from the 

roughness profile of the surfaces in contact. These stress concentrations may lead to higher 

wear rates in some parts of the contact area and trigger another, more severe wear 

mechanism. 

 

For railway roughness development, abrasive wear and surface fatigue are the most 

relevant mechanisms [139]. Abrasive wear occurs when rough surfaces slide over one 

another, displacing material which forms loose wear particles. Surface fatigue wear is 

observed during repeated sliding or rolling, causing the formation of cracks which 

eventually result in the breakup of the surface. The wear mechanisms involved in 

corrugation development, rolling contact fatigue and general roughness growth are not 

necessarily the same, and it is likely that a combination of the various wear mechanisms 

occurs in many cases. 

5.5.1 Wear model based on frictional work 

One commonly used approach [140] to estimate wheel-rail contact wear is based on the 

frictional work, both lateral and longitudinal, which is the product of the tangential forces 

and the slip in the contact area. The frictional work hypothesis states that the wear is 

proportional to the amount of frictional work done in the contact patch, i.e. 

                               ∆m=k0∆W                        (5.29) 

where Δm is the mass of material removed in the contact patch in one time step, k0 is the 

wear coefficient and ΔW is the frictional work, given by Δ𝑊𝑊 = 𝑄𝑄𝛾𝛾Δ𝑥𝑥. 
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It is found that the wear coefficient is largely constant for certain ranges of frictional 

power, with discontinuous jumps in wear coefficient between different wear regimes [141]. 

The value of the wear coefficient is considered to be a material parameter and is found by 

experiment to be in the range of (1-5)×10-9 kg/Nm for mild wear [141]. 

  

The change of vertical profile height at each point along the rail in one time step may be 

obtained by examining Equation (5.29) in the spatial domain and calculating the average 

height lost from the volume worn away, 

                           ∆z= ∆m
ρA

= k0∆W
ρA

= k0Qγ∆x
ρA

                    (5.30) 

where ρ is the density, A is the contact area, Q is the tangential force, γ is the creepage and 

Δx is the distance passed in each time step. 

  

To identify the height change in each area of the contact in a given time step, the ratio Q/A 

can be replaced by the tangential stress and the creepage in each area of the contact can be 

identified. From Equation (5.30), the wear depth of each element is 

                      ∆zi=
�k0qi(x,y)γi∆x�

ρ
= �k0qi(x,y)∆si�

ρ
               (5.31) 

where Δsi = γiΔx is the slip distance of ith element. 

 

In some references, e.g. [142], the frictional power Pfrictional is used instead of the frictional 

work (frictional power multiplied by the rolling time is the frictional work). In this way, 

the wear depth of each element of each time step can be written as 

                                ∆zi=
k0Pfrictional

2bρ𝑉𝑉0
                      (5.32) 

where 2b is the contact patch width, V0 is the running speed. 

 

Brockley and Ko [143] presented a wear equation for the rail from the perspective of 

frictional work. The simplified form is as follows: 

                              Vwear=Kb(Hb-Cb)                    (5.33) 

where Vwear is the wear volume, Kb is the wear constant used in Brockley and Ko’s model, 

Hb is the friction work rate (Hb=Qṡ), Q is the creep force, ṡ is the slip velocity and Cb is 

the durability friction work rate. The parameters Kb and Cb can be set as constants. 

 

In an example of tightly curved track, the creep forces on the inner and outer wheels of 

leading wheelset are generally saturated. When the creep force is saturated, it is equal to 

the friction limit, that is Q=µN. Meanwhile, the slip velocity (ṡ) is approximately equal to 
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the attack angle (ψa) multiplied by the forward speed of the wheelset (V), and µ, ψa, V can 

be set as constants when the wheelset passes through a tight curve. 

 

The frictional work rate approach is an effective method for assessing relative wear 

damage under variable velocity conditions. In particular, it is useful in studying 

corrugation formation in relation to the vibration responsible for the damage. 

5.5.2 Wear model from Archard’s work 

Archard’s wear model [144] states that the volume of material which is removed from a 

surface due to wear is directly proportional to the normal load and the sliding distance 

between the bodies in contact. 

 

According to the Archard wear model, the volume of worn material is calculated as 

                                Vwear=kw
Ns
H

                       (5.34) 

where kw is the non-dimensional wear coefficient, which is different from the wear 

coefficient k0 with units of kg/Nm in the wear model discussed above, possibly equivalent 

to the product of the wear coefficient k0 and other parameters. N is the normal contact force 

with units of N, s is the slip distance with units of m and H is the hardness of the softer 

material in contact with units of N/m2. The parameter kw is dependent on several factors, 

such as the normal contact pressure and the slip velocity. For wheel and rail steels, it varies 

in the range (1-400)×10-4. 

  

In the contact model, wear is calculated for a contact area discretized into Nc square 

elements with side length Δx. So based on Equation (5.34), the wear depth of an element 

inside the slip zone of the contact area in one time step can be calculated as 

                            ∆zi=kw
pi∆si

H
                       (5.35) 

where pi is the normal stress of each element inside the contact area. The distributions of 

slip distance and normal contact stress in the contact are obtained using the contact model.  

  

In the following calculations, the wear coefficient kw is assumed to be independent of the 

variations of the normal contact stress and the slip velocity in the contact patch. A wear 

coefficient of 1.09×10-4, which corresponds to low slip velocities, and a hardness of 3.2 

GPa have been used for the simulation of railhead wear. This makes the value of the ratio 

kw/H equal to 3.4×10-14 m2/N. 
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5.5.3 Wear model by multiple mechanisms 

For the prediction of roughness growth development in this research, alternative wear 

mechanisms are considered by using the wear model of Braghin et al. [134]. This wear 

model applies the Derby wear index Qγ/A (Q is the tractive force, γ is the creepage at the 

wheel-rail interface and A is the contact area) used by Pearce and Sherratt [141] which 

adopts an energy approach in the analysis of the relationship between wear rate and contact 

conditions. It is assumed that the wear rate K(Qγ/A) is proportional to the work done at the 

wheel-rail contact.  
 

So the wear index in each element of the contact patch may be written in the units of 

N/mm2 as 

                      Qγ
A

= �∆ṡiqi�
v

×10-6= �∆siqi�
∆x

×10-6                (5.36) 

where x∆ is the distance passed in each time-step, qi is the tangential stress of each 

element in the contact patch. According to the wear index of each element, the wear rate in 

the units of µg/m/mm2 can be obtained from the relationship in Figure 5.16 and Table 5.1. 

 
Table 5.1 Wear regimes and wear rate 

Regime Qγ/A (N/mm2) Wear rate (µg/m/mm2) 

K1 Qγ/A <10.4 5.3 Qγ/A 

K2 10.4<Qγ/A<77.2 55.0 

K3 77.2< Qγ/A 61.9 Qγ/A 

 
 

 
Figure 5.16 Wear rate for different values of the wear index [134]: K1 ‘mild wear’; K2 ‘severe wear’; K3 

‘catastrophic wear’. 

 

It is assumed that the wear rate K(Qγ/A) is related to work done at the wheel-rail contact, 

where K(Qγ/A) represents a function of the wear index Qγ/A. This means the wear rate K 
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can be considered as an equivalent wear coefficient value k0 multiplied by the wear index 

Qγ/A. After transforming to S.I. units, the depth of material Δz removed across the area of 

an element i in the slip zone in each time-step is given in metres by 

                              ∆zi=K ∆x
ρ

×10-3                      (5.37) 

 

In this way the wear coefficient is determined at each element of the contact based on the 

severity of the conditions at that location. The advantage of this approach is that the wear 

relationship has been validated using laboratory tests [134] under controlled conditions. It 

is a more comprehensive model than the single wear coefficient approach, which can only 

consider mild wear for all contact conditions. In any case the initial surface roughness 

levels used in the wear model should be chosen to prevent excessively high wheel-rail 

interaction forces that might lead to loss of elasticity. 

 

To compare the wear depth obtained by the Archard and Braghin’s wear models, an 

example is considered. The normal force is 40 kN, the constant friction coefficient is 0.3, 

the tangential force is saturated, thus it is 12 kN. The distance passed in each time-step x∆

is 1 mm, the element area A is 1 mm2 and the material is steel with a density of 7850 

kg/m3. The value of the ratio kw/H used in Archard’s model is equal to 2.03×10-14 m2/N. As 

the creepage increases, the wear depth calculated by the two wear models is shown in 

Figure 5.17. 

 

 
Figure 5.17 Wear depth variation with creepage value for different wear models 

5.6 Summary 

A three-dimensional contact model explained by Kalker in his variational method has been 

implemented in MATLAB. The contact model can determine normal and tangential stress 

distributions throughout the contact area. For a simple case of the contact between a 
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smooth sphere and a smooth flat plane, results from the current model have been compared 

with analytical results using the Hertzian theory. The accuracy of this numerical model is 

limited only by the size of the elements used to represent the potential contact area but a 

high computational capacity is demanded. 

 

Transient rolling contact is the default calculation state when using the variational method. 

Results for steady-state rolling can be obtained by allowing the system to converge under 

constant forces. The input tangential forces can be either in the form of a constant overall 

tangential force, or in the form of prescribed creep. 

 

The derivation of the slip velocity in rolling contact has been described. The roughness of 

the wheel and rail has a significant effect on the normal and tangential stress distributions. 

When considering a three-dimensional contact area, the current wheel-rail contact model is 

more accurate than the use of the Hertzian contact spring as it includes the contact filter 

effect directly. This is validated through a numerical example. 

 

Some wear models are also introduced to calculate the wear depth in the contact patch. 

Among the many wear models, the model developed by Braghin et al. [134], which 

considers multiple wear mechanisms, is used in this thesis. Different from the typical 

situation of rolling contact on tangent track, the interaction force and roughness developed 

between the wheel and rail can easily reach high levels in tightly curved track. Thus, for 

the rolling contact between the wheel and the track system in practice, multiple wear 

mechanisms may be present due to the high-level broadband roughness and large values of 

longitudinal creepage. Other wear models introduced in this chapter considered only the 

mild wear, whereas the current model allows for the possibility of multiple wear 

mechanisms in different parts of the contact patch. 
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6 Numerical investigation of corrugation growth 

6.1 Introduction 

In this chapter, the models described in the preceding chapters are assembled and applied 

to a series of cases to examine the development of rail corrugation. Possible mechanisms 

accounting for the formation and development of the rail corrugation presented in the 

literature so far are briefly explained. After that, a series of roughness growth rate 

calculations are performed to examine the development of broadband acoustic roughness 

(roughness affecting the acoustic frequency range) over time under different mechanisms. 

Results are presented in the form of roughness level in 1/3 octave frequency bands and a 

roughness growth rate. This allows comparisons between the different implemented 

mechanisms. 

 

When using the current rail corrugation prediction model in this chapter, the wear depth in 

the wheel-rail interaction is calculated for an example type of vehicle and track with an 

initial broadband roughness profile obtained according to the limit curve in ISO 3095:2013 

[133]. The model has only been used to consider the effect of a single type of traffic on the 

roughness development. However, if the precise types of vehicle are given, the roughness 

level after multiple passages and the resultant roughness growth rate under mixed traffic 

could be obtained by applying each vehicle type individually. The modified roughness 

level in 1/3 octave frequency bands calculated over a passage time of 2 seconds (around 60 

sleeper bays, 40 m) under the initial rail profile is sufficient to get a good approximation of 

predicted roughness development. 

 

The case studied here shows the roughness development predicted by the wheel/rail 

interaction model which applies the variational contact model. Hertzian theory has been 

widely used to model rail wear depth and also the corrugation development historically. 

However, for the broadband roughness development, including the stress concentration 

effects, the non-Hertzian wear model is essential [33].  

 

In order to study the relevance of different mechanisms, comparisons are made between a 

basic case in which only the initial roughness input is considered, a case in which a 

velocity-dependent friction coefficient is applied instead of a constant one and a case in 

which vertical-lateral coupling is included when calculating the displacements of the wheel 

and rail. Results in the form of interaction forces, roughness level and roughness growth 



 

123 
 

rate are compared to find the relative importance of the various mechanisms in the 

wheel/rail surface roughness development in the current situation.  

 

This study further considers the effect of the coupling between two wheels and rails on 

roughness development and growth rate. The effect of including multiple wheel/rail 

interactions on a single rail is also investigated. The roughness development and growth 

rate results after including these effects are discussed in Section 6.5 and 6.6. 

6.2 Possible roughness growth mechanisms 

This section gives a brief introduction to various possible mechanisms for the generation of 

rail corrugation, and how each mechanism generates vibration and contributes to the 

formation of the rail corrugation. The first mechanism is based only on the input 

roughness, in which roughness grows if the wear is in phase with the initial roughness. The 

second includes falling friction - the way to obtain it from the slip velocity in the contact is 

presented and how it causes the self-excited vibration is explained. Then, the way to apply 

this in the time-domain model is also introduced. The third involves mode coupling - to 

illustrate this, the equation of motion for an example two-degree-of-freedom system is 

shown and then the stability of the system is investigated to show how the self-excited 

vibration is generated by this mechanism. 

6.2.1 Input roughness 

In the prediction of the rail corrugation development, there are two types of rail roughness 

which are often used. One is a sinusoidal roughness and the other is a broadband 

roughness. 

 

Initial sinusoidal roughness is often used to excite particular modes of the wheelset, track 

system or the coupling of the wheel and rail to investigate the effects of the particular 

modes on the development of the rail corrugation. The sinusoidal roughness is assumed to 

be present on the running surfaces of rails with a wavelength calculated as the velocity 

divided by the frequency corresponding to the particular modes. However, rail roughness is 

generally broadband, so the selection of single wavelengths is unrealistic and not 

sufficiently general. The establishment of the initial broadband roughness profile of the 

rails from a typical 1/3 octave spectrum is introduced in Appendix C in detail. 
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6.2.2 Falling friction 

Measurements of the creep-force relationship, for railway rolling situations [144-145], 

show that when the creep increases beyond saturation, the tangential forces that can be 

supported by the wheel/rail contact reduce. A falling creep-force relationship is attributed 

to the variation of the friction coefficient. The value of the dynamic friction coefficient is 

dependent on the sliding velocity between the wheel/rail contact surfaces. Consequently, 

for larger creep values, the slope of the creep-force relationship becomes negative. 

 

In this thesis, the velocity-dependent friction law is implemented to apply the falling 

friction mechanism. The velocity-dependent friction coefficient is given as [146] 

                        μμ=μs �
50

100+�ṡ2�
+ 0.1

0.2+|ṡ|�                       (6.1) 

 

In [146], the static friction coefficient μs is chosen as 0.3. s is the sliding distance in the 

contact while the �̇�𝑠 is the sliding velocity. The resulting relationship between friction 

coefficient and slip velocity is shown in Figure 6.1 for μs = 0.3. The traction coefficient, 

indicating the ratio of the creep force to the normal load, is given in Figure 6.2 as a 

function of the creepage under a vehicle speed of 20 m/s. 

 

 
Figure 6.1 Velocity-dependent friction curve 
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Figure 6.2 Ratio of creep force to normal load varying with the creepage 

 

In [146], the contact problem was solved based on a modified version of FASTSIM with a 

velocity-dependent friction law. The implementation of the velocity-dependent friction law 

in FASTSIM required the elimination of a derivative term to ensure mathematical stability 

of the resulting stress distribution. In this thesis, the contact problem is solved based on the 

variational method [14] and no such mathematical difficulty is encountered. 

 

The implementation of the velocity-dependent friction law in the variational method 

requires an iterative loop [139], as shown in Figure 6.3. With a constant friction 

coefficient, the slip velocity depends on the tangential stress distribution. With a variable 

friction coefficient, however, the tangential stress distribution is dependent on the slip 

velocity and vice versa, since the tangential stress results in the slip distance and slip 

velocity values, and the slip velocity affects the friction coefficient and modifies the 

tangential stress limit. Thus, considering the transient effect in the variational method, an 

iteration for finding the friction coefficient value is required at each time step in the time-

domain prediction model. At the beginning, the stress distribution is calculated as before 

for a constant friction coefficient. Thus, the initial friction limit is set using the static 

friction coefficient in order to begin the rolling contact analysis. Once the rolling contact is 

underway, the friction limit is first calculated based on the slip velocity distribution in the 

contact at the previous time step. Based on this, the tangential stress distribution and the 

slip velocity are calculated as preliminary estimates for the current time step. The friction 

limit throughout the contact is then updated and the revised friction limit is used to obtain 

the new tangential stress and slip velocity. 

 

Normally, the iterative loop ends when the friction coefficient is consistent with the value 

obtained by the new tangential stress and slip velocity. It has been found that five iterations 

of the tangential stress calculation at each time step are enough to ensure the system 
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converges to a solution in the current study case presented in this chapter. 

 

 
Figure 6.3 Iteration loop for inclusion of velocity-dependent friction coefficient 

6.2.3 Vertical-lateral coupling 

As discussed in Section 1.3.4, mode coupling is another type of friction-induced self-

excited vibration. The mode coupling instability was explained by a two-degree-of-

freedom mass-belt system developed by Hoffmann et al. [147-148]. This two-degree-of-

freedom mass-belt system is briefly introduced here, as shown in Figure 6.4. 

 

 
Figure 6.4 Two-degree-of-freedom system on moving belt [138] 

 

As Figure 6.4 shows, the mass has two degrees of freedom, x and y. The moving velocity 

of the belt is assumed to take a constant value V0. Since the friction coefficient between the 

mass and belt is also assumed to be constant, the friction force is given as µk3y. Thus, the 

equation of motion for the system shown in Figure 6.4 is  

                       �m1 0
0 m1

� �ẍÿ� + �k11 k12-μk3
k21 k22

� �
x
y� =0             (6.7) 

 

where the elements in the stiffness matrix are 

                           k11=k1cos2α1+k2cos2α2                   (6.8) 

                     k12=k21=-k1 sin α1 cos α1 -k2 sin α2 cos α2            (6.9) 

                          k22=k1sin2α1+k2sin2α2+k3                 (6.10) 

 

Due to the term µk3y, the stiffness matrix in Equation (6.7) is asymmetric and this can lead 
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to instability [149]. The coupling between the vertical and lateral dynamics is introduced 

by the term k12- µk3. When considering the vertical-lateral coupling, the tangential friction 

force is also varying with the change of the normal displacement of the mass. 

 

To show the features of mode coupling, in his case in relation to curve squeal, a simple 

case is considered by Ding [44]. This will also be briefly introduced here. In this case, 

m1=50 kg, k1, k2, k3 are assumed as 1.8×108 N/m, 2.5×109 N/m and 1.33×109 N/m, 

respectively, α1=150̊, α2=30̊.  

 

By performing eigenvalue analysis of Equation (6.7), the stability of this system is 

investigated. The imaginary part (plotted as frequency) and real part (growth rate) of one of 

the eigenvalues are plotted against the friction coefficient µ in Figure 6.5.  

 
                        (a)                     (b) 
Figure 6.5 Real part (growth rate) and imaginary part (frequency) of eigenvalues plotted against the friction 
coefficient [44] 

 

It can be seen from the figure that, when the friction coefficient is low, the real part of the 

eigenvalues both start from 0. When µ > 0.75, the real part of one of the eigenvalues 

becomes positive while the other one becomes negative. As for the imaginary part, when µ 

= 0, there are two different modes with distinct natural frequencies. As the friction 

coefficient increases, they become closer and closer and finally merge to one value which 

is not equal to either of the frequencies of the two modes when µ = 0. This frequency shift 

is one of the basic features of mode coupling [147]. 

 



 

128 
 

 
                        (a)                     (b) 

Figure 6.6 Time histories with (a) µ = 0.7 and (b) µ = 0.8; blue solid line: lateral direction; red dashed line: 
vertical direction [44] 

 

Results of time-domain analysis are also displayed here to study the vertical and lateral 

vibrations. Results are shown in Figure 6.6 for two different values of the friction 

coefficient. One is 0.7 which is before the two modes merge into one and the other is 0.8 

which is after the two modes merge. It can be seen from the figure that, for µ = 0.7, the 

time histories show repeated oscillations, like a beating, for both directions, caused by the 

superposition of two close frequencies. When µ = 0.8, the system is found to be unstable 

and the vibration in both directions keeps increasing. While in practice, the response does 

not grow infinitely due to the non-linearities. A phase difference exists between the 

velocities in the vertical and lateral directions. This is another feature that is typical of 

mode coupling [147]. The phase difference is necessary to transfer the energy from one 

direction to the other one and result in the instability.  

 

The results here are shown in order to explain the phenomenon in a simplified manner. 

Damping is not included here, while in [148], this mass-belt system is used to investigate 

the effect of damping on mode coupling. In railway curve squeal, mode coupling could 

occur between two wheel modes or between a wheel mode and the rail. Based on this, it 

may indicate that also for the rail corrugation growth, mode coupling may exist and may 

occur between wheel modes or between a wheel mode and the rail.  

6.3 Preliminary results 

6.3.1 Identification of P2 resonance  

As introduced in Section 1.2, apart from the wheelset modes, the P2 and pinned-pinned 

resonances are also believed to be important for the development of rail corrugation. The 
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identification of the P2 and pinned-pinned resonances helps the resonance identification in 

the following case studies. 

 

The P2 resonance is related to both track and wheel dynamics, while the pinned-pinned 

resonance is dependent only on the track dynamics. This section aims to identify the P2 

and pinned-pinned resonances of the wheel and track used in the basic case in this thesis 

which are described in Section 3.4.2 and Section 4.2.2. This gives assistance to identify the 

type of dominant resonance in the following cases. 

 

Figure 6.7 compares the receptances of the wheel, track and the equivalent wheel/rail 

contact spring. The first crossing point of the wheelset and track receptances is identified 

as the P2 resonance, which in this case is at around 100 Hz.  

 

 
Figure 6.7 Vertical receptances of the wheelset, ballasted track and contact spring 

 

The basic case considered in this thesis is a single wheel rolling over a discretely supported 

railway track with only the only mechanism being due to the initial wheel/rail surface 

roughness input. In this case, the dynamic characteristics of the wheel and track are same 

as those established in Section 3.5 and 4.2. The radius of the curve is chosen as 300 m. The 

wheel running speed is 72 km/h (20 m/s) and track cant is 50 mm (corresponding to a cant 

deficiency of 158 mm). The friction coefficient is set as a constant value here, which is 

taken as µ0 = 0.2. The analysis focuses on the low rail. 

 

Before using the time-domain simulation model to predict the wheel/rail vibration, contact 

forces and the wear, some input parameters for this time-domain model are first obtained 

from the steady-state curving model, which was introduced in Chapter 2 and listed in Table 

4.1. 
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Using these steady-state parameters, the prediction using the current time-domain 

simulation model is carried out. The pre-calculation time in the time-domain model to 

reach the steady-state of the wheel-rail rolling contact is 4 seconds. Then the wheel/rail 

surface roughness is introduced for the next 2 seconds, which is the section of interest. The 

frequency spectra displayed here are in the form of one-third octave bands and the 

magnitudes are shown in decibels.  

 

Before this calculation, the effect of the passage step size used in the roughness growth 

calculation is evaluated. The passage step size is the multiplier used to predict the 

roughness after a certain number of passages by multiplying the wear results after one 

calculation. Here, results are obtained using a passage step size of 1 (assumed to be the 

correct result) and larger values of 10, 100, 500, 1000, 2000, 5000, 10000. The value is 

considered to be effective when the error compared with former result is below 1%. When 

comparing the results of two near values, the total passage number considered is 10 times 

of the larger value of the two. The error is the percentage of the difference of wear depth 

time histories between two results with the wear depth time history of the smaller value 

result. This error variation with the passage step size is given in Figure 6.8(a). Based on 

this, the passage step size is chosen to be 1000. 

 

To check the influence of the P2 resonance in the time-domain results, all wheelset modes 

besides the rigid body modes are removed in the model. All the possible mechanisms of the 

corrugation development introduced above are also considered. The wheel and rail surface 

vibration spectra are given in Figure 6.8(b). 

 

  
(a)  (b)  

Figure 6.8 Roughness development in one third octave bands of the basic case applying rigid wheelset: (a) 
passage step size investigation; (b) wheel and rail vibration spectra 

 

The significant peak identified in the vibration spectra is at 100 Hz, which is close to the 
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P2 resonance. It is found that below this frequency, the wheel vibration level is higher than 

the rail vibration, while above that frequency, the rail vibration level is higher. By 

identifying the P2 resonance value of the basic case, it is more convenient to identify 

which modes the significant peaks in roughness development related to in the following 

investigations. It can also check whether the P2 resonance is shifted due to the mode 

coupling. 

6.3.2 Identification of pinned-pinned resonance 

The identification process of the pinned-pinned resonance is close to the one introduced in 

Section 6.3.2. In Figure 6.7 which compares the receptances of the wheel, track and the 

equivalent wheel/rail contact spring, The pinned-pinned resonance is found as a dip in the 

track receptance above a sleeper at around 1000 Hz. The basic case is also considered here 

and the steady-state input parameters for this time-domain model are listed in Table 4.1. 

The pre-calculation time in the time-domain model to reach the steady-state of the wheel-

rail rolling contact is 4 seconds. Then the wheel/rail surface roughness is introduced for the 

next 2 seconds, which is the section of interest. The frequency spectra displayed here are in 

the form of one-third octave bands and the magnitudes are shown in decibels. The passage 

step size is chosen to be 1000 and applied in all following cases. 

 

It is difficult to isolate the effect of the pinned-pinned resonance, since a wheelset mode 

also occurs around 1000 Hz. However, by using a continuously supported track the pinned-

pinned mode is removed. The roughness development for the discretely supported track 

with the nominal sleeper spacing of 0.65 m and a continuously supported track are given in 

Figure 6.9. Peaks at 250 Hz and 400 Hz in Figure 6.9(a) correspond to wheelset modes. 

There is also a small peak at 1000 Hz but it is unclear if this is due to the pinned-pinned 

mode or a wheelset mode. For the continuously supported track in Figure 6.9(b), the peak 

at 160 Hz corresponds to the wheelset resonance, while the peak at 400 Hz corresponding 

to the wheelset mode is again present. The peak at 1000 Hz is smaller than in Figure 6.9(a), 

which may indicate that the wheelset mode contributes to this peak together with the 

pinned-pinned resonance. 
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(a)  (b)  

Figure 6.9 Roughness level development in one third octave bands of: (a) the discretely supported track with 
nominal sleeper spacing; (b) the continuously supported track 

 

Next, the sleeper spacing of the discretely supported track is adjusted to 0.75 m. By doing 

this, the frequency of the pinned-pinned resonance is reduced to around 800 Hz. The rail 

surface roughness development and its variation with the number of passages after 

applying the new sleeper spacing are given in Figure 6.10. 

 

  
(a) Roughness level (b) Roughness variation 

Figure 6.10 Roughness development in one third octave bands of the basic case applying 0.75 m sleeper 
spacing 

 

It is found that, with the modified sleeper spacing, the roughness level at around 800 Hz 

increases, which may be associated with the pinned-pinned resonance. The roughness at 

160 Hz also increases, but much less than in Figure 6.8. This may because the dominant 

resonance changes after the sleeper spacing has been changed. The roughness growth at 

160 Hz appears to be suppressed by the pinned-pinned resonance.  

 

The identification of the P2 resonance and the pinned-pinned resonance of the basic case 

gives the exact values of these two resonances. These values are found to be similar to 
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some modal frequencies of the wheelset. In the following investigations, if significant 

peaks appear at these frequencies, it needs further investigations to identify which 

resonance contributes to the roughness development at this frequency. 

6.4 Identification of dominant mechanism  

The generation of rail corrugation is associated with multiple mechanisms and it is unlikely 

that it can be explained satisfactorily by a single mechanism in all situations. Under 

specific conditions, a particular mechanism may be found to be dominant. Finding this 

mechanism would allow the corresponding actions to be taken to suppress the development 

of rail corrugation and would allow more optimal track maintenance. In this section, by 

isolating the occurrence of each mechanism, the contact and wear results under different 

mechanisms are obtained and compared. In this way, the role of each mechanism in the 

generation of rail corrugation can be identified. 

 

The basic case considered is the same as introduced in Section 6.3.2, which is a single 

wheel rolling over a discretely supported railway track with only the initial wheel/rail 

surface roughness input. In this case, the dynamic characteristics of the wheel and track are 

the same as those established in Section 3.5 and 4.2. The radius of the curve is chosen as 

300 m. The wheel running speed is 72 km/h (20 m/s) and track cant is 50 mm 

(corresponding to a cant deficiency of 158 mm). The friction coefficient is set as a constant 

value here, which is taken as µ0 = 0.2. The analysis focuses on the low rail. 

6.4.1 Basic case with only initial roughness input 

The first case considered consists of only the initial surface roughness as a mechanism. 

Neither the vertical-lateral coupling for the track and wheel, nor the falling friction are 

applied. Figure 6.11(a) shows the relevant range of the time histories of the wheel/rail 

contact force in vertical and lateral directions for this case. It can be noticed from the 

negative sign of the lateral contact force that the low rail tends to deflect towards the inside 

of the curve. Due to the saturated tangential contact force, the lateral contact force 

spectrum has the same pattern as the vertical contact force spectrum, but with a lower level 

as shown in Figure 6.11(b). The 80 Hz peak is either due to the wheelset bending mode or 

the P2 resonance, or due to both, while the 200 Hz peak is related to the anti-resonance of 

the track dynamic response shown in Figure 3.8. 
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(a)  (b)  

Figure 6.11 The wheel/rail contact force due to initial surface roughness: (a) Time history; (b) Frequency 
spectra in one third octave bands 

 

The vertical wheel displacement spectrum shown in Figure 6.12(a) has very few specific 

characteristics. The lateral wheel displacement spectrum exhibits a peak at 30 Hz, which is 

the sleeper passing frequency, which is also visible in the vertical displacement spectrum. 

Strong peaks are present in the lateral response at 80 Hz and 160 Hz which are related to 

lateral wheelset modes, as shown in Figure 4.4(b). The peaks at 250 Hz, 400 Hz and 1000 

Hz are related to lateral wheel modes. Figure 6.12(b) gives the rail displacement spectra 

due to the initial roughness. The vertical and lateral directions show similar patterns. The 

peak at 30 Hz is again the sleeper-passing frequency, whereas the peak at 100 Hz seems 

related to the P2 resonance since the wheel vertical displacement is higher below 100 Hz 

and the rail vertical displacement is higher above 100 Hz. The peak at 200 Hz is hard to 

explain. 

 

  
(a)  (b)  

Figure 6.12 Displacement spectra in one third octave bands due to initial surface roughness of (a) wheel; (b) 
rail 

 

Figure 6.13(a) shows the development of roughness for this case. As the number of wheel 
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passages increases, the roughness at 400 Hz grows significantly. There is also a small 

increase at 1000 Hz but there is no evidence of roughness growth at the P2 resonance (100 

Hz). The roughness growth rate at 400 Hz shows a large increase. This peak is related to 

the wheelset mode at 402 Hz, which is the (2,0) axial mode and is prominent in the 

wheelset lateral receptance. The corresponding peak is also found in the wheel lateral 

displacement in Figure 6.12(a). The roughness level above around 1600 Hz tends to 

decrease. This may be due to the dynamic contact filter effect introduced in Section 4.3.3. 

The contact patch length is around 14 mm, which corresponds to a frequency of 1428 Hz 

for a velocity of 20 m/s. 

 

A growth rate parameter is introduced here to quantify the global growth rate. For each 

wavelength band k this is calculated from the initial roughness amplitude Ak,0 and the final 

roughness amplitude Ak,n after n wheel passages, assuming a linear increase in level. It is 

expressed as 

                             ψk= 20
n

log10
Ak,n
Ak,0

                       (6.11) 

 

If the roughness level in a particular wavelength band increases after a number of wheel 

passages, the roughness growth rate is positive in that wavelength band. A negative 

roughness growth rate indicates the decrease of the roughness level in that wavelength 

band.  

 

Figure 6.13(b) shows the average roughness growth rate of the first 10,000 passages 

throughout the frequency range for the present case. This shows clearly the large growth 

rate at 400 Hz.  

 

  
(a) Roughness level (b) Roughness growth rate 

Figure 6.13 Wheel/rail surface roughness development after different passages with initial surface roughness 
in one third octave bands 
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6.4.2 Case considering both initial roughness and vertical-lateral coupling 

The next case considered here includes not only the initial roughness input, but also the 

vertical-lateral coupling effect on the wheel and rail dynamics. The cross receptances 

between vertical and lateral directions of the wheel and track are obtained and transformed 

into corresponding impulse responses and moving Green’s functions. The operational and 

steady-state curving parameters used in this case are the same as in the former basic case in 

the previous section. In this way, the effect of the vertical-lateral coupling on the roughness 

growth can be found by comparing the results with those of the basic case. The vertical-

lateral coupling effect is only introduced in the section of interest in the time domain 

(where the roughness is introduced) to avoid any corrugation growth before steady state is 

reached.  

 

The frequency spectra of the wheel/rail contact force in vertical and lateral directions are 

given in Figure 6.14. Compared with the case considering only initial roughness, the 

inclusion of the vertical-lateral cross terms has no significant effect on the contact force 

spectra except for a small increase to the peak at 80 Hz and at 400 Hz. The displacement 

spectra of the track and wheelset are shown in Figure 6.15. For the wheel displacement 

spectra, the inclusion of the vertical-lateral cross terms results in a small peak at 400 Hz in 

the vertical direction and considerably enhances that peak in the lateral direction. The rail 

displacement spectra follow a similar pattern to the contact force spectra, with a small 

increase at 80 Hz and for all the frequencies above 300 Hz. 

 

 

Figure 6.14 Frequency spectra of the wheel/rail contact force with initial surface roughness and vertical-
lateral coupling compared with only initial roughness in one third octave bands 
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(a)  (b)  

Figure 6.15 Displacement spectra in one third octave bands of (a) wheel; (b) rail for the case with initial 
surface roughness and vertical-lateral coupling 

 

Figure 6.16(a) shows the roughness development with the number of wheel passages for 

this case. As before, the roughness at 400 Hz has a significant growth, while at 1000 Hz, 

the roughness only has a slight increase. Figure 6.16(b) shows the roughness growth rate 

based on the first 10,000 passages throughout the frequency range for the present case. 

Compared with Figure 6.13, the inclusion of the vertical-lateral coupling only gives a small 

increase in the roughness growth rate at 400 Hz and 1000 Hz. 

 

  
(a) Roughness level (b) Roughness growth rate 

Figure 6.16 Wheel/rail surface roughness development after different passages with initial surface roughness 
and vertical-lateral coupling in one third octave bands 

6.4.3 Case considering both initial roughness and falling friction 

The next case considered includes both the initial roughness input and falling friction when 

calculating the lateral creep force, slip velocity and wear. The velocity-dependent friction 

coefficient introduced in Section 6.2.2 is used here. The operational and steady-state 

curving parameters used in this case are the same as the former basic case. However, the 

vertical-lateral coupling effect is omitted. In this way, the effect of the application of falling 
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friction on the roughness growth can be found by comparing with the results of the basic 

case. The velocity-dependent friction coefficient is only introduced in the section of 

interest in the time domain when the roughness is introduced.  

 

The velocity-dependent friction coefficient used is shown in Figure 6.17. This is based on a 

maximum value of 0.3, which is chosen to allow direct comparison with the results of the 

basic case given in Section 6.4.1. Under the current lateral creepage, the value of the 

dynamic friction coefficient is similar to the value of the constant friction coefficient used 

in the basic case, i.e. 0.2. 

 

 
Figure 6.17 Velocity-dependent friction coefficient with maximum value 0.3 plotted against creepage 

 

Figure 6.18 shows the frequency spectra of the vertical and lateral contact forces for the 

case with initial surface roughness and falling friction. Compared with the results without 

falling friction, from Figure 6.11(b), the vertical contact force spectrum has little change 

due to the inclusion of falling friction, since the falling friction only affects the tangential 

contact force whereas the vertical-lateral coupling is not included here. However, the 

lateral contact force spectrum has a large increase for frequencies above 80 Hz because of 

the inclusion of falling friction. Similar characteristics are found in Figure 6.19, which 

shows the displacement spectra of the wheel and rail. In the wheel lateral displacement 

spectrum, the peak at 80 Hz decreases in amplitude while the peaks at 160 Hz, 250 Hz, 400 

Hz and 1000 Hz increase after including the falling friction. The vertical displacement 

spectrum is not affected. For the rail displacement spectra given in Figure 6.19(b), the 

characteristics are similar but with no significant peaks. 
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Figure 6.18 Frequency spectra of the wheel and rail contact force with initial surface roughness and falling 

friction in one third octave bands 

 

  
(a)  (b)  

Figure 6.19 Displacement spectra in one third octave bands of (a) wheel; (b) rail for the case with initial 
surface roughness and falling friction 

 

Figure 6.20(a) shows the roughness development with the number of wheel passages 

considering the falling friction as well as initial roughness. The roughness shows 

significant growth at 160 Hz, 250 Hz, 400 Hz and, to a lesser extent, at 1000 Hz. 

Comparing this with Figure 6.19, it can be identified that these peaks are related to the 

peaks in the wheel lateral displacement spectrum. This indicates that the modes 

contributing to the roughness growth are mainly the lateral wheelset modes. Figure 6.20(b) 

gives the roughness growth considering the falling friction and the initial roughness. 

Compared with the case considering only the initial roughness, the inclusion of the falling 

friction introduces two more peaks at 160 Hz and 250 Hz. The roughness growth at 400 Hz 

and 1000 Hz is also increased to a small extent. The inclusion of falling friction means that 

more lateral wheelset modes are involved in contributing to the roughness development. 
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(a) Roughness level (b) Roughness growth rate 

Figure 6.20 Wheel/rail surface roughness development after different passages with initial surface roughness 
and falling friction in one third octave bands 

6.4.4 Case considering all three mechanisms 

The last case considered here includes all three mechanisms: the initial roughness input, 

the vertical-lateral coupling and the falling friction, when calculating the lateral creep 

force, slip velocity and wear. The operational and steady-state curving parameters used in 

this case are the same as in the former cases. This case is more similar to a practical case 

which includes multiple corrugation generation mechanisms. In this case, the mechanism 

that contributes to the most significant roughness growth rate would be the dominant 

mechanism. 

 

Figure 6.21 shows the frequency spectra of the wheel/rail contact forces, considering all 

three mechanisms introduced in the thesis. In this case, the spectra resemble a combination 

of the former cases, in which the vertical force spectrum is slightly affected by the vertical-

lateral coupling while the lateral force spectrum has a large increase mainly above 80 Hz 

due to the falling friction.  

 

 
Figure 6.21 Frequency spectra of the wheel and rail contact forces considering all three mechanisms in 

one third octave bands 
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Figure 6.22 shows the displacement spectra of the wheel and rail. As in the case with 

falling friction (Figure 6.19), the wheel lateral displacement spectrum has strong peaks at 

160 Hz, 250 Hz, 400 Hz and 1000 Hz, which are over 10 dB greater than those in the case 

with only initial roughness. The vertical displacement is slightly affected by the lateral 

displacement due to the vertical-lateral coupling. 

 

  
(a) (b) 

Figure 6.22 Displacement spectra in one third octave bands of (a) wheel; (b) rail for this case 

 

Figure 6.23(a) shows the roughness spectra after different numbers of wheel passages. The 

roughness has a significant growth in the 160 Hz, 250 Hz, 400 Hz and 1000 Hz frequency 

bands. This indicates that the lateral wheelset modes are most dominant in the roughness 

development. To identify the responsible mechanism more precisely, Figure 6.23(b) 

compares the roughness growth rate with the different mechanisms and all the considered 

mechanisms. The roughness growth rates in the most important frequency bands are listed 

in Table 6.1. It can be identified that the roughness growth at 160 and 250 Hz is caused by 

the falling friction, while the growth at 400 Hz and 1000 Hz corresponds to the transient 

dynamic interaction mechanism (i.e. initial roughness). The vertical-lateral coupling 

contributes to the slight increase of the roughness growth rate at frequencies above 500 Hz.  
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(a) Roughness level (b) Roughness growth rate 

Figure 6.23 Wheel/rail surface roughness development after different passages considering all three 
mechanisms in one third octave bands 

 

Table 6.1 Roughness growth rate per 1000 passages in different frequency bands under different mechanisms 

Frequency band 160 Hz 250 Hz 400 Hz 1000 Hz 

Corresponding mode Wheelset 

mode 

Wheelset 

mode 

Wheelset 

mode 

Wheelset mode 

or pinned-pinned 

resonance 

Initial roughness  0.08 0.6 0.12 

Initial roughness and 

vertical-lateral coupling 

 0.09 0.73 0.16 

Initial roughness and 

falling friction 

0.3 0.47 0.74 0.18 

All three mechanisms 0.3 0.48 0.77 0.23 

 

To identify the frequency peaks found in the roughness growth rate, several additional 

time-domain predictions are performed. The wheelset modes at 147, 276, 402 and 1065 Hz 

are removed from the wheelset modal information and the time-domain model is run again 

to predict the roughness growth. The results are shown in Figure 6.24. The growth rate at 

both 160 Hz and 250 Hz drops to nearly zero when either of the modes at 147 Hz or 276 

Hz mode are removed from the wheelset model. In these two cases, the roughness growth 

rate at 400 Hz and 1000 Hz is not affected much. When the 402 Hz wheelset mode is 

removed, the roughness growth rate at 400 Hz drops to zero, as well as the rate at 160 Hz 

and 250 Hz, and instead much stronger roughness growth occurs at 1000 Hz. In this case, 

the remaining dominant mode is only the 1000 Hz mode and the effect of falling friction is 

eliminated.  
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Figure 6.24 Wheel/rail surface roughness growth rate of first 10,000 passages with all three mechanisms and 

different wheelset modes removed in one third octave bands 

 

The peak at 1000 Hz in the original case may be related to the 1063 Hz wheelset mode 

and/or the vertical pinned-pinned resonance. When removing the 1063 Hz wheelset mode, 

the resultant roughness growth at 1000 Hz is reduced but not to zero, suggesting that the 

roughness growth at 1000 Hz is due to both the wheelset mode and pinned-pinned 

resonance. These results indicate that, when all three mechanisms are present, under the 

simulation parameters introduced in this section, the lateral wheelset mode at 402 Hz and 

1065 Hz, the stick-slip motion associated with the wheelset mode at 147 Hz and 276 Hz 

and pinned-pinned resonance all contribute to the dominant roughness growth. The 

transient dynamic interaction and stick-slip vibration due to falling friction are the main 

mechanisms on roughness development. 

6.5 Effect of coupling between two wheels and rails 

The effects of coupling between the two wheels and two rails on the wheel and track 

responses have been introduced in Section 3.4.6. This section investigates the effects of 

this coupling on the corrugation generation compared with the cases introduced in Section 

6.4 which consider only the wheel/rail contact on the low rail in the curve. 

 

In this case, the dynamic characteristics of the wheel and track remain the same as those 

established in Sections 3.5 and 4.2. The radius of the curve is 300 m, the wheel running 

speed is 72 km/h (20 m/s) and the track cant is 50 mm with cant deficiency of 158 mm. 

The friction coefficient is set as a constant value of µ0 = 0.2. When applying the velocity-

dependent friction coefficient, the maximum value of friction coefficient is chosen to be 

0.3, as shown in Figure 6.17. The input parameters for the wheel/rail contact on the low 

rail in this time-domain model are the same as mentioned at the beginning of Section 6.4. 

The steady-state parameters of the wheel/rail contact on the high rail are also obtained 
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from the steady-state curving model introduced in Chapter 2, as shown in Table 6.2. 
 

Table 6.2 Steady-state curving parameters for low and high rails 

Parameter Low rail High rail Units 

Normal load 35.58 47.15 kN 

Lateral displacement 7.755 7.755 mm 

Yaw angle 7.347 7.347 mrad 

Longitudinal creepage 0.3984% -0.3984% - 

Lateral creepage 0.732% 0.8645% - 

Spin -0.034 1.22 1/m 

Speed 20 20 m/s 

Curve radius 300 300 m 

 

The effects of coupling between the two tracks are investigated for the case with all three 

mechanisms: initial roughness, vertical-lateral coupling and falling friction. The contact 

forces and the surface roughness on the low rail are still the ones of interest and the high 

rail is also potentially of interest. Figure 6.25(a) shows the roughness development with the 

number of wheel passages. Compared with the results of the case without considering the 

coupling between two tracks in Section 6.4.4, the characteristics of the roughness 

development are similar but there are some differences. To illustrate these, the roughness 

growth rate of the first 10,000 passages is shown in Figure 6.25(b). Compared with the 

former case, the roughness growth rate at 250 Hz increases while the growth rates at 400 

Hz and 1000 Hz decrease. The roughness growth rate at 160 Hz is not affected much. This 

may indicate that, when considering the coupling between two tracks, the stick-slip 

vibration due to falling friction contributes more to the roughness development on the low 

rail at curves than in the case without this coupling. 

 

  
(a) Roughness level (b) Roughness growth rate 

Figure 6.25 Wheel/rail surface roughness development on the low rail applying all three mechanisms 
including the coupling between high and low rails in one third octave bands 
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Considering the roughness on the high rail, Figure 6.26 shows the roughness level after 

different passage numbers and roughness growth rate for the case in which all three 

mechanisms (initial roughness, vertical-lateral coupling and falling friction) are included 

together with the coupling between two tracks. For the high rail, under the current vehicle 

speed and track curve radius, the roughness is nearly not developing and no rail 

corrugation occurs on it.  

 

  
(a) Roughness level (b) Roughness growth rate 

Figure 6.26 Wheel/rail surface roughness development on the high rail applying all three mechanisms 
including the coupling between high and low rails in one third octave bands 

6.6 Effect of multiple wheel/rail interactions 

The wheel/rail contact forces play a very important role in the formation of the rail 

corrugation. It has been found by previous authors that the spectrum of the vertical 

wheel/rail contact force may contain several peaks at different frequencies due to the wave 

reflections between the multiple wheels on the rail [55,75]. Wu and Thompson [151,27] 

introduced a model in the frequency domain of multiple wheels interacting with a rail and 

developed the concepts of active and passive wheel/rail interactions. Based on this, the 

superposition principle was used to calculate the wheel/rail contact force and the possible 

effect of multiple wheel/rail interactions on the formation of the short-pitch corrugation 

was explored.  

 

In [151], only the vertical interactions between the wheels and track were considered. 

Based on this approach, the response of the discretely supported track under multiple 

wheel/rail interactions is investigated here using the receptance-coupling method 

introduced in the Section 3.4.4. In the following, some basic concepts and equations from 

references [151,27] are briefly introduced and the application of the receptance-coupling 

method in obtaining the response of the discretely supported track with multiple wheel/rail 
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interactions is introduced in detail. 

6.6.1 Relationship between the contact force and track dynamics 

In a simple case of vertical interaction between a single wheel and rail, the contact force F 

can be calculated in the frequency domain by a relative displacement (roughness) 

excitation model [90] 

                          F(ω)=- R(ω)
αW(ω)+αC(ω)+αR(ω)

                  (6.12) 

where R is the relative displacement (roughness) between the wheel and rail, αW, αC, αR are 

the point receptances of the wheel, equivalent contact spring and rail respectively and ω is 

the circular frequency of the excitation. The variables in Equation (6.12) are all complex, 

and the common term eiωt is omitted. 

 

Figure 6.27 shows a track interacting with four wheels, which represent a pair of bogies at 

the adjacent ends of two vehicles. The roughness excitation is only considered at one 

wheel, in this case wheel 1. This would cause an interaction force F1 at the position of 

wheel 1 and generate an incident wave propagating along the rail and interacting with other 

wheels. This would generate ‘passive’ interaction forces Pji at the other wheel/rail 

interaction positions; here the subscript indicates that the generated passive force is at 

position j and caused by the excitation at position i. These passive interaction forces also 

generate waves propagating in both directions from the respective interaction positions. 

Thus, the vibration due to F1 is a combination of the vibration generated by F1 and the 

waves generated by Pji. 

 

 
Figure 6.27 A track with four wheels on the rail [75] 

6.6.2 Track responses  

As mentioned in Section 3.5, to consider the track dynamics in the time domain, the 

moving Green’s functions of the track obtained from the track receptances are needed. In 
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order to calculate the track receptance considering the effect of multiple wheel/rail 

interactions, the track model introduced in Section 3.4 is extended here to include the 

passive wheel/rail interactions. Inserting this track receptance into Equation (6.12), the 

active contact force F1 can be calculated. The model developed by Wu and Thompson [75] 

considered the track dynamics for multiple wheels on the rail and calculated the point 

receptance and passive wheel/rail interactions. This model is briefly introduced here and 

then the expansion based on the receptance-coupling method is also introduced. 

 

Figure 6.27 schematically shows a track with multiple wheels on the rail. The discrete 

supports and the wheels can all be replaced by interaction forces. The rail vibration can 

also be expressed as the superposition of the response to each passive force and the 

excitation force. When considering an excitation force at a wheel position i, the 

corresponding wheel should be omitted to determine the receptance. The transfer 

receptance of the rail at an arbitrary position can be obtained when the excitation force is a 

unit force: 

          𝛼𝛼(zm)=∑ pwniα
RT(zm,zn)M

n=1
n≠i

+∑ psniα
RT(zm,zn)M+N

n=M+1 +αRT(zm,zi)    (6.13) 

where m = 1,2,…,M+N, M is the number of wheel/rail interactions under consideration, N 

is the number of the discrete supports. αRT(zm,zn) is the transfer receptance of a free rail at 

zm with the force acting at zn. pwni and psni are the passive forces at the wheel/rail interaction 

positions and discrete support positions respectively and given as 

                     pwni=-Zwα(zn),  n=1,2,…,M  and  n≠i          (6.14) 

                      psni=-Zsα(zn),  n=M+1,M+2,…,M+N           (6.15) 

where Zs is the dynamic stiffness of the support. Zw is the combined dynamic stiffness of 

the wheel and contact spring and may be calculated using 

                                Zw= 1
αC+αW                        (6.16) 

where αC is the receptance of the wheel/rail contact spring, and αW is the wheel receptance 

at the contact point. When applying this in the current receptance-coupling method to get 

the track response, an equivalent linear contact spring is assumed. The wheel receptance in 

all directions can be obtained from the wheel modal information and modal summation 

method. 

 

Comparing Equation (6.13) and Equation (3.41), the only difference is the first term on the 

right side of Equation (6.13). This term represents the vibration generated by the multiple 

wheel/rail interactions.  
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Considering a track with multiple wheels on the rail, as shown in Figure 6.27, the wheels 

are marked as 1,2,3,4 while the discrete supports are marked as s1,…,sn. If the excitation 

force is added at wheel 1, wheel 1 is replaced with a unit force. Taking the response of 

wheel 2 as an example, the generated displacement at wheel 2 can be given by Equation 

(6.13) as 

            u(z2)=αRT(z2,z1)-Zwu(z2)αRT(z2,z2)-Zwu(z3)αRT(z2,z3)- 

                                        Zwu(z4)αRT(z2,z4)+∑ psn1αRT(z2,zn)sn
n=s1                (6.17) 

Rearranging Equation (6.17) and obtaining the similar equations for other wheels, the 

resultant generated displacements at the wheel/rail interaction points are given in matrix 

form as 

                           αMuM=αMe
r Fe-αM

r F                      (6.18) 

where uM=[u(z2);u(z3);u(z4)], αMe
r =[αRT(z2,z1);αRT(z3,z1);αRT(z4,z1)], 

F=[pss11,pss21,…,pssn1], and 

            αM= �
1+ZwαRT(z2,z2) ZwαRT(z2,z3) ZwαRT(z2,z4)

ZwαRT(z3,z2) 1 + ZwαRT(z3,z3) ZwαRT(z3,z4)
ZwαRT(z4,z2) ZwαRT(z4,z3) 1 + ZwαRT(z4,z4)

�   (6.19) 

                    αM
r = �

αRT(z2,zs1) ⋯ αRT(z2,zsn)
αRT(z3,zs1) ⋯ αRT(z3,zsn)
αRT(z4,zs1) ⋯ αRT(z4,zsn)

�               (6.20) 

Combining Equation (6.18) with (3.45) and (3.46), the displacements at the wheel 

positions uM can be obtained.  

 

According to Equation (3.47) and (3.48), the rail displacement at the connection points 

with the rail pads are needed to calculate the connection forces. Thus, the displacements at 

the rail foot positions which are connected to the rail pads are given in matrix form as 

                           ur+αcuM=αe
rFe-αrF                     (6.21) 

where ur=[u(zs1);u(zs2);…;u(zsn)], αe
r=[αRT(zs1,z1);αRT(zs2,z1);…;αRT(zsn,z1)] and 

                αc= �
ZwαRT(zs1,z2) ZwαRT(zs1,z3) ZwαRT(zs1,z4)

⋮ ⋮ ⋮
ZwαRT(zsn,z2) ZwαRT(zsn,z3) ZwαRT(zsn,z4)

�      (6.22) 

                     αr= �
αRT(zs1,zs1) ⋯ αRT(zs1,zsn)

⋮ ⋱ ⋮
αRT(zsn,zs1) ⋯ αRT(zsn,zsn)

�             (6.23) 

 

Substituting Equation (3.47) and (6.18) into Equation (6.21) and rearranging, the rail 

displacement at the rail foot connection positions under multiple wheel/rail interactions can 

be obtained as  
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             ur=�I+αr(αp + αs)-1-αcαM
-1αM

r (αp + αs)-1�
-1
�αe

r-αcαM
-1αMe

r �Fe   (6.24) 

 

Through Equations (6.24) and (3.47), the connection forces from discrete supports are 

obtained. Then, the track response at an arbitrary position on the rail head under multiple 

wheel/rail interactions can be given as 

uk
r=αke

r Fe-ZwαkcuM-αk
rF                  (6.25) 

where αk
r is the vector of receptances giving the response at point k on the free rail to a 

unit force at each spring location on the rail foot; αke
r  is the transfer receptance of the free 

rail from external force Fe to the response point k, and αkc is the transfer receptance from 

passive force Pi to the response point k. 

6.6.3 Numerical example 

Calculations are carried out for the track with four wheels on it as shown in Figure 6.27. 

The wave reflections or the passive interactions from other wheels which are further away 

are weak enough to be neglected due to the wave attenuation. The parameters for the track 

and wheel are still same as the parameters given in Table 3.4 and Figures 4.2-4.3 

respectively. The distances between wheels are set to 2.2 m and 3.85 m which are 

consistent with Desiro City Class 717 trains in the UK. A unit force acts at wheel 1. The 

results are shown in Figure 6.28 in terms of the point mobility of the rail compared with 

the point mobility of single wheel and the passive wheel/rail interaction force.  

 

From Figure 6.28(a), the point mobility at low frequencies is found to be hardly affected by 

the presence of the wheels on the rail, compared with Figure 3.13. This is due to the high 

wave propagation decay rate in the rail at low frequencies, see Figure 3.16. The incident 

wave is much attenuated before reaching other wheels, so that the passive wheel/rail 

interaction is weak. At high frequencies, however, it fluctuates around the point mobility 

value of the rail without wheels on it. This fluctuation of the rail vibration is caused by the 

combination of the incident wave and the reflected waves between the wheels on the rail. 

For a certain position on the rail, the vibration amplitude may increase when the reflected 

wave constructively interferes with the incident wave, or decrease when the two waves 

destructively interfere [75]. As a result, the mobility amplitude fluctuates with frequency.  
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(a) Mobility (b) Force 

Figure 6.28 Amplitude of point and transfer mobility and passive interaction force at different wheel 
positions. Soft pads are used. A unit excitation force acts at the wheel 1 position and the excitation is above 

one of the sleepers.  

 

The passive wheel/rail interaction forces shown in Figure 6.28(b) are small at low 

frequencies. This is due to the low dynamic stiffness combination of the wheel and the 

contact spring, Zw, at low frequencies, and also due to the high decay rate in the rail. 

Surprisingly as also found in [75], at some frequencies the passive interaction force can be 

higher than the original excitation force. In particular, at around 800 Hz and 1100 Hz, the 

passive contact forces at wheels 3 and 4 are larger than the excitation force at wheel 1 

(unity). Therefore, the passive interaction forces are important at high frequencies and 

cannot be neglected in the calculation of the whole wheel/rail contact force. 

6.6.4 Time-domain results 

To investigate the effect of the multiple wheel/rail interactions on the generation of 

corrugation, similar cases are considered here to those in Section 6.4. First, the basic case 

with all three mechanisms is considered with multiple wheels rolling over a discretely 

supported track. Unlike the case in Section 6.4.4, here the moving Green’s functions of the 

active wheels are derived from the track receptance that includes the effect of the multiple 

wheel/rail interactions. For the four positions shown in Figure 6.27, the track receptances 

at the first and fourth wheel-rail contact positions are similar, while the track receptances at 

second and third wheel-rail contacts are similar. The initial roughness is considered for 

each wheel-rail interaction individually, and the effect of roughness at other wheel-rail 

contacts is neglected. The dynamic characteristics of the wheels are the same as those 

established in Section 4.2. The radius of the curve is chosen as 300 m and the wheel 

running speed is 72 km/h (20 m/s) as previously. Other operational and steady-state 

curving parameters are same as for the case in Section 6.4.4. 
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Four wheel/rail interactions are considered here, as shown in Figure 6.27. The initial 

roughness is applied to each wheel, as in Section 6.2.1, but the phase of the roughness at 

each wheel is treated as a random variable which is assumed to distributed in (-π, π). 

According to the distances between the wheels, and the sleeper spacing of 0.65 m, when 

the first wheel is directly above the sleeper, the second wheel is 0.25 m away from the 

nearest sleeper, the third is 0.2 m away from the nearest sleeper and the fourth is also 0.2 m 

away from the nearest sleeper. The roughness spectra at various stages during the first 

10,000 passages of the first and second wheel-rail interactions in this case are shown in 

Figure 6.29. The average roughness growth rates over the first 10,000 passages for the first 

and second wheel-rail interactions are shown in Figure 6.30. 

 

  
(a)  (b)  

Figure 6.29 Roughness level spectra applying all three mechanisms considering multiple wheel-rail 
interactions in one third octave bands: (a) First wheel-rail interaction; (b) Second wheel-rail interaction 

 

For the first wheel-rail interaction, compared with results of the original case with all three 

mechanisms in Figure 6.23, the main peaks observed in the resultant figures are modified. 

Due to the oscillations of the rail mobility at high frequency, the roughness growth rate at 

1000 Hz increases a lot and the growth rate at 400 Hz drops. As for the roughness growth 

rate at 160 Hz and 250 Hz, they become zero in this case. From Figure 6.30(a), for the first 

wheel-rail interaction case, the effect of the self-excited vibration caused by falling friction 

is eliminated. The transient dynamic interaction mechanism becomes dominant, especially 

at high frequencies. The roughness develops mainly at high frequencies due to the rail 

oscillation.  

 

For the second wheel-rail interaction, compared with the first wheel-rail interaction, the 

peaks of the roughness growth rate are more like the original case with all three 

mechanisms. Compared with the original case with all three mechanisms, the peaks at 160 

Hz, 400 Hz and 1000 Hz are a little suppressed, while the roughness growth rate at 250 Hz 
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has nearly no change. Thus, unlike the first wheel, the oscillation of the rail mobility at 

high frequency has little effect on the second wheel (or the third wheel). 
 

  
(a)  (b)  

Figure 6.30 Roughness growth rates of first 10k passages applying all three mechanisms considering multiple 
wheel-rail interactions in one third octave bands: (a) First wheel-rail interaction; (b) Second wheel-rail 

interaction 

6.7 Summary 

At the beginning of this chapter, possible mechanisms accounting for the formation and 

development of rail corrugation presented in the literature were identified. The principles 

of each mechanism have been briefly presented. To further investigate which resonances 

contribute to the significant peaks in the roughness spectra, the values of the P2 resonance 

and the pinned-pinned resonance of the basic case applying all three mechanisms are 

preliminarily obtained before the investigations in the following parts. These values are 

found to be similar to some modal frequencies of the wheelset. In the following 

investigations, if significant peaks appear at these frequencies, it needs further 

investigations to identify which resonance contributes to the roughness development at this 

frequency. 

 

The simulation model was then used to identify the dominant mechanism of a basic case. 

By including the different mechanisms, the resultant roughness development and growth 

rates are compared and the main mechanisms are identified. From the results it is seen that 

the self-excited vibration caused by falling friction and the transient dynamic interaction 

are the main mechanisms that account for the corrugation formation and development in 

this case. Rutting is one kind of corrugation whose typical frequency is between 250-400 

Hz and mainly corresponds to the wheelset modes as introduced in Table 1.1. It appears 

that rutting corrugation is the main type of corrugation found in this case. The vertical 

pinned-pinned resonance also makes a small contribution to the corrugation formation, 
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while the P2 resonance appears not to contribute to the corrugation growth in this case.  

 

The effects on the roughness development and growth rate of coupling between both 

wheels and rails, and of multiple wheel/rail interactions on a single rail, are also 

investigated. The coupling between both wheels and rails is found to have negligible effect. 

The inclusion of multiple wheel/rail interactions affects the track responses mainly in the 

high frequency range, especially for the outer wheels of a pair of bogies. 
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7 Influence of different parameters on roughness 

growth 

7.1 Introduction 

In this chapter, the model described in the preceding chapters is applied to a series of case 

studies to investigate the effects of various parameters on the development of the rail 

surface roughness. Results are presented in the form of roughness growth rate functions. 

This allows comparison between different operational conditions, as well as changes in 

different track and wheel parameters. Results are presented for changes in different 

operational parameters, such as curve radii, vehicle speeds and friction coefficients; for 

track parameters, such as pad stiffness, cant condition or a slab track; for vehicle 

parameters, such as normal load and different wheelset design. These parameters are 

important when studying the development of rail corrugation. Investigation of these 

parameters can help explain some phenomena and make the effects clear. 

 

When using this model, the wear depth generated by the wheel-rail interaction can be 

calculated for a particular vehicle type on a particular track under particular operational 

conditions. The initial roughness profile used is the same in all the cases investigated in 

this chapter, which is based on the limit roughness spectrum in ISO 3095:2013 [133]. As in 

the previous chapter, the roughness growth is calculated for about a passage time of 2 

seconds (corresponding to 60 sleeper bays for 72 km/h).  

7.2 Influence of operational parameters 

7.2.1 Curve radius 

The curve radius is a key parameter in this study since the research is focused on curved 

tracks. Thus, the curve radius is expected to have a significant effect on the formation of 

rail corrugation. Its influence is investigated here. The variation of the curve radius does 

not change the track vibration responses significantly, as explained in Chapter 3 [84]. The 

effect of curvature on the rail response is therefore neglected. The variation of the curve 

radius mainly affects the steady-state curving contact parameters. 

 

The steady-state contact parameters of the vehicle negotiating a curved track are obtained 

in advance from the steady curving model. These parameters include the normal loads on 
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the two rails, the lateral wheel/rail contact positions, wheelset yaw angle, and steady 

creepages in the wheel/rail contacts on the high and low rails. These contact positions and 

creepages are then used in the time-domain prediction model. Since the steady lateral 

offset increases as the curve radii reduce, Figure 7.1 shows the creepages and wheel/rail 

contact positions plotted against curve radii.  

 

  
(a) Creepage on inner wheel-rail against curve 

radius             

(b) Offset against curve radius 

Figure 7.1 Effects of curve radius on steady parameters when curving 

 

The wheel/rail contact position and the creepages change rapidly with the curve radius 

when it is below 1000 m. Thus, to investigate the influence of the curve radius on the 

formation of corrugation, the values chosen are 200 m, 300 m (basic case considered 

above), 500 m and 800 m. To make the prediction results comparable, for different curve 

radii, although the balanced cants are different, the track cant is chosen to be 50 mm for all 

cases. The vehicle speed is 20 m/s as previously. Other steady-state parameters are listed in 

Table 7.1. 
 

Table 7.1 Steady-state curving parameters for leading inner wheel under various curve radii 

Curve radius 200 m 300 m 500 m 800 m 

Wheelset lateral offset -7.916mm -7.775 mm -7.618 mm -7.495 mm 

Yaw angle -10.11 mrad -7.347 mrad -4.532 mrad -2.782 mrad 

Longitudinal creepage 0.3546% 0.3984% 0.3707% 0.2925% 

Lateral creepage 1.001% 0.732% 0.4493% 0.2761% 

Spin -0.031 -0.034 -0.0367 -0.0386 

Normal load 35.36 kN 35.58 kN 36.75 kN 37.99 kN 

 

The resulting roughness spectra are given in Figure 7.2 when including all three 

mechanisms. It can be seen from Figure 7.2(a) that, for the 200 m radius curve, the 

roughness level increases rapidly at 160 Hz, 250 Hz and 400 Hz due to the large lateral 
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creepage in the tightly curved track. Meanwhile, the roughness level at 1000 Hz increases 

slowly compared to the other peaks and has a lower roughness level. For 300 m curve 

radius, the result in Figure 7.2(b) was discussed in the previous section. The roughness at 

80, 160 and 1000 Hz shows a great increase while the roughness between 250 and 800 Hz 

increases gradually with the number of wheel passages. For 500 m curve radius in Figure 

7.2(c) and 800 m curve radius in Figure 7.2(d), the roughness growth in the whole 

frequency range is very low for the current conditions. Basically, the roughness level 

grows in the whole frequency range or does not grow at any frequency. 

 

  
(a)  (b)  

  

(c) (d) 
Figure 7.2 Roughness level spectra variation with number of the passages applying all three mechanisms on 

curved track with radius: (a) 200 m; (b) 300 m; (c) 500 m; (d) 800 m  

 

Figure 7.3 shows the average roughness growth rate of the first 10,000 passages when 

including the different mechanisms for various curve radii. There is a general trend in all 

the cases that the roughness growth rate in the whole frequency range is decreasing as the 

track curve radius increases. For a track curve radius of 800 m, the roughness development 

on the low rail of curves is hardly found, which means the curving behaviour is not very 

severe (severe case is close to flange contact) and the rail corrugation does not grow 
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significantly. Neglecting the cases of 500 m and 800 m curve radii, the roughness level 

peaks of which are hard to find, the results of the 200 m and 300 m curve radii cases are 

mainly compared. For these tight curves, there are more peaks at lower frequencies when 

considering initial roughness (or with vertical-lateral cross terms) for tighter curves. When 

considering falling friction, the peaks at lower frequencies of tighter curves have higher 

levels. These peaks are related to the lateral wheelset modes. The results indicate that the 

tighter the track curve is, the more peaks and more higher roughness levels can be 

achieved. The importance of the stick-slip self-excited vibration due to falling friction also 

grows. The 1000 Hz peak is also increased as the track curve radius reduces. This 

frequency corresponds to one wheelset mode and the vertical pinned-pinned resonance. 

The results indicate the pinned-pinned resonance contributes more as track curve radius 

reduces. 

 

  
(a)  (b)  

  
(c) (d) 

Figure 7.3 Roughness growth rates of first 10k passages under different track curve radii applying (a) only 
initial roughness; (b) initial roughness and vertical-lateral cross terms; (c) initial roughness and falling 

friction; (d) initial roughness, vertical-lateral cross terms and falling friction 

 

Figure 7.4 shows the traction coefficient plotted against creepage and indicates the steady-

state values for the different curve radii. When the curve radius is small, such as 200 m and 
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300 m, the creep force is beyond saturation under large lateral steady-state creepage. As the 

curve radius of the track increases, the creep force decreases to values below saturation, as 

shown in Figure 7.4. The dominant mechanism of the corrugation formation for small 

radius curves is the stick-slip self-excited vibration caused by falling friction, whereas the 

transient dynamic interaction becomes less important when the curve radius decreases.  

 

 
Figure 7.4 Traction coefficient against creepage 

7.2.2 Vehicle speed 

Vehicle speed is also an important factor in the formation of rail corrugation. Different 

from the curve radius, the vehicle speed can affect the pre-calculated moving Green’s 

functions of the track. To keep a fixed distance passed in one time step in the time-domain 

prediction model, the time interval of each time step needs to be reduced when the vehicle 

speed increases. Consequently, the sampling frequency in the time-domain prediction 

model and the pre-calculated moving Green’s functions of the track also need to be 

modified. Here the different vehicle speeds are chosen as 54 km/h (15 m/s), 72 km/h (20 

m/s, basic case considered above) and 108 km/h (30 m/s). Other parameters are the same 

as the basic case. In basic case, the cant is 50 mm and the cant deficiency is 158 mm. In 

this section, the cant is also set to be 50 mm in all cases as the values may be unrealistic 

due to the modification of the vehicle speed if applying the same cant deficiency. The track 

curve radius considered here is 300 m. The steady-state parameters for various vehicle 

speed are listed in Table 7.2. The influence of cant is studied separately in Section 7.3.3. 
 

Table 7.2 Steady-state curving parameters under various vehicle speed 

Vehicle speed 54 km/h 72 km/h 108 km/h 

Lateral offset -7.705 mm -7.755 mm -7.807 mm 

Yaw angle -7.969 mrad -7.347 mrad -6.509 mrad 

Longitudinal creepage 0.3495% 0.3984% 0.425% 

Lateral creepage 0.7913% 0.732% 0.646% 
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Spin -0.0345 -0.034 -0.03356 

Normal load 36.68 kN 35.58 kN 35.26 kN 

 
The roughness spectra are shown in Figure 7.5. For a vehicle speed of 54 km/h (15 m/s) 

given in Figure 7.5(a), it can be found that the roughness level at 160 Hz, 250 Hz and 400 

Hz increases rapidly. These peaks are found in previous cases to be related to the lateral 

wheelset modes. In this case, the roughness at 250 Hz grows most rapidly. When the 

vehicle speed increases to 72 km/h (20 m/s) and 108 km/h (30 m/s), the roughness level at 

160 Hz, 250 Hz and 400 Hz still increases rapidly but the frequency which has the fastest 

roughness growth is modified to be 400 Hz. Meanwhile, the roughness level at 1000 Hz 

becomes more significant and reaches a higher value under a higher vehicle speed. The 

1000 Hz band is usually related to a wheelset mode and the vertical pinned-pinned 

resonance. 

 

  
(a)  (b)  

 
(c) 

Figure 7.5 Roughness level spectra variation with the number of passages applying all three mechanisms for 
train speed of: (a) 15 m/s; (b) 20 m/s; (c) 30 m/s 

 

Figure 7.6 shows the roughness growth rate of the first 10,000 passages under all three 

mechanisms at different vehicle speeds. As the vehicle speed increases, it can be seen that 
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the roughness growth rate at 160 Hz and 250 Hz decreases while that at 1000 Hz increases. 

The overall roughness growth rate basically remains stable. It is found in previous cases 

that the 160 Hz and 250 Hz peaks are caused mainly by the inclusion of falling friction, 

while the 400 Hz and 1000 Hz peaks are introduced mainly by transient dynamic 

interaction mechanism. This indicates that the transient dynamic interaction mechanism 

becomes more important while the effect of the stick-slip self-excited vibration caused by 

falling friction on roughness development reduces, as the vehicle speed increases. 

Corresponding lateral wheelset modes are related to these roughness growth rate peaks. 

The dominant mode frequencies shift to higher values as the vehicle speed grows. 

 

 

Figure 7.6 Roughness growth rates of the first 10,000 passages under different mechanisms under (a) 20 m/s; 
(b) 30 m/s; (c) 40 m/s 

7.2.3 Friction coefficient 

The influence of the friction coefficient on the formation of corrugation is investigated in 

this section. The friction coefficient is directly related to the tangential wheel/rail contact 

force limits and further the wear depth on the rail surface. Under different conditions, the 

value of the friction coefficient may vary. Here the friction coefficient is chosen as 0.2 

(basic case considered above), 0.3, 0.5 and 0.8. To make the prediction results comparable, 

the variation of friction coefficient is investigated only in the time-domain prediction 

model whereas the steady-state curving parameters are kept the same. This is to investigate 

the effect of friction coefficient alone on the formation of corrugation. When considering 

the cases with the velocity-dependent friction coefficient, to achieve comparable friction 

coefficients at the nominal value of creepage as the corresponding cases with constant 

friction coefficient, the maximum friction coefficient is set to 0.3, 0.38, 0.65 and 1.0, 

respectively. 
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The roughness development under all three mechanisms with different friction coefficients 

is shown in Figure 7.7. When the friction coefficient value changes from 0.2 to 0.3, the 

effect of the transient dynamic interaction mechanism on the roughness development 

becomes less pronounced as the roughness at the corresponding 400 Hz wheelset mode 

develops more slowly. When the friction coefficient value changes to 0.5, the roughness at 

80 Hz develops very rapidly. This may due to the stick-slip self-excited vibration caused by 

mode coupling related to the 81 Hz wheelset mode, and this will be investigated in detail 

later in this section. The broadband roughness above 160 Hz also increases. For a friction 

coefficient value of 0.8, as well as the stick-slip self-excited vibration related to the 81 Hz 

wheelset mode, the broadband roughness at frequencies above 500 Hz grows significantly. 
 

  
(a)  (b)  

  
(c) (d) 

Figure 7.7 Roughness level spectra variation with number of the passages applying all three mechanisms and 
velocity-dependent friction coefficient whose actual value of (a) 0.2; (b) 0.3; (c) 0.5; (d) 0.8 

 

To identify the 80 Hz peak in the roughness development spectra for friction coefficients of 

0.5 and 0.8, the roughness growth rate results for a friction coefficient of 0.5 applying 

different mechanisms are shown in Figure 7.8. When considering only initial roughness, 

there is no peak at 80 Hz. When including the vertical-lateral cross terms, the peak at 80 

Hz is very strong. Figure 7.9(a) gives the wheel and rail vertical displacement spectra of 
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this case. The P2 resonance appears at around 80 Hz (wheel vertical displacement is higher 

below 80 Hz and the rail vertical displacement is higher above 80 Hz). When including 

falling friction, there is also a roughness peak at 80 Hz but lower than that when including 

cross terms. In this case, the P2 resonance is identified to be at 100 Hz as shown for the 

basic case in Figure 7.9(b). This difference may indicate that under the current friction 

coefficient, the peak at 80 Hz is due to the stick-slip self-excited vibration caused by mode 

coupling related to the 81 Hz wheelset mode and the P2 resonance. Due to the vertical-

lateral cross terms, the P2 resonance is shifted from 100 Hz to 80 Hz. The P2 resonance 

identified is also 80 Hz in the case of a friction coefficient value of 0.5 when applying all 

three mechanisms. 

 

 
Figure 7.8 Roughness growth rates of the first 10,000 passages under different mechanisms and constant 

friction coefficient of 0.5 

 

  
(a)  (b)  

Figure 7.9 Wheel and rail vertical displacement spectra for case of friction coefficient of 0.5 due to: (a) 
initial surface roughness and vertical-lateral cross terms; (b) initial surface roughness and falling friction 

 

Figure 7.10 shows the growth rates under different values of friction coefficient when 

including all three mechanisms. For the case with a velocity-dependent friction coefficient 

with actual value of 0.3, it can be seen that the resultant roughness growth rate under all 
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three mechanisms is reduced compared with a value of 0.2, but the dominant modes are 

still the 160 Hz, 250 Hz and 400 Hz lateral wheelset modes. In this case, the effect of the 

transient dynamic interaction mechanism on the roughness development is reduced. As the 

friction coefficient value grows, the dominant mode becomes the stick-slip self-excited 

vibration caused by mode coupling of the 81 Hz wheelset mode and the P2 resonance. At 

these values of friction coefficient, the effects of falling friction and the transient dynamic 

interaction mechanism are hardly found. The broadband roughness at higher frequencies 

also increases, especially for the highest value of friction coefficient.  

 

 

Figure 7.10 Roughness growth rates of the first 10,000 passages under all three mechanisms and different 
constant friction coefficient  

 

The transient dynamic interaction and the stick-slip self-excited vibration caused by the 

velocity-dependent friction coefficient are the dominant mechanisms of rail corrugation 

formation for lower values of friction coefficient. For larger values of friction coefficient, 

saturation of the creep force is no longer reached under the value of creepage considered 

here. The ratio of creep force to normal load lies in the linear region instead of the falling 

region, as shown in Figure 7.11.  
 

 
Figure 7.11 Traction coefficient against creepage with different friction coefficient 
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7.3 Influence of track parameters 

7.3.1 Influence of rail pad stiffness 

The rail pad stiffness is considered as an important factor that affects the initiation and 

growth of rail corrugation. Hempelmann [152] listed some pad parameters of ballasted 

track with concrete sleepers from measurements on unloaded or preloaded tracks and 

laboratory measurements. These pad parameters showed that the relation between the pad 

stiffness and the pad damping can be described by a linear function. This justifies the use 

of a constant loss factor to describe the pad damping here when investigating the effect of 

varying pad stiffness.  

 

The pad stiffness used for the basic case in Chapter 6 is 120 MN/m in the vertical direction 

and 40 MN/m in the lateral direction. The loss factor is 0.25 for both directions. This is a 

relatively soft rail pad. To investigate the influence of the pad stiffness on the formation of 

corrugation, two stiffer rail pads and one softer rail pad are considered. The pad stiffnesses 

selected are 60 MN/m, 120 MN/m (basic case), 300 MN/m and 800 MN/m in the vertical 

direction. The lateral pad stiffness is chosen as 40 MN/m in all cases in this section. 

However, the rotational pad stiffness is proportional to the vertical stiffness [93]. Vertical 

and lateral mobilities are shown in Figure 7.12. The vertical pad stiffness mainly affects the 

vertical mobility by shifting the resonance from 200 to 600 Hz; the behaviour at low 

frequency and above 600 Hz is affected much less. The pinned-pinned modes remain at the 

almost same frequency. The lateral mobility is affected at low frequencies by the changes 

in rotational stiffness. 

 

  
(a)  (b)  

Figure 7.12 Point mobilities of tracks with different values of vertical pad stiffness: (a) vertical; (b) lateral 

 

The cases considered here apply the same steady-state curving parameters as the basic case 
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given in Section 6.4. For a vertical stiffness of 60 MN/m, obvious roughness growth is 

found mainly at 250 and 400 Hz. However, the roughness levels are smaller than those of 

the basic case result, shown again here in Figure 7.13(b). For the higher pad stiffness 

values 300 MN/m and 800 MN/m, the roughness growth peaks are found at 160 Hz, 250 

Hz and 400 Hz. The roughness levels are also nearly the same as the basic case of 120 

MN/m. The 1000 Hz peak is less important for 60 MN/m or 800 MN/m than it is for 300 

MN/ and especially 120 MN/m. From comparing results with the different mechanisms 

(not shown here) it is found that in the basic case that the 400 Hz and 1000 Hz peaks are 

caused mainly by the inclusion of initial roughness, while the 160 Hz and 250 Hz peaks are 

caused mainly by falling friction.  

 

  
(a)  (b)  

  
(c) (d) 

Figure 7.13 Roughness level development of the first 10,000 passages for different pad stiffnesses: (a) 60 
MN/m; (b) 120 MN/m; (c) 300 MN/m; (d) 800 MN/m 

 

The roughness growth rate of the first 10,000 passages for different values of pad stiffness 

are compared together in Figure 7.14; this again shows the results when applying all three 

mechanisms: initial roughness, vertical-lateral cross terms and falling friction. Here, stiffer 

pads cause higher roughness growth rate. When using soft pads (60 MN/m), the main 

peaks are at 250 Hz and 400 Hz, associated with lateral wheelset modes. As found in 
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previous cases, the 250 Hz peak is caused mainly by the inclusion of falling friction, while 

the 400 Hz peak is introduced mainly by transient dynamic interaction mechanism. As the 

pads become stiffer, the peak at 160 Hz becomes increasingly important. Analysed from 

the point of view of the dominant mechanisms, the transient dynamic interaction 

mechanism contributes more to the roughness development in the case with stiff pads, than 

the case with resilient pads. The roughness growth rates at 250 Hz, 400 Hz and 1000 Hz 

are almost independent of pad stiffness. This indicates that when the pad stiffness reaches a 

certain value, the roughness development does not further increase as the pad stiffness 

value increases. Only a very soft pad can have a significant effect on the roughness 

development.  

 

 
Figure 7.14 Roughness growth rates of the first 10,000 passages for different pad stiffnesses with initial 

roughness, cross terms and falling friction 

7.3.2 Comparison with slab track 

Slab track differs from ballasted track, considered in all other cases in this study. It is a 

type of railway track infrastructure in which the traditional elastic support provided by 

sleepers and ballast is replaced by a rigid construction of concrete. In track model, the 

sleepers and ballast are therefore considered as rigid and only the rail and rail pads are 

included. In practice, the stiffness of the rail pads used in slab track is lower than in 

ballasted track. Thus, a vertical pad stiffness of 60 MN/m is considered here and results are 

compared with the ballasted track with the same pad stiffness. The vehicle speed is still 20 

m/s, track curve radius is 300 m and track cant is 50 mm. The steady-state parameters are 

the same as previously. The track mobility of slab track is compared with that of ballasted 

track in Figure 7.15. When applying the same pad stiffness value, the mobilities of the slab 

track and ballasted track have the same resonance, which corresponds to the rail mass 

vibrating on the rail pad stiffness, as well as the pinned-pinned resonances at higher 

frequency. The main difference is that the ballasted track has a resonance corresponding to 
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the rail and sleeper mass vibrating on the ballast stiffness below 100 Hz, which the slab 

track does not have. The mobilities are similar to each other above 300 Hz. 

 

 
Figure 7.15 Vertical mobility of slab track and ballasted track with rail pad stiffness 60 MN/m 

 

  
(a)  (b)  

 
(c) 

Figure 7.16 Roughness of the first 10,000 passages under all three mechanisms of a slab track with 60 MN/m 
pad stiffness: (a) Roughness level of concrete track; (b) Roughness level of slab track; (c) Roughness growth 

rate comparison between ballasted track and slab track 

 

The roughness development spectra of slab track and ballasted track are given in Figure 

7.16(a-b) and the roughness growth results are compared in Figure 7.16(c). The roughness 
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level peaks at 250 Hz and 400 Hz are found in both cases. These two peaks are related to 

lateral wheelset modes and are caused due to the stick-slip vibration caused by falling 

friction and transient dynamic interaction mechanisms. However, due to the differences in 

dynamic response at low frequency, the roughness growth rate of the slab track is lower 

than that of the ballasted track at these peaks. The roughness development of the ballasted 

track above 800 Hz is also a little greater than that of the slab track.  

7.3.3 Influence of cant deficiency and cant excess 

The track in a curve has an appropriate cant angle ψ0, providing all or part of the 

centripetal force for curving. For a vehicle speed V0 and a curve radius R0, the centripetal 

acceleration ac required for balanced curving is 

                                  ac= V02

R0
                          (7.1) 

 

If the centripetal acceleration is totally provided by gravity, the cant angle must be  

                               ψ0= tan-1 � V02

R0g
�                      (7.2) 

where g is the acceleration due to gravity.  

 

On a specific curved track with a vehicle speed V0 and a curve radius R0, the fixed cant 

angle may provide less or more centripetal acceleration than required. These conditions are 

called cant deficiency or cant excess. Under these conditions, the wheel-rail contact forces 

will be involved in the balance of the lateral forces. In practical situations, the maximum 

value of cant (i.e. vertical height of outer rail relative to inner rail) is 150 mm. The 

corresponding cant angle, with cant deficiency or cant excess, is given as 

                           ψ1= tan-1 �l0 tan ψ0±d0
l0

�                    (7.3) 

where l0 is the track gauge, and d0 is the extra cant vertical height difference. The sign 

before d0 is negative for cant deficiency, and positive for cant excess. In this section, since 

balanced cant cannot be achieved in the basic case, the cant excess cases cannot be 

investigated. Here, 0 mm, 50 mm (basic case), 100 mm and 150 mm cant values are 

considered (all the cant values considered here are cant deficiency cases). The curve radius 

considered here is still 300 m and the vehicle speed is 20 m/s (72 km/h). The 

corresponding steady-state curving parameters for different cant values are listed in Table 

7.3. 
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Table 7.3 Steady-state curving parameters under various values of extra cant height 

Cant value 0 mm 50 mm 100 mm 150 mm 

Cant angle 0° 1.91° 3.81° 5.71° 

Lateral offset -7.775 mm -7.755 mm -7.724 mm -7.696 mm 

Yaw angle -6.986 mrad -7.347 mrad -7.715 mrad -8.0215 mrad 

Longitudinal creepage 0.404% 0.3984% 0.3672% 0.3502% 

Lateral creepage 0.6934% 0.732% 0.7662% 0.7959% 

Spin -0.0339 -0.034 -0.0344 -0.0345 

Normal load 36.52 kN 35.58 kN 37 kN 37.25 kN 

 

The roughness growth rates from the first 10,000 passages when including all three 

mechanisms are given in Figure 7.17 for the cases in which the cant value varies from 

small to large. It may be concluded from Figure 7.17 that, under the current curve radius 

and vehicle speed, the resultant roughness growth rate peaks are mainly at 160 Hz, 250 Hz 

and 400 Hz. As the cant value increases, the roughness develops quicker at these 

frequencies. As can be found in Table 7.3, the longitudinal creepage decreases and the 

lateral creepage increases as the cant value grows. The lateral curving behaviour is more 

severe under a large cant value, and thus the roughness develops quicker. The dominant 

corrugation mechanisms are still the stick-slip self-excited vibration caused by falling 

friction and transient dynamic interaction. 

 

 
Figure 7.17 Roughness growth rates of the first 10,000 passages under all three mechanisms with 

various values of cant 

7.4 Influence of vehicle parameters 

7.4.1 Different wheelset designs 

The influence of the wheelset design on the formation of corrugation is investigated here. 

The track is well damped by the rail pads and ballast, while the wheelset is very lightly 

damped. The previous simulations have been based on a wheel with a radius of 0.42 m and 

10
1

10
2

10
3

Frequency, Hz

-1

-0.5

0

0.5

1

R
ou

gh
ne

ss
 g

ro
w

th
 ra

te
, d

B 
re

 1
 

m
 p

er
 p

as
sa

ge

10
-3

0

0 mm cant

50 mm cant

100 mm cant

150 mm cant



 

171 
 

straight web. Here, another wheel is considered, which has the same radius but a curved 

web. 

 

The vertical, lateral and cross mobilities of the wheelset with curved web are shown in 

Figure 7.18. Due to the assumed identical elastic constraints from the vehicle and bogies, 

the rigid body modes of the two wheelsets are assumed to have the same frequency values 

of 20 Hz, 30 Hz and 40 Hz, while the corresponding damping ratios are 0.01. The method 

to obtain the dynamic response is the same as that introduced in Section 4.2. Comparing 

the mobilities of the two wheelsets in Figure 7.18, it can be found that the vertical and 

lateral mobilities of the two wheels are similar but the cross mobilities are different above 

200 Hz. 

  
(a)  (b)  

Figure 7.18 Mobilities of wheelset whose wheel (a) with straight web; (b) with curved web 

 

  
(a)             (b)  

Figure 7.19 Roughness variation with the passage number with all three mechanisms of ballasted track in 
contact with wheel with curved web: (a) Roughness level spectra; (b) Comparison of roughness growth rate 

with results for wheel with straight web 

  

Figure 7.19(a) shows the roughness development for the wheel with curved web, from 

which it can be seen that for the curved web wheel case, the roughness develops only at 
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400 Hz. In Figure 7.19(b), compared with the straight web wheel case, the roughness level 

growth at 400 Hz is lower and has no other peaks. This peak is related to a lateral wheelset 

mode of the wheelset. It is caused by both the stick-slip self-excited vibration caused by 

falling friction and transient dynamic interaction. 

7.4.2 Axle load 

The influence of the axle load on the formation of corrugation is investigated here. In the 

basic case, the normal load on each wheel is around 40 kN. For investigation, the wheel 

load is set to 50 kN and 60 kN. To investigate the effect of the wheel load on the formation 

of corrugation alone, the variation of the wheel load is applied only in the time-domain 

prediction model, which means the steady-state curving contact parameters in different 

cases here are the same as the basic case. 

 
The results are shown in Figure 7.20. This shows that higher axle loads cause lower global 

roughness growth rates under identical steady-state curving parameters, curve radius and 

speed. To help explain this, Figure 7.21 shows the traction coefficient (ratio of lateral creep 

force to normal contact force). Larger values compared in Figure 7.21 is to show more 

obvious difference between different cases. For lower axle loads, a lower creepage value is 

needed for the creep force to reach saturation and the traction coefficient enters the falling 

slope region. Under identical creepages, the traction coefficients for 40 kN and 60 kN are 

in the same falling slope region. Although the contact patch size is different due to the 

different normal load, the contact area is in the full slip region. However, for 80 kN, the 

traction coefficient is close to the saturation point. This would cause a smaller slip region 

within the contact patch and result in lower wear if it is not at the saturation point. For 100 

kN, the traction coefficient is far below the saturation value.  

 

 
Figure 7.20 Roughness growth rates of first 10,000 passages under different wheel loads with all three 

mechanisms 
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Figure 7.21 Tangential/Normal force ratio variation with creepage 

7.4.3 Traction force 

The influence of the traction force on the formation of corrugation is investigated here. In 

the basic case, the external traction force applied is 0 kN. For investigation, the traction 

force applied to each wheel is set first to 1 kN and then to 2 kN. To investigate the effect of 

the traction force on the formation of corrugation, the variation of the traction force is 

applied in the steady-state curving model to obtain the corresponding steady-state curving 

contact parameters listed in Table 7.4, and then these are applied in the time-domain 

prediction model considering all three mechanisms. The other parameters are the same as 

the basic case. 

 
Table 7.4 Steady-state curving parameters under various vehicle speed 

Traction force 0 kN 1 kN 2 kN 

Lateral offset -7.755 mm -7.750 mm -7.746 mm 

Yaw angle -7.347 mrad -7.351 mrad -7.457 mrad 

Longitudinal creepage 0.3984% 0.2658% 0.1623% 

Lateral creepage 0.732% 0.7285% 0.7433% 

Spin -0.034 -0.0341 -0.0341 

Normal load 35.58 kN 36.27 kN 37.07 kN 

 

The roughness growth rate results for different values of traction force considering all three 

mechanisms are shown in Figure 7.22. As the applied traction increases, the roughness 

growth rate becomes higher at 250 Hz and the peak at 1000 Hz is supressed. When the 

traction increases, the longitudinal dynamics become a bit more important and thus, the 

transient dynamic interaction. 
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Figure 7.22 Roughness growth rates of first 10,000 passages under different tractions with all three 

mechanisms 

7.5 Summary 

A series of roughness growth rate calculations have been made to examine the 

development of acoustic roughness (roughness affecting the acoustic frequency range) over 

time under different conditions. The parameters used in these calculations are identical to 

those used in the basic case presented in Section 6.2.5 apart from the specific parameters 

investigated in each case, enabling the effects of each parameter to be identified. The 

effects of the operational, track and vehicle parameters on the roughness formation and 

development have been investigated. 

 

The roughness development and growth rate have firstly been examined for different 

operational parameters. For tight curves, the dominant corrugation development 

mechanisms are the self-excited vibration caused by falling friction and the transient 

dynamic interaction. The rutting corrugation is main type of corrugation that is found, 

which is related to lateral wheelset modes. Changes of vehicle speed did not affect the 

wheel/rail contact position and creepages much; the corrugation wavelength remains 

approximately constant. Changes in the friction coefficient modify the friction limit of the 

creep force. As the friction coefficient grows, the dominant mechanism may become the 

stick-slip self-excited vibration caused by mode coupling.  

 

When changing the rail pad stiffness, rutting is still found as the main type of corrugation. 

The self-excited vibration caused by falling friction and the transient dynamic interaction 

mechanism are the dominant mechanism. When the pad stiffness reaches a certain value, 

the effect of pad stiffness on the roughness development does not further increase as the 

pad stiffness value grows. Slab track is also considered for comparison with ballasted track 

but the results are similar for a given pad stiffness. When the cant is increased, the curving 
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behaviour is more important in the lateral direction since the lateral creepage grows, thus 

the roughness develops quicker.  

 

For a different wheelset design, the roughness development rate and dominant mechanisms 

are similar, but the growth at the dominant frequency peaks are different. When applying a 

higher axle load with constant creepages, the roughness growth rate decreases. Applying 

traction forces enhances the transient dynamic interaction. 
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8 Conclusions and Recommendations 

A time-domain wheel/rail interaction prediction model has been developed to give 

improved understanding of the mechanism of rutting corrugation development in curved 

track and to predict its growth. By making use of this model, time-domain results are 

obtained and different theoretical studies are carried out to give a detailed investigation of 

the dominant mechanism and relevant resonances in each case. 

 

The conclusions of this thesis can be summarised as follows. 

8.1 The updated and newly assembled time-domain prediction model 

Steady-state curving parameters of the wheel/rail interaction are obtained by using a 

steady-state curving model. The steady-state curving model used in this thesis is based on 

Huang’s work [69]. Some modifications are also applied here, introducing a velocity-

dependent friction coefficient and the effect of the traction in the calculation of steady-state 

curving.  

 

The wheel/rail dynamic interaction is then predicted in the time domain using a model 

comprising a flexible wheelset model, a semi-analytical track model with discrete supports 

and the non-Hertzian non-steady-state 3D wheel-rail contact model based on the 

variational theory by Kalker [14]. Wear calculation is performed with Braghin’s wear 

model [134] by using the contact parameters obtained from the wheel-rail contact model to 

compute the material loss on the running surfaces of the two rails. The wheel/rail 

interaction forces can also be used in TWINS to predict the rolling noise generated by each 

part in the wheel/rail interaction as well as the overall radiated noise.  

 

For the track model, by applying the receptance-coupling method, the frequency domain 

response of the discretely supported track system is obtained. Each part of the track model 

is validated with examples from the literature. The transfer functions from one rail to the 

other are also validated using measurements. The coupling between the two rails is found 

to have little effect on the track response. However, the inclusion of torsion and warping 

are found to have significant effects on the lateral track responses compared to the 

Timoshenko beam theory. The track responses from the semi-analytical model are 

converted to moving Green’s functions and then combined with a numerical wheelset 

model to obtain the wheel-rail interaction forces. The equations of motion of the wheelset 

are solved in the time domain using a state-space approach. This combination of using a 
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moving Green’s function method for the track and a state-space method for wheelset is 

believed to be novel. A three-dimensional contact model explained by Kalker in his 

variational method has been implemented in MATLAB. The contact model can solve 

normal and tangential stress distributions throughout the contact area. Stress distributions 

can be used to predict wear depth and the resultant interaction force can be used to predict 

rolling noise. 

8.2 Corrugation growth mechanisms 

Several possible mechanisms accounting for the formation and development of rail 

corrugation presented in the literature are included in the model. Then, the simulation 

model is used to identify the dominant mechanism in a chosen situation. This basic case 

includes a wheelset with a straight web in contact with track with 60E1 rail and 120 MN/m 

rail pads. The train is negotiating a 300 m radius curve under 20 m/s vehicle speed and 50 

mm cant, with 158 mm cant deficiency. The friction coefficient is 0.2 and the normal load 

is 40 kN. By including the different mechanisms separately, the resultant roughness 

development and growth rates are compared. From the results it is seen that the self-

excited vibration caused by falling friction and the transient dynamic interaction are the 

main mechanisms that account for the corrugation formation and development in this case. 

The inclusion of vertical/lateral coupling (i.e. mode coupling) is a relevant mechanism 

when the friction coefficient is large enough. The dominant peaks are found to be in the 

160 Hz, 250 Hz, 400 Hz and 1000 Hz one-third octave bands and are related to lateral 

wheelset modes. Thus, rutting corrugation is the main type of corrugation found in this 

case, while the vertical pinned-pinned resonance (at around 1000 Hz) also makes a small 

contribution to the corrugation formation. The P2 resonance appears not to contribute to 

the corrugation growth in this case. 

 

The effects on the roughness development and growth rate of (i) the coupling between both 

wheels and rails and (ii) multiple wheel/rail interactions on a single rail are also 

investigated. The coupling between both wheels and rails is found to have negligible effect 

on the response and hence on the roughness growth. The inclusion of multiple wheel/rail 

interactions on a single rail affects the track responses mainly in the high frequency range. 

For the outer wheels of a pair of bogies, the roughness growth at high frequency is greatly 

increased and other peaks are suppressed. However, the effect of multiple wheel/rail 

interactions is found to be small for the wheels in the middle positions. 
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8.3 Effect of relevant parameters on corrugation 

The effects of the operational, track and vehicle parameters on the roughness formation 

and development are investigated by comparing the results with those of basic case.  

 

As the curve radius of the track is increased, the creepages in the wheel/rail contact 

gradually decrease. For large curve radii, the curving behaviour is not very severe (the 

creep force reaches saturation) and there is little or no rail corrugation growth. For tight 

curves, the dominant corrugation development mechanisms are the self-excited vibration 

caused by falling friction and the transient dynamic interaction, and the transient dynamic 

interaction becomes less important when the curve radius decreases. For tight curves, the 

rutting corrugation is main type of corrugation, which is related to various wheelset modes. 

Changes of vehicle speed did not affect the wheel/rail contact position and steady-state 

creepages much. The dominant frequency increases as the vehicle speed grows, suggesting 

that the corrugation wavelength remains approximately constant.  

 

Changes of the friction coefficient modify the friction limit of the creep force and also 

increase the wear. The larger the friction coefficient is, the higher the resultant roughness 

level is. When keeping the creepages constant, the corresponding creep force also changes 

from the saturation region to below saturation. As the friction coefficient value grows, the 

dominant mechanism changes from the self-excited vibration caused by falling friction and 

the transient dynamic interaction, to the stick-slip self-excited vibration caused by mode 

coupling related to the 81 Hz wheelset mode and the P2 resonance.  

 

As the rail pad stiffness increases, rutting is still the main type of corrugation, while the 

self-excited vibration caused by falling friction and transient dynamic interaction are the 

dominant mechanisms. But as the pad stiffness increases, the transient dynamic interaction 

also gradually shows more importance. When the pad stiffness reaches a certain value, the 

roughness development does not further increase as the pad stiffness value grows. From a 

comparison of a slab track with ballasted track with the same pad stiffness, the roughness 

level peaks are identical, but the growth rate of the slab track is a little lower. When the 

cant increases, the curving behaviour leads to higher lateral creepage, and thus the 

roughness develops quicker. 

 

Considering a different wheelset design with a curved web, the roughness development 

rate and dominant mechanisms are similar, but the dominant frequency peaks are reduced. 

When applying a higher axle load with constant creepages, the roughness growth rate 
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decreases since a higher creepage value is needed for the creep force to reach saturation 

and the traction coefficient enters the falling slope region. 

8.4 Summing up 

Three different mechanisms for rail corrugation formation and development have been 

explained and explored through theoretical modelling. Reviewing all the cases and 

parameters investigated, for a vehicle negotiating tightly curved tracks, the creep force is 

usually beyond saturation. In these cases, the dominant mechanism is usually found to be 

the stick-slip vibration caused by falling friction as well as the transient dynamic 

interaction. The frequency of the dominant peak may differ in different cases, but is usually 

related to lateral wheelset modes, which corresponds to rutting corrugation. In these cases, 

in which the creep force is beyond saturation, the pinned-pinned resonance corrugation can 

also be found and has a small contribution to the resultant corrugation. The change of some 

parameters can change the wear depth in the time domain, and thus, the resultant roughness 

level and growth rate. If the creep force is changed to be below saturation, the importance 

of the transient dynamic interaction mechanism may be more pronounced. The P2 and 

pinned-pinned resonance corrugations may then also have more contribution to the 

resultant corrugation. Self-excited vibration caused by mode coupling can be found in 

cases with higher friction coefficient. 

8.5 Recommendations for future work 

Measurements of roughness development over time are required to validate the time-

domain roughness prediction model and to understand the mechanisms of roughness 

growth. A useful long-term experiment would be to take roughness measurements at 

regular intervals over many months or years at locations with initially low roughness levels 

where roughness growth is expected. Other factors that should ideally be monitored in 

addition to the roughness itself include traffic axle load, lateral forces, traction and braking 

forces. However, these would be more difficult (perhaps impossible) to collect on the time 

scales of roughness development. Details are also required of the wheelset and track 

dynamic properties. 

 

One of the main limitations of most analytical track models, including the present one, is 

the neglect of cross-sectional deformations. Although the current model is sufficient for 

frequencies up to 1 kHz, which is acceptable for most corrugation modelling, it could be 

useful to extend it to higher frequencies. The step required to improve the frequency limits 
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of applicability of such models, is to incorporate the cross-sectional deformations, mainly 

those of web bending and double web bending that affect the lateral response. This could 

be achieved either by considering the cross-sectional flexibility in the fundamental theory, 

or potentially by introducing additional degrees of freedom at the centroid to correct for the 

cross-sectional behaviour (e.g. similar to warping). 

 

The effect of multiple wheel/rail interactions on the corrugation formation and 

development has been investigated using a simplified approach in this thesis. In practice, 

the rail surface roughness is affected by multiple wheel/rail interactions simultaneously in 

the time domain. This means all the wheels should be considered as active to themselves 

and passive to other wheels. This needs more complicated considerations in the time-

domain model and higher calculation capacity.  

 

In the railway field, the wear of the wheel is a common phenomenon after long-term 

operation of the train. The radius can be reduced with reprofiling by up to 50 mm. As the 

wheel wears, the mode shapes and natural frequencies will change. The coupling between 

wheel modes can be affected which may lead to self-excited vibration of the wheel and 

thus, corrugation. The effect of the wheel wear on the mode coupling should therefore be 

investigated. Different wheels with different degrees of wear can be considered to see how 

wheel wear affects the likelihood of corrugation. 

 

As well as rail corrugation, wheels can develop tonal roughness known as polygonization. 

The models in this thesis could also be used to study the development of roughness on the 

surface of wheels. 

 

Investigation into the effects of temperature on rail vibration could be considered. The 

main influence of temperature on rolling noise occurs due to the variation of the rail pad 

stiffness with temperature. Temperature effects, though, can also be considered in the rail, 

by the introduction of tensional/compressional forces. These loads affect both the bending 

and torsional dynamic behaviour of the rail, and if the loads reach significantly high 

values, they might influence the corrugation generated. 
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Appendices 

Appendix A. Flexible sleeper model [84] 

When modelling a flexible sleeper, the damping properties of the sleeper are important for 

its dynamic behaviour. In order to include these, the Young’s modulus and shear modulus 

are made complex by introducing a material damping loss factor. The wavenumbers also 

become complex. For the following formulation, the local coordinate axes of the sleeper 

are considered, where x is the axis along the sleeper length. A rotation matrix is used to 

convert the local dynamic stiffness matrix to the global (rail) coordinate system. 

   

Two models of a flexible sleeper resting on an elastic foundation are considered, one is 

accounting for lateral bending and torsion, the other is accounting for vertical bending and 

extension. The flexible sleeper can be considered as uniform flexible beam with finite 

length supported on a damped elastic layer to represent the ballast. Thus the method 

presented in the Section 2.3.1 can also be applied here to the flexible sleeper to model its 

dynamic behaviour.  

 

Figure A.1 shows a flexible sleeper supported by an elastic foundation. The waves are 

indicated that account for lateral bending and torsion. 

 

 
Figure A.0.1 Lateral/torsional waves on a sleeper excited by a point force at x0 [69] 

 

The equations of motion for a beam in lateral bending and torsion are given as 
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with the internal forces 
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and the foundation forces, here representing the ballast, arising from 
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        (A.3) 

where zb is the centroid of the cross-section of the sleeper at the excitation point x0, kb,y is 

the lateral ballast stiffness, kb,rz and kb,rx are the torsional stiffness of the ballast around z 

and x axis. The dash ' represents the partial differential with respect to position x and the 

dot  ̇ represents the partial differential with respect to time t. 

 

When the sleeper is excited at a location x0 from the left sleeper end, three waves are 

generated for each direction away from the excitation point, along with three reflected 

waves at each end due to the finite length of the sleeper (as shown in Figure A.1). In total 

there are six waves. The wavenumbers ξn can be obtained by Equation (2.8). 

 

The sleeper is divided into two parts at the force location x = 0 and the forced response is 

determined directly, with the displacements written as 
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Similarly, the rotation of the sleeper around the y and x axis can be written as 
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where An, Bn and Cn are the complex amplitudes of the respective degrees of freedom for a 

given wavenumber ξn. 
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Three boundary conditions are required at each end of the beam. The shear force is zero at 

each end: 
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Similarly, the bending moment is zero at each end: 
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and the torsional moment is also zero at each end: 
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Six more conditions apply at x = 0 which are the continuity of displacements, rotation and 

torsion: 
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This gives 12 boundary conditions. Although there are 36 unknown amplitudes, they are 

interrelated as the amplitudes Bn and Cn can be written as a function of the amplitudes An 

for a given wave n. Since there are six waves at either side of the applied load, 24 more 

equations are obtained for the amplitudes Bn and Cn. If combined with the 12 boundary 

conditions, they can be written as a 36×36 matrix of equations and solved to find the wave 

amplitudes An, Bn and Cn. The equations have to be solved separately for a unit force, unit 

bending moment and unit torsion moment to give the receptance matrix. The receptance 

matrix Rs,l(ω) at a general position x is then given by Equations (A.4)-(A.9). 

 

Similarly, for the vertical bending and extension of the flexible sleeper, the equations of 

motion are given as: 
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with the internal forces 
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                         (A.15)  

and the foundation forces, here representing the ballast, arising from 
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,
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         (A.16) 

where kb,z and kb,x are the vertical and longitudinal ballast stiffness, kb,ry is the torsional 

stiffness of the ballast around y axis. 

 

Again, when an excitation is applied at location x0 from the left sleeper end, three waves 

are generated for each direction away from the excitation point, along with three reflected 

waves at each end due to the finite length of the sleeper. Similar to the lateral and torsion 

case, in total there are six waves. The wavenumber ξn can also be obtained by Equation 

(2.8), by which the obtained wavenumbers for the vertical bending of sleeper are different 

with the lateral and torsion case. 

 

The sleeper is again divided into two parts at the force location x = 0 and the forced 

response is determined directly, with the displacements written as 

                
6

1

ni x
z n

n
u D e ξ−

−
=

=∑       for –x0 ≤ x ≤ 0                 (A.17) 

                
6

6
1

ni x
z n

n
u D e ξ−

+ +
=

=∑     for 0 ≤ x ≤ L–x0                (A.18) 

Similarly, the rotation around the y and x axis of the sleeper can be written as 

                
6

1

ni x
y n

n
E e ξθ −

−
=

=∑       for –x0 ≤ x ≤ 0                 (A.19) 
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=

=∑     for 0 ≤ x ≤ L–x0                 (A.22) 

where Dn, En and Fn are the complex amplitudes of the respective degrees of freedom for a 

given wavenumber ξn. 

 

Three boundary conditions are required at each end of the beam. The vertical force is zero 

at each end: 
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Similarly, the bending moment is zero at each end: 
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and the axial force is also zero at each end: 
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                        (A.25) 

Six more conditions apply at x = 0 which are the continuity of displacements, rotation and 

torsion: 
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This gives 12 boundary conditions. Although there are 36 unknown amplitudes, they are 

interrelated as the amplitudes En and Fn can be written as a function of the amplitudes Dn 

for a given wave n. Since there are six waves at either side of the applied load, 24 more 

equations are obtained for the amplitudes En and Fn. If combined with the 12 boundary 

conditions, they can be written as a 36×36 matrix of equations and solved to find the wave 

amplitudes Dn, En and Fn. The equations have to be solved separately for a unit force, unit 

bending moment and unit torsion moment to give the receptance matrix. The receptance 
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matrix Rs,v(ω) at a general position x is then given by Equations (A.17)-(A.22). 

 

By combining the vertical and lateral flexible sleeper models, the resulting receptance 

matrix Rs,local(ω) is assembled from the two derived receptance matrices, Rs,l(ω) and 

Rs,v(ω) in the local coordinate system of the sleeper. Since the inertial properties of the 

sleeper are already incorporated in the receptance matrix Rs,local(ω), no separate sleeper 

mass matrix is required for the flexible sleeper model. 

 

To account for the difference in orientation of the rail and sleeper beams, the receptance 

matrix must be converted from the local (sleeper) coordinate system to the global (rail) 

coordinate system. This is performed by applying a rotation matrix: 

( )T
, /D D

s g s local g ssl=R T R T                       (A.27) 

where 

T

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

g

− 
 
 
 

=  − 
 
 
 

T                    (A.28) 

 

The division by lss is performed in equation (A.27) in order to obtain properties per unit 

length, for a continuous support layer under the sleeper. This is not applied in the current 

thesis as the discrete supports are considered. 
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Appendix B. Fundamentals of beam theories [84] 

In Figure B.1 an infinitesimal element of length dx is shown along with the forces and 

moments acting on it, which will be used for the formulation of force equations. The 

external forces and moments per unit length are assumed to act in the positive direction of 

the coordinate system and consist of excitation forces and reaction forces due to the 

foundation. Here kx, ky and kz are the translational stiffness per unit length along the 

respective axis, while krx, kry and krz are the corresponding rotational stiffnesses. 

 

 
Figure B.0.2 Forces and moments on an infinitesimal element 

 

According to Love [109], the linear components of strain in Cartesian coordinates are 

given as 

                                  εxx= ∂ux
∂x

                         (B.1) 

                               γxy= ∂uy

∂x
+ ∂ux

∂y
                       (B.2) 

                               γxz=
∂uz
∂x

+ ∂ux
∂z

                       (B.3) 

while other strains, namely εyy, εzz and γyz, are assumed to be zero for the given beam 

model. The normal and shear stresses are then calculated using the Young’s modulus E 

and shear modulus G, based on the generalized Hooke’s law. 

 

As the equations for the strain-displacement and stress-displacement are obtained, the 

stress resultants acting on the cross-section can be calculated by integrating the stresses 

over the cross-sectional area. 
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B.1 Classical beam theory 

The classical beam theory, also known as Euler-Bernoulli beam theory, is often used to 

study the out-of-plane vibration of beams. The main assumptions of this theory are that 

the cross-section does not deform and it remains plane and normal to the deformed axis 

(centroid). Considering an infinitesimal element as given in Figure B.1, the result of 

summing the forces in the vertical direction is obtained as 

                             - ∂Fz
∂x

+kzuz+ρAüz=Fz,ex                    (B.4) 

The first term in the equation represents the effect of the flexural rigidity of the beam as 

Equation (B.5) shows, the second term is the resistance due to the foundation, the third 

term is the inertial resistance due to the beam mass and the final term is the external force. 

− ∂Fz
∂x

= 𝐸𝐸𝐼𝐼𝑦𝑦
𝜕𝜕3uz
∂𝑥𝑥3  

                       (B.5) 

 

When the beam is assumed as a free beam with no external force applied, the right-hand 

side is equal to 0. Moreover, the vertical displacement of the cross-section due to bending 

of the beam can be written in a complex form as 𝑢𝑢𝑧𝑧 = 𝑢𝑢0𝑒𝑒i𝜔𝜔𝑡𝑡𝑒𝑒−iξ𝑥𝑥. By substituting this 

form of response into the equation of motion, the frequency-wavenumber relationship is 

obtained as 

                              EIyξ4-ρAω2=0                       (B.6) 

where ξ is the complex wavenumber and ω is the circular frequency. 

B.2 Timoshenko beam theory 

When the higher frequency range is under consideration, the wavelength of the beam 

becomes shorter. Both rotational inertia and shear deformations become more significant. 

These are included in the Timoshenko beam theory. Figure B.2 shows the bending of a 

beam with shear schematically. 

 

In Figure B.2, θy denotes the angle between the x-axis and the normal to the plane of the 

infinitesimal element, while γxy denotes the angle between the normal to the plane of the 

infinitesimal element and the tangent to the beam centreline. For small rotations, it can be 

obtained that 

                                ∂uz
∂x

=θy+γxz                        (B.7) 
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This equation gives the shear strain for a Timoshenko beam in bending. The shear force 

can be given as 

                               Fz=GAκzγxz                        (B.8) 

where κz is a correction factor depending on the cross-section known as the shear 

coefficient, which accounts for the effective shear area in the z direction. 

 

 

Figure B.0.3 Bending of beam with shear 

 

Taking the sum of all the moments acting in the positive direction in Figure B.1 gives 

                            - ∂My

∂x
-Fz+ρIyθ̈y=Mz,ex                    (B.9) 

Combining with Equation (B.4) and substituting from Equation (B.7) & (B.8), two 

coupled equations of motion of a free rail are obtained as 

                          -GAκz(𝑢𝑢𝑧𝑧′′-𝜃𝜃𝑦𝑦′ )+ρAüz=Fz,ex                 (B.10) 

-E𝐼𝐼𝑦𝑦𝜃𝜃𝑦𝑦′′-GAκz(𝑢𝑢𝑧𝑧′ -𝜃𝜃𝑦𝑦)+ρ𝐼𝐼𝑦𝑦�̈�𝜃y=My,ex              (B.11) 

which constitute the classical dynamic equilibrium equations for a Timoshenko beam. 

 

To obtain the dispersion relationship for the Timoshenko beam, the displacement and 

rotation of the cross-section due to bending of the beam are written in complex form, as 

above. By substituting this form of response back into the equations of motion and 

collecting terms for the complex amplitudes, the frequency-wavenumber relationship can 

be written as 

                           A(ξ,ω)U�(ξ,ω)=F�(ξ,ω)                  (B.12) 

where U contains the complex amplitudes of displacement and rotation, F contains the 

corresponding forces, while the dynamic stiffness matrix A is a 2×2 matrix of coefficients 

dependent on ξ and ω for the Timoshenko beam. By collecting terms within A for ξ and 
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ω, A can be written as 

                          A=(K0+Kp-ω2M)-iξK1-ξ2K2             (B.13) 

where K0= �0 0
0 GAκz

�, K1= � 0 GAκz
-GAκz 0 �, K2= �

-GAκz 0
0 -E𝐼𝐼𝑦𝑦

�, M= �
𝜌𝜌𝐺𝐺 0
0 𝜌𝜌Iy

�, 

Kp= �
𝑘𝑘𝑧𝑧 0
0 kry

�. If a free rail with no foundation is considered, the stiffness matrix Kp is 

empty. To obtain the dispersion relation, the free vibration which F = 0 is considered. For 

this case, non-trivial solutions require |A|=0. A similar process can be carried out for the 

vertical or lateral bending of the beam. 

B.3 Warping and arbitrary excitation forces [84] 

Usually, in analytical models the cross-section of the beam is assumed not to deform. In 

the Saint-Venant theory for uniform torsion, no extension or shearing occurs in the plane 

of cross-section and the cross-section is free to warp. The Saint-Venant torsional moment 

is given as: 

Mx
p=GJθx

'                          (B.14) 

 

To obtain a consistent system of equations, the stresses can be decomposed into primary 

stresses accounting for the shear stresses due to uniform torsion (Saint-Venant theory) and 

secondary stresses accounting for the shear stresses that arise in the non-uniform torsion 

theory. The deformation of the cross-section is described by a warping function that is 

defined to be dependent only on the vertical and lateral directions. However, by taking the 

stress equilibrium equation in the axial direction in Figure B.1, the warping function is 

found also to be a function of axial direction which contradicts its definition. The warping 

function can also be decomposed with the primary warping function being consistent with 

that in the Saint-Venant theory, while the secondary warping function being additionally a 

function of axial direction. 

 

Similarly to the axial displacement, the twisting moment Mx can also be decomposed as 

                                Mx=Mx
p+Mx

s                     (B.15) 

where Mx
p is the Saint-Venant torsional moment due to the uniform torsion, while Mx

s is 

the non-uniform torsion moment due to warping which takes the form: 

                                Mx
s=-EIwθx

'''                      (B.16) 
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where the warping constant is calculated by 

                              Iw = ∫(∅s
p)2 dA                     (B.17) 

Thus, the equation of motion for the twisting of a free beam is given as 

                          E𝐼𝐼𝑤𝑤𝜃𝜃𝑥𝑥′′′′-GJ𝜃𝜃𝑥𝑥′′+ρ𝐼𝐼𝑝𝑝�̈�𝜃x=Mx,ex               (B.18) 

 

Similarly, the normal stress will cause a new stress resultant, called the warping moment 

as 

                                Mw=-E𝐼𝐼𝑤𝑤𝜃𝜃𝑥𝑥′′                     (B.19) 

To obtain the equation of motion for the warping degree of freedom, the variation of the 

warping moment in the beam needs to be considered. If external force and inertia due to 

warping are considered, then the equation of motion for the warping component can be 

obtained as 

                            - ∂Mw
∂x

+𝑀𝑀𝑥𝑥
𝑠𝑠+ρIwf ̈w=Mw,ex                 (B.20) 

 

The secondary torsional moment is not only based on the normal stresses. Like the 

Timoshenko theory for shear deformation in bending, shear deformation can also be 

induced by warping. The rotation of the section can be decomposed as primary and 

secondary twist: 

                                  𝜃𝜃x=𝜃𝜃x
p+𝜃𝜃x

s                     (B.21) 

with the secondary torsional curvature given as 

                                  dθx
s

dx
= Mx

s

GJs
                       (B.22) 

in which the secondary torsional constant Jt is [105] 

                                 Jt=κs�Ip-J�                     (B.23) 

κs is a correction factor for the effective shear area undergoing torsion, similar to κz for 

bending. For open cross-sections such as I-beams, the secondary torsional moment has 

only a small influence on the torsional behaviour of the beam [106]. Thus, the value of the 

correction factor κs will not significantly influence the response of the beam. However, the 

inclusion of this value will lead to a more accurate result. 

 

In Figure 3.1, the eccentricity between the shear centre and the centroid mainly affects the 
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displacements in vertical and lateral directions, as well as the rotations around y and z 

directions, 

                               

ux,c=ux,s
uy,c=uy,s-ezθx,s
uz,c=uz,s+eyθx,s

θx,c=θx,s
θy,c=θy,s+eyfw
θz,c=θz,s+ezfw

fc=fw

                    (B.24) 

where the subscript c represents centroid, while s represents shear centre. The offset ey and 

ez are shown in Figure 3.1. 

 

The excitation forces are assumed to be applied at the centroid of the rail. In practice, the 

forces are often applied with some eccentricity, both vertically and laterally from the 

centroid, as shown in Figure B.3. The external force at the excitation point is assumed to 

be applied in three directions. Due to the lateral offset ye and vertical offset ze between the 

excitation point and the centroid, the following expressions can be derived for the external 

excitation forces: 

                   F�=[F�x,F�y,F�z,𝑧𝑧eF�y − 𝑦𝑦eF�z,𝑧𝑧eF�x,𝑦𝑦eF�x,∅hF�x]
T          (B.25) 

 
Figure B.0.4 Excitation forces applied with offsets from the centroid 

 

The required response positions also have offsets in vertical and lateral directions with the 

rail centroid. After obtaining the responses at the centroid, a transformation matrix 

between the centroid and the response position is applied to determine the responses at the 

response position. Considering the lateral offset yr and vertical offset zr between the 

response point and the centroid, the transformation matrix is given as 
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                Tf=
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⎢
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⎢
⎢
⎡
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⎥
⎥
⎤

              (B.26) 

 

When considering curved railway tracks, the effect of the curvature should also be 

considered. However, the effect of the curvature on the coupling between vertical, lateral, 

axial and torsional directions becomes significant only when the curve radius is very small 

[74]. For the considered curve radii in this research, the effect of curvature on the rail 

response is negligible.  
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Appendix C. Initial broadband roughness 

For the investigations in this chapter, an initial broadband roughness of the rails is used as 

the input. The limit roughness spectrum on the running surfaces of rails established in ISO 

3095:2013 [133] is implemented to reproduce a realistically low level of roughness 

containing a broadband spectrum of wavelengths, ranging from 0.00315 m to 0.4 m. This 

standard indicates the roughness level Lri, in decibels, for the central wavelength λi of 

twenty-two 1/3 octave bands 

              λi=0.1×10k/10, with k=-15,-14,…,6 and i=1,…,22          (C.1) 

 

The initial roughness profile can be calculated as the superposition of sinusoidal functions, 

the amplitudes of which are calculated for each 1/3 octave band from the levels of the rail 

roughness spectrum 

                  z0(x)=∑ ai �∑ sin �2πx
λij

+φij�
Nfunc
j=1 �Noct

i=1                   (C.2) 

where Noct is the number of 1/3 octave bands and Nfunc is the number of sinusoidal 

functions in each band used to obtain the roughness profile. The Noct amplitudes ai, in µm, 

associated with each band are calculated as a function of the roughness level corresponding 

to the band 

                           ai=�
2

Nfunc
10Lri/20                        (C.3) 

 

The phase angles φij are obtained as random numbers uniformly distributed from 0 to 2π. 

The Nfunc wavelengths in each band λij are calculated by taking into account a constant 

increment of the wave number 

                          ∆κi=
2π

Nfunc
� 1

λi
min - 1

λi
max�                      (C.4) 

with λi
min and λi

max
 being the wavelengths of the extremes of each band, which are 

calculated from the centre wavelength of each band λi as follows 

                         λi
max=λi21/6   λi

min=λi/21/6                   (C.5) 
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Figure C.0.5 Broadband roughness spectrum of the initial roughness generated 

 

In the cases in this chapter, twenty-two 1/3 octave bands and 1000 sine functions for each 

octave band are considered to represent the initial roughness profile. Figure C.1 shows one 

randomly generated broadband initial roughness spectrum derived from a sample of length 

2 m. 
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Appendix D. Effect of track curvature on rolling noise 

Although the main scope of this thesis is the calculation of corrugation growth, the wheel-

rail interaction models that have been developed in the time domain allow the calculation 

of wheel and track vibration in curved track. The opportunity is therefore taken to extend 

these calculations to study the influence of curving on rolling noise. 

 

When a railway vehicle negotiates a tight curve, high levels of vibration and noise usually 

arise. The rolling noise radiated by the vibration of the wheel and rail is generally more 

severe than on straight track. Rolling noise on tangent track have been studied for a long 

time. Remington [153] developed early theoretical models of rolling noise. Thompson 

[154] extended Remington’s theory and developed the model into a computer program 

called TWINS [91,155]. The sources of rolling noise and the importance of the surface 

roughness in railway noise have been thoroughly investigated by using TWINS. 

 

For curved track, Torstensson et al. [124] simulated wheel/track interaction on small radius 

curves. A time-domain model was used to simulate the low-frequency vehicle dynamics 

due to curving and vehicle-track dynamics up to at least 200 Hz. The structural flexibility 

of the wheelsets and track was accounted for by using the finite element method. Time-

domain Green’s function is also a sufficient method to deal with interactions between 

wheels and track [128]. Zhang et al. [85] extended this method based on time-domain 

moving Green’s functions to include the flexibility and rotation of the wheelset. This 

approach was employed to calculate wheel/rail interaction forces at high speed. The 

frequency content of the high-speed wheel/rail forces was shown for a number of typical 

excitation cases. The effects of wheelset rotation and multiple wheelsets were also 

investigated, but curved track was not considered. 

 

In the current analysis, the force time-histories are obtained using the variational method 

described in Chapter 5. The sound radiation is calculated in a post-processing step. To 

achieve this the forces are converted to the frequency domain and applied in the TWINS 

model to calculate the wheel and track vibration and their noise radiation. A constant 

frequency resolution of 0.2 Hz is used which ensures sufficient resolution around the wheel 

resonances. It is essential that the wheel modal basis used in TWINS corresponds exactly 

to that used in the time-domain simulations. 

 

A curved track with radius 300 m is firstly considered here. The operational velocity of the 

vehicle negotiating the curve is 72 km/h (20 m/s). The static friction coefficient is 0.3. The 
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dynamic characteristics of the wheel and discretely supported track used are those 

established in Sections 3.5 and 4.2. An initial calculation of 5 s is used to allow the 

wheel/rail contact to reach steady-state, after which the roughness is introduced for a 

further 0.5 seconds. The roughness spectrum used is a broadband roughness corresponding 

to the limit curve from ISO 3095-2013 [133]. The wheel/rail interaction forces obtained in 

the presence of the roughness are plotted as one-third octave spectra for comparison. To 

reveal the difference in interaction forces between tangent and curved tracks, the results of 

these two cases are compared in Figure D.1(a). For the tangent track case, the same curve 

radius and vehicle speed are used as for the curved track case listed above. The curve 

radius has some effects on the track dynamic properties [84]. However, the effect of 

curvature can be neglected for radii greater than 100 m. Thus, the Green’s functions used 

for the curved track are the same as for the tangent track. For the steady-state parameters 

for the tangent track case, the wheel/rail contact position is assumed to be at the nominal 

contact position. The normal load is 1/8 the mass of the whole vehicle multiplied by the 

gravity coefficient for each wheel. The steady-state longitudinal and lateral creepages are 

obtained from the wheel/rail contact model in Chapter 5 with the curve radius set to 

infinity. 

 

  
(a)  (b)  

Figure D.0.6 Interaction force spectra comparison of different track types: (a) Curved track with radius 300 m 
and tangent track; (b) Curved track with radius 300 m with and without coupling between two wheels/rails 

 

Several important frequencies can be identified in the 1/3 octave spectra of the interaction 

forces in Figure D.1(a). The peak at around 90 Hz is the P2 resonance (the vehicle 

unsprung mass bouncing on the track stiffness). The 200-300 Hz frequency range is 

dominated by the track receptance which contains the resonance frequency of the rail mass 

on the rail pad stiffness, seen as a dip in the interaction force. The vertical interaction 

forces of the two cases show little difference except around 20 Hz, associated with rigid 

body modes of the wheelset. For the tightly curved track, the steady lateral creepage is 
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large enough to make the lateral interaction force reach saturation. Since a constant friction 

coefficient was applied, the saturated value is equal to the vertical interaction force 

multiplied by the friction coefficient. Thus, the lateral interaction force of the tightly 

curved track shows mainly the characteristics of the vertical wheel/rail dynamics. For the 

tangent track, only the dynamic lateral creepage is considered and the interaction force is 

mainly related to the characteristics of the lateral wheel/rail dynamics. Above 1.6 kHz the 

effect of track curvature on the lateral forces is much smaller, which is where the wheel 

component of noise is important. 

 

Section 3.4.6 introduced the transfer functions between the two rails mounted on the same 

series of sleepers. Similarly, the transfer functions between two wheels within a wheelset 

can also be obtained from the wheelset modal information. To investigate the effects on the 

interaction forces of the coupling between the two wheels and rails, Figure D.1(b) shows 

the force spectra for the curved track with and without this coupling. The coupling mainly 

introduces differences in the frequency range around the P2 resonance and the 200-300 Hz 

frequency range. 

 

  
(a)  (b)  

Figure D.0.7 Total sound pressure level comparison: (a) between curved track and tangent track; (b) among 
curved tracks with different radii 

 

Figure D.2(a) compares the total sound pressure spectrum (single wheel considered, 

averaged over 100 m, three microphone positions at 3 m from the near rail, at heights of 

0.5, 1.2 and 2.5 m above the rail head) of the tangent track and curved track (on the inner 

side) with 300 m curve radius; for the curved track, results are shown with or without 

considering the coupling between the two wheels and rails. These results include the sound 

radiated by the wheel, sleepers, vertical and lateral vibration of the track. The rolling noise 

in the curved track is higher than on the tangent track between 100 and 1250 Hz due to the 

higher lateral forces. The effect of the coupling between the two wheels and rails is mainly 
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found in the range 80-300 Hz, similar to the contact force.  

 

Figure D.2(b) shows results for different curve radii. The sound pressure level decreases 

between 100 and 1250 Hz as the curve radius increases. As the curve radius is increased, 

the steady-state wheel/rail contact position shifts back to the nominal position and the 

steady lateral creepage value becomes lower. Consequently, the sound radiated by the 

lateral vibration of the track is reduced. The A-weighted sound pressure level of each 

component is plotted against curve radius in Figure D.3 (The total A-weighted SPL for 

tangent track is 78.3 dB(A)).  

 

 

Figure D.0.8 A-weighted SPL of each component plotted against curve radius 

 

Figure D.4 gives sound pressure spectra of the rail, wheel and sleeper for tangent track and 

curved track with 300 m radius. The overall A-weighted sound pressure at low frequencies 

is dominated by the track.  

 

  
(a)  (b)  

Figure D.0.9 Sound pressure level of each part of: (a) tangent track; (b) curved track with 300 m radius 

 
 

              



 

202 
 

  



 

203 
 

References 

[1] D.J. Thompson, C.J.C. Jones. Chapter 10. Noise and vibration from railway vehicles; Iwnicki, S. 

(ed.), Handbook of railway vehicle dynamics. CRC Press, 2006. 

[2] D.J. Thompson. On the relationship between wheel and rail surface roughness and rolling noise. 

Journal of Sound and Vibration. 193 (1996) 149-160. 

[3] S.L. Grassie. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and 

effects of reprofiling. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and 

Rapid Transit 226 (2012) 542–557. 

[4] X.S. Jin, Z.F. Wen. Effect of discrete track support by sleepers on rail corrugation at a curved track. 

Journal of Sound and Vibration 315 (2008) 279–300. 

[5] S.L. Grassie, Rail corrugation: characteristics, causes, and treatments, Proceedings of the Institution 

of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 223 (2009) 581–596. 

[6] S.L. Grassie. The corrugation of railway rails: Ⅰ. Introduction and mitigation measures. Proceedings 

of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 237 (2023) 588–

596. 

[7] W. Li, H. Wang, Z. Wen, X. Du, L. Wu, X. Li, X. Jin. Generation Mechanism and Development 

Characteristics of Rail Corrugation of Cologne Egg Fastener Track in Metro. Proceedings of the 

Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 230 (2016) 1025–1039. 

[8] G.X. Chen, X.L. Cui, W.J. Qian. Investigation into rail corrugation in high-speed railway tracks 

from the viewpoint of the frictional self-excited vibration of a wheel-rail system. Journal of Modern 

Transportation 24 (2016) 124-131. 

[9] X. Cui, G. Chen, J. Zhao, W. Yan, H. Ouyang, M. Zhu. Field investigation and numerical study of 

the rail corrugation caused by frictional self-excited vibration. Wear 376-377 (2017) 1919-1929. 

[10] A.B. Wang, Z.Q. Wang, P. Zhang, N. Xu, Z. Zhang, K. He. Study on the mechanism of 

discontinuous support stiffness on the development of rail corrugation. Proceedings of the 21st 

International Congress on Sound and Vibration (ICSV ’14) pp. 1926–1933, Beijing, China, July 2014. 

[11] C. Zhao, P. Wang, M. Xing. Research on the Matching of Fastener Stiffness Based on Wheel-Rail 

Contact Mechanism for Prevention of Rail Corrugation. Mathematical Problems in Engineering (2017) 

21:1-13. 

[12] C. Zhao, P. Wang, X. Sheng, D. Meng. Theoretical Simulation and Experimental Investigation of a 

Rail Damper to Minimize Short-Pitch Rail Corrugation. Mathematical Problems in Engineering (2017) 

1:1-14. 

[13] J.J. Kalker. A fast algorithm for the simplified theory of rolling contact. Vehicle System Dynamics 

11 (1982) 1-13. 

[14] J.J. Kalker. Three-dimensional Elastic Bodies in Rolling Contact. Dordrecht, Kluwer Academic 

Publishers. 1990. 

[15] S.L. Grassie, K.L. Johnson. Periodic microslip between a rolling wheel and a corrugated rail. Wear 

101(1985) 291-309. 

[16] C.O. Frederick, A rail corrugation theory. In Proceedings of the International Symposium on 

Contact Mechanics and Wear of Rail-Wheel Systems, II, 1986, pp. 181–211. 



 

204 
 

[17] K. Hempelmann, K. Knothe. An extended linear model for the prediction of short pitch 

corrugation. Wear 191 (1996) 161-169. 

[18] S. Müller, A linear wheel-track model to predict instability and short pitch corrugation. Journal of 

Sound and Vibration 227 (1999) 899–913. 

[19] J.C.O. Nielsen, R. Lunden, A. Johansson, T. Vernersson. Train-track interaction and mechanisms of 

irregular wear on wheel and rail surfaces. Vehicle System Dynamics 40 (2003) 3-54. 

[20] C. Andersson, A. Johansson. Prediction of rail corrugation generated by three-dimensional wheel-

rail interaction. Wear 257 (2004) 423-434. 

[21] R. Robles, N. Correa, E.G. Vadillo, J. Blanco-Lorenzo. Comprehensive efficient vertical and lateral 

track dynamic model to study the evolution of rail corrugation in sharp curves. Journal of Sound and 

Vibration 545 (2023) 117448. 

[22] X.S. Jin, Z.F. Wen, K.Y. Wang, Z.R. Zhou, Q.Y. Liu, C.H. Li. Three-dimensional train–track model 

for study of rail corrugation. Journal of Sound and Vibration 293 (2006) 830–855. 

[23] I. Gomez, E.G. Vadillo. A linear model to explain short pitch corrugation on rails. Wear 255 (2003) 

1127-1142. 

[24] J.B. Nielsen. Evolution of rail corrugation predicted with a non-linear wear model. Journal of 

Sound and Vibration 227 (1999) 915–933. 

[25] M. Ciavarella, J. Barber. Influence of longitudinal creepage and wheel inertia on short-pitch 

corrugation: a resonance-free mechanism to explain the roaring rail phenomenon. Proceedings of the 

Institution of Mechanical Engineers Part J: Journal of Engineering Tribology 222 (2008) 171–181. 

[26] L. Afferrante, M. Ciavarella. Short-pitch corrugation: A possible resonance-free regime as a step 

forward to explain the “enigma”? Wear 266 (2009) 934-944. 

[27] T.X. Wu, D.J. Thompson. An investigation into rail corrugation due to micro-slip under multiple 

wheel/rail interactions. Wear 258 (2005) 1115–1125. 

[28] H. Ilias. The influence of railpad stiffness on wheelset/track interaction and corrugation growth. 

Journal of Sound and Vibration 227 (1999) 935-948. 

[29] L. Baeza, F.J. Fuenmayor, J. Carballeira and A. Roda. Influence of the wheel-rail contact 

instationary process contact parameters. Journal of Strain Analysis for Engineering Design 42 (2007) 

377-387. 

[30] L. Baeza, P. Vila, A. Roda, J. Fayos. Prediction of corrugation in rails using a non-stationary wheel-

rail contact model. Wear 265 (2008) 1156-1162. 

[31] A. Alonso, J.G. Gimenez. Non-steady state modelling of wheel-rail contact problem for the 

dynamic simulation of railway vehicle. Vehicle System Dynamics 46 (2008) 179-196. 

[32] K. Knothe, A. Gross-Thebing. Short wavelength rail corrugation and non-steady-state contact 

mechanics. Vehicle System Dynamics 46 (2008) 49-66. 

[33] G. Xie, S.D. Iwnicki. Calculation of wear on a corrugated rail using a three-dimensional contact 

model. Wear 265 (2008) 1238-1248. 

[34] G. Xie, S.D. Iwnicki. Simulation of wear on a rough rail using a time-domain wheel-track 

interaction model. Wear 265 (2008) 1572-1583. 

[35] P. Vila, J. Fayos, L. Baeza. Simulation of the evolution of rail corrugation using a rotating flexible 

wheelset model. Vehicle System Dynamics 49 (2011) 1749-1769. 

[36] P. Vila, L. Baeza, J. Martinez-Casas, J. Carballeira. Rail corrugation growth accounting for the 



 

205 
 

flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact 

patch. Vehicle System Dynamics 52 (2014) 92-108. 

[37] P.T. Torstensson, M. Schilke. Rail corrugation growth on small radius curves-Measurements and 

validation of a numerical prediction model. Wear 303 (2013) 381-396. 

[38] P.T. Torstensson, A. Pieringer, J.C.O. Nielsen. Simulation of rail roughness growth on small radius 

curves using a non-Hertzian and non-steady wheel-rail contact model. Wear 314 (2014) 241-253. 

[39] R.A. Clark, G.A. Scott, W. Poole, Short wave corrugations-an explanation based on stick-slip 

vibrations. In Proceedings of the Applied Mechanics Rail Transportation Symposium (1988) 141–148. 

[40] C.A. Brockley, P.L. Ko. An investigation of rail corrugation using friction-induced vibration theory. 

Wear 128 (1988) 99–105. 

[41] A. Matsumoto, Y. Sato, H. Ono, M. Tanimoto, Y. Oka, E. Miyauchi. Formation mechanism and 

countermeasures of rail corrugation on curved track. Wear 253 (2002) 178–184. 

[42] S.L. Grassie, J.W. Edwards. Development of corrugation as a result of varying normal load. Wear 

265 (2008) 1150-1155. 

[43] Y.Q. Sun, S. Simson. Wagon–track modeling and parametric study on rail corrugation initiation due 

to wheel stick–slip process on curved track. Wear 265 (2008) 1193–1201. 

[44] B. Ding. The mechanism of railway curve squeal. PhD thesis, University of Southampton, 2018. 

[45] B. Kurzeck. Combined friction induced oscillations of wheelset and track during the curving of 

metros and their influence on corrugation. Wear 271 (2011) 299–310. 

[46] G.X. Chen, Z.R. Zhou, H. Ouyang, X.S. Jin, M.H. Zhu, Q.Y. Liu. A finite element study on rail 

corrugation based on saturated creep force-induced self-excited vibration of a wheelset–track system. 

Journal of Sound and Vibration 329 (2010) 4643–4655. 

[47] W.J. Qian, G.X. Chen, H. Ouyang, M.H. Zhu, W.H. Zhang, Z.R. Zhou. A transient dynamic study 

of the self-excited vibration of a railway wheel set–track system induced by saturated creep forces. 

Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 52 (2014) 1115-

1138. 

[48] X. Cui, G. Chen, H. Yang, H. Ouyang, W. Yan. A case study of rail corrugation phenomenon based 

on the viewpoint of friction-induced oscillation of a wheelset-track system. Journal of Vibroengineering 

19 (2017) 4516-4530. 

[49] E.G. Vadillo, J. T�́�𝑎rrago, G.G. Zubiaurre, C.A. Duque. Effect of sleeper distance on rail 

corrugation. Wear 217 (1998) 140-145. 

[50] P.A. Meehan, W.J.T. Daniel, T. Campey. Prediction of the growth of wear-type rail corrugation. 

Wear 258 (2005) 1001-1013. 

[51] Z. Yan, V. Markine, A. Gu, Q. Liang. Optimisation of the dynamic properties of ladder track to 

minimise the chance of rail corrugation. Proceedings of the Institution of Mechanical Engineers Part F: 

Journal of Rail and Rapid Transit 228 (2014) 285–297. 

[52] X. Song, Y. Qian, K. Wang, P. Liu. Effect of Rail Pad Stiffness on Vehicle–Track Dynamic 

Interaction Excited by Rail Corrugation in Metro. Transportation Research Record 2674 (2020) 1-19. 

[53] R. Robles, N. Correa, E.G. Vadillo, J. Blanco-Lorenzo. Predicting rail corrugation in a real line by 

means of a fast non-linear vertical and lateral model. Wear 524-525 (2023) 204896. 

[54] X. Sheng, D.J. Thompson, C.J.C. Jones, G. Xie, S.D. Iwnicki, P. Allen, S.S. Hsu. Simulations of 

roughness initiation and growth on railway rails. Journal of Sound and Vibration 293 (2006) 819-829. 



 

206 
 

[55] A. Igeland. Railhead corrugation growth explained by dynamic interaction between track and bogie 

wheelsets. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid 

Transit 210 (1996) 11–20. 

[56] K. Manabe. A hypothesis on a wavelength fixing mechanism of rail corrugation. Proceedings of the 

Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 214 (2000) 21–26. 

[57] A. Johansson, J.C.O. Nielsen. Rail corrugation growth – influence of powered wheelsets with 

wheel tread irregularities. Wear 262 (2007) 1296-1307. 

[58] P.A. Meehan, W.J.T. Daniel. Effects of wheel passing frequency on wear-type corrugations. Wear 

265 (2008) 1202-1211. 

[59] P.A. Bellette, P.A. Meehan, W.J.T. Daniel. Effects of variable pass speed on wear-type corrugation 

growth. Journal of Sound and Vibration 314 (2008) 616-634. 

[60] P.A. Meehan, R.D. Batten, P.A. Bellette. The effect of non-uniform train speed distribution on rail 

corrugation growth in curves-corners. Wear 366-367 (2016) 27-37. 

[61] P.A. Bellette, P.A. Meehan, W.J.T. Daniel. Validation of a tangent track corrugation model with a 

two disk test rig. Wear 271 (2011) 268-277. 

[62] D.T. Eadie, M. Santoro, K. Oldknow, Y. Oka. Field studies of the effect of friction modifiers on 

short pitch corrugation generation in curves. Wear 265 (2008) 1212–1221. 

[63] S.L. Grassie. The corrugation of railway rails: Ⅱ. Monitoring and conclusions. Proceedings of the 

Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 237 (2023) 597–605. 

[64] B.E. Croft, C.J.C. Jones, D.J. Thompson. Modelling the effect of rail dampers on wheel–rail 

interaction forces and rail roughness growth rates. Journal of Sound and Vibration 323 (2009) 17–32. 

[65] T.X. Wu. Effects on short pitch rail corrugation growth of a rail vibration absorber-damper. Wear 

271 (2011) 339-348. 

[66] B.W. Wu, G.X. Chen, J.Z. Lv, Q. Zhu, X.N. Zhao, X. Kang. Effect of the axlebox arrangement of 

the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track. 

Wear 426-427 (2019) 1828-1836. 

[67] X.L. Cui, G.X. Chen, H.G. Yang, Q. Zhang, H. Ouyang, M.H. Zhu. Effect of the wheel-rail contact 

angle and the direction of the saturated creep force on rail corrugation. Wear 330-331 (2015) 554-562. 

[68] O. El Beshbichi, C. Wan, S. Bruni, E. Kassa. Complex eigenvalue analysis and parameters analysis 

to investigate the formation of railhead corrugation in sharp curves. Wear 450-451 (2020) 203150. 

[69] Z. Huang. Theoretical modelling of the railway curve squeal. University of Southampton. Doctoral 

Thesis. 2007. 

[70] A.H. Wickens. Fundamentals of Rail Vehicle Dynamics – Guidance and Stability. Swets & 

Zeitlinger Publishers, Lisse, 2003. 

[71] J. Mackenzie. Resistance on railway curves as an element of danger. Minutes of the Proceedings of 

the Institution of Civil Engineers 74 (1883) 1-57. 

[72] S.R.M. Porter. The mechanics of a locomotive on curved track. The Railway Gazette, London, 

1935. 

[73] J.A. Elkins, R.J. Gostlling. A general quasi-static curving theory for railway vehicles. Vehicle 

System Dynamics 6 (1977) 100-106. 

[74] K.L. Johnson. Contact Mechanics, Cambridge University Press, 1985. 

[75] T.X. Wu, D.J. Thompson. Vibration analysis of railway track with multiple wheels on the rail. 



 

207 
 

Journal of Sound and Vibration 239 (2001) 69–97. 

[76] J.L. Meriam, L.G. Kraige. Engineering mechanics: dynamics, John Wiley & Sons, 2012. 

[77] S. Andersson, A. Söderberg, S. Björklund. Friction models for sliding dry, boundary and mixed 

lubricated contacts, Tribology International, 40 (2007) 580-587. 

[78] G. Xie, P.D. Allen, S.D. Iwnicki, A. Alonso, D.J. Thompson, C.J.C Jones, Z.Y. Huang. Introduction 

of falling friction coefficients into curving calculations for studying curve squeal noise. Vehicle System 

Dynamics 44 (2006) 261-271. 

[79] M. Spiryagin, O. Polach and C. Colin. Creep force modelling for rail traction vehicles based on the 

Fastsim algorithm. Vehicle System Dynamics 51 (2013) 1765-1783. 

[80] O. Polach. Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258 

(2005) 992–1000. 

[81] O. Polach. Influence of locomotive tractive effort on the forces between wheel and rail. Vehicle 

System Dynamics 35 (2001) 7–22. 

[82] M. Ertz, F. Bucher. Improved creep force model for wheel/rail contact considering roughness and 

temperature. Vehicle System Dynamics 37 (2002) 314–325. 

[83] F. Bucher, K. Knothe, A. Theiler. Normal and tangential contact problem of surfaces with measured 

roughness. Wear 253 (2002) 204–218. 

[84] D. Kostovasilis. Analytical modelling of the vibration of railway track. University of Southampton, 

Doctoral Thesis, 2017. 

[85] X. Zhang, D.J. Thompson, Q. Li, D. Kostovasilis, M.G.R. Toward, G. Squicciarini, J. Ryue. A 

model of a discretely supported railway track based on a 2.5D finite element approach. Journal of Sound 

and Vibration 438 (2019) 153-174. 

[86] A. Pieringer. Time domain modelling of high-frequency wheel/rail interaction. PhD thesis, 

Chalmers University of Technology, 2011. 

[87] P.J. Remington. Wheel/rail rolling noise I: theoretical analysis, Journal of Acoustical Society of 

America 81 (1987) 1805-1823. 

[88] D.J. Thompson, N. Vincent. Track dynamic behaviour at high frequencies. Part 1: theoretical 

models and laboratory measurements. Vehicle System Dynamics 24 (1995) 86-99. 

[89] K.L. Knothe, S.L. Grassie. Modelling of railway track and vehicle/track interaction at high 

frequencies. Vehicle System Dynamics 22 (1993) 209-262. 

[90] N. Vincent, D.J. Thompson. Track dynamic behaviour at high frequencies. Part 2: results and 

comparisons with theory. Vehicle System Dynamics 24 (1995) 100-114. 

[91] D.J. Thompson, B. Hemsworth, N. Vincent. Experimental validation of the TWINS prediction 

program for rolling noise, Part 1: description of the model and method. Journal of Sound and Vibration 

193 (1996) 123-135. 

[92] S.L. Grassie, R.W. Gregory, D. Harrison, K.L. Johnson. The dynamic response of railway track to 

high frequency vertical excitation. Journal of Mechanical Engineering Science 24 (1982) 77-90. 

[93] M.A. Heckl. Railway noise-Can random sleeper spacings help? Acustica 81 (1995) 559-564. 

[94] M.A. Heckl. Coupled waves on a periodically supported Timoshenko beam. Journal of Sound and 

Vibration. 252 (2002) 849-882. 

[95] T.X. Wu, D.J. Thompson. A double Timoshenko beam model for vertical vibration analysis of 

railway track at high frequencies. Journal of Sound and Vibration 224 (1999) 329-348. 



 

208 
 

[96] T.X. Wu, D.J. Thompson. Analysis of lateral vibration behavior of railway track at high frequencies 

using a continuously supported multiple beam model. Journal of Acoustical Society of America. 106 

(1999) 1369–1376. 

[97] D.J. Thompson. Railway noise and vibration: mechanisms, modelling and means 

of control. Elsevier Science, Oxford, UK, 2009. 

[98] K.L. Knothe, Z. Strzyzakowski, K. Willner. Rail vibrations in the high frequency range. Journal of 

Sound and Vibration 169 (1994) 111–123. 

[99] J. Ryue, D.J. Thompson, P.R. White, D.R. Thompson. Investigations of propagating wave types in 

railway tracks at high frequencies. Journal of Sound and Vibration 315 (2008) 157–175. 

[100] C.M. Nilsson, C.J.C. Jones, D.J. Thompson, J. Ryue. A waveguide finite element and boundary 

element approach to calculating the sound radiated by railway and tram rails. Journal of Sound and 

Vibration 321 (2009) 813–836. 

[101] W. Li, R.A. Dwight, T. Zhang. On the study of vibration of a supported railway rail using the 

semi-analytical finite element method. Journal of Sound and Vibration 345 (2015) 121-145. 

[102] A. Bhaskar, K.L. Johnson, G.D. Wood, J. Woodhouse. Wheel-rail dynamics with closely 

conformal contact. Part 1: dynamic modelling and stability analysis. Proceedings of the Institution of 

Mechanical Engineers. Part F: Journal of Rail Rapid Transit 211 (1997) 11–26. 

[103] B. Betgen, G. Squicciarini, D.J. Thompson. On the prediction of rail cross mobility and track 

decay rates using finite element models, in: Proceedings of the 10th European Congress and Exposition 

on Noise Control Engineering (EURONOISE2015), Maastricht, Netherlands, EAA-NAG-ABAV, 2015, 

2019–2024. 

[104] S.L. Grassie, S.J. Cox. The dynamic response of railway track with flexible sleeper to high 

frequency vertical excitation. Proceedings of the Institution of Mechanical Engineers 198D (1984) 117-

124. 

[105] J.C.O. Nielsen, A. Igeland. Vertical dynamic interaction between train and track-influence of 

wheel and track imperfections. Journal of Sound and Vibration 187 (1995) 825-839. 

[106] S.L. Grassie. Dynamic modelling of concrete railway sleepers. Journal of Sound and Vibration 

187 (1995) 799-813. 

[107] R. Ferrara, G. Leonardi, F. Jourdan. A contact-area model for rail-pads connections in 2-D 

simulations: sensitivity analysis of train-induced vibrations. Vehicle System Dynamics. 51 (2013) 1342-

1362. 

[108] M.Y. Kim, S.B. Kim, N.I. Kim, Spatial stability of shear deformable curved beams with non-

symmetric thin-walled sections. I: stability formulation and closed-form solutions, Computers and 

Structure 83 (2005) 2525–2541. 

[109] A.E.H. Love. A treatise on the mathematical theory of elasticity. Dover Publications, New York, 

4th edition, 1944. 

[110] E.J. Sapountzakis, V.J. Tsipiras. Shear deformable bars of doubly symmetrical cross section under 

nonlinear nonuniform torsional vibrations application to torsional postbuckling configurations and 

primary resonance excitations. Nonlinear Dynamics 62 (2010) 967-987. 

[111] M. Oregui, Zili Li, R. Dollevoet. An investigation into the vertical dynamics of tracks with 

monobloc sleepers with a 3D finite-element model. Proceedings of the Institution of Mechanical 

Engineers Part F: Journal of Rail and Rapid Transit 230 (2015) 891–908. 



 

209 
 

[112] C.J.C. Jones, D.J. Thompson, R.J. Diehl. The use of decay rates to analyse the performance of 

railway track in rolling noise generation. Journal of Sound and Vibration 293 (2006) 485–495. 

[113] British Standards Institution. BS EN 15461:2008 A1:2010: Railway applications – Noise emission 

- Characterization of the dynamic properties of track selections for pass by noise measurements, 2010. 

[114] R.A. Clark, P.A. Dean et al. Investigation into the dynamic effects of railways vehicles running on 

the corrugated rails. Journal of Mechanical Engineering Science 24 (1982) 65-76. 

[115] L. Baeza, A. Roda, J.C.O Nielson. Railways vehicle/track interaction analysis using a model 

substructuring approach. Journal of Sound and Vibration 293 (2006) 112-124. 

[116] M. Heckl. Proposal for a railway simulation program. A Workshop on Rolling Noise Generation 

(1989) 128-148. 

[117] J. Fayos, L. Baeza, F. D. Denia, J. E. Tarancón. An Eulerian coordinate-based method for 

analysing the structural vibrations of a solid of revolution rotating about its main axis. Journal of Sound 

and Vibration 306 (2007) 618-635. 

[118] L. Baeza, J. Fayos, A. Roda, R. Insa. High frequency railway vehicle-track dynamics through 

flexible rotating wheelsets. Vehicle System Dynamics 46 (2008) 647-659. 

[119] T. Szolc. Medium frequency dynamic investigation of the railway wheelset–track system using a 

discrete–continuous model. Archive of Applied Mechanics 65 (1998) 30–45. 

[120] T. Szolc. Simulation of bending-torsional-lateral vibrations of the railway wheelset–track system 

in the medium frequency range. Vehicle System Dynamics 30 (1998) 473–508. 

[121] T. Meinders. Modeling of a railway wheelset as a rotating elastic multibody system. Machine 

Dynanics Problems 20 (1998) 209–219. 

[122] L. Baeza, P. Vila, G. Xie et al. Prediction ofrail corrugation using a rotating flexible wheelset 

coupled with a flexible track model and a non-Hertzian/non-steady contact model. Journal of Sound and 

Vibration. 330 (2011) 4493–4507. 

[123] K. Popp, H. Kruse, I. Kaiser. Vehicle/track dynamics in the midfrequency range. Vehicle System 

Dynamics 31 (1999) 423–463. 

[124] P.T. Torstensson, J.C.O. Nielson. Simulation of dynamic vehicle-track interaction on small radius 

curves. Vehicle System Dynamics 49 (2010) 1711-1732. 

[125] D.J. Ewins, Modal testing: theory and practice. Research studies press Letchworth, 1984. 

[126] J.C.O. Nielsen. High-frequency vertical wheel-rail contact forces – validation of a prediction 

model by field testing. 7th International Conference on Contact Mechanics and Wear of Rail/Wheel 

Systems, Brisbane, Australia, 2006. 

[127] C. Andersson, T. Abrahamsson. Simulation of interaction between a train in general motion and a 

track. Vehicle System Dynamics 38 (2002) 433-455. 

[128] A. Pieringer, W. Kropp, J.C.O. Nielsen. A time-domain model for wheel/rail interaction aiming to 

include non-linear contact stiffness and tangential friction. Noise and Vibration Mitigation for Rail 

Transportation Systems Proceedings of the 9th International Workshop on Railway Noise, Munich, 

Germany, 4-8 September 2007: 285-291, Springer: Berlin. 

[129] H. Hertz. On the contact of elastic solids. Papers by H. Hertz, Jones and Schott Macmillan 

London, 166-171, 1896. 

[130] P. Remington, J. Webb. Estimation of wheel/rail interaction forces in the contact area due to 

roughness. Journal of Sound and Vibration 193 (1996) 83–102. 



 

210 
 

[131] D.J. Thompson. The influence of the contact zone on the excitation of wheel/rail noise. Journal of 

Sound and Vibration 267 (2003) 523–535. 

[132] P.J. Remington. Wheel/rail noise Ⅳ: Rolling noise, Journal of Sound and Vibration 46 (1975) 

419-436.  

[133] “Acoustics – Railway applications – Measurement of noise emitted by railbound vehicles”. ISO 

3095-2013. Geneva: International Standards Organization. 

[134] F. Braghin, R. Lewis, R.S. Dwyer-Joyce, S. Bruni. A mathematical model to predict railway wheel 

profile evolution due to wear. Wear 261 (2006) 1253-1264. 

[135] K.L. Johnson. Contact Mechanics, Cambridge University Press. 

[136] S. Hao, L.M. Keer. Rolling contact between rigid cylinder and semi-infinite elastic body with 

sliding and adhesion. Transactions of the ASME. Journal of Tribology 129 (2007) 481-494. 

[137] F. Bucher, K. Knothe, A. Theiler. Normal and tangential contact problem of surfaces with 

measured roughness. Wear 253 (2002) 204-218. 

[138] K. Knothe. History of wheel-rail contact mechanics: from Redtenbacher to Kalker. Vehicle 

System Dynamics 46 (2008): 9-26. 

[139] B. Croft. The development of the rail-head acoustic roughness. University of Southampton, 

Doctoral Thesis, 2009. 

[140] L. Baeza, D.J. Thompson, G. Squicciarini, F.D. Denia. Method for obtaining the wheel-rail 

contact location and its application to the normal problem calculation through ‘Contact’. Vehicle System 

Dynamics 56 (2018) 1734-1746. 

[141] T.G. Pearce, N.D. Sherratt. Prediction of wheel profile wear, Wear 144 (1991) 343–351. 

[142] N. Correa, O. Oyarzabal, et al. Rail corrugation development in high speed lines. Wear 271 (2011) 

2438–2447. 

[143] C.A. Brockley, P.L. Ko. An investigation of rail corrugation using friction-induced vibration 

theory. Wear 128 (1988) 99–106. 

[144] J.F. Archard, W. Hirst. The wear of metals under unlubricated conditions, Proceedings of the 

Royal Society of London Series A. Mathematical and Physical Sciences 236 (1956) 397–410. 

[145] W. Zhang, J. Chen, X. Wu, X. Jin. Wheel/rail adhesion and analysis by using full scale roller rig. 

Wear 26 (2002) 61-79. 

[146] O. Polach. Creep forces in simulations of traction vehicle running on adhesion limit. Wear 258 

(2005) 992-1000. 

[147] N. Hoffmann, M. Fischer, R. Allgaier, L. Gaul. A minimal model for studying properties of the 

mode-coupling type instability in friction induced oscillations. Mechanics Research Communications, 

29 (2002) 197-205. 

[148] N. Hoffmann, L. Gaul. Effects of damping on mode-coupling instability in friction induced 

oscillations. ZAMM, 83 (2003) 524-534. 

[149] I.L. Singer, H. Pollock. Fundamentals of friction: acroscopic and microscopic processes, Springer 

Science & Business Media, 2012. 

[150] K. Mannabe. A hypothesis on a wavelength fixing mechanism of rail corrugation. Proceedings of 

the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 214 (2000) 21–26. 

[151] T.X. Wu, D.J. Thompson. Behaviour of the normal contact force under multiple wheel/rail 

interaction. Vehicle System Dynamics 37 (2002) 157-174. 



 

211 
 

[152] K. Hempelmann. Short pitch corrugation on railway rails: a linear model for prediction. VDI-

Verlag, 1994. 

[153] P.J. Remington. Wheel/rail rolling noise: What do we know? What don’t we know? Where do we 

go from here? Journal of Sound and Vibration 120 (1988) 203-226. 

[154] D.J. Thompson. Wheel-rail noise generation, Part Ⅳ: Contact zone and results. Journal of Sound 

and Vibration 161 (1993) 447-466. 

[155] D.J. Thompson, P. Fodiman, H. Mahe. Experimental validation of the TWINS prediction program 

for rolling noise, Part 2: results. Journal of Sound and Vibration 193 (1996) 137-147. 

 


	Table of Contents
	Table of Tables
	Table of Figures
	List of Symbols
	Research Thesis: Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Rail corrugation
	1.3  Review of rail corrugation prediction models
	1.3.1 Wheel-rail contact
	1.3.2 Transient dynamic interaction
	1.3.3 Stick-slip self-excited vibration due to falling friction
	1.3.4 Stick-slip self-excited vibration due to mode coupling
	1.3.5 Alternative mechanism based on flexibility differences

	1.4 Research on effects of critical aspects
	1.4.1 Discussions in the literature
	1.4.2 Summary of critical aspects

	1.5  Research target and contributions

	2 Steady-state curving model
	2.1 Introduction
	2.2 Review of railway vehicle dynamics
	2.3 Steady-state curving model from Huang [69]
	2.3.1 Creepages
	2.3.2 Rolling friction
	2.3.3 Wheel-rail interaction
	2.3.4 Vehicle dynamics
	2.3.5 Curving behaviour

	2.4 Modification of the steady-state curving model
	2.4.1 Applied traction under constant friction
	2.4.2 Applied traction under velocity-dependent friction

	2.5 Steady-state curving results
	2.6 Summary

	3 Track model
	3.1 Introduction
	3.2 Review of track models
	3.3 Frequency domain model
	3.3.1 Rail model
	3.3.2 Rail pad model
	3.3.3 Flexible sleeper model
	3.3.4 Receptance-coupling
	3.3.5 Track decay rate
	3.3.6 Transfer mobility under excitation on the other rail
	3.3.7 Effect of the torsion and warping on the track response

	3.4 Time-domain model
	3.4.1 Continuously supported track 
	3.4.2 Discretely supported track 

	3.5 Summary

	4 Wheel/rail interaction model
	4.1 Introduction
	4.2 Wheelset model
	4.2.1 Finite element model
	4.2.2 State-space model

	4.3 Dynamic interaction model  
	4.3.1 Wheel/rail displacements
	4.3.2 Contact forces
	4.3.3 Contact filter
	4.3.4 Validation by simple cases
	4.3.5 Comparison of Hertzian spring and variational contact model

	4.4 Summary

	5 Contact and wear model
	5.1 Introduction
	5.2 Review of contact models
	5.3 Stress distribution in the wheel-rail contact
	5.3.1 Contact geometry
	5.3.2 Stick and slip zones
	5.3.3 Calculation of stress distribution
	5.3.4 Results

	5.4 Rolling contact
	5.4.1 Transient stress distribution
	5.4.2 Numerical example
	5.4.3 Application of real contact surface profile
	5.4.4 Calculation of slip and slip velocity in the contact patch
	5.4.5 Normal interaction force in rolling with a rough rail

	5.5 Wear model 
	5.5.1 Wear model based on frictional work
	5.5.2 Wear model from Archard’s work
	5.5.3 Wear model by multiple mechanisms

	5.6 Summary

	6 Numerical investigation of corrugation growth
	6.1 Introduction
	6.2 Possible roughness growth mechanisms
	6.2.1 Input roughness
	6.2.2 Falling friction
	6.2.3 Vertical-lateral coupling

	6.3 Preliminary results
	6.3.1 Identification of P2 resonance 
	6.3.2 Identification of pinned-pinned resonance

	6.4 Identification of dominant mechanism 
	6.4.1 Basic case with only initial roughness input
	6.4.2 Case considering both initial roughness and vertical-lateral coupling
	6.4.3 Case considering both initial roughness and falling friction
	6.4.4 Case considering all three mechanisms

	6.5 Effect of coupling between two wheels and rails
	6.6 Effect of multiple wheel/rail interactions
	6.6.1 Relationship between the contact force and track dynamics
	6.6.2 Track responses 
	6.6.3 Numerical example
	6.6.4 Time-domain results

	6.7 Summary

	7 Influence of different parameters on roughness growth
	7.1 Introduction
	7.2 Influence of operational parameters
	7.2.1 Curve radius
	7.2.2 Vehicle speed
	7.2.3 Friction coefficient

	7.3 Influence of track parameters
	7.3.1 Influence of rail pad stiffness
	7.3.2 Comparison with slab track
	7.3.3 Influence of cant deficiency and cant excess

	7.4 Influence of vehicle parameters
	7.4.1 Different wheelset designs
	7.4.2 Axle load
	7.4.3 Traction force

	7.5 Summary

	8 Conclusions and Recommendations
	8.1 The updated and newly assembled time-domain prediction model
	8.2 Corrugation growth mechanisms
	8.3 Effect of relevant parameters on corrugation
	8.4 Summing up
	8.5 Recommendations for future work

	Appendices
	Appendix A. Flexible sleeper model [84]
	Appendix B. Fundamentals of beam theories [84]
	B.1 Classical beam theory
	B.2 Timoshenko beam theory
	B.3 Warping and arbitrary excitation forces [84]

	Appendix C. Initial broadband roughness
	Appendix D. Effect of track curvature on rolling noise

	References

