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Flow Cytometer for Automated Analysis of Phytoplankton 

by 

Anthony James Willis Lindley 

Phytoplankton are a diverse group of organisms which are globally important from perspectives 

of ecology, environmental health, climate and socioeconomics, yet are severely understudied. The 

ocean is vast and largely inaccessible, and while many recent advances have taken place in the in 

situ measurement of physiochemical variables, analysing phytoplankton abundance and diversity 

is still a major challenge. Bulk approaches such as fluorimetry and satellite colorimetry, which 

each measure the fundamental properties of an entire phytoplankton population, can provide 

abundance and crude taxonomic data at a large spatial scale. Despite widespread use of these 

techniques, there remains a need for higher taxonomic and spatiotemporal resolution data that 

can only be provided by light microscopy and flow cytometry, two time-consuming and expensive 

methods. 

To address these challenges, this thesis details the development of a novel, high-

throughput, acoustically focussed Imaging Flow Cytometer for low-cost imaging of phytoplankton 

in natural water samples, making use of off-the-shelf optical and mechanical components. 

Acoustic focussing is used as it is a contact-free, gentle and reliable particle positioning method 

which allows high-throughput imaging of cells. Analytical and experimental testing of the acoustic 

focussing performance is detailed using Finite Element Modelling and imaging of polystyrene 

beads as a proxy for phytoplankton. A protocol for measurement of imaging resolution is 

developed and verified before being used to characterise the optical performance of the device.  

In order to rapidly and automatically analyse the images captured by the device, various 

image processing techniques were investigated. In the finalised system, cutting-edge 

convolutional neural networks were designed, implemented, and verified by way of comparison 

with manual counting of plankton cells within images.  

 Finally, to demonstrate the effectiveness of the cytometer to address real research 

challenges, two experiments are described. In the first, the device automatically and successfully 

measures the density of preserved plankton cells within a test sample with an accuracy 

comparable to manual microscopy, the gold standard for this analysis. In the second experiment, 

the unique capability of the cytometer to generate high-temporal resolution measurements of 

live cells within growing cultures over an extended period was demonstrated. This experiment 

showed a discrepancy between the automatic measurements and manual verification, which is 

discussed at length, in the process uncovering a potential systemic bias occurring in 

phytoplankton research. The implications of these findings are explored.
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Figure 41 - Graph of MTF10 (dark blue) and MTF50 (light blue) values extracted from the MTF 

curves calculated for images with edge slant angles between 0° (completely 

vertical; aligned with sensor pixel columns) and 45°, in 2.5° increments. With 

edge rotation angles of 0-10° the determined MTF10 and MTF50 values are very 

consistent, but with increasing slant angle these resolution metrics display 
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Figure 42 – Comparison of the a)-e) central 256x256 pixels and f)-j) central 50x50 pixels of the 

slanted edge images taken during the section 3.2.3 focus experiment. Image a) is 

focused below the target and image e) above the target, as can be more clearly 

determined from the zoomed images f) and j). Images b), c) and d) are all 

subjectively ‘in focus’ and it is almost impossible to manually determine which 

has the most accurate focus position. As can be seen in Figure 42, there are 

subtle differences in derived resolution metrics between the three central in-

focus images. Of particular interest is the fact that image e) has a darker white 

section than the others, which is reflected in the lower MTF metrics on the 

above-target focus positions seen in Figure 42. This is caused by the interaction 

of the Köhler illumination focus plane and the imaging focus plane of the 

objective. ......................................................................................................... 89 

Figure 43 – Plot of slanted edge MTF10 (blue) and MTF50 (orange) metrics for increasing Z-axis 

focus positions. A focus point well below the target was selected and Z-height 

incrementally increased, with an image of the slanted edge taken every 1 micron 

step. Images were thus taken with the edge in focus (8-13 μm from initial 

position) and with the focus position above (0-7 μm from initial position) and 

below (14-20 μm from initial position) the target. The graph shows a nonlinear 

coupling between MTF10 and MTF50 values, highlighting the necessity of not 

solely relying on one or the other for resolution characterisation. Further, the 

plot demonstrates that Z-position accuracy of at least ± 2 μm is required to 

obtain high and consistent MTF measurements. ............................................ 91 

Figure 44 – Diagram of the first iteration IFC mechanical arrangement. Using a stepper motor, 6 

mm rods and linear bearings used in 3D printers, a carriage containing a camera 

can be raised or lowered as required to achieve focus of the cells passing 

through a flow cell below a standard 10X objective lens. By using a matt black 

Perspex enclosure, light from outside the device is limited and no tube between 

the camera and objective is required. The illumination frame can be lowered and 

https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460884
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460885
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460886
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460887


Table of Figures  

xvi 

an arbitrary number of optical components inserted above to create desired 

lighting conditions (e.g. Kohler). ...................................................................... 97 
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Figure 51 – The grayscale image of ellipses after applying a 5x5 pixel gaussian blur operator.113 
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Figure 54 – The ellipses after contour detection using the active contour algorithm. The outside 

edges of the objects of interest are now known and represented here in green.

 ....................................................................................................................... 115 

Figure 55 – The centre coordinates of each detected ellipse have been determined using the 

minimum and maximum extents of the previously calculated contours of the 

shapes, and are now plotted on the image. .................................................. 115 

Figure 56 – A new image of ellipses is presented in Figure 55a. The image now contains 3 ellipses 

of colours having a low contrast with the background. Figure 55b demonstrates 

the problem with the previously discussed image analysis approach; the contour 

detection has only operated successfully on the ellipse with the highest contrast 

from the background as the thresholding step used after edge detection had a 

threshold value set too high to include the darker objects. As a result, only that 

ellipse has its centre coordinates calculated, as demonstrated in Figure 55c.116 

Figure 57 – in this new image example, 2 of the 3 ellipses are partially overlapping. Though to a 

human, the 3 ellipses are clearly distinct objects, the algorithm which has been 

developed so far fails to distinguish the two objects and instead treats them as 

one. Figure 56b shows that the contours are calculated for the combined ellipses 

and therefore the centroid of the combined objects is plotted on Figure 56c.117 

Figure 58 – In this final example, Figure 57a. shows 3 ellipses which are overlaid this time on a 

gradient background, rather than the plain black of the previous examples. 

Though the 3 ellipses are still easily recognised by a human, the algorithm is 

unable to cope with the low contrast that the gradient produces and so falsely 

calculates coordinates for two of the ellipses and part of the gradient as a 

combined object, as shown in Figure 57b. Therefore, as Figure 57c, 

demonstrates, only one of the 3 ellipses is correctly identified. .................. 118 

Figure 59 – Two images of the IFC flow cell while filled with sterile L1 medium but no 

phytoplankton cells. Figure 58a. shows the flow cell after processing several 

phytoplankton samples and has obvious shadows which are cast onto the field 

of view by detritus adhered to the sides of the flow cell.  Figure 58b. shows the 

same flow cell after a further week of regular sampling operation. More debris 

has adhered to the flow cell, so the background complexity has been 

significantly increased. The arrow points to an area of particularly heavy new 
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adhered debris. This variable background poses a challenge to image processing 
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Figure 60 – IFC image of 3 phytoplankton cells, 2 of which are in contact with each other (arrow). 

As previously discussed, overlapping and touching objects pose a challenge to 

image processing techniques. ....................................................................... 120 

Figure 61 – close-up view of a phytoplankton cell (arrow) traversing in front of adhered detritus, 

the shadow of which is cast from the edge of the flow cell into the field of view.
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Figure 62 - An image of a dog in a field of bluebells is used to demonstrate three kind of image 

classification. In Binary Classification, a model which has been trained to 

recognise images of dogs outputs a 0-1 probability of the image containing a 

dog. In Multiclass Classification, the model is trained on multiple classes (Dog, 
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Dog, is selected as the output. In Multilabel Classification, the model can assign 

more than one label to the image. In this example, the model outputs both Dog 

and Plant as  both classes have probability scores which pass some threshold 

value. Adapted from (MathWorks, 2023). .................................................... 124 

Figure 63 - Two images from the acoustophoretic  IFC device are presented. For each of the two 

input images, a binary classification model which has been trained to detect cells 

could output a probability score of the image containing cells. Based on this 

score, frames which do not contain cells, like the first input image, could be 

discarded without being saved, saving memory and processing time. ......... 125 

Figure 64 – An image of a single phytoplankton cell is used as an input for hypothetical binary and 

multiclass classifiers. The binary classifier can predict whether a cell is healthy or 

not, whereas a multiclass classifier could be trained to distinguish between 

several genus of phytoplankton and output a probability score of the input 

image being an example of each, selecting the highest probability. ............ 126 

Figure 65 – An object detection algorithm based on a binary classification of each individual pixel 

within an input image. The algorithm generates a probability score (0-1) of the 

pixel containing a cell, after which a number of algorithms can be used to, for 
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Figure 66 – Example of a typical input and output from a machine learning regression model for 

object detection. An IFC image of a single phytoplankton cell is input, and the 

model predicts values for the coordinates of the corners which could be used to 

draw a box around the cell(s) in the input image. ......................................... 128 

Figure 67 – This diagram, adapted from Shin et al. (2016a), demonstrates the ability of a machine 

learning model to output probability density maps which correspond to 

predicted locations of various classes of objects of interest. In this example, an 

abdominal MRI input image has 4 corresponding output density maps, one for 

each of the organs of interest. ...................................................................... 129 

Figure 68 – Example of object detection via machine learning, where coordinates defining 

bounding-boxes are predicted via a regression model. In this example, the 

model has been trained to detect 3 different classes, and can simultaneously 

output a list (b.) of bounding boxes for an input image (a.) with a predicted class 

for each box (final column of the output list b.). Finally, the boxes can be drawn 

onto the input image to visually show the predictions of the model (c.). .... 130 

Figure 69 – Adapted from https://manipulation.csail.mit.edu/segmentation.html. An image of a 

dog and three sheep is used as an example of image classification, object 

detection, semantic segmentation and instance segmentation. In semantic 

segmentation, each pixel is assigned to the class with the highest probability. In 

the given example, red is used for the ‘dog’ class, and blue is used for the 

‘sheep’ class. Pixels in the background are not separately coloured in this case, 

but would have been assigned the ‘background’ class. There is no distinction 

made between different instances of the same class, unlike in instance 

segmentation, which is shown below. In instance segmentation, each pixel is 

assigned a class as before, but also assigned an instance variable representing 

the number of that object. In this manner, the image pixels belonging to the 

three different sheep are separately labelled and can be extracted or analysed 
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Figure 70 – two images which were generated by the DALL·E 2 image generation model. In each 

instance, a prompt, which is displayed here above the image, was used to 

generate a new image using a Generative Adversarial Network. The model is 

trained on many examples of images of different classes and semantic 

information, and can then use the learned features to produce new images 

based on input text. Here, an image of a dog sitting in a field of bluebells is 
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created, as is an image of a cell which could be from a microscope image. 

Neither of these images depict real, extant objects. .................................... 132 

Figure 71 – Two variants of an input image generated by the generative adversarial network 

model DALL·E 2. Neither of the two variants are real images but instead were 

generated using a combination of previously learned features and features from 

the input image. ............................................................................................. 133 

Figure 72 – Illustration of the operation of one neuron. The neuron computers a weighted sum of 

its inputs, [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑁], using associated weight values, 

[𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑁],. A bias value, b, is added and the output, z, is passed on to 

the next connection. ...................................................................................... 135 

Figure 73 – An illustration of an extremely simple neural network. Two input neurons (blue) are 

connected to 4 neurons (grey) within a single hidden layer, which are in turn 

connected to a single output neuron (orange). Each connection represents one 

of the inputs to a matrix operation. .............................................................. 136 

Figure 74 – The sigmoid and Rectified Linear Unit (ReLU) functions. By passing the output value of 

a neuron through these functions, the neural network is no longer performing a 

simple linear regression and is able to represent complex nonlinear relationships 

between input and output data. The specific activation function used influences 

the performance of a given model. ............................................................... 137 

Figure 75 - A deep neural network with 3 hidden layers is presented. In this network, each layer is 

fully-connected; that is, each neuron is connected to every neuron in the prior 

layer. By introducing additional hidden layers of neurons, the deep neural 

network is able to model increasingly complex relationships between input and 

output data. (Strauß, 2018) ........................................................................... 138 

Figure 76 – Intersection over Union (IoU) is a performance metric which calculates the accuracy of 

a bounding box prediction by dividing the intersection (overlap) by the union 

(area enclosed by both boxes), for the predicted and the ground truth bounding 
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Figure 77 – A visual representation of a convolution operation on an image represented as a 2D 

matrix (left). Convolution computes the value of each destination pixel in an 

output matrix (right) by multiplying each value in the convolution filter (centre) 

by the corresponding value in the input image, and then sums the results. This 
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Figure 81 – Input image (left), probability density map representing model confidence of the 
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Figure 82 – Input IFC image (a.) and the same image overlayed with a binarized output mask of 

the CNN-predicted cell locations (b.), illustrating how the 3 cells visible can be 

easily localised based on the probability density map output by the model.161 

Figure 83 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method and 

manual counting of cells within Image Set 1. The mean difference is -2.34, 

indicating a lower mean count by the CNN method. The upper and lower limits 

of agreement are 0.56 and -5.2, respectively, illustrating the range within which 
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Figure 84 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method and 

manual counting of cells within Image Set 2. The mean difference is 3.18, 
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indicating a significantly higher mean count by the CNN method. The upper and 
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Figure 87 - The Darknet53 architecture, which consists of 53 convolutional layers and is used as 

the backbone for YOLOv3, a modern object detection algorithm. Diagram from 
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Figure 88 -  The CSPDarknet53 neural network architecture, first introduced in YOLOv4. Used as 

the backbone for advanced YOLO object detection models, CSPDarknet53 

employs Cross-Stage Partial (CSP) connections, facilitating superior feature 
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Figure 89  - The complete YOLOX network architecture, featuring inlaid diagrams of its core 

components: the Spatial Pyramid Pooling (SPP) module, the Neck (Path 

Aggregation Network, or PANet), and the YOLO Prediction Head. These 
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Figure 91 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of cells 
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Abbreviations and Definitions 

Adam .................................... Adaptive Moment Estimation: A stochastic optimization algorithm 

that adaptively adjusts learning rates for each parameter based on 

estimates of first and second moments of the gradients. 

AP ......................................... Average Precision: A summary statistic of precision-recall curves, 

reflecting the average precision value for recall values over the entire 

range. 

BN ......................................... Batch Normalisation: A type of normalisation method applied in 

CNNs which normalises the inputs of each layer for each batch. 

CCD ....................................... Charge Coupled Device: A sensor used in digital imaging to convert 

light into an electronic signal. 

CMOS ................................... Complementary Metal Oxide Semiconductor: A fabrication process 

used for integrated circuits including image sensors. 

CNN ...................................... Convolutional Neural Network: A class of machine learning model: a 

neural network that uses convolutional layers to perform a 

mathematical operation on input data, typically images. 

CPR ....................................... Continuous Plankton Recorder: A device towed behind ships to 

collect plankton samples. 

CSP ....................................... Cross-Stage Partial: A neural network design approach that separates 

the a layer’s output into two stages and designed to improve the 

network's efficiency. 

DVM ..................................... Diel Vertical Migration: A behaviour observed in many aquatic 

organisms involving movements up and down in the water column 

over a 24-hour cycle. 

EOV ....................................... Essential Ocean Variable: Fundamental physical, chemical, and 

biological variables used in monitoring, modelling, and managing the 

ocean. 

ESD ....................................... Equivalent Spherical Diameter: The diameter of a sphere that has the 

same volume as a given particle. 

ESF ........................................ Edge Spread Function: The spatial response of an imaging system to 

an edge. 
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FC ......................................... Flow Cytometry: A technique used to measure the properties of 

particles in a fluid as they pass through a laser. 

FCRN ..................................... Fully Convolutional Regression Network: A type of CNN which uses 

convolutional layers for both feature extraction and regression. 

FEM ...................................... Finite Element Model: A computational method for finding 

approximate solutions to partial differential equations representing 

physical systems. 

FITC....................................... Fluorescein Isothiocyanate: A fluorochrome used in flow cytometry 

to label antibodies. 

FN ......................................... False Negative: An outcome where the model incorrectly predicts the 

negative class. 

FP .......................................... False Positive: An outcome where the model incorrectly predicts the 

positive class. 

FPN ....................................... Feature Pyramid Networks: A type of CNN designed to efficiently 

build high-level feature maps at different scales, improving the 

detection of objects at varying scales in image-based tasks. 

GOOS .................................... Global Ocean Observing System: The international collaboration for 

sustained observations of the oceans. 

GPU ...................................... Graphics Processing Unit: Computer hardware created for performing 

parallel computations on large data sets. Commonly used in graphics, 

simulations and deep learning. 

HAB ...................................... Harmful Algal Bloom: A rapid increase in the population of algae in an 

aquatic system, which is harmful due to the production of toxins 

and/or oxygen depletion. 

IFC ........................................ Imaging Flow Cytometer: An instrument combining flow cytometry 

and microscopy to analyse particles in flow. 

IFCB ...................................... Imaging Flow CytoBot: An automated, submersible Imaging Flow 

Cytometer for analysing marine microorganisms. 

IoU ........................................ Intersection Over Union: A metric for the overlap between two 

bounding boxes or other areas, calculated as the area of intersection 

divided by the area of union. 
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KLM ...................................... Krimholtz, Leedom and Matthaei: A model, named after its authors, 

that predicts the electrical properties of piezoelectric transducers. 
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Chapter 1 Introduction 

1.1 Motivation 

Understanding the processes, pressures and changes acting upon the oceans requires sustained, 

global observation of physical, chemical and biological variables. Global quantification of ocean 

state has been the ultimate aim of observational oceanography from its inception and has 

resulted in the establishment of an intergovernmental panel on ocean observation, the Global 

Ocean Observing System (GOOS). In the past decade a clear picture of what measurements are 

required for adequate assessment of ocean state has emerged. These measurements have been 

described as the Essential Ocean Variables (EOVs) and fall into physical, biogeochemical and 

biological/ecosystems categories. 

 

Of these, the biological/ecosystems EOVs face particular challenges with respect to the 

collection, processing and standardisation of measurements. Accurate quantification of 

phytoplankton biomass and biodiversity is of critical importance to biological oceanography yet is 

underdeveloped due to technical limitations which are explored in Chapter 2. The phytoplankton 

EOV is important due to the reliance of higher trophic levels on phytoplankton quality and 

abundance; the essential role of phytoplankton in carbon cycling and oxygen production; the 

effects of harmful algal blooms and the reflection of water quality in phytoplankton community 

structure.   

 

Phytoplankton diversity has been studied for over a century, with modern observations still 

relying on similar procedures to the earliest investigations. At present, studies into taxonomic 

distribution usually rely on the collection of cells using drag nets and manual microscopic 

examination in order to determine species or lower order classification. This process is labour-

intensive, time-consuming, unreliable and requires the decoupling of spatial and temporal 

information. Autonomous devices exist and are capable of automatic identification of 

phytoplankton in flowing samples at high accuracies but are at presently too expensive and 

complex to allow widespread adoption – as will be discussed in the following sections, a typical 

autonomous in situ phytoplankton microscope can easily cost over £100,000, which when 
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including training, staff time and related equipment costs could be too expensive for many 

research programmes.  

 

The motivation of this research, therefore, is the design, fabrication, characterisation, and use of 

a novel, low cost and simple device for the autonomous imaging of phytoplankton. 

 

1.2 Research Objectives 

The primary objective of this thesis are to develop and use a low-cost, automatic imaging flow 

cytometer by using acoustophoretic levitation to position phytoplankton cells into a sheet within 

the focal plane of a camera, and thus image cells at high throughputs. The device will be 

developed at as low a cost as reasonably possible such that it is accessible to resource-

constrained laboratories, in order to enable an increased use of imaging within global ocean 

observations. Included are chapters on the background, motivation and requirements of the 

device, the use of cutting-edge image processing algorithms to automatically analyse images and 

an investigation of the complete system applied to real-world phytoplankton research scenarios. 

The following sections briefly describe the content of each of the following chapters. 

 

1.3 Chapter Outline 

1.3.1 Background (Chapter 2) 

The background chapter covers a literature review investigating the ecological, climatological and 

socioeconomic importance of phytoplankton on global and regional scales, the history of 

phytoplankton observation, the state of the art and next-generation observation techniques. 

Imaging Flow Cytometry is identified as a candidate next-generation technology holding great 

promise for increasing the frequency and richness of observation while reducing cost compared 

to traditional methods. Following a review of current and prototype/research Imaging Flow 

Cytometers (IFCs) used in phytoplankton observation and monitoring, the constituent 

components of IFCs are investigated. These include the imaging technologies (cameras and 

illumination) and particle focussing techniques (hydrodynamic, inertial and acoustophoretic). 
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Acoustophoresis is shown to hold promise for low-cost novel IFCs and a summary of the 

literature of acoustic focussing is presented. 

 

1.3.2 Design and Characterisation of a Novel Low-Cost IFC using Acoustophoretic 

Focussing (Chapter 3) 

The engineering work detailed within this chapter is broken into the rationale and process for 

development of each subsection of the imaging flow cytometer, the design and fabrication 

directions chosen and the performance characterisation of the imaging and acoustic focussing. 

Transfer impedance modelling (KLM) and computational (FEM) simulations of the acoustic flow 

cell are detailed. A frequency-response experiment is carried out to determine the resonant 

frequencies of the fabricated flow cells, and a methodology for determining acoustic focussing 

performance from double-exposed images of polyester beads developed. The latter method 

proved unsuitable, and the reasons for this are explored. 

 

A method for determining the resolution of the optical system (MTF) is developed and quantified, 

and experiments to measure MTF using a research microscope presented. The benefits and 

limitations of the MTF approach are discussed.  

 

Finally, the complete system (acoustically-focussed flow cell, illumination apparatus, imaging 

optics and structural components) is designed, assembled and the image quality assessed using 

the previously discussed technique.   

 

1.3.3 Image Analysis for the Quantification of Phytoplankton in IFC Images (Chapter 4) 

After developing the acoustic, fluidic, optical and structural design of the IFC, an investigation 

into automatic image analysis for autonomously detecting and counting phytoplankton cells 

within images from the IFC was carried out. This chapter details the process of using traditional, 

feature-based image process algorithms before employing machine learning in the form of 

convolutional neural networks (CNNs). A simple CNN used in a similar IFC is used as a baseline, 

and is modified for the application within colour images of phytoplankton from the acoustically-
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focussed IFC. A comparison of the performance of this algorithm with that of manual cell-

counting by a human was carried out and it was demonstrated that the automatic approach was 

unreliable. Finally, a cutting-edge object detection CNN was implemented and tested, and 

showed performance rivalling that of a human operator. 

1.3.4 Use of the Acoustically-Focussed IFC in Phytoplankton Experiments (Chapter 5) 

In this chapter two experiments to quantify the performance of the IFC in addressing real-world 

research problems are presented, showcasing its potential as a low-cost, high-throughput 

imaging method to detect and count phytoplankton cells within preserved and living samples. In 

the first experiment, the accuracy of the instrument in determining the abundance of preserved 

phytoplankton cells is demonstrated, in a comparison with manual microscopy, and it is 

determined that the novel IFC presented previously has the potential to reliably replace the 

labour-intensive process of manually counting cells with a higher throughput and at a fraction of 

the cost of commercially available IFC instruments.  

 

Subsequently, the IFC system is applied to the study of live phytoplankton cells during their 

growth within an incubator, where it was found that that the swimming velocity of these motile 

cells is great enough to avoid their sampling into the fluidic system for processing. This finding 

has implications for many other phytoplankton research studies, which do not regularly consider 

the potential biases introduced by under-sampling motile species. 
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Chapter 2 Background 

2.1 Phytoplankton and Other Aquatic Microorganisms 

2.1.1 Ecological Role 

The ocean is a critical component of the global carbon cycle, containing as much as 50X more 

CO2 than the atmosphere (Legendre et al., 2001). The oceanic carbon cycle has three 

components; physical, chemical and biological, which together mediate fluxes of CO2 to and from 

the ocean. The biological component of this system drives a globally significant net flux of CO2 

into the ocean and is almost exclusively driven by photosynthetic net primary production (NPP) 

(Falkowski et al., 1998).  

 

Phytoplankton (Figure 1) are a diverse group of prokaryotic and eukaryotic photoautotrophic 

microorganisms consisting thousands of described species and form the biological basis of the 

oceanic carbon pump. Fossilised ancestors of contemporary cyanobacteria, the most abundant 

group of phytoplankton, have been dated at around 3.5 billion years (Ga) old (Schopf, 1993) and 

it is widely believed that oceanic photoautotrophy not only gave rise to the oxygen-rich 

atmosphere suitable for higher forms of life but are direct predecessors of terrestrial plants 

(Bhattacharya et al., 1998).  
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Across the ocean phytoplankton ‘fix’ approximately 45 gigatons of carbon per year, of which 16 

gigatons sinks to the deep ocean where it is permanently stored in sediment (Falkowski et al., 

1998).  

 

In addition to acting as the primary mechanism drawing CO2 from the atmosphere to the ocean, 

these primary producers act as the basis of almost all higher forms of marine life and are adapted 

to environments as diverse as arctic glaciers and subtropical gyres. As these unicellular 

microorganisms also have fast lifecycles, high morphological heterogeneity, can be found in all 

natural waters and respond quickly to environmental conditions, phytoplankton can also act a 

biomarker of marine ecosystem health (Suikkanen et al., 2007). 

 

Phytoplankton are not restricted to marine environments; freshwater bodies including lakes, 

rivers and even potable water supplies also support large and complex phytoplankton 

assemblages. As well as providing the primary production required to support freshwater aquatic 

Figure 1 – A selection of light microscopy images of phytoplankton sampled by Balzano et al. 

during the 2009 MALINA cruise in the Beaufort Sea. 
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life, freshwater phytoplankton occupy environments which are particularly influenced by 

anthropogenic loadings such as nutrient enrichment and pollution. The response of the plankton 

community to these factors can be measured and used to infer the level of impact faced by 

particular water bodies.  

 

The EU’s Water Framework Directive (WFD) uses the composition, abundance and biomass of 

phytoplankton as a biological marker of freshwater ecosystem health (Schmidt et al., 2008); EU 

countries are therefore legally required to measure the number and taxonomic composition of 

microalgae, at regular intervals, in their lakes and rivers (Pasztaleniec and Poniewozik, 2010) . The 

WFD uses a series of ‘indicator species’ which are counted and have corresponding ‘scores’; the 

sum of these scores, combined with indices according to algal size spectra and total biomass, is 

then used to infer the relative health of the water body in question (Molina-Navarro et al., 2014, 

Katsiapi et al., 2011).  

 

2.1.2 Diversity 

Phytoplankton are so globally ubiquitous and abundant that they contribute up to 45% of total 

global photosynthesis despite representing only 2% of photosynthetic biomass (Thyssen et al., 

2008). Representing 12 taxonomic divisions within 3 kingdoms (Cavalier-Smith, 1993), the 

phytoplankton group contains both pro- and eukaryotic organisms which can have autotrophic, 

auxotrophic and mixotrophic nutritional strategies but are united by their possession of 

chloroplasts.  

 

With sizes ranging from one micron to several millimetres, the cellular volumes of phytoplankton 

span at least 6 orders of magnitude (Maranon, 2015, Cloern, 2018). The relevant size fractions to 

which phytoplankton belong are described (by cell width) as nano- (2.0-20 µm), micro- (20-200 

µm) and mesoplankton (0.2-20 mm). Within these classifications, phytoplankton are joined by 

the protozooplankton, a group including colourless flagellates and ciliates (Sieburth et al., 1978). 

Though these species are phagotrophic (Schnepf and Kühn, 2000) or osmotrophic (Richards et al., 

2012) and are thus not primary producers, protozooplankton nevertheless play an important role 

ecologically (Burkholder and Glasgow Jr., 1997, Burkholder et al., 2008) and in carbon cycling 

(Levinsen et al., 1999). 
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The taxonomic diversity of phytoplankton is extensive, with great interspecies differences in cell 

size, cell-wall composition, sinking rates and impacts on the biological carbon pump (Collins et al., 

2014). A summary of the major phylogenetic groups of phytoplankton is presented in Figure 2. 

Some of the most studied subdivisions include the Rhizaria (a supergroup containing 

Radiolarians); the Diatoms, Dinoflagellates, Coccolithophorids and Prasinophytes (chlorophytes, 

containing green algae). An alternative approach to the classification of marine microorganisms, 

which has particularly been developed since the development of metagenomics, is division into 

functional groups, which links plankton with similar ecological roles (e.g. nitrifiers – 

predominantly cyanobacteria; or calcifiers, such as some coccolithophores) (DeLong, 2009). 

 

Figure 2 – Phylogenetic Diversity of Marine Microorganisms – From Collins et al. (Collins et al., 

2014) 
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2.2 Harmful Algal Blooms (HABs) 

2.2.1 Description 

Phytoplankton periodically experience dramatic increases in biomass of a single or few species, in 

localised and transient events known as algal blooms which can be so large as to be visible from 

space (Behrenfeld, 2010, Niemi, 1973). These events can provide large amounts of particulate 

organic carbon to higher trophic levels as well as changing physical properties of the water body 

such as light penetration and dissolved nutrients. Polar and subpolar regions of the ocean are 

characterised by strong and predictable vernal blooms which are critically important ecologically, 

dominating net primary production throughout the year (Moore and Abbott, 2000). 

 

The effects of algal blooms can be negative, reducing dissolved oxygen availability in the water 

column when they sink to depth and are decomposed by aerobic bacteria (Anderson et al., 2002).  

Of the over 100,000 planktonic species described, at least 300 are capable of causing ‘red tides’, 

where coastal regions experience severe deoxygenation resulting in widespread mortality of 

higher trophic levels (Smayda, 1997).  In addition, blooms of certain species such as the diatom 

Chaetoceros convolutes can clog fish gills and cause asphyxiation directly (Hallegraeff, 1993). At 

least 70 species are further capable of producing biotoxins (Smayda, 1997), such as domoic acid 

(C15H21NO6) produced by Pseudo-nitzschia australis (Lim et al., 2012). When blooms occur which 

are toxic or otherwise indirectly harmful to ecosystems or human health, the events are termed 

harmful algal blooms (HABs) (Anderson et al., 2002).  HABs are not limited to marine and coastal 

environments; freshwater species are capable of causing HABs posing particular risks due to their 

proximity to humans, drinking water supplies, recreational spaces etc. 

 

2.2.2 Impacts 

HABs can have severe economic effects when occurring in or around fisheries: most first-world 

countries mandate fishery closure when a certain level of cells from harmful species are detected 

in water samples (or toxic products are detected above a regulatory threshold). The biotoxins 

produced can undergo bioaccumulation/biomagnification in plankton-grazing shellfish, reaching 

levels in individuals high enough to cause human mortality if ingested (Prakash et al., 1971, 

Carmichael, 2001).  
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The causative factors leading to the development of the blooms of toxin-producing species are 

complex and it is not yet possible to predict HAB occurrence based solely on environmental 

measurements. This is a problem as physiochemical variables are far easier to obtain than 

biological factors, as elaborated on in Section 2.4. 

 

The human illnesses caused by ingestion of bioaccumulated products of harmful algae are 

paralytic-, diarrhetic-. neurotoxic-, amnesic- and azaspiracid shellfish poisoning. Except for 

amnesic shellfish poisoning, which is caused by toxins produced by diatoms, all HAB-related 

poisons are produced by dinoflagellates. A selection of the socioeconomic impacts caused by 

HABs are summarized in the literature in Table 1. Even in purely economic terms HABs are clearly 

a major source of concern – with costs ranging in the tens of millions of pounds per year it makes 

sense to invest considerably into monitoring and understanding harmful phytoplankton. 
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 Table 1 – Recorded socioeconomic damages resulting from Harmful Algal Blooms, in no 

particular order. 
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2.3 Observed Trends and Future Behaviours 

2.3.1 Climate Change and Ocean Acidification 

The possible effects of climate change on algal blooms (and phytoplankton more generally) have 

been extensively researched. Although a consensus has not yet emerged around the magnitude 

of the impacts of a warmer, acidified ocean will have on these microorganisms (Hallegraeff, 

2010), some conclusions about the types of effects likely to occur are widely backed up by 

modelling and observational studies. Firstly, while the phylogenetic diversity of phytoplankton 

and their disparate evolutionary histories provide community-level protection against change, 

warming environments will favour smaller species and hence reduce overall diversity (Zohary et 

al., 2021, Moran et al., 2010).  

 

Shifts in both the spatial distribution of phytoplankton and the temporal dynamics of their 

blooming is likely to occur: changes have been observed in historical measurement records 

(Richardson and Schoeman, 2004, Trombetta et al., 2019) (though are difficult to decouple from 

natural variability (Elsworth et al., 2020)) and models suggest an amplification of these effects 

through the 21st century (Henson et al., 2010, Henson et al., 2018). The shifting phenology of 

algal blooms will impact higher trophic levels and could adversely affect fisheries (Asch et al., 

2019). Biophysical modelling has indicated that heatwaves and changing water properties will 

increase the occurrence of harmful cyanobacterial blooms (Paerl and Paul, 2012, Jöhnk et al., 

2008, Paerl and Huisman, 2009, Hayes et al., 2015), and that harmful dinoflagellate blooms will 

increase in frequency, spatial extent and duration (Gobler et al., 2017, Glibert et al., 2014). 

 

2.3.2 Land use change and Eutrophication 

Changing land use has direct and indirect impacts on freshwater and marine ecosystems. Lakes 

and rivers are especially affected by nutrient enrichment caused by runoff from agricultural land. 

Freshwater phytoplankton are hence vulnerable to an additional set of anthropogenic forcings, 

which in combination with a warming climate can change bloom timing (Shi et al., 2019), 

community structure (Pomati et al., 2017) and overall abundance (Bussi et al., 2016). 
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The importance of phytoplankton and the environmental changes that they face  reinforce the 

need for adequate monitoring and observation. Many of the changes hypothesised to be caused 

by anthropogenic climate change are challenging to unpick from seasonal, annual, or decadal 

cycles, and there is significant variability caused by a lack of observational data. The next sections 

will summarise the state of the art in phytoplankton observation and lead into a discussion of 

possible future improvements made possible by technological advances.  
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2.4 Microalgal analysis techniques 

2.4.1 Background  

Given their critical roles in global carbon transport and marine ecology, and considering their 

potential socioeconomic impacts, the quantity and diversity of phytoplankton and other 

organisms found in the same size fractions are among the most measured features of the oceans. 

‘Phytoplankton biomass and diversity’ is one of the priority ‘Essential Ocean Variables’ defined by 

the Global Ocean Observing System, an international programme specifying key measurement 

parameters and operated by the Intergovernmental Oceanographic Commission (Muller-Karger 

and Kudela, 2016).  

 

Phytoplankton have been studied since before 1800 (Fogg, 1990), with routine observations 

becoming common during the latter half of the 20th century. The Continuous Plankton Recorder 

(CPR) (Hardy, 1939), for example, has been used since 1931 and is now used globally within five 

regional surveys (Batten et al., 2003). Consisting of a silk mesh continuously fed through a roller 

mechanism within an outer body, the CPR is towed by ships of opportunity (e.g. ferries, freight 

vessels etc), and collects phyto- and zooplankton large enough to be retained by the 270 µm 

mesh pore size. CPR data has been the subject of over 1000 peer-reviewed articles and allows the 

analysis of long-term trends, crucial for understanding the impact on plankton of future climate 

change.  

 

The CPR has the largest spatial extent of any phytoplankton observation programme and, as the 

phytoplankton are collected and stored, can provide taxonomically-resolved abundance data 

(Lombard et al., 2019). Despite the many benefits of the CPR there are still significant limitations. 

Most importantly, manual microscopy is still the fundamental analysis technique for preserved 

CPR samples. This necessitates the retention of a team of specialist taxonomists and severely 

limits the number of collected cells that can be analysed: only around 1/8000th of the total 

number of cells collected are identified. Furthermore, the large footprint of the unit (approx. 1m 

long and weighing 85kg) and requirement that it be towed limits the ease of deployment, 

especially for short-term studies, and prevents observations on coasts/rivers, fixed moorings or 

on smaller vessels. 
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2.4.2 Technologies  

Characterisation and monitoring of microalgae has mainly been conducted using optical 

microscopy (Karlson et al., 2010, Tsaloglou, 2016), which is costly, labour-intensive, low-

throughput and relies on analysis of images by expert taxonomists, a specialism which is in steep 

decline (Culverhouse et al., 2006). Furthermore, microscopy remote from the point of sampling 

also necessitates the use of fixative agents which require additional staff time and chemicals and 

can, depending on species, drastically alter cellular morphology and pigmentation from that seen 

in the wild (Dunker et al., 2018). Species composition measurements with high temporal and 

spatial resolutions are currently impossible, yet remain a central aim of research into aquatic 

primary production (Smetacek and Cloern, 2008). 

 

Due to these limiting factors several remote and in-situ analysis techniques have been 

developed, including the use of satellite colourimetry and bulk chlorophyll fluorescence. These 

bulk analysis techniques have been widely adopted for approximating aquatic primary 

production rates and phytoplankton size ranges (Brotas et al., 2013, Sun et al., 2022) but provide 

little or no taxonomic data and are of no use in monitoring HAB-forming species specifically 

(Yoder et al., 2010).  Additionally, extrapolations from bulk measurements to the characteristics 

of single cells can be unreliable due to high heterogeneity in, for example, chlorophyll to biomass 

ratios of different species (Haraguchi et al., 2017). 

 

As such, there has been a recent drive towards sensors which analyse cells individually; the first 

major breakthrough in this effort was the application of flow cytometry (FC) to plankton 

enumeration and identification (Collier, 2000) (Figure 3). FC measures, using photomultiplier 

tubes (PMTs), PIN photodetectors or avalanche photodiodes (APDs), the fluorescence intensity, 

forward- and side-scatter of each cell intersecting one or more collimated light sources, typically 

lasers (Collier, 2000).  The value of FC monitoring is limited by the low information content of 

recorded data: while cell size, pigment concentration/ratio and basic morphological 

measurements (e.g. circularity, equivalent spherical diameter, complexity) can be derived from 

scatter and fluorescence signals, additional analysis and verification by microscopy is required to 

determine taxonomic identity, health, life stage, etc. (Marie et al., 2014, Dubelaar and Gerritzen, 

2000) 
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While most flow cytometers are large instruments confined to laboratories, miniaturised FCs can 

be brought aboard research vessels in order to analyse at the point of sampling, i.e. without the 

use of fixatives (Álvarez et al., 2011). Recently, several automated, in-situ FC instruments have 

been developed  (Dubelaar et al., 1999, Olson et al., 2003) which enable the automated 

continuous analysis of phytoplankton optical properties at fixed or towed locations (Dubelaar et 

al., 1999, Olson et al., 2003). However, current platforms can only sample semi-continuously, are 

expensive and lack autonomy (Tsaloglou, 2016). 

 

The combination of the throughput of flow cytometry, the information content of microscopy 

and high-accuracy automated image analysis in a single package has been a significant aim of 

sensor development for biological oceanography over the last two decades (Sieracki et al., 2010, 

Blaschko et al., 2005, Benfield et al., 2007). Platforms which image individual particles in a sample 

moving through a flow cell are known as Imaging Flow Cytometers (IFCs) and have been 

developed simultaneously for biomedical and environmental applications. IFCs have been used in 

Figure 3 - Principle of standard flow cytometric analysis of particles suspended in a fluid sample. 

Particles flow past a detector where they are interrogated by a laser. Detected 

scattering and wavelength changes of the laser signal can be used to infer particle size, 

approximate shape, fluorescence.   
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a variety of research targeting both marine and freshwater phytoplankton and will be the focus 

of the next section.  
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2.5 Imaging Flow Cytometry 

2.5.1 Introduction 

Possible imaging modalities of IFCs encompass bright field, fluorescence, holography, phase-

contrast, and other techniques, but all collect multidimensional data via digital image sensors 

rather than PMTs or other 1-dimensional sensors. This potentially enables continuous taxonomic 

classification to the same level as optical microscopy while sampling many more cells per second 

than possible manually. Furthermore, automated IFC enables novel sampling methodologies 

previously impossible, including continuous monitoring of plankton morphological change 

induced by changing nutrient conditions (Lei et al., 2016) and identification of viability and cell-

cycle phase (Stavrakis et al., 2019, Dashkova et al., 2017). 

 

Successful implementation of continuous automated IFC poses a number of challenges which 

commercially available instruments have yet to fully overcome (Heo et al., 2017). Imaging of 

moving particles requires camera frame rates and exposure times sufficient to avoid motion blur 

along the flow axis (Wu and Chan, 2013) – to achieve high throughout, particle velocities typically 

exceed 1ms-1  (Goddard et al., 2007). Acquiring an image with enough contrast necessitates the 

collection of a sufficient number of photons during the camera exposure window; the light 

source must be capable of providing this high-intensity illumination (Miura et al., 2018, Hess et 

al., 2015). Particles must be confined to the focal plane of the imaging system; those flowing too 

close or far from the objective will be out of focus (Holzner et al., 2018). Data volumes from IFC 

instruments pose a significant storage and transmission challenge; image files are extremely large 

compared with FC data and IFC devices may generate many hundreds of gigabytes of data per 

day of operation (Han et al., 2016). Data processing is a significant bottleneck as classifying high 

volume, complex images is a nontrivial computing task. Difficulties shared by both FC and IFC 

design include clogging of the flow cell and shear forces on particles, which, under high flow 

regimes, can deform or damage cells (Zmijan, 2016). Finally, the size, robustness, cost and 

complexity of the instruments must be minimised in order to facilitate wide deployments. 

 

These challenges will be further investigated, with respect to current instruments and recent 

developments in the fields of microfluidics, imaging devices and manufacturing techniques, in the 

following sections. 
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2.5.2 Current IFC devices used for phytoplankton analysis 

Commercial IFCs 

Imaging flow cytometers have been used in biological oceanography to evaluate phytoplankton 

species dynamics (Campbell et al., 2016, Brownlee et al., 2016, Bolanos et al., 2020, See et al., 

2005) and taxon-specific responses of phytoplankton to short- (Anglès et al., 2015) medium- 

(Anglès et al., 2019, Kamykowski et al., 2013) and long-term environmental change. In situ IFC 

has allowed the detection of HABs (Campbell et al., 2013, Campbell et al., 2010, Kudela et al., 

2008, Buskey and Hyatt, 2006) and analysis of bloom dynamics (Laney and Sosik, 2014, Zarauz et 

al., 2008, Cetinic et al., 2014). Analysis of ballast waters (for invasive plankton species)(Romero-

Martinez et al., 2017), detection of harmful algae in watersheds for drinking water (Park et al., 

2019) and algal life-cycle characterisation (Traller and Hildebrand, 2013, Dapena et al., 2015) 

indicate the potential of IFC for novel phytoplankton research for which traditional microscopy 

would be insufficient or impractical. 

 

A recent review article which investigated the tools and technologies available for in situ 

biological oceanography highlighted Optical Sensors for in situ Plankton Monitoring as one of two 

areas needing rapid cost reductions in order to expand observational capacity and fully 

democratise access to instrumentation (Wang et al., 2019).  

 

A separate article in the same special issue looked in more detail at the specific platforms and 

instruments available for optical detection and identification of plankton cells and provided a 

review of the commercially available imaging flow cytometers currently known to be used in the 

ocean sciences (Lombard et al., 2019). An adapted table of the instruments identified in this 

article is presented below, in Table 2. 
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Table 2 - Table of commercial imaging flow cytometers used in biological oceanography for the 

purpose of plankton observation. Reproduction of data produced in Lombard et al.. 

ESD: equivalent spherical diameter 

Instrument Size Range 

(ESD) 

[µm] 

Sample 

Throughput 

[µL/min] 

Use Case Approximate 

Cost [UK £] 

Seller 

Imaging 

FlowCytoBot 

(IFCB) 

10 – 80  250 In situ / on-

board / lab 

125,000 McLane 

CytoSense and 

CytoSub 

1 – 800  5 – 1000   In situ / on-

board / lab 

90,000 CytoBuoy b. v. 

FlowCam 

Nano 

0.3 – 30  20  On-board / lab 90,000 Fluid Imaging 

Technologies 

FlowCam  

(different 

objectives & 

flow cells) 

2X:    75 – 1000  

4X:    20 – 3000  

10X:  10 – 100  

20X:  3 – 50  

50 – 5000   

(depending 

on flow cell) 

On-board / lab 45-75,000 Fluid Imaging 

Technologies 

FlowCam 

Macro 

300 – 5000  100,000 – 

900,000  

On-board / lab 45,000 Fluid Imaging 

Technologies 
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The commercial instruments presented above clearly reinforce the arguments laid out by Wang 

et al. regarding the need for lower-cost imaging devices in oceanography. With a minimum cost 

of £45,000 (more when considering flow cells, objectives, software, training, etc), current IFCs are 

too costly for widespread adoption on routine scientific cruises and in small-scale experiments. 

The budgetary considerations of laboratories in resource-constrained environments means that 

IFC is a methodology inaccessible to many researchers, and hence large swathes of global coast 

lack any phytoplankton imaging data. Furthermore, the limited size ranges capable of being 

analysed by the instruments described in Table 2, and their low throughputs, demonstrate the 

trade-offs that must be considered when addressing specific scientific goals.  

 

To further illustrate the limited scales of phytoplankton for which each instrument is appropriate, 

Figure 4 provides a graphical representation of the size spectra each instrument is able to 

analyse, with the red bars giving the size ranges that have been quantitatively cross-validated 

with other more developed measurement techniques (Lombard et al., 2019). 
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The available IFC instruments are therefore expensive, have low sample throughput, and are only 

able to simultaneously image plankton of a narrow range of sizes. An analysis of the constituent 

elements of imaging flow cytometers follows, in which the source of these limitations and 

possible avenues for addressing them is discussed. 

 

Research/Prototype IFCs 

Several IFC systems in various stages of development have been demonstrated for phytoplankton 

imaging. A team of French researchers based at IFREMER (L'Institut Français de Recherche pour 

l'Exploitation de la Mer) and The University of Mons sought to develop a cheaper and higher-

throughput adaptation of the FlowCam, which they named FastCAM (Colas et al., 2016). The 

Figure 4 -  (Adapted from Lombard et al ) Graphical illustration of the size ranges (in ESD, 

equivalent spherical diameter) each of the IFC instruments discussed in their review 

is capable of imaging.  Note that CytoSense/CytoBuoy, while here presented as 

having the largest range, is actually a combination standard and imaging flow 

cytometer, and that imaging alone is likely to have a very similar measurement 

window to the IFCB (the actual imaging size range is unpublished). The red bars 

indicate the possible analytical size range which has been cross-validated with 

other established techniques as opposed to merely those published by the device 

manufacturers (grey dotted bars). 
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FastCAM uses off-the-shelf optomechanical components from Thorlabs and a 2-megapixel, high-

speed (340 FPS) camera. The device uses a FlowCam flow cell, and has a sample throughput of 10 

mL/15 min (40 mL/hr). Images from the FastCAM have higher spatial resolution than the 

FlowCam, and overall cost is lower. The main drawback is that the device is still in a prototype 

stage and requires manual assembly and alignment, which can be challenging for non-specialists. 

 

One device which was developed to meet similar goals as those discussed for this project is the 

PlanktonScope, a modular IFC recently developed by engineers at Stanford University. 

PlanktonScope is based around a Raspberry Pi microcontroller and camera module, and is 

extremely low cost (< US $500) (Pollina et al., 2020). This device is open-source, based around 

disposable plastic flow cells, and can image 1.7 mL/min. The optical setup can achieve a 

magnification of 0.75X and the camera has a resolution of 1.5 µm, but the minimum object size 

demonstrated by the authors to be successfully imaged was 35 µm. The PlanktonScope 

represents a major step toward lower-cost IFCs and is primarily aimed at citizen scientists, with 

the stated aim of the authors being to enable citizen owned small vessels (e.g. sailing yachts) to 

analyse plankton with very low startup and training cost. 

 

A group at the University of California recently demonstrated a low-cost (~US $2500) prototype 

IFC based around the principle of holography (Gӧrӧcs et al., 2018). Incoherent light is used to 

illuminate phytoplankton within a sample and 3D reconstructions of the cells can then be 

computationally derived using the process of deconvolution (Figure 5). This particular IFC uses 

deep-learning based phase-recovery for hologram deconvolution, which allows the accurate 

recovery of true-colour images without explicitly programming the relevant optical transfer 

equations, which would be very complex. An additional advantage of this approach is that deep 

neural networks run extremely well on graphics cards. Gӧrӧcs et al. exploit this fact by using a 

powerful GPU to perform image recovery in real-time (ie. Faster than the camera’s frame rate). 

The device has a throughput of 100 mL/hour. 
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2.5.3 Camera Technologies 

The two fundamental technologies behind digital imaging are charge-coupled devices (CCDs) and 

complementary metal-oxide-semiconductor (CMOS) sensors, both of which have seen use in 

commercial IFC. These sensors both convert accumulated photons into charge on pixel arrays 

using the photoelectric effect. While entire CCD arrays are read by a single analogue-to-digital 

converter (ADC) and amplified, on a CMOS sensor, each pixel has its own amplifier and ADC. This 

difference is illustrated in Figure 6 which depicts the pixel layouts of each sensor architecture. 

Figure 5 - Raw holograms and reconstructed phytoplankton images generated by the prototype 

IFC developed by Gӧrӧcs et al. (2018). Each hologram must be processed into a 

RGB image via a computational process called deconvolution, which in this work 

was performed by a Deep Neural Network. 
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The practical result of this difference is that CCDs usually produce higher-quality and lower-noise 

images but have a slower readout time due to the entire pixel array being converted to signal 

simultaneously. CCD manufacturing is more developed than CMOS, but recent, rapid 

improvements in CMOS technology have led to comparable image quality between the sensors. A 

major advantage of CMOS, in addition to much faster image acquisition and readout, are their far 

lower power requirements than CCDs (Up to 100X lower Wattage) (Hain et al., 2007).  

 

The Imaging Flow Cytobot (IFCB)(Olson and Sosik, 2007a), a submersible IFC platform capable of 

in-situ imaging of plankton in the 10-100 µm range, uses a Sony EXview HAD monochrome CCD, 

which, when coupled with the on-board 10X objective, can image with a resolution of ~1µm and 

a frame rate of ~11fps. The FlowCam series of instruments use both CCD and CMOS, depending 

on model.  

 

A series of benchtop instruments used extensively in biomedical research and the life sciences 

(Headland et al., 2014, Lopez-Riquelme et al., 2013, Gautam et al., 2018)e.g. (Headland et al., 

2014, Lopez-Riquelme et al., 2013, Gautam et al., 2018) but which is not routinely used in 

oceanography due to the cost and size (and therefore is not included in the review in Section 

2.5.2), the Amnis ImageStreamX, use a custom time-delay-integration (TDI) CCD to image flowing 

Figure 6 – CCD and CMOS sensor architectures. While CCDs, which are more common, use a single 

ADC for the entire pixel array, CMOS sensors, which have seen rapid technological 

improvements, have more complex pixel topologies due to every pixel having its own 

ADC. 
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particles (Figure 7). This specialised readout technique allows high quality imaging despite 

particle motion by shifting pixel values along the sensor at the same speed as particle movement, 

which is equivalent to ‘tracking’ the particle by moving the entire camera(George et al., 2004).  

 

2.5.4 Illumination Techniques 

Numerous lighting setups have been used on commercial and research IFCs. Developing upon 

traditional FC implementation, the FlowCam8400 IFC (Figure 8) uses a single diode laser and a 

xenon flash lamp to illuminate cells in order to image simultaneously in brightfield and two 

fluorescence channels. While this arrangement has the benefit of providing additional 

morphological information via detection of autofluorescent or stained components, it requires 

expensive dichroic mirrors and precise optical alignment. 

Figure 7 – ImageStreamX Mk II optical path showing fluorescence laser and wideband red 

brightfield illuminator. A complex custom detector simultaneously detects different 

fluorescent channels and brightfield images, made possible by a spectral 

decomposition of the signal into different colour bands. 
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Recently there has been a trend towards using inexpensive, high-power LED illumination as part 

of IFC optical setups; these offer smaller footprints and comparable power to laser sources at a 

fraction of the price. For fluorescence imaging, however, LEDs are suboptimal compared to diode 

lasers due to their typically wider emission spectra and lack of collimation, both of which are 

required for optimal detection limits.  

 

The holographic IFC presented by Gӧrӧcs et al. (2018) and described in the previous section uses 

a pulsed chip-on-board (COB) LED to provide narrowband red, blue and green illumination to the 

flow cell. Combined with a modern low-cost CMOS camera, this optical setup enables the IFC to 

maintain a small footprint while displaying very promising results at a total cost of under $2500 

USD (Figure 9). This setup provides fluorescent imaging but requires real-time image 

deconvolution to reconstruct the holograms it records and thus necessitates connection to a 

computer with a high-performance graphics card, which are often expensive. 

Figure 8 - FlowCam8000/8400 IFC optical setup. One laser and one flash lamp (dotted box) 

illuminate the detection region and two PMTs provide wavelength-configurable 

fluorescence detection while a CCD images in brightfield.  
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2.5.5 Focussing Techniques 

Particle focussing is a significant area of IFC development and is one of the major controls on IFC 

throughput and image quality. In traditional FC (Figure 10), coaxial hydrodynamic focussing 

typically aligns particles into a single-file stream through the detection region. This is achieved by 

injecting sheath fluid around the sample, narrowing the sample flow profile while maintaining 

laminar flow. Hydrodynamic focussing can take place in 2- or 3 dimensions, depending on 

placement and number of sheath fluid ports as illustrated by Figure 11.  

 

 

Figure 10 – Cross-sectional illustration of the hydrodynamic focussing principle. Injected cells are 

focussed into a single-file stream by laminar flowing focussing fluid. 

Figure 9 - Gӧrӧcs et al. low-cost holographic IFC optical setup, showing the miniturised 3-colour  

illumination COB (inset). Though a holographic imaging device, this system has a similar 

purpose to the IFC proposed in this thesis. 
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Other techniques include inertial focussing, which has the advantage of not requiring sheath fluid 

or other external forces. Inertial focussing uses wall effects and gradients in shear forces 

developed using specially designed flow channels (e.g. serpentine channels) to position particles 

in the centre of the detection region (Yang et al., 2018b). A schematic of the process of inertial 

focussing within a serpentine channel is presented in Figure 12, adapted from Di Carlo et al. 

(2007). While holding great potential for medical IFC where cells will usually be of a known, 

narrow size range, the large heterogeneity of microalgae cell sizes has so far prevented inertial 

focussing being successfully demonstrated for an instrument designed to focus natural 

phytoplankton communities. 

 

Figure 11 – 2-dimensional  (a) and 3-dimensional (b) hydrodynamic focussing. In these 

simulations a red buffer fluid controls the flow profile of a blue carrier fluid. Adapted 

from Hamilton et al. 

Figure 12 – Schematic adapted from Di Carlo et al. illustrating the principle of inertial focussing of 

particles within a microfluidic serpentine channel.  
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Some IFCs are designed to function without particle focussing. The FlowCam series of 

instruments, which is particularly popular in biological oceanography, being the most cited device 

in a recent review of IFC in the field (Dashkova et al., 2017), does not move particles in flow using 

any of the methods discussed. Instead, patented optics based around a Fresnel lens phase plate 

enhance the depth of focus of the objective lens, at the cost of image resolution. This allows the 

mechanical complexity of the instrument – and the likelihood of clogging or other failure – to be 

minimised while maintaining high sample throughput. For larger particles (e.g. large diatoms, 

zooplankton), this is clearly advantageous; but for smaller phytoplankton, the lower resolution 

will be a limiting factor which prevents analysis below a certain size threshold. For the purposes 

of identification (rather than just measurement and counting), sacrificing resolution will 

significantly lower the accuracy of taxonomic classification, including classification performed by 

automated methods such as neural networks, which are explored in Chapter 4. 

 

The final focussing technique of note, and the technique upon which the remainder of this thesis 

will build, is acoustic focussing. Acoustic levitation, or acoustophoresis, makes use of acoustic 

pressure to manipulate particles and can be applied to microfluidic systems by generating 

ultrasonic waves within the carrier fluid. The study of acoustofluidics has been developed over 

the last decade due to its purely mechanical, gentle repositioning of particles and has been used 

in research where non-contact, label-free particle separation and manipulation is required. As 

well as acoustic focussing and alignment of particles within fluids (Yang et al., 2018a, Jayasinghe, 

2020), acoustofluidic devices have been used for cell trapping/concentration (Leibacher et al., 

2015, Evander et al., 2007, Fornell et al., 2019, Bach and Bruus, 2020), cell sorting/separation 

(Huang, 2019, Zhang et al., 2020, Yang et al., 2018c), cell differentiation (Wu et al., 2019a, Wu et 

al., 2019b, Xie et al., 2020), mechanical stimulation during cell culturing (Li et al., 2014) and many 

other applications within the micron size range.   
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 Concentration, buffer-exchange, separation and alignment, four of the most common 

acoustofluidic applications which are particularly of interest in the life sciences are illustrated in 

Figure 13 (Antfolk and Laurell, 2019). For the purpose of acoustic focussing within an IFC, 

alignment into a single layer is most common, though parallel processing of two or more layers 

may be desired in some instruments. 

 

 

 

The principle and details of the acoustophoretic approach to particle positioning in imaging flow 

cytometry are expanded upon in Section 2.6.  

  

Figure 13 – (Reproduced from Antfolk and Laurell 2019) The four most common applications of 

acoustofluidic devices.  



Chapter 2  

32 

2.6 Acoustofluidics 

2.6.1 Introduction 

Acoustic radiation pressure within a fluid system causes acoustic discontinuities (particles or 

second-phase fluids) to experience small forces. By inducing an acoustic standing wave with a 

half-wave resonance, suspended particles are typically pushed toward a central pressure 

minimum known as an acoustic pressure node. The acoustic force  acting upon particles is 

described by Equation 1 (Bruus, 2012), which in the case of a planar standing wave simplifies to 

Equation 2 (Lenshof et al., 2012) . 

𝐹𝑟𝑎𝑑 =  − (
4πa3

3
) ∇ (𝑓1

〈𝑝1
2〉

2𝜌0𝑐0
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3

4
𝜌0〈𝑣1

2〉) ,   
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𝑘𝑝

𝑘0
,     𝑓2 = 2

(𝜌𝑝 − 𝜌0)

(2𝜌𝑝 + 𝜌0)
 

Equation 1 – Equation for Primary Acoustic Radiation Force, Frad, where: a is the particle radius; K0 

is the compressibility of fluid; Kp is the compressibility of the particle; p1 is the 

pressure field; v1 is the velocity field; ρp and ρ0 are density of particle and fluid, 

respectively; c0 is the speed of sound in the fluid. 

 

F𝑎𝑥  =  4𝜋a3Eack𝑠𝑖𝑛 (2kz)Φ 

Equation 2 – Acoustic Radiation Force, Fax in a one-dimensional standing plane wave. Where a is 

the particle radius; Eac the acoustic energy density (Equation 4); k the wavenumber 

(2πf/c0); f the frequency; z the distance from the pressure node in the wave 

propagation (thickness) axis; Φ the acoustic contrast factor (Equation 3): 

 

Φ =
𝜌𝑝 +

2
3 (𝜌𝑝 − 𝜌0)

(2𝜌𝑝 + 𝜌0)
−

1

3
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2 

Equation 3 – Acoustic Contrast Factor, Φ, which determines the sign of the Acoustic Radiation 

Force acting upon a particle in a standing acoustic wave. Particles with negative Φ 

move away from the pressure node; particles with positive Φ are pushed toward it. 
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𝐸𝑎𝑐 =  
1

4
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𝜌0𝑐0
2 

Equation 4 – Acoustic Energy Density, Eac. P is the pressure amplitude, which can be measured 

experimentally in an acoustofluidic system or analytically calculated based on 

modelling, as in Section 3.3.2.  

 

Two key observations to make from these equations are that the acoustic force acting upon 

particles scales with the cube of the particle radius (Equation 2) and that the direction of motion 

induced by the force is determined by the relative differences between the density and 

compressibility of the particle and that of the carrier fluid, as described by the acoustic contrast 

factor (Equation 3). 

 

By applying a sufficient acoustic radiation force to particles in a flow cell, acoustophoretic 

levitation can be achieved. In this situation, the sinking rate of particles due to gravity is 

overcome by the acoustic forces, and all particles which have a positive acoustic contrast factor 

with their carrier media are pushed toward pressure minima whose positions depend on the 

excitation frequency. By exciting a half-wave resonance with one pressure node in the (axial) 

centre of the flow channel, all suspended particles focussed to this central position. Particles with 

negative acoustic contrast factors with their media undergo the opposite force, moving toward 

pressure anti-nodes at the top and bottom of the flow cell. As lipids have negative acoustic 

contrast with water, algae with extremely high lipid content, such as those used in biotechnology, 

e.g. biofuel production, may never focus to the pressure node of a half-wave resonator.  

 

2.6.2 Current Acoustically Focussed IFC Devices 

Acoustic focussing has been developed due to a number of benefits compared with other 

techniques: the forces acting upon cells are gentler than in hydrodynamic focussing, with less 

tendency to damage or deform morphological features; the focussing is achievable across a wide 

range of cell sizes; there is no need for consumables and the microfluidic complexity is greatly 

reduced. Acoustic focussing has been demonstrated in research IFC instruments (Zmijan et al., 

2015) and as add-ons to the hydrodynamic focussing equipment of the IFCB (Olson et al., 2017) 
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and Thermo-Fischer Attune® NxT IFC (Bautista-Chamizo et al., 2018); as yet, however, there is no 

commercial IFC which solely uses acoustic levitation for focussing. The next section will build 

upon the principle of acoustophoretic focussing and investigate the application of acoustic-only 

particle focussing within a prototype IFC for phytoplankton imaging and analysis
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Chapter 3 Design and Characterisation of a Novel Low-

Cost IFC using Acoustophoretic Focussing 

3.1 Introduction 

As previously discussed, manual examination of microalgae using optical microscopy comes at a 

high cost and low reliability and is unsustainable due to the limited and declining number of 

taxonomists. Commercial IFCs, which, as was noted in Chapter 2, hold potential to address these 

issues, have so far faced barriers to implementation as part of routine ocean observation due to 

current instrument cost and complexity. As such, this chapter details work to address this 

challenge, in the development an IFC with the lowest complexity and the cheapest possible off-

the-shelf components, and with as few custom-made components as reasonably possible.  

 

A significant additional design goal is to increase cell throughput compared to existing 

(hydrodynamically-focussed) instruments such as the IFCB. As was discussed in the previous 

chapter, hydrodynamic focussing requires cells to be imaged one at a time. By utilising 

acoustophoretic focussing, the new instrument developed in this chapter will be capable of 

simultaneous imaging of multiple phytoplankton cells in a 2-dimensional plane, and so will have a 

throughput significantly higher than would be possible with hydrodynamic or inertial focussing. 

Since phytoplankton will be presented to the imaging optics in a plane of a constant distance 

from the objective, no depth-of-focus extending optics are required, which ensures that cells will 

be imaged at a higher resolution compared to unfocussed IFCs such as the FlowCam.  

 

Furthermore, the complexity of this new system can be significantly lower than 

hydrodynamically-focussed IFCs.  Acoustic focussing works well in a simple straight flow cell 

which is far simpler to fabricate than a serpentine or other channel suitable for inertial focussing, 

a technique which is not currently used by major commercially available IFCs. Overall, the 

method holds great promise for improving throughput while reducing the cost, size and 

complexity versus current commercial instruments, while also allowing higher image quality than 

recent low-cost prototype IFCs such as those described in Section 2.5.2.  
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3.2 Design Brief 

A block diagram of the proposed IFC system architecture is presented in Figure 14. In summary, 

the suspended microalgae cells will be injected into a layered resonator flow cell using a pump, 

which could be syringe pump, peristaltic pump or even simple gravity-fed, depending on 

configuration and volume/temporal resolution requirements. Once analysed, sample waste can 

be disposed of, or, for applications requiring repeated measurements of the same source over 

time (e.g. monitoring a single live culture over time), could be recirculated. 

 

 

The flow cell will be acoustically excited by means of a piezoelectric transducer driven at a 

resonance frequency such that an acoustic standing wave forms in the flow cell with a pressure 

Figure 14 - Block diagram for proposed acoustically-focussed imaging flow cytometer. The device 

itself will consist of an acoustophoretic focussing flow cell with necessary acoustic 

driving and control hardware, microfluidic pumping, optical components (camera, 

lenses and illumination). Once images have been acquired, analysis in the form of 

measurement and/or identification can be performed in real-time or from storage.  
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minimum (node) around the channel half-height. Cells in the flow stream will thus be pushed 

towards this central node, remaining at approximately the same position in the flow cell Z-axis 

(along the optical path) after passing the transducer, as their sinking rate due to gravity will be 

negligible compared to their linear velocity over the distance from focussing to imaging region. A 

high-frequency power amplifier will be needed to boost the signal generator output to the 

voltages required to drive the transducer. Acoustic resonance will be maintained by setting the 

signal generation system to perform a frequency sweep around the predetermined flow cell 

resonant frequency such that minor drifts in exact resonance frequency (i.e. due to 

temperature/salinity changes in the flow medium) will not significantly impact the total energy 

absorbed by the system, and no active feedback control will be necessary. Previous research has 

demonstrated that when the sweep period is fast enough (e.g. 50ms), this technique results in an 

averaging of the force profiles of each frequency activated with the result approximating 

resonance (Glynne-Jones et al., 2010a). An analytical validation of this frequency sweep approach 

will be presented in Section 3.3.2. 

 

 A camera will be positioned downstream of the transducer and will image at high speed the 

focussed cells as they flow past, the algae being illuminated by a high-power stroboscopic LED in 

a transillumination arrangement (with illumination pulses synchronised with the camera by 

trigger electronics). By using pulse durations of 1 – 20 μs and low duty cycles of less than 1:100, it 

will be possible to drive the LED at over 10X its rated current for corresponding luminosity 

increases of over 5X without causing damage (Willert et al., 2010). The requirement for 

synchronisation of illumination pulses with the camera’s aperture will necessitate the use of 

cameras with external trigger inputs or outputs; these are common in life science and industrial 

applications. 

 

Images will be transferred from the camera to a computer system either directly or using frame-

grabber electronics (depending on camera choice and required framerate) and will then either be 

stored for later analysis or be analysed in real-time. This analysis could take the form of, for 

example, image processing to determine particle size spectra, or conducting taxonomic 

identification using a pre-trained classification system such as a convolutional neural network, 

(CNN). This analysis capability is not within the scope of this chapter, and instead fully explored in 

Chapter 4. 
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3.3 Flow-cell implementation 

3.3.1 Approach 

Design 1 

The first flow-cell design made use of a matched-layer half-wave planar resonator device 

following the implementation of Zmijan et al. (2015). In this type of device, an ultrasonic 

transducer is bonded to a matching/carrier layer, which with a reflector layer sandwiches a fluid 

layer. In this arrangement an acoustic standing wave is excited in the device with a half-

wavelength pressure anti-node located in the fluid channel. This design has the advantage of 

being simple to produce, consisting only of layers of substrate bonded together, and fits well the 

simple geometry required for an IFC. The IFC developed here builds upon previous work by 

redesigning the layered flow cell for integration into a complete, portable and low-cost system as 

will be described below. 

 

In the work of Zmijan’s group, the acoustically focussed flow cell was designed around a fluid 

layer sandwiched between two standard 1 mm-thick microscope slides. As in the new IFC 

presented here, a major design criteria is the development of an imaging platform capable of 

resolving cells which are smaller than those resolvable by existing cheap instruments such as the 

PlanktonScope (Pollina et al., 2020) discussed in Section 2.5.2, optical quality is a key concern. In 

testing of the flow cells reproduced according to their designs, the thickness of the microscope 

slide through which the cells were imaged resulted in a degradation of the imaging performance 

to an unacceptable extent. While this could potentially be mitigated by use of a high working-

distance objective, these lenses are generally far more expensive than would be appropriate 

given our design goals. Therefore, the Zmijan’s flow cell design was improved upon by designing 

a new flow cell making use of a 0.17 mm thick cover slip for the matching layer, instead of a 

microscope slide. This novel flow cell design has the advantage of significantly greater optical 

transmission, allowing greater imaging quality of the objects in flow and the use of low- working 

distance objectives. A result of changing the layers within which the acoustic standing wave is 

established, however, is that it is not possible to use their assessments of acoustic properties and 
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instead there is a need to comprehensively model and test the new design, work which is 

detailed in the subsequent sections. 

 

Fabrication of the novel flow cell entails a process similar to that described by (Zmijan et al., 

2015). Briefly, three layers of double-sided tape (9629PC, 3M, USA) were laser-cut to form a 

straight channel of dimensions 6 x 60 x 0.390 mm, which was then sandwiched between a 

standard glass microscope slide (25 x 75 x 1 mm) with drilled fluid inlet ports, and a 75 x 25 x 0.17 

mm coverslip. A PZT transducer (PZ26, Ferroperm, Denmark) was bonded to the coverslip using 

epoxy (301, Epotek, USA) and the same epoxy used to bond a Perspex frame around the flow-cell 

as shown in Figure 15. The tubing used for introducing samples to the flow cell was LDPE, of 0.58 

mm Inner Diameter, 0.96mm Outer Diameter (Smiths Medical Portex, Fisher Scientific, USA). 

 

 

 

Figure 15 – The flow cell design. a.: schematic cross-section of the acoustic focussing region 

showing the thicknesses of each layer.  b.:  Lateral view of one of the constructed 

flow cells showing fluidic connectors, acrylic frame, microscope slide and transducer. 

c.: Axial view of the same device.  
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Initial qualitative testing of the fabricated flow cell under a FITC-filter cube on an inverted 

microscope (IX71, Olympus) using fluorescent 10 µm polyester beads (YG Fluoresbrite 

microspheres, Polysciences Inc., USA) demonstrated good acoustic focusing. Further 

characterisation of the acoustic performance of the flow cell follows in Sections 3.3.2 and 3.3.3. 

 

Design 2 

A second flow cell implementation was explored but ultimately proved unacceptable, the reasons 

for which will be detailed below. The flow cell design was based around a borosilicate glass 

capillary of dimensions 30 x 6 x 0.3 mm, (5356-050, VitroCom, USA). An identical PZT transducer 

to that used in Design 1 was bonded to the wide face of the capillary using the same epoxy. 

Fluidic connectors were formed by means of heat-shrink tubing around the ends of the capillary 

with microfluidic tubes (0.2 mm diameter) pressed against the capillary openings. A complete 

schematic of this design is shown in Figure 16. Initial testing of this flow cell format initially 

demonstrated good acoustic focussing when compared with the custom approach detailed above 

due to the omission of acoustically absorbing materials such as tape and Perspex. 

 

 

However, two issues with the flow cell prevented further integration into the overall system 

design. Firstly, the acoustic focussing, while initially proving successful, on further investigation 

had a strong lateral component causing unwanted movement of particles within the focus plane. 

In practice, this resulted in particles agglomerating into large balls, parts of which extended out 

Figure 16 – Diagram of the mounted acoustophoretic flow cell comprising a 30x6 mm rectangular 

glass capillary bonded via glass pillars to a standard (75x25 mm) microscopy slide using 

CA adhesive. Fluid connectors are formed using heat-shrink tubing and ultrasonic 

excitation provided by a square PZT transducer bonded to one end of the capillary using 

epoxy (Epotek 301). 
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of the depth of focus of the imaging system, and hence was severely deleterious to imaging 

quality and accuracy.  

 

Secondly, the glass pillars were very challenging to consistently epoxy in place such that the 

capillary would be flat within the imaging plane. This resulted in decreasing accuracy of focus 

from one side of the image to the other, which again reduced image quality and, by making it 

impossible to adequately image both side of the flow cell simultaneously, reduced possible 

throughput. Due to these two issues the second flow cell design was not further investigated. 

 

3.3.2 Analytical Investigation of Flow Cell Acoustic Properties (1-D transfer model) 

To determine the appropriate frequency at which to drive the piezoelectric transducer (in order 

to excite half-wave resonance within the flow cell), it is possible to model the system using an 

equivalent circuit transducer model coupled to an acoustical impedance transfer model. The 

transducer is modelled as an equivalent circuit as described by Krimholtz, Leedom and Matthei 

(‘KLM’) (Krimholtz et al., 1970). The acoustical interaction between the transducer and the other 

layers of the system can be approximated as 1-D acoustical propagation problems (Hill et al., 

2002). This approach avoids the significant complexity of deriving analytical solutions to the wave 

equation for a given acoustic resonator system (Sherrit et al., 1999).The circuit diagram for the 

transducer part of the model is presented in Figure 17.  



Chapter 3  

43 

 

 
 

Full details of the concept, formulation and analytical operation of the transducer equivalent 

circuit model can be found in the original paper by Krimholtz, Leedom and Matthei (Krimholtz et 

al., 1970), and the acoustical propagation equations are fully detailed by Hill, Shen and Hawkes 

(Kinsler et al., 1999). The MATLAB script used to carry out numerical simulation of the pressure 

amplitude within the flow cell within a range of frequencies is described by Glynne-Jones et al. 

(Glynne-Jones et al., 2010b). 

 

The transfer model can be used to analyse the frequency response of a layered resonator and 

determine its acoustic focussing performance, providing estimates of the primary radiation force 

on particles of a given radius and acoustic contrast factor with the specified fluid medium.  For 

the purposes of further modelling of the IFC’s acoustofluidic flow cell, and understanding the 

different acoustophoretic performances across different sample characteristics, a study was 

carried using a parameter sweep across differing temperatures, T, and salinities, S, representing 

freshwater, brackish/estuary conditions and a range of open ocean values up to highly saline.  

The full results of this study are presented in Figure 20. 

 

Figure 17 – KLM model proposed by Krimholtz et al. The transducer crystal is modelled as 

an electric circuit consisting a transmission line, transformer and passive 

components.    
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In this experiment, values for T ranged from 5°C to 30°C, while S ranged from 0 Practical Salinity 

Units (PSU) to 39 PSU. Particles in the model were set to a uniform radius of 5 µm, density ρ of 

1056 kgm-3 and sound velocity c of 1962 ms-1. These values are average measured properties (Hill 

et al., 2010) of the PolySciences Fluoresbrite fluorescent polystyrene-latex beads which are used 

in later experimental device characterisation.  

 

The density of the carrier fluid at each T & S combination were calculated according to the 

formulae of Fofonoff and Millard (Fofonoff and Millard Jr, 1983) and the sound velocities 

calculated according to Medwin (Medwin, 1975). 

 

The calculated minimum and maximum densities and speed of sound of the carrier fluid is given 

below, and a full list of used model parameters can be found in Appendix A (Table 13, Table 14, 

Table 15 and Table 16). 

 

ρmin = 995.7 kgm-3 at T = 30°C,S = 0 PSU;  

ρmax = 1030.9 kgm-3 at T = 5°C, S = 39 PSU; 

cmin = 1425.7 ms-1 at T = 5°C, S = 0 PSU; 

cmax = 1549.7 ms-1 at T = 30°C, S = 39 PSU. 

The Acoustic Contrast Factor, Φ , between the modelled particles and carrier fluid, determined 

using Equation 3, was: 𝚽𝐦𝐢𝐧= 0.276 at T = 5°C, S = 39 PSU and 𝚽𝐦𝐚𝐱= 0.295 at T = 5°C, S = 0 PSU. 

 

Under every input condition of T and S, the model predicted two distinct frequencies between 1 

and 3 MHz which result in half-wave resonances within the fluid layer; frequencies above 3 MHz 

resulted in more than one pressure anti-node within the fluid channel and so were ignored. 

Figure 18 shows an output from the KLM model for the proposed flow cell with parameters T = 

30°C, S = 39 PSU, (highly saline, hot seawater) which result in ρ = 1025.1 kgm-3 and c = 1522.1 ms-1 

for the medium. This parameter combination results in resonances at 1.78 MHz and 2.06 MHz, 

with expected Acoustic Energy Densities (Eac) of 103.31 Pa and 83.39 Pa respectively. 
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At each of these determined resonant frequencies, it is possible to model the acoustic energy 

distribution throughout the device as illustrated in Figure 18. Such modelling for this device, at 

each of the resonant frequencies under each T&S parameter combination, shows that none of 

the pressure amplitude plots have ‘turning points’ within the fluid channel. This is important as 

different layer arrangements can create areas close to the channel edges where the acoustic 

force actually pushes toward the edges rather than the pressure node as seen in Figure 19.  The 

fact that these turning points are not observed in our modelling gives us confidence in the like 

performance of our novel flow cell design. 

 

Figure 18 – Example plots of modelled Transducer Conductance (a) and Acoustic Energy Density 

(b) for a transfer  model with carrier fluid parameters ρ = 1024.7 kgm-3 and c = 

1549.7 ms-1. Two resonance frequencies are clearly defined at 1.78 MHz and 2.06 

MHz. Figure plotted using MATLAB script detailed by Hill et al. 
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The modelled plots of acoustic pressure amplitude for the two respective resonant frequencies 

have slight variations in the exact location in the fluid layer at which the pressure minimum 

forms. Such variations in the anti-node axial position necessitate the ability to finely adjust the 

imaging focus plane as part of system design. Therefore, in our IFC design there will not be a fixed 

distance between the flow cell and the objective, instead, apparatus enabling a manually 

adjustable focus distance will be integrated.  

 

To explore the potential effects of varying carrier fluid properties on the frequency and strength 

of the resonances in the flow cell, the transfer model was analysed at each combination of fluid 

density and sound velocity. The two peaks in modelled acoustic energy density (i.e. Figure 18) 

were recorded (resonant frequency and acoustic energy density at the peak) and plotted for each 

temperature and salinity pair as seen in Figure 20.  

Figure 19 – Modelled Acoustic Pressure Amplitude (P) plot through vertical cross-section of the 

device at one of the half-wave resonant frequencies. Within the fluid layer (dark 

blue) the pressure has a single node, with particles above or below this point being 

subjected to forces pushing them toward the minimum, which is at the centre-

height of this fluid layer. Figure generated using MATLAB script detailed by Hill et al. 
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The data presented in Figure 20 show that there is a linear relationship between the output 

variables and the input parameters. Between the lowest temperature and salinity pair and the 

highest, the frequency of the lower resonance increased by approx. 80kHz and the upper by 

approx. 60kHz. The gradient of this increase in both frequency and energy density with increasing 

salinity appears to reduce as temperature increases.  

 

As previous mentioned in Section 3.2, one approach previously validated within the literature to 

address the ‘drifting’ of the precise resonant frequency of the flow cell due to changing input 

a. b. 

Figure 20 – Frequency (y-axis) and Acoustic Energy Density (colour) for the lower (a.) and upper 

(b.) resonant frequencies predicted by the transfer model at each combination of 

temperature (grouping variable) and salinity (x-axis) for the layered resonator flow 

cell. The graphs indicate rising resonant frequencies with both temperature and 

salinity at both resonant frequency A and B.  
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conditions is to set the ultrasound generator to carry out a ‘frequency sweep’ around the target 

frequency. Previous work by Glynne-Jones et al. (2010a) and others has discussed this time-

averaging of acoustic fields by using frequency modulation and shown it to be effective. The 

results of the exploration of different salinity and temperature on acoustic energy density and 

resonant frequency suggest that our IFC will require a wide enough sweep in the driving 

frequency to ensure resonance is achieved even when analysing significantly different water 

samples, especially in situ, where temperatures can be more variable.  

 

In order to validate that a frequency sweep would appropriately focus cells in later validation 

work, the KLM model was run again with parameters set to explore the effect of a 20 kHz 

frequency sweep on the position of the acoustic pressure node within the fluid layer. 20 kHz was 

chosen for sweep width as the results presented in Figure 20 demonstrate an approximately 

20kHz shift in resonant frequency with a temperature change of 5 °C, which is a reasonable 

maximum temperature change expected in a controlled laboratory environment. The effect of 

salinity on resonant frequency is smaller, and salinity is not expected to change when taking 

samples from a monoculture grown in an incubator, without additional inputs of dissolved salts. 

 

This frequency sweep experiment was carried out using constant KLM parameters for the carrier 

fluid of ρ = 1024.7 kgm-3 and c = 1549.7 ms-1, the same as for Figures 18 and 19. The depth of the 

acoustic pressure node within the fluid layer was determined by KLM modelling using ± 10 kHz 

around the two previously determined resonant frequencies of 1.776 and 2.056 MHz, and the 

results are presented below in Table 3. This experiment shows that at frequencies ± 10 kHz 

around the resonant frequency, the variation in depth of the acoustic pressure node within the 

fluid layer is only 2.3 µm, suggesting that a 20 kHz frequency sweep around the chosen frequency 

will be experimentally acceptable when using the real device in a lab environment and will not 

cause cells to leave the plane of optical focus. For use in the field, the range of temperature and 

salinities likely to be experienced by the device would need to be carefully considered such that a 

frequency sweep would cover all likely resonant frequencies without unacceptably moving the 

pressure node within the device and causing a degradation in imaging quality.  
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Table 3 – KLM-modelled acoustic pressure node depth within the flow cell for various driving 

frequencies representing a 20 kHz sweep with centre frequencies of the two 

determined resonant frequencies (bold) for the flow cell geometry - 1.776 MHz and 

2.056 MHz. 

Frequency / 

MHz 

Pressure Node Depth / 

µm 

1.766 210.6 

1.776 209.4 

1.786 208.3 

2.046 214.9 

2.056 216.1 

2.066 217.2 

 

The transfer model has several limitations which necessitate experimental characterisation of 

layered resonators. Firstly, the model takes several parameters which are difficult if not 

impossible to accurately determine. The loss factor, Q, of the different layers is not known, as are 

the exact thicknesses of the glue and electrode layers. Without accurate inputs for these values 

the frequency response predicted is likely to significantly vary from the response of the physical 

system. 

 

Secondly, the transfer model drastically oversimplifies the behaviour of the resonator and 

reduces the acoustic wave to a 1-dimensional, uniform field. In reality, transducers do not 

produce spatially homogenous acoustic pressure across their surfaces and have ‘acoustic hot 

spots’ that are particularly strong compared with the mean acoustic energy density. This is not an 

issue for particularly large transducers as the acoustic energy density of the transducer varies 

sinusoidally and will average out over time. 
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The model also does not represent the lateral modes of the standing wave which occur in real 

systems. Structural aspects of layered resonators generate complex acoustic pressure fields 

which do not have a uniform minimum at the nodal plane. Instead, variations in the pressure at 

this plane will move suspended particles laterally and can lead to effects such as acoustic 

streaming and particle agglomeration. It is highly desirable to minimise these effects in the IFC 

system as agglomeration of phytoplankton cells would impede accurate imaging and analysis. 

 

Finally, the Acoustic Contrast factors used in the transfer model varied between 0.276 and 0.295. 

While these values correspond to the ACF of the 10 µm beads used for the acoustic 

characterisation, they are significantly higher than the values of 0.01 to 0.07 measured in 4 

phytoplankton strains by Hincapié Gómez et al. (2018) in a study which sought to experimentally 

characterise the acoustic properties of microalgae. The radius of the particle being focussed is 

the highest determinant of the acoustic force acting upon it, being the cubed term in the acoustic 

radiation force Equation 2, but this force also scales linearly with ACF. As such, the beads should 

experience between 4 and 30 times more acoustic radiation force than phytoplankton in the 

same system and it will be important to understand this difference when characterising focus 

quality with beads. 

3.3.3 Finite Element Modelling of Flow Cell Acoustic Focussing (COMSOL) 

Before moving to an experimental characterisation of the fabricated device, the system was 

modelled in COMSOL Multiphysics in order to address the uncertainty of focussing performance 

for different phytoplankton properties. By simulating the flow channel and acoustic forces on a 

range of particles of different radii and acoustic contrast factors, at a range of flow rates, sensible 

bounds on the likely performance of the device can be determined more easily than would be 

possible experimentally. A full list of variables and parameters used in the FEM model are given 

in Appendix B, Table 17 and Table 18.  

 

The geometry of the COMSOL model consisted of a cross-section of the part of the flow cell to 

which the transducer is bonded (5 cm length x 390 µm height x 4 mm width). Only the first 5 cm 

of the length was modelled as that is the area in which focussing occurs. The mesh used for finite 

element modelling (FEM) was a triangular mesh of minimum dimension 1 µm.  To determine the 

trajectories of particles at a range of starting positions as they enter the flow cell, 1,000 
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(independent) particles were uniformly distributed along the leftmost boundary.  The model 

predicts their path under the action of the acoustic force, flow, and viscous drag. Once particles 

reach the outlet, their vertical separation distance is recorded. A diagram of the behaviour of this 

model is given in Figure 21, with a schematic illustrating the axes given in Figure 22. 

 

Time

  axis (Along Flow Cell)

Y axis (Through Flow Cell)

(Truncated due to aspect ra o of  ow)

Figure 21 – Diagram of the Finite Element Model of the flow cell cross-section showing the 

progression of beads (coloured) along the device with time. At the particle inlet the 

beads are uniformly distributed, and they are focussed to the central pressure anti-

node as they travel along the x-direction. Once particles have reached the outlet at 

the right side, their vertical separation distance, d, is recorded. 
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Figure 22 - Schematic of the axes of the fluid layer used for the FEM modelling within this section, 

showing the position objective lens relative to the fluid flow direction. 

 

The range of particle starting positions was variable such that particles would never be closer to 

the top and bottom boundaries of the flow cell than their radius, in order to prevent particles 

intersecting the glass sides. Thus, where r = particle radius, the particle inlet was set to span from 

0 µm+r to 390 µm-r on the Y axis. 

 

Fluid flow within the flow cell behaves according to Planar Poiseuille Flow. This flow condition 

exists where an incompressible, Newtonian fluid is in steady laminar flow between two 

stationary plates forming a channel of constant cross-section which is substantially longer than its 

cross-sectional area. The equation for the velocity of the flow with respect to y, the vertical 

position within the flow channel, is given by Equation 5, the Hagen-Poiseuille Equation for Planar 

Poiseuille flow.  

𝑢(𝑦) [𝑚𝑠−1] = (
𝐻2

2𝜂
)(−

𝑑𝑃

𝑑𝑥
)(

𝑦

𝐻
(1 −

𝑦

𝐻
)) 

Equation 5 – Formula for linear (along-flow) velocity of fluid under Planar Poiseuille Flow with 

respect to vertical position (y). Where: H is the separation of the two planes/walls 
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[m] (height of the flow channel); η is the dynamic fluid viscosity [Pa∙ 𝑠] and  
𝑑𝑃

𝑑𝑥
 is the 

pressure gradient along the direction of flow [Nm-3]. 

 

The pressure gradient in the flow cell is given by Equation 6. 

−
𝑑𝑃

𝑑𝑥
 [𝑁𝑚−3] = (

𝑄 ∙ 12𝜂

𝑤
) (

1

𝐻3
)  

Equation 6 – Formula for pressure gradient within the flow channel, where Q = volumetric flow 

rate [m3/s], 𝜂 is the fluid’s dynamic viscosity [Pa∙ 𝑠], w is the width of the flow cell 

[m] and H is the height of the flow cell [m]. 

 

The flow velocity is highest at the centre of the channel and tends to zero at the flow cell 

boundaries. The 1-dimensional profile of the resulting fluid velocity profile across the height of 

the modelled flow channel is given in Figure 23. 
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The acoustic radiation force (Equation 2) across the height of the flow cell is similarly 

implemented in the model. The resonant frequency was given as 
𝑐0

2𝐻
 , where 𝑐0= sound velocity of 

the fluid and H = height of the flow cell. While the transfer model used in the previous section 

models the behaviour of the entire layered resonator system, including the air/glass boundary 

and epoxy bonding transducer to the flow cell, the FEM analysis considers only the fluid layer. 

Therefore, by specifying the frequency as 
𝑐0

2𝐻
, a pressure anti-node is always formed halfway 

through the fluid layer’s vertical profile and the more complex transducer and structural 

acoustical behaviours included in the KLM model can be ignored. This is appropriate for the 

purpose of the FEM analysis as it is the ability of the resonant frequency to focus particles rather 

than the particular frequency to use (in the real system) that is of interest.  

 

The force profile (in Newtons) given by the idealised acoustic radiation force (assuming a half-

wave bounded by perfectly reflecting walls) is illustrated in Figure 24 (1D vertical profile). As 

Figure 23 – 1D plot of the x-component (vx) of the fluid flow velocity profile within the vertical 

axis of the flow channel as described by Planar Poiseuille Flow. The given flow 

velocities given were calculated at a volumetric flow rate of 1.5 ml/min, but the 

parabolic distribution of velocity with y coordinate remains the same for all flow 

rates. The flow velocity at the centre of the channel is the highest and the velocity 

toward the channel boundaries (0 and 390 µm - the top and bottom of the fluid 

layer) tends to zero. 
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expected, the acoustic radiation force at the centre of the channel (y = 1.95x10-6 m) equals zero 

and has two maxima at the quarter and three-quarter heights in the fluid layer. The force also 

tends to zero at the top and bottom boundaries, which suggests that particles situated there will 

not experience any force toward the central plane and therefore never be focussed. In practice, 

however, the particles will always be separated from the flow cell walls by at least their radius, 

which will ensure they experience an increasing acoustic force, however small initially.  

 

 

The model was set to simulate 150 seconds or until a stop condition was met. This stop condition 

was set such that the outlet (rightmost boundary) of the flow cell acted as a particle counter and 

stopped the simulation when all 1000 particles reached the other end of the fluid layer. As such, 

at higher flow rates, COMSOL only needed to simulate the system until the flow velocity had 

Figure 24 – Plot of the acoustic radiation force against vertical position (y-coordinate) as 

determined by the ultrasonic standing wave in the flow cell.  The pressure minimum 

(zero newtons) is located at the half-depth of the fluid layer (195 µm) and also tends 

to zero at the upper and lower boundaries. Since particles are never located exactly 

at the boundary (they are separated by at least a distance equal to their radius), 

even particles very close to the flow cell walls will experience some force toward the 

centre. 
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carried all particles through, and particles would not continue to be focussed by the acoustic 

radiation force after they had left the 5cm focussing region. 

 

A parameter sweep was established such that COMSOL would simulate the focussing of particles 

of between 0.5 and 10 µm radius (r), of acoustic contrast factors (𝜑) of between 0.01 and 0.1, 

and at volumetric flow rates (Q) between 50 µL/min and 10 mL/min. Each combination of r, 𝜑 

and Q had a full 1000-particle simulation run: for 39 radii, 10 acoustic contrast factors and 24 

flow rates. Thus, a total of 9360 simulations were completed.  

 

For each parameter combination, the vertical position of particles at the outlet was saved and 

the range (maximum minus minimum y coordinate) calculated. For each combination of 𝜑  and r, 

the maximum volumetric flow rate that resulted in a vertical separation range of ≤ 5 µm was 

recorded. 5 µm was selected as a conservative measure of focus – if the centres of the particles 

are within 5 microns of each other, they will be within the depth of focus of the standard 

microscope objectives planned for the physical system. 

 

The results of this analysis are presented in Figure 25, which can be described (following Equation 

2) as graphs of the shape 𝑦 = 𝑥3. From the graph it is apparent that size is the main determinant 

of whether particles adequately focus within the 5cm focussing region. For objects of a contrast 

factor of 0.05, having a 10 µm radius will allow focussing even at very high flow rates of 9 

mL/min, whereas at 0.5 µm radius, particles will not focus within 5 cm even at 50 µL/min. 

Similarly, the ability to focus strongly depends the acoustic contrast factor, with a 5 µm particle 

being focussed under volumetric flow rates of between 0.05 and 1 mL/min depending on its 𝜑 

value.  
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The results of this analysis suggest that it is important to either know the approximate expected 

acoustic contrast factor and radii of the phytoplankton within a sample, or, to limit flow rate such 

that even small plankton with low contrast factors can be imaged within a sample. For samples of 

unknown contrast and radius distributions, there is therefore a tradeoff in experimental design 

between throughput and the minimum size and contrast that will be focussed. When compared 

with the commercial instruments already used by biological oceanographers (Table 2), even the 

minimum flow rate investigated (0.5 mL/min), at which even the 1 µm radius, 0.01 𝜑 cells are 

adequately focussed, is competitive.  

 

The sampling rates given for the commercial instruments describe the speed with which all cells 

in the fluid can be imaged. In the IFC presented here, not all cells in the sample fluid will be 

imaged as the objective lens will not have a field of view covering the entire width of the flow 

Figure 25 – Plot of the maximum volumetric flow rate (Y axis, ml/min) under which particles of a 

given radius (X axis, µm) focus within the 5cm flow cell analysed by FEM, grouped by 

acoustic contrast factor (colour). There is significant overlap between different data 

points, especially at 10 ml/min flow rate where particles of 𝜑 ≥ 0.06 with large 

diameters all focus.  
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cell. Therefore, to comment on the sampling rate of our device it will be important to consider 

the imaged volume as well as the total sample volume, as these will not be the same. 

 

The above modelling does however have significant limitations which reduce its predictive power 

for the performance of physical flow cells. In real devices, losses arise from the acoustical 

interactions between the layered components of the flow cell, all of which have different 

acoustical impedances and internal sound velocities. These losses could significantly lower the 

radiation force experienced by particles within the fluid layer and increase the time taken to 

focus them to the imaging plane. Therefore, modelling alone will not be suitable to assess device 

performance and an experimental approach will also be required which will be discussed in the 

following section.  

 

As previously mentioned, due to their internal crystal structures, real transducers have complex 

3-dimensional behaviours resulting in ‘hot spots’ on the transducer/flow cell interface. These can 

cause result in lateral sections of the fluid layer having weaker acoustic forces. At higher flow 

rates these effects average out to a constant force on particles but at lower horizontal velocities 

particles experience non-homogenous forces in the focussing region. Due to the velocity profile 

of particles in flow described by Equation 6 (and illustrated in Figure 23), even at higher 

volumetric flow rates the particles closest to the flow cell boundaries may have a horizontal 

velocity low enough to be affected by the transducer heterogeneity described. Viscous losses in 

the acoustic boundary layers can cause acoustical streaming, unwanted axial movements of 

particles which can result in agglomeration. 

 

The exact axial location of the pressure node toward which particles experience a force may not 

be the half-width of the flow cell where the flow velocity is highest. While in the FEM simulation 

the frequency is set such that there is always a node corresponding to the axial height of 

maximum horizontal velocity, in a real device, the different resonant frequencies excitable often 

produce nodes above or below the centre of the flow channel. The KLM modelling work in 

Section 3.2.2 illustrates this point, with the 1.776 and 2.056 MHz resonant frequencies predicted 

in Figure 18 producing pressure minimums slightly above and slightly below the fluid layer half-

height.  
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The resonant frequency of a flow cell depends on the temperature of the fluid and of the device 

itself, but heat is generated by driving the transducer, which can lead to a shift in resonant 

frequency over time. This will be more pronounced at low flow rates, where the cooling effect of 

water movement through the device will be lower. 

 

The above shortcomings mean that the experimental characterisation of the layered flow cells is 

likely to have significantly poorer focussing performance than suggested by modelling. The next 

section will detail an attempt to quantitatively investigate the performance of the flow cells 

experimentally, using multiple methods to assess acoustic characteristics. 

3.3.4 Acoustic Focus Analysis – Experimental  

Two methods were employed to experimentally determine and characterise the resonant 

frequencies of the fabricated flow cells. The first made use of the C60 Impedance/Frequency 

Response Network Analyser hardware produced by Cypher Instruments. The secondary approach 

involved using the flow cell in the IFC device, imaging fluorescent microspheres in flow, and then 

analysing the images to determine the velocity field within the fluid medium.  

 

The first method allows the determination of the resonant frequencies of any given acoustical 

device by plotting the frequency response of the transducer under realistic use conditions. This is 

important to understand as it allows the appropriate setting-up of the device to successfully 

acoustically focus cells. The second method investigates the particle focussing performance of 

the flow cell under various flow conditions while driven at resonance. Combined, these methods 

attempt to provide both information on what frequencies should be used to drive the acoustic 

standing wave and how effective the respective frequencies are for the purpose of focussing 

phytoplankton cells to the imaging plane of the flow cell. 

 

Method 1 – Admittance Analysis 

The C60 is a network analyser which can measure the frequency response of electro-acoustic 

systems within the 10 Hz to 4 MHz range.  By connecting the flow cell transducer to the C60 

output and running a frequency sweep within the range suggested by the above modelling (1 to 3 

MHz), the device can be set to measure and plot the transducer admittance (Y = 1/Z). 
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In order to use the C60 to the determine resonant frequencies of a given transducer, a plot of 

admittance was generated in the 1-3 MHz range under 4 different flow cell conditions: filled with 

only air (no fluid introduced); filled with deionized water; filled with Lugol’s Iodine- preserved 

Isochrysis galbana; filled with F/2 marine media with Fluoresbrite fluorescent polystyrene-latex 

beads (representing the presence of phytoplankton cells in a marine sample). A plot for one flow 

cell (Device A) is given in Figure 26.  
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As mentioned above, Figure 26 also shows the flow cell’s frequency response when filled with a 

Lugol’s Iodine-fixed phytoplankton sample (sample number N20). This sample was of Isochrysis 

galbana, a unicellular haptophyte phytoplankton with a cellular diameter of 5-10 µm, and was 

analysed in order to determine any frequency shift when using a preserved plankton sample. This 

is because the ‘fixing’ of phytoplankton cells using Lugol’s solution is common in biological 

Figure 26 – C60 network analyser plot of admittance (1 over impedance) of the ultrasonic 

transducer within the 0.5 – 3 MHz range. Measurements were conducted over 4 

different conditions; unfilled (Air - black), filled with deionized water (DI H2O - 

green); filled with marine media and PolySciences Fluoresbrite fluorescent 

polystyrene-latex beads (blue); filled with Lugol’s Iodine-fixed plankton sample 

(sample number N20 - red). Insets: peaks around 1.70MHz; 2.10 MHz demonstrating 

the slight differences in acoustic performance when the device is filled with media of 

different salinities (and hence sound velocities and densities). 
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oceanography and it is important to understand any effect the presence of such fixing agents on 

the acoustical properties of the flow cell. The very close agreement between the measured 

acoustic properties of the preserved sample (red) and the sample with polystyrene beads in 

growth medium provides good confidence that the devices’ performance will be similar in both 

preserved and live cell samples. 

 

Resonant frequencies can be determined from the C60 frequency sweep output by looking for 

admittance spikes, which occur when the flow cell is filled with fluid but not when it is filled with 

air. Eight flow cells were analysed in this manner and the resulting resonances, as seen in Figure 

26, were around 1.7 MHz and 2.1 MHz. When filled with deionized water the flow cell admittance 

spikes were frequency-shifted by around 50 kHz and were slightly weakened; admittance profiles 

for F/2 media- and Lugol’s preserved sample-filled flow cells were highly similar in frequency and 

magnitude of peaks. Both measured peaks were of maximum widths below 50 kHz. Each liquid 

used in characterisation was allowed to come to room temperature before injection. 

 

Method 2 – Image Analysis 

A second method for characterising the acoustical performance of the flow cell was formulated: 

this involves taking images of particles within the flow cell under various flow conditions while 

the transducer is driven at a resonant frequency. However as seen below, this method ultimately 

proved unsatisfactory. 

 

If the ultrasonic half-wave resonance generated within the flow cell has its pressure node in a 

plane which is vertically halfway through the fluid layer, particles in flow which are focussed to 

this pressure node cell should have a normal distribution of vertical positions, with the standard 

deviation of this distribution giving a measure of the focussing performance (similar to the 

separation distances modelled in Section 3.3.3). This is because the carrier fluid within the flow 

cell acts according to Poiseuille flow with a normal distribution of linear (flow) velocity through 

the vertical profile of the flow cell, so suspended particles will also move with normally 

distributed linear velocities.  
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A mismatch between the centre of the flow cell (which has maximum linear flow velocity), and 

the acoustic pressure node, would cause a skewness of the distribution of particle velocities, with 

the magnitude and direction of skew giving some indication of the position of the pressure node 

relative to the point of maximum flow velocity.  

 

By imaging the same particles twice with a short, known time delay between captures, their 

velocities can be determined. Using this approach, work in this section was carried out with the 

aim of determining the performance of the acoustic focussing by determining the distribution of 

particles’ travel distances within the time delay. 

 

An objective of this characterisation was to measure focussing performance under realistic flow-

rate conditions. At a volumetric flow rate of 2 mL/min, the COMSOL model predicts particle 

velocities exceeding 0.03 ms-1, which at 10X magnification, where the field of view of the used 

camera is 1125x703 µm, would result in a particle crossing the imaging region in under 30 ms. For 

faster flow rates and higher magnification, the framerate of the camera will not be sufficient to 

capture multiple exposures of the same particle; as such, a different approach is required. 

 

In order to image the same particles multiple times, and hence calculate separation distances in a 

given time period, a LED pulsed illumination system capable of microsecond pulses was used, as 

specified in Section 3.2. By setting the LEDs to activate twice within a single exposure of the 

camera with a short delay between lighting pulses, each object will be imaged twice in each 

frame. An unprocessed example frame taken using this technique is presented in Figure 27.  
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This method was carried out on 100 frames at each flow rate, with two illumination pulses of 15 

µs separated by a 2 ms delay. In order to generate a representative linear velocity distribution 

with sufficient statistical significance, the separation distances for a large number of beads must 

be measured. To conduct this analysis and avoid the bias a manual estimate of bead centre (e.g. 

using ImageJ) would incur, a MATLAB script was written which, for a given IFC image, detects and 

numbers beads and localises their centroid pixel. The user can then input which bead numbers 

are in fact the same bead, and the script automatically records the distance (and angle) of 

separation between the two exposures, labelling this distance on the image.  

 

Flow

Figure 27 – Example double-exposure image of 10 µm beads taken with a 2 ms delay between 

illumination pulses. Each of the 6 beads present in the field of view is imaged 

twice in the single frame such that their velocities can be calculated from the 

distance they travel during the 5 ms delay.   
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Figure 28 and Figure 29 show the post-detection and post-labelling steps of this process, 

respectively. Pseudocode for the MATLAB script is presented in Appendix C (entire script 

published online at 

https://github.com/ajwl27/IFC_BeadImageAnalysis/blob/main/analyse_bead_images.m). 

 

 

Flow

Figure 28 – Example of detected beads in the same image as Figure 26. The MATLAB 

script detects beads using standard image processing techniques (code in 

Appendix A.3) and assigns a number to each detection. Detection 11 in this 

image is a false positive and can be ignored by the user in the next step; 

labelling the exposure pairs which result from the same physical bead. 

https://github.com/ajwl27/IFC_BeadImageAnalysis/blob/main/analyse_bead_images.m


Chapter 3  

66 

 

 

After the experimental work was completed and each set of 100 frames analysed in the 

described manner, histograms of the separation distances (converted to micrometres based on 

the scaling factor for a 20X objective - 5.7971 pixels : 1µm) were plotted. The mean and standard 

deviation of the data were calculated, and the results are shown in Figures 29, 30 and 32. Fewer 

experimental setups than would be optimal were tested due to the coronavirus situation limiting 

lab use. 

Flow

Figure 29 – After detection, the user enters the numbers of the exposures relating to the 

same physical bead (e.g. 1 and 2; 3 and 4). The MATLAB script measures the 

distance between the centroid pixels of the two labelled beads and the angle 

(in degrees from vertical), stores this data and presents it as an overlay on 

the image. 
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Figure 30 shows the clearest difference in distribution between an experimental condition under 

which the beads were (qualitatively) focussed well (a., 1.0 mL/min) vs a condition where the 

focus was poor (b., 2.0 mL/min). The standard deviation of separation distances increased from 

0.44 µm to 2.35 µm, which divided by the mean separation distances for each distribution 

corresponds to a 1.27% and 3.55% SD respectively. This widening of the distribution aligns well 

with the expected behaviour when moving from in-focus bead images to out-of-focus bead 

images as described above. 

 

Figure 30 - Results of bead-separation experiment for measuring acoustic focus quality in layered 

resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 10 V 

peak-peak. Volumetric flow rate = 1.0 ml/min (a) and 2.0 ml/min (b). 
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It is possible to conclude from Figure 31 and Figure 33, however, that the method used is not 

sufficiently sensitive. With the volumetric flow rate set to 3.0 mL/min and the transducer driven 

at 1.75 MHz, 15 V peak-peak, the acoustic focus quality was qualitatively significantly inferior to 

that at the slower flow rate of 1 mL/min, but this is not reflected in the plotted normal 

distributions. The qualitative difference in focus quality is illustrated in Figure 32 which shows a 

side-by-side comparison of frames taken at the two flow rates used in the below graphs. 

Figure 31 - Results of bead-separation experiment for measuring acoustic focus quality in layered 

resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 15 V 

peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) 2.0 ml/min (c) and 

3.0 ml/min (d). 
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The source of this apparent error is most likely to be methodological; the technique of 

determining focus distance relies on an accurate measurement of the exact central pixel of each 

bead, but this is extremely difficult to consistently locate either manually or using the MATLAB 

script. Neither the image processing algorithm used or any attempt to manually localise the 

centre of each bead will be accurate enough to draw statistically reliable distributions of 

measurements between the two exposures. It is possible, however, that more sophisticated 

image processing algorithms would more accurately locate the centre of the beads and thus 

more accurately measure the inter-exposure travel distance. 

 

As previously mentioned, one other reason that the described method is unable to accurately 

determine acoustic focus performance may be that the acoustic pressure node is not coincident 

with the half-depth of the fluid layer, and thus the maximum of the parabolic flow profile. The 

result of this mismatch would be a larger variation in flow velocities for a small acoustic focussing 

error than if the two were coincident. This phenomenon would also cause a reduction in the 

closeness of the beads’ speed distribution the normal distribution. Therefore, the standard 

deviations reported, which are those of the gaussian curves fit to the data, may be an 

inappropriate metric to use as a comparison of performance under different conditions.  

 

a. 1.0ml/min b. 3.0ml/min 

Figure 32 – Qualitative assessment of the acoustic focus quality at volumetric flow rates of 1.0 

ml/min and 3.0 ml/min, with the same transducer settings of f=1.75 MHz, V=15 V 

peak-peak.  
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The methodological failure discussed above repeats at f=2.11 MHz, V=10 Vpp, as demonstrated 

in Figure 33. The reduction in standard deviation as a percentage of the mean between the 

distance distributions at 0.5 mL/min and 1.0 mL/min (33a. and 33b.) would not be expected if 

using an accurate metric of focus quality, and is not backed up by qualitative analysis of frames 

under the two different flow rates. The increased skewness to the right of the mean of each 

distribution at 2.11 MHz compared with the results from the earlier 1.75 MHz experiment 

suggests that the pressure node excited at 2.11 MHz is further from the fluid layer half-depth 

than that excited at 1.75 MHz.   
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Figure 34 presents the inter-exposure separation distance for the same driving frequency as in 

Figure 33 but the higher voltage of 15 volts peak to peak (Vpp). At this higher voltage, acoustic 

streaming was observed within the flow cell, with beads forming two single-file lines within the 

field of view. This is clearly undesirable as beads can agglomerate and there is a reduction of 

throughput and imaging quality. Other volumetric flow rates were not investigated as slower 

horizontal velocity would only increase these streaming effects; and higher velocity would result 

in insufficient axial (desirable) focussing. 

Figure 33 - Results of bead-separation experiment for measuring acoustic focus quality in layered 

resonator flow cell with resonant frequency = 2.11 MHz, transducer voltage = 10 V 

peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) and 2.0 ml/min (c) 
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As discussed, the experimental approach taken here has unfortunately proved incapable of 

accurately measuring the acoustic focussing performance of beads within the flow cell. For the 

purposes of the remainder of the work within thesis, however, it will be sufficient to know 

whether or not the acoustic focussing is successfully bringing cells into the optical focus plane for 

sharp imaging. A quick subjective test of the sharpness of objects within the IFC’s images 

provides a high level of confidence that those objects have been successfully acoustically 

focussed, as shown in Figure 32.  This is because of the relationship between the objective lens 

and the depth of the flow cell; typically, objectives have a depth of focus of less than 10 µm, and 

the flow cell is 390 µm deep. Since objects are randomly distributed throughout the depth of the 

flow cell when acoustic focussing is not operational, objects regularly appear out of focus, as 

demonstrated in Figure 32b. If none of the objects appear out of focus, it can reliably be inferred 

that the acoustic focussing is operating successfully.  

 

Although this subjective test does not help to qualify the level of performance of the focussing, it 

can consistently be used to check that it is working sufficiently for imaging. If further flow cell 

development was to be carried out associated with more precise determination of acoustic 

           

Figure 34 - Results of bead-separation experiment for measuring acoustic focus quality 

in layered resonator flow cell with resonant frequency = 2.11 MHz, 

transducer voltage = 15 V peak-peak. Volumetric flow rate = 2.0 ml/min. 
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focussing efficiency, however, future experimental protocols could be used to test the acoustic 

focus performance by calculating the sharpness of the edge of a high-contrast object like the 

polystyrene beads used here. This technique would not work for organic cells, which are highly 

translucent, but could be used to quantify the flow cell performance in greater detail. The issue 

with parabolic flow however remains; even with a new imaging technique it may not be possible 

to use the distance travelled to during the inter-exposure period as a means to measure acoustic 

focus without precisely determining the height of the acoustic pressure node within the flow cell 

and calculate the effect of varying flow velocities.  
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3.4 Imaging Performance Characterisation 

3.4.1 Introduction 

The image resolution of an IFC is a key parameter as it determines the information content of the 

acquired images.  With higher resolution images, both human taxonomists and automated image 

processing systems will be able to more accurately perform taxonomic classification, cell 

measurement, etc. Other metrics of image quality such as distortion and contrast, while harder 

to measure objectively, also contribute to the human interpretability of images and can 

furthermore affect automated techniques such as neural networks. To measure the suitability of 

the IFC developed here for various research applications, it is therefore necessary to have a 

quantitative measure of imaging quality.  

 

The goal for this work will be to state the minimum phytoplankton cell size which can reliably be 

imaged by the device. This property, i.e. the smallest size of object that can still be seen to be 

separate from other objects in the image, is typically referred to as the resolution (Wu et al., 

2008, Dobbins, 2000). 

 

Therefore, in this section, a critical analysis of a quantitative approach to testing the image 

resolution of the acoustically focussed IFC will be presented, using a standard inverted 

microscope to develop a testing protocol which can later be applied to the IFC (In Section 3.5.5). 

By first quantifying the effects of the variables within the system on the resolution, including 

exposure, rotation of the flow cell and the accuracy with which the objective lens is focussed, it 

will be possible to apply the measurement procedure with confidence to the completed IFC. 

These effects of various manually controlled parameters on the measurement of resolution have 

not received much attention within the literature but are important to understand in our IFC.  

 

A formal definition of the resolution of a microscope system is the smallest spatial period of a 

still-resolved object (Born and Wolf, 1999). As mentioned in the review of current and future 

trends in phytoplankton ecology (Section 2.3), cells are expected to decrease in size over time 

due primarily to warming of their habitats. This highlights the necessity for IFCs to have the 

highest possible resolution, such that the smallest cells can be imaged. As demonstrated by the 
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modelling work in Section 3.3, the acoustophoretic focussing within the flow cell is expected to 

successfully acoustically levitate even cells under 5 µm diameter, therefore, the optical 

performance of the IFC becomes a crucial factor in the minimum size of cells possible to be 

analysed.  

 

Typical characterisation of the resolution of custom microscope devices often involves manually 

imaging a test target (e.g. 1951 USAF test target) and subjectively determining the smallest 

features resolved (Greenbaum et al., 2013, Kheireddine et al., 2019, Vainrub, 2008). However, 

this method is inherently subjective and makes it difficult to compare competing IFC systems.  A 

more quantitative measure can be derived from the frequency spectrums of recorded digital 

images by calculating the highest spatial frequency present (avoiding random noise) with non-

zero amplitude (Pospíšil et al., 2017). 

 

This can practically be achieved by taking the 2D Fourier transform of the image, plotting 

circularly-averaged amplitude values and from these determining the frequency at which the 

signal is indistinguishable from background noise (cut-off frequency), as demonstrated by Vainrub 

(2008) and depicted in Figure 35. The main issue arising during this process is the necessity of 

semi-subjective determination of the cut-off frequency, as in most images there is no clear 

boundary where the Fourier amplitudes of the image and noise are distinct. Furthermore, the 

frequency response of the image depends in part on the shape of the object being imaged 

(Dobbins, 2000). In the following section, therefore, an exploration of a quantitative approach to 

the measurement of imaging resolution will be presented. 
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3.4.2 Modulation Transfer Function 

The quantitative measurement of a device’s spatial frequency response, the Modulation Transfer 

Function (MTF), can be performed to assess the imaging resolution of a complete optical system 

(Xie et al., 2018b). To calculate the MTF of a digital imaging device, an edge (a very sharp 

transition from black to white) is imaged onto the sensor and the pixel values perpendicular to 

this edge are recorded, these values being referred to as the Edge Spread Function (ESF). The first 

derivative of these values are the Line Spread Function (LSF); MTF is simply the 2-dimensional 

Fourier transform of the LSF (Estribeau and Magnan, 2004), as depicted in Figure 36. MTF is 

Figure 35 – Process for determining resolution using the method inspired by Vainrub (2008). 13a) 

a test target with high-frequency content (made by scratching an ink blot on a 

standard 75x25mm slide with a razor) is imaged using the system under test. 13b) a 

2-dimensional Fast Fourier Transform (FFT) is applied to the image to convert from 

spatial to frequency domains. 13c) a predetermined number of radial samples are 

taken from the centre of the FFT image outward to the edges, where all pixels in the 

given radius are sampled (as pixels have integer addresses, bilinear interpolation is 

used). 13d) the values corresponding to each radius are averaged and plotted. 
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typically measured in either Hertz, cycles or lines per pixel, where a cycle is one light and one 

dark line. 

 

To avoid undersampling of the edge due to pixel size and to account for phase shift dependence, 

standard MTF measurement procedure involves imaging an edge which is slightly slanted with 

respect to the rows and columns of the imaging sensor (Burns et al., 2000, Vhengani et al., 2012). 

Simulated (Estribeau and Magnan, 2004) and experimental (Xie et al., 2018c) results show that 

MTF curves produced using the slanted edge technique are repeatable and close to the 

theoretical MTF of a system when slant angles are small (5-10° from vertical) but that increased 

angles reduce the accuracy and reproducibility of measurements. Furthermore, the slanted edge 

protocol has been shown to be a reliable measure of resolution even for CMOS sensors with 

complex pixel topologies (Estribeau and Magnan, 2004) despite being developed for square CCD 

pixels. 

 

With the aim of developing a robust way to measure MTF of the completed IFC system including 

optics, camera and processing software, the following sections will detail the exploration of the 

Figure 36 – Schematic of the procedure for determining the resolution of a digital imaging device 

by calculating the Modulation Transfer Function (MTF) using the Slanted Edge 

Method (ISO 12233). Values are sampled from pixels perpendicularly to an imaged 

slanted edge, making up the Edge Spread Function (ESF). The ESF is differentiated to 

produce a Line Spread Function (LSF). Finally, the MTF is yielded from the 2-

dimensional Fourier transform of the LSF. Adapted from Estribeau and Magnan 

(2003) and Vhengani, Griffith and Lysko (2012). 

Image 
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effect of various variables on measured MTF using a commercial microscope. They will present 

novel experimental work to assess the influence of various parameters on the measured MTF in 

work which will not only allow us to confidently measure MTF in our system but contribute to the 

field of microscopy as a whole. 

 

3.4.3 Development of an experimental protocol for IFC resolution characterisation  

The typical process used for practically determining the MTF of a microscope and our IFC system 

is based on the standard slanted edge technique described in ISO 2233 (ISO, 2017). Briefly, the 

edge of a black square on a transmission microscopy target slide (R1L3S5P, Thorlabs Inc., USA) is 

imaged with the camera rotated with respect to the slide holder in order to ensure adequate 

slant angle for analysis. Next the ImageJ (Schneider et al., 2012) plugin Slanted Edge MTF (Mitja 

et al., 2011) used to generate MTF against spatial frequency curves from the data. Values of 

spatial frequency where MTF drops to 50% (MTF50) and 10% (MTF10) of the low-frequency 

maximum MTF are extracted to allow straightforward intercomparison and to be used to 

estimate the minimum object size that can be imaged with sufficient contrast. 

 

In order to quantify the effects of varying illumination techniques, exposure times, focus 

accuracies and edge slants, all of which can be varied in the IFC, a range of experiments were 

conducted using a digital camera (ORCA-ER, Hamamatsu) on an inverted microscope (IX71, 

Olympus) with a 10X objective (UPlan FL N, NA=0.30, Olympus) in brightfield configuration. These 

experiments are detailed in Sections 3.4.4, 3.4.5 & 3.4.6. 
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3.4.4 Experimental determination of the effect of camera exposure on measured system 

MTF 

An important variable within an IFC system is the amount of light received by the camera during 

its exposure. This can be controlled either by changing the illumination intensity or by increasing 

the exposure time. Although changing the illumination intensity is typically more complex as it 

requires control hardware (e.g.  Pulse-width modulation for LEDs), it will be easy to change the 

illumination pulse length in our planned stroboscopic illumination system. Since varying the 

exposure time with a fixed illumination brightness has the same effect as varying the illumination 

intensity with a fixed exposure time, as long as the imaging target is not moving, the former was 

chosen in this experiment due to the simplicity of implementation on a standard microscope. 

 

 Thus, a slanted edge MTF measurement was carried out with fixed focus position, lighting 

intensity, diaphragm apertures, edge rotation (to 5° as recommended in ISO2233) and X/Y stage 

positions, while varying camera exposure time from 1 to 15 ms in 1 ms increments. The MTF 

curves resulting from this procedure are shown in Figure 37.  
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Figure 37 – MTF curves derived from images of a slanted edge on a resolution test target (R1L3S5P, Thorlabs Inc., USA) under camera exposure conditions 

from 1 ms to 15 ms. All images were taken under the same Z-axis focus position and with the same edge slant angle (5 °). Here, the blue curves 

(MTF from images taken with 1 ms – 7 ms exposure duration), which are highly consistent, are generated from images without any 

oversaturated pixels. The red curves (MTF from images taken with 8 ms – 15 ms exposure duration) are from images with pixel values of 0 or 

4095 (i.e. fully saturated). These are erroneously high and abnormally smooth, indicating the importance of using a nonsaturating exposure 

time when measuring and comparing system resolving power.  
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With the faster exposures from 1 to 7 ms, none of the pixels in the recorded images were 

saturated. Conversely, in all the exposures longer than 8 ms, the white half of the image had 

many oversaturated pixels, where these pixels had reached their full-well capacity (Hasinoff, 

2014) and were unable to store any further irradiance data. Figure 38 illustrates this concept of 

saturation by comparing cropped regions from images taken with a) 5 ms exposure and b) 10 ms 

exposure and displaying pixel intensity values from the white sections of each image. 

 

The resulting MTF curves calculated from the recorded images in Figure 37 show that when the 

camera was not fully saturated (blue lines), the MTFs showed great consistency, but that when 

images from the system were saturated (red lines), MTF results were erroneously high, leading to 

unrealistic resolution measurements.  

 

Complimenting this finding, Figure 39 presents the MTF10 and MTF50 metrics across the tested 

exposure range, clearly showing significant elevation in these resolution metrics in the saturated 

images. With MTF10 values above the Nyquist sampling limit of 0.5 cycles per pixel (a minimum 

of 2 pixels per cycle is required to avoid aliasing), these figures are patently unrealistic. 

 

Figure 38 - Cropped regions from images taken at a)5ms exposure and b)10ms exposure in the 

3.2.1 Exposure experiment. At 5 ms exposure, pixels in the white side are 

unsaturated and still contain information; at 10 ms exposure, the white side is 

overexposed and the camera is limited by the full-well capacity of its pixels. All 

pixels in the white section of this image have pixel intensity values of 4095, the limit 

of the camera. MTF curves generated from data with such saturated pixels are 

erroneously high and inflate the measured system resolution to unrealistic levels. 
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When applying the MTF measurement technique to our custom IFC, therefore, it will be ensured 

that while carrying out the slanted edge experiment, pixels within the image are not fully 

saturated. This will practically be achieved by selecting an appropriate combination of 

illumination intensity and exposure time, which may be different to those tested above on a 

microscope due to the sensitivity of the attached camera, and optical properties of the IFC.
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Figure 39 – Graph of MTF10 (blue) and MTF50 (orange) values extracted from the MTF curves for images with exposure times ranging from 1 ms to 15 ms. 

Both metrics are consistent for exposure times of 1 to 7 ms, where images do not have any over- or undersaturated pixels. Exposures of 8ms 

and longer (red dashed box) have erroneously elevated MTF10 and MTF50 metrics than at faster exposures, indicating the inflating effect of 

saturated pixels on measured system resolution. MTF10 values which are above the sampling limit imposed by the Nyquist theorem (a 

minimum of 2 pixels per cycle required to avoid aliasing) are unrealistic. 
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3.4.5 Experimental determination of the effect of edge slant rotation on measured 

system MTF 

The next variable of interest while measuring the MTF of the IFC will be the rotation of the 

slanted edge target. Therefore, an experiment is carried out to determine the effect of the 

rotation angle on the measured MTF.  

 

For this experiment the effect of edge slant angle on derived MTF curves was determined by 

fixing microscope X,Y and Z positions, illumination intensity and camera exposure (5 ms, which 

was previously determined to avoid saturated pixels and hence result in reliable MTF curves 

which do not exceed the theoretical Nyquist resolution limit).  

 

Starting with a measured edge rotation angle of 0° with respect to the columns of the sensor’s 

pixels (the edge completely vertical), the camera was iteratively rotated about its central axis by 

2.5°, the edge image captured and MTF curve calculated. Previous studies have measured MTF 

using only a small number of rotation angles (e.g Xie et al. (2018c) tested 6 different rotation 

angles, of which half were rotated over 25° from the rotation angle which resulted in the optimal 

MTF curve). The aim of this experiment is to examine with finer detail the effect of rotations 

which are closer to the optimal theoretical rotations of 0-10°.  Figure 40 displays the MTF curves 

measured in this experiment and demonstrates the angle-dependence of MTF measurements 

when rotation angle is increased past 10°.  
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Figure 40 – Slanted edge MTF curves generated for incrementally increasing edge slant angles, starting from 0° (completely vertical) and incrementing by 5° 

up to 45°.  
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Figure 40 presents the MTF curves measured at each edge 5° increment in rotation angle, 

overlayed onto the same axes. 2.5° increments were not included in this graph in order to reduce 

complexity. Good agreement in measured MTF is demonstrated for 0° to 10° rotation, but 

increasing past this point results in degraded areas under the curve with an angle-dependent 

worsening of MTF. This result confirms the finding of Estribeau and Magnan (2003) and Xie et al 

(2008) that MTF measurements using the slanted edge technique require a small rotation angle 

of not more than 10° in order to accurately assess system resolution. 

 

Figure 41 shows the extracted values of MTF10 and MTF50 values across all the tested edge slant 

angles in all 2.5° increments, again showing angle-dependence of these resolution metrics when 

the slant is more than 10°. This finding confirms the work of Estribeau and Magnan (2003), and 

Xie et al. (2018), who find that only edge slant angles in the 0-10° range yield consistent MTF 

curves. Our experiment additionally provides an experimental description of the rate at which 

MTF is expected to fall off as edge rotation increases; Figure 41 shows that rotations of up to 20° 

result in measured MTF10 and MTF50 values that are within 95% of the best measured values 

and that angles of up to 32.5° result in measured MTF10 and MTF50 values that are within 90% 

of the best measured values. 

 

When applying the MTF measurement protocol on our custom IFC, care will be taken to ensure 

that edge slant angles are in the range of 0-10°. This will allow the most reliable measurement of 

MTF possible and result in the best estimate of the minimum phytoplankton cell size resolvable 

by the completed system.  
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Figure 41 - Graph of MTF10 (dark blue) and MTF50 (light blue) values extracted from the MTF curves calculated for images with edge slant angles between 

0° (completely vertical; aligned with sensor pixel columns) and 45°, in 2.5° increments. With edge rotation angles of 0-10° the determined 

MTF10 and MTF50 values are very consistent, but with increasing slant angle these resolution metrics display angle-dependence. 
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3.4.6 Experimental determination of the effect of focus accuracy on measured system 

MTF 

The next variable of interest when measuring the MTF of our IFC will be the quality of focus of 

the microscope objective onto the slanted edge imaging target. Changing the focus of a 

microscope objective moves the imaging plane vertically through the target, and to obtain the 

best possible image quality of a given object, the objective should be focussed so that the object 

plane coincides with the imaging plane. This ensures that the light rays from the object are 

optimally collected and focused by the microscope objective, resulting in a sharp and detailed 

image. When the object plane and imaging plane are properly aligned, it maximizes the 

resolution and contrast. As previously discussed, our IFC will have a variable focus objective, so it 

is important to be able to assess the impact of focus accuracy on image resolution in order to 

accurately assess the minimum resolvable phytoplankton size. 

 

In this third experiment, therefore, the effect of focus accuracy (in the Z-axis) on measured 

system MTF is investigated. Illumination intensity, X/Y stage position, sensor exposure time (5ms, 

as above) and slant angle (5°) will all be fixed, and the variable will be the Z-axis focus position, 

which will be increased in 1 μm increments from a focus position well below the test target, to 

one well above. In this manner, the sensitivity of the MTF measurement procedure to focus 

accuracy is tested. An experiment which describes the effect of focus accuracy on MTF has not 

yet been presented in the literature; authors simply state that their devices were appropriately 

focussed. Our experiments help to quantify the sensitivity of the measurement protocol to 

various focus conditions, a determination which is especially important in instruments without 

precise and repeatable, electronically-controlled focus of their imaging lenses, as will be the case 

for our IFC. 

 

As illustrated by Figure 42, it is extremely challenging to subjectively determine the quality of 

focus position beyond an accuracy of ± 2 μm. This reduces the repeatability of focussing of an 

objective onto an object and creates the risk of inaccurately measuring optimal MTF values. 
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Figure 42 – Comparison of the a)-e) central 256x256 pixels and f)-j) central 50x50 pixels of the slanted edge images taken during the section 3.2.3 focus 

experiment. Image a) is focused below the target and image e) above the target, as can be more clearly determined from the zoomed images f) 

and j). Images b), c) and d) are all subjectively ‘in focus’ and it is almost impossible to manually determine which has the most accurate focus 

position. As can be seen in Figure 42, there are subtle differences in derived resolution metrics between the three central in-focus images. Of 

particular interest is the fact that image e) has a darker white section than the others, which is reflected in the lower MTF metrics on the 

above-target focus positions seen in Figure 42. This is caused by the interaction of the Köhler illumination focus plane and the imaging focus 

plane of the objective.  
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Figure 43 demonstrates, by comparing MTF10 and MTF50 across all of the experimentally tested 

focus depths, that there are subtle differences in measured resolution between images that 

seem identical to a human user. This is a finding which has significant implications for the use of 

this method in instruments like our IFC which do not have discrete focus settings, e.g. traditional 

microscopes where the focus of the objective is controlled by manually tuning a continuously 

rotating knob. The same graph also shows that reliance on either MTF10 or MTF50 alone may be 

unsatisfactory due to nonlinear relationships between the two metrics. This finding also does not 

appear to have been noted within the literature. While MTF10 more reliably determines the 

maximum spatial resolution resolvable, MTF50 may be useful for determining overall image 

quality. Therefore, when measuring the resolution of our IFC system, both MTF10 and MTF50 

values will be used to estimate minimum cell sizes that could be imaged. 
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Figure 43 – Plot of slanted edge MTF10 (blue) and MTF50 (orange) metrics for increasing Z-axis focus positions. A focus point well below the target was 

selected and Z-height incrementally increased, with an image of the slanted edge taken every 1 micron step. Images were thus taken with the 

edge in focus (8-13 μm from initial position) and with the focus position above (0-7 μm from initial position) and below (14-20 μm from initial 

position) the target. The graph shows a nonlinear coupling between MTF10 and MTF50 values, highlighting the necessity of not solely relying 

on one or the other for resolution characterisation. Further, the plot demonstrates that Z-position accuracy of at least ± 2 μm is required to 

obtain high and consistent MTF measurements. 
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As previously discussed, the custom IFC will not make use of the same precise, discrete stage 

focussing mechanism found in the microscope tested within these experiments. This is because 

these components would significantly increase the cost of the system, which as previously stated 

is intended to be accessible by resource-constrained laboratories. Lower-cost microscopes often 

make use of continuous focus mechanisms, such as rotating a focus knob or focus ring, to adjust 

the position of the objective lens relative to the specimen. While these mechanisms may lack the 

precision of their high-end electronic counterparts, they can still achieve good focus quality when 

used properly. 

 

In our custom IFC, a focus ring will be employed to enable users to manually adjust the focus of 

the imaging system. This cost-effective solution is sufficient for achieving the desired focus 

quality, as the user can carefully and iteratively adjust the focus until the image appears sharp and 

well-defined. This approach allows for acceptable focus accuracy within the practical limitations of 

human perception and the system's intended use. 

 

Despite the potential for slightly reduced precision and repeatability in the focus adjustment, the 

focus ring system provides a balance between affordability and performance, making it a suitable 

choice for resource-constrained laboratories. In accordance with our design goals stated in 

Section 3.2, this design choice will ensure that a wider range of users can access and benefit from 

the custom IFC, while still achieving satisfactory imaging quality. 

 

The implication of this design choice is that MTF measurement of the IFC will not be as precise as 

for the research-grade microscope used in this section, and that when measuring the imaging 

performance it is possible that the optimal (maximal area under the curve) MTF curve for the IFC 

will not be found. This complicates the direct comparison of the measured MTF of our IFC with 

those of more sophisticated microscopy hardware, as the results may be influenced by the less 

precise focus adjustment mechanism. For this reason, it is likely that a direct comparison of the 

measured MTF10 and MTF50 values between the IFC and the microscope used for these 

experiments will demonstrate a lower imaging performance of the IFC. 
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In order to attempt to mitigate these limitations, when measuring the MTF of the IFC, several 

images of the slanted edge target will be captured while varying focus conditions to account for 

inconsistencies in focus quality. By selecting the image resulting the highest measurements of 

MTF10 and MTF50, a more accurate representation of the IFC's optimal imaging performance can 

be obtained.  

 

However, it is important to consider that the primary goal of the custom IFC is to provide a cost-

effective and accessible platform for phytoplankton analysis, rather than competing directly with 

high-end microscopy systems in terms of optical performance. The primary design objective is to 

achieve an adequate level of image quality such that the smallest possible phytoplankton can be 

accurately identified.  

 

It is therefore planned to focus on using the MTF10 and MTF50 values to determine the minimum 

phytoplankton size which will be resolvable by the IFC, rather than directly comparing the 

performance with existing instruments. These MTF values can be used to find the limiting 

resolution of the IFC, which is critical for determining its ability to accurately identify and 

differentiate various phytoplankton species based on their size and morphological features. By 

establishing a minimum resolvable size, users can better understand the IFC's suitability for their 

research applications and ensure that the acquired images provide sufficient information for 

accurate identification and analysis of phytoplankton populations. This approach will ultimately 

help to assess the overall effectiveness and utility of the IFC in the context of its intended use, 

rather than focusing solely on its performance relative to high-end microscopy systems. It will also 

allow us to state a minimum cell size for the IFC, similarly to those presented for the commercial 

instruments introduced in the previous chapter.   

 

Our work to use MTF measurements to determine the minimal cell size resolvable will be 

presented in Section 3.5.5, after detailing the arrangement of the complete IFC system. To find 

the limiting resolutions using MTF10 and MTF50 values, MTF values will be converted from units 

of cycles/pixel to cycles/µm by multiplying them by the reciprocal of the pixel size of the camera, 

and then by the magnification of the objective.   
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3.5 IFC System Design 

3.5.1 Introduction 

This section describes the development process followed to incorporate the acoustic flow cell, 

pulsed illumination and camera into a complete system. The following subsection (3.5.2) details 

the initial approach taken to this integration, which involved laser-cutting an enclosure from 

acrylic. This design proved insufficient for several reasons which are explored. The second 

approach (Section 3.5.3) revolved around using a commercial cage/rail system and a custom 3D-

printed flow cell holder, which overcomes the disadvantages of the first design while maintaining 

acceptably low cost and complexity.  

 

After finalising the hardware components and layout of the IFC, the imaging performance of the 

assembled complete system is measured using the procedure described in Section 3.4. The 

smallest resolvable phytoplankton cell is determined using the measured MTF values of  the 

instrument. 

 

3.5.2 System Camera Selection 

The camera selected for the final system design was a 2.3-megapixel colour USB3 camera 

(Grasshopper GS3-U3-23S6C-C, Teledyne FLIR, USA) using an IMX174 (Sony, Japan) CMOS Sensor. 

The camera was chosen due to it satisfying the below selection criteria: 

• Pixel Density: The camera has 2.3 Megapixels (1920x1200 pixels), which is sufficent to 

capture a wide field of view. 

• Pixel pitch: A pixel pitch (size) of 5.86 µm x 5.86 µm is large compared to many alternative 

cameras investigated. This large pixel pitch allows the pixels to capture more light and 

therefore makes the camera more appropriate for the high light sensitivities required for 

microscopy applications. 

• Framerate: The camera is capable of operating at up to 163 FPS at a reduced resolution, 

and over 50 FPS at full resolution. By achieving imaging speeds greater than 30 FPS, the 

camera allows real-time imaging of the flow cell. 
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• Global Shutter: Of the two types of shutter used in digital cameras, i.e. rolling and global 

shutters, only cameras with global shutters are appropriate for the IFC system. This is 

because all the pixels of the camera must be exposed during the short stroboscopic 

illumination pulses generated by our LED system. If a rolling shutter were to be used 

instead of a global shutter, the pulse could be faster than the time it takes the camera to 

exposure the entire sensor. 

• Hardware Trigger I/O: The camera chosen has I/O ports which can directly trigger or be 

triggered by illumination hardware. This is critical to allow the synchronisation of the 

illumination with the exposure. 

• C-mount: The Thorlabs components selected for the IFC platform have a C-mount adapter 

for the camera, allowing the camera to easily integrate with the rest of the system. 

• Low Cost: In order to address the stated requirement of producing the complete IFC at as 

low a cost as possible in order to allow its adoption by resource-limited researchers, it 

was crucial that the camera cost less than the specialised cameras designed for 

microscopy, which can often cost several or tens of thousands of pounds. The FLIR camera 

cost £842, which satisfied this requirement. 

 

3.5.3 First system design approach 

With the aims of minimising complexity and cost while maintaining the fastest possible 

implementation time for adoption by non-experts, initial mechanical design of the IFC heavily 

utilised laser-cut Perspex, combined with components (rods, bearings, lead screw, motor) used 

widely in the consumer-grade 3D printer industry. The complete Version 1 design of the IFC 

mechanical system can be seen in Figure 44. The motivation behind this initial mechanical setup 

was to use the automated vertical movement of a camera above a fixed objective lens to change 

the depth of the focal plane as required to focus on the cells in flow. The objective lens and flow 

cell were mounted on lockable frames, with cut-outs in the outer enclosure to allow access to the 

locking screws without disassembling the enclosure.  
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A stepper motor (NEMA 17) controlled by an Arduino Nano microcontroller was used to drive the 

camera carriage, and limit switches used to prevent overextending the carriage or collision with 

the enclosure. Optical planarity throughout the system was achieved by means of using a set of 4x 

6mm rods vertically secured to the top and bottom of the enclosure. 

 

Figure 44 – Diagram of the first iteration IFC mechanical arrangement. Using a stepper motor, 

6 mm rods and linear bearings used in 3D printers, a carriage containing a camera 

can be raised or lowered as required to achieve focus of the cells passing through 

a flow cell below a standard 10X objective lens. By using a matt black Perspex 

enclosure, light from outside the device is limited and no tube between the 

camera and objective is required. The illumination frame can be lowered and an 

arbitrary number of optical components inserted above to create desired lighting 

conditions (e.g. Kohler). 

NEMA 17 Stepper Motor 

Enclosure top with 6mm rods secured by shaft collars 

8mm lead screw coupled to stepper by shaft coupler 

8mm lead nut and 6mm linear bearings allow the stepper 

motor to drive camera carriage up and down the 6mm rods 

Camera mounted within  movable carriage  

Limit switches (prevent carriage dropping off the lead screw 

or colliding with the top of the enclosure) 

10X 0.25NA objective lens 

Flow cell holding frame 

Illumination holding frame 

6mm bearings secure the rods to the base of the enclosure 
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While this system is quick and straightforward to assemble due to the speed of laser cutting and 

ability to incorporate design features to allow easy construction, the range of focal depths proved 

insufficient for adjusting focus from the top to the bottom of the flow cell without having to also 

move the objective lens, which is challenging and can reduce planarity through the optical path.  

 

An additional problem which arose during the initial testing of this version of the mechanical 

design was due to the necessity of opening the device front (cut away to show inner components 

in Figure 44) in order to adjust the vertical height of the frames which hold the objective lens and 

flow cell. An ‘open’ design, without any tube between the camera and objective, while simple and 

cheap to implement, was found to a nuisance to focus as the device needed to be in a darkened 

room to operate without the light-blocking exterior enclosure in place. These issues were 

considered unacceptable and motivated a complete redesign, which is described in the following 

Section. 

 

3.5.4 Improved system hardware 

For the second iteration of the mechanical IFC setup it was decided that the use of additive 

manufacturing (3D printing), as opposed to laser-cutting, offered a reasonable trade-off between 

construction speed and design freedom. Also, by using off the shelf commercial optical 

components, particularly Thorlabs SM1 lens tubing between the objective and camera, the prior 

problems with focussing range could be addressed without increasing device cost significantly. 

The fixed-length tubes would be required even in the absence of a course focus adjustment 

mechanism as the objective lens is of the Deutsche Industrie Norm, or DIN standard. DIN 

objectives, an internationally adopted standard, require a focal tube length of 160mm. This is as 

opposed to ‘infinity-corrected’ objectives, which does not focus the light on a point but emits 

parallel rays which must separately be focussed onto the camera’s imaging plane. The design for 

the 3D printable flow cell holder is presented below in Figure 45.  

 

The decision was also made to mount the flow cell vertically rather than horizontally like in the 

initial design. This modification means that gravity does not act to pull cells out of the acoustic 

pressure node, increasing the chance that they will still be within the appropriate imaging plane 

after leaving the transducer region and entering the imaging region. 
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In order to maximise the ease with which the device can be adjusted, particularly with respect to 

changing the distances between optical components (e.g. flow-cell and illumination source) as 

required to achieve focus quality, a system of metal rods and cage plates used. As Figure 46 

demonstrates, metal lens tubes (SM1L range, Thorlabs Inc., USA) couple the camera via an 

adjustable-length tube (SM1V15, Thorlabs Inc., USA) to the objective, providing planarity, course 

focus adjustment and external light exclusion. Fine focus adjustment is by means of a high-

precision zoom housing (SM1ZM, Thorlabs Inc., USA).  Condenser lens (ACL2520U-DG6, Thorlabs 

Inc., USA), collimating lenses (47-637, Edmund Optics, USA), and adjustable irises (CP20S, Thorlabs 

Inc., USA) were used to provide Köhler illumination (Köhler, 1893), following the design of Madrid-

Wolff and Forero (2019). A Köhler setup provides uniform, collimated illumination intensity across 

the sample independent of light source shape and size (Voelkel et al., 2010) and is the same 

configuration typically used in research brightfield microscopes.  

 

 

Figure 45 - 3D-printable flow cell holder for the prototype IFC. The acoustofluidic flow cell slots 

(from the right) into the cut-outs and is pushed until it reaches the end (left). The 

circular hole in the centre allows an unobstructed optical path for imaging and 

illumination, and standoffs in each corner, through which the cage rods are inserted, 

prevent flexion. Inlay: close-up of the flow cell inserted into the holder (blue). 
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The total cost of the optical, imaging and computational components of the system after 

integrating the camera was £2240.47 (A bill of materials for the IFC is presented in Appendix D). 

This is less than 1/20th of the cost of the FlowCam, the cheapest commercial alternative (see Table 

4 in Section 2.5.2 for a cost comparison with other instruments). 

 

This cost does not include the flow cell, transducer or electronics needed to generate the acoustic 

standing wave as these components are highly customisable and can be as expensive or cheap as 

required depending on the trade-off between complexity of assembly, ease of use, and cost.  The 

IFC was tested with a flow cell driven by a commercial, lab-grade benchtop function generator 

and amplifier, as well as with a custom prototype-board-based Direct Digital Synthesiser and 

amplifier obtained on eBay for <£20. Both approaches demonstrated success in acoustic focussing 

of beads and phytoplankton cells, but the latter required in-depth knowledge of coding and 

electronics. The parts required to assemble the flow cell are under £20, but require access to a 

laser printer and glass drill, so the cost to a potential user is difficult to state conclusively. 

Figure 46 – Current IFC prototype arrangement. From the left: illumination from a pulsed LED is 

focussed via means of 2 iris and 2 lenses. The acoustofluidic flow cell slots into a 3D-

printed flow cell holder (blue), which is sandwiched between metal cage plates for 

rigidity. The objective lens is mounted on course and fine focus apparatus, which 

themselves are connected to a camera via a SM1 tube. 

Köhler illumination 

apparatus 

Flow cell & 3D 

printed holder 

Objective lens and 

focusing apparatus 

Camera 
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Overall, this system represents a major step toward improving the accessibility of high-quality 

imaging analyses by achieving the design goals of having a higher throughput than existing 

commercial devices while being fully modifiable and at a significantly lower cost.  
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3.5.5 Imaging Performance of IFC System 

 

After integrating the camera with the rest of the IFC hardware, the MTF of the complete system 

was determined using the procedure detailed in section 3.4. A slanted edge analysis experiment 

was carried out using the same imaging target as used when developing the procedure (R1L3S5P, 

Thorlabs Inc., USA) but now mounted in the flow-cell holder presented above in Section 3.5.3, and 

imaged using the IFC camera described in Section 3.5.4. After appropriately adjusting the Köhler 

illumination, the target was imaged using a DIN 10X objective (MSB50100, Nikon, Japan) and the 

edge slant was 10°. Several images were captured while adjusting the focus of the IFC objective 

lens such that the maximum measured MTF would not be dependent on the subjective quality of 

focus – a key point raised during the experiment of section 3.4.6. Each exposure was illuminated 

by a 5 µs LED pulse, which were verified to ensure that pixels in the captured images were not 

fully saturated. 

 

The MTF curve was calculated for each image captured and the curve with the highest MTF10 and 

MTF50 values selected as a representation of the best possible performance of the IFC. This MTF 

curve is presented below in Figure 47. The measured values for MTF10 and MTF50 were 0.167 

and 0.264 cycles/pixel, respectively. These MTF characteristics are significantly worse than those 

measured for the inverted microscope system as detailed in section 3.4, which saw MTF10 values 

of over 0.2 cycles/pixel  and MTF50 values of over 0.35 cycles/pixel, but this is to be expected 

given the difference in sophistication of the objective lenses used, the cameras used by the two 

systems, and the issue of continuous focus adjustment discussed in detail in Section 3.4.6.  
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As discussed previously in Section 3.4.6, of greater importance for the IFC system than a direct 

comparison of MTF values with commercial equipment, is the realistic smallest particle which can 

be imaged, as that will determine the lower bound on the size spectra of phytoplankton which 

can be analysed using the device. Therefore, as previously stated, the measured MTF values will 

be used to estimate a realistic minimum feature size. 

 

As stated in Section 3.4.2, MTF10 is the spatial frequency at which the contrast falls to 10%, while 

MTF50 is the spatial frequency at which the contrast falls to 50%. MTF50 can be used as a more 

conservative measure of resolution than MTF10, so MTF50 will be used in the estimation.  Since 

MTF50 = 0.167 cycles/pixel, the spatial frequency in cycles/μm can be determined as follows: 

 

Spatial frequency (cycles/μm)  = MTF50 (cycles/pixel) * (1 / pixel size in μm) 

= 0.167 cycles/pixel * (1 / 5.86 μm) 

≈ 0.0285 cycles/μm (3sf) 
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Figure 47 – MTF curve for the complete IFC system. The spatial frequency at which the MTF 

drops to 50% (MTF50) is 0.167 cycles per pixel, and the spatial frequency at which 

the MTF drops to 10% (MTF10) is 0.264. 
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Next, it is possible to find the corresponding resolution (minimum resolvable distance) for the 

camera system: 

Camera resolution  = 1 / spatial frequency   

≈ 1 / 0.0285 cycles/μm  

≈ 35.1 μm (3sf) 

Finally, camera resolution is divided by the magnification of the objective in order to find the 

actual resolvable size in the sample plane: 

Resolvable size  = camera resolution / magnification 

= 35.1 μm / 10  

≈ 3.51 μm (3sf) 

  

A minimum resolvable cell size of 3.51 μm seems to align well when compared to a qualitative 

visual analysis of a cell imaged by the IFC. Figure 48 presents a cropped image of a single 

phytoplankton cell (Rhodomonas salina) taken by the IFC; while the cell is slightly more than 5 μm 

across its smaller axis, some internal cell structures of less than 5 μm are made visible which 

would be expected if the resolution limit was below 5 μm.  

 

Repeating the above calculations to estimate the smallest resolvable size using the value of 

MTF10 rather than MTF50 leads to a value of 2.21 μm (3sf), which is a plausible lower bound to 

the minimal resolvable cell size within IFC images. Based on these values for MTF10 and MTF50, it 

is proposed that an approximate minimum cell size for the device is 3 μm diameter, which 

Figure 48 – A single cell of Rhodomonas salina (fixed with Lugol’s Iodine solution 1%) imaged by 

the IFC system, demonstrating the ability of the system to partially resolve internal 

cell structures significantly smaller than 5 μm. 
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compares very favourably with the Imaging Flow Cytobot and FlowCam, both of which have 

posted minimum sizes of 10 μm, as described in Table 2. 
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3.6 Conclusion 

In this chapter, work to design and systematically explore the modelled and real-world 

performance of a high-throughput, low-cost, disposable, acoustically-focussed flow cell was 

presented. Different flow cell strategies were investigated, resulting in the selection of a novel 

matched-layer half-wave planar resonator for the IFC. This design builds upon the work of 

previous studies, implementing a new matching layer to allow superior imaging performance 

within our device.  

 

Next, finite element modelling of the final flow cell to assess its acoustic focussing performance 

was presented, using model parameters designed to cover the likely range of phytoplankton 

properties the final IFC will encounter. It was then attempted to develop a novel imaging method 

for assessing acoustic focus using the distanced travelled by particles during a fixed time, but this 

proved unsatisfactory, the reasons for which were explored. It was found that the simple test of 

assessing the number of objects appearing in focus due to the visual sharpness of their edges is 

sufficient to reliably detect whether the acoustic focussing is operating successfully. This approach 

will be used throughout the further experimentation with the flow cell detailed in subsequent 

chapters. 

  

Overall, the  analyses conducted in this chapter provide confidence that the flow cell will allow 

the successful acoustic focussing of a wide range of phytoplankton into a two-dimensional sheet 

for high-throughput imaging by the optical system of the IFC.  

 

Next, to ensure that those optical components are of sufficient performance to image small 

plankton cells and to accurately characterise the lower limit of cell sizes that could reasonably be 

imaged, it was necessary to develop a robust protocol to measure the Modulation Transfer 

Function of a microscope. The MTF gives a complete overview of the optical performance of a 

complete imaging device, including the camera, illumination and lenses in the system. Therefore, 

testing of the sensitivity of MTF measurements to small variations in rotation of the target used 

for MTF testing, exposure of the camera, and focus depth was carried out. After carrying out 

these experiments, the range of conditions under which MTF could reasonably be measured for 

the completed IFC could be determined. 
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Finally, the work to assemble the full IFC device was reported. The hardware design of the IFC was 

significantly revised after initial testing showed the many inadequacies of the first design. The 

finalised design successfully achieves the design goals of quality, ease of assembly and 

modification, using only easily accessible components, and having a low total cost. The total cost 

of consumables is also low; no chemical flushing agents (or similar) are required for the operation 

of the IFC. The flow cells have been described as ‘disposable’ as they are cheap to fabricate, as 

other than the transducer they consist only of standard microscope slides and cover slips, epoxy 

and acrylic. The cost to actually fabricate these flow cells may in reality be significantly increased 

by the relative complexity and time-consuming assembly process, but this could in principle be 

alleviated using batch fabrication techniques. The current design also requires the use of a laser 

cutter, which while not a specialist piece of equipment, may be difficult to access by less resource-

rich researchers. 

 

After detailing the design and assembly of the complete system, the optical performance was 

measured using the previously detailed MTF protocol. It was found that the device has a lower 

limit of phytoplankton size of approximately 3 µm, which is promising as it suggests the IFC can be 

used to analyse a large section of the plankton size-spectra.  

 

Given the design of our IFC was optimised to balance performance characteristics while 

minimising cost, our design uses a moderately-priced objective lens and camera. Since the IFC is 

designed to be open-source and easily modifiable, it would be trivial to install a higher-quality 

camera and/or objective lens. Therefore, the optical performance of the device presented in this 

chapter is not a hard limit, and instead reflects a design approach designed to make the 

instrument easily accessible to resource-constrained researchers. 

 

In conclusion, this work has detailed the design and construction of a novel acoustically-focussed 

IFC which will enable greater access to imaging flow cytometry for resource-constrained 

oceanographic laboratories. A robust characterisation of the device in terms of acoustic focussing 

performance and image quality was presented. The device described in this chapter has the 

potential to not only expand the use of IFC for phytoplankton research across diverse research 

scenarios but to offer a new instrument with increased throughput and image quality compared 

to far more expensive existing instrumentation such as the Imaging Flow CytoBot and FlowCam. It 
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is reasonable to be excited about the possibilities of our device to make a significant positive 

impact in real-world oceanographic, aquaculture, industrial and algal biotechnology applications. 

 

The following chapters will detail the development of software to automatically analyse the 

images produced by our IFC (Chapter 4), and the use of the IFC for real ocean microbiological 

research (Chapter 5).
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Chapter 4 Image Analysis for the Quantification of 

Phytoplankton in IFC Images 

4.1 Introduction 

Having used the IFC presented to capture an image of a water sample, the image must be 

analysed to process the raw pixel data into useful information (e.g., presence/absence of 

organisms; cell count; segmentation of cell images from the image frame; cell species and/or life-

stage classification). As previously discussed, this analysis has traditionally been performed by a 

human familiar with the plankton species likely to be present within a sample. However, with the 

development of computer graphics and digital photography, algorithms have been created to 

automate these tasks. Automated and semi-automated digital processing methods have now 

been employed for a diverse range of phytoplankton research. 

 

The FlowCam IFC, for instance, can automatically segment and measure plankton cells based on 

proprietary image processing software, as detailed by Poulton (2016). Modern computer vision 

techniques , such as machine learning, are increasingly being utilised with IFC imagery. Campbell 

et al. (2010) detail the use of a machine learning approach based on Support Vector Machines to 

detect harmful dinophytes in an estuary and Kraft et al. (2022) used a Convolutional Neural 

Network approach to automatically classify the species of phytoplankton sampled by an Imaging 

Flow Cytobot in the Baltic Sea.  

 

By processing imaging data computationally, rather than manually, the volume of data that can be 

analysed is drastically increased, and the reliance on human experts is reduced (though not 

eliminated). Efficient automated analysis also presents the capability of processing samples in 

real-time, at the point of sampling. However, the accuracy of automated systems, particularly for 

those with sensitive applications such as HAB early-warning platforms, needs to be carefully 

considered. 

 

This chapter presents a cutting-edge solution for fully automated phytoplankton analysis. It 

begins with a discussion of the shortcomings of traditional image processing approaches to 

automated image analysis, which rely on human experts to hand-craft suitable algorithms. This is 
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followed by a description of work to develop a novel Convolutional Neural Network (CNN) for 

detecting and counting plankton cells within images, which allows for the processing of large 

volumes of data with greater accuracy than traditional methods. Finally, an application of the 

state-of-the-art object detection model 'YOLOX' to IFC images is presented, which represents the 

first time this high-performance model has been employed for brightfield imaging flow cytometry. 

By leveraging these innovative methods, the work presented here aims to significantly advance 

the field of phytoplankton analysis and enhance our ability to monitor harmful algal blooms in situ 

and in real-time.  
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4.2 Traditional Image Processing 

4.2.1 Introduction 

This section will discuss traditional digital image processing techniques, which have been widely 

used for object detection in various fields, including medical imaging, remote sensing, and 

robotics. However, these techniques have limitations when it comes to analysing images of 

phytoplankton generated by the IFC, which will be explored. 

 

The first set of traditional techniques mentioned is edge detection-based. Edge detection is a 

fundamental technique for image processing that involves finding boundaries between objects in 

an image. In edge detection-based object detection, the algorithm identifies edges and then 

segments the image based on these edges. However, this technique often fails to detect objects 

with low contrast or those with borders which are not well defined, both of which are potentially 

problematic with respect to images of organic cells. 

 

The second set of traditional techniques mentioned is contrast-based. Contrast-based methods 

use differences in intensity or colour between the object and the background to identify the 

object. This approach can be useful when the object has a high contrast with its surroundings, but 

it may struggle when the background is complex. 

 

To address these limitations, traditional image processing techniques often require the use of 

several refinement techniques, such as colour/brightness thresholding, background removal, 

blurring, and morphological thresholding. Colour and brightness thresholding can be used to 

detect objects based on their colour or intensity, while background removal can help to eliminate 

unwanted background artefacts and noise. Blurring can be useful for removing small details that 

reduce the performance of edge detection algorithms. Morphological thresholding can limit 

detections to objects within a certain size range as determined by pixelwise area. 

 

Despite their effectiveness with images having clear visual distinction between objects of interest 

and the background, traditional image processing techniques still have limitations when it comes 

to analysing the complex phytoplankton images generated by the IFC. The main challenge to 
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traditional image processing techniques, even with extensive refinement, is the highly variable 

and often high-contrast background objects that can make it difficult for the algorithm to 

distinguish the phytoplankton from cells and detritus adhered to the flow cell. Additionally, the 

traditional techniques require manual fine-tuning by the user to deal with specific image 

conditions, which is time-consuming and limits their effectiveness. 

 

As an example of a pipeline for object detection via traditional methods, consider the example of 

locating the (x,y) centre coordinates of the various ellipses in a simple image such as that 

presented in Figure 49:  

 

Figure 49 - Example image created for demonstrating the traditional methods of object detection. 

The image contains ellipses of two different colours, sizes and eccentricities overlaid 

on a plain black background. The image is a 400x300 .jpg file. 

 

To more closely align with the detection of plankton in IFC images, the problem here is 

formulated such that regardless of the colour, size, eccentricity, and number of ellipses within the 

image, the system should be able to determine a centre coordinate for each ellipse, thus allowing 

the shapes to be counted, tracked over time, etc. This aligns closely with the requirements of the 

image processing from the IFC, but with drastically reduced complexity.  
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4.2.2 Example Algorithm 

A simple typical pipeline for detecting the ellipses’ centre coordinates using traditional image 

analysis techniques involves the following steps. 

 

1) Conversion to grayscale (Figure 50). The image is converted from 3-channels (RGB) to 1. 

This pre-processing step is required as later functions operate only on single-channel 

images.  

 

 

 

2) Blurring the image (Figure 51). A blur is applied to the image to eliminate any noise. The 

type and strength of the blur must be specified. For this example, a simple Gaussian 

smoothing is applied to the image, which involves multiplying pixel values by a sliding 

window filter, a weighted matrix with the highest value at the centre and gradually 

decreasing values as the distance from the centre increases, according to the normal 

curve. In this manner, high-frequency details are removed while low-frequency features 

are preserved. This improves the performance of subsequent processing.  

 

 
 

 

  

Figure 50 – The ellipses image after being converted to grayscale. 

Figure 51 – The grayscale image of ellipses after applying a 5x5 pixel gaussian blur operator. 
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3) Edge detection (Figure 52): The next step is to detect the edges in the image. This is done 

by applying a filter or gradient operator to the image that highlights the regions with the 

most rapid changes in luminosity or colour. Multiple algorithms have been introduced for 

edge detection, including Sobel (Duda and Hart, 1974) and Canny (Canny, 1986) edge 

detectors.  

 
 

 

4) Threshold Masking (Figure 53). The results of the edge detection algorithm are often 

overly detailed and noisy, so a thresholding operation is applied to the image. To perform 

this step, pixel values below a specified lower threshold are set to zero and pixel values 

above a specified upper threshold are set to 1, creating a binary image output. 

 

 
 

 

5) Contour detection (Figure 54). The contours of the objects are extracted by tracing the 

boundary between the foreground and background regions of the image. Several 

algorithms are available for contour extraction, including the Douglas-Peucker algorithm 

(Douglas and Peucker, 1973) and the active contour model (Kass et al., 1988).In all cases, 

the output is a series of connected point coordinates that define the boundary of each 

detected object. This step is required if for the extraction of the outline of each object. If 

one were only interested in the number of objects, it would be possible to just count the 

connected regions of pixel values of 1. If one only wanted the maximum extent of the 

objects – to draw a bounding box around the objects, for instance, one could find the 

maximum and minimum coordinates in x- and y-directions for each connected region.  

Figure 52 – The images of ellipses after the Canny edge detection algorithm has been applied 

to the blurred, grayscale image. 

Figure 53 – The image after grayscaling, blurring, edge detection and thresholding. All 

that remains now is pixel values of 0 in regions which are not included in 

the ellipses, and values of 1 inside the ellipses. 
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6) Localisation (Figure 55). Once the contours of the shapes have been determined, the 

objects can be localised as required. For instance, a rectangular bounding box that 

encloses each entire contour can be easily determined from the output of the previous 

step. Once a bounding box has been determined, the centrepoint coordinates of the 

shapes can be easily calculated. Alternative approaches to centrepoint extraction include 

moment-based methods, which involve computing the first-order moments of the 

contour, e.g. as discussed by Yuan and Hui (2008).  

 

4.2.3 Limitations 

The above algorithm works well for the extremely simplistic example image shown in Figure 49, 

but is easily shown to be inadequate by considering various conditions possible within the 

problem as specified but not present within the image previously investigated. 

For instance, if an ellipse appears which has a brightness of colour close to the background 

(black), that ellipse may not be above the threshold value previously selected for binary masking, 

Figure 54 – The ellipses after contour detection using the active contour algorithm. The 

outside edges of the objects of interest are now known and represented here 

in green. 

Figure 55 – The centre coordinates of each detected ellipse have been determined 

using the minimum and maximum extents of the previously calculated 

contours of the shapes, and are now plotted on the image. 
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so may not pass on to the contour detection step and thus would not have any associated 

coordinates determined. In the context of the real IFC images, this could occur as a result of cell 

transparency or occlusion by background debris. Figure 56 illustrates this condition; only the 

lightest of the 3 dark ellipses is successfully detected. In order to allow the algorithm to obtain the 

correct result it would be necessary to go back and manually adjust the binarization threshold.  

 

If ellipses are introduced to the image with borders either very close to another ellipse, or even 

partly occluded, the contour detection algorithm fails, as shown in Figure 56c. In real IFC images, 

cells have a high likelihood of presenting close to or in contact with other cells. 

 

a. b. c.

Figure 56 – A new image of ellipses is presented in Figure 55a. The image now contains 3 ellipses 

of colours having a low contrast with the background. Figure 55b demonstrates the 

problem with the previously discussed image analysis approach; the contour 

detection has only operated successfully on the ellipse with the highest contrast 

from the background as the thresholding step used after edge detection had a 

threshold value set too high to include the darker objects. As a result, only that 

ellipse has its centre coordinates calculated, as demonstrated in Figure 55c. 
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To successfully account for this scenario, the software would need to be made far more complex 

by the additional processing step of a watershed algorithm (Roerdink and Meijster, 2003), which 

itself requires manually tuned parameters . Morphological transforms, transformations of the 

threshold mask to ‘erode’ the size of ellipses and allow their separate detection, may be required. 

These too need carefully selected parameters to ensure adequate performance. 

 

 

If the background is not pure black but instead a gradient, while the ellipses are still easily 

distinguished by a human viewer the performance of the processing algorithm explored thus far 

will be severely hindered. In the real IFC, the lighting is often not of a perfectly consistent 

intensity and has a gradient with a maxima to the centre of the image. Figure 58 shows an 

example of a gradient background, with 3 ellipses overlaid on a blue gradient background. The 

algorithm is incapable of distinguishing between the background and foreground and so fails as 

shown in Figure 58b. and c., only successfully detecting the foreground object with the highest 

contrast from the background. 

a. b. c.

Figure 57 – in this new image example, 2 of the 3 ellipses are partially overlapping. Though to a 

human, the 3 ellipses are clearly distinct objects, the algorithm which has been 

developed so far fails to distinguish the two objects and instead treats them as one. 

Figure 56b shows that the contours are calculated for the combined ellipses and 

therefore the centroid of the combined objects is plotted on Figure 56c. 
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As a solution for this problem, the system could be extended to include an initial background 

subtraction step, whereby the mean of several images is subtracted from the image to be 

analysed before proceeding. This would allow the unchanging (background) elements to be 

removed effectively but would necessarily cause the algorithm to be unable to process some 

images which would be used for calculating the background. 

 

4.2.4 Limitations in IFC Imagery 

Though each of these complicating factors can be manually controlled for by increasing the 

algorithmic complexity and/or fine-tuning the parameters selected for thresholding, etc., the 

system will still be highly susceptible to error if the image content changes beyond the starting 

conditions that the algorithm was developed for. In the case of the IFC presented in this thesis, 

these unpredictable changes are highly likely and can occur due to several factors, which are 

briefly explored below.  

 

The background can change significantly over the lifetime of the flow cell as various debris 

adheres to the inside of the glass and causes uneven shadowing, similar to the background 

gradient problem explored. Cells and detritus can be pushed onto the flow-cell walls by the effect 

of negative acoustic contrast factor discussed in the previous chapter. Figure 59 demonstrates 

a. b. c.

Figure 58 – In this final example, Figure 57a. shows 3 ellipses which are overlaid this time on a 

gradient background, rather than the plain black of the previous examples. Though the 

3 ellipses are still easily recognised by a human, the algorithm is unable to cope with the 

low contrast that the gradient produces and so falsely calculates coordinates for two of 

the ellipses and part of the gradient as a combined object, as shown in Figure 57b. 

Therefore, as Figure 57c, demonstrates, only one of the 3 ellipses is correctly identified. 
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two background images of the same flow cell, separated by one week’s operation with regular 

flushing of phytoplankton-containing seawater through the device. Many additional cell debris 

have accumulated on the edge of the glass flow cell, producing background ‘shadows’ which 

obscure any cells moving in front across the foreground. Additionally, some debris which was 

present in the earlier image has moved or detached, demonstrating the variable nature of 

adhered detritus and rendering background subtraction techniques impossible.   

 

Cells are not guaranteed to present singly, not overlapped and with low proximity to other cells; it 

is entirely possible for cells to touch or even partially occlude each other, though the probability 

of these occurring is dependent on the cell density, acoustic contrast factor, cell size and other 

factors. Figure 60 illustrates this challenge, showing two plankton cells touching each other. 

a b 

Figure 59 – Two images of the IFC flow cell while filled with sterile L1 medium but no 

phytoplankton cells. Figure 58a. shows the flow cell after processing several 

phytoplankton samples and has obvious shadows which are cast onto the field of 

view by detritus adhered to the sides of the flow cell.  Figure 58b. shows the same 

flow cell after a further week of regular sampling operation. More debris has 

adhered to the flow cell, so the background complexity has been significantly 

increased. The arrow points to an area of particularly heavy new adhered debris. 

This variable background poses a challenge to image processing algorithms.  
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Organic material is often highly transparent, and it is possible that some plankton species will 

have a low contrast with their background, especially on areas where the background is darkened 

by adhered debris. Though these cells can be easily recognisable to a human observer, traditional 

processing methods are typically not robust enough to deal with such cases. Figure 61 illustrates 

one example of this problem, with 2 cells visible, one of which is passing in front of a background 

with which it has very little contrast. 

 

 

Figure 60 – IFC image of 3 phytoplankton cells, 2 of which are in contact with each other (arrow). 

As previously discussed, overlapping and touching objects pose a challenge to image 

processing techniques. 

Figure 61 – close-up view of a phytoplankton cell (arrow) traversing in front of adhered detritus, 

the shadow of which is cast from the edge of the flow cell into the field of view. 



Chapter 4  

121 

Even if all of these shortcomings are fully addressed with an improved algorithm, the traditional 

processing techniques discussed are tailored to a specific set of initial conditions, and need to be 

carefully readjusted for each new use case (e.g., different phytoplankton species, each of which 

may have different shapes, colours, and opacities).  

 

More powerful image processing methods based on machine learning have been shown to 

overcome these limitations by automatically learning the most relevant features and patterns 

from the input data, without the need for explicit feature engineering or manual adjustments. 

These approaches, particularly deep learning techniques such as convolutional neural networks 

(CNNs), have been successful in various image recognition and classification tasks, including the 

identification and analysis of phytoplankton species (Zhang et al., 2023), and will be fully explored 

in the following sections.  
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4.3 Machine Learning-based Image Processing 

4.3.1 Introduction 

Supervised Machine Learning refers to the use of computational optimization algorithms to 

determine appropriate values of parameters to complete a task, rather than those parameters 

being set by a human. These tasks are typically categorized as either regression-based (predicting 

numerical values), or classification-based (assigning a class). In the field of image processing, there 

is a wide variety of methods and applications of machine learning. For instance, the algorithm 

presented in section 4.2.2 used manually determined parameters such as the kernel filter size of a 

Gaussian blur and a threshold value for binarizing an edge image, but one could instead use 

regression-based machine learning to find optimal values for these values such as to demonstrate 

the highest possible accuracy of the complete algorithm.  

 

Supervised machine learning algorithms are usually trained on large datasets of labelled examples 

and determine optimal values for parameters such as to model the underlying patterns in the 

data. Once these parameters have been optimised, the algorithm can be used to make predictions 

about new data it has not seen. Algorithms used to optimise parameters for image analysis 

include Linear and Polynomial Regression, Decision Tree and Random Forest models, Neural 

Networks, Support Vector Regression and Bayesian Linear Regression (Gareth James et al., 2013).   

 

Machine learning allows image analysis algorithms to take on layers of sophistication that would 

be impractical or impossible using traditional approaches. The algorithm presented in 4.2.2 is 

extremely simple and, as demonstrated, is not very effective for the problem of cell detection in 

the images produced by the IFC presented in this thesis. A better but more complex approach 

would be to manually determine a set of features common to each cell; these may include colour 

and luminosity features, morphological features such as size and roundness, etc. Hand-crafting 

these features would be very time consuming and, as discussed in section 4.2.4, could increase 

the specificity of the algorithm so that small changes in image content, such as the background 

changing due to the movement of cells adhered to the flow cell, would prevent accurate 

detection of cells. Nevertheless, hand-crafted features combined with machine learning 

optimization strategies have demonstrated adequate performance in more simplistic image 

processing tasks (Lin et al., 2020).   
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A family of models which is now commonly used for automated image analysis is the 

Convolutional Neural Network (CNN), which will be explored in detail in subsequent subsections. 

CNNs automatically learn features from images by optimizing sets of filters, which allows the 

network to learn relevant features at multiple scales and orientations. CNNs have been used in a 

wide range of applications, including classification, object detection, image segmentation and 

image generation. 

 

Before going on to lay out the application of Machine Learning to the IFC images generated by the 

device presented in this thesis, it is useful to summarize the different categories of machine 

learning approaches in the context of image processing. Broadly, these categories can be defined 

as the following: 

 

1) Image Classification 

Image classification problems involve assigning a class to an image based on a set of 

learned mappings between images and class labels. There may be one or more classes 

and each image may be assigned either a single-class (binary) probability, a class based on 

the highest inter-class probability, or labelled with multiple classes based on the per-class 

probabilities exceeding a threshold value. An example with hypothetical outputs of each 

is shown in Figure 62, where for an input photograph of a dog sat in a field of bluebell 

plants, a binary classifier gives a [0-1] probability of the image being of a dog. A multiclass 

classifier gives [0-1] probabilities for the image content being of one of several classes, 

and only the class (dog) with the highest probability is selected for the output. In the 

multilabel classifier, each of the probabilities is independently checked and those classes 

assigned probabilities above a threshold value (dog and plant) are labelled to the image. 
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Figure 62 - An image of a dog in a field of bluebells is used to demonstrate three kind of image 

classification. In Binary Classification, a model which has been trained to recognise 

images of dogs outputs a 0-1 probability of the image containing a dog. In Multiclass 

Classification, the model is trained on multiple classes (Dog, Cat, Bus, Plant) and for 

each class outputs a probability of the image containing an example of that class. The 

class with the highest probability score, in this case Dog, is selected as the output. In 

Multilabel Classification, the model can assign more than one label to the image. In 

this example, the model outputs both Dog and Plant as  both classes have probability 

scores which pass some threshold value. Adapted from (MathWorks, 2023). 

 

 

In the context of imagery of phytoplankton which are produced by the acoustophoretic 

IFC presented in chapter 3, there are multiple potential use of each of the 

aforementioned image classification modalities. Firstly, for a given full-frame image of the 

presented IFC flow cell, a binary classifier could output a probability of the image 

containing cells or being empty, as demonstrated by the hypothetical output predictions 

presented in Figure 63. This type of classifier could be used to automatically discard 

‘empty’ frames in IFC experiments; a setup like this could reduce storage use by only 

saving images which have cells present. 
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Figure 63 - Two images from the acoustophoretic  IFC device are presented. For each of the two 

input images, a binary classification model which has been trained to detect cells 

could output a probability score of the image containing cells. Based on this score, 

frames which do not contain cells, like the first input image, could be discarded 

without being saved, saving memory and processing time. 

 

If instead of whole-frame images, the classification algorithm was trained and used on 

cropped images of single cells, as in Figure 64, a hypothetical binary classifier could output 

the probability of the cell being healthy. A classifier of this type could be used in industrial 

phytoplankton cultivation to automatically monitor the health of a culture.  

 

 

A multiclass classifier could be used to automatically determine the type of phytoplankton 

in the image from a list of possible genus/species A hypothetical multiclass classifier 

output is also presented in Figure 64. Such a system would be useful for automatic 

monitoring of community composition for applications including HAB monitoring and 

rapid phytoplankton assemblage analysis. A multilabel classifier could output predictions 

of the species of multiple phytoplankton cells within a single image, which would have 

utility in analysing more complex samples not of a monoculture and with multiple cells 

per image. 
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Figure 64 – An image of a single phytoplankton cell is used as an input for hypothetical binary 

and multiclass classifiers. The binary classifier can predict whether a cell is 

healthy or not, whereas a multiclass classifier could be trained to distinguish 

between several genus of phytoplankton and output a probability score of the 

input image being an example of each, selecting the highest probability. 
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2) Object Detection 

As demonstrated above, a binary classification algorithm can take an input image and 

output, for instance, a probability of that image containing phytoplankton cells. If instead 

of a probability for the whole image, the algorithm was trained to output a per-pixel 

likelihood of the pixel being a part of a phytoplankton cell, the cell could be localised to a 

given region. An example of this kind of single-stage object localisation algorithm is 

presented in Figure 65, where for an input IFC image of a phytoplankton cell against an 

empty background, a model outputs a probability of each pixel being a cell in an output 

known as a probability density map (or pixel mask). From this map a variety of simple 

algorithms could be used to determine the exact extent of the object of interest, e.g. 

drawing a rectangular ‘bounding box’ around the cell or counting the number of pixels 

contained within it. This could allow software to measure the cell or to crop the cell from 

the input image, allowing the storage of only the region of interest. After cropping, the 

cell image can be passed to a secondary algorithm (e.g. species classifier); etc. This 

method is an example of the process known as Object Detection.  

 

A more common approach to object detection is to use a regression model, which takes 

an image as an input, and predicts zero, one or more (depending on the number of 

objects present) sets of 4 numerical values which define a bounding box around an object 

of interest. An example of a hypothetical image detection model of this type is shown in 

Figure 66, where, for the same input image of a single phytoplankton cell as used above in 

Figure 65 – An object detection algorithm based on a binary classification of each 

individual pixel within an input image. The algorithm generates a 

probability score (0-1) of the pixel containing a cell, after which a number 

of algorithms can be used to, for instance, count, localise or measure cells 

within an input image. 
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Figure 65, an object detection model outputs values which define the corners of a 

bounding box around the cell. 

 

 

 

Further, rather than simply predicting a bounding box (or identifying pixels belonging to 

an object, as carried out by the previously introduced object detection type), an object 

detection system could make use of multiclass or multilabel classifiers. By extending these 

algorithms from binary to multiclass classifiers, each positive detection can be assigned to 

one of several classes based on the highest probability. In this fashion, the system can 

simultaneously localise and assign labels to cells (e.g., species). These simultaneous 

localisation and classification object detection algorithms are commonly used for medical 

image analysis (Karaman et al., 2023), pedestrian detection (e.g. (Dollar et al., 2011)), 

automated satellite imagery analysis (e.g. (Hussain et al., 2013, Bakirman, 2023)) and 

robotics (Terven and Cordova-Esparza, 2023). 

 

 

 Examples of simultaneous classification and localisation of objects within images for the 

two types of object detection algorithms explored are explored below. 

 

 

In Figure 67, an object detection algorithm takes as its input an MRI image of a patient’s 

torso and outputs one probability density map for each class of interest, in this case, the 

heart, kidney, liver and spleen. From these probability density maps, the organs can be 

segmented from the original MRI, measured in terms of pixel area, etc. 

Figure 66 – Example of a typical input and output from a machine learning regression 

model for object detection. An IFC image of a single phytoplankton cell is 

input, and the model predicts values for the coordinates of the corners 

which could be used to draw a box around the cell(s) in the input image. 
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Figure 67 – This diagram, adapted from Shin et al. (2016a), demonstrates the ability of a machine 

learning model to output probability density maps which correspond to predicted 

locations of various classes of objects of interest. In this example, an abdominal MRI 

input image has 4 corresponding output density maps, one for each of the organs of 

interest. 

 

Figure 68 presents the second type of object detection model. As opposed to the prior 

model which outputs a probability density map per class, this model simultaneously uses 

a trained regression model to predict the pixel coordinates defining a bounding box 

around objects and uses multiclass classification to assign a label value the objects. The 

label value can then be compared with a list of class names to draw labelled bounding 

boxes on the original image. 
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3) Image Segmentation 

Image Segmentation is conceptually similar to Object Detection but involves the 

assignment of a label to every pixel in the image. The two types of segmentation 

approaches, namely Semantic and Instance segmentation, are presented in Figure 69 

below. 

Figure 68 – Example of object detection via machine learning, where coordinates defining 

bounding-boxes are predicted via a regression model. In this example, the model has 

been trained to detect 3 different classes, and can simultaneously output a list (b.) of 

bounding boxes for an input image (a.) with a predicted class for each box (final 

column of the output list b.). Finally, the boxes can be drawn onto the input image to 

visually show the predictions of the model (c.). 
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Semantic segmentation refers to the task of assigning a semantic class label, such as 

‘sheep’, ‘dog’, ‘cat’, ‘background’, etc., to every pixel in an image. The purpose of 

semantic segmentation is to divide an image into different regions, each representing a 

unique object or background class. As shown in Figure 69 c. and b., while Object Detection 

approaches draw a bounding box around each instance of a detected class (dog and 

sheep), semantic segmentation assigns the label ‘dog’ or ‘sheep’ to every pixel comprising 

those instances.  

Instance Segmentation extends semantic segmentation by assigning a unique identifier to 

each instance of each class. As demonstrated in Figure 69 d, this allows the same label to 

be assigned to pixels belonging to the same object, and different objects of the same class 

are given a unique label. 

Classi ca on Seman c Segmenta on

Object Detec on Instance Segmenta on

a. b.

c. d.

Figure 69 – Adapted from https://manipulation.csail.mit.edu/segmentation.html. An 

image of a dog and three sheep is used as an example of image 

classification, object detection, semantic segmentation and instance 

segmentation. In semantic segmentation, each pixel is assigned to the class 

with the highest probability. In the given example, red is used for the ‘dog’ 

class, and blue is used for the ‘sheep’ class. Pixels in the background are not 

separately coloured in this case, but would have been assigned the 

‘background’ class. There is no distinction made between different 

instances of the same class, unlike in instance segmentation, which is 

shown below. In instance segmentation, each pixel is assigned a class as 

before, but also assigned an instance variable representing the number of 

that object. In this manner, the image pixels belonging to the three 

different sheep are separately labelled and can be extracted or analysed 

individually. 

https://manipulation.csail.mit.edu/segmentation.html
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Image segmentation can be achieved based on, for instance, the pixel probabilities within 

a probability density map like that illustrated in Figure 65 being above a threshold value, 

with those labelled as belonging to a cell and those below the threshold labelled as 

background.  

 

4) Image Generation 

In image generation problems, the goal of the machine learning system is to generate a 

new image based on an input. The input may take the form of a prompt (Text-to-image), 

as demonstrated in Figure 70, where the Image generation algorithm DALL·E 2 

(https://openai.com/product/dall-e-2) was used to generate images based on short 

descriptive prompts defining the desired image content. 

 

 

Alternatively, image generation may take as an input one or more images, and generate a 

new image based on the inputs, as demonstrated in Figure 71, where DALL·E 2 has been 

used to generate two new images which are variants of an image given as an input. 

   phytoplankton cell  oa n  in 
sea ater 

   li ht bro n  medi m si ed  natolian 
shepherd do  si n  in a  eld o  bl ebells 

Figure 70 – two images which were generated by the DALL·E 2 image generation model. In each 

instance, a prompt, which is displayed here above the image, was used to generate a 

new image using a Generative Adversarial Network. The model is trained on many 

examples of images of different classes and semantic information, and can then use the 

https://openai.com/product/dall-e-2


Chapter 4  

133 

 

While image generation is not within the scope of this thesis, it holds potential in the 

generation of synthetic data that could be used to augment the training datasets used 

within other machine learning techniques relevant to IFC of phytoplankton. For example, 

image generation of unusually shaped phytoplankton cells could be used to train an 

object detection network to more reliably detect previously unseen phytoplankton within 

images from the flow cell. 

 

 

The primary requirement of an automated image analysis system for the presented IFC is to count 

the number of cells present per image, as this produces the most fundamental biological measure 

of aquatic primary productivity. The secondary requirement is to localise the cells and store the 

cell coordinates, thus allowing later analysis of secondary biological characteristics such as cell 

volume, species, and health. Though not strictly required for the use of the IFC for basic 

phytoplankton science, it would be beneficial if the analysis software was able to measure these 

secondary properties online; that is, at the time of capture of the image, rather than after 

capture. This problem formulation most closely aligns with the description of Object Detection as 

given above, so for the remainder of the chapter the primary focus will be on the Object 

Detection problem of locating cells within IFC imagery.  

 

As discussed previously, algorithms for image analysis rely on a set of features; while for 

classification problems an analysis is formed based on the presence or absence of these features 

Figure 71 – Two variants of an input image generated by the generative adversarial network 

model DALL·E 2. Neither of the two variants are real images but instead were 

generated using a combination of previously learned features and features from the 

input image. 
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within an image, object detection involves searching across an entire image for these features. It 

was also noted that hand-crafting these features is time-consuming, complex and potentially 

unreliable, but early object detection algorithms were based upon these feature sets and 

achieved moderate success; e.g. ((Papageorgiou et al., 1998, Rodenacker et al., 2006, Häder, 

1995)).   

 

Neural networks, particularly deep convolutional neural networks, which will be explored in detail 

in the following section, have revolutionised the field of image analysis by removing almost 

entirely any manual selection of features within the processing algorithms. By learning not just 

the optimal values for a given set of features but instead which features themselves are relevant, 

neural networks are able to model very complex relationships between the image data and the 

labels of interest (e.g., cell coordinates, species). In addition to determining, through the process 

of machine learning, the optimal feature set for a given problem, neural networks have several 

other benefits, including the speed with which they can be executed on computational hardware 

through parallel processing; and the ability to be robust to noisy input data. Neural networks will 

be the focus of the remainder of the chapter, and will be described in the next section. 

 

4.3.2 Neural Networks 

Neural networks are machine learning models which comprise matrix operations carried out by 

layers of interconnected nodes called neurons, each of which perform a weighted sum of their 

inputs and add a bias value. An example of the operation of a single neuron is presented in Figure 

72, where a vector of inputs, 𝑎 =  [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑁], is multiplied by a vector of weights, 𝑤 =

 [𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑁], has a bias, b, added, and outputs the result. 



Chapter 4  

135 

 

In a neural network, a hidden layer is an intermediate layer of neurons that sits between the input 

layer and the output layer. Its name derives from the fact that its neurons are not directly 

connected to the network's input or output layers. Instead, a hidden layer receives inputs from 

the previous layer and sends outputs to the next layer. Figure 73 demonstrates the simplest form 

of neural network; an Input Layer is multiplied by the matrix of weights within one single hidden 

layer, and the output is combined (using a weighted sum) to produce a result. Note that not all 

nodes of the previous layer need to be connected to every neuron in a given layer. 

 
 
 

 1

 2
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Figure 72 – Illustration of the operation of one neuron. The neuron computers a weighted sum of 

its inputs, [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑁], using associated weight values, [𝑤1, 𝑤2, 𝑤3, . . . , 𝑤𝑁],. A 

bias value, b, is added and the output, z, is passed on to the next connection. 
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By modifying the weight and bias values for each of the neurons within a network, the neural 

network presented can learn linear relationships between the input and output variables and is 

therefore equivalent to a linear regression model. A practical example of regression using these 

neural networks could be modelling an expected population of plankton value based on numerical 

inputs, such as the water temperature, available photosynthetically available radiation, etc. 

 

Within neural network terminology, values which are optimized through the training process 

(such as the weights and bias values of neurons) are called parameters, and those which are set 

manually (such as the number of hidden layers, or number of neurons per layer) are called 

hyperparameters. Note that hyperparameters can be either hardcoded directly or 

computationally optimized through the processes of network architecture exploration and 

hyperparameter tuning. 

 

Input  

Input  

Input Layer  idden Layer  utput Layer

 utput

Figure 73 – An illustration of an extremely simple neural network. Two input neurons (blue) are 

connected to 4 neurons (grey) within a single hidden layer, which are in turn 

connected to a single output neuron (orange). Each connection represents one of the 

inputs to a matrix operation. 
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An addition to the model described so far which enables the modelling of much more complex 

relationships between input and output values is that of nonlinearity. Nonlinear operations are 

added in the form of activation layers, which modify the output values of neurons in a nonlinear 

way. 

 

Commonly employed activation functions include the sigmoid function, which enables neurons to 

perform an operation equivalent to logistic regression, and the Rectified Linear Unit function 

(ReLU), which sets all negative neuron outputs to zero, effectively creating a threshold that must 

be surpassed in order for the neuron to activate. This allows the network to model non-linear 

decision boundaries and capture more complex patterns in the data (Krizhevsky et al., 2017). 

Figure 74 shows plots of these functions. 

 

Figure 74 – The sigmoid and Rectified Linear Unit (ReLU) functions. By passing the output value of a 

neuron through these functions, the neural network is no longer performing a simple 

linear regression and is able to represent complex nonlinear relationships between 

input and output data. The specific activation function used influences the 

performance of a given model. 
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In neural networks used for regression problems (including those modelling complex nonlinear 

relationships), the output layer consists of one or more neurons, each with a linear activation 

function outputting a continuous value. Different types of output layers can be used to produce 

various output types depending on the nature of the problem. For example, in a multiclass 

classifier, the output of the final hidden layer is often passed through a softmax activation 

function (Bridle, 1989), which produces a probability distribution over the different classes. The 

predicted class is then identified as the one with the highest probability. Other types of output 

layers, such as recurrent layers, can be used for sequential data such as time series.  

 

 

In a deep neural network, multiple additional hidden layers are connected between the input and 

output of the network, and the operations of each layer are performed sequentially. A simple 

example of a deep neural network with 3 hidden layers is presented in Figure 75. Modern neural 

networks demonstrating success on visual recognition, natural language processing and other 

complex tasks often have dozens or even hundreds of hidden layers (Zhu et al., 2018). Deep 

neural networks have been shown to be highly effective at learning complex patterns in data, 

having achieved state-of-the-art performance on a wide range of tasks, including image 

classification, object detection and speech recognition (Sharma and Guleria, 2022). 

 

Figure 75 - A deep neural network with 3 hidden layers is presented. In this network, each layer is 

fully-connected; that is, each neuron is connected to every neuron in the prior layer. 

By introducing additional hidden layers of neurons, the deep neural network is able 

to model increasingly complex relationships between input and output data. (Strauß, 

2018) 
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By setting the weight and bias terms for each neuron within a network of an appropriate 

architecture, the network can be enabled to provide an accurate label (�̂�) for a previously unseen 

input (Y), providing the input shares similarities with the input data on which the network was 

trained (i.e., the weights and biases determined). The training process as a whole represents the 

optimisation of a nonlinear function to best map input to output data, according to some 

criterion. 

 

One advantage of neural networks is that they comprise many small, simple mathematical 

operations compared to other machine learning algorithms, which can require complex singular 

operations (Bishop, 1994). This aspect allows computers to make use of parallel processing; that 

is, to simultaneously calculate the results of every neuron within a layer. Although traditional 

central processing units’ (CPU) architectures are not efficient parallel processors; generally having 

only between 2 and 128 computing cores, graphics processing units (GPUs) are comprised of very 

high density, fast but simple computing cores (Hu et al., 2022). A modern consumer GPU (e.g., 

NVIDIA’s RT  3080 graphics card released in 2020) has over 8000 cores, each of which can 

operate at a rate up to 1.7 GHz.   

 

As discussed previously, machine learning algorithms must go through a process of training to 

determine optimal parameter values. Neural networks are trained using many labelled data 

examples assembled into a training dataset. The number of training data required depends on the 

complexity of the mapping function between inputs and labels. Once sufficient training data is 

obtained, the weight and bias terms of each neuron must be iteratively optimized through the 

following process: 

a) A random input-label pair (Y,  �̂�) is selected from the training dataset.  

b) The input is fed to the first layer of the neural network and each neuron performs its αx + β 

operations, including the activation function (if present). The output is then passed to zero, 

one, or more neurons in the next layer of the network. This process continues until the final 

layer of the network, where the combination of neuron output values corresponds to a 

particular label or regressed value for the input data. This process is known as forward 

propagation. 
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c) A Loss value is calculated by comparing the label output by the network with the real label. 

This Loss can take the form of Mean Squared Error for regression problems, cross-entropy 

loss for categorisation problems, and so on. Many such loss functions have been proposed 

within the literature and the loss function used will depend on the task type and priorities 

(accuracy vs precision, etc). 

d) Starting from the last layer of the network, the backpropagation algorithm is used to 

calculate the gradients of the Loss function with respect to the weights and biases of each 

neuron in the network. Backpropagation uses the chain rule of calculus to compute the 

derivative of the Loss function with respect to each parameter in the network, including the 

weights, biases, and any other learnable parameters. This process is repeated backwards 

through the layers until the gradients of all the parameters have been computed. 

e) Finally, the parameters of the entire network are simultaneously updated using a gradient 

descent algorithm. The simplest of these is the stochastic gradient descent algorithm: 

𝑊𝑥 = 𝑊�̂� −  𝛼 (
𝛿𝐿

𝜕𝑊�̂�
), where 𝑊𝑥 is a new weight, 𝑊�̂� is an old weight, α is a learning rate 

parameter and L is the loss value. Biases and another other learnable parameters are 

calculated similarly. For deep neural networks, more advanced optimization algorithms 

such as Adam or RMSProp may be used instead. These advanced algorithms use techniques 

such as momentum, adaptive learning rates, and gradient normalization, which are outside 

the scope of this thesis. 

 

After training on a specified number of input-label pairs (labelled data), the neural network is 

typically tested on labelled data it has not been trained on. This process is known as validation 

and requires withholding a portion of the labelled data from the training dataset to form a 

validation dataset. The loss values calculated for the operation of the network on these validation 

data are used to ensure that the network does not fit its weights and bias matrices too specifically 

to the input data, a phenomenon known as overfitting. When overfitting occurs, the network has 

become too specialized to the input data and will not generalise well to unseen data. The process 

of training on the training dataset and then validating on the validation dataset is typically 
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referred to as an epoch, and the total process of training may require several to thousands of 

epochs to model a complicated input-output relationship. 

 

 

In modern neural network training algorithms, batches of training data are used to update the 

trainable parameters of the network, rather than updating the parameters based on a single 

input-label pair (or the entire dataset). By randomly sampling batches from the training data at 

each iteration of the training algorithm, the model is trained on a diverse set of examples, which 

can help prevent overfitting and improve the generalisation of the trained model. Generalisation, 

in the context of machine learning models, refers to the ability of a trained model to effectively 

perform and make accurate predictions on new, unseen data rather than just memorising the 

training data. Without batch training, the neural network would be more susceptible to learning 

incorrect mappings based on noise or the features of individual inputs. The size of the batches 

used is a hyperparameter, with the maximum possible batch size being determined by the 

amount of memory available to the training hardware. 

 

It is important to ensure that a network has good performance (accuracy, precision and any other 

metrics) while not being overfit to its training data. The results of validation tests over time help 

quantify the performance of the model as it is trained and can be used to terminate the training 

process when a certain level of performance, according to chosen metrics, is achieved. A brief 

overview of the most fundamental performance metrics, many of which are used in the following 

sections, follows: 

 

1) Inference Time 

The time taken to process a single input into a corresponding output, typically presented in 

milliseconds (ms). This time is hardware-dependent but can be used for comparing the 

runtime efficiency of different models on the same computer. 

 

2) Confidence Score 

A confidence score is the degree of certainty that a machine learning model has in its 

prediction or classification. It is expressed as a value between 0 and 1, where higher scores 

indicate greater confidence. Confidence scores are useful for decision-making when accuracy 
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is critical, and low confidence scores can indicate cases where additional verification or 

correction may be necessary. Typically, a confidence threshold value is set such that 

predictions with confidence scores above the threshold are accepted, while those below are 

rejected or flagged for manual review. The choice of threshold can be adjusted to balance the 

trade-off between accuracy and the risk of false positives (or false negatives). 

 

3) Accuracy, Precision, and Recall (Classification models):  

Each of these metrics can be defined in terms of True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN). 

The accuracy of a classifier refers to the number of correctly classified samples out of the total 

number of samples in the dataset. The formula for accuracy is therefore: (TP + TN) / (TP + FP + 

TN + FN). Precision refers to the proportion of correctly predicted positive samples out of all 

the samples that were predicted as positive by the model. The formula for precision is given 

by: TP / (TP + FP). Recall measures the ability of the model to identify all positive samples 

correctly out of all the actual positive samples in the dataset, and is computed using the 

formula TP / (TP + FN). Recall is often used in combination with precision to evaluate the 

performance of a classification model, as together they provide a more complete 

understanding of the model's performance in terms of both positive and negative predictions. 

 

4) F1 Score (Classification models) 

This metric combines both precision and recall to give an overall measure of a classification 

model's performance. The F1 score is the harmonic mean of precision and recall and is 

calculated as follows: 

F1 Score = 2 * ((Precision * Recall) / (Precision + Recall)). 

 

The value of F1 ranges from 0 to 1, with a value of 1 indicating perfect precision and recall, and 

a value of 0 indicating that the model is not able to correctly classify any of the samples. 

 

5) Mean Absolute Error (MAE) and Mean Squared Error (MSE)  (Regression models) 

MAE measures the mean absolute difference between the ground-truth values and the model-

predicted values of the target variable. Also referred to as the L1 Loss function, it can be 

expressed as shown in Equation 7:  
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Equation 7 – Equation for Mean Absolute Error (MAE), used to calculate error in a regression 

machine learning model. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1

𝑛
 

Where n is the total number of samples in the dataset; 𝑦𝑖  is the real value of the target 

variable for the i-th sample; 𝑦�̂� is the predicted value of the target variable for the i-th sample. 

In the implementation of Object Detection neural networks, MAE can be used as a Loss 

function for the regression of the coordinates of objects of interest during training, and for 

evaluating performance of the model when testing.  

 

MSE, which is the mean squared difference between the true value and model-predicted value 

of a target variable, is more sensitive to outliers than MAE and is useful for object detection 

tasks, where small errors in detected coordinates are much less important than larger ones. 

The equation for MSE is given below in Equation 8. 

 

Equation 8 - Equation for Mean Squared Error (MSE), while like MAE can be used to calculate the 

error in a regression-based machine learning model. 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

𝑛
 

Where n is the total number of samples in the dataset; 𝑦𝑖  is the real value of the target 

variable for the i-th sample; 𝑦�̂� is the predicted value of the target variable for the i-th sample. 

 

MSE will be used when implementing an object detection neural network in Section 4.4.3, 

where a model is trained to predict output pixel values according to the confidence of the 

network that the input pixel represents a phytoplankton cell when presented with input 

images from the IFC. 

 

6) Intersection over Union (IoU) (Bounding-box regression models) 

Intersection over Union (IoU) (Figure 76) is a commonly used evaluation metric in object 

detection tasks. It measures the overlap between a predicted bounding box and the ground-

truth (human labelled) bounding box of an object in an image. 
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To calculate the IoU between two bounding boxes, one first computes the area of their 

intersection, which is the area where they overlap, and the area of their union, which is the 

total area covered by both boxes. The IoU is then defined as the ratio of the intersection area 

to the union area.  

 

7) Average Precision metrics (e.g., AP50, AP95) (Bounding-box regression models). 

These metrics refer to the average precision (AP) calculated at a given IoU threshold, with this 

threshold value indicating the percentage of overlap required between predicted and ground 

truth bounding boxes for a detection to be considered correct. Threshold values of 50% and 

95% are commonly used to compare the performance of different models, and are 

abbreviated to AP50 and AP95 respectively. 

 

In object detection, each ground-truth object in the dataset will have multiple predicted 

bounding boxes with varying confidence scores. To evaluate the model's performance, all 

model predictions are sorted by confidence, from highest to lowest. For calculating AP at a 

given IoU threshold (e.g., AP50), the model's predictions across the entire testing dataset are 

first sorted, and then precision values are computed for every recall level, considering the 

chosen IoU threshold.  After these precision values have been calculated, the results are 

averaged. This process helps to evaluate the overall performance of the model, as it captures 

the trade-off between precision and recall. 

 

Figure 76 – Intersection over Union (IoU) is a performance metric which calculates the accuracy 

of a bounding box prediction by dividing the intersection (overlap) by the union 

(area enclosed by both boxes), for the predicted and the ground truth bounding 

boxes. 
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Hence, the AP50 metric is the average of the precision scores at all recall levels for all the 

objects in the testing set, with an IoU threshold of 50%. A higher AP50 value indicates that the 

model has better accuracy in detecting objects in the test set. In contrast, AP95 measures the 

average precision at the higher IoU threshold of 95%, which means that the predicted 

bounding boxes must have a greater overlap with the ground truth bounding boxes to be 

considered valid detections. AP95 is therefore more rigorous than AP50 and provides a stricter 

evaluation of the model's performance. 

 

AP50 and AP95 will both be used in Section 4.4.6, where an object detection neural network 

will be trained to predict the coordinates of bounding boxes enclosing phytoplankton cells 

when presented with images from the IFC system. 

 

4.3.3 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of neural network particularly adapted for 

multidimensional input data, such as images, which are stored digitally as matrices of dimensions 

[Height x Width x Channels]. Typically, colour images are represented in 3 channels (Red, Green, 

Blue) whereas grayscale images are stored in a single channel (brightness). 

 

CNNs build upon the neural networks described in Section 4.3.2 by introducing the convolution 

operation, which is conceptually identical to applying a sliding window filter to the input. The 

filter is a matrix of dimensions width x width x channels, and in a CNN each element of the filter 

matrix is a neuron whose weight and bias values can be optimised through the backpropagation 

process. The convolution operation calculates the dot product of the filter and the image at each 

position to produce a new image, known as the convolved image. This principle is demonstrated 

in Figure 77, which shows how the destination pixel in a convolved image is a product of 

multiplications of source pixels with the values of a convolutional filter. 
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An important mathematical property of CNNs is that the convolution operation in the spatial 

domain is equal to the multiplication of the image and the filter in the frequency domain, and vice 

versa. This property allows CNNs to be efficiently executed by a computer.   

 

Convolutional Neural Networks (CNNs) have been demonstrated to provide accurate, robust, and 

fast object detection within images (Girshick et al., 2014, Shin et al., 2016b).  Compared with the 

traditional image processing techniques described in section 4.2, CNNs are more accurate and 

robust to different lighting and background conditions (Bhatt et al., 2021). They can also be run at 

Figure 77 – A visual representation of a convolution operation on an image represented as a 2D 

matrix (left). Convolution computes the value of each destination pixel in an output 

matrix (right) by multiplying each value in the convolution filter (centre) by the 

corresponding value in the input image, and then sums the results. This process is 

repeated for every pixel in the input image, resulting in a new output image where each 

pixel is the result of applying the convolution filter to the corresponding pixel in the 

input image. Within a Convolutional Neural network, the inputs to a convolution, the 

outputs from the operation and the filter itself can be of any number of dimensions, 

with CNNs having many layers potentially having hundreds of dimensions within some 

layers. 



Chapter 4  

147 

high speed on specialized hardware such as graphics processing units (GPU) and tensor processing 

units (TPU), making them a powerful tool for image analysis. 

 

In addition to convolutional layers, CNNs that achieve state-of-the-art results on common image 

analysis benchmarks, such as ImageNet (Deng et al., 2009). These will be explored below. 

 

In addition to convolutional layers, CNNs often use pooling layers. Max pooling (Ranzato et al., 

2008) is a sample-based downsampling method that reduces the size of the feature map in the 

output of a CNN layer, as demonstrated in Figure 78, which shows how a 4x4 matrix is 

downsampled to 2x2. The size of the max pooling operator defines the scaling factor of the 

output, which is calculated by retaining only the highest value from each region of the input. This 

not only reduces the number of parameters in the model, but also helps to prevent overfitting. As 

Max Pooling layers reduce the spatial dimensions of the input layer, they also have the benefit of 

increasing computational efficiency for the subsequent layers of the CNN.  

 

 

Other types of pooling, such as average pooling, are occasionally used and are conceptually very 

similar to max pooling, except that they use a mean (or other function) of each region instead of 

the maximum value. These types of pooling layers can also be useful for reducing the size of the 

       

     

       

          

                

     

Figure 78 – An illustration of a 2x2 Max Pooling operation on a 4x4 matrix. The original matrix is 

divided into 2x2 regions and only the maximum value from each region is retained in 

the output matrix. Therefore, the output is of shape 2x2, and the input has been 

downsampled. 
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feature map and improving computational efficiency in CNNs. However, max pooling is more 

commonly used in practice due to its superior performance on many image analysis tasks (Bieder 

et al., 2021). 

 

Another commonly used technique in modern CNN architectures is the normalisation of neuron 

outputs. One method for this is Local Response Normalisation (LRN), which normalises the output 

of a single convolutional layer. LRN adjusts the output of neurons by taking into account the 

values of adjacent neurons using the following formula shown in Equation 9. 

 

Equation 9 – Equation for Local Response Normalisation (LRN). LRN is a normalisation technique 

used in neural networks to enhance convolutional layers’ outputs by normalising 

activations across channels. The formula below computes the normalised output, 

promoting competition among neighbouring neurons and improving generalisation.  

𝑏𝑥,𝑦
𝑖 = 𝑎𝑥,𝑦

𝑖 / (𝑘 + 𝛼 ∑ (a𝑥,𝑦
𝑗

)
2

min(𝑁−1,𝑖+𝑛/2)

j=max(0,𝑘−𝑛/2)

)

𝛽

 

Where: 𝑎𝑥,𝑦
𝑖  is the input activation of a neuron in a feature map (the output from the activation 

function of the previous layer); 𝑏𝑥,𝑦
𝑖  is the output activation of the same neuron after 

LRN; 𝑥, 𝑦  are the spatial coordinates of the neuron in the feature map; 𝑖 is the channel (layer 

dimension) of the neuron; 𝑘 is a bias for the LRN (a hyperparameter); 𝑁 is the total number of 

feature maps in the layer; 𝑛 is the size of the normalisation window (a hyperparameter); 𝛼 and 𝛽 

are hyperparameters that control the strength of the normalisation. 

 

The output of the LRN operation for a given neuron is thus simply the output of the previous 

layer, divided by a scaled summation of the neurons within the column formed by moving 

through the depth dimension of the input feature map at given spatial coordinates. The rationale 

for using LRN is to model a form of lateral inhibition similar to that found in real neurons, and 

using LRN has been demonstrated to improve model generalisation and hence overall accuracy 

(Krizhevsky et al., 2017).  
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LRN can help to improve the generalisation of CNN models by increasing their ability to recognize 

patterns across different images, and they can also help to prevent overfitting. However, more 

recent techniques such as Batch Normalisation (BN) have been shown to be more effective for 

normalizing the outputs of CNNs, and have largely replaced LRN in modern CNN architectures. 

 

Batch normalisation is a technique used in deep CNNs that relies on batch training, where the 

training data is divided into small subsets, called batches, and the model is trained on each batch 

in turn. Unlike Local Response Normalisation (LRN), which normalises the neuron response across 

the layers in a feature map generated while processing a single input sample, batch normalisation 

works to normalise responses across an entire batch of training data. Many state-of-the-art 

models for image analysis use batch normalisation because it reduces the sensitivity of the 

network to the choice of hyperparameters, such as learning rate, allows for larger learning rates 

that can speed up training (Ioffe and Szegedy, 2015), and is more effective than LRN at preventing 

the model from learning features based on noise and outliers in the training data (Samir et al., 

2020). 

 

The formula for BN is given in  Equation 10: 

Equation 10 – Formula for Batch Normalisation (BN). is a technique used to improve the training 

process of neural networks by normalising the input features in each batch. The 

formula below calculates the normalised values, enhancing the model's stability and  

generalisation. 

BN(𝑥𝑖) = γ
𝑥𝑖 − μ𝐵

√σ𝐵
2 + ϵ

+ 𝛽 

The formula is for a single neuron, where: (𝑥𝑖)  is the input activation from the preceding layer for 

a given sample in the batch; 𝜇𝐵 is the mean value across the batch;  𝜎 is the standard deviation of 

the batch; 𝛾 𝑎𝑛𝑑 𝛽 are learnable parameters for scale and shift, that allow the generalimodel to 

learn the optimal scale and mean for each feature; 𝜖 is a small constant (typically set to a very 

small value like 1e-5) to ensure numerical stability.  
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4.4 Implementation of CNN Processing of Phytoplankton Images 

4.4.1 Introduction 

This section introduces CNNs for processing and analysing phytoplankton images obtained using 

the novel acoustically-focussed IFC. As discussed in section 4.3, CNNs are a machine learning 

technique that has demonstrated impressive performance in a wide range of image classification 

and object detection tasks. By training a CNN on a large dataset of annotated IFC images, it is 

possible to create a model that is capable of accurately localising and/or classifying phytoplankton 

cells within new images. 

 

In the context of this thesis, the purpose of using CNNs is to analyse the complex and varied 

images of phytoplankton cells captured by the IFC. While CNNs can be trained to analyse complex 

attributes of the phytoplankton, such as cell species and volume, the primarily interest here is 

using them for the simplified problem of accurately counting the number of cells within water 

samples. Cell count is a fundamental measure of algal productivity and is critical for deriving other 

data such as growth rate over time. By developing an automated system that can accurately count 

the number of phytoplankton cells, it is possible to increase the number of samples that can be 

analysed compared with traditional techniques; automatically monitor HAB events and manage 

aquatic ecosystems.  

 

The following subsections describe the implementation of CNN-based processing of 

phytoplankton images and present the results. After a discussion of the computer hardware on 

which the CNNs were trained and run, a description of the initial approach to investigating a novel 

CNN-based processing method is presented, followed by an implementation of the YOLOX model 

and its training and performance evaluation. Overall, it is demonstrated that CNN-based 

processing represents a promising approach for automated analysis of IFC images, with the 

potential to significantly improve accuracy and speed compared to traditional image processing 

techniques. 

  



Chapter 4  

151 

4.4.2 Hardware 

After an image frame has been captured by the camera in the IFC, the image data must be either 

stored for later analysis (offline processing) or analysed in real-time (online processing). So long as 

sufficient storage capacity is available and there is enough time to process images before they are 

overwritten, offline processing is preferable as the additional processing time made available 

allows the employment of more sophisticated algorithms. In situations where storage or file-

transfer bandwidth is limited (e.g., devices deployed at sea for extended periods), online 

processing is a necessity as it allows the storage or transfer of processed numerical results, which 

are of a far lower file size than complete raw images. 

 

While the networks which will be introduced in sections 4.4.3 and 4.4.5 were trained on a high-

performance, GPU-enabled desktop PC (Intel i7-9700k, NVIDIA RTX 3080), the IFC platform 

presented within this thesis is intended to be flexible to either in situ deployment or lab-based 

use, where such hardware is prohibitively bulky, power-demanding and expensive. Therefore, a 

small, low-cost, low-power computing platform which allows both the online analysis of image 

data and the storage of a high volume of images was sought after. This resulted in the selection of 

the NVIDIA Jetson Xavier AGX platform, which  is a powerful and energy-efficient system-on-

module (SoM) that is designed specifically for running machine learning models. It features an 8-

core CPU, an NVIDIA Volta GPU with 512 CUDA cores, and 32GB of RAM, making it capable of 

running complex CNN-based models for image analysis. 

 

The Jetson Xavier AGX is designed for use in autonomous systems and is small enough to be 

integrated into compact and portable devices. This makes it an ideal platform for developing a 

portable and robust system for in-situ analysis of IFC images. Such a system could be used to 

analyse water samples in the field, without the need for sending samples back to a lab for 

analysis. The Xavier AGX also costs under £1,000, which is significantly less than the hardware 

needed to attain equivalent inference performance in a conventional computer.  

 

NVIDIA also produces a Jetson SoM with a lower cost and lower power draw than the Xavier AGX, 

at the cost of reduced performance. This SoM, the Jetson Nano, costs around £100, making it 

ideal for enabling low-resource scientific environments to utilise cutting-edge IFC for 
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phytoplankton analysis. A table comparing the full specifications of the Jetson Xavier AGX and 

Nano is presented in Table 4. 

 

Table 4 - Comparison of hardware features and cost of two NVIDIA devices in the Jetson family of 

embedded computers designed for machine learning:  

Specification Jetson Nano Jetson Xavier AGX 

GPU NVIDIA Maxwell architecture 

with 128 NVIDIA CUDA cores 

NVIDIA Volta architecture with 512 

NVIDIA CUDA cores 

CPU Quad-core ARM A57  

 

8-Core ARM v8 

Memory 4 GB RAM 32 GB RAM 

Storage  

 

microSD 

 

32 GB eMMC 

Price  

(£ GBP 2022) 

£100 £980 

 

4.4.3 CNN Investigation for Phytoplankton Detection 

With the primary objective to maximise analysis quality and the secondary objective to minimize 

inference time, a review of the literature uncovered a lightweight CNN-based object detection 

algorithm presented by Heo et al. (2017). The method proposed is a high-performance processing 

pipeline designed to count and track cells within images from a comparable IFC system, and was 

demonstrated (on their grayscale, 100x500 pixel IFC images) to be both fast, with inference at up 

to 500 frames per second, and accurate, with an error relative to human counts of 0.128%. The 

method proposed by Heo et al. is a simplified version of the Fully Convolutional Regression 

Network (FCRN) first demonstrated by Xie et al. (2018a). The pipeline which will be used in this 

investigation for IFC image analysis consists of a modified FCRN modelled after Heo et al., and a 

custom algorithm for processing the FCRN output to bounding boxes and cell counts.  

 

For this work, this FCRN architecture was modified by integrating the modern batch normalisation 

technique explored in Section 4.3, and the final network consists of the layers presented in Table 

5. An improved gradient training algorithm was also implemented, which will be discussed later. 

The input to the network is a 3-channel (RGB) image of pixel dimensions 512x512. The input is fed 
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to a first convolutional layer, with a ReLU activation function. The first convolutional layer has the 

same spatial dimensions as the input, but increases the channels to 32. The data is subsequently 

passed through a Max Pooling operation, which halves the spatial dimensions. Next, another 

convolution + ReLU layer increases the channels to 64, before a third convolution + ReLU 

decreases the channels to 32. At this point, a Deconvolution layer increases the spatial dimensions 

to 513x513; the deconvolution is simply the inverse of a convolution and can be used to up-

sample the input. Finally, 2 more convolution + ReLU layers decrease the channels down to 1; the 

output from the network is a single-channel confidence map (or ‘probability density map’). The 

spatial dimensions of the output are the same as the input image, such that there is a direct pixel 

mapping between the input and the generated probability density map. In total, the CNN 

presented has 52,147 trainable parameters. 

 

Table 5 – Full CNN architecture used to localise and count phytoplankton cells within images from 

the acoustically-focussed IFC. The network consists of 5 convolutional layers, one 

deconvolutional layer and one max pooling layer. The input is 3-channel (full-colour 

RGB) and the output is a single channel probability density map where each pixel 

value represents the confidence of the network of the presence of a phytoplankton 

cell. 

Layer Type Dimensions 

Input (3*512*512) 

Conv + ReLU (32*512*512) 

Max Pooling (32*256*256) 

Conv + ReLU (64*256*256) 

Conv + ReLU (32*256*256) 

Deconv (32*513*513) 

Conv + ReLU (16*511*511) 

Conv + ReLU (1*512*512) 

 

Heo et al, in their implementation, used a local response normalisation layer after the final 

convolutional layer, an addition to the original FCRN presented by Xie, Noble and Zisserman. As 

previously discussed, LRN has been shown to be less effective at solving the problem of overfitting 
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and is more computationally expensive than batch normalisation; so the novel, improved 

approach taken here instead employs BN following each convolution operation.  

 

The model, when applied to IFC images, solves the regression problem of, for each pixel, 

determining a 0-1 likelihood of it being the centre coordinate of a phytoplankton cell. The output 

from this neural network takes the form of a probability density map where each cell in the input 

image has a corresponding Gaussian distribution in the density map. The entire probability 

density map is represented as a mixture of Gaussians as in Equation 11: 

Equation 11 – Equation describing the probability density map output of a regression-based 

object detection model. 

𝑌 =  ∑ 𝑁((𝑖, 𝑗)|𝜇
𝑘
, 𝛴𝑘)

𝐾

𝑘=1

 

Where: (𝑖, 𝑗) is the pixel index of the input grayscale image matrix 𝑋; 

𝑌 is the output probability density map; 

𝐾 is the number of Gaussians in the density map. 

 𝑁((𝑖, 𝑗)|𝜇𝑘, 𝛴𝑘) represents a bivariate Gaussian distribution with mean μ =  [μx, μy ]𝑇   and 

isotropic covariance Σ = σ2𝐼2𝑥2.  

 

Model implementation, training and testing was carried out using Python 3.9, Pytorch 1.9.1 and 

CUDA 11.1. 

 

To train the network, a training dataset was required. To obtain adequate accuracy, precision, and 

generalisation (the ability of the network to correctly process inputs it has not ‘seen’ before), a 

large number of labelled training examples is usually required. For instance, Shahinfar et al. 

(2020) found that a minimum of 150 training images was required to achieve good performance 

in the six different CNNs they investigated. In the case of our IFC images, 150 images were 

therefore labelled, with images chosen in such a way as to represent various possible background 

states, lighting conditions, cell presence/type/number/size, etc. The images were taken during IFC 

testing using a culture of Rhodomonas salina phytoplankton, and the dataset was curated such as 
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to have examples of images with few cells (min N = 3), many cells (max N = 55), and numbers in 

between. 

 

The training dataset consists of IFC images, and label images comprising pixels with the value 0 

everywhere other than the centre of a cell, where that pixel is set to 1. Creating the training 

dataset was performed using LabelMe image annotation software 

(https://github.com/wkentaro/labelme). Of the 150 IFC images used for the training dataset; 22 

(~15%) were withheld for validation during the training cycle.  

 

Reducing the size of the images is a common practice in deep learning, as it enables batch training 

by decreasing the computational requirements and memory usage. Images were therefore 

resized to 512x512 pixels, which allowed training with a batch size of 16 on a PC with an Intel Core 

i7-9700K CPU and NVIDIA RTX 3080 graphics card with 10GB memory. In this application, the 

reduction in image size is unlikely to significantly impact the model's performance, as the 

essential features of the cells within the images can still be effectively recognized by both a 

human and the CNN at the lower resolution. Images were normalised such that the mean and 

standard deviation of pixel values across each of the 3 colour channels were the same for every 

image.  

 

As discussed in section 4.3.2, a gradient descent algorithm is used in the backpropagation stage of 

the learning process in order to update the weights and biases of the neural network. Rather than 

the stochastic gradient descent algorithm (SGD) used by Heo et al. in their presentation of the 

model, for this implementation the Adaptive Movement Estimation algorithm, (Adam) algorithm 

(Kingma and Ba, 2014) was used as it has been demonstrated to reliably improve the speed with 

which the model converges to an optimal solution (Soydaner, 2020). Other than the previously 

mentioned improvement from using Batch Normalisation as opposed to Local Response 

Normalisation, this is the only other change compared to their implementation. 

 

An example input image and output density map is presented in Figure 79. The three cells visible 

in the IFC image have corresponding gaussian probability distributions in the output image, 

demonstrating a successful inference by the object detection algorithm. 

https://github.com/wkentaro/labelme
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Training was performed for 150 epochs, with the MSE loss for training and validation datasets 

recorded at each epoch. The resulting graph of MSE loss against training epoch is presented in 

Figure 80. 

 

 

 

Figure 79 – Example of an input image to the network (top): a 1920x1200 pixel, colour image of 

the IFC flow cell with 3 phytoplankton cells (a close up of 1 is provided on the right). 

On the bottom is the probability density map output by the CNN, with each pixel 

having a value which represents the confidence of the CNN that there is a cell there. 
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Several features of the training graph stand out. Firstly, there is a smooth decrease in the MSE on 

the training dataset during the first 15 epochs, after which the training loss is extremely small. The 

validation loss also reaches a very low value within these first epochs, which suggests that the 

model reaches a good level of generalisation without needing more than 15 epochs. There is, 

however, a significant spike in the validation dataset MSE at around epoch 8, which could be 

caused by several factors, including random fluctuations in the data, initialization of network 

parameters, or the learning rate used to update the model weights. 

 

It is not uncommon to see spikes in an otherwise decreasing loss metric, especially when the 

number of training samples is relatively small compared to the complexity of the model, as is the 

case for the IFC training dataset. This can be caused by the model having overfit to prior batches 

Figure 80 - Evolution of training (orange) and validation (blue) loss (Mean Squared Error, 

MSE) across 150 epochs for an object detection CNN, showing the prompt 

minimization of training loss, a transient surge in validation loss around epoch 8, 

and subsequent convergence to a value close to 0. 
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of training data and then being tested a validation batch without the same characteristics or 

patterns as the previously seen training batches. As the training progresses and the model is 

exposed to more varied image batches, it learns to generalize better, which results in a gradual 

decrease in the loss metric. The fact that the validation MSE rapidly approaches zero after this 

spike suggests that the model has moved away from overfitting to any particular subset of the 

training data, and has instead learned the general features as desired.  

 

In order to minimise overfitting to the data, the commonly employed (Mahsereci et al., 2017) 

‘early-stopping’ strategy was employed, and so the mode state after 10 training epochs was 

saved. At this point in training, the model generalisation is good (as evidenced by the low 

validation dataset loss), but the training loss has not reached its asymptote, which would indicate 

possible overfitting to training data. This corresponds well to the findings of Heo et al. in their 

presented model, which converged to an asymptote after 7 epochs. 
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After training, in order to perform cell detection on an IFC image, the following procedure is 

carried out: 

1) Resize image to 512x512 pixels. To process an image, the input image size must match 

that used during training, which was 512x512 pixels.  

2) Normalise the image. To account for changes in illumination brightness between different 

images (for instance, if incident light from the environment onto the IFC increased 

resulting in brighter images), the algorithm normalises the image to have the same mean 

and standard deviation of pixel values in each of the 3 colour channels as those on which 

it was trained.  

3) Perform inference using the trained neural network. The normalised image is fed forward 

through the CNN using the weights and biases learned during training, producing an 

output probability density map. 

4) Apply a noise cancellation threshold to the entire density map. Background pixels 

(negative detections) are typically weakly positive rather than zero in the density map, so 

we first set all pixels below a noise threshold value to zero. The noise threshold was 

selected to be the 5th percentile of the pixel values of the density map to capture positive 

detections but exclude very low-confidence false negatives.  

5) Binarize the density map. A threshold must be applied to the probabilities such that those 

below a detection confidence threshold are set to zero and those above set to 1. The 

threshold must be manually set by the user, but (in theory) should not have to be 

changed once an optimum value has been determined, since as the input images were 

normalised, the probability density maps should have similar pixel values regardless of 

small changes to illumination intensity, etc.  

6) Count connected regions. Cells are counted based on the principle of pixel connectivity, 

i.e., all pixels in a connected component share similar pixel intensity values and are in 

some way connected with each other.  

 

Figure 81 demonstrates the probability density map output by the trained model and the 

subsequently binarized output image for a typical IFC image input, which has been resized to 

512x512 pixels.  
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If rather than simply counting cells, one wished to identify their locations on the original image, 

allowing one to subsequently draw bounding boxes, crop the cells out of the full-frame and/or use 

a secondary algorithm such as a species classifier on them, one can scale the binarized probability 

density map to the same dimensions as the input image (1200x1920 pixels) and overlay it onto 

the original image. Figure 82 illustrates this concept; for an input image with 3 cells, the binarized 

density map overlayed onto the input correctly indicates the locations of the cells. 

Figure 81 – Input image (left), probability density map representing model confidence of the 

presence of a cell (middle) and binarized object mask after thresholding the density 

map (right). 
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a. 

b. 

Figure 82 – Input IFC image (a.) and the same image overlayed with a binarized output mask of the 

CNN-predicted cell locations (b.), illustrating how the 3 cells visible can be easily 

localised based on the probability density map output by the model.  
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4.4.4 Evaluation of CNN Performance 

All tests were carried out using the same hardware setup used during training. Images were 

loaded from a Western Digital Black SN750 1TB Solid State Drive (SSD). The model was run in 

GPU-optimised (CUDA) mode and was tested on 500 1200x1920 pixel RGB images from the IFC. 

The program completed in 4.27 s, achieving an average framerate of 117.01 frames per second 

including image pre-processing. This is significantly slower than the inference speed of the model 

as presented by Heo et al., but the source of this performance decrease is not the model itself but 

the resizing of the images from 1200x1920 to the 512x512 pixels required by the model, 

combined with the fact our images are 3-channel (colour) compared to their single-channel 

images. This decreased in speed could potentially be mitigated (if required) if the images were 

saved at a lower resolution at the time of capture; while the FLIR camera used in the IFC has 

maximum full-frame pixel dimensions of 1200x1920, it is capable of capture at lower resolution 

(which also improves the framerate). 

 

To assess the accuracy of the model at counting phytoplankton cells, a comparison with manual 

counting of the cells within images was performed. Rhodomonas salina cells were counted by 

hand from a set of 50 IFC images containing varying numbers of cells (hence referred to as Image 

Set 1), and these images were then passed through the CNN to automatically predict cell counts. 

 

The descriptive statistics summary of result of this comparison is presented in Table 6. The 

comparison demonstrates a large difference between the total number of cells counted manually 

(593) and those counted by the CNN system (476); difference = 117 (~20.0% of manual counts). 
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Table 6 – Table of descriptive statistics of the cell counts from 50 IFC images of R. salina cells, with 

cells counted either manually or by the CNN presented within this section. 

Image Set 1 

N=50 Manual  CNN 

Sum of all cells across all images: 593 476 

Mean cells per image 11.86 9.52 

Minimum cells per image 7 6 

Maximum cells per image 20 17 

 

To statistically test the correlation between the two methods, the Pearson’s Correlation 

Coefficient was calculated for the per-frame counts generated by each counting technique. The 

resulting correlation coefficient (r) was 0.881 (3 s.f.), with a p-value of 3.13e-17 (3 s.f.). The high 

correlation coefficient indicates a strong positive linear relationship between the cell counts 

obtained by the manual and CNN methods. Moreover, the extremely low p-value (significantly 

below the common threshold of 0.05) demonstrates that the observed correlation is statistically 

significant and unlikely to have occurred by chance. 

 

However, it is important to note that a strong correlation does not necessarily imply good 

agreement between the methods, and the significantly larger total number of cells counted across 

the entire Image Set by the CNN suggests the model is not performing well. 

 

Therefore, the evaluation also makes use of Bland-Altman analysis (Martin Bland and Altman, 

1986) to evaluate the agreement between cell counting using the CNN and manual counting 

methods. Bland-Altman analysis is a widely accepted and powerful statistical technique for 

comparing two measurement techniques (Doğan, 2018), and involves plotting the differences 

between paired measurements from the two methods against the average of those paired 

measurements. It is therefore possible to examine the presence of any systematic bias, 

proportional errors, or other patterns in the data that may suggest disagreement or limitations in 

the methods being compared. The resulting Bland-Altman Analysis plot for comparing the CNN 

and manual cell counting techniques across Image Set 1 is presented in Figure 83.  
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When interpreting a Bland-Altman plot, the mean difference represents the average of the 

differences between the paired measurements from the two methods, providing an estimate of 

the systematic bias between the techniques. The limits of agreement, calculated as the mean 

difference ± 1.96 times the standard deviation of the differences, indicate an interval within which 

95% of the differences between the paired measurements are expected to lie, assuming a normal 

distribution of differences. 

 

The Bland-Altman plot presented in Figure 83 demonstrates a mean difference of -2.34, which 

suggests that, on average, the CNN method counts 2.34 cells fewer than the manual method per 

image. This negative value indicates a systematic bias, where the CNN method tends to provide 

lower cell counts compared to the manual counting method, and is significant compared to the 

total number of cells in each image (ranging from 7 to 20 counted manually). The limits of 

agreement, with an upper limit of 0.56 and a lower limit of -5.2, define the range within which 

95% of the differences between the paired measurements from the two methods are expected to 

Figure 83 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method 

and manual counting of cells within Image Set 1. The mean difference is -2.34, 

indicating a lower mean count by the CNN method. The upper and lower limits of 

agreement are 0.56 and -5.2, respectively, illustrating the range within which 95% of 

the differences between the two methods are expected to lie. 
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lie. The implication of this is that for a given image, the CNN method's cell count can be anywhere 

from 0.56 cells more to 5.2 cells fewer than the manual count in 95% of the cases, assuming a 

normal distribution of differences. 

 

To further validate the above finding, a further test on 50 more images, this time using cells from 

a different culture of the same species of phytoplankton (hence referred to as Image Set 2), was 

carried out. The results of this comparison are presented in Table 7. Once again, the difference 

between the number of cells counted manually (189) and by the CNN (348) was large (difference 

= 15 ; ~84.1% of manual counts), providing further evidence of the CNN’s inability to count cells 

in the IFC images with a statistically similar performance to a human.  

 

Table 7 – Table of descriptive statistics of the cell counts from 50 additional IFC images of R. salina 

cells, with cells counted either manually or by the CNN presented within this section. 

Image Set 2 

N=50 

Manual  CNN 

Sum of all cells across all images: 189 348 

Mean cells per image 3.78 6.96 

Minimum cells per image 1 2 

Maximum cells per image 9 13 

 

The same statistical tests as used previously were carried out to compare the CNN method’s 

performance with that of a manual counter. The Pearson’s Correlation Coefficient statistic was 

computed to 0.794 (3 s.f.), with a p-value of 5.96e-12 (3 s.f.) this again shows a linear correlation 

between the manual and CNN-based cell counts, with a high degree of probability.  

 

The Bland-Altman Analysis of the two techniques used in the images from Image Set 2 is 

presented in Figure 84. The mean difference (+3.18) between the CNN and manual methods, and 

the significantly higher total cell count across the entire image set, demonstrates that the CNN 

systematically detected many more cells per image within Image Set 2 than a manual counter.  
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The discrepancy between the CNN model's performance on Image Set 1, where it significantly 

under-counted cells, and on Image Set 2, where it significantly over-counted cells compared to 

the manual counter, raises concerns about the model's consistency, generalisability, and accuracy 

across different datasets. 

 

These contrasting results suggest that the CNN model has not been adequately trained to handle 

the variability in cell appearance, image quality, or other factors that may be present in different 

sets of images. It is possible that the model has learned specific features or patterns from the 

training data that do not generalise well to other datasets, leading to inconsistent performance. 

 

 

 

Figure 84 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method 

and manual counting of cells within Image Set 2. The mean difference is 3.18, 

indicating a significantly higher mean count by the CNN method. The upper and 

lower limits of agreement are 6.3 and 0.1, respectively, illustrating the range within 

which 95% of the differences between the two methods are expected to lie. 
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While trying to understand the discrepancy between the results of the algorithm on the first and 

second sets of manually counted IFC images, the tuning of the Masking Threshold value was 

identified as a significant source of variability. As discussed previously, the masking threshold is a 

manually set value which must be subjectively tuned to eliminate false positives while avoiding 

false negatives. In order to demonstrate this concept, an input IFC image after resizing and 

normalisation is presented in Figure 85, along with the output of the generated probability 

density maps after masking using two different masking threshold values (M=0.01 and M=0.05). 

 

  

            

Input Image

Figure 85 – Input image after resizing (top) and masked CNN output probability density 

maps. The different masking threshold values selected (0.01 and 0.05) produce 

outputs with significantly different numbers of cell detections, with a threshold 

of 0.01 resulting in many false positives.  
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In the case of the image presented in Figure 85, a masking threshold of 0.05 results in a threshold 

mask with the same number of cells as in the input image as determined by manual count, 

indicating that in this instance the algorithm can successfully count the number of cells with the 

same accuracy as a human. The lower threshold value of 0.01, however leads to many false 

positive detections, particularly in the area with maximum background complexity. This is due to 

the neural network having some confidence of the presence of plankton cells there despite the 

visual artefacts actually resulting from cells adhered to the sides of the flow cells, rather than 

those in flow. 

 

The appropriate masking threshold should, when determined, work regardless of the brightness, 

contrast and background state of the image input to the network, as the probability density map 

should have a similar range of confidence values for positive detections (and for background 

noise) regardless of the exact characteristics of the input image used. The fact that the same 

masking threshold value works significantly better for the first set of 50 testing images than for 

the second set is convincing evidence that the model is not able to predict the locations of cells 

with a consistent confidence across input images.  

 

To further investigate this issue, the confidence of the model was assessed by  analysing the 

means and standard deviation of pixel values within the probability density map, in regions of 

positive detections (cell presence) and background (no cell) using the following procedure: 

1. Manually draw bounding boxes around the cells in several images from each set of 50 test 

IFC images. 

2. Run the images through the object detection network to generate corresponding predicted 

probability density maps. 

3. Extract the pixels from the density map which fall within the bounding boxes drawn in step 1 

(with the coordinates of the bounding boxes appropriately scaled for the reduced image 

dimensions of density map compared with original image). Calculate the mean and standard 

deviation of these pixel values. 

4. Set these pixels to 0, so that their values will not be included within the corresponding 

calculation for background pixel values. 

5. Calculate the mean and standard deviation of all the pixels left within the image.  
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In this manner, the value of positive detections and background noise can be analysed. The 

procedure was carried out on 3 images from the first unseen set of 50 images, and 3 images from 

the second. 

 

The results are presented in Table 8. For each image set, the mean pixel values of pixels in the 

predicted density maps that are in the location of cells is approximately 10 times higher than the 

mean value of background pixels, which is good and demonstrates that the model can distinguish 

between cells and background pixels with at least some degree of confidence.  

 

Table 8 – Pixel values in the probability density map for each of the two sets of 50 images, split by 

whether the pixels are contained within a manually labelled bounding box for a cell 

or are in the background. Confidence values for cell detections should be much 

higher than those in the background, which they are, at approximately 10 times 

higher. However, if the model was very effective, confidence values would be 

expected to be far higher than presented, at around 5%. Furthermore, the mean 

confidence of detections in Image set 1 are different than those in image set 2, which 

indicates inconsistent performance of the model across different input image 

conditions. 

  

Probability Density Map 

(Image Set 1) 

Probability Density Map 

(Image Set 2) 

  Cells Background Cells Background 

Mean Pixel Value 0.0537 0.0061 0.0402 0.0048 

Pixel Value SD 0.1264 0.0308 0.0939 0.0254 

 

The values, however, indicate why a masking threshold value that works well for one image set 

may not be appropriate for another; the pixel values of cells within the first image set are 

significantly higher than those of the second image set. If the model had correctly learned a 

general mapping between input and the appropriate outputs, the confidence of pixels within cell 

regions should be comparable across each Image Set on which it is tested. 
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To confirm the discrepancy between confidence values on CNN outputs from Image Sets 1 and 2, 

Student’s T-Tests were carried out to compare the means of the pixel values between the first and 

second image sets, for regions with cells and background regions respectively. The null 

hypotheses H0 are that the pixel values for the same regions (cell or background) are the same 

between the two image sets. For the background pixels, the T-test generated an effect size of 14.6 

and p-value of 3.00x10-49 (<<1%). For the pixels within cells, the T-test generated an effect size of 

4.69 and p-value of 2.76x10-6 (<<1%). Therefore, the alternative hypotheses, that the pixel values 

for both background and cells are different in each of the two image sets, must be accepted.  

 

It has been conclusively demonstrated, therefore, that although the neural network model 

presented should be expected to predict the location of cells with similar (and ideally high) 

confidence levels across different image sets, it is inconsistent in its predictions, with this 

inconsistency leading to unreliable cell counts. While cell counts could in theory be made more 

accurate by regularly checking and altering the masking threshold value such that cells are 

positively detected and background pixels are not, in practice this disadvantage nullifies the 

sought benefits of using this particular CNN configuration to perform object detection on the IFC 

images. The difference in performance described here with the good performance in the initial 

implementation by Heo et al. is a result of the significantly increased image complexity; the use of 

full colour and the complexity of both the imaged cells and background are too great a challenge 

for this algorithm. 

 

In order to address the deficiencies of the explored object detection approach, a second neural 

network-based model was investigated, which will be detailed in the following sections.  

 

4.4.5 YOLOX for Phytoplankton Detection 

YOLO (You Only Look Once) is an object detection model that was introduced in 2016 by Redmon 

et al. (2016). It is a single-stage (predictions are made without subsequent thresholding of a 

confidence map) object detection model based on a CNN that divides an image into a grid and 

predicts bounding boxes and class probabilities for each grid cell, as shown in Figure 86. The 

model also uses anchor boxes to improve the accuracy of the bounding box predictions. YOLO is 

known for its real-time object detection capabilities and is often used in self-driving cars, robotics 

and other applications where inference speed is important (Terven and Cordova-Esparza, 2023). 
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Since its introduction several iterations have improved upon the YOLO architecture. YOLOv2 (aka 

YOLO 9000) (Redmon and Farhadi, 2017) introduced an improved CNN ‘backbone’, batch 

normalisation and several other improvements.  

 

Figure 86 - Top-level overview of the behaviour of a YOLO object detection model when detecting 

objects within an image. The image is divided into a grid, then the network predicts 

bounding boxes and confidence scores for potential objects within each grid cell, 

along with their associated class probability maps. These predictions and class 

probability maps are combined to create a detection result, which identifies the 

locations and classes of objects within the image. (Wu and Zhou, 2019) 

 

YOLOv3 (Redmon and Farhadi, 2018) again introduced a new backbone, Darknet53 (Figure 87), as 

well as other small improvements resulting in better performance overall and particularly for 

detection of objects at different scales. Darknet53 makes use of several Residual Layers, layers 

which improve the ability of information to flow through the network by introducing skip 

connections that allow information to bypass one or more layers in the network. 
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Figure 87 - The Darknet53 architecture, which consists of 53 convolutional layers and is used as 

the backbone for YOLOv3, a modern object detection algorithm. Diagram from 

(Redmon and Farhadi, 2018). 

YOLOX is a state-of-the-art extension of YOLO that was introduced in 2021 (Ge et al., 2021). It 

improves upon prior YOLO derivatives in several ways which result in superior accuracy, speed, 

and efficiency. YOLOX uses an improved version of the CNN backbone used by YOLOv3 called 

CSPDarknet (Figure 88) that has a higher efficiency and allows for more parameters to be trained. 

This efficiency derives from the Cross-Stage Partial connections employed in the CNN which give it 

its name. As in a Residual Layer, in CSPDarknet, each layer is connected not only to the next layer 

but also to others across the network in what is known as a cross-layer connection. A cross-layer 

connection is highlighted in the green box of Figure 88, which illustrates the complete structure of 

CSPDarknet.  This partial connection strategy allows the network to share information more 

efficiently across layers, which can reduce the number of parameters that need to be trained and 

can make the network more computationally efficient.  

 

CSPDarknet also utilizes channel splitting, where the channels of the input feature map are split 

into two groups, one of which passes through a convolutional layer while the other group is 

passed through a cross-stage partial connection layer, which concatenates the feature maps from 

multiple layers. This operation further reduces the number of model parameters thus improving 

computational efficiency, and is highlighted in the right-hand ‘CSP Block’ section of Figure 88.  
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Figure 88 -  The CSPDarknet53 neural network architecture, first introduced in YOLOv4. Used as 

the backbone for advanced YOLO object detection models, CSPDarknet53 employs 

Cross-Stage Partial (CSP) connections, facilitating superior feature extraction 

capabilities and enhanced object detection performance across a range of scales in 

the input image. The schematic on the right illustrates the structure of a CSP block, 

which divides the input features into two streams: one stream passes through a 

sequence of convolutional layers, while the other bypasses these layers. 

Subsequently, both streams are merged, resulting in an efficient and effective 

combination of extracted features. Adapted from (Xu et al., 2021). 

 

In addition to the Backbone previously discussed, YOLOX comprises a Neck consisting of the Path 

Aggregation Network (PANet) introduced by Liu et al. (2018). The purpose of the neck is to 

concatenate the feature maps from different layers of the backbone network and send them as 

inputs to the Prediction Head, which takes the feature maps from the Neck and outputs bounding 

boxes and class predictions. YOLOX introduces a novel prediction head module which separates 

the classification and bounding box localisation into two separate tasks, which the authors found 

to improve accuracy compared to previous YOLO versions which performed coupled predictions. 

 

YOLOX also introduces a Spatial Pyramid Pooling (SPP) module to capture features at multiple 

scales by applying pooling operations of different sizes to the backbone-predicted feature map, 

producing a new feature map that encodes information about objects at different scales. Using 
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Feature Pyramid Networks (FPN) adds allows the model to combine high-level features from the 

upper layers of the backbone or neck with lower-level features from the preceding layers. This 

produces a set of feature maps with different resolutions that are used to detect objects at 

different scales. 

 

In combination, the SPP and FPN connections allow YOLOX to detect objects of different sizes and 

scales in an image more accurately and efficiently. In the context of IFC imagery of phytoplankton 

cells, these features combine to make YOLOX well suited to the task of detecting multiple 

plankton species of widely differing sizes, shapes and aspect ratios. YOLOX was also recently 

demonstrated to be capable of performing high-accuracy identification of plankton within 

fluorescence imaging (Wang et al., 2022), but has not yet been applied to brightfield, colour 

phytoplankton images such as those from the IFC developed here and described in Section 3. 

 

Figure 89 illustrates the entire YOLOX architecture including the Backbone, Neck and Prediction 

Head. Compared to the previous Object Detection network investigated, YOLOX is a far more 

advanced model which is much better suited to the complexity of IFC imagery, as will be 

demonstrated in the testing which follows.  
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Figure 89  - The complete YOLOX network architecture, featuring inlaid diagrams of its core components: the Spatial Pyramid Pooling (SPP) module, the Neck (Path 

Aggregation Network, or PANet), and the YOLO Prediction Head. These components enable efficient feature extraction, hierarchical feature aggregation, 

and accurate bounding box predictions with class probabilities, ultimately resulting in cutting-edge object detection for objects of a wide range of scales. 

Adapted from (Chou, 2022)  
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YOLOX also has the useful attribute of having been developed in several different levels of 

parameter complexity; different versions of the model called YOLOX-l (large), YOLOX-s (small), 

YOLOX-nano, etc., have been published with a range of different numbers of parameters. The 

different versions of the model have a different number of layers in the neck and backbone, with 

the number of CSP blocks and complexity of the PANet neck dictated by version. The lighter-

weight models, i.e., YOLOX-s and YOLOX-nano are small enough to be run on embedded platforms 

such as those discussed in section 4.4.2. Nguyen et al. (2022) conducted a comparison of different 

YOLO versions on embedded platforms (NVIDIA Jetson Nano and Jetson Xavier AGX) and 

determined maximum framerates (including image I/O and output processing). A table of model 

parameter counts and the results of their investigation is presented in Table 9 below. Compared 

to the previous model with ~52,000 parameters, even these small models are extremely complex. 

However, due to the parallel computing afforded by GPU-based running of the networks, the 

maximum framerate of the models is sufficient to allow real-time (>30 FPS) object detection on 

the Jetson Xavier embedded platform.  

 

Table 9 – Comparison of the parameter complexity of the YOLOX-s and YOLOX-nano object 

detection models and the framerates at which they can process 512x512 images. 

Adapted from Nguyen et al. (2022) 

Model Trainable 

Parameters 

(millions) 

NVIDIA Jetson Nano 

Framerate 

NVIDIA Jetson Xavier 

AGX Framerate 

YOLOX-s 9.0 8 32 

YOLOX-nano 0.91 13 40 

 

4.4.6 YOLOX Training 

In order to train the YOLOX model, the same 150 images used for the previous neural network 

training were again curated into training and validation datasets. Similarly to the previous CNN 

trained, training YOLOX was carried out with images resized to 512x512 pixels, but due to the 

complexity of the model, a maximum batch size of 8 was possible using the same PC hardware as 

detailed previously. 
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Unlike the previous model, however, rather than the point coordinates used to represent cells, 

bounding boxes were drawn around the entire cells; though the same image labelling software 

(labelme) was used. As discussed in section 4.3, object detection models generating bounding 

boxes around detected objects often use the Average Precision performance metrics APXX, where 

XX is the IoU threshold percentage at which precision is calculated. AP50 and AP95 are two of the 

most commonly reported AP metrics within the literature (e.g. (Liang et al., 2023, Xue et al., 2021, 

He et al., 2021)), so these were selected for reporting the performance of YOLOX on the IFC 

phytoplankton images.  

 

The YOLOX-s model with 9 million parameters was selected as the version of YOLOX to use for the 

problem due to its aforementioned ability to be used on embedded platforms. The model was 

trained for the same number of epochs (150) as the previous model investigated, and the AP50 

and AP95 on the validation datasets were recorded at each epoch. Graphs of AP50 and AP95 

against epoch are presented in Figure 90. Similarly to the previous model, it is evident that there 

is a rapid increase in performance during the first 20 epochs as the model learns to recognise the 

important features of cells within the images, with noisy asymptotic behaviour continuing 

between 20 and 150 epochs. Unlike the previous model, performance of YOLOX-s continues to be 

noisy throughout the 150 epochs, which suggests that overfitting has not yet occurred during this 

training timeframe. This is further backed up by the fact that the AP50 values seem to still be 

increasing, on average, towards the end of training. 
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An Average Prevision value of 1.0 would indicate that the model has achieved perfect object 

detection accuracy on objects in the validation dataset. This means that all objects in the 

validation dataset have been correctly detected by the model without any false positives or false 

negatives. In the training results of YOLOX-s presented above, AP50 values asymptotically 

approach 1.0 whereas AP95 values do not reach significantly above 0.4. This suggests that the 

model is able to detect objects with a high degree of accuracy for a lower degree of overlap with 

the ground truth bounding boxes, but may struggle to achieve the same level of accuracy for a 

higher degree of overlap. Due to the difficulty of drawing bounding boxes accurately for the small 

Figure 90 – Graph of  AP50 (Blue) and AP95 (Orange) for YOLOX-s object detection model while 

being trained to detect and localise cells of Rhodomonas salina phytoplankton within 

images from the acoustically focussed IFC. After 150 epochs of training the AP50 value 

is close to 1.0, indicating a good overlap between predicted and ground truth bounding 

boxes. The lower AP95 score suggests that the model does not predict bounding boxes 

with a very tight alignment to those which were manually labelled to produce the 

training dataset, the 95% IoU threshold requires a large degree of overlap between the 

predicted and ground truth bounding boxes. This is unlikely to be a cause for concern 

as the human-labelled bounding boxes were not highly precise to a pixel level, 

especially in comparison to the size of the cells themselves, which each take up a very 

small proportion of the image at 10X magnification. 
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cell sizes present within the training images, the lower AP95 score is not a major cause for 

concern. It is reasonable to expect a less precise overlap between the predicted bounding boxes 

and the manually labelled boxes when the latter are known not to be extremely precise. 

 

4.4.7 Evaluation of YOLOX Performance 

After training, the model performance was evaluated using the same challenge as for the first 

network investigated; 2 sets of 50 unseen (not in the training or validation datasets) IFC images 

had their YOLOX-s automated cell counts compared with manual counts. The descriptive statistics 

of this comparison on the first 50 images (Image Set 1) is presented in Table 10. For comparison, 

the results derived from the first CNN investigated in section 4.4.4 are included again.  

Table 10 - Table of descriptive statistics of the cell counts from 50 IFC images of R. salina cells, 

with cells counted either manually or by the YOLOX-s object detection network 

presented within this section. For the purposes of comparison, the results of the 

same analysis using the CNN investigated in section 4.4.4 are also included. 

Image Set 1 

N=50 

Manual  YOLOX First CNN 

Sum of all cells across all images: 593 593 476 

Mean cells per image 11.86 11.86 9.52 

Minimum cells per image 7 7 6 

Maximum cells per image 20 22 17 

 

A Pearson’s Correlation Coefficient test was carried out and the computed test statistic (r) was 

0.981 (3 s.f.), with a p-value of 6.70e-36 (3 s.f). This test statistic is far closer to the ideal value of 

1.0 than achieved by the previous CNN, which was 0.881 (3 s.f.), with a p-value of 3.13e-17 (3 s.f.). 

 

As in the investigation of the previous CNN (Section 4.4.4), a Bland-Altman analysis was 

conducted on the per-image cell counts from Image Set 1 to compare the YOLOX and manual 

counting strategies. Figure 91 shows the plot of this analysis. With a mean difference of 0.0 and 
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95% confidence intervals of ±1.3, the model performance is clearly vastly superior to that of the 

simple CNN, and compares very well to the manual cell counts with no systematic bias. 

 

In order to confirm the above finding, the same second set of 50 images as used for the first 

model was fed through the trained YOLOX-s model and the cell count recorded. The results of this 

comparison with manual cell counts is presented in Table 11, and the same methodology as above 

was used to compare the two sets of counts.  

 

  

Figure 91 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of cells 

within Image Set 1. The mean difference is 0.0, indicating a lack of systematic bias. 

The upper and lower limits of agreement are +1.3 and -1.3, respectively, illustrating 

the range within which 95% of the differences between the two methods are 

expected to lie. These values further demonstrate the absence of systematic bias. 
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Table 11 - Table of descriptive statistics of the cell counts from the second set of 50 IFC images of 

R. salina cells, with cells counted either manually or by the YOLOX-s object detection 

network presented within this section. For the purposes of comparison, the results of 

the same analysis using the CNN investigated in section 4.4.4 are also included. 

Image Set 2 

N=50 

Manual  YOLOX First CNN 

Sum of all cells across all images: 189 198 348 

Mean cells per image 3.78 3.96 6.96 

Minimum cells per image 1 1 2 

Maximum cells per image 9 12 13 

 

For images within the second Image Set, the Pearson’s Correlation Coefficient between manual 

and YOLOX-counted cells was computed with a statistic 0.962 and a p-value of 1,22e-28. This 

statistic indicates that the YOLOX performed slightly worse on the second Image Set compared to 

the previous, a finding which is further backed up by the total cell count across all images being 

4.8% higher when counted by YOLOX compared to a human. 
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A Bland-Altman Analysis was again carried out to compare the cells counted in each image by a 

human and by the YOLOX model, and the plot is presented in Figure 92. Unlike previously, there is 

now a small systemic bias, with a mean difference of 0.18 cells per image. The  95% confidence 

intervals of 1.5 and -1.1 are skewed in the direction of over-counting, and bar the outliers at low 

mean cell counts, the plotted points show that YOLOX tended to predict more cells per image 

than a human across the entire set of images. 

 

In order to determine the source of this discrepancy, which was not presented within the previous 

test, a qualitative analysis of the input images within Image Set 2 was carried out. Image Set 2 was 

found to have significantly increased detritus within the images compared to the previous set, 

and while these clumps of debris were not counted as cells by the human, several of them were 

mistakenly identified as plankton by the algorithm. An example of one of these misclassifications 

is presented in Figure 93, which shows three correctly detected plankton cells and one clump of 

detritus which has been classified as a cell (with 63.5% confidence). 

Figure 92 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of 

phytoplankton cells within Image Set 2. The mean difference is 0.18, indicating a 

slight systematic bias where YOLOX detects more cells per image. The upper and 

lower limits of agreement are +1.5 and -1.1, respectively, illustrating the range 

within which 95% of the differences between the two methods are expected to lie. 



Chapter 4  

183 

 

Despite this, the very close degree of alignment between the cell counts generated by YOLOX and 

by human indicate that the model has correctly learned a general mapping between input and 

output data, and is reliable enough to be used for the automatic detection, localisation and 

counting of plankton cells within IFC images. The amount of cellular detritus within the samples 

being processed should, however, be closely monitored to ensure that the algorithm does not 

incorrectly label debris as cells. 

 

Based on the above results of the two comparisons between human and YOLOX cell counting, it 

can be claimed that YOLOX-s can be used to count cells to a statistically similar performance to 

that of a human analyst, unlike the prior neural network investigated in Section 4.4.4. 

 

In addition to the ability of the network to correctly count cells within the IFC images, YOLOX-s 

has the distinct advantage of simultaneously classifying and predicting the bounding box of the 

Figure 93 – An illustrative example of a misclassification of detritus as a plankton 

cell by YOLOX. While the three cells present in the image are 

correctly identified with >70% confidence, the clump of detritus has 

been falsely labelled as a cell by the algorithm with 63.5% 

confidence. 
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detected objects, as discussed previously. In this experiment only cells of a single species (a 

monoculture) were counted, so the model only distinguishes between cells and the background. 

The model also performs classification on any objects it detects, however, so it could be easily 

adapted to identify different types of cell, provided enough labelled examples were made 

available during training. Additionally, though this further work was not within the scope of this 

thesis, it should be possible to improve the performance of the algorithm on monoculture 

samples by labelling cell detritus as a second class independent from the labelled cells. This would 

enable the model to learn to distinguish between cells, debris and background pixels. 
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4.5 Conclusion 

To address the need to provide fast and accurate automated cell detection in images generated 

by the IFC investigated within this thesis, traditional digital image processing using handcrafted 

features has been shown to be inadequate. The complexities, which include cells adhered to the 

sides of the flow cell, different cell geometries and cells in contact with each other, pose too much 

of a challenge to image processing based on brightness, contrast and other features which would 

be sufficient on other IFC systems which produce less visually complex imagery.  

 

Machine learning offers the potential to algorithmically determine the set of features which 

optimally distinguish the cells within an image from the flow cell background, and to be far more 

robust than traditional techniques. Convolutional Neural Networks have been demonstrated to be 

very well-suited to the problem of object detection within images and were shown by Heo et al. 

(2017) to perform well in another IFC system. They are also well-disposed to be used on small, 

embedded platforms such as the NVIDIA Jetson SoMs due to their parallel computing 

architecture, an advantage for an IFC platform which may need to be deployed away from existing 

computational infrastructure. A model following the implementation of Heo et al. (2017), but with 

improvements based on more recent developments in Computer Vision research, was created 

and trained on 150 pairs of images and labelled cell coordinates. The model unfortunately did not 

perform adequately upon testing on images on which it had not been trained, as there was a 

statistically significant difference between the cell counts generated automatically by the 

algorithm and those manually counted. 

 

In order to create a more robust and accurate automated cell detection system, the cutting-edge 

object detection CNN YOLOX-s was trained on the same 150 images. YOLOX-s demonstrated a far 

greater ability to distinguish cells from the flow cell background, including successfully detecting 

cells in flow even partially obscured by adhered cells. In comparison with the manually counted 

numbers of cells within IFC images, YOLOX-s did not have a statistically significant difference with 

the manual counts.  

 

The utility of YOLOX-s at solving the problem of detecting phytoplankton in IFC images even when 

the flow cell background is highly complex has therefore been demonstrated. This is the first 

implementation of YOLOX-s being used for phytoplankton detection in colour IFC images, and the 
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first time a CNN has been used for localising objects within images from an acoustically-focussed 

IFC. This approach has the potential to drastically improve upon existing automated cell analysis 

of IFC by existing instruments such as the FlowCam and IFCB. YOLOX-s has been demonstrated to 

run at over 30 frames per second on the NVIDIA Jetson Xavier AGX platform, a low-cost (~£1000) 

computing system designed for AI applications, opening the possibility of the IFC being deployed 

in a fully automated sample-and-analyse configuration without any need for human input. 
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Chapter 5 Use of the Acoustically-Focussed IFC in 

Phytoplankton Experiments 

5.1 Introduction 

This chapter presents the testing and verification of the developed autonomous, acoustically-

focussed imaging flow cytometer in two experiments with phytoplankton cells, highlighting its 

potential as a low-cost, high-throughput imaging method to address diverse research questions 

within phytoplankton ecology and aquaculture. 

 

Section 5.2 focuses on a using the IFC to automatically count cells with the image processing 

techniques presented in Chapter 4. Preserved phytoplankton cells of a mono-culture, a simplified 

analogue to samples those collected and preserved at sea during oceanographical research 

cruises, were analysed and results compared to the gold standard of manual counting by 

microscopy. This section aims to evaluate the performance, efficiency, and accuracy of the 

complete IFC system including automatic cell identification in quantifying cell concentrations. The 

outcomes of this comparison provide essential information regarding the IFC's potential as a 

viable alternative for traditional microscopy of phytoplankton cells, particularly in settings where 

high throughput and autonomous operation are desirable. 

 

In section 5.3, the IFC is used in a long-term experiment with live plankton cells, monitoring the 

growth of phytoplankton cultures every few hours from their initial seeding to the end of the 

growth phase after more than a week. By measuring cell count at regular intervals, the IFC 

enables the tracking of the dynamics of the phytoplankton population over time and at a high 

temporal resolution, capturing critical information about growth rates and response to diurnal 

lighting conditions. This experiment showcases the IFC's capacity to provide continuous, in-depth, 

real-time data on phytoplankton populations. Continuous imaging over a long period is critical as 

it offers the capability to autonomously monitor microalgal populations for applications in 

ecological studies, phytoplankton biotechnology, aquaculture management, HAB early detection 

and environmental monitoring. This continuous application is not possible using most other IFC 

available commercially or released in open-source papers due to their discrete sampling regimes 

and requirement for supervision, so represents a major advantage of the system laid out within 

this thesis.   
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Together, these experiments demonstrate the versatility and potential of the acoustically-focused 

IFC in addressing a range of research questions related to phytoplankton ecology and biology. By 

exploring the IFC's applications in both preserved and live cell experiments, this chapter highlights 

the instrument's capacity to contribute to a deeper understanding of phytoplankton communities 

and their role in aquatic ecosystems. It is demonstrated that the IFC presented in this thesis has 

the potential to provide a novel, unique and low-cost approach to high-throughput autonomous 

analysis of algal populations in a manner that would previously be inaccessible to all but the small 

number of oceanographic laboratories with the funding for commercial instrumentation.  
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5.2 Experimental Validation of Complete System 

5.2.1 Experimental Objectives 

For the reliable use of the presented IFC as a replacement for a human microscopist, it is critical 

that the entire system, including image analysis algorithms, acoustic focussing and imaging 

hardware, can autonomously count cells within a sample with the same level of accuracy as a 

human. This means that not only does the counting of cells within images need to be accurate, 

the number of cells which are imaged prior to counting needs to be a known and consistent 

proportion of all the cells present in a given volume of liquid. Only if this is this case can one 

confidently extrapolate the overall population of cells within a given volume from an IFC-analysed 

sample.  

 

Therefore, in order to validate the cell-counting performance of the presented image analysis 

system and the acoustically focussed IFC hardware as a complete system, a cell counting 

experiment was devised. A preserved sample of phytoplankton is injected into the IFC, imaged, 

and then collected after passing through the complete system. This collected sample will then be 

analysed under light microscopy, with the number of cells counted. The captured images will be 

analysed using the YOLOX algorithm presented in Chapter 4, and the cell count from each method 

compared. 

 

5.2.2 Materials and Methods 

Cells of Rhodomonas salina, a motile cryptophyte originating from a brackish, eutrophic, and 

lower latitude water body, were obtained from the Culture Collection of Algae and Protozoa 

(CCAP), UK. R. salina is a flagellated cryptophyte phytoplankton with a typical cell equivalent 

spherical diameter (ESD) of approximately 10 µm. R. salina was selected as it is a robust, easily-

cultured and well-studied phytoplankton species and is widely used as an aquaculture feedstock 

(Thoisen et al., 2018).  

 

 A 5mL sample of R. salina was preserved with Lugol’s Iodine 2%, agitated, and introduced to the 

IFC using a syringe pump at a volumetric rate of 0.65 mL/min.  
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2500 image frames, for a total imaged volume of ≈ 0.769 mL (3s.f.) were captured using the IFC, 

and the sample collected from the flow cell outlet. After imaging, 1mL of the collected sample was 

pipetted onto a Sedgewick Rafter Cell and given 10 minutes to fully settle. Subsequently, the cells 

in 20 µL of this sample were counted manually under a brightfield microscope, at 10X 

magnification. 20 µL was selected for the microscope analysis as it is the volume commonly 

analysed in the literature when cell abundance is high (Menden-Deuer et al., 2020, Gutiérrez-

Rodríguez et al., 2016). 

 

5.2.3 Results and Discussion 

Each individual “count”, which for the IFC represents the cells in 0.30751 µL, and for the manual 

microscopy represents the cells in a single 1 µL well of the Sedgewick Rafter Cell, - was scaled up 

to cell count per mL.  The mean cell count of the automated IFC approach was 222,000 cells/mL 

(3 s.f.), standard deviation 25,300 (3 s.f.). The mean of the manual cell counts was 228,000 

cells/mL (3 s.f.), standard deviation 21,500 (3 s.f.). The 95% confidence intervals for the means of 

each method were 219,000– 238,000 (3 s.f.) for microscopy and 221,000 – 223,000 (3 s.f.) for IFC. 

A box and whisker graph was plotted to show the two sets of counts, and is presented in Figure 

94.  
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Figure 94 - Box and whisker plot of the cell counts generated by: IFC & YOLOX (left/blue), the fully 

automated system involving imaging using acoustically focussed IFC and processing 

using the YOLOX object detection model; and manual cell counts (right/orange) using 

a microscope. The deviations from the mean do not indicate inaccuracies in the 

counting method, but rather highlight the non-uniform distribution of cells in each 

imaged volume. 

The graph in Figure 94 shows that the interquartile range for the automated cell counts was 

significantly larger than that of the manual cell counts, and there are more outliers in the IFC 

technique. As samples are not completely homogeneous even after agitation, it is unsurprising 

that some images contain comparatively more or fewer cells than would be expected if every 

image was an equal, uniform sample of the overall population. Comparing the 2500 individual cell 

counts generated automatically with the 20 manual counts is therefore not straightforward and 

inherently requires a trade-off between analysis speed and ease versus the potentially higher 

sample variance and bias of smaller volume samples. It is promising that the entire 95% 

confidence interval of the mean of IFC counts is within the same confidence interval of the 

microscopy counts, and serves as good evidence that with a greater number of manual counts the 

two methods would produce identical means.  

 

A statistical test was used to find the quantitative likelihood of the two cell counting methods 

being equivalent. Due to the significantly different number of counts generated by the manual 

and automated techniques (20 vs 2,500), the variances between the two groups might be unequal 
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and a simple 2-sample T-test would be inappropriate. Therefore, the Mann-Whitney U test (Mann 

and Whitney, 1947), a robust non-parametric statistical test that does not assume equal variances 

between the two groups, was used, with a null hypothesis, H0, that the two methods are samples 

of the same underlying population.  

 

The test statistic was 21805.0, with a p-value of 0.324 (3s.f.) (>0.05), therefore the null hypothesis 

is not rejected. It follows that the counts from the two techniques are statistically equivalent, and 

it has been demonstrated that the acoustically-focussed IFC in conjunction with YOLOX can 

automatically count phytoplankton cells in a sample with an equivalent accuracy to a human using 

a microscope. 

 

This experiment demonstrates the potential of the novel IFC developed within this thesis to be 

used to automatically analyse fixed phytoplankton samples. This is particularly important as much 

phytoplankton research, such as that conducted during research cruises, involves capturing cells, 

preserving them, and analysing them at a later stage (Santhanam et al., 2019). The novel IFC 

developed in this thesis offers several key advantages over traditional methods: 

 

Firstly, the IFC enables rapid processing and analysis of numerous samples, significantly improving 

the throughput of phytoplankton studies compared to manual microscopy or existing IFC 

instrumentation. Additionally, by automating the analysis process, the IFC reduces reliance on 

human expertise and subjectivity, enabling more consistent results across different samples and 

studies. 

 

In conclusion, the successful application of the acoustically-focussed IFC for automatically 

analysing preserved phytoplankton samples has significant implications for aquatic ecosystem 

research, biotechnology and HAB monitoring. By offering a cost-effective, high-throughput and 

automated alternative to traditional methods and commercial IFCs, the acoustically-focussed IFC 

has potential to advance phytoplankton research.  
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5.3 Use of Acoustically-Focussed IFC in a Live Phytoplankton 

Experiment 

5.3.1 Introduction 

In order to demonstrate the utility of the acoustically-focussed IFC and image analysis system at 

counting not only ‘fixed’ (preserved) populations of dead phytoplankton, but also to analyse in 

real-time the population of live algae as cells move and reproduce over time, a second 

experiment was devised and will be reported in the following sections. The use of the IFC for this 

purpose is important as it demonstrates a capability that is currently not possible using many 

traditional instruments such as FlowCam or traditional microscopy, both of which require the 

analysis of discrete samples of plankton cultures, rather than being directly connected to and able 

to sample from the cultures as they grow.  

 

Therefore, an experiment was carried out with the aim of monitoring the cell count of growing 

cultures of phytoplankton over time, with the aim of demonstrating the IFC’s ability to provide a 

time-lapse of the fluctuations of cells due to growth and diurnal effects. Culturing vessels of 

growth medium were seeded with populations of live phytoplankton and connected to the IFC via 

a computer-controlled fluidic system in order to allow the IFC to draw and image samples from 

the cultures, count the cells within those images using the previously presented algorithms and 

extrapolate those counts to determine the total cell population within the cultures. Additionally, 

manual samples were drawn once per day to verify the cell counts from IFC.   

 

Phytoplankton Growth Rate 

Phytoplankton are a critical component of aquatic ecosystems and play a vital role in global 

biogeochemical cycles. As primary producers, they fix carbon dioxide and produce organic matter 

through photosynthesis, supporting higher trophic levels and driving the biological carbon cycle. 

Determining the growth rates of individual species is essential for predicting the responses of 

marine and freshwater ecosystems to environmental change. 
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Growth rate is the rate at which phytoplankton reproduce over a given period. The specific 

growth rate exhibited by individual species is influenced by a variety of factors, primarily nutrient 

availability, light intensity, temperature, and grazing pressure. 

 

Measuring the growth rate of individual phytoplankton species is essential for understanding their 

responses to environmental changes, such as pollution, ocean acidification and climate change. 

For example, as discussed in Chapter 2, some species are more sensitive to changes in nutrient 

availability than others, leading to shifts in community composition and ecosystem function in 

response to eutrophication and other anthropogenic changes to nutrient content.  

 

To measure the growth rate of phytoplankton, researchers often use culture-based methods. 

These involve isolating individual species of phytoplankton and culturing them in laboratory 

conditions, under controlled environmental conditions. The growth of a culture can be monitored 

over time by measuring changes in cell numbers or biomass, using techniques such as cell 

counting or optical density (OD) measurements.  

 

The growth dynamics of phytoplankton are complex and involve distinct phases. Generally, 

phytoplankton growth can be divided into four stages, which are the lag phase, exponential 

growth phase, stationary phase, and death phase. These phases are briefly summarized below. 

 

In the lag phase, the population is adjusting to environmental conditions, and growth is either 

slow or non-existent. Cells synthesize new proteins and enzymes to optimize resource utilization, 

such as nutrients and light, and prepare for growth. The duration of this stage may vary from a 

few hours to several days, depending on species and environmental conditions (Vonshak, 1985). 

 

Once adapted to the environment, the phytoplankton population enters the exponential growth 

phase. In this stage, the rate of cell division increases rapidly, and the population size doubles at 

an approximately constant rate. This phase is the peak of growth, where the phytoplankton 

population attains its maximum abundance and biomass. 
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As the population grows, it eventually enters a stationary phase due to resource limitation, 

leading to a plateau in population growth. During this phase, the rate of cell division slows down, 

and the number of new cells produced is eventually balanced by the number of cells dying. 

 

In the final phase, known as the death phase, the phytoplankton population declines due to 

various factors such as resource depletion and environmental stress. The rate of cell death 

exceeds the rate of cell division, leading to a decrease in population size and biomass. 

 

A key measurement of phytoplankton productivity reported in the literature is the maximum 

growth rate of a given species under specific environmental conditions. This value is also called 

the maximum specific growth rate (µmax) or intrinsic growth rate (Sun and Ning, 2005). To 

determine the maximum growth rate, experiments are conducted that involve monitoring a 

phytoplankton monoculture over time. This process typically entails measuring the cell count or 

optical density (OD) of the culture at 24-hour intervals until the end of the exponential phase is 

reached. By analysing the rate of change in cell count during this phase, it is possible to accurately 

estimate the maximum growth rate, which serves as a crucial indicator of the species' potential 

for population expansion and overall productivity in its natural environment. This information can 

be invaluable for understanding the dynamics of phytoplankton communities, particularly the 

speed with which they can bloom (Kremer et al., 2017). 
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Diel Vertical Migration 

Motile phytoplankton can move up and down within the water column in response to changing 

environmental factors such as exposure to photosynthetically available radiation, nutrients, and 

the presence of predators. Diel vertical migration (DVM) is a common behaviour observed in 

many phytoplankton species, which involves the daily movement of these organisms up and down 

the water column (Olli, 1999). 

 

During the day, phytoplankton species exhibiting DVM stay near the surface of the water, where 

they can most efficiently absorb sunlight for photosynthesis. As light levels decrease, they sink 

towards deeper waters, where the nutrients such as nitrate and phosphate, which are needed for 

growth and reproduction, are often more abundant (Eppley et al., 1968). 

 

A unique capability of a device which can continually monitor the cell count within a culture such 

as the acoustically-focussed IFC is the indirect observation and potentially quantification of DVM. 

As the inlet to the IFC is fixed within the culture and the cells are free to move vertically, our 

instrument will sample from only those cells which are approximately at the same vertical level as 

the inlet tube. 
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5.3.2 Materials and Methods 

In the following sections, the experimental plan will be outlined, including the cell cultures, 

incubation environment, sampling protocol and data analysis procedures. 

 

Cell culture 

The cell culture used was the same Rhodomonas salina as used in the previous experiment 

discussed in Section 5.2. The cells were cultured in 500 mL of f/2 medium, a seawater-based 

medium enriched with nitrate (742 μM), phosphate (36.2 μM), vitamins, and trace metals 

(Hammer et al., 2002) in order to maintain nutrient-saturated growth throughout the course of 

the experiment. 4 separate cultures were grown in 2 L conical flasks. The cultures were inoculated 

into fresh, sterile medium while in their exponential growth phase, and were placed in an 

incubator maintained at a constant temperature of 24°C. The initial cell count was determined by 

agitation and sampling of the culture vessels immediately after seeding. 

 

Light conditions 

The cultures were illuminated with LED lamps emitting Photosynthetic Photon Flux Density (PPFD) 

of 9.6 µmol m-2s-1. Cultures were exposed to light in a 14-hour on, 10-hour off cycle to simulate 

natural lighting conditions. 

 

The light intensity was measured using an Ocean FX UV-VIS Spectrometer (Ocean Insight, UK), and 

was kept at a constant level throughout the light phases for the duration of the experiment. 

 

Sampling Procedure 

The growth of R. salina cells was monitored over 8 days by automatic sampling and analysis using 

the acoustically-focussed IFC, at 4-hour intervals, with manual samples taken once per day. 

Manual samples were not taken at exact 24-hour intervals due to lab availability, but were ± 1 

hour of the time of the first sample, other than the final sample which was taken 22 hours after 

the penultimate sample. Tables of all sample times (manual and IFC) are presented in Appendix E, 

Table 20 and Table 21. 
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The automated samples were drawn directly from the culture flasks through LDPE tubing of 0.58 

mm Inner Diameter, 0.96 mm Outer Diameter (Smiths Medical Portex, Fisher Scientific, USA) with 

an inlet approximately 2 cm from the base of the flask. Samples were pumped using a peristaltic 

pump (MiniPuls 3, Gilson, USA) connected to an electronic valve selector (EV750-107, 

Rheodyne, USA). Automated samples were of 1 mL, of which  153.755 µL (500 frames) was imaged 

using the acoustically focussed IFC. Samples were not recirculated to the culture vessels after 

analysis.  

 

Before each automatic sampling event, 2 mL of sterile F/2 medium was automatically pumped 

through the IFC system in order to reduce the chance of imaging cells which had previously been 

left within the tubing, and to reduce the likelihood of bubbles persisting within the flow cell. The 

IFC was set to capture 50 images of the flow cell during this flushing in order to verify the absence 

of contamination. Between imaging each phytoplankton sample from the various culture vessels, 

a further 1 mL of sterile medium was pumped through the flow cell to further reduce the chance 

of cells which might have adhered to the tubing or flow cell incorrectly being imaged twice. After 

all 4 cultures were imaged, a further 2 mL of medium was again pumped through the flow cell for 

the same reasons given above. The flow cell was kept occupied with sterile medium when not 

sampling from the cultures as repeated wetting and drying of the flow cell increases the risk of 

bubble formation. When sampling from each culture, enough fluid from the culture was passed 

through the IFC prior to initiating imaging to be sure that only cells sampled directly from the 

culture would be imaged. This excess culture was discarded, along with medium used for flushing. 

 

A diagram depicting the experimental layout is presented in Figure 95. 
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Figure 95 – Layout of system used in the growth rate experiment to measure cell count using 

acoustically focussed IFC. 

 

Manual samples were drawn from the culture vessels using a standard 1 mL pipette with sterile 

tip, and prior to this sampling the cultures were agitated by gentle swirling for 10 seconds. After 

manual sampling, samples were preserved with Lugols’ Iodine solution at 2% volume and stored 

for later microscopy analysis.  

 

Data analysis 

Phytoplankton growth rate was calculated from manual cell counts using the equation given in 

Equation 12:  

Equation 12 – Formula for specific growth rate of phytoplankton based on cell counts (Levasseur 

et al., 1993). 

µ =  𝑙𝑛(
𝑐𝑛

𝑐𝑛−1
)/∆𝑡 

Where: µ is specific growth rate, cn is the measured cell count on day n, 𝑐𝑛−1 is the measured cell 

count on the previous day, and ∆𝑡 is the time between samples (1 day). µ𝑚𝑎𝑥, the maximum 

growth rate, is the highest daily specific growth rqate. 
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For the automated cell counts generated by IFC, the growth rate was calculated by comparing the 

cell counts across different days, grouped by the time of sampling. This approach was taken so 

that the growth rate would only be calculated between times when the plankton would be at 

approximately the same vertical distribution, as comparing cell counts from the night and day 

would introduce error due to DVL. As there were samples processed by IFC every 4 hours during 

the experiment, there will be multiple separate growth rate values per sample per day. As the 

most important metric of cell growth is the maximum growth rate during the exponential phase, 

only the maximum of the 6 daily growth rates will be reported here as this will also allow a 

straightforward comparison with the growth rates of manually processed samples.  

 

5.3.3 Results 

After manually counting cells within 5 µL of each of the verification samples under a microscope, 

the cell counts per mL were extrapolated. Figure 96 presents these cell counts across the duration 

of the experiment. There was generally a clear S-shaped growth curve observed for each of the 

cultures, with a lag phase and exponential phase until nutrient limitation slows growth. Some of 

the cell counts (e.g. Culture #2 on Day 8) appear to be outliers.  

 

Figure 96 - Cell counts measured through manual microscopy of pipetted and preserved R. salina 

throughout the growth rate experiment. 
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The specific growth rates for each day of growth were calculated from these manually counted 

cell densities for each of the cultures, and the results are presented in Table 12. The maximum 

growth rates, µ𝑚𝑎𝑥, which are bolded in the table, were 1.78 for Culture #1, 0.978 for Culture #2, 

0.823 for Culture #3 and 1.236 for Culture #4. These values mostly correspond well with the 

literature, in which a range of maximum growth rates of R. salina have been reported between 

0.75 and 1.2 per day (Latsos et al., 2021), though Culture #1 appears to be an outlier, possibly due 

to an erroneously low cell count on Day 2. The maximum specific growth rate averaged across all 

4 cultures is 1.20, which fits within the upper end of reported growth rates for this species. 
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Table 12 – Measured specific growth rate (µ) of cultures of R. salina determined using the cell count measured with manual microscopy after pipette sampling. 

  

Day Culture #1 

Cell Count 

Culture #1 

Growth Rate (µ) 

(day-1) 

Culture #2 

Cell Count 

(per ml) 

Culture #2 

Growth Rate (µ) 

(day-1) 

Culture #3 

Cell Count 

(per ml) 

Culture #2 

Growth Rate (µ) 

(day-1) 

Culture #4 

Cell Count 

(per ml) 

Culture #4 

Growth Rate (µ) 

(day-1) 

1 39,000 - 33,400 - 17,200 - 17600 - 

2 21,600 -0.591 78,000 0.848 37000 0.766 33600 0.647 

3 128,000 1.78 122,800 0.454 118400 1.16 108933 1.18 

4 238,600 0.623 326,400 0.978 256600 0.773 225400 0.727 

5 568,800 0.869 782,000 0.874 584200 0.823 775666 1.236 

6 753,000 0.281 1,100,250 0.341 853000 0.379 868000 0.112 

7 824,000 0.090 1,352,750 0.207 1042000 0.200 1087500 0.225 

8 895,000 0.082 869,500 -0.441 1096000 0.050 1066500 -0.020 





Chapter 5  

205 

The cell count measurements as determined by YOLOX analysis of the IFC images is presented in 

Figure 97. This graph is an exciting result as it serves as an excellent visual representation of the 

diurnal variation of the number of cells at the same vertical height as the sample inlet tube within 

the culture. The grey vertical bars on the graph demonstrate the times at which the samples were 

agitated prior to the manual sampling of the cultures using a pipette for verification under 

microscopy. Clearly, this agitation will affect the number of cells drawn into the IFC by 

homogenising the vertical distribution of R. salina throughout the culture vessels, but it is 

apparent that the cell counts rise before these mixing events and are still falling over 4 hours 

post-agitation, by which time the cells should have returned to a non-agitated state due to their 

motility. The cell counts within the L1 medium (sterile culture) used to flush the flow cell are 

extremely close to zero throughout the course of the entire experiment, as would be expected, 

which is good evidence that contamination and/or adhered cells within the fluidic network or flow 

cell were not a problem during the experiment. 

 

Figure 97 - Automatically measured cell counts based on IFC images of the 4 cultures of R. salina 

during the growth rate experiment. L1 is sterile medium, and acts a control.  

 

For a direct comparison between the verification cell counts measured using microscopy and the 

automated cell counts using IFC, and to relate the diurnal variation of cell counts observed within 

the IFC data to the lighting condition within the incubator, a combined plot is presented in Figure 

98. This plot demonstrates the DVL behaviour induced by light availability, which is shown with 
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the orange bars on the graph. The graph also makes it clear that the manual cell counts do not 

correspond well with the automated cell counts, an issue which will be explored in detail in the 

following section. 

 

Figure 98 – Combined graph of manual (dots) and automatic IFC (lines) cell counts measured 

throughout the growth rate experiment. Orange bars represent the times when the 

incubator’s lights were on, and black vertical lines are the times at which the samples 

were agitated and manual samples drawn off for verification. L1 is sterile medium, 

and acts a control.  

 

 

The full table of specific growth rates calculated using the IFC-measured cell counts, grouped by 

sampling time, is presented in Table 22 in Appendix F. Note that a problem with the imaging 

system caused by a computer error resulted in only one cell count being determined at 09:00 and 

11:00 sample times, hence no growth rate could be calculated for those time points. 

 

The maximum calculated growth rates, regardless of sampling time, using IFC cell counts, are as 

follows: 

Culture #1: 1.75; Culture #2: 1.34, Culture #3: 1.47, Culture #4: 1.56. (day-1)(All to 3 s.f.) 
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For Culture #1, the mean maximum specific growth rate is 0.700 day-1, with a standard deviation 

of 0.408. Culture #2 has a mean growth rate of 0.654 day-1, with a standard deviation of 0.251. 

Culture #3 exhibits a mean growth rate of 0.913 day-1, with a standard deviation of 0.457. Lastly, 

Culture #4 has a mean growth rate of 0.994 day-1, with a standard deviation of 0.265. (All to 3 s.f.). 

 

While these calculated maximum growth rates align with the literature for the study species, the 

range of values obtained depending on when the sample was taken, demonstrated by the large 

standard deviations and differences between the mean and maximum values, illustrates the 

challenge of calculating growth rates based on continuous measurement of unagitated samples. 

Furthermore, the difference of these values calculated using the IFC cell counts with those 

obtained from manual cell counting under microscopy, though unsurprising given the difference 

between manual and automated counts shown in Figure 98, provides additional evidence of a 

problem with the measurement protocol. The possible causes of these differences will be 

explored in the following section.  

 

5.3.4 Discussion 

In the results presented in the previous section, it was observed that cell counts obtained through 

traditional microscopy were consistently and significantly greater than those derived from 

automated IFC for all samples after the initial acclimatisation phase of the cultures. This also 

caused significant differences between the growth rates calculated using measurements from 

each method. Our systematic approach to investigating the cause of this difference is detailed 

below. Firstly, several potential causes are ruled out, then, evidence is presented for a hypothesis 

that the discrepancy is caused by active motion of the plankton actively avoiding being drawn into 

the inlet tubing.   

 

Failure of Acoustic Focussing? 

In order to make sure that the reduced cell count derived from the IFC images was not caused by 

a failure of the acoustic focussing mechanism, which would have resulted in cells being out of 

focus and hence not counted by the object detection algorithm, a manual investigation of the 

captured images was carried out. The successful functioning of acoustic focusing was confirmed 
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by the high percentage of in-focus cells captured in the images across the 8 experiment days. If 

the acoustic focusing had not been functioning properly, only a small proportion of the cells 

would have been in focus at any given time, with the other cells present in the imaging region 

randomly distributed through the imaging axis. This qualitative check gives high confidence of the 

functional operation of the acoustic focussing when the number of cells in each captured frame is 

high, as it is easy to subjectively see the difference between all cells being near to the same focus 

plane as opposed to randomly distributed through the thickness axis of the flow cell. 

 

Analysis revealed that across all the images collected during the experiment, only a very small 

number of cells were out of focus. This result provides strong evidence that the IFC's acoustic 

focusing mechanism was effective in concentrating cells into a single plane throughout the entire 

duration of the experiment. Several example images taken from different days of the experiment 

were analysed and a typical frame is presented in Figure 99 which clearly demonstrates that even 

when there are many cells present in a frame, they are all focussed acoustically. 

 

Figure 99 - A single frame taken from the IFC during imaging of R. salina cells during the growth 

rate experiment, demonstrating successful acoustic focussing of all cells. 
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Cell loss in Fluidic System? 

In addition to the correct operation of the acoustic focussing demonstrated in the IFC, we note 

that our experiments have also shown that the cells were not lost due to adherence to the flow 

cell or connected tubing (i.e. between the culturing vessels and the IFC). This was determined 

through the experiment detailed in Section 5.2, where a sample of fixed cells was imaged using 

the IFC and subsequently collected for manual inspection under a microscope. The sample passed 

through several centimetres of the flow cell after being imaged, then through a significant length 

(20cm) of tubing before being collected for manual assessment. If cells were able to be lost due to 

adherence or deposition within the tubing or flow cell, this would have resulted in discrepancies 

between the cell counts obtained from the IFC images and those observed manually. The fact that 

this was not observed in our experiment suggests the cause of the observed discrepancy in cell 

counts within this experiment is not due to cells being pumped out of the culture vessel and then 

depositing within the fluidic system before imaging. 

 

Difference in Sampled Populations due to Diel Vertical Migration? 

Manual sampling was performed after sample agitation to ensure a uniform distribution of cells, 

and should accurately represent the population of phytoplankton within the culture vessels. 

Automatic IFC sampling which occurred without prior agitation of the culture, represents only a 

count of the cells suspended near the inlet of the tubing connected to the peristaltic pump, and 

would therefore the two measurements would be expected to differ if cells occupied discrete 

vertical layers. The cyclical fluctuations in cell concentration observed within the IFC-analysed 

samples were therefore anticipated due to the fixed position of the sampling tube inlet relative to 

the vertical motion of phytoplankton due to Diel Vertical Migration (DVM), but these fluctuations 

fail to account for the observed discrepancies. Notably, DVM was ruled out as the sole cause of 

the disparity between manual microscopy and IFC cell counts due to the capture of one set of 

samples within 10 minutes after agitation of the cultures in preparation for microscopy (the final 

day of the experiment, Day 8). Had solely DVM explained the difference between manual and 

automated counts, these samples should still have been homogenised due to agitation and IFC-

derived counts should therefore have been identical to manual microscopy. 
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Best Hypothesis: Active Avoidance of Sampling 

In order to identify possible remaining causes of the observed discrepancy between IFC and 

microscopy counts, literature on cell motility was reviewed. Although it was known that 

Rhodomonas salina cells were motile, using their flagella to propel themselves vertically within 

the culture as part of DVM behaviour, the possibility of them intentionally evading a source of 

suction had not considered. Evidence from literature is presented below showing that 

phytoplankton such as the R. salina cells studied in this experiment are capable of rapidly 

responding to external mechanical stimuli as a predator-avoidance mechanism, and are able to 

swim away from inlet tubing when they sense the accompanying fluid shear stresses.  A 

hypothesis that this is the source of the reduced automatic counts is therefore supported.  

 

This hypothesis also extends to the observed variability in manual cell counts. As discussed 

previously, the cell count of a growing phytoplankton population typically occurs in an S-shaped 

curve. After an initial acclimatisation phase, cell count grows exponentially, before levelling off as 

nutrient limitation occurs at high population density. This S-shape is mostly observed in the 

manually counted data, but several unexpected outliers (e.g. Culture #2 on the final day has a 

recorded cell count which appears erroneously low compared to previous measurements of the 

same population. This and other inconsistent manual cell counts could plausibly have resulted 

from the escape of cells from the pipette suction (which also causes shear stresses) while 

sampling. The possibility of pipetting causing damage to cells by inducing fluid shear stress has 

been investigated in the research (e.g. (Lund, 2016, M. Art et al., 2023)), and is recognised to 

trigger the escape response of zooplankton (Singarajah, 1969), but does not appear to be 

generally considered within phytoplankton research. The greater variability in manual counts 

would correspond to variability of draw rate; unlike the automated sampling which used a fixed 

volumetric flow rate of 0.68 mL/min, manually pipetting can result in different draw rates 

depending on how quickly the plunger is released. 

 

If this hypothesis is correct, the population of cells imaged by the IFC could have consisted only of 

those cells with reduced motility, possibly due to compromised physiological state or even cell 

death. It is therefore reasonable to hypothesise that this selective sampling of a small subsection 

of the overall population ultimately led to the observed underestimation of cell counts when 

utilizing automated imaging flow cytometry in comparison to manual microscopy. 
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Before assessing whether the cells could have avoided the sample inlet tube while pumping was 

underway, it is important to consider whether cells sampled for imaging by IFC would have been 

able to swim away from the acoustic focus plane after passing the acoustic transducer, as this 

would lead to them being out of focus by the time they were imaged. Previous experimental work 

investigating the effect of acoustic focussing on motile phytoplankton has demonstrated that the 

focussing mechanism does not disable their motility (Kim et al., 2021), though while in the 

acoustic focussing region above the transducer, the acoustic forces can be strong enough to 

overcome their motion away from the acoustic focus plane. 

 

In the IFC presented there is, however, a gap of approximately 2mm between the edge of the 

acoustic transducer (where cells exit after acoustic focussing) and the imaging region (in front of 

the objective lens), in the direction of flow. This gap is due to the size of the objective making it 

impractical to position the imaging area closer to the edge of the transducer. Although it was 

previously noted that cells were, apart from a small percentage of outliers, in focus within the 

images captured during the experiment, the likelihood of having too low a cell count due to the 

organisms swimming out of focus of the objective is also considered below.  

 

Blackburn et al. (2022) determined that phytoplankton generally swim at speeds equivalent to 20 

times their body length per second, which, for R. salina, translates to approximately 200 µm/s. 

Previous research using the exact species studied in this experiment measured swimming 

velocities of over 150 µm/s (Jakobsen et al., 2006). A separate study involved the measurement of 

the swimming velocities of R. salina cells under light and dark conditions to determine the effect 

on motility of photosynthetically available radiation and measured 82 ± 1  μm/s and 104 ± 22 

μm/s in the light and dark conditions respectively (Kaňa et al., 201 ). 

 

At the volumetric flow rate utilised in this study (0.68 ml/minute), the velocity of fluid through the 

flow cell within the acoustic focus plane (in the centre) is 11.1 mm/s, giving the phytoplankton 

approximately 0.18 seconds between leaving the acoustic focussing region 5mm above the 

imaging region, and being imaged.  The depth of field of the 10X magnification, 0.25NA objective 

lens used in the IFC is approximately 8 µm (Liu and Hua, 2011). If it is assumed that the sampled 

cells exhibited swimming velocities of 100 µm/s, which would be supported by the literature 

reviewed above, cells could swim over 18 µm between leaving the transducer and presenting for 

imaging. Less than half of this distance would need to be swum perpendicular to the imaging 
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plane for cells to appear heavily out of focus within the captured images and hence not be 

successfully counted by the image processing algorithm.  

 

The fact that we do not see many cells out of focus within the captured images suggests that the 

cells that entered the IFC were not as mobile as the literature suggests. Given that the swimming 

velocities of R. salina cells are expected to follow a normal distribution with a mean around 100 

µm/s (Kaňa et al., 201 ), it follows that a significant population of cells within the images would 

be expected to be out of focus if a representative sample of the complete population was drawn 

up for IFC imaging. This supports the hypothesis that cells were escaping the flow field of the inlet 

tubing as in this case it would be only the less motile cells that were taken up and imaged. 

 

Research has shown that motile phytoplankton are capable of detecting predation threats by 

sensing shear in the fluid flow around their bodies, and actively swim away from high shear forces 

(Barry et al., 2015). In addition to swimming away from these forces, some motile phytoplankton 

can "jump" - rapidly accelerating to high swimming velocities greater than 5-fold their usual 

swimming velocities - in an alternate direction. Jakobsen, Everett, and Strom (2006) examined the 

predation of R. salina by predatory ciliates, measuring the mean swimming speed of Rhodomonas 

cells at 153 microns per second. Upon detecting the presence of predators, however, the 

Rhodomonas cells accelerated to speeds of up to 950 microns per second (mean), effectively 

preventing their capture by the ciliates. 

 

Jakobsen (2001) conducted an investigation into the escape behaviours exhibited by plankton 

exposed to fluid mechanical signals induced by a siphon flow (a steady flow into a narrow tube), in 

a setup closely mirroring the inlet arrangement in the present work. The study focused on various 

plankton species of a comparable size to the R. salina investigated within this experiment. Fenchel 

and Juel Hansen (2006) also conducted an experiment that paralleled Jakobsen (2001), with both 

studies employing narrow siphons (of comparable diameters to the tubing used within this 

experiment to pump fluid from the culture vessels to the IFC) while simultaneously observing the 

behaviour of motile plankton in response. In both cases, the researchers found that the 

phytoplankton cells were capable of detecting and evading the siphon's suction at flow rates 

similar to those employed in the present study. 

 



Chapter 5  

213 

In order to determine whether these escape swimming velocities would have allowed the main 

population of healthy, motile cells to avoid capture by the sampling pump, a comparison the flow 

rates used within this experiment with those investigated in the above studies will be carried out. 

Fenchel and Hansen (2009) witnessed escape behaviour caused by a siphon of 0.15 mm diameter, 

measuring flow velocity of 1 cm/s just outside the tip of the siphon. Jacobsen (2001) used a 

siphon of 0.25 mm inner diameter with a velocity of approximately 1 cm/s outside the siphon tip. 

In the experiment presented within this chapter we used a tube with 0.58 mm inner diameter tip. 

At a flow rate of 0.58 mL/min, this would result in a fluid velocity of 4.23 cm/s (3s.f.) occurring at 

the tube inlet, which is greater than but similar to the values utilized in the aforementioned 

research. 

 

It is therefore a logical conclusion that the shear forces exerted by the pumping of phytoplankton 

culture from the culture vessels into the IFC were almost certainly great enough to trigger the 

escape response of the R. salina cells, and this is the reason for the significant difference between 

manual and automated sampling approaches is supported. Furthermore, the inconsistencies in 

the manual counts are likely due to a fraction of the phytoplankton successfully escaping the 

pipette tip, with outliers caused by different draw rates. 

 

Although it is not within the scope of this experiment, future experimental work to quantify the 

shear rates at which this escape behaviour occurs could be carried out using different draw rates, 

either using a similar automatic sampling setup or an electronically controlled pipette. 

 

The motility and escape responses of zooplankton, the heterotrophic organisms which typically 

predate phytoplankton, have been well-understood for decades (Singarajah, 1969, Fleminger and 

Clutter, 1965), and some sampling instruments such as the Zooplankton Sampler (McLane, USA) 

are specifically designed to induce low fluid shear stress to avoid triggering escape behaviour. 

However, the possibility of the same behaviour regularly occurring in motile phytoplankton 

species does not seem to be widely considered within the research. 

 

Our literature review uncovered only a single experiment on phytoplankton in which researchers 

had discussed the potential introduction of bias due to phytoplankton motility. In Olson et al.’s 

investigation of the addition of acoustic focussing to the Imaging Flow Cytobot (IFCB), the authors 
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note that motile cells may manage to escape the acoustic focus plane before imaging (Olson et al., 

2017), though escape of the initial sampling prior to acoustic focussing does not appear to have 

been considered. Moreover, in-situ direct sampling from aquatic environments, such as by the 

IFCB, is increasingly utilised as autonomous technology matures. When samples are pumped 

continuously from the environment, there may not be sufficient agitation (e.g., by waves, wind) 

for the phytoplankton to be unable to detect and avoid the shear induced by the pump systems 

used. IFCB (Olson and Sosik, 2007b), for example, has a comparable inlet tube inner diameter to 

the inlet used in our experiment (0.762 mm) and operates at 15 ml/hour (Blackburn et al., 2022). 

At these flow rates, it is plausible that the IFCB pumping system could also trigger escape 

responses in motile phytoplankton and hence lead to their underrepresentation within the 

imaged population.  

 

In conclusion, our findings and the lack of attention to phytoplankton motility within much 

literature in the field suggests a possible systemic problem which could lead to incorrect 

assessments of the percentage of some motile species within aquatic environments, and a bias in 

the cell count in monoculture experiments such as that carried out here. 
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Chapter 6 Conclusion & Future Work 

6.1 Conclusion 

This thesis has presented the development, characterization and application of a novel, low-cost, 

high-throughput, acoustically-focussed Imaging Flow Cytometer for real-time, continuous 

monitoring of phytoplankton cells.  

 

In Chapter 2, the importance of phytoplankton to the climate, aquatic food chain and global 

economy was highlighted. Phytoplankton provide around half of all carbon fixation and are the 

primary producers on which the overwhelming majority of marine and freshwater life depends. 

Phytoplankton cause Harmful Algal Blooms which can drastically harm ecosystem health and have 

severe health and financial effects on coastal communities.  

 

Many research challenges can be addressed using imaging flow cytometry. Without early-

detection by in situ measurement platforms, it is not possible to predict the formation of algal 

blooms. Bulk measurement techniques such as satellite imaging and fluorometry do not have the 

species-level taxonomic resolution needed to tell the difference between benign and harmful 

blooming species.  

 

Counting the number of cells of each phytoplankton species within a water sample is a 

fundamental method within oceanographic microbiology and is commonly used to provide an 

assessment of ecosystem health and carbon fixation. This process commonly requires the labour-

intensive use of manual microscopy and specialised taxonomic knowledge, professions which are 

known to be in decline. Furthermore, industrial applications such as aquaculture and algal 

biotechnology require an in-depth understanding of the biomass, health and composition of algal 

cultures, which again requires the use of imaging techniques. 

 

Recent global reviews have highlighted the need for far more widespread use of in situ imaging 

sensors for addressing some of these research questions. The limiting factors slowing the uptake 

of existing IFCs include their prohibitive cost and low throughputs, challenges which are sought to 

be addressed with the IFC developed in this thesis. 
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Chapter 3 detailed the development process of a low-cost, disposable flow cell which uses an 

ultrasonic transducer to induce an acoustic standing wave within the fluid flow. This 

acoustophoretic approach allows the focussing of cells into a plane at a known and consistent 

distance from a microscope objective such that all cells can be imaged at high speed and quality. 

Work presented in Section 3.3 involved the modelling and experimental evaluation of the 

acoustically focussed flow cell and build confidence that the acoustic wave would reliably focus 

phytoplankton cells across a wide size spectrum. Finally, a discussion of the limitations of our 

developed experimental approach and possible alternatives was presented. 

 

The development of a robust protocol to measure the imaging resolution of the IFC was 

presented in Section 3.4. Having a reliable method by which to measure the minimum cell size 

which could be imaged by the IFC is critical to assessing the phytoplankton which can be analysed 

using this device. Some phytoplankton are extremely small (< 1 µm) and thus water samples will 

typically always contain plankton below the imaging resolution of optical systems. That said, that 

the ≈3µm resolution of our device compares extremely favourably with far more expensive 

commercial instruments and allows the analysis of a wide range of plankton species. 

 

Section 3.5 details the design and evaluation of the integrated system, including flow cell, imaging 

and illumination optics.  The design was aimed to be low-cost and easily modifiable platform 

which uses predominantly off-the-shelf components in order to create a device which is 

maximally accessible to resource-constrained research laboratories. A suitable camera and pulsed 

illumination optics such that images will be captures at a high resolution without motion blur, 

even at high flow rates, were used. The application of the aforementioned imaging resolution 

measurement protocol is described, and the limitations of the approach discussed.  

 

In Chapter 4, the development of an approach to the automatic analysis of the images captured 

by the IFC, was presented, comparing several different approaches. First, traditional image 

processing-based approaches are summarised and their limitations explored. Next, the 

development of an improved version of a convolutional neural network-based object detection 

model used for a similar cytometer by another research group was described, but unfortunately it  

was incapable of counting the cells within images with a performance equal to that of a human – 

a critical metric for the reliable use of an autonomous algorithm. Finally, Sections 4.46 and 4.4.7 

present the new use of a cutting-edge Convolutional Neural Network-based object detection 
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model, YOLOX, which successfully allows the automatic counting of cells within images with a 

performance equal to a human operator. This novel use of YOLOX for IFC images has a significant 

potential to allow the in situ, reliable and fully autonomous measurement of cells in aquatic 

environments as it can run on an embedded GPU computing system designed for deployment. 

Not only is it demonstrated that can YOLOX successfully count phytoplankton cells, there is also 

the potential for it to be trained to simultaneously classify species or other classifications of 

interest by extending the dataset on which it was trained.  

 

As IFC instruments are increasingly developed to be run continuously over long periods without 

human intervention, it is critical that reliable and consistent algorithms process the vast amounts 

of image data they generate. Our implementation of YOLOX successfully addresses this important 

research challenge in a form that is suitable for remote deployment and real time operation. 

 

Chapter 5 describes two experiments that were undertaken to evaluate the performance of the 

IFC on real phytoplankton research problems. The first, presented in Section 5.2, involves the 

analysis of a simple, single-species sample of preserved phytoplankton cells. This work is 

important as many research scenarios involve the need to analyse preserved samples and it is 

critical to have confidence in the ability of the complete IFC system combined with the 

autonomous image analysis algorithm described above, to accurately count cells in a sample. It 

was found that the IFC successfully counted cells with the same accuracy as a human using the 

gold standard of manual microscopy.  

 

In Section 5.3, experiment was introduced in which the IFC was used to measure the cell count of 

growing cultures of phytoplankton, at a high temporal resolution, throughout the course of the 

growth phases of the cultures. This experiment demonstrated the ability of the IFC to operate 

continuously and autonomously over a significant period of time, a capability not shared by most 

commercial IFCs such as the FlowCam. Though the aim of the experiment had been to 

demonstrate the accuracy of counting of plankton cells using the IFC by comparing the cell counts 

with manual verification samples analysed under microscopy, the experiment highlighted a 

sampling issue (discussed below) with potentially substantial implications across varied 

phytoplankton research scenarios. 
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Instruments including IFCs, flow cytometers, and other phytoplankton measuring devices such as 

fluorometers are increasingly developed to operate in situ on living cells in addition to analysing 

preserved samples taken at a prior date as has historically been more common. As the 

sophistication and autonomy of these devices progressively expands, allowing them to generate 

useful scientific data with low or even zero manual verification of their measurements, it is crucial  

that these instruments accurately quantify the abundance of plankton across the range of species 

they sample.  

 

Our experiment clearly demonstrates the risks of incorrectly measuring the number of 

phytoplankton cells within a water sample due to the avoidance behaviour of the cells toward 

sample inlets. There is existing literature in which experiments have measured the motility of 

some flagellated microalgae, and the ability of cells of species such as the Rhodomonas salina 

used in our experiment to detect and escape from regions of high fluid shear. There does not, 

however, appear to be any research into the possible bias that such predator avoidance 

behaviour could introduce into sampling of natural phytoplankton assemblages.  

 

It is possible, therefore, that instruments such as the Imaging Flow CytoBot, in addition to the 

many autonomous phytoplankton measurement instruments either recently released or under 

development, incorrectly report the number of motile plankton due to them avoiding being 

drawn into the device. It is also of great significance that even manual pipetting of these cells may 

fail to accurately capture a representative sample of their population density. These systemic 

problems could already have led to incorrect data in multiple research projects, a risk which will 

only increase as sensor development continues. The following section will explore possible future 

work to quantify the problem and suggest possible solutions. 

 

In conclusion, this thesis has presented a novel, low-cost, easy to assemble and easily modifiable 

imaging flow cytometer based around a disposable, acoustically-focussed flow cell and 

demonstrated its potential to address research questions involving measurement, counting and 

classification of phytoplankton. This instrument has the potential to significantly advance the rate 

at which images of plankton can be captured around the world by providing a higher-throughput 

and cheaper alternative to the small number of currently available devices.  
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6.2 Future work 

In order to further explore sampling bias due to phytoplankton motility, future experiments could 

be devised to assess the magnitude of the problem. These could be straightforward to carry out – 

for example, by collecting a sample of a culture through a tube of fixed aperture and pumped at a 

specified rate; counting cells within that pumped sample; then preserving the entire culture and 

measuring the cell density. By comparing the cell counts of the same culture where one sample 

has been pumped and one has not, it would be trivial to measure the percentage of cells which 

avoid sampling. The experiment could be repeated with various pumping velocities and using 

different inlet tube diameters, including conditions identical to those used on existing 

instrumentation. Other experiments could be carried out to further investigate the extent to 

which the escape behaviour is present across all phytoplankton species, which would allow the 

determination of the magnitude of the problem in real-world in situ sampling applications. 

 

It is also possible to devise experiments to test potential solutions to the problem. Since it has 

been demonstrated experimentally that detection of fluid shear around the cell body is the trigger 

for phytoplankton escape behaviour, it is likely that affixing a funnel to the end of the sample 

inlet, hence reducing the shear rate, would allow sampling without triggering escape jumps. 

Therefore, future experiments should test various inlet geometries. Experimentally this would 

also be straightforward to achieve by using a similar experiment design as above, where replicate 

cultures would be sampled by different inlet types and another sample preserved before counting 

in order to elucidate the contribution of each inlet type on measured cell count after sampling.  

 

Section 5.3.4 discussed the fact that motile plankton cells would have been able to swim out of 

the focus plane of the instrument if they had been sampled in the first place. To address this 

limitation, experiments with motile cells could be conducted where the voltage across the 

acoustic transducer was increased or the flow rate increased to reduce the time between 

focussing and imaging such that cells cannot swim out of focus. 

 

In the justification of this project (Chapter 2), it was noted that there is a lack of in situ sensors for 

measuring phytoplankton abundance and diversity. In its current state, it is only possible to use 

the IFC presented within this thesis in an indoor environment. In order to further develop the IFC 

to allow its use in the field, there are several additional engineering challenges which could be 
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addressed. To begin with, the power supply to the device, which is currently a mains (230V AC) 

cable, could be replaced with a battery. This would allow use of the IFC in environments without 

access to electrical infrastructure. The peristaltic pump that was used in this work (Gibson 

MiniPuls3) is heavy and not designed for operation outside of a laboratory. This pump could be 

replaced by an off-the-shelf lightweight pump or a custom 3D-printed pump similar to that used 

by the PlanktonScope discussed in Section 2.5.2. For the IFC to be used while exposed to the 

elements, water ingress into the device would need to be prevented. This could be achieved by 

means of an external enclosure surrounding the flow cell, optics and electronics, with an inlet and 

outlet for providing the necessary fluid path for the water to be sampled.  

 

To enable autonomous operation, a biocide reservoir could be added and the flow cell 

automatically purged and cleaned on e.g. daily intervals, to prevent or delay biofouling of the 

fluidic system. Filtering of the input to prevent the ingress of large particles which may obstruct 

the flow cell would likely also be required and could be achieved by means of a standard e.g. 100 

µm nylon mesh in the input pipe. Due to the extremely variable number of phytoplankton cells 

present in natural water samples, pre-processing of input water may be needed; concentration of 

the samples could be achieved using a sedimentation step before imaging the sample, though this 

would require work to ensure settling does not create new biases towards less motile species. 

Telemetry and image data from the device could be enabled by wired or wireless network 

connection to allow the remote monitoring and data connection without the need for a monitor 

and keyboard to be connected to the device. 

 

Finally, further training of the machine learning models implemented in Section 4.4 would allow 

the use of our IFC for a greatly expanded range of phytoplankton research problems. While the 

utility of our models on single-species cultures grown in a laboratory was demonstrated, using 

freely available phytoplankton microscopy dataset such as PMID (Li et al., 2020), it would be 

possible to train our model to classify cells within mixed samples of plankton communities down 

to the species level. Doing so would be relatively straightforward and increase the scientific value 

of the data generated by the IFC, but care would need to be taken to ensure the phytoplankton 

species represented in the training data was appropriate for the environment from which samples 

analysed by the device originated. 
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6.3 Summary of Novel Contributions 

This thesis presented a body of work involving the design, modelling and testing of a new 

acoustically focussed flow cell, building on a previously published design. The flow cell was 

improved by modifying the layers to incorporate a cover slip for reduced optical thickness, and 

therefore improved imaging performance.  This layered design was characterised for its acoustic 

resonances and their associated acoustic focussing performance. Finite Element Modelling was 

used to predict the performance of the flow cell for different phytoplankton sizes and types, 

demonstrating its applicability across a wide range of cells, even at high flow rates compared to 

existing instruments. The work of previous authors was built upon by carrying out novel 

experiments to quantify uncertainties in the MTF method for measuring image quality and, 

applying this knowledge, the work here shows that the optical performance of our device is 

sufficient to capture images of even very small (< 5 µm diameter) phytoplankton. This is not 

possible using commercial instruments such as the FlowCam, which has a reduced minimum cell 

size due to its depth-of-focus-increasing optical setup.  

 

A complete, low-cost IFC system around the acoustically-focussed flow cell, a 3D-printed flow cell 

holder and a rail system constructed from off-the-shelf parts was designed and presented. This 

ensures that our system will be accessible and easily modifiable, thereby increasing access to 

high-quality IFC for oceanographic microbiology. 

 

A novel convolutional neural network was developed to detect and localise cells within the 

images from the IFC, which although based on an existing approach, integrated more modern 

developments in computer vision. After extensive testing this model was replaced by an 

implementation of a cutting-edge object detection model which was demonstrated to have the 

ability to count cells within images with a performance comparable to a human operator. 

 

Finally, the complete IFC system was tested, which showcased the ability of the IFC to accurately 

measure the cell density of a preserved plankton sample with the same performance as manual 

microscopy. This highlights the potential of the developed instrument to replace or improve the 

traditionally labour-intensive counting of cells using traditional techniques. Furthermore, given 

the ability of the machine learning image processing technique utilised to be trained on images of 

multiple different species, the complete system has the potential to allow rapid and automated 
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analysis of preserved samples of real-world natural phytoplankton assemblages to characterise 

the complete aquatic population of microalgae within its operating limits. 

 

The ability of our system to carry out high temporal resolution, autonomous operation over a 

significant period was demonstrated by measuring the growth of live cell cultures in an incubator. 

This application demonstrates the potential of the IFC to be used in aquaculture and 

biotechnology applications, with potentially significant improvements in monitoring and cost 

reductions. While further experiments would be required to optimise the device with respect to 

motile cells which have been shown to possess the ability to actively avoid sampling, the 

instrument presents a novel contribution to aquatic research and satisfies the aims and objectives 

laid out at the beginning of this thesis. 
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Appendix A Parameters for KL   odel of Layered 

Resonator Flow Cell 

Transducer:  

Table 13 – Table of parameters defining the transducer used within the KLM model of the 

acoustically-focussed flow cell. 

Parameter Value Unit 

Thickness   1.0  [mm] 

Voltage (p-p)  10  [V] 

Qm 100  

Length  2 [cm] 

Width  5 [cm] 

Dielectric Loss 0.003  

Piezoelectric Pressure Constant 2.37 x 109 [NC-1] 

Permittivity 6.195 x 10-9 [Fm-1] 

Sound Velocity 4529.8  [ms-1] 

Density  7700  [kgm-3] 

Terminating Material (air) Sound Velocity  331.6  [ms-1] 

Terminating Material (air) Density  1.293  [kgm-3] 
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Particles: 

Table 14 - Table of parameters defining the particles used within the KLM model of the 

acoustically-focussed flow cell. 

Parameter Value Unit 

Sound Velocity  1962  [ms-1] 

Radius  5  [µm] 

Density  1055  [kgm-3] 

 

Device Layers: 

Table 15 - Table of parameters defining the layers of the flow cell used within the KLM model of 

acoustic focussing. 

Layer Thickness 

[µm] 

Density 

[kgm-3] 

Sound 

Velocity 

[ms-1] 

Q 

Glue Gap 1 1080 2640 100 

Matching Layer 170 2540 5510 100 

Fluid Layer 390 (Defined by T, S) 100 

Reflector 1100 2500 5872 100 

Terminating 

Material 

 1.293 331.6 

 

Fluid Channel: 

Table 16 - Table of parameters defining the fluid channel inside the flow cell, used within the KLM 

model. 

Width 
4 [mm] 

Length 
6 [cm] 
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Appendix B C  S L Finite Element  odel Parameters 

and Variables 

Parameters 

Table 17 - Table of parameters used in Finite Element Modelling of the acoustically-focussed flow 

cell. 

Parameter Expression Value Description 

η 0.89 [mPa * s] 8.9E-4 Pa·s Dynamic Viscosity of Medium 

a 5[um] 5E-6 m Particle radius 

c0 1500[m*s^-1] 1500 m/s Sound Velocity of Medium 

φ 0.279 0.279 Acoustic Contrast Factor 

k 
2 ∗ 𝑝𝑖 ∗ 𝑓

𝑐0
 8055.4 1/m Wavenumber 

f 
𝑐0

2 ∗ ℎ𝑒𝑖𝑔ℎ𝑡
 1.9231E6 1/s Frequency 

q 1[mL/min] 1.6667E-8 m³/s Volumetric Flow Rate 

A height*width 1.56E-6 m² Cross-sectional area of channel 

height 390 [um] 3.9E-4 m Channel height 

width 4[mm] 0.004 m Channel width 

length 5[cm] 0.05 m Channel length 

ρ0 1023 [kg/m^3] 1023 kg/m³ Density of Medium 

Eac 
1

4
∗

𝑝2

(𝜌0 ∗ 𝑐0
2)

 29.369 Pa Acoustic energy density 

p 520 [kPa] 5.2E5 Pa Acoustic pressure amplitude 
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Variables  

Table 18 - Table of variables used in Finite Element Modelling of the acoustically-focussed flow 

cell. 

Variable Expression Unit Description 

F 4𝜋𝑎3 ∗ 𝐸𝑎𝑐 ∗ 𝑘𝑠𝑖𝑛(2𝑘𝑦)𝜑  N Acoustic Radiation Force 

G 
𝑞

𝑤𝑖𝑑𝑡ℎ
∗

12η

ℎ𝑒𝑖𝑔ℎ𝑡3
 N/m3 Pressure Gradient (dP/dx) 

vx 
ℎ𝑒𝑖𝑔ℎ𝑡2

2η
∗ 𝐺 ∗ (

𝑦

ℎ𝑒𝑖𝑔ℎ𝑡
∗ (1 −

𝑦

ℎ𝑒𝑖𝑔ℎ𝑡
)) m/s Particle velocity, x component 

vy 
𝐹

6𝜋ηa
 m/s Particle velocity, y component 
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Appendix C Pseudocode for Bead Detection and 

Separation  easurement in Double-

Exposure Images 

 
 
Load Image 
Gaussian Filter Image     ->   BlurredImage 
Binarize BlurredImage     ->  BinaryImage 
Erode BinaryImage    ->  ErodedBinaryImage 
Open ErodedBinaryImage   ->  OpenedBinaryImage 
Close Holes OpenedBinaryImage  ->  ClosedBinaryImage 
Watershed Algorithm ClosedBinaryImage ->  WatershedImage 
Region Proposal Algorithm WatershedImage ->  ImageStats 
For Stat in ImageStats: 
 If Stat.Area > ThresholdSize: 
For Each Centroid: 
   Label Centroid 
  Prompt User to Input Labels 
  While UserInput != “q”  
   For UserInput1, Userinput2: 
    Calculate Centroid1, Centroid2 Distance, Angle  
    Store Distance, Angle 
Load Next Image 

 

 

Where: ThresholdSize is the minimum size (in pixels) a bead image occupies. This must be set to 

avoid spurious detections of noise and/or small detritus. A value of 8000 worked well for this 

analysis.
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Appendix D Bill of  aterials for IFC 

Table 19 - Bill of Materials to construct the optical, imaging and computational hardware for the 

IFC. 

Supplier Component Description Quantity Total 

Cost 

(UK£) 

Thorlabs CP20S                                  

   

Cage System Iris Diaphragm  2 140.8 

Thorlabs ER10 Cage Assembly Rod, 10" Long, Ø6 mm 4 39.24 

Thorlabs ER12 Cage Assembly Rod, 12" Long, Ø6 mm 3 38.94 

Thorlabs CP33T/M SM1-Threaded 30 mm Cage Plate, 0.50" Thick 2 34.9 

Thorlabs SM1ZM SM1 Zoom Housing for Ø1" 

Optics                                                                             

1 132.29 

Thorlabs SM1V15                                Ø1" Adjustable Lens Tube, 1.31" Travel 

Range                                                      

1 27.62 

Thorlabs SM1V05 Ø1" Adjustable Lens Tube, 0.31" Travel 

Range                                                      

1 23.37 

Thorlabs LCP02/M 30mm to 60 mm Cage Plate Adapter, M4 Tap 5 158.25 

Thorlabs SM1L40 SM1 Lens Tube, 4.00" Thread 

Depth                                                                         

1 35.46 

Thorlabs SM1L15                               

   

SM1 Lens Tube, 1.50" Thread 

Depth                                                                         

1 12.13 

Thorlabs RMSA1                                  Adapter with External M25 x 0.75 Threads and 

Internal RMS Threads        

1 15.74 

Thorlabs SM1A39  Adapter with External C-Mount Threads and 

External SM1 Threads 

1 15.91 

Thorlabs ER90C                                  

   

90 Degree "T" 

Extension                                                                       

4 38.64 

Thorlabs ACL2520U-DG6 Aspheric Condenser Lens w/ Diffuser, Ø25 mm, 

f=20.1 mm,  NA=0.60        

1 14.69 

Edmund 

Optics 

47-637  25mm Dia. x 50mm FL, VIS 0° Coated, Achromatic 

Lens 

2 161.5 
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Edmund 

Optics 

33-438  20X DIN Achromatic Finite Intl Standard Objective  1 97.75 

Mouser 

Electronics 

LZ4-40CW08-0065 LED Engin High Power LED - White 1 15.43 

FLIR GS3-U3-23S6C-C Grasshopper3 USB3  2.3 MP, 163 FPS, Sony IMX174, 

Color 

1 842.4 

DFRobot  Xavier NX NVIDIA Jetson Xavier NX Developer Kit 1 395.41 
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Appendix E Growth Rate Experiment:  anual and 

Automated Sample Times 

 

Table 20 - Table of sampling times of the R. salina cultures during the growth rate experiment 

(Section 5.3) which were preserved and manually counted using microscopy. 

Date Time 

23rd March 2022 16:30 

24th March 2022 16:00 

25th March 2022 16:00 

26th March 2022 15:30 

27th March 2022 15:30 

28th March 2022 17:30 

29th March 2022 16:30 

30th March 2022 14:30 
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Table 21 - Times at which R. salina samples were automatically pumped into the IFC for imaging. 

The IFC was restarted on 26th March at 15:00 due to a connectivity issue, which 

resulted in an additional sample being processed that day and a change in the hours 

of sampling on subsequent days. 

Day Sample 

1 

Sample 

2 

Sample 

3  

Sample 

4  

Sample 

5  

Sample 

6 

Sample 

7 

23rd March 2022 17:00 21:00      

24th March 2022 01:00 05:00 09:00 13:00 17:00 21:00  

25th March 2022 01:00 05:00 09:00 13:00 17:00 21:00  

26th March 2022 01:00 05:00 09:00 13:00 15:00 19:00 23:00 

27th March 2022 03:00 07:00 11:00 15:00 19:00 23:00  

28th March 2022 03:00 07:00 11:00 15:00 19:00 23:00  

29th March 2022 03:00 07:00 11:00 15:00 19:00 23:00  

30th March 2022 03:00 07:00 11:00 15:00    
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Appendix F Calculated Specific Growth Rates from IFC 

Counts of R  salina During Growth Rate 

Experiment 

Table 22 – Specific Growth Rate of each of the 4 cultures, calculated using the cell counts 

measured by IFC, using only those measurements taken at the same time in order to 

reduce the potential influence of diurnal changes in vertical distribution. 

Bold=maximum growth rate. 

 

Calculated Maximum Specific Growth Rate across the 8 experimental days, 

grouped by time of sampling 

Sample Time Culture #1 Culture #2 Culture #3 Culture #4 

01:00 0.258134 0.507689 -0.09 1.201591 

03:00 0.827393 0.708401 1.466809 0.674891 

05:00 0.43438 0.498359 0.712013 0.916474 

07:00 1.752674 0.647959 1.460398 1.564099 

09:00 - - - - 

11:00 0.556888 0.491138 0.555596 0.769417 

13:00 - - - - 

15:00 0.681092 0.685839 0.611873 0.745593 

17:00 0.479863 0.387895 1.16038 0.880193 

19:00 0.915759 0.683234 1.18074 0.850216 

21:00 0.310155 0.590418 0.868966 1.27372 

23:00 0.784225 1.344312 1.203302 1.060018 
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