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Phytoplankton are a diverse group of organisms which are globally important from perspectives
of ecology, environmental health, climate and socioeconomics, yet are severely understudied. The
ocean is vast and largely inaccessible, and while many recent advances have taken place in the in
situ measurement of physiochemical variables, analysing phytoplankton abundance and diversity
is still a major challenge. Bulk approaches such as fluorimetry and satellite colorimetry, which
each measure the fundamental properties of an entire phytoplankton population, can provide
abundance and crude taxonomic data at a large spatial scale. Despite widespread use of these
techniques, there remains a need for higher taxonomic and spatiotemporal resolution data that
can only be provided by light microscopy and flow cytometry, two time-consuming and expensive
methods.

To address these challenges, this thesis details the development of a novel, high-
throughput, acoustically focussed Imaging Flow Cytometer for low-cost imaging of phytoplankton
in natural water samples, making use of off-the-shelf optical and mechanical components.
Acoustic focussing is used as it is a contact-free, gentle and reliable particle positioning method
which allows high-throughput imaging of cells. Analytical and experimental testing of the acoustic
focussing performance is detailed using Finite Element Modelling and imaging of polystyrene
beads as a proxy for phytoplankton. A protocol for measurement of imaging resolution is
developed and verified before being used to characterise the optical performance of the device.

In order to rapidly and automatically analyse the images captured by the device, various
image processing techniques were investigated. In the finalised system, cutting-edge
convolutional neural networks were designed, implemented, and verified by way of comparison
with manual counting of plankton cells within images.

Finally, to demonstrate the effectiveness of the cytometer to address real research
challenges, two experiments are described. In the first, the device automatically and successfully
measures the density of preserved plankton cells within a test sample with an accuracy
comparable to manual microscopy, the gold standard for this analysis. In the second experiment,
the unique capability of the cytometer to generate high-temporal resolution measurements of
live cells within growing cultures over an extended period was demonstrated. This experiment
showed a discrepancy between the automatic measurements and manual verification, which is
discussed at length, in the process uncovering a potential systemic bias occurring in
phytoplankton research. The implications of these findings are explored.
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components (camera, lenses and illumination). Once images have been
acquired, analysis in the form of measurement and/or identification can be

performed in real-time or from storage........cccccveveiieiiecciee e 37

Figure 15 — The flow cell design. a.: schematic cross-section of the acoustic focussing region
showing the thicknesses of each layer. b.: Lateral view of one of the
constructed flow cells showing fluidic connectors, acrylic frame, microscope

slide and transducer. c.: Axial view of the same device. .......cccccevvvvvvivieeennnnnnn. 40

Figure 16 — Diagram of the mounted acoustophoretic flow cell comprising a 30x6 mm rectangular
glass capillary bonded via glass pillars to a standard (75x25 mm) microscopy
slide using CA adhesive. Fluid connectors are formed using heat-shrink tubing
and ultrasonic excitation provided by a square PZT transducer bonded to one

end of the capillary using epoxy (Epotek 301). ....ocovcreeeeeciiieeeiee e, 41
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Figure 17 — KLM model proposed by Krimholtz et al. The transducer crystal is modelled as an
electric circuit consisting a transmission line, transformer and passive

COMIPONENTES. c it e e e e e e e e e e e e e e e 43

Figure 18 — Example plots of modelled Transducer Conductance (a) and Acoustic Energy Density
(b) for a transfer model with carrier fluid parameters p = 1024.7 kgm3and c =
1549.7 ms™t. Two resonance frequencies are clearly defined at 1.78 MHz and

2.06 MHz. Figure plotted using MATLAB script detailed by Hill et al............... 45

Figure 19 — Modelled Acoustic Pressure Amplitude (P) plot through vertical cross-section of the
device at one of the half-wave resonant frequencies. Within the fluid layer (dark
blue) the pressure has a single node, with particles above or below this point
being subjected to forces pushing them toward the minimum, which is at the
centre-height of this fluid layer. Figure generated using MATLAB script detailed
o3V o 11 =Y | U 46

Figure 20 — Frequency (y-axis) and Acoustic Energy Density (colour) for the lower (a.) and upper
(b.) resonant frequencies predicted by the transfer model at each combination
of temperature (grouping variable) and salinity (x-axis) for the layered resonator
flow cell. The graphs indicate rising resonant frequencies with both temperature

and salinity at both resonant frequency Aand B. ........ccccoveeeeciieeicciieeeee, 47

Figure 21 — Diagram of the Finite Element Model of the flow cell cross-section showing the
progression of beads (coloured) along the device with time. At the particle inlet
the beads are uniformly distributed, and they are focussed to the central
pressure anti-node as they travel along the x-direction. Once particles have
reached the outlet at the right side, their vertical separation distance, d, is

[Tl o (<o PR 51

Figure 22 - Schematic of the axes of the fluid layer used for the FEM modelling within this section,

showing the position objective lens relative to the fluid flow direction......... 52

Figure 23 — 1D plot of the x-component (vx) of the fluid flow velocity profile within the vertical
axis of the flow channel as described by Planar Poiseuille Flow. The given flow
velocities given were calculated at a volumetric flow rate of 1.5 ml/min, but the
parabolic distribution of velocity with y coordinate remains the same for all flow
rates. The flow velocity at the centre of the channel is the highest and the
velocity toward the channel boundaries (0 and 390 um - the top and bottom of

the fluid layer) tends tO ZErO. ...ccccviiie i 54
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Figure 24 — Plot of the acoustic radiation force against vertical position (y-coordinate) as
determined by the ultrasonic standing wave in the flow cell. The pressure
minimum (zero newtons) is located at the half-depth of the fluid layer (195 um)
and also tends to zero at the upper and lower boundaries. Since particles are
never located exactly at the boundary (they are separated by at least a distance
equal to their radius), even particles very close to the flow cell walls will

experience some force toward the centre. ........ccooccciiieiiei e, 55

Figure 25 — Plot of the maximum volumetric flow rate (Y axis, ml/min) under which particles of a
given radius (X axis, um) focus within the 5cm flow cell analysed by FEM,
grouped by acoustic contrast factor (colour). There is significant overlap
between different data points, especially at 10 ml/min flow rate where particles

of ¢ = 0.06 with large diameters all foCcus. .......ccceerviriiriiiiieneeeeeee, 57

Figure 26 — C60 network analyser plot of admittance (1 over impedance) of the ultrasonic
transducer within the 0.5 — 3 MHz range. Measurements were conducted over 4
different conditions; unfilled (Air - black), filled with deionized water (DI H20 -
green); filled with marine media and PolySciences Fluoresbrite fluorescent
polystyrene-latex beads (blue); filled with Lugol’s lodine-fixed plankton sample
(sample number N20 - red). Insets: peaks around 1.70MHz; 2.10 MHz
demonstrating the slight differences in acoustic performance when the device is
filled with media of different salinities (and hence sound velocities and

(o 1= g Ty LT PO TSR 61

Figure 27 — Example double-exposure image of 10 um beads taken with a 2 ms delay between
illumination pulses. Each of the 6 beads present in the field of view is imaged
twice in the single frame such that their velocities can be calculated from the

distance they travel during the 5 ms delay. .....cccccceecreeiicciiee e, 64

Figure 28 — Example of detected beads in the same image as Figure 26. The MATLAB script detects
beads using standard image processing techniques (code in Appendix A.3) and
assigns a number to each detection. Detection 11 in this image is a false positive
and can be ignored by the user in the next step; labelling the exposure pairs

which result from the same physical bead...........cccocoveiiiiieiiiccieeeee, 65

Figure 29 — After detection, the user enters the numbers of the exposures relating to the same

physical bead (e.g. 1 and 2; 3 and 4). The MATLAB script measures the distance
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between the centroid pixels of the two labelled beads and the angle (in degrees

from vertical), stores this data and presents it as an overlay on the image. ..66

Figure 30 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 10

V peak-peak. Volumetric flow rate = 1.0 ml/min (a) and 2.0 ml/min (b). ....... 67

Figure 31 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 15
V peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) 2.0 ml/min (c)
and 3.0 MI/MIN (). coeveeeeeeeee et et 68

Figure 32 — Qualitative assessment of the acoustic focus quality at volumetric flow rates of 1.0
ml/min and 3.0 ml/min, with the same transducer settings of f=1.75 MHz, V=15
V PEAK-PEAK. ittt 69

Figure 33 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 2.11 MHz, transducer voltage = 10
V peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) and 2.0
MI/ININ (C) 1ottt ettt b e et e e be e be e bee s baesabeenre s 71

Figure 34 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 2.11 MHz, transducer voltage = 15

V peak-peak. Volumetric flow rate = 2.0 ml/min. .....cccoeevveeeceeeieeeciee e, 72

Figure 35 — Process for determining resolution using the method inspired by Vainrub (2008). 13a)
a test target with high-frequency content (made by scratching an ink blot on a
standard 75x25mm slide with a razor) is imaged using the system under test.
13b) a 2-dimensional Fast Fourier Transform (FFT) is applied to the image to
convert from spatial to frequency domains. 13c) a predetermined number of
radial samples are taken from the centre of the FFT image outward to the edges,
where all pixels in the given radius are sampled (as pixels have integer
addresses, bilinear interpolation is used). 13d) the values corresponding to each

radius are averaged and plotted. ........cccoveeeriiiiccci e, 76

Figure 36 — Schematic of the procedure for determining the resolution of a digital imaging device
by calculating the Modulation Transfer Function (MTF) using the Slanted Edge
Method (ISO 12233). Values are sampled from pixels perpendicularly to an
imaged slanted edge, making up the Edge Spread Function (ESF). The ESF is
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differentiated to produce a Line Spread Function (LSF). Finally, the MTF is
yielded from the 2-dimensional Fourier transform of the LSF. Adapted from

Estribeau and Magnan (2003) and Vhengani, Griffith and Lysko (2012). ....... 77

Figure 37 — MTF curves derived from images of a slanted edge on a resolution test target
(R1L3S5P, Thorlabs Inc., USA) under camera exposure conditions from 1 ms to
15 ms. All images were taken under the same Z-axis focus position and with the
same edge slant angle (5 °). Here, the blue curves (MTF from images taken with
1 ms — 7 ms exposure duration), which are highly consistent, are generated from
images without any oversaturated pixels. The red curves (MTF from images
taken with 8 ms — 15 ms exposure duration) are from images with pixel values of
0 or 4095 (i.e. fully saturated). These are erroneously high and abnormally
smooth, indicating the importance of using a nonsaturating exposure time when

measuring and comparing system resolVing POWEr.........ccceeccvveeeeirieeeeccnveeenn. 80

Figure 38 - Cropped regions from images taken at a)5ms exposure and b)10ms exposure in the
3.2.1 Exposure experiment. At 5 ms exposure, pixels in the white side are
unsaturated and still contain information; at 10 ms exposure, the white side is
overexposed and the camera is limited by the full-well capacity of its pixels. All
pixels in the white section of this image have pixel intensity values of 4095, the
limit of the camera. MTF curves generated from data with such saturated pixels
are erroneously high and inflate the measured system resolution to unrealistic

=372 81

Figure 39 — Graph of MTF10 (blue) and MTF50 (orange) values extracted from the MTF curves for
images with exposure times ranging from 1 ms to 15 ms. Both metrics are
consistent for exposure times of 1 to 7 ms, where images do not have any over-
or undersaturated pixels. Exposures of 8ms and longer (red dashed box) have
erroneously elevated MTF10 and MTF50 metrics than at faster exposures,
indicating the inflating effect of saturated pixels on measured system resolution.
MTF10 values which are above the sampling limit imposed by the Nyquist
theorem (a minimum of 2 pixels per cycle required to avoid aliasing) are

U T =F=1 1) o o 83

Figure 40 — Slanted edge MTF curves generated for incrementally increasing edge slant angles,

starting from 0° (completely vertical) and incrementing by 5° up to 45°. ...... 85
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Figure 41 - Graph of MTF10 (dark blue) and MTF50 (light blue) values extracted from the MTF
curves calculated for images with edge slant angles between 0° (completely
vertical; aligned with sensor pixel columns) and 45°, in 2.5° increments. With
edge rotation angles of 0-10° the determined MTF10 and MTF50 values are very
consistent, but with increasing slant angle these resolution metrics display

a4 (SR o [T o 1T To [T o Vol TR TP 87

Figure 42 — Comparison of the a)-e) central 256x256 pixels and f)-j) central 50x50 pixels of the
slanted edge images taken during the section 3.2.3 focus experiment. Image a) is
focused below the target and image e) above the target, as can be more clearly
determined from the zoomed images f) and j). Images b), c) and d) are all
subjectively ‘in focus’ and it is almost impossible to manually determine which
has the most accurate focus position. As can be seen in Figure 42, there are
subtle differences in derived resolution metrics between the three central in-
focus images. Of particular interest is the fact that image e) has a darker white
section than the others, which is reflected in the lower MTF metrics on the
above-target focus positions seen in Figure 42. This is caused by the interaction
of the Kéhler illumination focus plane and the imaging focus plane of the

(o] o] =T 1 V7T ST SPR 89

Figure 43 — Plot of slanted edge MTF10 (blue) and MTF50 (orange) metrics for increasing Z-axis
focus positions. A focus point well below the target was selected and Z-height
incrementally increased, with an image of the slanted edge taken every 1 micron
step. Images were thus taken with the edge in focus (8-13 um from initial
position) and with the focus position above (0-7 um from initial position) and
below (14-20 um from initial position) the target. The graph shows a nonlinear
coupling between MTF10 and MTF50 values, highlighting the necessity of not
solely relying on one or the other for resolution characterisation. Further, the
plot demonstrates that Z-position accuracy of at least £ 2 um is required to

obtain high and consistent MTF measurements. ........ccccecvveeeeecieeeeccieeeeeennnen. 91

Figure 44 — Diagram of the first iteration IFC mechanical arrangement. Using a stepper motor, 6
mm rods and linear bearings used in 3D printers, a carriage containing a camera
can be raised or lowered as required to achieve focus of the cells passing
through a flow cell below a standard 10X objective lens. By using a matt black
Perspex enclosure, light from outside the device is limited and no tube between

the camera and objective is required. The illumination frame can be lowered and
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an arbitrary number of optical components inserted above to create desired

lighting conditions (e.8. KOhIEr).....c.uueiiiiiieiceee e 97

Figure 45 - 3D-printable flow cell holder for the prototype IFC. The acoustofluidic flow cell slots
(from the right) into the cut-outs and is pushed until it reaches the end (left).
The circular hole in the centre allows an unobstructed optical path for imaging
and illumination, and standoffs in each corner, through which the cage rods are

inserted, prevent flexion. Inlay: close-up of the flow cell inserted into the holder

Figure 46 — Current IFC prototype arrangement. From the left: illumination from a pulsed LED is
focussed via means of 2 iris and 2 lenses. The acoustofluidic flow cell slots into a
3D-printed flow cell holder (blue), which is sandwiched between metal cage
plates for rigidity. The objective lens is mounted on course and fine focus

apparatus, which themselves are connected to a camera via a SM1 tube...100

Figure 47 — MTF curve for the complete IFC system. The spatial frequency at which the MTF drops
to 50% (MTF50) is 0.167 cycles per pixel, and the spatial frequency at which the
MTF drops to 10% (MTF10) i 0.264. .....cceeveeiiiieerieeeieeeeieeeneeesveeesveeesnees 103

Figure 48 — A single cell of Rhodomonas salina (fixed with Lugol’s lodine solution 1%) imaged by
the IFC system, demonstrating the ability of the system to partially resolve

internal cell structures significantly smaller than 5 um. .....cccoccoevieiniiennneen. 104

Figure 49 - Example image created for demonstrating the traditional methods of object detection.
The image contains ellipses of two different colours, sizes and eccentricities

overlaid on a plain black background. The image is a 400x300 .jpg file........ 112
Figure 50 — The ellipses image after being converted to grayscale........ccccecvevivvcieiivcieeeccnnen. 113
Figure 51 — The grayscale image of ellipses after applying a 5x5 pixel gaussian blur operator.113

Figure 52 — The images of ellipses after the Canny edge detection algorithm has been applied to

the blurred, grayscale image. ......cceeivciieeeeciee e 114

Figure 53 — The image after grayscaling, blurring, edge detection and thresholding. All that
remains now is pixel values of 0 in regions which are not included in the ellipses,

and values of 1 inside the ellipses. .......coocuiiieciieeiecee e, 114
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Figure 54 — The ellipses after contour detection using the active contour algorithm. The outside

edges of the objects of interest are now known and represented here in green.

Figure 55 — The centre coordinates of each detected ellipse have been determined using the
minimum and maximum extents of the previously calculated contours of the

shapes, and are now plotted on the image. .......ccocecviieeeeeeeeccciieeeee e 115

Figure 56 — A new image of ellipses is presented in Figure 55a. The image now contains 3 ellipses
of colours having a low contrast with the background. Figure 55b demonstrates
the problem with the previously discussed image analysis approach; the contour
detection has only operated successfully on the ellipse with the highest contrast
from the background as the thresholding step used after edge detection had a
threshold value set too high to include the darker objects. As a result, only that

ellipse has its centre coordinates calculated, as demonstrated in Figure 55¢.116

Figure 57 — in this new image example, 2 of the 3 ellipses are partially overlapping. Though to a
human, the 3 ellipses are clearly distinct objects, the algorithm which has been
developed so far fails to distinguish the two objects and instead treats them as
one. Figure 56b shows that the contours are calculated for the combined ellipses

and therefore the centroid of the combined objects is plotted on Figure 56¢.117

Figure 58 — In this final example, Figure 57a. shows 3 ellipses which are overlaid this time on a
gradient background, rather than the plain black of the previous examples.
Though the 3 ellipses are still easily recognised by a human, the algorithm is
unable to cope with the low contrast that the gradient produces and so falsely
calculates coordinates for two of the ellipses and part of the gradient as a
combined object, as shown in Figure 57b. Therefore, as Figure 57c,

demonstrates, only one of the 3 ellipses is correctly identified. .................. 118

Figure 59 — Two images of the IFC flow cell while filled with sterile L1 medium but no
phytoplankton cells. Figure 58a. shows the flow cell after processing several
phytoplankton samples and has obvious shadows which are cast onto the field
of view by detritus adhered to the sides of the flow cell. Figure 58b. shows the
same flow cell after a further week of regular sampling operation. More debris
has adhered to the flow cell, so the background complexity has been

significantly increased. The arrow points to an area of particularly heavy new
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adhered debris. This variable background poses a challenge to image processing

] ={o T 1 11 0 LY PSR 119

Figure 60 — IFC image of 3 phytoplankton cells, 2 of which are in contact with each other (arrow).
As previously discussed, overlapping and touching objects pose a challenge to

image pProcessing tEChNIQUES. .....oocvieiiiiiieeeeee et 120

Figure 61 — close-up view of a phytoplankton cell (arrow) traversing in front of adhered detritus,

the shadow of which is cast from the edge of the flow cell into the field of view.

Figure 62 - An image of a dog in a field of bluebells is used to demonstrate three kind of image
classification. In Binary Classification, a model which has been trained to
recognise images of dogs outputs a 0-1 probability of the image containing a
dog. In Multiclass Classification, the model is trained on multiple classes (Dog,
Cat, Bus, Plant) and for each class outputs a probability of the image containing
an example of that class. The class with the highest probability score, in this case
Dog, is selected as the output. In Multilabel Classification, the model can assign
more than one label to the image. In this example, the model outputs both Dog
and Plant as both classes have probability scores which pass some threshold

value. Adapted from (MathWorks, 2023). ......cccoceeieciieeeecieee e 124

Figure 63 - Two images from the acoustophoretic IFC device are presented. For each of the two
input images, a binary classification model which has been trained to detect cells
could output a probability score of the image containing cells. Based on this
score, frames which do not contain cells, like the first input image, could be

discarded without being saved, saving memory and processing time.......... 125

Figure 64 — An image of a single phytoplankton cell is used as an input for hypothetical binary and
multiclass classifiers. The binary classifier can predict whether a cell is healthy or
not, whereas a multiclass classifier could be trained to distinguish between
several genus of phytoplankton and output a probability score of the input

image being an example of each, selecting the highest probability. ............ 126

Figure 65 — An object detection algorithm based on a binary classification of each individual pixel
within an input image. The algorithm generates a probability score (0-1) of the
pixel containing a cell, after which a number of algorithms can be used to, for

instance, count, localise or measure cells within an input image.................. 127
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Figure 66 — Example of a typical input and output from a machine learning regression model for
object detection. An IFC image of a single phytoplankton cell is input, and the
model predicts values for the coordinates of the corners which could be used to

draw a box around the cell(s) in the input image.........ccccoceeeeecieeeecciee e, 128

Figure 67 — This diagram, adapted from Shin et al. (2016a), demonstrates the ability of a machine
learning model to output probability density maps which correspond to
predicted locations of various classes of objects of interest. In this example, an
abdominal MRI input image has 4 corresponding output density maps, one for

each of the organs of iNterest. ........cccceveciii i, 129

Figure 68 — Example of object detection via machine learning, where coordinates defining
bounding-boxes are predicted via a regression model. In this example, the
model has been trained to detect 3 different classes, and can simultaneously
output a list (b.) of bounding boxes for an input image (a.) with a predicted class
for each box (final column of the output list b.). Finally, the boxes can be drawn

onto the input image to visually show the predictions of the model (c.). ....130

Figure 69 — Adapted from https://manipulation.csail.mit.edu/segmentation.html. An image of a
dog and three sheep is used as an example of image classification, object
detection, semantic segmentation and instance segmentation. In semantic
segmentation, each pixel is assigned to the class with the highest probability. In
the given example, red is used for the ‘dog’ class, and blue is used for the
‘sheep’ class. Pixels in the background are not separately coloured in this case,
but would have been assigned the ‘background’ class. There is no distinction
made between different instances of the same class, unlike in instance
segmentation, which is shown below. In instance segmentation, each pixel is
assigned a class as before, but also assigned an instance variable representing
the number of that object. In this manner, the image pixels belonging to the
three different sheep are separately labelled and can be extracted or analysed

Ta e LAV Te VT 1 Y U 131

Figure 70 — two images which were generated by the DALL-E 2 image generation model. In each
instance, a prompt, which is displayed here above the image, was used to
generate a new image using a Generative Adversarial Network. The model is
trained on many examples of images of different classes and semantic
information, and can then use the learned features to produce new images

based on input text. Here, an image of a dog sitting in a field of bluebells is

XiX
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created, as is an image of a cell which could be from a microscope image.

Neither of these images depict real, extant objects. .......cccccvvveericieeeccnnnnnn. 132

Figure 71 — Two variants of an input image generated by the generative adversarial network
model DALL-E 2. Neither of the two variants are real images but instead were
generated using a combination of previously learned features and features from

TNE INPUL IMAGE i s e e s aaeeeeas 133

Figure 72 — lllustration of the operation of one neuron. The neuron computers a weighted sum of
its inputs, [al,a2,a3,...,aN], using associated weight values,
[wl,w2,w3,...,wN],. A bias value, b, is added and the output, z, is passed on to

L TS AT A ole Y a T a V<Yt Yo VO 135

Figure 73 — An illustration of an extremely simple neural network. Two input neurons (blue) are
connected to 4 neurons (grey) within a single hidden layer, which are in turn
connected to a single output neuron (orange). Each connection represents one

of the inputs to @ matrix Operation. ........cccceeeecieeiceciee e 136

Figure 74 — The sigmoid and Rectified Linear Unit (ReLU) functions. By passing the output value of
a neuron through these functions, the neural network is no longer performing a
simple linear regression and is able to represent complex nonlinear relationships
between input and output data. The specific activation function used influences

the performance of a given model. .........coovcieiiiiiieiii e, 137

Figure 75 - A deep neural network with 3 hidden layers is presented. In this network, each layer is
fully-connected; that is, each neuron is connected to every neuron in the prior
layer. By introducing additional hidden layers of neurons, the deep neural
network is able to model increasingly complex relationships between input and

output data. (Straull, 2018) ....cceeeereeeiereiiee ettt rree e et rre e srae s 138

Figure 76 — Intersection over Union (loU) is a performance metric which calculates the accuracy of
a bounding box prediction by dividing the intersection (overlap) by the union

(area enclosed by both boxes), for the predicted and the ground truth bounding

Figure 77 — A visual representation of a convolution operation on an image represented as a 2D
matrix (left). Convolution computes the value of each destination pixel in an
output matrix (right) by multiplying each value in the convolution filter (centre)

by the corresponding value in the input image, and then sums the results. This
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process is repeated for every pixel in the input image, resulting in a new output
image where each pixel is the result of applying the convolution filter to the

corresponding pixel in the input image. Within a Convolutional Neural network,
the inputs to a convolution, the outputs from the operation and the filter itself
can be of any number of dimensions, with CNNs having many layers potentially

having hundreds of dimensions within some layers. ........ccccoeveiiviieeninnneen. 146

Figure 78 — An illustration of a 2x2 Max Pooling operation on a 4x4 matrix. The original matrix is
divided into 2x2 regions and only the maximum value from each region is
retained in the output matrix. Therefore, the output is of shape 2x2, and the

input has been downsampled. ..........coeeiiiiiciiie e 147

Figure 79 — Example of an input image to the network (top): a 1920x1200 pixel, colour image of
the IFC flow cell with 3 phytoplankton cells (a close up of 1 is provided on the
right). On the bottom is the probability density map output by the CNN, with
each pixel having a value which represents the confidence of the CNN that there
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Figure 80 - Evolution of training (orange) and validation (blue) loss (Mean Squared Error, MSE)
across 150 epochs for an object detection CNN, showing the prompt
minimization of training loss, a transient surge in validation loss around epoch 8,

and subsequent convergence to a value close t0 0.......ccccceeeeecieeeeciieeeennneen. 157

Figure 81 — Input image (left), probability density map representing model confidence of the
presence of a cell (middle) and binarized object mask after thresholding the

density Map (FZNT). cueeee e 160

Figure 82 — Input IFC image (a.) and the same image overlayed with a binarized output mask of
the CNN-predicted cell locations (b.), illustrating how the 3 cells visible can be

easily localised based on the probability density map output by the model.161

Figure 83 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method and
manual counting of cells within Image Set 1. The mean difference is -2.34,
indicating a lower mean count by the CNN method. The upper and lower limits
of agreement are 0.56 and -5.2, respectively, illustrating the range within which

95% of the differences between the two methods are expected to lie........ 164

Figure 84 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method and

manual counting of cells within Image Set 2. The mean difference is 3.18,
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indicating a significantly higher mean count by the CNN method. The upper and
lower limits of agreement are 6.3 and 0.1, respectively, illustrating the range
within which 95% of the differences between the two methods are expected to

L. et e 166

Figure 85 — Input image after resizing (top) and masked CNN output probability density maps. The

different masking threshold values selected (0.01 and 0.05) produce outputs
with significantly different numbers of cell detections, with a threshold of 0.01

resulting in many false POSItiVES........cuvvviiiiiiie e 167

Figure 86 - Top-level overview of the behaviour of a YOLO object detection model when detecting

objects within an image. The image is divided into a grid, then the network
predicts bounding boxes and confidence scores for potential objects within each
grid cell, along with their associated class probability maps. These predictions
and class probability maps are combined to create a detection result, which

identifies the locations and classes of objects within the image. (Wu and Zhou,

Figure 87 - The Darknet53 architecture, which consists of 53 convolutional layers and is used as

the backbone for YOLOv3, a modern object detection algorithm. Diagram from

(Redmon and Farhadi, 2018). ......ccccueieeiiiiee ettt e 172

Figure 88 - The CSPDarknet53 neural network architecture, first introduced in YOLOv4. Used as

the backbone for advanced YOLO object detection models, CSPDarknet53
employs Cross-Stage Partial (CSP) connections, facilitating superior feature
extraction capabilities and enhanced object detection performance across a
range of scales in the input image. The schematic on the right illustrates the
structure of a CSP block, which divides the input features into two streams: one
stream passes through a sequence of convolutional layers, while the other
bypasses these layers. Subsequently, both streams are merged, resulting in an

efficient and effective combination of extracted features. Adapted from (Xu et

Figure 89 - The complete YOLOX network architecture, featuring inlaid diagrams of its core

components: the Spatial Pyramid Pooling (SPP) module, the Neck (Path
Aggregation Network, or PANet), and the YOLO Prediction Head. These
components enable efficient feature extraction, hierarchical feature

aggregation, and accurate bounding box predictions with class probabilities,
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ultimately resulting in cutting-edge object detection for objects of a wide range

of scales. Adapted from (Chou, 2022) ........ceevevieeieiiieee e 175

Figure 90 — Graph of AP50 (Blue) and AP95 (Orange) for YOLOX-s object detection model while
being trained to detect and localise cells of Rhodomonas salina phytoplankton
within images from the acoustically focussed IFC. After 150 epochs of training
the AP50 value is close to 1.0, indicating a good overlap between predicted and
ground truth bounding boxes. The lower AP95 score suggests that the model
does not predict bounding boxes with a very tight alignment to those which
were manually labelled to produce the training dataset, the 95% loU threshold
requires a large degree of overlap between the predicted and ground truth
bounding boxes. This is unlikely to be a cause for concern as the human-labelled
bounding boxes were not highly precise to a pixel level, especially in comparison
to the size of the cells themselves, which each take up a very small proportion of

the image at 10X Magnification.......cccccuueeieiiiii e 178

Figure 91 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of cells
within Image Set 1. The mean difference is 0.0, indicating a lack of systematic
bias. The upper and lower limits of agreement are +1.3 and -1.3, respectively,
illustrating the range within which 95% of the differences between the two
methods are expected to lie. These values further demonstrate the absence of
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Figure 92 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of
phytoplankton cells within Image Set 2. The mean difference is 0.18, indicating a
slight systematic bias where YOLOX detects more cells per image. The upper and
lower limits of agreement are +1.5 and -1.1, respectively, illustrating the range
within which 95% of the differences between the two methods are expected to
lie. These values further demonstrate the slight over-counting of cells by YOLOX

compared with ground-truth data. ..o 182

Figure 93 — An illustrative example of a misclassification of detritus as a plankton cell by YOLOX.
While the three cells present in the image are correctly identified with >70%
confidence, the clump of detritus has been falsely labelled as a cell by the

algorithm with 63.5% confidence. ......cccoccveeeieiei i, 183

Figure 94 - Box and whisker plot of the cell counts generated by: IFC & YOLOX (left/blue), the fully

automated system involving imaging using acoustically focussed IFC and

xxiii


https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460933
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460934
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460935
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460936
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460936
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460936
https://sotonac-my.sharepoint.com/personal/ajwl1g18_soton_ac_uk/Documents/Thesis%20Corrections/26-08-2023-thesis.docx#_Toc146460936

Table of Figures

processing using the YOLOX object detection model; and manual cell counts
(right/orange) using a microscope. The deviations from the mean do not indicate
inaccuracies in the counting method, but rather highlight the non-uniform

distribution of cells in each imaged volume. .........cccceeeieieiiiciec e, 191

Figure 95 — Layout of system used in the growth rate experiment to measure cell count using

acoustically focussed IFC. ........uuiiiiieeee ettt e e 199

Figure 96 - Cell counts measured through manual microscopy of pipetted and preserved R. salina

throughout the growth rate experiment.........cccoccveeeeiiieeecciieee e 200

Figure 97 - Automatically measured cell counts based on IFC images of the 4 cultures of R. salina

during the growth rate experiment. L1 is sterile medium, and acts a control.205

Figure 98 — Combined graph of manual (dots) and automatic IFC (lines) cell counts measured
throughout the growth rate experiment. Orange bars represent the times when
the incubator’s lights were on, and black vertical lines are the times at which the
samples were agitated and manual samples drawn off for verification. L1 is

sterile medium, and acts @ CONTIOl. .....coovvveviviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 206

Figure 99 - A single frame taken from the IFC during imaging of R. salina cells during the growth

rate experiment, demonstrating successful acoustic focussing of all cells...208
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Abbreviations and Definitions

Abbreviations and Definitions

Fi¥o =1 o o WO Adaptive Moment Estimation: A stochastic optimization algorithm
that adaptively adjusts learning rates for each parameter based on

estimates of first and second moments of the gradients.

AP o, Average Precision: A summary statistic of precision-recall curves,
reflecting the average precision value for recall values over the entire

range.

27 T Batch Normalisation: A type of normalisation method applied in

CNNs which normalises the inputs of each layer for each batch.

CCD.eeeeee e, Charge Coupled Device: A sensor used in digital imaging to convert

light into an electronic signal.

CMOS ...t Complementary Metal Oxide Semiconductor: A fabrication process

used for integrated circuits including image sensors.

CNN oo Convolutional Neural Network: A class of machine learning model: a
neural network that uses convolutional layers to perform a

mathematical operation on input data, typically images.

CPR .ot Continuous Plankton Recorder: A device towed behind ships to

collect plankton samples.

CSP e Cross-Stage Partial: A neural network design approach that separates
the a layer’s output into two stages and designed to improve the

network's efficiency.

DVM .o, Diel Vertical Migration: A behaviour observed in many aquatic
organisms involving movements up and down in the water column

over a 24-hour cycle.

EOV..uuiiiiiiiiieeeievevivivevevvnevananns Essential Ocean Variable: Fundamental physical, chemical, and
biological variables used in monitoring, modelling, and managing the

ocean.

ESD ..t Equivalent Spherical Diameter: The diameter of a sphere that has the

same volume as a given particle.

ESF e Edge Spread Function: The spatial response of an imaging system to

an edge.
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L ST Flow Cytometry: A technique used to measure the properties of

particles in a fluid as they pass through a laser.

FCRN ..ot Fully Convolutional Regression Network: A type of CNN which uses

convolutional layers for both feature extraction and regression.

FEM oo, Finite Element Model: A computational method for finding
approximate solutions to partial differential equations representing

physical systems.

FITCoveeeeeieee e, Fluorescein Isothiocyanate: A fluorochrome used in flow cytometry

to label antibodies.

FN oo False Negative: An outcome where the model incorrectly predicts the

negative class.

FP et False Positive: An outcome where the model incorrectly predicts the

positive class.

[\ Feature Pyramid Networks: A type of CNN designed to efficiently
build high-level feature maps at different scales, improving the

detection of objects at varying scales in image-based tasks.

GOOS.....ieeeeeeeecee e Global Ocean Observing System: The international collaboration for

sustained observations of the oceans.

GPU oo Graphics Processing Unit: Computer hardware created for performing
parallel computations on large data sets. Commonly used in graphics,

simulations and deep learning.

HAB ..ooiiiieeieeec e Harmful Algal Bloom: A rapid increase in the population of algae in an
aquatic system, which is harmful due to the production of toxins

and/or oxygen depletion.

IFC e, Imaging Flow Cytometer: An instrument combining flow cytometry

and microscopy to analyse particles in flow.

IFCB ..t eerieeee e Imaging Flow CytoBot: An automated, submersible Imaging Flow

Cytometer for analysing marine microorganisms.

o] U USRI Intersection Over Union: A metric for the overlap between two
bounding boxes or other areas, calculated as the area of intersection

divided by the area of union.
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KLIM oo Krimholtz, Leedom and Matthaei: A model, named after its authors,

that predicts the electrical properties of piezoelectric transducers.

[ 5 Light Emitting Diode: A semiconductor device that emits light when

an electric current is passed through it.

[ 2 Local Response Normalisation: A type of normalisation method
applied in CNNs which normalises the activities of neurons based on

the activity of adjacent neurons.
[ ST Line Spread Function: The first derivative of the ESF.

MAE ... Mean Absolute Error: A measure of prediction error calculated as the
average of the absolute differences between predicted and actual

values.

MSE oot Mean Squared Error: A measure of prediction error calculated as the
average of the squares of the differences between predicted and

actual values.

MTF oo, Modulation Transfer Function: The spatial frequency response of an
imaging system; measures the ability of the system to reproduce the

contrast of an object at different spatial frequencies.

NPP..oooeeee e, Net Primary Productivity: The residual of photosynthetic carbon

fixation minus respiration,
OD ottt Optical Density: The measure of light absorbance in a material.

PAN ..o, Path Aggregation Network: A type of neural network architecture
used in object detection which improves flow of data between

different layers.
PMT oo, Photomultiplier Tube: A sensitive and fast photodetector.

[ 2 o Photosynthetic Photon Flux Density: The number of
photosynthetically active photons incident per unit area per unit

time.

PSU oo, Practical Salinity Units: A unit of measurement for the salinity of

water based on its electrical conductivity.

PZT e, Lead Zirconate Titanate (Pb[Zr(x)Ti(1-x)]03): A type of ceramic that

exhibits piezoelectric properties.
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Rectified Linear Unit: A function used in neural networks that outputs

the input directly if positive, otherwise, outputs zero.

Spatial Pyramid Pooling: A layer used in CNNs which generates fixed-
size outputs regardless of input size, by applying pooling operations

at various scales.

True Negative: An outcome where the model correctly predicts the

negative class.

True Positive: An outcome where the model correctly predicts the

positive class.

Technology Readiness Level: A scale used to assess the maturity level

of a particular technology.

Water Framework Directive: The European Union directive that sets a

framework for protection and management of water bodies.

You Only Look Once: A real-time object detection system that

identifies objects in images in a single pass.
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Chapter1 Introduction

1.1 Motivation

Understanding the processes, pressures and changes acting upon the oceans requires sustained,
global observation of physical, chemical and biological variables. Global quantification of ocean
state has been the ultimate aim of observational oceanography from its inception and has
resulted in the establishment of an intergovernmental panel on ocean observation, the Global
Ocean Observing System (GOQOS). In the past decade a clear picture of what measurements are
required for adequate assessment of ocean state has emerged. These measurements have been
described as the Essential Ocean Variables (EOVs) and fall into physical, biogeochemical and

biological/ecosystems categories.

Of these, the biological/ecosystems EOVs face particular challenges with respect to the
collection, processing and standardisation of measurements. Accurate quantification of
phytoplankton biomass and biodiversity is of critical importance to biological oceanography yet is
underdeveloped due to technical limitations which are explored in Chapter 2. The phytoplankton
EOV is important due to the reliance of higher trophic levels on phytoplankton quality and
abundance; the essential role of phytoplankton in carbon cycling and oxygen production; the
effects of harmful algal blooms and the reflection of water quality in phytoplankton community

structure.

Phytoplankton diversity has been studied for over a century, with modern observations still
relying on similar procedures to the earliest investigations. At present, studies into taxonomic
distribution usually rely on the collection of cells using drag nets and manual microscopic
examination in order to determine species or lower order classification. This process is labour-
intensive, time-consuming, unreliable and requires the decoupling of spatial and temporal
information. Autonomous devices exist and are capable of automatic identification of
phytoplankton in flowing samples at high accuracies but are at presently too expensive and
complex to allow widespread adoption — as will be discussed in the following sections, a typical

autonomous in situ phytoplankton microscope can easily cost over £100,000, which when
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including training, staff time and related equipment costs could be too expensive for many

research programmes.

The motivation of this research, therefore, is the design, fabrication, characterisation, and use of

a novel, low cost and simple device for the autonomous imaging of phytoplankton.

1.2 Research Objectives

The primary objective of this thesis are to develop and use a low-cost, automatic imaging flow
cytometer by using acoustophoretic levitation to position phytoplankton cells into a sheet within
the focal plane of a camera, and thus image cells at high throughputs. The device will be
developed at as low a cost as reasonably possible such that it is accessible to resource-
constrained laboratories, in order to enable an increased use of imaging within global ocean
observations. Included are chapters on the background, motivation and requirements of the
device, the use of cutting-edge image processing algorithms to automatically analyse images and
an investigation of the complete system applied to real-world phytoplankton research scenarios.

The following sections briefly describe the content of each of the following chapters.

1.3 Chapter Outline

13.1 Background (Chapter 2)

The background chapter covers a literature review investigating the ecological, climatological and
socioeconomic importance of phytoplankton on global and regional scales, the history of
phytoplankton observation, the state of the art and next-generation observation techniques.
Imaging Flow Cytometry is identified as a candidate next-generation technology holding great
promise for increasing the frequency and richness of observation while reducing cost compared
to traditional methods. Following a review of current and prototype/research Imaging Flow
Cytometers (IFCs) used in phytoplankton observation and monitoring, the constituent
components of IFCs are investigated. These include the imaging technologies (cameras and

illumination) and particle focussing techniques (hydrodynamic, inertial and acoustophoretic).
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Acoustophoresis is shown to hold promise for low-cost novel IFCs and a summary of the

literature of acoustic focussing is presented.

13.2 Design and Characterisation of a Novel Low-Cost IFC using Acoustophoretic

Focussing (Chapter 3)

The engineering work detailed within this chapter is broken into the rationale and process for
development of each subsection of the imaging flow cytometer, the design and fabrication
directions chosen and the performance characterisation of the imaging and acoustic focussing.
Transfer impedance modelling (KLM) and computational (FEM) simulations of the acoustic flow
cell are detailed. A frequency-response experiment is carried out to determine the resonant
frequencies of the fabricated flow cells, and a methodology for determining acoustic focussing
performance from double-exposed images of polyester beads developed. The latter method

proved unsuitable, and the reasons for this are explored.

A method for determining the resolution of the optical system (MTF) is developed and quantified,
and experiments to measure MTF using a research microscope presented. The benefits and

limitations of the MTF approach are discussed.

Finally, the complete system (acoustically-focussed flow cell, illumination apparatus, imaging
optics and structural components) is designed, assembled and the image quality assessed using

the previously discussed technique.

1.3.3 Image Analysis for the Quantification of Phytoplankton in IFC Images (Chapter 4)

After developing the acoustic, fluidic, optical and structural design of the IFC, an investigation
into automatic image analysis for autonomously detecting and counting phytoplankton cells
within images from the IFC was carried out. This chapter details the process of using traditional,
feature-based image process algorithms before employing machine learning in the form of
convolutional neural networks (CNNs). A simple CNN used in a similar IFC is used as a baseline,

and is modified for the application within colour images of phytoplankton from the acoustically-

3
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focussed IFC. A comparison of the performance of this algorithm with that of manual cell-
counting by a human was carried out and it was demonstrated that the automatic approach was
unreliable. Finally, a cutting-edge object detection CNN was implemented and tested, and

showed performance rivalling that of a human operator.

134 Use of the Acoustically-Focussed IFC in Phytoplankton Experiments (Chapter 5)

In this chapter two experiments to quantify the performance of the IFC in addressing real-world
research problems are presented, showcasing its potential as a low-cost, high-throughput
imaging method to detect and count phytoplankton cells within preserved and living samples. In
the first experiment, the accuracy of the instrument in determining the abundance of preserved
phytoplankton cells is demonstrated, in a comparison with manual microscopy, and it is
determined that the novel IFC presented previously has the potential to reliably replace the
labour-intensive process of manually counting cells with a higher throughput and at a fraction of

the cost of commercially available IFC instruments.

Subsequently, the IFC system is applied to the study of live phytoplankton cells during their
growth within an incubator, where it was found that that the swimming velocity of these motile
cells is great enough to avoid their sampling into the fluidic system for processing. This finding
has implications for many other phytoplankton research studies, which do not regularly consider

the potential biases introduced by under-sampling motile species.
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Chapter 2  Background

2.1 Phytoplankton and Other Aquatic Microorganisms

2.1.1 Ecological Role

The ocean is a critical component of the global carbon cycle, containing as much as 50X more
CO2 than the atmosphere (Legendre et al., 2001). The oceanic carbon cycle has three
components; physical, chemical and biological, which together mediate fluxes of CO2 to and from
the ocean. The biological component of this system drives a globally significant net flux of CO2
into the ocean and is almost exclusively driven by photosynthetic net primary production (NPP)

(Falkowski et al., 1998).

Phytoplankton (Figure 1) are a diverse group of prokaryotic and eukaryotic photoautotrophic
microorganisms consisting thousands of described species and form the biological basis of the
oceanic carbon pump. Fossilised ancestors of contemporary cyanobacteria, the most abundant
group of phytoplankton, have been dated at around 3.5 billion years (Ga) old (Schopf, 1993) and
it is widely believed that oceanic photoautotrophy not only gave rise to the oxygen-rich
atmosphere suitable for higher forms of life but are direct predecessors of terrestrial plants

(Bhattacharya et al., 1998).
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RCC2499

RCC2501

RCC2487

Figure 1 — A selection of light microscopy images of phytoplankton sampled by Balzano et al.

during the 2009 MALINA cruise in the Beaufort Sea.

Across the ocean phytoplankton “fix’ approximately 45 gigatons of carbon per year, of which 16
gigatons sinks to the deep ocean where it is permanently stored in sediment (Falkowski et al.,

1998).

In addition to acting as the primary mechanism drawing CO2 from the atmosphere to the ocean,
these primary producers act as the basis of almost all higher forms of marine life and are adapted
to environments as diverse as arctic glaciers and subtropical gyres. As these unicellular
microorganisms also have fast lifecycles, high morphological heterogeneity, can be found in all
natural waters and respond quickly to environmental conditions, phytoplankton can also act a

biomarker of marine ecosystem health (Suikkanen et al., 2007).

Phytoplankton are not restricted to marine environments; freshwater bodies including lakes,
rivers and even potable water supplies also support large and complex phytoplankton

assemblages. As well as providing the primary production required to support freshwater aquatic

6
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life, freshwater phytoplankton occupy environments which are particularly influenced by
anthropogenic loadings such as nutrient enrichment and pollution. The response of the plankton
community to these factors can be measured and used to infer the level of impact faced by

particular water bodies.

The EU’s Water Framework Directive (WFD) uses the composition, abundance and biomass of
phytoplankton as a biological marker of freshwater ecosystem health (Schmidt et al., 2008); EU
countries are therefore legally required to measure the number and taxonomic composition of
microalgae, at regular intervals, in their lakes and rivers (Pasztaleniec and Poniewozik, 2010) . The
WEFD uses a series of ‘indicator species’ which are counted and have corresponding ‘scores’; the
sum of these scores, combined with indices according to algal size spectra and total biomass, is
then used to infer the relative health of the water body in question (Molina-Navarro et al., 2014,

Katsiapi et al., 2011).

2.1.2 Diversity

Phytoplankton are so globally ubiquitous and abundant that they contribute up to 45% of total
global photosynthesis despite representing only 2% of photosynthetic biomass (Thyssen et al.,
2008). Representing 12 taxonomic divisions within 3 kingdoms (Cavalier-Smith, 1993), the
phytoplankton group contains both pro- and eukaryotic organisms which can have autotrophic,
auxotrophic and mixotrophic nutritional strategies but are united by their possession of

chloroplasts.

With sizes ranging from one micron to several millimetres, the cellular volumes of phytoplankton
span at least 6 orders of magnitude (Maranon, 2015, Cloern, 2018). The relevant size fractions to
which phytoplankton belong are described (by cell width) as nano- (2.0-20 um), micro- (20-200
um) and mesoplankton (0.2-20 mm). Within these classifications, phytoplankton are joined by
the protozooplankton, a group including colourless flagellates and ciliates (Sieburth et al., 1978).
Though these species are phagotrophic (Schnepf and Kiihn, 2000) or osmotrophic (Richards et al.,
2012) and are thus not primary producers, protozooplankton nevertheless play an important role
ecologically (Burkholder and Glasgow Jr., 1997, Burkholder et al., 2008) and in carbon cycling

(Levinsen et al., 1999).

7
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The taxonomic diversity of phytoplankton is extensive, with great interspecies differences in cell
size, cell-wall composition, sinking rates and impacts on the biological carbon pump (Collins et al.,
2014). A summary of the major phylogenetic groups of phytoplankton is presented in Figure 2.
Some of the most studied subdivisions include the Rhizaria (a supergroup containing
Radiolarians); the Diatoms, Dinoflagellates, Coccolithophorids and Prasinophytes (chlorophytes,
containing green algae). An alternative approach to the classification of marine microorganisms,
which has particularly been developed since the development of metagenomics, is division into
functional groups, which links plankton with similar ecological roles (e.g. nitrifiers —

predominantly cyanobacteria; or calcifiers, such as some coccolithophores) (DeLong, 2009).

Hacrobia
Viridiplantae Coccolithophorids
Floridiophytes Excavata
Bangiophytes Rappemonads Cryptophytes
Euglenozoa
Embryophytes

Charophytes
Chlorophytes p Rhizaria

Mamielales Chlorarachniophytes

Foraminiferans

Glaucophytes
Cercozoa
Opisthokonta
Amoebozoa
Eustigmatophytes
Metazoans
Ciliates Pelagophytes Chrysophytes
aais Diatoms

Raphidophytes
Dinuﬂagellates Brown algae
Alveolata Heterokonta

Figure 2 — Phylogenetic Diversity of Marine Microorganisms — From Collins et al. (Collins et al.,

2014)
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2.2 Harmful Algal Blooms (HABs)

221 Description

Phytoplankton periodically experience dramatic increases in biomass of a single or few species, in
localised and transient events known as algal blooms which can be so large as to be visible from
space (Behrenfeld, 2010, Niemi, 1973). These events can provide large amounts of particulate
organic carbon to higher trophic levels as well as changing physical properties of the water body
such as light penetration and dissolved nutrients. Polar and subpolar regions of the ocean are
characterised by strong and predictable vernal blooms which are critically important ecologically,

dominating net primary production throughout the year (Moore and Abbott, 2000).

The effects of algal blooms can be negative, reducing dissolved oxygen availability in the water
column when they sink to depth and are decomposed by aerobic bacteria (Anderson et al., 2002).
Of the over 100,000 planktonic species described, at least 300 are capable of causing ‘red tides’,
where coastal regions experience severe deoxygenation resulting in widespread mortality of
higher trophic levels (Smayda, 1997). In addition, blooms of certain species such as the diatom
Chaetoceros convolutes can clog fish gills and cause asphyxiation directly (Hallegraeff, 1993). At
least 70 species are further capable of producing biotoxins (Smayda, 1997), such as domoic acid
(C1sH21NOg) produced by Pseudo-nitzschia australis (Lim et al., 2012). When blooms occur which
are toxic or otherwise indirectly harmful to ecosystems or human health, the events are termed
harmful algal blooms (HABs) (Anderson et al., 2002). HABs are not limited to marine and coastal
environments; freshwater species are capable of causing HABs posing particular risks due to their

proximity to humans, drinking water supplies, recreational spaces etc.

2.2.2 Impacts

HABs can have severe economic effects when occurring in or around fisheries: most first-world
countries mandate fishery closure when a certain level of cells from harmful species are detected
in water samples (or toxic products are detected above a regulatory threshold). The biotoxins
produced can undergo bioaccumulation/biomagnification in plankton-grazing shellfish, reaching
levels in individuals high enough to cause human mortality if ingested (Prakash et al., 1971,

Carmichael, 2001).
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The causative factors leading to the development of the blooms of toxin-producing species are
complex and it is not yet possible to predict HAB occurrence based solely on environmental
measurements. This is a problem as physiochemical variables are far easier to obtain than

biological factors, as elaborated on in Section 2.4.

The human illnesses caused by ingestion of bioaccumulated products of harmful algae are
paralytic-, diarrhetic-. neurotoxic-, amnesic- and azaspiracid shellfish poisoning. Except for
amnesic shellfish poisoning, which is caused by toxins produced by diatoms, all HAB-related
poisons are produced by dinoflagellates. A selection of the socioeconomic impacts caused by
HABs are summarized in the literature in Table 1. Even in purely economic terms HABs are clearly
a major source of concern — with costs ranging in the tens of millions of pounds per year it makes

sense to invest considerably into monitoring and understanding harmful phytoplankton.

10



Chapter 2

Table 1 — Recorded socioeconomic damages resulting from Harmful Algal Blooms, in no

particular order.
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2.3 Observed Trends and Future Behaviours

23.1 Climate Change and Ocean Acidification

The possible effects of climate change on algal blooms (and phytoplankton more generally) have
been extensively researched. Although a consensus has not yet emerged around the magnitude
of the impacts of a warmer, acidified ocean will have on these microorganisms (Hallegraeff,
2010), some conclusions about the types of effects likely to occur are widely backed up by
modelling and observational studies. Firstly, while the phylogenetic diversity of phytoplankton
and their disparate evolutionary histories provide community-level protection against change,
warming environments will favour smaller species and hence reduce overall diversity (Zohary et

al., 2021, Moran et al., 2010).

Shifts in both the spatial distribution of phytoplankton and the temporal dynamics of their
blooming is likely to occur: changes have been observed in historical measurement records
(Richardson and Schoeman, 2004, Trombetta et al., 2019) (though are difficult to decouple from
natural variability (Elsworth et al., 2020)) and models suggest an amplification of these effects
through the 21t century (Henson et al., 2010, Henson et al., 2018). The shifting phenology of
algal blooms will impact higher trophic levels and could adversely affect fisheries (Asch et al.,
2019). Biophysical modelling has indicated that heatwaves and changing water properties will
increase the occurrence of harmful cyanobacterial blooms (Paerl and Paul, 2012, Johnk et al.,
2008, Paerl and Huisman, 2009, Hayes et al., 2015), and that harmful dinoflagellate blooms will

increase in frequency, spatial extent and duration (Gobler et al., 2017, Glibert et al., 2014).

2.3.2 Land use change and Eutrophication

Changing land use has direct and indirect impacts on freshwater and marine ecosystems. Lakes
and rivers are especially affected by nutrient enrichment caused by runoff from agricultural land.
Freshwater phytoplankton are hence vulnerable to an additional set of anthropogenic forcings,
which in combination with a warming climate can change bloom timing (Shi et al., 2019),

community structure (Pomati et al., 2017) and overall abundance (Bussi et al., 2016).

12
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The importance of phytoplankton and the environmental changes that they face reinforce the
need for adequate monitoring and observation. Many of the changes hypothesised to be caused
by anthropogenic climate change are challenging to unpick from seasonal, annual, or decadal
cycles, and there is significant variability caused by a lack of observational data. The next sections
will summarise the state of the art in phytoplankton observation and lead into a discussion of

possible future improvements made possible by technological advances.

13
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2.4 Microalgal analysis techniques

24.1 Background

Given their critical roles in global carbon transport and marine ecology, and considering their
potential socioeconomic impacts, the quantity and diversity of phytoplankton and other
organisms found in the same size fractions are among the most measured features of the oceans.
‘Phytoplankton biomass and diversity’ is one of the priority ‘Essential Ocean Variables’ defined by
the Global Ocean Observing System, an international programme specifying key measurement
parameters and operated by the Intergovernmental Oceanographic Commission (Muller-Karger

and Kudela, 2016).

Phytoplankton have been studied since before 1800 (Fogg, 1990), with routine observations
becoming common during the latter half of the 20*" century. The Continuous Plankton Recorder
(CPR) (Hardy, 1939), for example, has been used since 1931 and is now used globally within five
regional surveys (Batten et al., 2003). Consisting of a silk mesh continuously fed through a roller
mechanism within an outer body, the CPR is towed by ships of opportunity (e.g. ferries, freight
vessels etc), and collects phyto- and zooplankton large enough to be retained by the 270 um
mesh pore size. CPR data has been the subject of over 1000 peer-reviewed articles and allows the
analysis of long-term trends, crucial for understanding the impact on plankton of future climate

change.

The CPR has the largest spatial extent of any phytoplankton observation programme and, as the
phytoplankton are collected and stored, can provide taxonomically-resolved abundance data
(Lombard et al., 2019). Despite the many benefits of the CPR there are still significant limitations.
Most importantly, manual microscopy is still the fundamental analysis technique for preserved
CPR samples. This necessitates the retention of a team of specialist taxonomists and severely
limits the number of collected cells that can be analysed: only around 1/8000™" of the total
number of cells collected are identified. Furthermore, the large footprint of the unit (approx. 1m
long and weighing 85kg) and requirement that it be towed limits the ease of deployment,
especially for short-term studies, and prevents observations on coasts/rivers, fixed moorings or

on smaller vessels.
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2.4.2 Technologies

Characterisation and monitoring of microalgae has mainly been conducted using optical
microscopy (Karlson et al., 2010, Tsaloglou, 2016), which is costly, labour-intensive, low-
throughput and relies on analysis of images by expert taxonomists, a specialism which is in steep
decline (Culverhouse et al., 2006). Furthermore, microscopy remote from the point of sampling
also necessitates the use of fixative agents which require additional staff time and chemicals and
can, depending on species, drastically alter cellular morphology and pigmentation from that seen
in the wild (Dunker et al., 2018). Species composition measurements with high temporal and
spatial resolutions are currently impossible, yet remain a central aim of research into aquatic

primary production (Smetacek and Cloern, 2008).

Due to these limiting factors several remote and in-situ analysis techniques have been
developed, including the use of satellite colourimetry and bulk chlorophyll fluorescence. These
bulk analysis techniques have been widely adopted for approximating aquatic primary
production rates and phytoplankton size ranges (Brotas et al., 2013, Sun et al., 2022) but provide
little or no taxonomic data and are of no use in monitoring HAB-forming species specifically
(Yoder et al., 2010). Additionally, extrapolations from bulk measurements to the characteristics
of single cells can be unreliable due to high heterogeneity in, for example, chlorophyll to biomass

ratios of different species (Haraguchi et al., 2017).

As such, there has been a recent drive towards sensors which analyse cells individually; the first
major breakthrough in this effort was the application of flow cytometry (FC) to plankton
enumeration and identification (Collier, 2000) (Figure 3). FC measures, using photomultiplier
tubes (PMTs), PIN photodetectors or avalanche photodiodes (APDs), the fluorescence intensity,
forward- and side-scatter of each cell intersecting one or more collimated light sources, typically
lasers (Collier, 2000). The value of FC monitoring is limited by the low information content of
recorded data: while cell size, pigment concentration/ratio and basic morphological
measurements (e.g. circularity, equivalent spherical diameter, complexity) can be derived from
scatter and fluorescence signals, additional analysis and verification by microscopy is required to
determine taxonomic identity, health, life stage, etc. (Marie et al., 2014, Dubelaar and Gerritzen,

2000)
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Flow Cytometry
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Figure 3 - Principle of standard flow cytometric analysis of particles suspended in a fluid sample.
Particles flow past a detector where they are interrogated by a laser. Detected
scattering and wavelength changes of the laser signal can be used to infer particle size,

approximate shape, fluorescence.

While most flow cytometers are large instruments confined to laboratories, miniaturised FCs can
be brought aboard research vessels in order to analyse at the point of sampling, i.e. without the
use of fixatives (Alvarez et al., 2011). Recently, several automated, in-situ FC instruments have
been developed (Dubelaar et al., 1999, Olson et al., 2003) which enable the automated
continuous analysis of phytoplankton optical properties at fixed or towed locations (Dubelaar et
al., 1999, Olson et al., 2003). However, current platforms can only sample semi-continuously, are

expensive and lack autonomy (Tsaloglou, 2016).

The combination of the throughput of flow cytometry, the information content of microscopy
and high-accuracy automated image analysis in a single package has been a significant aim of
sensor development for biological oceanography over the last two decades (Sieracki et al., 2010,
Blaschko et al., 2005, Benfield et al., 2007). Platforms which image individual particles in a sample
moving through a flow cell are known as Imaging Flow Cytometers (IFCs) and have been

developed simultaneously for biomedical and environmental applications. IFCs have been used in
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a variety of research targeting both marine and freshwater phytoplankton and will be the focus

of the next section.
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2.5 Imaging Flow Cytometry

2.5.1 Introduction

Possible imaging modalities of IFCs encompass bright field, fluorescence, holography, phase-
contrast, and other techniques, but all collect multidimensional data via digital image sensors
rather than PMTs or other 1-dimensional sensors. This potentially enables continuous taxonomic
classification to the same level as optical microscopy while sampling many more cells per second
than possible manually. Furthermore, automated IFC enables novel sampling methodologies
previously impossible, including continuous monitoring of plankton morphological change
induced by changing nutrient conditions (Lei et al., 2016) and identification of viability and cell-

cycle phase (Stavrakis et al., 2019, Dashkova et al., 2017).

Successful implementation of continuous automated IFC poses a number of challenges which
commercially available instruments have yet to fully overcome (Heo et al., 2017). Imaging of
moving particles requires camera frame rates and exposure times sufficient to avoid motion blur
along the flow axis (Wu and Chan, 2013) — to achieve high throughout, particle velocities typically
exceed 1ms? (Goddard et al., 2007). Acquiring an image with enough contrast necessitates the
collection of a sufficient number of photons during the camera exposure window; the light
source must be capable of providing this high-intensity illumination (Miura et al., 2018, Hess et
al., 2015). Particles must be confined to the focal plane of the imaging system; those flowing too
close or far from the objective will be out of focus (Holzner et al., 2018). Data volumes from IFC
instruments pose a significant storage and transmission challenge; image files are extremely large
compared with FC data and IFC devices may generate many hundreds of gigabytes of data per
day of operation (Han et al., 2016). Data processing is a significant bottleneck as classifying high
volume, complex images is a nontrivial computing task. Difficulties shared by both FC and IFC
design include clogging of the flow cell and shear forces on particles, which, under high flow
regimes, can deform or damage cells (Zmijan, 2016). Finally, the size, robustness, cost and

complexity of the instruments must be minimised in order to facilitate wide deployments.

These challenges will be further investigated, with respect to current instruments and recent
developments in the fields of microfluidics, imaging devices and manufacturing techniques, in the

following sections.
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2.5.2 Current IFC devices used for phytoplankton analysis

Commercial IFCs

Imaging flow cytometers have been used in biological oceanography to evaluate phytoplankton
species dynamics (Campbell et al., 2016, Brownlee et al., 2016, Bolanos et al., 2020, See et al.,
2005) and taxon-specific responses of phytoplankton to short- (Anglés et al., 2015) medium-
(Angles et al., 2019, Kamykowski et al., 2013) and long-term environmental change. In situ IFC
has allowed the detection of HABs (Campbell et al., 2013, Campbell et al., 2010, Kudela et al.,
2008, Buskey and Hyatt, 2006) and analysis of bloom dynamics (Laney and Sosik, 2014, Zarauz et
al., 2008, Cetinic et al., 2014). Analysis of ballast waters (for invasive plankton species)(Romero-
Martinez et al., 2017), detection of harmful algae in watersheds for drinking water (Park et al.,
2019) and algal life-cycle characterisation (Traller and Hildebrand, 2013, Dapena et al., 2015)
indicate the potential of IFC for novel phytoplankton research for which traditional microscopy

would be insufficient or impractical.

A recent review article which investigated the tools and technologies available for in situ
biological oceanography highlighted Optical Sensors for in situ Plankton Monitoring as one of two
areas needing rapid cost reductions in order to expand observational capacity and fully

democratise access to instrumentation (Wang et al., 2019).

A separate article in the same special issue looked in more detail at the specific platforms and
instruments available for optical detection and identification of plankton cells and provided a
review of the commercially available imaging flow cytometers currently known to be used in the
ocean sciences (Lombard et al., 2019). An adapted table of the instruments identified in this

article is presented below, in Table 2.
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Table 2 - Table of commercial imaging flow cytometers used in biological oceanography for the
purpose of plankton observation. Reproduction of data produced in Lombard et al..

ESD: equivalent spherical diameter

Instrument Size Range Sample Use Case Approximate | Seller

(ESD) Throughput Cost [UK £]

[um] [uL/min]
Imaging 10-80 250 In situ / on- 125,000 McLane
FlowCytoBot board / lab
(IFCB)
CytoSense and |1 —800 5-1000 In situ / on- 90,000 CytoBuoy b. v.
CytoSub board / lab
FlowCam 0.3-30 20 On-board / lab {90,000 Fluid Imaging
Nano Technologies
FlowCam 2X: 75-1000 |50-5000 On-board / lab |45-75,000 Fluid Imaging
Technologies

(different 4X: 20-3000 |(depending
objectives & on flow cell)
flow CEHS) 10X: 10-100

20X: 3-50
FlowCam 300 - 5000 100,000 - On-board / lab |45,000 Fluid Imaging
Macro 900,000 Technologies
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The commercial instruments presented above clearly reinforce the arguments laid out by Wang
et al. regarding the need for lower-cost imaging devices in oceanography. With a minimum cost
of £45,000 (more when considering flow cells, objectives, software, training, etc), current IFCs are
too costly for widespread adoption on routine scientific cruises and in small-scale experiments.
The budgetary considerations of laboratories in resource-constrained environments means that
IFC is a methodology inaccessible to many researchers, and hence large swathes of global coast
lack any phytoplankton imaging data. Furthermore, the limited size ranges capable of being
analysed by the instruments described in Table 2, and their low throughputs, demonstrate the

trade-offs that must be considered when addressing specific scientific goals.

To further illustrate the limited scales of phytoplankton for which each instrument is appropriate,
Figure 4 provides a graphical representation of the size spectra each instrument is able to
analyse, with the red bars giving the size ranges that have been quantitatively cross-validated

with other more developed measurement techniques (Lombard et al., 2019).
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Figure 4 - (Adapted from Lombard et al ) Graphical illustration of the size ranges (in ESD,
equivalent spherical diameter) each of the IFC instruments discussed in their review
is capable of imaging. Note that CytoSense/CytoBuoy, while here presented as
having the largest range, is actually a combination standard and imaging flow
cytometer, and that imaging alone is likely to have a very similar measurement
window to the IFCB (the actual imaging size range is unpublished). The red bars
indicate the possible analytical size range which has been cross-validated with
other established techniques as opposed to merely those published by the device

manufacturers (grey dotted bars).

The available IFC instruments are therefore expensive, have low sample throughput, and are only
able to simultaneously image plankton of a narrow range of sizes. An analysis of the constituent
elements of imaging flow cytometers follows, in which the source of these limitations and

possible avenues for addressing them is discussed.

Research/Prototype IFCs

Several IFC systems in various stages of development have been demonstrated for phytoplankton
imaging. A team of French researchers based at IFREMER (L'Institut Fran¢ais de Recherche pour
I'Exploitation de la Mer) and The University of Mons sought to develop a cheaper and higher-

throughput adaptation of the FlowCam, which they named FastCAM (Colas et al., 2016). The
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FastCAM uses off-the-shelf optomechanical components from Thorlabs and a 2-megapixel, high-
speed (340 FPS) camera. The device uses a FlowCam flow cell, and has a sample throughput of 10
mL/15 min (40 mL/hr). Images from the FastCAM have higher spatial resolution than the
FlowCam, and overall cost is lower. The main drawback is that the device is still in a prototype

stage and requires manual assembly and alignment, which can be challenging for non-specialists.

One device which was developed to meet similar goals as those discussed for this project is the
PlanktonScope, a modular IFC recently developed by engineers at Stanford University.
PlanktonScope is based around a Raspberry Pi microcontroller and camera module, and is
extremely low cost (< US $500) (Pollina et al., 2020). This device is open-source, based around
disposable plastic flow cells, and can image 1.7 mL/min. The optical setup can achieve a
magnification of 0.75X and the camera has a resolution of 1.5 um, but the minimum object size
demonstrated by the authors to be successfully imaged was 35 um. The PlanktonScope
represents a major step toward lower-cost IFCs and is primarily aimed at citizen scientists, with
the stated aim of the authors being to enable citizen owned small vessels (e.g. sailing yachts) to

analyse plankton with very low startup and training cost.

A group at the University of California recently demonstrated a low-cost (~US $2500) prototype
IFC based around the principle of holography (Gordcs et al., 2018). Incoherent light is used to
illuminate phytoplankton within a sample and 3D reconstructions of the cells can then be
computationally derived using the process of deconvolution (Figure 5). This particular IFC uses
deep-learning based phase-recovery for hologram deconvolution, which allows the accurate
recovery of true-colour images without explicitly programming the relevant optical transfer
equations, which would be very complex. An additional advantage of this approach is that deep
neural networks run extremely well on graphics cards. Gordcs et al. exploit this fact by using a
powerful GPU to perform image recovery in real-time (ie. Faster than the camera’s frame rate).

The device has a throughput of 100 mL/hour.
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Figure 5 - Raw holograms and reconstructed phytoplankton images generated by the prototype
IFC developed by Gordcs et al. (2018). Each hologram must be processed into a
RGB image via a computational process called deconvolution, which in this work

was performed by a Deep Neural Network.

253 Camera Technologies

The two fundamental technologies behind digital imaging are charge-coupled devices (CCDs) and
complementary metal-oxide-semiconductor (CMQOS) sensors, both of which have seen use in
commercial IFC. These sensors both convert accumulated photons into charge on pixel arrays
using the photoelectric effect. While entire CCD arrays are read by a single analogue-to-digital
converter (ADC) and amplified, on a CMOS sensor, each pixel has its own amplifier and ADC. This

difference is illustrated in Figure 6 which depicts the pixel layouts of each sensor architecture.
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Figure 6 — CCD and CMOS sensor architectures. While CCDs, which are more common, use a single
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ADC for the entire pixel array, CMOS sensors, which have seen rapid technological
improvements, have more complex pixel topologies due to every pixel having its own

ADC.

The practical result of this difference is that CCDs usually produce higher-quality and lower-noise
images but have a slower readout time due to the entire pixel array being converted to signal
simultaneously. CCD manufacturing is more developed than CMOS, but recent, rapid
improvements in CMOS technology have led to comparable image quality between the sensors. A
major advantage of CMOS, in addition to much faster image acquisition and readout, are their far

lower power requirements than CCDs (Up to 100X lower Wattage) (Hain et al., 2007).

The Imaging Flow Cytobot (IFCB)(Olson and Sosik, 2007a), a submersible IFC platform capable of
in-situ imaging of plankton in the 10-100 um range, uses a Sony EXview HAD monochrome CCD,
which, when coupled with the on-board 10X objective, can image with a resolution of ~1um and
a frame rate of ~11fps. The FlowCam series of instruments use both CCD and CMOS, depending

on model.

A series of benchtop instruments used extensively in biomedical research and the life sciences
(Headland et al., 2014, Lopez-Riquelme et al., 2013, Gautam et al., 2018)e.g. (Headland et al.,
2014, Lopez-Riquelme et al., 2013, Gautam et al., 2018) but which is not routinely used in
oceanography due to the cost and size (and therefore is not included in the review in Section

2.5.2), the Amnis ImageStreamX, use a custom time-delay-integration (TDI) CCD to image flowing
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particles (Figure 7). This specialised readout technique allows high quality imaging despite
particle motion by shifting pixel values along the sensor at the same speed as particle movement,

which is equivalent to ‘tracking’ the particle by moving the entire camera(George et al., 2004).

|

autofocus

in flow

Figure 7 — ImageStreamX Mk Il optical path showing fluorescence laser and wideband red
brightfield illuminator. A complex custom detector simultaneously detects different
fluorescent channels and brightfield images, made possible by a spectral

decomposition of the signal into different colour bands.

254 lllumination Techniques

Numerous lighting setups have been used on commercial and research IFCs. Developing upon
traditional FC implementation, the FlowCam8400 IFC (Figure 8) uses a single diode laser and a
xenon flash lamp to illuminate cells in order to image simultaneously in brightfield and two
fluorescence channels. While this arrangement has the benefit of providing additional
morphological information via detection of autofluorescent or stained components, it requires

expensive dichroic mirrors and precise optical alignment.
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Figure 8 - FlowCam8000/8400 IFC optical setup. One laser and one flash lamp (dotted box)
illuminate the detection region and two PMTs provide wavelength-configurable

fluorescence detection while a CCD images in brightfield.

Recently there has been a trend towards using inexpensive, high-power LED illumination as part
of IFC optical setups; these offer smaller footprints and comparable power to laser sources at a
fraction of the price. For fluorescence imaging, however, LEDs are suboptimal compared to diode
lasers due to their typically wider emission spectra and lack of collimation, both of which are

required for optimal detection limits.

The holographic IFC presented by Goérocs et al. (2018) and described in the previous section uses
a pulsed chip-on-board (COB) LED to provide narrowband red, blue and green illumination to the
flow cell. Combined with a modern low-cost CMOS camera, this optical setup enables the IFC to
maintain a small footprint while displaying very promising results at a total cost of under $2500
USD (Figure 9). This setup provides fluorescent imaging but requires real-time image
deconvolution to reconstruct the holograms it records and thus necessitates connection to a

computer with a high-performance graphics card, which are often expensive.
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Figure 9 - Gorocs et al. low-cost holographic IFC optical setup, showing the miniturised 3-colour
illumination COB (inset). Though a holographic imaging device, this system has a similar

purpose to the IFC proposed in this thesis.

255 Focussing Techniques

Particle focussing is a significant area of IFC development and is one of the major controls on IFC
throughput and image quality. In traditional FC (Figure 10), coaxial hydrodynamic focussing
typically aligns particles into a single-file stream through the detection region. This is achieved by
injecting sheath fluid around the sample, narrowing the sample flow profile while maintaining
laminar flow. Hydrodynamic focussing can take place in 2- or 3 dimensions, depending on

placement and number of sheath fluid ports as illustrated by Figure 11.

Sheath fluid

Hydrodynamic focusing region

Cells in single file

Figure 10 — Cross-sectional illustration of the hydrodynamic focussing principle. Injected cells are

focussed into a single-file stream by laminar flowing focussing fluid.
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(@) )

Figure 11 — 2-dimensional (a) and 3-dimensional (b) hydrodynamic focussing. In these
simulations a red buffer fluid controls the flow profile of a blue carrier fluid. Adapted
from Hamilton et al.

Other techniques include inertial focussing, which has the advantage of not requiring sheath fluid

or other external forces. Inertial focussing uses wall effects and gradients in shear forces

developed using specially designed flow channels (e.g. serpentine channels) to position particles
in the centre of the detection region (Yang et al., 2018b). A schematic of the process of inertial
focussing within a serpentine channel is presented in Figure 12, adapted from Di Carlo et al.

(2007). While holding great potential for medical IFC where cells will usually be of a known,

narrow size range, the large heterogeneity of microalgae cell sizes has so far prevented inertial

focussing being successfully demonstrated for an instrument designed to focus natural

phytoplankton communities.
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Figure 12 — Schematic adapted from Di Carlo et al. illustrating the principle of inertial focussing of

particles within a microfluidic serpentine channel.
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Some IFCs are designed to function without particle focussing. The FlowCam series of
instruments, which is particularly popular in biological oceanography, being the most cited device
in a recent review of IFC in the field (Dashkova et al., 2017), does not move particles in flow using
any of the methods discussed. Instead, patented optics based around a Fresnel lens phase plate
enhance the depth of focus of the objective lens, at the cost of image resolution. This allows the
mechanical complexity of the instrument — and the likelihood of clogging or other failure — to be
minimised while maintaining high sample throughput. For larger particles (e.g. large diatoms,
zooplankton), this is clearly advantageous; but for smaller phytoplankton, the lower resolution
will be a limiting factor which prevents analysis below a certain size threshold. For the purposes
of identification (rather than just measurement and counting), sacrificing resolution will
significantly lower the accuracy of taxonomic classification, including classification performed by

automated methods such as neural networks, which are explored in Chapter 4.

The final focussing technique of note, and the technique upon which the remainder of this thesis
will build, is acoustic focussing. Acoustic levitation, or acoustophoresis, makes use of acoustic
pressure to manipulate particles and can be applied to microfluidic systems by generating
ultrasonic waves within the carrier fluid. The study of acoustofluidics has been developed over
the last decade due to its purely mechanical, gentle repositioning of particles and has been used
in research where non-contact, label-free particle separation and manipulation is required. As
well as acoustic focussing and alignment of particles within fluids (Yang et al., 2018a, Jayasinghe,
2020), acoustofluidic devices have been used for cell trapping/concentration (Leibacher et al.,
2015, Evander et al., 2007, Fornell et al., 2019, Bach and Bruus, 2020), cell sorting/separation
(Huang, 2019, Zhang et al., 2020, Yang et al., 2018c), cell differentiation (Wu et al., 2019a, Wu et
al., 2019b, Xie et al., 2020), mechanical stimulation during cell culturing (Li et al., 2014) and many

other applications within the micron size range.
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Concentration, buffer-exchange, separation and alignment, four of the most common
acoustofluidic applications which are particularly of interest in the life sciences are illustrated in
Figure 13 (Antfolk and Laurell, 2019). For the purpose of acoustic focussing within an IFC,
alignment into a single layer is most common, though parallel processing of two or more layers

may be desired in some instruments.
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Figure 13 — (Reproduced from Antfolk and Laurell 2019) The four most common applications of

acoustofluidic devices.

The principle and details of the acoustophoretic approach to particle positioning in imaging flow

cytometry are expanded upon in Section 2.6.
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2.6 Acoustofluidics

2.6.1 Introduction

Acoustic radiation pressure within a fluid system causes acoustic discontinuities (particles or
second-phase fluids) to experience small forces. By inducing an acoustic standing wave with a
half-wave resonance, suspended particles are typically pushed toward a central pressure
minimum known as an acoustic pressure node. The acoustic force acting upon particles is
described by Equation 1 (Bruus, 2012), which in the case of a planar standing wave simplifies to

Equation 2 (Lenshof et al., 2012) .

Frad — —(‘mTag)V(fl (o) —fzzpo(v%))'

2poch

(Pp — Po)

f =1 kp f —
' ko' " (2, + po)

Equation 1 — Equation for Primary Acoustic Radiation Force, F° where: a is the particle radius; Ko
is the compressibility of fluid; K, is the compressibility of the particle; p1 is the

pressure field; vi is the velocity field; p, and po are density of particle and fluid,

respectively; co is the speed of sound in the fluid.

Fo, = 4ma3E,ksin (2kz)®

Equation 2 — Acoustic Radiation Force, Fa in a one-dimensional standing plane wave. Where a is
the particle radius; E.c the acoustic energy density (Equation 4); k the wavenumber
(2mtf/co); f the frequency; z the distance from the pressure node in the wave

propagation (thickness) axis; @ the acoustic contrast factor (Equation 3):

2
_ Py +3(pp — Po) _1poch
(2pp +p0)  3ppcp

Equation 3 — Acoustic Contrast Factor, ®, which determines the sign of the Acoustic Radiation

Force acting upon a particle in a standing acoustic wave. Particles with negative ®

move away from the pressure node; particles with positive @ are pushed toward it.
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Equation 4 — Acoustic Energy Density, Ea. P is the pressure amplitude, which can be measured
experimentally in an acoustofluidic system or analytically calculated based on

modelling, as in Section 3.3.2.

Two key observations to make from these equations are that the acoustic force acting upon
particles scales with the cube of the particle radius (Equation 2) and that the direction of motion
induced by the force is determined by the relative differences between the density and
compressibility of the particle and that of the carrier fluid, as described by the acoustic contrast

factor (Equation 3).

By applying a sufficient acoustic radiation force to particles in a flow cell, acoustophoretic
levitation can be achieved. In this situation, the sinking rate of particles due to gravity is
overcome by the acoustic forces, and all particles which have a positive acoustic contrast factor
with their carrier media are pushed toward pressure minima whose positions depend on the
excitation frequency. By exciting a half-wave resonance with one pressure node in the (axial)
centre of the flow channel, all suspended particles focussed to this central position. Particles with
negative acoustic contrast factors with their media undergo the opposite force, moving toward
pressure anti-nodes at the top and bottom of the flow cell. As lipids have negative acoustic
contrast with water, algae with extremely high lipid content, such as those used in biotechnology,

e.g. biofuel production, may never focus to the pressure node of a half-wave resonator.

2.6.2 Current Acoustically Focussed IFC Devices

Acoustic focussing has been developed due to a number of benefits compared with other
techniques: the forces acting upon cells are gentler than in hydrodynamic focussing, with less
tendency to damage or deform morphological features; the focussing is achievable across a wide
range of cell sizes; there is no need for consumables and the microfluidic complexity is greatly
reduced. Acoustic focussing has been demonstrated in research IFC instruments (Zmijan et al.,

2015) and as add-ons to the hydrodynamic focussing equipment of the IFCB (Olson et al., 2017)
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and Thermo-Fischer Attune® NxT IFC (Bautista-Chamizo et al., 2018); as yet, however, there is no
commercial IFC which solely uses acoustic levitation for focussing. The next section will build
upon the principle of acoustophoretic focussing and investigate the application of acoustic-only

particle focussing within a prototype IFC for phytoplankton imaging and analysis
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Chapter 3  Design and Characterisation of a Novel Low-

Cost IFC using Acoustophoretic Focussing

3.1 Introduction

As previously discussed, manual examination of microalgae using optical microscopy comes at a
high cost and low reliability and is unsustainable due to the limited and declining number of
taxonomists. Commercial IFCs, which, as was noted in Chapter 2, hold potential to address these
issues, have so far faced barriers to implementation as part of routine ocean observation due to
current instrument cost and complexity. As such, this chapter details work to address this
challenge, in the development an IFC with the lowest complexity and the cheapest possible off-

the-shelf components, and with as few custom-made components as reasonably possible.

A significant additional design goal is to increase cell throughput compared to existing
(hydrodynamically-focussed) instruments such as the IFCB. As was discussed in the previous
chapter, hydrodynamic focussing requires cells to be imaged one at a time. By utilising
acoustophoretic focussing, the new instrument developed in this chapter will be capable of
simultaneous imaging of multiple phytoplankton cells in a 2-dimensional plane, and so will have a
throughput significantly higher than would be possible with hydrodynamic or inertial focussing.
Since phytoplankton will be presented to the imaging optics in a plane of a constant distance
from the objective, no depth-of-focus extending optics are required, which ensures that cells will

be imaged at a higher resolution compared to unfocussed IFCs such as the FlowCam.

Furthermore, the complexity of this new system can be significantly lower than
hydrodynamically-focussed IFCs. Acoustic focussing works well in a simple straight flow cell
which is far simpler to fabricate than a serpentine or other channel suitable for inertial focussing,
a technique which is not currently used by major commercially available IFCs. Overall, the
method holds great promise for improving throughput while reducing the cost, size and
complexity versus current commercial instruments, while also allowing higher image quality than

recent low-cost prototype IFCs such as those described in Section 2.5.2.
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3.2 Design Brief

A block diagram of the proposed IFC system architecture is presented in Figure 14. In summary,
the suspended microalgae cells will be injected into a layered resonator flow cell using a pump,
which could be syringe pump, peristaltic pump or even simple gravity-fed, depending on
configuration and volume/temporal resolution requirements. Once analysed, sample waste can
be disposed of, or, for applications requiring repeated measurements of the same source over

time (e.g. monitoring a single live culture over time), could be recirculated.
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Figure 14 - Block diagram for proposed acoustically-focussed imaging flow cytometer. The device
itself will consist of an acoustophoretic focussing flow cell with necessary acoustic
driving and control hardware, microfluidic pumping, optical components (camera,
lenses and illumination). Once images have been acquired, analysis in the form of

measurement and/or identification can be performed in real-time or from storage.

The flow cell will be acoustically excited by means of a piezoelectric transducer driven at a

resonance frequency such that an acoustic standing wave forms in the flow cell with a pressure
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minimum (node) around the channel half-height. Cells in the flow stream will thus be pushed
towards this central node, remaining at approximately the same position in the flow cell Z-axis
(along the optical path) after passing the transducer, as their sinking rate due to gravity will be
negligible compared to their linear velocity over the distance from focussing to imaging region. A
high-frequency power amplifier will be needed to boost the signal generator output to the
voltages required to drive the transducer. Acoustic resonance will be maintained by setting the
signal generation system to perform a frequency sweep around the predetermined flow cell
resonant frequency such that minor drifts in exact resonance frequency (i.e. due to
temperature/salinity changes in the flow medium) will not significantly impact the total energy
absorbed by the system, and no active feedback control will be necessary. Previous research has
demonstrated that when the sweep period is fast enough (e.g. 50ms), this technique results in an
averaging of the force profiles of each frequency activated with the result approximating
resonance (Glynne-Jones et al., 2010a). An analytical validation of this frequency sweep approach

will be presented in Section 3.3.2.

A camera will be positioned downstream of the transducer and will image at high speed the
focussed cells as they flow past, the algae being illuminated by a high-power stroboscopic LED in
a transillumination arrangement (with illumination pulses synchronised with the camera by
trigger electronics). By using pulse durations of 1 — 20 us and low duty cycles of less than 1:100, it
will be possible to drive the LED at over 10X its rated current for corresponding luminosity
increases of over 5X without causing damage (Willert et al., 2010). The requirement for
synchronisation of illumination pulses with the camera’s aperture will necessitate the use of
cameras with external trigger inputs or outputs; these are common in life science and industrial

applications.

Images will be transferred from the camera to a computer system either directly or using frame-
grabber electronics (depending on camera choice and required framerate) and will then either be
stored for later analysis or be analysed in real-time. This analysis could take the form of, for
example, image processing to determine particle size spectra, or conducting taxonomic
identification using a pre-trained classification system such as a convolutional neural network,
(CNN). This analysis capability is not within the scope of this chapter, and instead fully explored in
Chapter 4.
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3.3 Flow-cell implementation

331 Approach

Design 1

The first flow-cell design made use of a matched-layer half-wave planar resonator device
following the implementation of Zmijan et al. (2015). In this type of device, an ultrasonic
transducer is bonded to a matching/carrier layer, which with a reflector layer sandwiches a fluid
layer. In this arrangement an acoustic standing wave is excited in the device with a half-
wavelength pressure anti-node located in the fluid channel. This design has the advantage of
being simple to produce, consisting only of layers of substrate bonded together, and fits well the
simple geometry required for an IFC. The IFC developed here builds upon previous work by
redesigning the layered flow cell for integration into a complete, portable and low-cost system as

will be described below.

In the work of Zmijan’s group, the acoustically focussed flow cell was designed around a fluid
layer sandwiched between two standard 1 mm-thick microscope slides. As in the new IFC
presented here, a major design criteria is the development of an imaging platform capable of
resolving cells which are smaller than those resolvable by existing cheap instruments such as the
PlanktonScope (Pollina et al., 2020) discussed in Section 2.5.2, optical quality is a key concern. In
testing of the flow cells reproduced according to their designs, the thickness of the microscope
slide through which the cells were imaged resulted in a degradation of the imaging performance
to an unacceptable extent. While this could potentially be mitigated by use of a high working-
distance objective, these lenses are generally far more expensive than would be appropriate
given our design goals. Therefore, the Zmijan’s flow cell design was improved upon by designing
a new flow cell making use of a 0.17 mm thick cover slip for the matching layer, instead of a
microscope slide. This novel flow cell design has the advantage of significantly greater optical
transmission, allowing greater imaging quality of the objects in flow and the use of low- working
distance objectives. A result of changing the layers within which the acoustic standing wave is

established, however, is that it is not possible to use their assessments of acoustic properties and
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instead there is a need to comprehensively model and test the new design, work which is

detailed in the subsequent sections.

Fabrication of the novel flow cell entails a process similar to that described by (Zmijan et al.,

2015). Briefly, three layers of double-sided tape (9629PC, 3M, USA) were laser-cut to form a

straight channel of dimensions 6 x 60 x 0.390 mm, which was then sandwiched between a

standard glass microscope slide (25 x 75 x 1 mm) with drilled fluid inlet ports, and a 75 x 25 x 0.17

mm coverslip. A PZT transducer (PZ26, Ferroperm, Denmark) was bonded to the coverslip using

epoxy (301, Epotek, USA) and the same epoxy used to bond a Perspex frame around the flow-cell

as shown in Figure 15. The tubing used for introducing samples to the flow cell was LDPE, of 0.58

mm Inner Diameter, 0.96mm Outer Diameter (Smiths Medical Portex, Fisher Scientific, USA).

c.

Fluid Connector Port

Reflector Layer —
Glass Slide (1100 pm)
Fluid Layer —

—_ 4
recemed i [ [ | -
chamnel (90 um) 1| RSN — Gl Coentn 1

‘ “}— Glass Coverslip (170 ym)

Coupling Layer - —C

PZT (1000 pm)

Fluid Connectors

Perspex Frame Matching Layer

Transducer

Figure 15 — The flow cell design. a.: schematic cross-section of the acoustic focussing region
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showing the thicknesses of each layer. b.: Lateral view of one of the constructed
flow cells showing fluidic connectors, acrylic frame, microscope slide and transducer.

c.: Axial view of the same device.
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Initial qualitative testing of the fabricated flow cell under a FITC-filter cube on an inverted
microscope (IX71, Olympus) using fluorescent 10 um polyester beads (YG Fluoresbrite
microspheres, Polysciences Inc., USA) demonstrated good acoustic focusing. Further

characterisation of the acoustic performance of the flow cell follows in Sections 3.3.2 and 3.3.3.

Design 2

A second flow cell implementation was explored but ultimately proved unacceptable, the reasons
for which will be detailed below. The flow cell design was based around a borosilicate glass
capillary of dimensions 30 x 6 x 0.3 mm, (5356-050, VitroCom, USA). An identical PZT transducer
to that used in Design 1 was bonded to the wide face of the capillary using the same epoxy.
Fluidic connectors were formed by means of heat-shrink tubing around the ends of the capillary
with microfluidic tubes (0.2 mm diameter) pressed against the capillary openings. A complete
schematic of this design is shown in Figure 16. Initial testing of this flow cell format initially
demonstrated good acoustic focussing when compared with the custom approach detailed above

due to the omission of acoustically absorbing materials such as tape and Perspex.

30 x 6 x 0.3mm rectangular glass capillary

PZT transducer

Glass pillars

Fluid Connectors
75 x 25 x 1.2 mm glass slide

Figure 16 — Diagram of the mounted acoustophoretic flow cell comprising a 30x6 mm rectangular
glass capillary bonded via glass pillars to a standard (75x25 mm) microscopy slide using
CA adhesive. Fluid connectors are formed using heat-shrink tubing and ultrasonic
excitation provided by a square PZT transducer bonded to one end of the capillary using

epoxy (Epotek 301).

However, two issues with the flow cell prevented further integration into the overall system
design. Firstly, the acoustic focussing, while initially proving successful, on further investigation
had a strong lateral component causing unwanted movement of particles within the focus plane.

In practice, this resulted in particles agglomerating into large balls, parts of which extended out
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of the depth of focus of the imaging system, and hence was severely deleterious to imaging

quality and accuracy.

Secondly, the glass pillars were very challenging to consistently epoxy in place such that the
capillary would be flat within the imaging plane. This resulted in decreasing accuracy of focus
from one side of the image to the other, which again reduced image quality and, by making it
impossible to adequately image both side of the flow cell simultaneously, reduced possible

throughput. Due to these two issues the second flow cell design was not further investigated.

3.3.2 Analytical Investigation of Flow Cell Acoustic Properties (1-D transfer model)

To determine the appropriate frequency at which to drive the piezoelectric transducer (in order
to excite half-wave resonance within the flow cell), it is possible to model the system using an
equivalent circuit transducer model coupled to an acoustical impedance transfer model. The
transducer is modelled as an equivalent circuit as described by Krimholtz, Leedom and Matthei
(‘KLM’) (Krimholtz et al., 1970). The acoustical interaction between the transducer and the other
layers of the system can be approximated as 1-D acoustical propagation problems (Hill et al.,
2002). This approach avoids the significant complexity of deriving analytical solutions to the wave
equation for a given acoustic resonator system (Sherrit et al., 1999).The circuit diagram for the

transducer part of the model is presented in Figure 17.
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Acoustic Transmission Line
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Piezoelectric
Crystal

Figure 17 — KLM model proposed by Krimholtz et al. The transducer crystal is modelled as
an electric circuit consisting a transmission line, transformer and passive

components.

Full details of the concept, formulation and analytical operation of the transducer equivalent
circuit model can be found in the original paper by Krimholtz, Leedom and Matthei (Krimholtz et
al., 1970), and the acoustical propagation equations are fully detailed by Hill, Shen and Hawkes
(Kinsler et al., 1999). The MATLAB script used to carry out numerical simulation of the pressure
amplitude within the flow cell within a range of frequencies is described by Glynne-Jones et al.

(Glynne-Jones et al., 2010b).

The transfer model can be used to analyse the frequency response of a layered resonator and
determine its acoustic focussing performance, providing estimates of the primary radiation force
on particles of a given radius and acoustic contrast factor with the specified fluid medium. For
the purposes of further modelling of the IFC’s acoustofluidic flow cell, and understanding the
different acoustophoretic performances across different sample characteristics, a study was
carried using a parameter sweep across differing temperatures, T, and salinities, S, representing
freshwater, brackish/estuary conditions and a range of open ocean values up to highly saline.

The full results of this study are presented in Figure 20.
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In this experiment, values for T ranged from 5°C to 30°C, while S ranged from 0 Practical Salinity
Units (PSU) to 39 PSU. Particles in the model were set to a uniform radius of 5 um, density p of
1056 kgm=and sound velocity c of 1962 ms™. These values are average measured properties (Hill
et al., 2010) of the PolySciences Fluoresbrite fluorescent polystyrene-latex beads which are used

in later experimental device characterisation.

The density of the carrier fluid at each T & S combination were calculated according to the
formulae of Fofonoff and Millard (Fofonoff and Millard Jr, 1983) and the sound velocities

calculated according to Medwin (Medwin, 1975).

The calculated minimum and maximum densities and speed of sound of the carrier fluid is given
below, and a full list of used model parameters can be found in Appendix A (Table 13, Table 14,

Table 15 and Table 16).

Pmin = 995.7 kgm™3 at T = 30°C,S = 0 PSU;
Pmax= 1030.9 kgm3at T=5°C, S = 39 PSU;
Cmin = 1425.7 ms'at T=5°C, S =0 PSU;
Cmax = 1549.7 mstat T=30°C, S = 39 PSU.

The Acoustic Contrast Factor, ® , between the modelled particles and carrier fluid, determined

using Equation 3, was: ®pin= 0.276 at T=5°C, S = 39 PSU and ®,,,x— 0.295at T=5°C, S=0 PSU.

Under every input condition of Tand S, the model predicted two distinct frequencies between 1
and 3 MHz which result in half-wave resonances within the fluid layer; frequencies above 3 MHz
resulted in more than one pressure anti-node within the fluid channel and so were ignored.
Figure 18 shows an output from the KLM model for the proposed flow cell with parameters T =
30°C, S = 39 PSU, (highly saline, hot seawater) which result in p = 1025.1 kgm3and ¢ = 1522.1 ms?
for the medium. This parameter combination results in resonances at 1.78 MHz and 2.06 MHz,

with expected Acoustic Energy Densities (E4) of 103.31 Pa and 83.39 Pa respectively.
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At each of these determined resonant frequencies, it is possible to model the acoustic energy
distribution throughout the device as illustrated in Figure 18. Such modelling for this device, at
each of the resonant frequencies under each T&S parameter combination, shows that none of
the pressure amplitude plots have ‘turning points’ within the fluid channel. This is important as
different layer arrangements can create areas close to the channel edges where the acoustic
force actually pushes toward the edges rather than the pressure node as seen in Figure 19. The
fact that these turning points are not observed in our modelling gives us confidence in the like

performance of our novel flow cell design.
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Figure 18 — Example plots of modelled Transducer Conductance (a) and Acoustic Energy Density
(b) for a transfer model with carrier fluid parameters p = 1024.7 kgm=3and c =
1549.7 ms™*. Two resonance frequencies are clearly defined at 1.78 MHz and 2.06

MHz. Figure plotted using MATLAB script detailed by Hill et al.
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Plot of KLM-modelled acoustic pressure amplitude vs Y-coordinate
for a cross-section of 390um acoustofluidic flow cell at 1.776 MHz resonant frequency

6000 Frequency = 1.776MHz

5000

3000

2000

Acoustic pressure amplitude (kPa)

1000
-1 -0.5 0 0.5 1 1.5
Distance from transducer / matching layer boundary (mm)
Transducer Fluid Layer Glass

Figure 19 — Modelled Acoustic Pressure Amplitude (P) plot through vertical cross-section of the
device at one of the half-wave resonant frequencies. Within the fluid layer (dark
blue) the pressure has a single node, with particles above or below this point being
subjected to forces pushing them toward the minimum, which is at the centre-

height of this fluid layer. Figure generated using MATLAB script detailed by Hill et al.

The modelled plots of acoustic pressure amplitude for the two respective resonant frequencies
have slight variations in the exact location in the fluid layer at which the pressure minimum
forms. Such variations in the anti-node axial position necessitate the ability to finely adjust the
imaging focus plane as part of system design. Therefore, in our IFC design there will not be a fixed
distance between the flow cell and the objective, instead, apparatus enabling a manually

adjustable focus distance will be integrated.

To explore the potential effects of varying carrier fluid properties on the frequency and strength
of the resonances in the flow cell, the transfer model was analysed at each combination of fluid
density and sound velocity. The two peaks in modelled acoustic energy density (i.e. Figure 18)
were recorded (resonant frequency and acoustic energy density at the peak) and plotted for each

temperature and salinity pair as seen in Figure 20.
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Figure 20 — Frequency (y-axis) and Acoustic Energy Density (colour) for the lower (a.) and upper
(b.) resonant frequencies predicted by the transfer model at each combination of
temperature (grouping variable) and salinity (x-axis) for the layered resonator flow
cell. The graphs indicate rising resonant frequencies with both temperature and

salinity at both resonant frequency A and B.

The data presented in Figure 20 show that there is a linear relationship between the output
variables and the input parameters. Between the lowest temperature and salinity pair and the
highest, the frequency of the lower resonance increased by approx. 80kHz and the upper by
approx. 60kHz. The gradient of this increase in both frequency and energy density with increasing

salinity appears to reduce as temperature increases.

As previous mentioned in Section 3.2, one approach previously validated within the literature to

address the ‘drifting’ of the precise resonant frequency of the flow cell due to changing input
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conditions is to set the ultrasound generator to carry out a ‘frequency sweep’ around the target
frequency. Previous work by Glynne-Jones et al. (2010a) and others has discussed this time-
averaging of acoustic fields by using frequency modulation and shown it to be effective. The
results of the exploration of different salinity and temperature on acoustic energy density and
resonant frequency suggest that our IFC will require a wide enough sweep in the driving
frequency to ensure resonance is achieved even when analysing significantly different water

samples, especially in situ, where temperatures can be more variable.

In order to validate that a frequency sweep would appropriately focus cells in later validation
work, the KLM model was run again with parameters set to explore the effect of a 20 kHz
frequency sweep on the position of the acoustic pressure node within the fluid layer. 20 kHz was
chosen for sweep width as the results presented in Figure 20 demonstrate an approximately
20kHz shift in resonant frequency with a temperature change of 5 °C, which is a reasonable
maximum temperature change expected in a controlled laboratory environment. The effect of
salinity on resonant frequency is smaller, and salinity is not expected to change when taking

samples from a monoculture grown in an incubator, without additional inputs of dissolved salts.

This frequency sweep experiment was carried out using constant KLM parameters for the carrier
fluid of p = 1024.7 kgm=3and c = 1549.7 ms™, the same as for Figures 18 and 19. The depth of the
acoustic pressure node within the fluid layer was determined by KLM modelling using + 10 kHz
around the two previously determined resonant frequencies of 1.776 and 2.056 MHz, and the
results are presented below in Table 3. This experiment shows that at frequencies + 10 kHz
around the resonant frequency, the variation in depth of the acoustic pressure node within the
fluid layer is only 2.3 um, suggesting that a 20 kHz frequency sweep around the chosen frequency
will be experimentally acceptable when using the real device in a lab environment and will not
cause cells to leave the plane of optical focus. For use in the field, the range of temperature and
salinities likely to be experienced by the device would need to be carefully considered such that a
frequency sweep would cover all likely resonant frequencies without unacceptably moving the

pressure node within the device and causing a degradation in imaging quality.
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Table 3 — KLM-modelled acoustic pressure node depth within the flow cell for various driving
frequencies representing a 20 kHz sweep with centre frequencies of the two

determined resonant frequencies (bold) for the flow cell geometry - 1.776 MHz and

2.056 MHz.
Frequency/ | Pressure Node Depth /

MHz um

1.766 210.6
1.776 209.4
1.786 208.3
2.046 214.9
2.056 216.1
2.066 217.2

The transfer model has several limitations which necessitate experimental characterisation of
layered resonators. Firstly, the model takes several parameters which are difficult if not
impossible to accurately determine. The loss factor, Q, of the different layers is not known, as are
the exact thicknesses of the glue and electrode layers. Without accurate inputs for these values
the frequency response predicted is likely to significantly vary from the response of the physical

system.

Secondly, the transfer model drastically oversimplifies the behaviour of the resonator and
reduces the acoustic wave to a 1-dimensional, uniform field. In reality, transducers do not
produce spatially homogenous acoustic pressure across their surfaces and have ‘acoustic hot
spots’ that are particularly strong compared with the mean acoustic energy density. This is not an
issue for particularly large transducers as the acoustic energy density of the transducer varies

sinusoidally and will average out over time.
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The model also does not represent the lateral modes of the standing wave which occur in real
systems. Structural aspects of layered resonators generate complex acoustic pressure fields
which do not have a uniform minimum at the nodal plane. Instead, variations in the pressure at
this plane will move suspended particles laterally and can lead to effects such as acoustic
streaming and particle agglomeration. It is highly desirable to minimise these effects in the IFC

system as agglomeration of phytoplankton cells would impede accurate imaging and analysis.

Finally, the Acoustic Contrast factors used in the transfer model varied between 0.276 and 0.295.
While these values correspond to the ACF of the 10 um beads used for the acoustic
characterisation, they are significantly higher than the values of 0.01 to 0.07 measured in 4
phytoplankton strains by Hincapié Gémez et al. (2018) in a study which sought to experimentally
characterise the acoustic properties of microalgae. The radius of the particle being focussed is
the highest determinant of the acoustic force acting upon it, being the cubed term in the acoustic
radiation force Equation 2, but this force also scales linearly with ACF. As such, the beads should
experience between 4 and 30 times more acoustic radiation force than phytoplankton in the
same system and it will be important to understand this difference when characterising focus

quality with beads.

3.3.3 Finite Element Modelling of Flow Cell Acoustic Focussing (COMSOL)

Before moving to an experimental characterisation of the fabricated device, the system was
modelled in COMSOL Multiphysics in order to address the uncertainty of focussing performance
for different phytoplankton properties. By simulating the flow channel and acoustic forces on a
range of particles of different radii and acoustic contrast factors, at a range of flow rates, sensible
bounds on the likely performance of the device can be determined more easily than would be
possible experimentally. A full list of variables and parameters used in the FEM model are given

in Appendix B, Table 17 and Table 18.

The geometry of the COMSOL model consisted of a cross-section of the part of the flow cell to
which the transducer is bonded (5 cm length x 390 um height x 4 mm width). Only the first 5 cm
of the length was modelled as that is the area in which focussing occurs. The mesh used for finite
element modelling (FEM) was a triangular mesh of minimum dimension 1 um. To determine the

trajectories of particles at a range of starting positions as they enter the flow cell, 1,000
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(independent) particles were uniformly distributed along the leftmost boundary. The model
predicts their path under the action of the acoustic force, flow, and viscous drag. Once particles
reach the outlet, their vertical separation distance is recorded. A diagram of the behaviour of this

model is given in Figure 21, with a schematic illustrating the axes given in Figure 22.
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Figure 21 — Diagram of the Finite Element Model of the flow cell cross-section showing the
progression of beads (coloured) along the device with time. At the particle inlet the
beads are uniformly distributed, and they are focussed to the central pressure anti-
node as they travel along the x-direction. Once particles have reached the outlet at

the right side, their vertical separation distance, d, is recorded.
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Figure 22 - Schematic of the axes of the fluid layer used for the FEM modelling within this section,

showing the position objective lens relative to the fluid flow direction.

The range of particle starting positions was variable such that particles would never be closer to
the top and bottom boundaries of the flow cell than their radius, in order to prevent particles
intersecting the glass sides. Thus, where r = particle radius, the particle inlet was set to span from

0 um-+r to 390 um-r on the Y axis.

Fluid flow within the flow cell behaves according to Planar Poiseuille Flow. This flow condition
exists where an incompressible, Newtonian fluid is in steady laminar flow between two
stationary plates forming a channel of constant cross-section which is substantially longer than its
cross-sectional area. The equation for the velocity of the flow with respect to vy, the vertical
position within the flow channel, is given by Equation 5, the Hagen-Poiseuille Equation for Planar
Poiseuille flow.
H?>  dP_y y
-1
u ms~] = (—)(——— —(1 - —)
0 Ims™ = GG (1-3)

Equation 5 — Formula for linear (along-flow) velocity of fluid under Planar Poiseuille Flow with

respect to vertical position (y). Where: H is the separation of the two planes/walls
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[m] (height of the flow channel); n is the dynamic fluid viscosity [Pa- s] and Z—i is the

pressure gradient along the direction of flow [Nm?3].

The pressure gradient in the flow cell is given by Equation 6.

- o vm = () ()

w J\H3

Equation 6 — Formula for pressure gradient within the flow channel, where Q = volumetric flow
rate [m3/s], n is the fluid’s dynamic viscosity [Pa- s], w is the width of the flow cell

[m] and H is the height of the flow cell [m].

The flow velocity is highest at the centre of the channel and tends to zero at the flow cell
boundaries. The 1-dimensional profile of the resulting fluid velocity profile across the height of

the modelled flow channel is given in Figure 23.
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Figure 23 — 1D plot of the x-component (vx) of the fluid flow velocity profile within the vertical
axis of the flow channel as described by Planar Poiseuille Flow. The given flow
velocities given were calculated at a volumetric flow rate of 1.5 ml/min, but the
parabolic distribution of velocity with y coordinate remains the same for all flow
rates. The flow velocity at the centre of the channel is the highest and the velocity
toward the channel boundaries (0 and 390 um - the top and bottom of the fluid

layer) tends to zero.

The acoustic radiation force (Equation 2) across the height of the flow cell is similarly
implemented in the model. The resonant frequency was given as 2C_21 , where cy= sound velocity of
the fluid and H = height of the flow cell. While the transfer model used in the previous section
models the behaviour of the entire layered resonator system, including the air/glass boundary
and epoxy bonding transducer to the flow cell, the FEM analysis considers only the fluid layer.
Therefore, by specifying the frequency as 26_1(:1’ a pressure anti-node is always formed halfway
through the fluid layer’s vertical profile and the more complex transducer and structural
acoustical behaviours included in the KLM model can be ignored. This is appropriate for the

purpose of the FEM analysis as it is the ability of the resonant frequency to focus particles rather

than the particular frequency to use (in the real system) that is of interest.

The force profile (in Newtons) given by the idealised acoustic radiation force (assuming a half-

wave bounded by perfectly reflecting walls) is illustrated in Figure 24 (1D vertical profile). As
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expected, the acoustic radiation force at the centre of the channel (y = 1.95x10°® m) equals zero

and has two maxima at the quarter and three-quarter heights in the fluid layer. The force also

tends to zero at the top and bottom boundaries, which suggests that particles situated there will

not experience any force toward the central plane and therefore never be focussed. In practice,

however, the particles will always be separated from the flow cell walls by at least their radius,

which will e

Acoustic radiation force (J/m)

Figure 24 —

nsure they experience an increasing acoustic force, however small initially.

Line Graph: Acoustic radiation force (J/m)
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Plot of the acoustic radiation force against vertical position (y-coordinate) as
determined by the ultrasonic standing wave in the flow cell. The pressure minimum
(zero newtons) is located at the half-depth of the fluid layer (195 um) and also tends
to zero at the upper and lower boundaries. Since particles are never located exactly
at the boundary (they are separated by at least a distance equal to their radius),
even particles very close to the flow cell walls will experience some force toward the

centre.

The model was set to simulate 150 seconds or until a stop condition was met. This stop condition

was set such that the outlet (rightmost boundary) of the flow cell acted as a particle counter and

stopped the simulation when all 1000 particles reached the other end of the fluid layer. As such,

at higher flow rates, COMSOL only needed to simulate the system until the flow velocity had
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carried all particles through, and particles would not continue to be focussed by the acoustic

radiation force after they had left the 5cm focussing region.

A parameter sweep was established such that COMSOL would simulate the focussing of particles
of between 0.5 and 10 um radius (r), of acoustic contrast factors (¢) of between 0.01 and 0.1,
and at volumetric flow rates (Q) between 50 puL/min and 10 mL/min. Each combination of r, ¢
and Q had a full 1000-particle simulation run: for 39 radii, 10 acoustic contrast factors and 24

flow rates. Thus, a total of 9360 simulations were completed.

For each parameter combination, the vertical position of particles at the outlet was saved and
the range (maximum minus minimum y coordinate) calculated. For each combination of ¢ andr,
the maximum volumetric flow rate that resulted in a vertical separation range of <5 um was
recorded. 5 um was selected as a conservative measure of focus — if the centres of the particles
are within 5 microns of each other, they will be within the depth of focus of the standard

microscope objectives planned for the physical system.

The results of this analysis are presented in Figure 25, which can be described (following Equation
2) as graphs of the shape y = x3. From the graph it is apparent that size is the main determinant
of whether particles adequately focus within the 5cm focussing region. For objects of a contrast
factor of 0.05, having a 10 um radius will allow focussing even at very high flow rates of 9
mL/min, whereas at 0.5 um radius, particles will not focus within 5 cm even at 50 pyL/min.
Similarly, the ability to focus strongly depends the acoustic contrast factor, with a 5 um particle
being focussed under volumetric flow rates of between 0.05 and 1 mL/min depending on its ¢

value.
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Modelled maximum flow rate such that particles are focussed to within Sum of flow cell centre depth
vs particle radius, for particles of acoustic contrast factor of between 0.01 and 0.1
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Figure 25 — Plot of the maximum volumetric flow rate (Y axis, ml/min) under which particles of a
given radius (X axis, um) focus within the 5cm flow cell analysed by FEM, grouped by
acoustic contrast factor (colour). There is significant overlap between different data
points, especially at 10 ml/min flow rate where particles of ¢ > 0.06 with large

diameters all focus.

The results of this analysis suggest that it is important to either know the approximate expected
acoustic contrast factor and radii of the phytoplankton within a sample, or, to limit flow rate such
that even small plankton with low contrast factors can be imaged within a sample. For samples of
unknown contrast and radius distributions, there is therefore a tradeoff in experimental design
between throughput and the minimum size and contrast that will be focussed. When compared
with the commercial instruments already used by biological oceanographers (Table 2), even the
minimum flow rate investigated (0.5 mL/min), at which even the 1 um radius, 0.01 ¢ cells are

adequately focussed, is competitive.

The sampling rates given for the commercial instruments describe the speed with which all cells
in the fluid can be imaged. In the IFC presented here, not all cells in the sample fluid will be

imaged as the objective lens will not have a field of view covering the entire width of the flow
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cell. Therefore, to comment on the sampling rate of our device it will be important to consider

the imaged volume as well as the total sample volume, as these will not be the same.

The above modelling does however have significant limitations which reduce its predictive power
for the performance of physical flow cells. In real devices, losses arise from the acoustical
interactions between the layered components of the flow cell, all of which have different
acoustical impedances and internal sound velocities. These losses could significantly lower the
radiation force experienced by particles within the fluid layer and increase the time taken to
focus them to the imaging plane. Therefore, modelling alone will not be suitable to assess device
performance and an experimental approach will also be required which will be discussed in the

following section.

As previously mentioned, due to their internal crystal structures, real transducers have complex
3-dimensional behaviours resulting in ‘hot spots’ on the transducer/flow cell interface. These can
cause result in lateral sections of the fluid layer having weaker acoustic forces. At higher flow
rates these effects average out to a constant force on particles but at lower horizontal velocities
particles experience non-homogenous forces in the focussing region. Due to the velocity profile
of particles in flow described by Equation 6 (and illustrated in Figure 23), even at higher
volumetric flow rates the particles closest to the flow cell boundaries may have a horizontal
velocity low enough to be affected by the transducer heterogeneity described. Viscous losses in
the acoustic boundary layers can cause acoustical streaming, unwanted axial movements of

particles which can result in agglomeration.

The exact axial location of the pressure node toward which particles experience a force may not
be the half-width of the flow cell where the flow velocity is highest. While in the FEM simulation
the frequency is set such that there is always a node corresponding to the axial height of
maximum horizontal velocity, in a real device, the different resonant frequencies excitable often
produce nodes above or below the centre of the flow channel. The KLM modelling work in
Section 3.2.2 illustrates this point, with the 1.776 and 2.056 MHz resonant frequencies predicted
in Figure 18 producing pressure minimums slightly above and slightly below the fluid layer half-

height.
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The resonant frequency of a flow cell depends on the temperature of the fluid and of the device
itself, but heat is generated by driving the transducer, which can lead to a shift in resonant
frequency over time. This will be more pronounced at low flow rates, where the cooling effect of

water movement through the device will be lower.

The above shortcomings mean that the experimental characterisation of the layered flow cells is
likely to have significantly poorer focussing performance than suggested by modelling. The next
section will detail an attempt to quantitatively investigate the performance of the flow cells

experimentally, using multiple methods to assess acoustic characteristics.

3.34 Acoustic Focus Analysis — Experimental

Two methods were employed to experimentally determine and characterise the resonant
frequencies of the fabricated flow cells. The first made use of the C60 Impedance/Frequency
Response Network Analyser hardware produced by Cypher Instruments. The secondary approach
involved using the flow cell in the IFC device, imaging fluorescent microspheres in flow, and then

analysing the images to determine the velocity field within the fluid medium.

The first method allows the determination of the resonant frequencies of any given acoustical
device by plotting the frequency response of the transducer under realistic use conditions. This is
important to understand as it allows the appropriate setting-up of the device to successfully
acoustically focus cells. The second method investigates the particle focussing performance of
the flow cell under various flow conditions while driven at resonance. Combined, these methods
attempt to provide both information on what frequencies should be used to drive the acoustic
standing wave and how effective the respective frequencies are for the purpose of focussing

phytoplankton cells to the imaging plane of the flow cell.

Method 1 — Admittance Analysis

The C60 is a network analyser which can measure the frequency response of electro-acoustic
systems within the 10 Hz to 4 MHz range. By connecting the flow cell transducer to the C60
output and running a frequency sweep within the range suggested by the above modelling (1 to 3

MHz), the device can be set to measure and plot the transducer admittance (Y = 1/2).
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In order to use the C60 to the determine resonant frequencies of a given transducer, a plot of
admittance was generated in the 1-3 MHz range under 4 different flow cell conditions: filled with
only air (no fluid introduced); filled with deionized water; filled with Lugol’s lodine- preserved
Isochrysis galbana; filled with F/2 marine media with Fluoresbrite fluorescent polystyrene-latex
beads (representing the presence of phytoplankton cells in a marine sample). A plot for one flow

cell (Device A) is given in Figure 26.
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Device A
CypherGraph V1.27.15 C60-0504-0340 V1.23.1 : 06/03/2020

Air Lugols Fixed (N20) DI H20 F/2 & Beads
0.12
[ —
1 h 1
L 1
0.11 | H |
[ I P |
0.10 - *
T
\
I
09 1 AY
0. ; | ~
1 J A
AY
o008 L ~
E ) \
- r' \
5007 ] N
5 ] e
£ 0.06 L N
£ : .
1 .
% 005 L P\ S
2 1 )
-1 I A
3 ; \
= 0.04
-=-=—== ! \ s
1 1 N
0.03 T 7 =y 1 X
! )/’//\ an \ \ N /
0.02 == Al -
=
= ; .
0.01
| L - 1
ﬁ_'_/-"\/_,, - f/ \\
0 - 1 A\
.00 =
0.6M 0.8M _ -~ - 1.0M 1.2M 1.4M 1.6M 1p 1.8M 2.0M 2.2M 2.4M 2.6M 2.8M \\ 3.0
Pt - Freqygncy - Hz .
- - Produced by Cypher Instruments \\
- n \
- " N
Air Lugols Fixed (N20) DI H20 F/2 & Beads Air Lugols Fixed (N20] DIH20 F/2 & Beads
0.036: 0115
0.034 0110 g \
: {1\
2 0.032 = 20105 y \
ey ] \
b “ \ v { \
) 2, 0.100 .
; : 1
3 \ 8 0.095 i
e 1]
5 i
3 e = 0.090 i
5 0.0, 1y 2 ﬂ{ \
ﬁ % 2008
0.024 - g }(
b 1 2 j
~ \ 0.080 .
0.022 s L ‘\
A 0\ 0.075 ‘.\
o 4 j \
oo 0,070 \
1.60M 1.65M 1.70M 1.75M 1.80M 2.04M 2.06M 2.08M 2.10M 2.12M 2.14M 2.16M 2.18M
Frequency - Kz Frequency - Hz
f=1.55-1.80 MHz f=2.02-2.20 MHz

Figure 26 — C60 network analyser plot of admittance (1 over impedance) of the ultrasonic
transducer within the 0.5 — 3 MHz range. Measurements were conducted over 4
different conditions; unfilled (Air - black), filled with deionized water (DI H20 -
green); filled with marine media and PolySciences Fluoresbrite fluorescent
polystyrene-latex beads (blue); filled with Lugol’s lodine-fixed plankton sample
(sample number N20 - red). Insets: peaks around 1.70MHz; 2.10 MHz demonstrating
the slight differences in acoustic performance when the device is filled with media of

different salinities (and hence sound velocities and densities).

As mentioned above, Figure 26 also shows the flow cell’s frequency response when filled with a
Lugol’s lodine-fixed phytoplankton sample (sample number N20). This sample was of Isochrysis
galbana, a unicellular haptophyte phytoplankton with a cellular diameter of 5-10 um, and was
analysed in order to determine any frequency shift when using a preserved plankton sample. This

is because the ‘fixing’ of phytoplankton cells using Lugol’s solution is common in biological
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oceanography and it is important to understand any effect the presence of such fixing agents on
the acoustical properties of the flow cell. The very close agreement between the measured
acoustic properties of the preserved sample (red) and the sample with polystyrene beads in
growth medium provides good confidence that the devices’ performance will be similar in both

preserved and live cell samples.

Resonant frequencies can be determined from the C60 frequency sweep output by looking for
admittance spikes, which occur when the flow cell is filled with fluid but not when it is filled with
air. Eight flow cells were analysed in this manner and the resulting resonances, as seen in Figure
26, were around 1.7 MHz and 2.1 MHz. When filled with deionized water the flow cell admittance
spikes were frequency-shifted by around 50 kHz and were slightly weakened; admittance profiles
for F/2 media- and Lugol’s preserved sample-filled flow cells were highly similar in frequency and
magnitude of peaks. Both measured peaks were of maximum widths below 50 kHz. Each liquid

used in characterisation was allowed to come to room temperature before injection.

Method 2 — Image Analysis

A second method for characterising the acoustical performance of the flow cell was formulated:
this involves taking images of particles within the flow cell under various flow conditions while
the transducer is driven at a resonant frequency. However as seen below, this method ultimately

proved unsatisfactory.

If the ultrasonic half-wave resonance generated within the flow cell has its pressure node in a
plane which is vertically halfway through the fluid layer, particles in flow which are focussed to
this pressure node cell should have a normal distribution of vertical positions, with the standard
deviation of this distribution giving a measure of the focussing performance (similar to the
separation distances modelled in Section 3.3.3). This is because the carrier fluid within the flow
cell acts according to Poiseuille flow with a normal distribution of linear (flow) velocity through
the vertical profile of the flow cell, so suspended particles will also move with normally

distributed linear velocities.
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A mismatch between the centre of the flow cell (which has maximum linear flow velocity), and
the acoustic pressure node, would cause a skewness of the distribution of particle velocities, with
the magnitude and direction of skew giving some indication of the position of the pressure node

relative to the point of maximum flow velocity.

By imaging the same particles twice with a short, known time delay between captures, their
velocities can be determined. Using this approach, work in this section was carried out with the
aim of determining the performance of the acoustic focussing by determining the distribution of

particles’ travel distances within the time delay.

An objective of this characterisation was to measure focussing performance under realistic flow-
rate conditions. At a volumetric flow rate of 2 mL/min, the COMSOL model predicts particle
velocities exceeding 0.03 ms™?, which at 10X magnification, where the field of view of the used
camera is 1125x703 um, would result in a particle crossing the imaging region in under 30 ms. For
faster flow rates and higher magnification, the framerate of the camera will not be sufficient to

capture multiple exposures of the same particle; as such, a different approach is required.

In order to image the same particles multiple times, and hence calculate separation distances in a
given time period, a LED pulsed illumination system capable of microsecond pulses was used, as
specified in Section 3.2. By setting the LEDs to activate twice within a single exposure of the
camera with a short delay between lighting pulses, each object will be imaged twice in each

frame. An unprocessed example frame taken using this technique is presented in Figure 27.
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Figure 27 — Example double-exposure image of 10 um beads taken with a 2 ms delay between

illumination pulses. Each of the 6 beads present in the field of view is imaged
twice in the single frame such that their velocities can be calculated from the

distance they travel during the 5 ms delay.

This method was carried out on 100 frames at each flow rate, with two illumination pulses of 15
us separated by a 2 ms delay. In order to generate a representative linear velocity distribution
with sufficient statistical significance, the separation distances for a large number of beads must
be measured. To conduct this analysis and avoid the bias a manual estimate of bead centre (e.g.
using ImageJ) would incur, a MATLAB script was written which, for a given IFC image, detects and
numbers beads and localises their centroid pixel. The user can then input which bead numbers
are in fact the same bead, and the script automatically records the distance (and angle) of

separation between the two exposures, labelling this distance on the image.
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Figure 28 and Figure 29 show the post-detection and post-labelling steps of this process,
respectively. Pseudocode for the MATLAB script is presented in Appendix C (entire script
published online at

https://github.com/ajwl27/IFC_BeadimageAnalysis/blob/main/analyse bead images.m).

Figure 28 — Example of detected beads in the same image as Figure 26. The MATLAB
script detects beads using standard image processing techniques (code in
Appendix A.3) and assigns a number to each detection. Detection 11 in this
image is a false positive and can be ignored by the user in the next step;

labelling the exposure pairs which result from the same physical bead.
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Figure 29 — After detection, the user enters the numbers of the exposures relating to the

same physical bead (e.g. 1 and 2; 3 and 4). The MATLAB script measures the
distance between the centroid pixels of the two labelled beads and the angle
(in degrees from vertical), stores this data and presents it as an overlay on

the image.

After the experimental work was completed and each set of 100 frames analysed in the
described manner, histograms of the separation distances (converted to micrometres based on
the scaling factor for a 20X objective - 5.7971 pixels : 1um) were plotted. The mean and standard
deviation of the data were calculated, and the results are shown in Figures 29, 30 and 32. Fewer
experimental setups than would be optimal were tested due to the coronavirus situation limiting

lab use.
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Exposure-separation distributions for f=1.75MHz; V=10Vpp

a. 1.0 ml/min b. 2.0 ml/min

Histogram of separation distances of Flow Rate. tage: 10Vpp] [Frequency: 1.75MHz) Histogram of separation distances of double-exposed beads [Flow Rate: 2mlimin] [Traneducer Voltage: 18Vpp] [Frequency: 1.75MHz]

Mean = 34.71 um Mean = 66.13 um

=t

SD =0.44 um SD=2.35um
SD as % of Mean = 1.27% SD as % of Mean = 3.55%

Figure 30 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 10 V

peak-peak. Volumetric flow rate = 1.0 ml/min (a) and 2.0 ml/min (b).

Figure 30 shows the clearest difference in distribution between an experimental condition under
which the beads were (qualitatively) focussed well (a., 1.0 mL/min) vs a condition where the
focus was poor (b., 2.0 mL/min). The standard deviation of separation distances increased from
0.44 um to 2.35 um, which divided by the mean separation distances for each distribution
corresponds to a 1.27% and 3.55% SD respectively. This widening of the distribution aligns well
with the expected behaviour when moving from in-focus bead images to out-of-focus bead

images as described above.
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It is possible to conclude from Figure 31 and Figure 33, however, that the method used is not
sufficiently sensitive. With the volumetric flow rate set to 3.0 mL/min and the transducer driven
at 1.75 MHz, 15 V peak-peak, the acoustic focus quality was qualitatively significantly inferior to
that at the slower flow rate of 1 mL/min, but this is not reflected in the plotted normal
distributions. The qualitative difference in focus quality is illustrated in Figure 32 which shows a

side-by-side comparison of frames taken at the two flow rates used in the below graph:s.

Exposure-separation distributions for f=1.75MHz; V=15Vpp

a. 0.5 ml/min b. 1.0 ml/min

HISHSHeam of S0pAFation Gtances of Souble-nipos od beacs [Flow Rate: 0.5muimin] [Trans dueer Veltage: 15Wpp] [Frequency: 1.75MHz] Histogram of separation distances of double-axposed boads [Flow Rate: 1muimin] [Transducer Voltage: 15¥pp] [Frequency: 1.75Miz]

Count

Mean = 34.55 uni"
SD=0.44 pm
SD as % of Mean =1.27%

Mean = 16.89 um
SD=0.92 um
SD as % of Mean =5.45%

¢. 2.0 ml/min d. 3.0 ml/min

Histogram of separation distances of doubls-sxposd beads [Flow Rate: Zmimin] (Transducer Voltzge: 15Vpp] [Fraquency: 2.41MHz) Histogram of separation distances of double-expos ed beads [Flow Rate: Imimia [Transducer Volage: 15V [Frequency: 1.75MHz]

Q EE«;I‘:{;;{;M' 7
Mean = 63.61 um Mean = 98.86 um
SD =2.46 pm SD=1.91pm
SD as % of Mean =3.87% SD as % of Mean =1.93%

Figure 31 - Results of bead-separation experiment for measuring acoustic focus quality in layered
resonator flow cell with resonant frequency = 1.75 MHz, transducer voltage = 15 V
peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) 2.0 ml/min (c) and

3.0 ml/min (d).
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b. 3.0ml/min

a. 1.0ml/min

Figure 32 — Qualitative assessment of the acoustic focus quality at volumetric flow rates of 1.0
ml/min and 3.0 ml/min, with the same transducer settings of f=1.75 MHz, V=15 V

peak-peak.

The source of this apparent error is most likely to be methodological; the technique of
determining focus distance relies on an accurate measurement of the exact central pixel of each
bead, but this is extremely difficult to consistently locate either manually or using the MATLAB
script. Neither the image processing algorithm used or any attempt to manually localise the
centre of each bead will be accurate enough to draw statistically reliable distributions of
measurements between the two exposures. It is possible, however, that more sophisticated
image processing algorithms would more accurately locate the centre of the beads and thus

more accurately measure the inter-exposure travel distance.

As previously mentioned, one other reason that the described method is unable to accurately
determine acoustic focus performance may be that the acoustic pressure node is not coincident
with the half-depth of the fluid layer, and thus the maximum of the parabolic flow profile. The
result of this mismatch would be a larger variation in flow velocities for a small acoustic focussing
error than if the two were coincident. This phenomenon would also cause a reduction in the
closeness of the beads’ speed distribution the normal distribution. Therefore, the standard
deviations reported, which are those of the gaussian curves fit to the data, may be an

inappropriate metric to use as a comparison of performance under different conditions.
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The methodological failure discussed above repeats at f=2.11 MHz, V=10 Vpp, as demonstrated
in Figure 33. The reduction in standard deviation as a percentage of the mean between the
distance distributions at 0.5 mL/min and 1.0 mL/min (33a. and 33b.) would not be expected if
using an accurate metric of focus quality, and is not backed up by qualitative analysis of frames
under the two different flow rates. The increased skewness to the right of the mean of each
distribution at 2.11 MHz compared with the results from the earlier 1.75 MHz experiment
suggests that the pressure node excited at 2.11 MHz is further from the fluid layer half-depth
than that excited at 1.75 MHz.
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Exposure-separation distributions for f=2.11MHz; V=10Vpp

a. 0.5 ml/min

Histogram of separation distancas of double-axposed beads [Flow Rate: 0.Smilmin] [Transduser Voltage: 10Vip] [Frequency: 2.1 1MHz]
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c. 2.0 ml/min

Histogram of separation distances of double-sxpos ed beads [Flow Rate: Zmiimin] [Transducer Voltage: 10Vpp] [Frequency: 2.11MHz]
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Figure 33 - Results of bead-separation experiment for measuring acoustic focus quality in layered

resonator flow cell with resonant frequency = 2.11 MHz, transducer voltage = 10 V

peak-peak. Volumetric flow rate = 0.5 ml/min (a), 1.0 ml/min (b) and 2.0 ml/min (c)

Figure 34 presents the inter-exposure separation distance for the same driving frequency as in

Figure 33 but the higher voltage of 15 volts peak to peak (Vpp). At this higher voltage, acoustic

streaming was observed within the flow cell, with beads forming two single-file lines within the

field of view. This is clearly undesirable as beads can agglomerate and there is a reduction of

throughput and imaging quality. Other volumetric flow rates were not investigated as slower

horizontal velocity would only increase these streaming effects; and higher velocity would result

in insufficient axial (desirable) focussing.
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Exposure-separation distributions for f=2.11MHz; V=15Vpp
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Figure 34 - Results of bead-separation experiment for measuring acoustic focus quality
in layered resonator flow cell with resonant frequency = 2.11 MHz,

transducer voltage = 15 V peak-peak. Volumetric flow rate = 2.0 ml/min.

As discussed, the experimental approach taken here has unfortunately proved incapable of
accurately measuring the acoustic focussing performance of beads within the flow cell. For the
purposes of the remainder of the work within thesis, however, it will be sufficient to know
whether or not the acoustic focussing is successfully bringing cells into the optical focus plane for
sharp imaging. A quick subjective test of the sharpness of objects within the IFC’'s images
provides a high level of confidence that those objects have been successfully acoustically
focussed, as shown in Figure 32. This is because of the relationship between the objective lens
and the depth of the flow cell; typically, objectives have a depth of focus of less than 10 um, and
the flow cell is 390 um deep. Since objects are randomly distributed throughout the depth of the
flow cell when acoustic focussing is not operational, objects regularly appear out of focus, as
demonstrated in Figure 32b. If none of the objects appear out of focus, it can reliably be inferred

that the acoustic focussing is operating successfully.

Although this subjective test does not help to qualify the level of performance of the focussing, it
can consistently be used to check that it is working sufficiently for imaging. If further flow cell

development was to be carried out associated with more precise determination of acoustic
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focussing efficiency, however, future experimental protocols could be used to test the acoustic
focus performance by calculating the sharpness of the edge of a high-contrast object like the
polystyrene beads used here. This technique would not work for organic cells, which are highly
translucent, but could be used to quantify the flow cell performance in greater detail. The issue
with parabolic flow however remains; even with a new imaging technique it may not be possible
to use the distance travelled to during the inter-exposure period as a means to measure acoustic
focus without precisely determining the height of the acoustic pressure node within the flow cell

and calculate the effect of varying flow velocities.
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34 Imaging Performance Characterisation

3.4.1 Introduction

The image resolution of an IFC is a key parameter as it determines the information content of the
acquired images. With higher resolution images, both human taxonomists and automated image
processing systems will be able to more accurately perform taxonomic classification, cell
measurement, etc. Other metrics of image quality such as distortion and contrast, while harder
to measure objectively, also contribute to the human interpretability of images and can
furthermore affect automated techniques such as neural networks. To measure the suitability of
the IFC developed here for various research applications, it is therefore necessary to have a

quantitative measure of imaging quality.

The goal for this work will be to state the minimum phytoplankton cell size which can reliably be
imaged by the device. This property, i.e. the smallest size of object that can still be seen to be
separate from other objects in the image, is typically referred to as the resolution (Wu et al.,

2008, Dobbins, 2000).

Therefore, in this section, a critical analysis of a quantitative approach to testing the image
resolution of the acoustically focussed IFC will be presented, using a standard inverted
microscope to develop a testing protocol which can later be applied to the IFC (In Section 3.5.5).
By first quantifying the effects of the variables within the system on the resolution, including
exposure, rotation of the flow cell and the accuracy with which the objective lens is focussed, it
will be possible to apply the measurement procedure with confidence to the completed IFC.
These effects of various manually controlled parameters on the measurement of resolution have

not received much attention within the literature but are important to understand in our IFC.

A formal definition of the resolution of a microscope system is the smallest spatial period of a
still-resolved object (Born and Wolf, 1999). As mentioned in the review of current and future
trends in phytoplankton ecology (Section 2.3), cells are expected to decrease in size over time
due primarily to warming of their habitats. This highlights the necessity for IFCs to have the

highest possible resolution, such that the smallest cells can be imaged. As demonstrated by the
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modelling work in Section 3.3, the acoustophoretic focussing within the flow cell is expected to
successfully acoustically levitate even cells under 5 um diameter, therefore, the optical
performance of the IFC becomes a crucial factor in the minimum size of cells possible to be

analysed.

Typical characterisation of the resolution of custom microscope devices often involves manually
imaging a test target (e.g. 1951 USAF test target) and subjectively determining the smallest
features resolved (Greenbaum et al., 2013, Kheireddine et al., 2019, Vainrub, 2008). However,
this method is inherently subjective and makes it difficult to compare competing IFC systems. A
more gquantitative measure can be derived from the frequency spectrums of recorded digital
images by calculating the highest spatial frequency present (avoiding random noise) with non-

zero amplitude (Pospisil et al., 2017).

This can practically be achieved by taking the 2D Fourier transform of the image, plotting
circularly-averaged amplitude values and from these determining the frequency at which the
signal is indistinguishable from background noise (cut-off frequency), as demonstrated by Vainrub
(2008) and depicted in Figure 35. The main issue arising during this process is the necessity of
semi-subjective determination of the cut-off frequency, as in most images there is no clear
boundary where the Fourier amplitudes of the image and noise are distinct. Furthermore, the
frequency response of the image depends in part on the shape of the object being imaged
(Dobbins, 2000). In the following section, therefore, an exploration of a quantitative approach to

the measurement of imaging resolution will be presented.
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Figure 35 — Process for determining resolution using the method inspired by Vainrub (2008). 13a)
a test target with high-frequency content (made by scratching an ink blot on a
standard 75x25mm slide with a razor) is imaged using the system under test. 13b) a
2-dimensional Fast Fourier Transform (FFT) is applied to the image to convert from
spatial to frequency domains. 13c) a predetermined number of radial samples are
taken from the centre of the FFT image outward to the edges, where all pixels in the
given radius are sampled (as pixels have integer addresses, bilinear interpolation is

used). 13d) the values corresponding to each radius are averaged and plotted.

3.4.2 Modulation Transfer Function

The quantitative measurement of a device’s spatial frequency response, the Modulation Transfer
Function (MTF), can be performed to assess the imaging resolution of a complete optical system
(Xie et al., 2018b). To calculate the MTF of a digital imaging device, an edge (a very sharp
transition from black to white) is imaged onto the sensor and the pixel values perpendicular to
this edge are recorded, these values being referred to as the Edge Spread Function (ESF). The first
derivative of these values are the Line Spread Function (LSF); MTF is simply the 2-dimensional

Fourier transform of the LSF (Estribeau and Magnan, 2004), as depicted in Figure 36. MTF is
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typically measured in either Hertz, cycles or lines per pixel, where a cycle is one light and one

dark line.

Normalized magnitude

\\\
2D .
Differentiation Fourier N
Transform \\\‘
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Projection of data along the edge — Frequencv
Edge Spread Function Line Spread Function Modulation Transfer Function

Figure 36 — Schematic of the procedure for determining the resolution of a digital imaging device
by calculating the Modulation Transfer Function (MTF) using the Slanted Edge
Method (1SO 12233). Values are sampled from pixels perpendicularly to an imaged
slanted edge, making up the Edge Spread Function (ESF). The ESF is differentiated to
produce a Line Spread Function (LSF). Finally, the MTF is yielded from the 2-
dimensional Fourier transform of the LSF. Adapted from Estribeau and Magnan

(2003) and Vhengani, Griffith and Lysko (2012).

To avoid undersampling of the edge due to pixel size and to account for phase shift dependence,
standard MTF measurement procedure involves imaging an edge which is slightly slanted with
respect to the rows and columns of the imaging sensor (Burns et al., 2000, Vhengani et al., 2012).
Simulated (Estribeau and Magnan, 2004) and experimental (Xie et al., 2018c) results show that
MTF curves produced using the slanted edge technique are repeatable and close to the
theoretical MTF of a system when slant angles are small (5-10° from vertical) but that increased
angles reduce the accuracy and reproducibility of measurements. Furthermore, the slanted edge
protocol has been shown to be a reliable measure of resolution even for CMOS sensors with
complex pixel topologies (Estribeau and Magnan, 2004) despite being developed for square CCD

pixels.

With the aim of developing a robust way to measure MTF of the completed IFC system including

optics, camera and processing software, the following sections will detail the exploration of the
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effect of various variables on measured MTF using a commercial microscope. They will present
novel experimental work to assess the influence of various parameters on the measured MTF in
work which will not only allow us to confidently measure MTF in our system but contribute to the

field of microscopy as a whole.

3.4.3 Development of an experimental protocol for IFC resolution characterisation

The typical process used for practically determining the MTF of a microscope and our IFC system
is based on the standard slanted edge technique described in ISO 2233 (I1SO, 2017). Briefly, the
edge of a black square on a transmission microscopy target slide (R1L3S5P, Thorlabs Inc., USA) is
imaged with the camera rotated with respect to the slide holder in order to ensure adequate
slant angle for analysis. Next the ImageJ (Schneider et al., 2012) plugin Slanted Edge MTF (Mitja
et al., 2011) used to generate MTF against spatial frequency curves from the data. Values of
spatial frequency where MTF drops to 50% (MTF50) and 10% (MTF10) of the low-frequency
maximum MTF are extracted to allow straightforward intercomparison and to be used to

estimate the minimum object size that can be imaged with sufficient contrast.

In order to quantify the effects of varying illumination techniques, exposure times, focus
accuracies and edge slants, all of which can be varied in the IFC, a range of experiments were
conducted using a digital camera (ORCA-ER, Hamamatsu) on an inverted microscope (IX71,
Olympus) with a 10X objective (UPlan FL N, NA=0.30, Olympus) in brightfield configuration. These

experiments are detailed in Sections 3.4.4,3.4.5 & 3.4.6.
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3.4.4 Experimental determination of the effect of camera exposure on measured system

MTF

An important variable within an IFC system is the amount of light received by the camera during
its exposure. This can be controlled either by changing the illumination intensity or by increasing
the exposure time. Although changing the illumination intensity is typically more complex as it
requires control hardware (e.g. Pulse-width modulation for LEDs), it will be easy to change the
illumination pulse length in our planned stroboscopic illumination system. Since varying the
exposure time with a fixed illumination brightness has the same effect as varying the illumination
intensity with a fixed exposure time, as long as the imaging target is not moving, the former was

chosen in this experiment due to the simplicity of implementation on a standard microscope.

Thus, a slanted edge MTF measurement was carried out with fixed focus position, lighting
intensity, diaphragm apertures, edge rotation (to 5° as recommended in 1S02233) and X/Y stage
positions, while varying camera exposure time from 1 to 15 ms in 1 ms increments. The MTF

curves resulting from this procedure are shown in Figure 37.
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MTF curves for slanted edge resolution tests at varying exposure durations

Red curves are generated from images

0.1 Blue curves are geneated from
images without fully saturated pixels

o 0.1 0.2 03 04 0s 06 o7 08 0.5 1

Spatial Frequency [cycles/pixel)

Figure 37 — MTF curves derived from images of a slanted edge on a resolution test target (R1L3S5P, Thorlabs Inc., USA) under camera exposure conditions
from 1 ms to 15 ms. All images were taken under the same Z-axis focus position and with the same edge slant angle (5 °). Here, the blue curves
(MTF from images taken with 1 ms — 7 ms exposure duration), which are highly consistent, are generated from images without any
oversaturated pixels. The red curves (MTF from images taken with 8 ms — 15 ms exposure duration) are from images with pixel values of 0 or
4095 (i.e. fully saturated). These are erroneously high and abnormally smooth, indicating the importance of using a nonsaturating exposure

time when measuring and comparing system resolving power.
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With the faster exposures from 1 to 7 ms, none of the pixels in the recorded images were
saturated. Conversely, in all the exposures longer than 8 ms, the white half of the image had
many oversaturated pixels, where these pixels had reached their full-well capacity (Hasinoff,
2014) and were unable to store any further irradiance data. Figure 38 illustrates this concept of
saturation by comparing cropped regions from images taken with a) 5 ms exposure and b) 10 ms

exposure and displaying pixel intensity values from the white sections of each image.

a) Unsaturated Pixels b) Saturated pixels

2195 4095

Figure 38 - Cropped regions from images taken at a)5ms exposure and b)10ms exposure in the
3.2.1 Exposure experiment. At 5 ms exposure, pixels in the white side are
unsaturated and still contain information; at 10 ms exposure, the white side is
overexposed and the camera is limited by the full-well capacity of its pixels. All
pixels in the white section of this image have pixel intensity values of 4095, the limit
of the camera. MTF curves generated from data with such saturated pixels are

erroneously high and inflate the measured system resolution to unrealistic levels.

The resulting MTF curves calculated from the recorded images in Figure 37 show that when the
camera was not fully saturated (blue lines), the MTFs showed great consistency, but that when
images from the system were saturated (red lines), MTF results were erroneously high, leading to

unrealistic resolution measurements.

Complimenting this finding, Figure 39 presents the MTF10 and MTF50 metrics across the tested
exposure range, clearly showing significant elevation in these resolution metrics in the saturated
images. With MTF10 values above the Nyquist sampling limit of 0.5 cycles per pixel (a minimum

of 2 pixels per cycle is required to avoid aliasing), these figures are patently unrealistic.
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When applying the MTF measurement technique to our custom IFC, therefore, it will be ensured
that while carrying out the slanted edge experiment, pixels within the image are not fully
saturated. This will practically be achieved by selecting an appropriate combination of
illumination intensity and exposure time, which may be different to those tested above on a

microscope due to the sensitivity of the attached camera, and optical properties of the IFC.

82



Chapter 3

Graph of spatial frequency at MTF10 and MTF50 against exposure time
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Figure 39 — Graph of MTF10 (blue) and MTF50 (orange) values extracted from the MTF curves for images with exposure times ranging from 1 ms to 15 ms.
Both metrics are consistent for exposure times of 1 to 7 ms, where images do not have any over- or undersaturated pixels. Exposures of 8ms
and longer (red dashed box) have erroneously elevated MTF10 and MTF50 metrics than at faster exposures, indicating the inflating effect of
saturated pixels on measured system resolution. MTF10 values which are above the sampling limit imposed by the Nyquist theorem (a

minimum of 2 pixels per cycle required to avoid aliasing) are unrealistic.
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3.4.5 Experimental determination of the effect of edge slant rotation on measured

system MTF

The next variable of interest while measuring the MTF of the IFC will be the rotation of the
slanted edge target. Therefore, an experiment is carried out to determine the effect of the

rotation angle on the measured MTF.

For this experiment the effect of edge slant angle on derived MTF curves was determined by
fixing microscope X,Y and Z positions, illumination intensity and camera exposure (5 ms, which
was previously determined to avoid saturated pixels and hence result in reliable MTF curves

which do not exceed the theoretical Nyquist resolution limit).

Starting with a measured edge rotation angle of 0° with respect to the columns of the sensor’s
pixels (the edge completely vertical), the camera was iteratively rotated about its central axis by
2.5°, the edge image captured and MTF curve calculated. Previous studies have measured MTF
using only a small number of rotation angles (e.g Xie et al. (2018c) tested 6 different rotation
angles, of which half were rotated over 25° from the rotation angle which resulted in the optimal
MTF curve). The aim of this experiment is to examine with finer detail the effect of rotations
which are closer to the optimal theoretical rotations of 0-10°. Figure 40 displays the MTF curves
measured in this experiment and demonstrates the angle-dependence of MTF measurements

when rotation angle is increased past 10°.
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Graph of slanted edge MTF against spatial frequency for various edge rotation angles
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Figure 40 — Slanted edge MTF curves generated for incrementally increasing edge slant angles, starting from 0° (completely vertical) and incrementing by 5°

up to 45°.
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Figure 40 presents the MTF curves measured at each edge 5° increment in rotation angle,
overlayed onto the same axes. 2.5° increments were not included in this graph in order to reduce
complexity. Good agreement in measured MTF is demonstrated for 0° to 10° rotation, but
increasing past this point results in degraded areas under the curve with an angle-dependent
worsening of MTF. This result confirms the finding of Estribeau and Magnan (2003) and Xie et al
(2008) that MTF measurements using the slanted edge technique require a small rotation angle

of not more than 10° in order to accurately assess system resolution.

Figure 41 shows the extracted values of MTF10 and MTF50 values across all the tested edge slant
angles in all 2.5° increments, again showing angle-dependence of these resolution metrics when
the slant is more than 10°. This finding confirms the work of Estribeau and Magnan (2003), and
Xie et al. (2018), who find that only edge slant angles in the 0-10° range yield consistent MTF
curves. Our experiment additionally provides an experimental description of the rate at which
MTF is expected to fall off as edge rotation increases; Figure 41 shows that rotations of up to 20°
result in measured MTF10 and MTF50 values that are within 95% of the best measured values
and that angles of up to 32.5° result in measured MTF10 and MTF50 values that are within 90%

of the best measured values.

When applying the MTF measurement protocol on our custom IFC, care will be taken to ensure
that edge slant angles are in the range of 0-10°. This will allow the most reliable measurement of
MTF possible and result in the best estimate of the minimum phytoplankton cell size resolvable

by the completed system.
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Graph of spatial frequency at MTF10 and MTF50 against edge rotation angle
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Figure 41 - Graph of MTF10 (dark blue) and MTF50 (light blue) values extracted from the MTF curves calculated for images with edge slant angles between
0° (completely vertical; aligned with sensor pixel columns) and 45°, in 2.5° increments. With edge rotation angles of 0-10° the determined

MTF10 and MTF50 values are very consistent, but with increasing slant angle these resolution metrics display angle-dependence.
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3.4.6 Experimental determination of the effect of focus accuracy on measured system

MTF

The next variable of interest when measuring the MTF of our IFC will be the quality of focus of
the microscope objective onto the slanted edge imaging target. Changing the focus of a
microscope objective moves the imaging plane vertically through the target, and to obtain the
best possible image quality of a given object, the objective should be focussed so that the object
plane coincides with the imaging plane. This ensures that the light rays from the object are
optimally collected and focused by the microscope objective, resulting in a sharp and detailed
image. When the object plane and imaging plane are properly aligned, it maximizes the
resolution and contrast. As previously discussed, our IFC will have a variable focus objective, so it
is important to be able to assess the impact of focus accuracy on image resolution in order to

accurately assess the minimum resolvable phytoplankton size.

In this third experiment, therefore, the effect of focus accuracy (in the Z-axis) on measured
system MTF is investigated. lllumination intensity, X/Y stage position, sensor exposure time (5ms,
as above) and slant angle (5°) will all be fixed, and the variable will be the Z-axis focus position,
which will be increased in 1 um increments from a focus position well below the test target, to
one well above. In this manner, the sensitivity of the MTF measurement procedure to focus
accuracy is tested. An experiment which describes the effect of focus accuracy on MTF has not
yet been presented in the literature; authors simply state that their devices were appropriately
focussed. Our experiments help to quantify the sensitivity of the measurement protocol to
various focus conditions, a determination which is especially important in instruments without
precise and repeatable, electronically-controlled focus of their imaging lenses, as will be the case

for our IFC.

As illustrated by Figure 42, it is extremely challenging to subjectively determine the quality of
focus position beyond an accuracy of £ 2 um. This reduces the repeatability of focussing of an

objective onto an object and creates the risk of inaccurately measuring optimal MTF values.
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) O um b) 10 um ) 11 um d) 12 pm e) 20 um
f) 0 um (Zoom) g) 10 pm (Zoom) ) 11 pum (Zoom) i) 12 um (Zoom) j} 20 pm (Zoom)

Figure 42 — Comparison of the a)-e) central 256x256 pixels and f)-j) central 50x50 pixels of the slanted edge images taken during the section 3.2.3 focus
experiment. Image a) is focused below the target and image e) above the target, as can be more clearly determined from the zoomed images f)
and j). Images b), c) and d) are all subjectively ‘in focus’ and it is almost impossible to manually determine which has the most accurate focus
position. As can be seen in Figure 42, there are subtle differences in derived resolution metrics between the three central in-focus images. Of
particular interest is the fact that image e) has a darker white section than the others, which is reflected in the lower MTF metrics on the
above-target focus positions seen in Figure 42. This is caused by the interaction of the Kéhler illumination focus plane and the imaging focus

plane of the objective.
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Figure 43 demonstrates, by comparing MTF10 and MTF50 across all of the experimentally tested
focus depths, that there are subtle differences in measured resolution between images that
seem identical to a human user. This is a finding which has significant implications for the use of
this method in instruments like our IFC which do not have discrete focus settings, e.g. traditional
microscopes where the focus of the objective is controlled by manually tuning a continuously
rotating knob. The same graph also shows that reliance on either MTF10 or MTF50 alone may be
unsatisfactory due to nonlinear relationships between the two metrics. This finding also does not
appear to have been noted within the literature. While MTF10 more reliably determines the
maximum spatial resolution resolvable, MTF50 may be useful for determining overall image
quality. Therefore, when measuring the resolution of our IFC system, both MTF10 and MTF50

values will be used to estimate minimum cell sizes that could be imaged.
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Graph of spatial frequency at MTF10 and MTF50 for 1um Z-axis increments
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Figure 43 — Plot of slanted edge MTF10 (blue) and MTF50 (orange) metrics for increasing Z-axis focus positions. A focus point well below the target was
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selected and Z-height incrementally increased, with an image of the slanted edge taken every 1 micron step. Images were thus taken with the
edge in focus (8-13 um from initial position) and with the focus position above (0-7 um from initial position) and below (14-20 pm from initial
position) the target. The graph shows a nonlinear coupling between MTF10 and MTF50 values, highlighting the necessity of not solely relying
on one or the other for resolution characterisation. Further, the plot demonstrates that Z-position accuracy of at least + 2 um is required to

obtain high and consistent MTF measurements.
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As previously discussed, the custom IFC will not make use of the same precise, discrete stage
focussing mechanism found in the microscope tested within these experiments. This is because
these components would significantly increase the cost of the system, which as previously stated
is intended to be accessible by resource-constrained laboratories. Lower-cost microscopes often
make use of continuous focus mechanisms, such as rotating a focus knob or focus ring, to adjust
the position of the objective lens relative to the specimen. While these mechanisms may lack the
precision of their high-end electronic counterparts, they can still achieve good focus quality when

used properly.

In our custom IFC, a focus ring will be employed to enable users to manually adjust the focus of
the imaging system. This cost-effective solution is sufficient for achieving the desired focus
quality, as the user can carefully and iteratively adjust the focus until the image appears sharp and
well-defined. This approach allows for acceptable focus accuracy within the practical limitations of

human perception and the system's intended use.

Despite the potential for slightly reduced precision and repeatability in the focus adjustment, the
focus ring system provides a balance between affordability and performance, making it a suitable
choice for resource-constrained laboratories. In accordance with our design goals stated in

Section 3.2, this design choice will ensure that a wider range of users can access and benefit from

the custom IFC, while still achieving satisfactory imaging quality.

The implication of this design choice is that MTF measurement of the IFC will not be as precise as
for the research-grade microscope used in this section, and that when measuring the imaging
performance it is possible that the optimal (maximal area under the curve) MTF curve for the IFC
will not be found. This complicates the direct comparison of the measured MTF of our IFC with
those of more sophisticated microscopy hardware, as the results may be influenced by the less
precise focus adjustment mechanism. For this reason, it is likely that a direct comparison of the
measured MTF10 and MTF50 values between the IFC and the microscope used for these

experiments will demonstrate a lower imaging performance of the IFC.

93



Chapter 3

In order to attempt to mitigate these limitations, when measuring the MTF of the IFC, several
images of the slanted edge target will be captured while varying focus conditions to account for
inconsistencies in focus quality. By selecting the image resulting the highest measurements of
MTF10 and MTF50, a more accurate representation of the IFC's optimal imaging performance can

be obtained.

However, it is important to consider that the primary goal of the custom IFC is to provide a cost-
effective and accessible platform for phytoplankton analysis, rather than competing directly with
high-end microscopy systems in terms of optical performance. The primary design objective is to
achieve an adequate level of image quality such that the smallest possible phytoplankton can be

accurately identified.

It is therefore planned to focus on using the MTF10 and MTF50 values to determine the minimum
phytoplankton size which will be resolvable by the IFC, rather than directly comparing the
performance with existing instruments. These MTF values can be used to find the limiting
resolution of the IFC, which is critical for determining its ability to accurately identify and
differentiate various phytoplankton species based on their size and morphological features. By
establishing a minimum resolvable size, users can better understand the IFC's suitability for their
research applications and ensure that the acquired images provide sufficient information for
accurate identification and analysis of phytoplankton populations. This approach will ultimately
help to assess the overall effectiveness and utility of the IFC in the context of its intended use,
rather than focusing solely on its performance relative to high-end microscopy systems. It will also
allow us to state a minimum cell size for the IFC, similarly to those presented for the commercial

instruments introduced in the previous chapter.

Our work to use MTF measurements to determine the minimal cell size resolvable will be
presented in Section 3.5.5, after detailing the arrangement of the complete IFC system. To find
the limiting resolutions using MTF10 and MTF50 values, MTF values will be converted from units
of cycles/pixel to cycles/um by multiplying them by the reciprocal of the pixel size of the camera,

and then by the magnification of the objective.
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3.5 IFC System Design

3.5.1 Introduction

This section describes the development process followed to incorporate the acoustic flow cell,
pulsed illumination and camera into a complete system. The following subsection (3.5.2) details
the initial approach taken to this integration, which involved laser-cutting an enclosure from
acrylic. This design proved insufficient for several reasons which are explored. The second
approach (Section 3.5.3) revolved around using a commercial cage/rail system and a custom 3D-
printed flow cell holder, which overcomes the disadvantages of the first design while maintaining

acceptably low cost and complexity.

After finalising the hardware components and layout of the IFC, the imaging performance of the
assembled complete system is measured using the procedure described in Section 3.4. The
smallest resolvable phytoplankton cell is determined using the measured MTF values of the

instrument.

3.5.2 System Camera Selection

The camera selected for the final system design was a 2.3-megapixel colour USB3 camera
(Grasshopper GS3-U3-23S6C-C, Teledyne FLIR, USA) using an IMX174 (Sony, Japan) CMOS Sensor.
The camera was chosen due to it satisfying the below selection criteria:

e Pixel Density: The camera has 2.3 Megapixels (1920x1200 pixels), which is sufficent to
capture a wide field of view.

e Pixel pitch: A pixel pitch (size) of 5.86 um x 5.86 um is large compared to many alternative
cameras investigated. This large pixel pitch allows the pixels to capture more light and
therefore makes the camera more appropriate for the high light sensitivities required for
microscopy applications.

e Framerate: The camera is capable of operating at up to 163 FPS at a reduced resolution,
and over 50 FPS at full resolution. By achieving imaging speeds greater than 30 FPS, the

camera allows real-time imaging of the flow cell.
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e Global Shutter: Of the two types of shutter used in digital cameras, i.e. rolling and global
shutters, only cameras with global shutters are appropriate for the IFC system. This is
because all the pixels of the camera must be exposed during the short stroboscopic
illumination pulses generated by our LED system. If a rolling shutter were to be used
instead of a global shutter, the pulse could be faster than the time it takes the camera to
exposure the entire sensor.

e Hardware Trigger I/O: The camera chosen has I/O ports which can directly trigger or be
triggered by illumination hardware. This is critical to allow the synchronisation of the
illumination with the exposure.

e C-mount: The Thorlabs components selected for the IFC platform have a C-mount adapter
for the camera, allowing the camera to easily integrate with the rest of the system.

e Low Cost: In order to address the stated requirement of producing the complete IFC at as
low a cost as possible in order to allow its adoption by resource-limited researchers, it
was crucial that the camera cost less than the specialised cameras designed for
microscopy, which can often cost several or tens of thousands of pounds. The FLIR camera

cost £842, which satisfied this requirement.

3,53 First system design approach

With the aims of minimising complexity and cost while maintaining the fastest possible
implementation time for adoption by non-experts, initial mechanical design of the IFC heavily
utilised laser-cut Perspex, combined with components (rods, bearings, lead screw, motor) used
widely in the consumer-grade 3D printer industry. The complete Version 1 design of the IFC
mechanical system can be seen in Figure 44. The motivation behind this initial mechanical setup
was to use the automated vertical movement of a camera above a fixed objective lens to change
the depth of the focal plane as required to focus on the cells in flow. The objective lens and flow
cell were mounted on lockable frames, with cut-outs in the outer enclosure to allow access to the

locking screws without disassembling the enclosure.
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A stepper motor (NEMA 17) controlled by an Arduino Nano microcontroller was used to drive the
camera carriage, and limit switches used to prevent overextending the carriage or collision with
the enclosure. Optical planarity throughout the system was achieved by means of using a set of 4x

6mm rods vertically secured to the top and bottom of the enclosure.

NEMA 17 Stepper Motor

Enclosure top with 6mm rods secured by shaft collars

8mm lead screw coupled to stepper by shaft coupler

8mm lead nut and 6mm linear bearings allow the stepper

motor to drive camera carriage up and down the 6mm rods

Camera mounted within movable carriage

Limit switches (prevent carriage dropping off the lead screw

or colliding with the top of the enclosure)

10X 0.25NA objective lens

Flow cell halding frame

Illumination holding frame

6mm bearings secure the rods to the base of the enclosure

Figure 44 — Diagram of the first iteration IFC mechanical arrangement. Using a stepper motor,
6 mm rods and linear bearings used in 3D printers, a carriage containing a camera
can be raised or lowered as required to achieve focus of the cells passing through
a flow cell below a standard 10X objective lens. By using a matt black Perspex
enclosure, light from outside the device is limited and no tube between the
camera and objective is required. The illumination frame can be lowered and an
arbitrary number of optical components inserted above to create desired lighting

conditions (e.g. Kohler).
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While this system is quick and straightforward to assemble due to the speed of laser cutting and
ability to incorporate design features to allow easy construction, the range of focal depths proved
insufficient for adjusting focus from the top to the bottom of the flow cell without having to also

move the objective lens, which is challenging and can reduce planarity through the optical path.

An additional problem which arose during the initial testing of this version of the mechanical
design was due to the necessity of opening the device front (cut away to show inner components
in Figure 44) in order to adjust the vertical height of the frames which hold the objective lens and
flow cell. An ‘open’ design, without any tube between the camera and objective, while simple and
cheap to implement, was found to a nuisance to focus as the device needed to be in a darkened
room to operate without the light-blocking exterior enclosure in place. These issues were
considered unacceptable and motivated a complete redesign, which is described in the following

Section.

3.5.4 Improved system hardware

For the second iteration of the mechanical IFC setup it was decided that the use of additive
manufacturing (3D printing), as opposed to laser-cutting, offered a reasonable trade-off between
construction speed and design freedom. Also, by using off the shelf commercial optical
components, particularly Thorlabs SM1 lens tubing between the objective and camera, the prior
problems with focussing range could be addressed without increasing device cost significantly.
The fixed-length tubes would be required even in the absence of a course focus adjustment
mechanism as the objective lens is of the Deutsche Industrie Norm, or DIN standard. DIN
objectives, an internationally adopted standard, require a focal tube length of 160mm. This is as
opposed to ‘infinity-corrected’ objectives, which does not focus the light on a point but emits
parallel rays which must separately be focussed onto the camera’s imaging plane. The design for

the 3D printable flow cell holder is presented below in Figure 45.

The decision was also made to mount the flow cell vertically rather than horizontally like in the
initial design. This modification means that gravity does not act to pull cells out of the acoustic
pressure node, increasing the chance that they will still be within the appropriate imaging plane

after leaving the transducer region and entering the imaging region.
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Figure 45 - 3D-printable flow cell holder for the prototype IFC. The acoustofluidic flow cell slots
(from the right) into the cut-outs and is pushed until it reaches the end (left). The
circular hole in the centre allows an unobstructed optical path for imaging and
illumination, and standoffs in each corner, through which the cage rods are inserted,

prevent flexion. Inlay: close-up of the flow cell inserted into the holder (blue).

In order to maximise the ease with which the device can be adjusted, particularly with respect to
changing the distances between optical components (e.g. flow-cell and illumination source) as
required to achieve focus quality, a system of metal rods and cage plates used. As Figure 46
demonstrates, metal lens tubes (SM1L range, Thorlabs Inc., USA) couple the camera via an
adjustable-length tube (SM1V15, Thorlabs Inc., USA) to the objective, providing planarity, course
focus adjustment and external light exclusion. Fine focus adjustment is by means of a high-
precision zoom housing (SM1ZM, Thorlabs Inc., USA). Condenser lens (ACL2520U-DG6, Thorlabs
Inc., USA), collimating lenses (47-637, Edmund Optics, USA), and adjustable irises (CP20S, Thorlabs
Inc., USA) were used to provide Kéhler illumination (Kéhler, 1893), following the design of Madrid-
Wolff and Forero (2019). A Kohler setup provides uniform, collimated illumination intensity across
the sample independent of light source shape and size (Voelkel et al., 2010) and is the same

configuration typically used in research brightfield microscopes.
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Kohler illumination Flow cell & 3D

apparatus printed holder

Objective lens and

focusing apparatus

Figure 46 — Current IFC prototype arrangement. From the left: illumination from a pulsed LED is
focussed via means of 2 iris and 2 lenses. The acoustofluidic flow cell slots into a 3D-
printed flow cell holder (blue), which is sandwiched between metal cage plates for
rigidity. The objective lens is mounted on course and fine focus apparatus, which

themselves are connected to a camera via a SM1 tube.

The total cost of the optical, imaging and computational components of the system after
integrating the camera was £2240.47 (A bill of materials for the IFC is presented in Appendix D).
This is less than 1/20™ of the cost of the FlowCam, the cheapest commercial alternative (see Table

4 in Section 2.5.2 for a cost comparison with other instruments).

This cost does not include the flow cell, transducer or electronics needed to generate the acoustic
standing wave as these components are highly customisable and can be as expensive or cheap as
required depending on the trade-off between complexity of assembly, ease of use, and cost. The
IFC was tested with a flow cell driven by a commercial, lab-grade benchtop function generator
and amplifier, as well as with a custom prototype-board-based Direct Digital Synthesiser and
amplifier obtained on eBay for <£20. Both approaches demonstrated success in acoustic focussing
of beads and phytoplankton cells, but the latter required in-depth knowledge of coding and
electronics. The parts required to assemble the flow cell are under £20, but require access to a

laser printer and glass drill, so the cost to a potential user is difficult to state conclusively.
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Overall, this system represents a major step toward improving the accessibility of high-quality
imaging analyses by achieving the design goals of having a higher throughput than existing

commercial devices while being fully modifiable and at a significantly lower cost.
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3.5.5 Imaging Performance of IFC System

After integrating the camera with the rest of the IFC hardware, the MTF of the complete system
was determined using the procedure detailed in section 3.4. A slanted edge analysis experiment
was carried out using the same imaging target as used when developing the procedure (R1L3S5P,
Thorlabs Inc., USA) but now mounted in the flow-cell holder presented above in Section 3.5.3, and
imaged using the IFC camera described in Section 3.5.4. After appropriately adjusting the Kéhler
illumination, the target was imaged using a DIN 10X objective (MSB50100, Nikon, Japan) and the
edge slant was 10°. Several images were captured while adjusting the focus of the IFC objective
lens such that the maximum measured MTF would not be dependent on the subjective quality of
focus — a key point raised during the experiment of section 3.4.6. Each exposure was illuminated
by a 5 us LED pulse, which were verified to ensure that pixels in the captured images were not

fully saturated.

The MTF curve was calculated for each image captured and the curve with the highest MTF10 and
MTF50 values selected as a representation of the best possible performance of the IFC. This MTF
curve is presented below in Figure 47. The measured values for MTF10 and MTF50 were 0.167
and 0.264 cycles/pixel, respectively. These MTF characteristics are significantly worse than those
measured for the inverted microscope system as detailed in section 3.4, which saw MTF10 values
of over 0.2 cycles/pixel and MTF50 values of over 0.35 cycles/pixel, but this is to be expected
given the difference in sophistication of the objective lenses used, the cameras used by the two

systems, and the issue of continuous focus adjustment discussed in detail in Section 3.4.6.

102



Chapter 3

Measured MTF of Complete |FC System
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Figure 47 — MTF curve for the complete IFC system. The spatial frequency at which the MTF
drops to 50% (MTF50) is 0.167 cycles per pixel, and the spatial frequency at which
the MTF drops to 10% (MTF10) is 0.264.

As discussed previously in Section 3.4.6, of greater importance for the IFC system than a direct
comparison of MTF values with commercial equipment, is the realistic smallest particle which can
be imaged, as that will determine the lower bound on the size spectra of phytoplankton which
can be analysed using the device. Therefore, as previously stated, the measured MTF values will

be used to estimate a realistic minimum feature size.

As stated in Section 3.4.2, MTF10 is the spatial frequency at which the contrast falls to 10%, while
MTEF50 is the spatial frequency at which the contrast falls to 50%. MTF50 can be used as a more
conservative measure of resolution than MTF10, so MTF50 will be used in the estimation. Since

MTF50 = 0.167 cycles/pixel, the spatial frequency in cycles/um can be determined as follows:

Spatial frequency (cycles/um) = MTF50 (cycles/pixel) * (1 / pixel size in pm)

=0.167 cycles/pixel * (1 /5.86 um)

= 0.0285 cycles/um (3sf)
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Next, it is possible to find the corresponding resolution (minimum resolvable distance) for the

camera system:

Camera resolution =1 / spatial frequency

=1 /0.0285 cycles/um

= 35.1 um (3sf)

Finally, camera resolution is divided by the magnification of the objective in order to find the

actual resolvable size in the sample plane:

Resolvable size = camera resolution / magnification

=35.1um/ 10

= 3.51 um (3sf)

A minimum resolvable cell size of 3.51 um seems to align well when compared to a qualitative
visual analysis of a cell imaged by the IFC. Figure 48 presents a cropped image of a single
phytoplankton cell (Rhodomonas salina) taken by the IFC; while the cell is slightly more than 5 um
across its smaller axis, some internal cell structures of less than 5 um are made visible which

would be expected if the resolution limit was below 5 um.

Figure 48 — A single cell of Rhodomonas salina (fixed with Lugol’s lodine solution 1%) imaged by
the IFC system, demonstrating the ability of the system to partially resolve internal

cell structures significantly smaller than 5 um.

Repeating the above calculations to estimate the smallest resolvable size using the value of
MTF10 rather than MTF50 leads to a value of 2.21 um (3sf), which is a plausible lower bound to
the minimal resolvable cell size within IFC images. Based on these values for MTF10 and MTF50, it

is proposed that an approximate minimum cell size for the device is 3 um diameter, which
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compares very favourably with the Imaging Flow Cytobot and FlowCam, both of which have

posted minimum sizes of 10 um, as described in Table 2.
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3.6 Conclusion

In this chapter, work to design and systematically explore the modelled and real-world
performance of a high-throughput, low-cost, disposable, acoustically-focussed flow cell was
presented. Different flow cell strategies were investigated, resulting in the selection of a novel
matched-layer half-wave planar resonator for the IFC. This design builds upon the work of
previous studies, implementing a new matching layer to allow superior imaging performance

within our device.

Next, finite element modelling of the final flow cell to assess its acoustic focussing performance
was presented, using model parameters designed to cover the likely range of phytoplankton
properties the final IFC will encounter. It was then attempted to develop a novel imaging method
for assessing acoustic focus using the distanced travelled by particles during a fixed time, but this
proved unsatisfactory, the reasons for which were explored. It was found that the simple test of
assessing the number of objects appearing in focus due to the visual sharpness of their edges is
sufficient to reliably detect whether the acoustic focussing is operating successfully. This approach
will be used throughout the further experimentation with the flow cell detailed in subsequent

chapters.

Overall, the analyses conducted in this chapter provide confidence that the flow cell will allow
the successful acoustic focussing of a wide range of phytoplankton into a two-dimensional sheet

for high-throughput imaging by the optical system of the IFC.

Next, to ensure that those optical components are of sufficient performance to image small
plankton cells and to accurately characterise the lower limit of cell sizes that could reasonably be
imaged, it was necessary to develop a robust protocol to measure the Modulation Transfer
Function of a microscope. The MTF gives a complete overview of the optical performance of a
complete imaging device, including the camera, illumination and lenses in the system. Therefore,
testing of the sensitivity of MTF measurements to small variations in rotation of the target used
for MTF testing, exposure of the camera, and focus depth was carried out. After carrying out
these experiments, the range of conditions under which MTF could reasonably be measured for

the completed IFC could be determined.
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Finally, the work to assemble the full IFC device was reported. The hardware design of the IFC was
significantly revised after initial testing showed the many inadequacies of the first design. The
finalised design successfully achieves the design goals of quality, ease of assembly and
modification, using only easily accessible components, and having a low total cost. The total cost
of consumables is also low; no chemical flushing agents (or similar) are required for the operation
of the IFC. The flow cells have been described as ‘disposable’ as they are cheap to fabricate, as
other than the transducer they consist only of standard microscope slides and cover slips, epoxy
and acrylic. The cost to actually fabricate these flow cells may in reality be significantly increased
by the relative complexity and time-consuming assembly process, but this could in principle be
alleviated using batch fabrication techniques. The current design also requires the use of a laser
cutter, which while not a specialist piece of equipment, may be difficult to access by less resource-

rich researchers.

After detailing the design and assembly of the complete system, the optical performance was
measured using the previously detailed MTF protocol. It was found that the device has a lower
limit of phytoplankton size of approximately 3 um, which is promising as it suggests the IFC can be

used to analyse a large section of the plankton size-spectra.

Given the design of our IFC was optimised to balance performance characteristics while
minimising cost, our design uses a moderately-priced objective lens and camera. Since the IFC is
designed to be open-source and easily modifiable, it would be trivial to install a higher-quality
camera and/or objective lens. Therefore, the optical performance of the device presented in this
chapter is not a hard limit, and instead reflects a design approach designed to make the

instrument easily accessible to resource-constrained researchers.

In conclusion, this work has detailed the design and construction of a novel acoustically-focussed
IFC which will enable greater access to imaging flow cytometry for resource-constrained
oceanographic laboratories. A robust characterisation of the device in terms of acoustic focussing
performance and image quality was presented. The device described in this chapter has the
potential to not only expand the use of IFC for phytoplankton research across diverse research
scenarios but to offer a new instrument with increased throughput and image quality compared

to far more expensive existing instrumentation such as the Imaging Flow CytoBot and FlowCam. It
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is reasonable to be excited about the possibilities of our device to make a significant positive

impact in real-world oceanographic, aquaculture, industrial and algal biotechnology applications.

The following chapters will detail the development of software to automatically analyse the
images produced by our IFC (Chapter 4), and the use of the IFC for real ocean microbiological

research (Chapter 5).
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Chapter 4 Image Analysis for the Quantification of

Phytoplankton in IFC Images

4.1 Introduction

Having used the IFC presented to capture an image of a water sample, the image must be
analysed to process the raw pixel data into useful information (e.g., presence/absence of
organisms; cell count; segmentation of cell images from the image frame; cell species and/or life-
stage classification). As previously discussed, this analysis has traditionally been performed by a
human familiar with the plankton species likely to be present within a sample. However, with the
development of computer graphics and digital photography, algorithms have been created to
automate these tasks. Automated and semi-automated digital processing methods have now

been employed for a diverse range of phytoplankton research.

The FlowCam IFC, for instance, can automatically segment and measure plankton cells based on
proprietary image processing software, as detailed by Poulton (2016). Modern computer vision
techniques , such as machine learning, are increasingly being utilised with IFC imagery. Campbell
et al. (2010) detail the use of a machine learning approach based on Support Vector Machines to
detect harmful dinophytes in an estuary and Kraft et al. (2022) used a Convolutional Neural
Network approach to automatically classify the species of phytoplankton sampled by an Imaging

Flow Cytobot in the Baltic Sea.

By processing imaging data computationally, rather than manually, the volume of data that can be
analysed is drastically increased, and the reliance on human experts is reduced (though not
eliminated). Efficient automated analysis also presents the capability of processing samples in
real-time, at the point of sampling. However, the accuracy of automated systems, particularly for
those with sensitive applications such as HAB early-warning platforms, needs to be carefully

considered.

This chapter presents a cutting-edge solution for fully automated phytoplankton analysis. It
begins with a discussion of the shortcomings of traditional image processing approaches to

automated image analysis, which rely on human experts to hand-craft suitable algorithms. This is
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followed by a description of work to develop a novel Convolutional Neural Network (CNN) for
detecting and counting plankton cells within images, which allows for the processing of large
volumes of data with greater accuracy than traditional methods. Finally, an application of the
state-of-the-art object detection model 'YOLOX' to IFC images is presented, which represents the
first time this high-performance model has been employed for brightfield imaging flow cytometry.
By leveraging these innovative methods, the work presented here aims to significantly advance
the field of phytoplankton analysis and enhance our ability to monitor harmful algal blooms in situ

and in real-time.
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4.2 Traditional Image Processing

4.2.1 Introduction

This section will discuss traditional digital image processing techniques, which have been widely
used for object detection in various fields, including medical imaging, remote sensing, and
robotics. However, these techniques have limitations when it comes to analysing images of

phytoplankton generated by the IFC, which will be explored.

The first set of traditional techniques mentioned is edge detection-based. Edge detection is a
fundamental technique for image processing that involves finding boundaries between objects in
an image. In edge detection-based object detection, the algorithm identifies edges and then
segments the image based on these edges. However, this technique often fails to detect objects
with low contrast or those with borders which are not well defined, both of which are potentially

problematic with respect to images of organic cells.

The second set of traditional techniques mentioned is contrast-based. Contrast-based methods
use differences in intensity or colour between the object and the background to identify the
object. This approach can be useful when the object has a high contrast with its surroundings, but

it may struggle when the background is complex.

To address these limitations, traditional image processing techniques often require the use of
several refinement techniques, such as colour/brightness thresholding, background removal,
blurring, and morphological thresholding. Colour and brightness thresholding can be used to
detect objects based on their colour or intensity, while background removal can help to eliminate
unwanted background artefacts and noise. Blurring can be useful for removing small details that
reduce the performance of edge detection algorithms. Morphological thresholding can limit

detections to objects within a certain size range as determined by pixelwise area.

Despite their effectiveness with images having clear visual distinction between objects of interest
and the background, traditional image processing techniques still have limitations when it comes

to analysing the complex phytoplankton images generated by the IFC. The main challenge to
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traditional image processing techniques, even with extensive refinement, is the highly variable
and often high-contrast background objects that can make it difficult for the algorithm to
distinguish the phytoplankton from cells and detritus adhered to the flow cell. Additionally, the
traditional techniques require manual fine-tuning by the user to deal with specific image

conditions, which is time-consuming and limits their effectiveness.

As an example of a pipeline for object detection via traditional methods, consider the example of

locating the (x,y) centre coordinates of the various ellipses in a simple image such as that

presented in Figure 49:

Figure 49 - Example image created for demonstrating the traditional methods of object detection.
The image contains ellipses of two different colours, sizes and eccentricities overlaid

on a plain black background. The image is a 400x300 .jpg file.

To more closely align with the detection of plankton in IFC images, the problem here is

formulated such that regardless of the colour, size, eccentricity, and number of ellipses within the
image, the system should be able to determine a centre coordinate for each ellipse, thus allowing
the shapes to be counted, tracked over time, etc. This aligns closely with the requirements of the

image processing from the IFC, but with drastically reduced complexity.
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4.2.2

Example Algorithm

A simple typical pipeline for detecting the ellipses’ centre coordinates using traditional image

analysis techniques involves the following steps.
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1)

2)

Conversion to grayscale (Figure 50). The image is converted from 3-channels (RGB) to 1.
This pre-processing step is required as later functions operate only on single-channel
images.

Figure 50 — The ellipses image after being converted to grayscale.

Blurring the image (Figure 51). A blur is applied to the image to eliminate any noise. The
type and strength of the blur must be specified. For this example, a simple Gaussian
smoothing is applied to the image, which involves multiplying pixel values by a sliding
window filter, a weighted matrix with the highest value at the centre and gradually
decreasing values as the distance from the centre increases, according to the normal
curve. In this manner, high-frequency details are removed while low-frequency features
are preserved. This improves the performance of subsequent processing.

Figure 51 — The grayscale image of ellipses after applying a 5x5 pixel gaussian blur operator.
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3) Edge detection (Figure 52): The next step is to detect the edges in the image. This is done
by applying a filter or gradient operator to the image that highlights the regions with the
most rapid changes in luminosity or colour. Multiple algorithms have been introduced for
edge detection, including Sobel (Duda and Hart, 1974) and Canny (Canny, 1986) edge
detectors.

Figure 52 — The images of ellipses after the Canny edge detection algorithm has been applied

to the blurred, grayscale image.

4) Threshold Masking (Figure 53). The results of the edge detection algorithm are often
overly detailed and noisy, so a thresholding operation is applied to the image. To perform
this step, pixel values below a specified lower threshold are set to zero and pixel values
above a specified upper threshold are set to 1, creating a binary image output.

Figure 53 — The image after grayscaling, blurring, edge detection and thresholding. All
that remains now is pixel values of 0 in regions which are not included in

the ellipses, and values of 1 inside the ellipses.

5) Contour detection (Figure 54). The contours of the objects are extracted by tracing the
boundary between the foreground and background regions of the image. Several
algorithms are available for contour extraction, including the Douglas-Peucker algorithm
(Douglas and Peucker, 1973) and the active contour model (Kass et al., 1988).In all cases,
the output is a series of connected point coordinates that define the boundary of each
detected object. This step is required if for the extraction of the outline of each object. If
one were only interested in the number of objects, it would be possible to just count the
connected regions of pixel values of 1. If one only wanted the maximum extent of the
objects — to draw a bounding box around the objects, for instance, one could find the
maximum and minimum coordinates in x- and y-directions for each connected region.
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Figure 54 — The ellipses after contour detection using the active contour algorithm. The
outside edges of the objects of interest are now known and represented here

in green.

6) Localisation (Figure 55). Once the contours of the shapes have been determined, the
objects can be localised as required. For instance, a rectangular bounding box that
encloses each entire contour can be easily determined from the output of the previous
step. Once a bounding box has been determined, the centrepoint coordinates of the
shapes can be easily calculated. Alternative approaches to centrepoint extraction include

moment-based methods, which involve computing the first-order moments of the

contour, e.g. as discussed by Yuan and Hui (2008).

Figure 55 — The centre coordinates of each detected ellipse have been determined
using the minimum and maximum extents of the previously calculated

contours of the shapes, and are now plotted on the image.

4.2.3 Limitations

The above algorithm works well for the extremely simplistic example image shown in Figure 49,
but is easily shown to be inadequate by considering various conditions possible within the

problem as specified but not present within the image previously investigated.

For instance, if an ellipse appears which has a brightness of colour close to the background

(black), that ellipse may not be above the threshold value previously selected for binary masking,

115



Chapter 4

so may not pass on to the contour detection step and thus would not have any associated
coordinates determined. In the context of the real IFC images, this could occur as a result of cell
transparency or occlusion by background debris. Figure 56 illustrates this condition; only the
lightest of the 3 dark ellipses is successfully detected. In order to allow the algorithm to obtain the

correct result it would be necessary to go back and manually adjust the binarization threshold.

d.

Figure 56 — A new image of ellipses is presented in Figure 55a. The image now contains 3 ellipses
of colours having a low contrast with the background. Figure 55b demonstrates the
problem with the previously discussed image analysis approach; the contour
detection has only operated successfully on the ellipse with the highest contrast
from the background as the thresholding step used after edge detection had a
threshold value set too high to include the darker objects. As a result, only that

ellipse has its centre coordinates calculated, as demonstrated in Figure 55c.

If ellipses are introduced to the image with borders either very close to another ellipse, or even
partly occluded, the contour detection algorithm fails, as shown in Figure 56c. In real IFC images,

cells have a high likelihood of presenting close to or in contact with other cells.
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To successfully account for this scenario, the software would need to be made far more complex
by the additional processing step of a watershed algorithm (Roerdink and Meijster, 2003), which
itself requires manually tuned parameters . Morphological transforms, transformations of the
threshold mask to ‘erode’ the size of ellipses and allow their separate detection, may be required.

These too need carefully selected parameters to ensure adequate performance.

Figure 57 — in this new image example, 2 of the 3 ellipses are partially overlapping. Though to a

human, the 3 ellipses are clearly distinct objects, the algorithm which has been
developed so far fails to distinguish the two objects and instead treats them as one.
Figure 56b shows that the contours are calculated for the combined ellipses and

therefore the centroid of the combined objects is plotted on Figure 56c.

If the background is not pure black but instead a gradient, while the ellipses are still easily
distinguished by a human viewer the performance of the processing algorithm explored thus far
will be severely hindered. In the real IFC, the lighting is often not of a perfectly consistent
intensity and has a gradient with a maxima to the centre of the image. Figure 58 shows an
example of a gradient background, with 3 ellipses overlaid on a blue gradient background. The
algorithm is incapable of distinguishing between the background and foreground and so fails as
shown in Figure 58b. and c., only successfully detecting the foreground object with the highest

contrast from the background.
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Figure 58 — In this final example, Figure 57a. shows 3 ellipses which are overlaid this time on a
gradient background, rather than the plain black of the previous examples. Though the
3 ellipses are still easily recognised by a human, the algorithm is unable to cope with the
low contrast that the gradient produces and so falsely calculates coordinates for two of
the ellipses and part of the gradient as a combined object, as shown in Figure 57b.

Therefore, as Figure 57c, demonstrates, only one of the 3 ellipses is correctly identified.

As a solution for this problem, the system could be extended to include an initial background
subtraction step, whereby the mean of several images is subtracted from the image to be
analysed before proceeding. This would allow the unchanging (background) elements to be
removed effectively but would necessarily cause the algorithm to be unable to process some

images which would be used for calculating the background.

4.2.4 Limitations in IFC Imagery

Though each of these complicating factors can be manually controlled for by increasing the
algorithmic complexity and/or fine-tuning the parameters selected for thresholding, etc., the
system will still be highly susceptible to error if the image content changes beyond the starting
conditions that the algorithm was developed for. In the case of the IFC presented in this thesis,
these unpredictable changes are highly likely and can occur due to several factors, which are

briefly explored below.

The background can change significantly over the lifetime of the flow cell as various debris
adheres to the inside of the glass and causes uneven shadowing, similar to the background
gradient problem explored. Cells and detritus can be pushed onto the flow-cell walls by the effect

of negative acoustic contrast factor discussed in the previous chapter. Figure 59 demonstrates

118



Chapter 4

two background images of the same flow cell, separated by one week’s operation with regular
flushing of phytoplankton-containing seawater through the device. Many additional cell debris
have accumulated on the edge of the glass flow cell, producing background ‘shadows’ which
obscure any cells moving in front across the foreground. Additionally, some debris which was
present in the earlier image has moved or detached, demonstrating the variable nature of

adhered detritus and rendering background subtraction techniques impossible.

Figure 59 — Two images of the IFC flow cell while filled with sterile L1 medium but no
phytoplankton cells. Figure 58a. shows the flow cell after processing several
phytoplankton samples and has obvious shadows which are cast onto the field of
view by detritus adhered to the sides of the flow cell. Figure 58b. shows the same
flow cell after a further week of regular sampling operation. More debris has
adhered to the flow cell, so the background complexity has been significantly
increased. The arrow points to an area of particularly heavy new adhered debris.

This variable background poses a challenge to image processing algorithms.

Cells are not guaranteed to present singly, not overlapped and with low proximity to other cells; it
is entirely possible for cells to touch or even partially occlude each other, though the probability
of these occurring is dependent on the cell density, acoustic contrast factor, cell size and other

factors. Figure 60 illustrates this challenge, showing two plankton cells touching each other.
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Figure 60 — IFC image of 3 phytoplankton cells, 2 of which are in contact with each other (arrow).
As previously discussed, overlapping and touching objects pose a challenge to image

processing techniques.

Organic material is often highly transparent, and it is possible that some plankton species will
have a low contrast with their background, especially on areas where the background is darkened
by adhered debris. Though these cells can be easily recognisable to a human observer, traditional
processing methods are typically not robust enough to deal with such cases. Figure 61 illustrates
one example of this problem, with 2 cells visible, one of which is passing in front of a background

with which it has very little contrast.

Figure 61 — close-up view of a phytoplankton cell (arrow) traversing in front of adhered detritus,

the shadow of which is cast from the edge of the flow cell into the field of view.
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Even if all of these shortcomings are fully addressed with an improved algorithm, the traditional
processing techniques discussed are tailored to a specific set of initial conditions, and need to be
carefully readjusted for each new use case (e.g., different phytoplankton species, each of which

may have different shapes, colours, and opacities).

More powerful image processing methods based on machine learning have been shown to
overcome these limitations by automatically learning the most relevant features and patterns
from the input data, without the need for explicit feature engineering or manual adjustments.
These approaches, particularly deep learning techniques such as convolutional neural networks
(CNNs), have been successful in various image recognition and classification tasks, including the
identification and analysis of phytoplankton species (Zhang et al., 2023), and will be fully explored

in the following sections.
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4.3 Machine Learning-based Image Processing

4.3.1 Introduction

Supervised Machine Learning refers to the use of computational optimization algorithms to
determine appropriate values of parameters to complete a task, rather than those parameters
being set by a human. These tasks are typically categorized as either regression-based (predicting
numerical values), or classification-based (assigning a class). In the field of image processing, there
is a wide variety of methods and applications of machine learning. For instance, the algorithm
presented in section 4.2.2 used manually determined parameters such as the kernel filter size of a
Gaussian blur and a threshold value for binarizing an edge image, but one could instead use
regression-based machine learning to find optimal values for these values such as to demonstrate

the highest possible accuracy of the complete algorithm.

Supervised machine learning algorithms are usually trained on large datasets of labelled examples
and determine optimal values for parameters such as to model the underlying patterns in the
data. Once these parameters have been optimised, the algorithm can be used to make predictions
about new data it has not seen. Algorithms used to optimise parameters for image analysis
include Linear and Polynomial Regression, Decision Tree and Random Forest models, Neural

Networks, Support Vector Regression and Bayesian Linear Regression (Gareth James et al., 2013).

Machine learning allows image analysis algorithms to take on layers of sophistication that would
be impractical or impossible using traditional approaches. The algorithm presented in 4.2.2 is
extremely simple and, as demonstrated, is not very effective for the problem of cell detection in
the images produced by the IFC presented in this thesis. A better but more complex approach
would be to manually determine a set of features common to each cell; these may include colour
and luminosity features, morphological features such as size and roundness, etc. Hand-crafting
these features would be very time consuming and, as discussed in section 4.2.4, could increase
the specificity of the algorithm so that small changes in image content, such as the background
changing due to the movement of cells adhered to the flow cell, would prevent accurate
detection of cells. Nevertheless, hand-crafted features combined with machine learning
optimization strategies have demonstrated adequate performance in more simplistic image

processing tasks (Lin et al., 2020).
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A family of models which is now commonly used for automated image analysis is the

Convolutional Neural Network (CNN), which will be explored in detail in subsequent subsections.

CNNs automatically learn features from images by optimizing sets of filters, which allows the

network to learn relevant features at multiple scales and orientations. CNNs have been used in a

wide range of applications, including classification, object detection, image segmentation and

image generation.

Before going on to lay out the application of Machine Learning to the IFC images generated by the

device presented in this thesis, it is useful to summarize the different categories of machine

learning approaches in the context of image processing. Broadly, these categories can be defined

as the following:

1)
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Image Classification
Image classification problems involve assigning a class to an image based on a set of

learned mappings between images and class labels. There may be one or more classes
and each image may be assigned either a single-class (binary) probability, a class based on
the highest inter-class probability, or labelled with multiple classes based on the per-class
probabilities exceeding a threshold value. An example with hypothetical outputs of each
is shown in Figure 62, where for an input photograph of a dog sat in a field of bluebell
plants, a binary classifier gives a [0-1] probability of the image being of a dog. A multiclass
classifier gives [0-1] probabilities for the image content being of one of several classes,
and only the class (dog) with the highest probability is selected for the output. In the
multilabel classifier, each of the probabilities is independently checked and those classes

assigned probabilities above a threshold value (dog and plant) are labelled to the image.
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Figure 62 - An image of a dog in a field of bluebells is used to demonstrate three kind of image
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classification. In Binary Classification, a model which has been trained to recognise
images of dogs outputs a 0-1 probability of the image containing a dog. In Multiclass
Classification, the model is trained on multiple classes (Dog, Cat, Bus, Plant) and for
each class outputs a probability of the image containing an example of that class. The
class with the highest probability score, in this case Dog, is selected as the output. In
Multilabel Classification, the model can assign more than one label to the image. In
this example, the model outputs both Dog and Plant as both classes have probability

scores which pass some threshold value. Adapted from (MathWorks, 2023).

In the context of imagery of phytoplankton which are produced by the acoustophoretic
IFC presented in chapter 3, there are multiple potential use of each of the
aforementioned image classification modalities. Firstly, for a given full-frame image of the
presented IFC flow cell, a binary classifier could output a probability of the image
containing cells or being empty, as demonstrated by the hypothetical output predictions
presented in Figure 63. This type of classifier could be used to automatically discard
‘empty’ frames in IFC experiments; a setup like this could reduce storage use by only

saving images which have cells present.
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Binary classifier for the presence of phytoplankton cells

Input Image 1 Input Image 2

Cells Cells
Classifier Output:  Yes: [0.18 | Classifier Output: YES:

No: [0.82 | No: 0.06

Figure 63 - Two images from the acoustophoretic IFC device are presented. For each of the two
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input images, a binary classification model which has been trained to detect cells
could output a probability score of the image containing cells. Based on this score,
frames which do not contain cells, like the first input image, could be discarded

without being saved, saving memory and processing time.

If instead of whole-frame images, the classification algorithm was trained and used on
cropped images of single cells, as in Figure 64, a hypothetical binary classifier could output
the probability of the cell being healthy. A classifier of this type could be used in industrial

phytoplankton cultivation to automatically monitor the health of a culture.

A multiclass classifier could be used to automatically determine the type of phytoplankton
in the image from a list of possible genus/species A hypothetical multiclass classifier
output is also presented in Figure 64. Such a system would be useful for automatic
monitoring of community composition for applications including HAB monitoring and
rapid phytoplankton assemblage analysis. A multilabel classifier could output predictions
of the species of multiple phytoplankton cells within a single image, which would have
utility in analysing more complex samples not of a monoculture and with multiple cells

per image.
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Input Image Binary Ciassiter ‘:de:::

Genus
Alexandrium: [0.49)
* Rhodomonas:
Prorocentru m:[[ﬁﬁ'
Ceratium: 0.14
Dinophysis  [0.33

Multiclass Classifier

Figure 64 — An image of a single phytoplankton cell is used as an input for hypothetical binary
and multiclass classifiers. The binary classifier can predict whether a cell is
healthy or not, whereas a multiclass classifier could be trained to distinguish
between several genus of phytoplankton and output a probability score of the

input image being an example of each, selecting the highest probability.
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2) Object Detection

As demonstrated above, a binary classification algorithm can take an input image and
output, for instance, a probability of that image containing phytoplankton cells. If instead
of a probability for the whole image, the algorithm was trained to output a per-pixel
likelihood of the pixel being a part of a phytoplankton cell, the cell could be localised to a
given region. An example of this kind of single-stage object localisation algorithm is
presented in Figure 65, where for an input IFC image of a phytoplankton cell against an
empty background, a model outputs a probability of each pixel being a cell in an output
known as a probability density map (or pixel mask). From this map a variety of simple
algorithms could be used to determine the exact extent of the object of interest, e.g.
drawing a rectangular ‘bounding box’ around the cell or counting the number of pixels
contained within it. This could allow software to measure the cell or to crop the cell from
the input image, allowing the storage of only the region of interest. After cropping, the
cell image can be passed to a secondary algorithm (e.g. species classifier); etc. This

method is an example of the process known as Object Detection.

Input Image Per-Pixel Binary Classification (Cell / Not Cell)

10
0.8
0.6
0.4
i 0.2
0.0

Figure 65 — An object detection algorithm based on a binary classification of each
individual pixel within an input image. The algorithm generates a
probability score (0-1) of the pixel containing a cell, after which a number
of algorithms can be used to, for instance, count, localise or measure cells

within an input image.

A more common approach to object detection is to use a regression model, which takes
an image as an input, and predicts zero, one or more (depending on the number of
objects present) sets of 4 numerical values which define a bounding box around an object
of interest. An example of a hypothetical image detection model of this type is shown in

Figure 66, where, for the same input image of a single phytoplankton cell as used above in
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Figure 65, an object detection model outputs values which define the corners of a

bounding box around the cell.

Input Image Output Bounding Box

[400, 440, 390, 450]

Regression Model
ﬁ
[xmin, xmax, ymin, ymax]

Figure 66 — Example of a typical input and output from a machine learning regression
model for object detection. An IFC image of a single phytoplankton cell is
input, and the model predicts values for the coordinates of the corners

which could be used to draw a box around the cell(s) in the input image.

Further, rather than simply predicting a bounding box (or identifying pixels belonging to
an object, as carried out by the previously introduced object detection type), an object
detection system could make use of multiclass or multilabel classifiers. By extending these
algorithms from binary to multiclass classifiers, each positive detection can be assigned to
one of several classes based on the highest probability. In this fashion, the system can
simultaneously localise and assign labels to cells (e.g., species). These simultaneous
localisation and classification object detection algorithms are commonly used for medical
image analysis (Karaman et al., 2023), pedestrian detection (e.g. (Dollar et al., 2011)),
automated satellite imagery analysis (e.g. (Hussain et al., 2013, Bakirman, 2023)) and

robotics (Terven and Cordova-Esparza, 2023).

Examples of simultaneous classification and localisation of objects within images for the

two types of object detection algorithms explored are explored below.

In Figure 67, an object detection algorithm takes as its input an MRI image of a patient’s
torso and outputs one probability density map for each class of interest, in this case, the
heart, kidney, liver and spleen. From these probability density maps, the organs can be

segmented from the original MRI, measured in terms of pixel area, etc.
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QOutput Probability Density Maps for Each Class

a. Input MRI Image

d. Kidneys e, Spleen

Figure 67 — This diagram, adapted from Shin et al. (2016a), demonstrates the ability of a machine
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learning model to output probability density maps which correspond to predicted
locations of various classes of objects of interest. In this example, an abdominal MRI
input image has 4 corresponding output density maps, one for each of the organs of

interest.

Figure 68 presents the second type of object detection model. As opposed to the prior
model which outputs a probability density map per class, this model simultaneously uses
a trained regression model to predict the pixel coordinates defining a bounding box
around objects and uses multiclass classification to assign a label value the objects. The
label value can then be compared with a list of class names to draw labelled bounding

boxes on the original image.
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a. InputImage

b. Object Detection output

[xmin, xmax, ymin, ymax, class]
[130, 410, 300, 850, 1]
[90, 700, 100, 710, 2]
[680, 890, 40, 120, 3]

¢. Predicted bounding boxes and classes labelled on input image

Figure 68 — Example of object detection via machine learning, where coordinates defining
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3)

bounding-boxes are predicted via a regression model. In this example, the model has
been trained to detect 3 different classes, and can simultaneously output a list (b.) of
bounding boxes for an input image (a.) with a predicted class for each box (final

column of the output list b.). Finally, the boxes can be drawn onto the input image to

visually show the predictions of the model (c.).

Image Segmentation
Image Segmentation is conceptually similar to Object Detection but involves the

assignment of a label to every pixel in the image. The two types of segmentation
approaches, namely Semantic and Instance segmentation, are presented in Figure 69

below.
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C. Classification d. Semantic Segmentation

Object Detection Instance Segmentation

Figure 69 — Adapted from https://manipulation.csail.mit.edu/segmentation.html. An

image of a dog and three sheep is used as an example of image
classification, object detection, semantic segmentation and instance
segmentation. In semantic segmentation, each pixel is assigned to the class
with the highest probability. In the given example, red is used for the ‘dog’
class, and blue is used for the ‘sheep’ class. Pixels in the background are not
separately coloured in this case, but would have been assigned the
‘background’ class. There is no distinction made between different
instances of the same class, unlike in instance segmentation, which is
shown below. In instance segmentation, each pixel is assigned a class as
before, but also assigned an instance variable representing the number of
that object. In this manner, the image pixels belonging to the three
different sheep are separately labelled and can be extracted or analysed

individually.

Semantic segmentation refers to the task of assigning a semantic class label, such as
‘sheep’, ‘dog’, ‘cat’, ‘background’, etc., to every pixel in an image. The purpose of
semantic segmentation is to divide an image into different regions, each representing a
unique object or background class. As shown in Figure 69 c. and b., while Object Detection
approaches draw a bounding box around each instance of a detected class (dog and
sheep), semantic segmentation assigns the label ‘dog’ or ‘sheep’ to every pixel comprising
those instances.

Instance Segmentation extends semantic segmentation by assigning a unique identifier to
each instance of each class. As demonstrated in Figure 69 d, this allows the same label to
be assigned to pixels belonging to the same object, and different objects of the same class

are given a unique label.
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Image segmentation can be achieved based on, for instance, the pixel probabilities within
a probability density map like that illustrated in Figure 65 being above a threshold value,
with those labelled as belonging to a cell and those below the threshold labelled as

background.

4) Image Generation
In image generation problems, the goal of the machine learning system is to generate a

new image based on an input. The input may take the form of a prompt (Text-to-image),
as demonstrated in Figure 70, where the Image generation algorithm DALL-E 2

(https://openai.com/product/dall-e-2) was used to generate images based on short

descriptive prompts defining the desired image content.

‘A light-brown, medium-sized Anatolian ‘A phytoplankton cell floating in
shepherd dog sitting in a field of bluebells’ seawater’

Figure 70 — two images which were generated by the DALL-E 2 image generation model. In each
instance, a prompt, which is displayed here above the image, was used to generate a

new image using a Generative Adversarial Network. The model is trained on many
Alternatively, image generation may take as an input one or more images, and generate a

new image based on the inputs, as demonstrated in Figure 71, where DALL-E 2 has been

used to generate two new images which are variants of an image given as an input.
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Input Image First Variant Second Variant

Figure 71 — Two variants of an input image generated by the generative adversarial network
model DALL-E 2. Neither of the two variants are real images but instead were
generated using a combination of previously learned features and features from the

input image.

While image generation is not within the scope of this thesis, it holds potential in the
generation of synthetic data that could be used to augment the training datasets used
within other machine learning techniques relevant to IFC of phytoplankton. For example,
image generation of unusually shaped phytoplankton cells could be used to train an
object detection network to more reliably detect previously unseen phytoplankton within

images from the flow cell.

The primary requirement of an automated image analysis system for the presented IFC is to count
the number of cells present per image, as this produces the most fundamental biological measure
of aquatic primary productivity. The secondary requirement is to localise the cells and store the
cell coordinates, thus allowing later analysis of secondary biological characteristics such as cell
volume, species, and health. Though not strictly required for the use of the IFC for basic
phytoplankton science, it would be beneficial if the analysis software was able to measure these
secondary properties online; that is, at the time of capture of the image, rather than after
capture. This problem formulation most closely aligns with the description of Object Detection as
given above, so for the remainder of the chapter the primary focus will be on the Object

Detection problem of locating cells within IFC imagery.

As discussed previously, algorithms for image analysis rely on a set of features; while for

classification problems an analysis is formed based on the presence or absence of these features
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within an image, object detection involves searching across an entire image for these features. It
was also noted that hand-crafting these features is time-consuming, complex and potentially
unreliable, but early object detection algorithms were based upon these feature sets and
achieved moderate success; e.g. ((Papageorgiou et al., 1998, Rodenacker et al., 2006, Hader,

1995)).

Neural networks, particularly deep convolutional neural networks, which will be explored in detail
in the following section, have revolutionised the field of image analysis by removing almost
entirely any manual selection of features within the processing algorithms. By learning not just
the optimal values for a given set of features but instead which features themselves are relevant,
neural networks are able to model very complex relationships between the image data and the
labels of interest (e.g., cell coordinates, species). In addition to determining, through the process
of machine learning, the optimal feature set for a given problem, neural networks have several
other benefits, including the speed with which they can be executed on computational hardware
through parallel processing; and the ability to be robust to noisy input data. Neural networks will

be the focus of the remainder of the chapter, and will be described in the next section.

4.3.2 Neural Networks

Neural networks are machine learning models which comprise matrix operations carried out by
layers of interconnected nodes called neurons, each of which perform a weighted sum of their
inputs and add a bias value. An example of the operation of a single neuron is presented in Figure
72, where a vector of inputs, a = [a4,ay,as,...,ay], is multiplied by a vector of weights, w =

[Wi, Wy, W3, ...,wy], has a bias, b, added, and outputs the result.
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Figure 72 — lllustration of the operation of one neuron. The neuron computers a weighted sum of
its inputs, [a4, a,, as, ..., ay], using associated weight values, [wy, w,, w3, ..., wy],. A

bias value, b, is added and the output, z, is passed on to the next connection.

In a neural network, a hidden layer is an intermediate layer of neurons that sits between the input
layer and the output layer. Its name derives from the fact that its neurons are not directly
connected to the network's input or output layers. Instead, a hidden layer receives inputs from
the previous layer and sends outputs to the next layer. Figure 73 demonstrates the simplest form
of neural network; an Input Layer is multiplied by the matrix of weights within one single hidden
layer, and the output is combined (using a weighted sum) to produce a result. Note that not all

nodes of the previous layer need to be connected to every neuron in a given layer.
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Input Layer Hidden Layer Output Layer

Input 1

Output

Input 2

Figure 73 — An illustration of an extremely simple neural network. Two input neurons (blue) are
connected to 4 neurons (grey) within a single hidden layer, which are in turn
connected to a single output neuron (orange). Each connection represents one of the

inputs to a matrix operation.

By modifying the weight and bias values for each of the neurons within a network, the neural
network presented can learn linear relationships between the input and output variables and is
therefore equivalent to a linear regression model. A practical example of regression using these
neural networks could be modelling an expected population of plankton value based on numerical

inputs, such as the water temperature, available photosynthetically available radiation, etc.

Within neural network terminology, values which are optimized through the training process
(such as the weights and bias values of neurons) are called parameters, and those which are set
manually (such as the number of hidden layers, or number of neurons per layer) are called
hyperparameters. Note that hyperparameters can be either hardcoded directly or
computationally optimized through the processes of network architecture exploration and

hyperparameter tuning.
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An addition to the model described so far which enables the modelling of much more complex
relationships between input and output values is that of nonlinearity. Nonlinear operations are
added in the form of activation layers, which modify the output values of neurons in a nonlinear

way.

Commonly employed activation functions include the sigmoid function, which enables neurons to
perform an operation equivalent to logistic regression, and the Rectified Linear Unit function
(ReLU), which sets all negative neuron outputs to zero, effectively creating a threshold that must
be surpassed in order for the neuron to activate. This allows the network to model non-linear
decision boundaries and capture more complex patterns in the data (Krizhevsky et al., 2017).

Figure 74 shows plots of these functions.

Sigmoid
1.0

5 10
RelLU
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z,z=0
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Figure 74 — The sigmoid and Rectified Linear Unit (ReLU) functions. By passing the output value of a
neuron through these functions, the neural network is no longer performing a simple
linear regression and is able to represent complex nonlinear relationships between
input and output data. The specific activation function used influences the

performance of a given model.
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In neural networks used for regression problems (including those modelling complex nonlinear
relationships), the output layer consists of one or more neurons, each with a linear activation
function outputting a continuous value. Different types of output layers can be used to produce
various output types depending on the nature of the problem. For example, in a multiclass
classifier, the output of the final hidden layer is often passed through a softmax activation
function (Bridle, 1989), which produces a probability distribution over the different classes. The
predicted class is then identified as the one with the highest probability. Other types of output

layers, such as recurrent layers, can be used for sequential data such as time series.

In a deep neural network, multiple additional hidden layers are connected between the input and
output of the network, and the operations of each layer are performed sequentially. A simple
example of a deep neural network with 3 hidden layers is presented in Figure 75. Modern neural
networks demonstrating success on visual recognition, natural language processing and other
complex tasks often have dozens or even hundreds of hidden layers (Zhu et al., 2018). Deep
neural networks have been shown to be highly effective at learning complex patterns in data,
having achieved state-of-the-art performance on a wide range of tasks, including image

classification, object detection and speech recognition (Sharma and Guleria, 2022).

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
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Figure 75 - A deep neural network with 3 hidden layers is presented. In this network, each layer is
fully-connected; that is, each neuron is connected to every neuron in the prior layer.
By introducing additional hidden layers of neurons, the deep neural network is able
to model increasingly complex relationships between input and output data. (Strauf3,

2018)
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By setting the weight and bias terms for each neuron within a network of an appropriate
architecture, the network can be enabled to provide an accurate label (Y) for a previously unseen
input (Y), providing the input shares similarities with the input data on which the network was
trained (i.e., the weights and biases determined). The training process as a whole represents the
optimisation of a nonlinear function to best map input to output data, according to some

criterion.

One advantage of neural networks is that they comprise many small, simple mathematical
operations compared to other machine learning algorithms, which can require complex singular
operations (Bishop, 1994). This aspect allows computers to make use of parallel processing; that
is, to simultaneously calculate the results of every neuron within a layer. Although traditional
central processing units’ (CPU) architectures are not efficient parallel processors; generally having
only between 2 and 128 computing cores, graphics processing units (GPUs) are comprised of very
high density, fast but simple computing cores (Hu et al., 2022). A modern consumer GPU (e.g.,
NVIDIA’s RTX 3080 graphics card released in 2020) has over 8000 cores, each of which can

operate at a rate up to 1.7 GHz.

As discussed previously, machine learning algorithms must go through a process of training to
determine optimal parameter values. Neural networks are trained using many labelled data
examples assembled into a training dataset. The number of training data required depends on the
complexity of the mapping function between inputs and labels. Once sufficient training data is
obtained, the weight and bias terms of each neuron must be iteratively optimized through the
following process:

a) A random input-label pair (Y, ¥) is selected from the training dataset.

b) The input is fed to the first layer of the neural network and each neuron performs its ax + 8
operations, including the activation function (if present). The output is then passed to zero,
one, or more neurons in the next layer of the network. This process continues until the final
layer of the network, where the combination of neuron output values corresponds to a
particular label or regressed value for the input data. This process is known as forward

propagation.
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c) A Loss value is calculated by comparing the label output by the network with the real label.
This Loss can take the form of Mean Squared Error for regression problems, cross-entropy
loss for categorisation problems, and so on. Many such loss functions have been proposed
within the literature and the loss function used will depend on the task type and priorities
(accuracy vs precision, etc).

d) Starting from the last layer of the network, the backpropagation algorithm is used to
calculate the gradients of the Loss function with respect to the weights and biases of each
neuron in the network. Backpropagation uses the chain rule of calculus to compute the
derivative of the Loss function with respect to each parameter in the network, including the
weights, biases, and any other learnable parameters. This process is repeated backwards
through the layers until the gradients of all the parameters have been computed.

e) Finally, the parameters of the entire network are simultaneously updated using a gradient

descent algorithm. The simplest of these is the stochastic gradient descent algorithm:

— s . . — . . .
Wx=Wx — «a (ﬁ), where Wx is a new weight, Wx is an old weight, a is a learning rate

parameter and L is the loss value. Biases and another other learnable parameters are
calculated similarly. For deep neural networks, more advanced optimization algorithms
such as Adam or RMSProp may be used instead. These advanced algorithms use techniques
such as momentum, adaptive learning rates, and gradient normalization, which are outside

the scope of this thesis.

After training on a specified number of input-label pairs (labelled data), the neural network is
typically tested on labelled data it has not been trained on. This process is known as validation
and requires withholding a portion of the labelled data from the training dataset to form a
validation dataset. The loss values calculated for the operation of the network on these validation
data are used to ensure that the network does not fit its weights and bias matrices too specifically
to the input data, a phenomenon known as overfitting. When overfitting occurs, the network has
become too specialized to the input data and will not generalise well to unseen data. The process

of training on the training dataset and then validating on the validation dataset is typically
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referred to as an epoch, and the total process of training may require several to thousands of

epochs to model a complicated input-output relationship.

In modern neural network training algorithms, batches of training data are used to update the
trainable parameters of the network, rather than updating the parameters based on a single
input-label pair (or the entire dataset). By randomly sampling batches from the training data at
each iteration of the training algorithm, the model is trained on a diverse set of examples, which
can help prevent overfitting and improve the generalisation of the trained model. Generalisation,
in the context of machine learning models, refers to the ability of a trained model to effectively
perform and make accurate predictions on new, unseen data rather than just memorising the
training data. Without batch training, the neural network would be more susceptible to learning
incorrect mappings based on noise or the features of individual inputs. The size of the batches
used is a hyperparameter, with the maximum possible batch size being determined by the

amount of memory available to the training hardware.

It is important to ensure that a network has good performance (accuracy, precision and any other
metrics) while not being overfit to its training data. The results of validation tests over time help
quantify the performance of the model as it is trained and can be used to terminate the training
process when a certain level of performance, according to chosen metrics, is achieved. A brief
overview of the most fundamental performance metrics, many of which are used in the following

sections, follows:

1) Inference Time
The time taken to process a single input into a corresponding output, typically presented in

milliseconds (ms). This time is hardware-dependent but can be used for comparing the

runtime efficiency of different models on the same computer.

2) Confidence Score

A confidence score is the degree of certainty that a machine learning model has in its
prediction or classification. It is expressed as a value between 0 and 1, where higher scores

indicate greater confidence. Confidence scores are useful for decision-making when accuracy
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is critical, and low confidence scores can indicate cases where additional verification or
correction may be necessary. Typically, a confidence threshold value is set such that
predictions with confidence scores above the threshold are accepted, while those below are
rejected or flagged for manual review. The choice of threshold can be adjusted to balance the

trade-off between accuracy and the risk of false positives (or false negatives).

3) Accuracy, Precision, and Recall (Classification models):
Each of these metrics can be defined in terms of True Positives (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN).

The accuracy of a classifier refers to the number of correctly classified samples out of the total
number of samples in the dataset. The formula for accuracy is therefore: (TP + TN) /(TP + FP +
TN + FN). Precision refers to the proportion of correctly predicted positive samples out of all
the samples that were predicted as positive by the model. The formula for precision is given
by: TP/ (TP + FP). Recall measures the ability of the model to identify all positive samples
correctly out of all the actual positive samples in the dataset, and is computed using the
formula TP /(TP + FN). Recall is often used in combination with precision to evaluate the
performance of a classification model, as together they provide a more complete

understanding of the model's performance in terms of both positive and negative predictions.

4) F1 Score (Classification models)
This metric combines both precision and recall to give an overall measure of a classification

model's performance. The F1 score is the harmonic mean of precision and recall and is
calculated as follows:

F1 Score = 2 * ((Precision * Recall) / (Precision + Recall)).

The value of F1 ranges from 0 to 1, with a value of 1 indicating perfect precision and recall, and

a value of 0 indicating that the model is not able to correctly classify any of the samples.

5) Mean Absolute Error (MAE) and Mean Squared Error (MSE) (Regression models)
MAE measures the mean absolute difference between the ground-truth values and the model-

predicted values of the target variable. Also referred to as the L1 Loss function, it can be

expressed as shown in Equation 7:
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Equation 7 — Equation for Mean Absolute Error (MAE), used to calculate error in a regression
machine learning model.

MAE = Z?=1|yi - %l
n

Where n is the total number of samples in the dataset; y; is the real value of the target
variable for the i-th sample; ¥, is the predicted value of the target variable for the i-th sample.
In the implementation of Object Detection neural networks, MAE can be used as a Loss
function for the regression of the coordinates of objects of interest during training, and for

evaluating performance of the model when testing.

MSE, which is the mean squared difference between the true value and model-predicted value
of a target variable, is more sensitive to outliers than MAE and is useful for object detection
tasks, where small errors in detected coordinates are much less important than larger ones.

The equation for MSE is given below in Equation 8.

Equation 8 - Equation for Mean Squared Error (MSE), while like MAE can be used to calculate the

error in a regression-based machine learning model.

iz i —9)°
n

MSE =

Where n is the total number of samples in the dataset; y; is the real value of the target

variable for the i-th sample; ¥, is the predicted value of the target variable for the i-th sample.

MSE will be used when implementing an object detection neural network in Section 4.4.3,
where a model is trained to predict output pixel values according to the confidence of the
network that the input pixel represents a phytoplankton cell when presented with input

images from the IFC.

6) Intersection over Union (loU) (Bounding-box regression models)
Intersection over Union (loU) (Figure 76) is a commonly used evaluation metric in object

detection tasks. It measures the overlap between a predicted bounding box and the ground-

truth (human labelled) bounding box of an object in an image.
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To calculate the loU between two bounding boxes, one first computes the area of their
intersection, which is the area where they overlap, and the area of their union, which is the
total area covered by both boxes. The loU is then defined as the ratio of the intersection area

to the union area.

Intersection

Union

Figure 76 — Intersection over Union (loU) is a performance metric which calculates the accuracy
of a bounding box prediction by dividing the intersection (overlap) by the union
(area enclosed by both boxes), for the predicted and the ground truth bounding

boxes.
7) Average Precision metrics (e.g., AP50, AP95) (Bounding-box regression models).

These metrics refer to the average precision (AP) calculated at a given loU threshold, with this

threshold value indicating the percentage of overlap required between predicted and ground

truth bounding boxes for a detection to be considered correct. Threshold values of 50% and

95% are commonly used to compare the performance of different models, and are

abbreviated to AP50 and AP95 respectively.

In object detection, each ground-truth object in the dataset will have multiple predicted
bounding boxes with varying confidence scores. To evaluate the model's performance, all
model predictions are sorted by confidence, from highest to lowest. For calculating AP at a
given loU threshold (e.g., AP50), the model's predictions across the entire testing dataset are
first sorted, and then precision values are computed for every recall level, considering the
chosen loU threshold. After these precision values have been calculated, the results are
averaged. This process helps to evaluate the overall performance of the model, as it captures

the trade-off between precision and recall.
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Hence, the AP50 metric is the average of the precision scores at all recall levels for all the
objects in the testing set, with an loU threshold of 50%. A higher AP50 value indicates that the
model has better accuracy in detecting objects in the test set. In contrast, AP95 measures the
average precision at the higher loU threshold of 95%, which means that the predicted
bounding boxes must have a greater overlap with the ground truth bounding boxes to be
considered valid detections. AP95 is therefore more rigorous than AP50 and provides a stricter

evaluation of the model's performance.

AP50 and AP95 will both be used in Section 4.4.6, where an object detection neural network
will be trained to predict the coordinates of bounding boxes enclosing phytoplankton cells

when presented with images from the IFC system.

433 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network particularly adapted for
multidimensional input data, such as images, which are stored digitally as matrices of dimensions
[Height x Width x Channels]. Typically, colour images are represented in 3 channels (Red, Green,

Blue) whereas grayscale images are stored in a single channel (brightness).

CNNs build upon the neural networks described in Section 4.3.2 by introducing the convolution
operation, which is conceptually identical to applying a sliding window filter to the input. The
filter is a matrix of dimensions width x width x channels, and in a CNN each element of the filter
matrix is a neuron whose weight and bias values can be optimised through the backpropagation
process. The convolution operation calculates the dot product of the filter and the image at each
position to produce a new image, known as the convolved image. This principle is demonstrated
in Figure 77, which shows how the destination pixel in a convolved image is a product of

multiplications of source pixels with the values of a convolutional filter.
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Figure 77 — A visual representation of a convolution operation on an image represented as a 2D
matrix (left). Convolution computes the value of each destination pixel in an output
matrix (right) by multiplying each value in the convolution filter (centre) by the
corresponding value in the input image, and then sums the results. This process is
repeated for every pixel in the input image, resulting in a new output image where each
pixel is the result of applying the convolution filter to the corresponding pixel in the
input image. Within a Convolutional Neural network, the inputs to a convolution, the
outputs from the operation and the filter itself can be of any number of dimensions,
with CNNs having many layers potentially having hundreds of dimensions within some

layers.

An important mathematical property of CNNs is that the convolution operation in the spatial
domain is equal to the multiplication of the image and the filter in the frequency domain, and vice

versa. This property allows CNNs to be efficiently executed by a computer.

Convolutional Neural Networks (CNNs) have been demonstrated to provide accurate, robust, and
fast object detection within images (Girshick et al., 2014, Shin et al., 2016b). Compared with the
traditional image processing techniques described in section 4.2, CNNs are more accurate and

robust to different lighting and background conditions (Bhatt et al., 2021). They can also be run at
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high speed on specialized hardware such as graphics processing units (GPU) and tensor processing

units (TPU), making them a powerful tool for image analysis.

In addition to convolutional layers, CNNs that achieve state-of-the-art results on common image

analysis benchmarks, such as ImageNet (Deng et al., 2009). These will be explored below.

In addition to convolutional layers, CNNs often use pooling layers. Max pooling (Ranzato et al.,
2008) is a sample-based downsampling method that reduces the size of the feature map in the
output of a CNN layer, as demonstrated in Figure 78, which shows how a 4x4 matrix is
downsampled to 2x2. The size of the max pooling operator defines the scaling factor of the
output, which is calculated by retaining only the highest value from each region of the input. This
not only reduces the number of parameters in the model, but also helps to prevent overfitting. As
Max Pooling layers reduce the spatial dimensions of the input layer, they also have the benefit of

increasing computational efficiency for the subsequent layers of the CNN.

12 20 30 0

8 12 2 0 2x2 Max Pool 20 30

—

34 70 37 4 112 37

112 100 25 12

Figure 78 — An illustration of a 2x2 Max Pooling operation on a 4x4 matrix. The original matrix is
divided into 2x2 regions and only the maximum value from each region is retained in
the output matrix. Therefore, the output is of shape 2x2, and the input has been

downsampled.

Other types of pooling, such as average pooling, are occasionally used and are conceptually very
similar to max pooling, except that they use a mean (or other function) of each region instead of

the maximum value. These types of pooling layers can also be useful for reducing the size of the
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feature map and improving computational efficiency in CNNs. However, max pooling is more
commonly used in practice due to its superior performance on many image analysis tasks (Bieder

et al., 2021).

Another commonly used technique in modern CNN architectures is the normalisation of neuron
outputs. One method for this is Local Response Normalisation (LRN), which normalises the output
of a single convolutional layer. LRN adjusts the output of neurons by taking into account the

values of adjacent neurons using the following formula shown in Equation 9.

Equation 9 — Equation for Local Response Normalisation (LRN). LRN is a normalisation technique
used in neural networks to enhance convolutional layers’ outputs by normalising
activations across channels. The formula below computes the normalised output,

promoting competition among neighbouring neurons and improving generalisation.

min(N-1,i+n/2) B
i i J 2
by =ak,/| k+a Z (a%y)

j=max(0,k—n/2)
Where: a,icly is the input activation of a neuron in a feature map (the output from the activation
function of the previous layer); b,icly is the output activation of the same neuron after
LRN; x,y are the spatial coordinates of the neuron in the feature map; i is the channel (layer
dimension) of the neuron; k is a bias for the LRN (a hyperparameter); N is the total number of
feature maps in the layer; n is the size of the normalisation window (a hyperparameter); a and 8

are hyperparameters that control the strength of the normalisation.

The output of the LRN operation for a given neuron is thus simply the output of the previous
layer, divided by a scaled summation of the neurons within the column formed by moving
through the depth dimension of the input feature map at given spatial coordinates. The rationale
for using LRN is to model a form of lateral inhibition similar to that found in real neurons, and
using LRN has been demonstrated to improve model generalisation and hence overall accuracy

(Krizhevsky et al., 2017).
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LRN can help to improve the generalisation of CNN models by increasing their ability to recognize
patterns across different images, and they can also help to prevent overfitting. However, more
recent techniques such as Batch Normalisation (BN) have been shown to be more effective for

normalizing the outputs of CNNs, and have largely replaced LRN in modern CNN architectures.

Batch normalisation is a technique used in deep CNNs that relies on batch training, where the
training data is divided into small subsets, called batches, and the model is trained on each batch
in turn. Unlike Local Response Normalisation (LRN), which normalises the neuron response across
the layers in a feature map generated while processing a single input sample, batch normalisation
works to normalise responses across an entire batch of training data. Many state-of-the-art
models for image analysis use batch normalisation because it reduces the sensitivity of the
network to the choice of hyperparameters, such as learning rate, allows for larger learning rates
that can speed up training (loffe and Szegedy, 2015), and is more effective than LRN at preventing
the model from learning features based on noise and outliers in the training data (Samir et al.,

2020).

The formula for BN is given in Equation 10:

Equation 10 — Formula for Batch Normalisation (BN). is a technique used to improve the training
process of neural networks by normalising the input features in each batch. The
formula below calculates the normalised values, enhancing the model's stability and

generalisation.

Xi — Up

Vo5 + €

The formula is for a single neuron, where: (x;) is the input activation from the preceding layer for

BN(x;) =y +p

a given sample in the batch; ug is the mean value across the batch; o is the standard deviation of
the batch; y and [ are learnable parameters for scale and shift, that allow the generalimodel to
learn the optimal scale and mean for each feature; € is a small constant (typically set to a very

small value like 1e-5) to ensure numerical stability.
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4.4 Implementation of CNN Processing of Phytoplankton Images

4.4.1 Introduction

This section introduces CNNs for processing and analysing phytoplankton images obtained using
the novel acoustically-focussed IFC. As discussed in section 4.3, CNNs are a machine learning
technique that has demonstrated impressive performance in a wide range of image classification
and object detection tasks. By training a CNN on a large dataset of annotated IFC images, it is
possible to create a model that is capable of accurately localising and/or classifying phytoplankton

cells within new images.

In the context of this thesis, the purpose of using CNNs is to analyse the complex and varied
images of phytoplankton cells captured by the IFC. While CNNs can be trained to analyse complex
attributes of the phytoplankton, such as cell species and volume, the primarily interest here is
using them for the simplified problem of accurately counting the number of cells within water
samples. Cell count is a fundamental measure of algal productivity and is critical for deriving other
data such as growth rate over time. By developing an automated system that can accurately count
the number of phytoplankton cells, it is possible to increase the number of samples that can be
analysed compared with traditional techniques; automatically monitor HAB events and manage

aquatic ecosystems.

The following subsections describe the implementation of CNN-based processing of
phytoplankton images and present the results. After a discussion of the computer hardware on
which the CNNs were trained and run, a description of the initial approach to investigating a novel
CNN-based processing method is presented, followed by an implementation of the YOLOX model
and its training and performance evaluation. Overall, it is demonstrated that CNN-based
processing represents a promising approach for automated analysis of IFC images, with the
potential to significantly improve accuracy and speed compared to traditional image processing

techniques.
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4.4.2 Hardware

After an image frame has been captured by the camera in the IFC, the image data must be either
stored for later analysis (offline processing) or analysed in real-time (online processing). So long as
sufficient storage capacity is available and there is enough time to process images before they are
overwritten, offline processing is preferable as the additional processing time made available
allows the employment of more sophisticated algorithms. In situations where storage or file-
transfer bandwidth is limited (e.g., devices deployed at sea for extended periods), online
processing is a necessity as it allows the storage or transfer of processed numerical results, which

are of a far lower file size than complete raw images.

While the networks which will be introduced in sections 4.4.3 and 4.4.5 were trained on a high-
performance, GPU-enabled desktop PC (Intel i7-9700k, NVIDIA RTX 3080), the IFC platform
presented within this thesis is intended to be flexible to either in situ deployment or lab-based
use, where such hardware is prohibitively bulky, power-demanding and expensive. Therefore, a
small, low-cost, low-power computing platform which allows both the online analysis of image
data and the storage of a high volume of images was sought after. This resulted in the selection of
the NVIDIA Jetson Xavier AGX platform, which is a powerful and energy-efficient system-on-
module (SoM) that is designed specifically for running machine learning models. It features an 8-
core CPU, an NVIDIA Volta GPU with 512 CUDA cores, and 32GB of RAM, making it capable of

running complex CNN-based models for image analysis.

The Jetson Xavier AGX is designed for use in autonomous systems and is small enough to be
integrated into compact and portable devices. This makes it an ideal platform for developing a
portable and robust system for in-situ analysis of IFC images. Such a system could be used to
analyse water samples in the field, without the need for sending samples back to a lab for
analysis. The Xavier AGX also costs under £1,000, which is significantly less than the hardware

needed to attain equivalent inference performance in a conventional computer.

NVIDIA also produces a Jetson SoM with a lower cost and lower power draw than the Xavier AGX,
at the cost of reduced performance. This SoM, the Jetson Nano, costs around £100, making it

ideal for enabling low-resource scientific environments to utilise cutting-edge IFC for
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phytoplankton analysis. A table comparing the full specifications of the Jetson Xavier AGX and

Nano is presented in Table 4.

Table 4 - Comparison of hardware features and cost of two NVIDIA devices in the Jetson family of

embedded computers designed for machine learning:

Specification Jetson Nano Jetson Xavier AGX

GPU NVIDIA Maxwell architecture NVIDIA Volta architecture with 512
with 128 NVIDIA CUDA cores NVIDIA CUDA cores

CPU Quad-core ARM A57 8-Core ARM v8

Memory 4 GB RAM 32 GB RAM

Storage microSD 32 GB eMMC

Price £100 £980

(£ GBP 2022)

443 CNN Investigation for Phytoplankton Detection

With the primary objective to maximise analysis quality and the secondary objective to minimize
inference time, a review of the literature uncovered a lightweight CNN-based object detection
algorithm presented by Heo et al. (2017). The method proposed is a high-performance processing
pipeline designed to count and track cells within images from a comparable IFC system, and was
demonstrated (on their grayscale, 100x500 pixel IFC images) to be both fast, with inference at up
to 500 frames per second, and accurate, with an error relative to human counts of 0.128%. The
method proposed by Heo et al. is a simplified version of the Fully Convolutional Regression
Network (FCRN) first demonstrated by Xie et al. (2018a). The pipeline which will be used in this
investigation for IFC image analysis consists of a modified FCRN modelled after Heo et al., and a

custom algorithm for processing the FCRN output to bounding boxes and cell counts.

For this work, this FCRN architecture was modified by integrating the modern batch normalisation
technique explored in Section 4.3, and the final network consists of the layers presented in Table
5. An improved gradient training algorithm was also implemented, which will be discussed later.

The input to the network is a 3-channel (RGB) image of pixel dimensions 512x512. The input is fed
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to a first convolutional layer, with a ReLU activation function. The first convolutional layer has the
same spatial dimensions as the input, but increases the channels to 32. The data is subsequently
passed through a Max Pooling operation, which halves the spatial dimensions. Next, another
convolution + ReLU layer increases the channels to 64, before a third convolution + ReLU
decreases the channels to 32. At this point, a Deconvolution layer increases the spatial dimensions
to 513x513; the deconvolution is simply the inverse of a convolution and can be used to up-
sample the input. Finally, 2 more convolution + ReLU layers decrease the channels down to 1; the
output from the network is a single-channel confidence map (or ‘probability density map’). The
spatial dimensions of the output are the same as the input image, such that there is a direct pixel
mapping between the input and the generated probability density map. In total, the CNN

presented has 52,147 trainable parameters.

Table 5 — Full CNN architecture used to localise and count phytoplankton cells within images from
the acoustically-focussed IFC. The network consists of 5 convolutional layers, one
deconvolutional layer and one max pooling layer. The input is 3-channel (full-colour
RGB) and the output is a single channel probability density map where each pixel

value represents the confidence of the network of the presence of a phytoplankton

cell.
Layer Type Dimensions
Input (3*512*512)
Conv + RelU (32*512*512)
Max Pooling (32*256*256)
Conv + RelU (64*256*256)
Conv + RelU (32*256*256)
Deconv (32*513*513)
Conv + RelLU (16*511*511)
Conv + RelLU (1*512*512)

Heo et al, in their implementation, used a local response normalisation layer after the final
convolutional layer, an addition to the original FCRN presented by Xie, Noble and Zisserman. As

previously discussed, LRN has been shown to be less effective at solving the problem of overfitting
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and is more computationally expensive than batch normalisation; so the novel, improved

approach taken here instead employs BN following each convolution operation.

The model, when applied to IFC images, solves the regression problem of, for each pixel,
determining a 0-1 likelihood of it being the centre coordinate of a phytoplankton cell. The output
from this neural network takes the form of a probability density map where each cell in the input
image has a corresponding Gaussian distribution in the density map. The entire probability

density map is represented as a mixture of Gaussians as in Equation 11:

Equation 11 — Equation describing the probability density map output of a regression-based

object detection model.

V= NGk, T

Where: (i, j) is the pixel index of the input grayscale image matrix X;
Y is the output probability density map;
K is the number of Gaussians in the density map.

N((i,j)|yk, Z'k) represents a bivariate Gaussian distribution with mean p = [ux, uy]” and

isotropic covariance L = 621,,,.

Model implementation, training and testing was carried out using Python 3.9, Pytorch 1.9.1 and

CUDA 11.1.

To train the network, a training dataset was required. To obtain adequate accuracy, precision, and
generalisation (the ability of the network to correctly process inputs it has not ‘seen’ before), a
large number of labelled training examples is usually required. For instance, Shahinfar et al.
(2020) found that a minimum of 150 training images was required to achieve good performance
in the six different CNNs they investigated. In the case of our IFC images, 150 images were
therefore labelled, with images chosen in such a way as to represent various possible background
states, lighting conditions, cell presence/type/number/size, etc. The images were taken during IFC

testing using a culture of Rhodomonas salina phytoplankton, and the dataset was curated such as

154



Chapter 4

to have examples of images with few cells (min N = 3), many cells (max N = 55), and numbers in

between.

The training dataset consists of IFC images, and label images comprising pixels with the value 0
everywhere other than the centre of a cell, where that pixel is set to 1. Creating the training
dataset was performed using LabelMe image annotation software
(https://github.com/wkentaro/labelme). Of the 150 IFC images used for the training dataset; 22

(~15%) were withheld for validation during the training cycle.

Reducing the size of the images is a common practice in deep learning, as it enables batch training
by decreasing the computational requirements and memory usage. Images were therefore
resized to 512x512 pixels, which allowed training with a batch size of 16 on a PC with an Intel Core
i7-9700K CPU and NVIDIA RTX 3080 graphics card with 10GB memory. In this application, the
reduction in image size is unlikely to significantly impact the model's performance, as the
essential features of the cells within the images can still be effectively recognized by both a
human and the CNN at the lower resolution. Images were normalised such that the mean and
standard deviation of pixel values across each of the 3 colour channels were the same for every

image.

As discussed in section 4.3.2, a gradient descent algorithm is used in the backpropagation stage of
the learning process in order to update the weights and biases of the neural network. Rather than
the stochastic gradient descent algorithm (SGD) used by Heo et al. in their presentation of the
model, for this implementation the Adaptive Movement Estimation algorithm, (Adam) algorithm
(Kingma and Ba, 2014) was used as it has been demonstrated to reliably improve the speed with
which the model converges to an optimal solution (Soydaner, 2020). Other than the previously
mentioned improvement from using Batch Normalisation as opposed to Local Response

Normalisation, this is the only other change compared to their implementation.

An example input image and output density map is presented in Figure 79. The three cells visible
in the IFC image have corresponding gaussian probability distributions in the output image,

demonstrating a successful inference by the object detection algorithm.
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Figure 79 — Example of an input image to the network (top): a 1920x1200 pixel, colour image of
the IFC flow cell with 3 phytoplankton cells (a close up of 1 is provided on the right).
On the bottom is the probability density map output by the CNN, with each pixel

having a value which represents the confidence of the CNN that there is a cell there.

Training was performed for 150 epochs, with the MSE loss for training and validation datasets
recorded at each epoch. The resulting graph of MSE loss against training epoch is presented in

Figure 80.
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Training Loss (Mean Squared Error)
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Figure 80 - Evolution of training (orange) and validation (blue) loss (Mean Squared Error,
MSE) across 150 epochs for an object detection CNN, showing the prompt
minimization of training loss, a transient surge in validation loss around epoch 8,

and subsequent convergence to a value close to 0.

Several features of the training graph stand out. Firstly, there is a smooth decrease in the MSE on
the training dataset during the first 15 epochs, after which the training loss is extremely small. The
validation loss also reaches a very low value within these first epochs, which suggests that the
model reaches a good level of generalisation without needing more than 15 epochs. There is,
however, a significant spike in the validation dataset MSE at around epoch 8, which could be
caused by several factors, including random fluctuations in the data, initialization of network

parameters, or the learning rate used to update the model weights.

It is not uncommon to see spikes in an otherwise decreasing loss metric, especially when the
number of training samples is relatively small compared to the complexity of the model, as is the

case for the IFC training dataset. This can be caused by the model having overfit to prior batches
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of training data and then being tested a validation batch without the same characteristics or
patterns as the previously seen training batches. As the training progresses and the model is
exposed to more varied image batches, it learns to generalize better, which results in a gradual
decrease in the loss metric. The fact that the validation MSE rapidly approaches zero after this
spike suggests that the model has moved away from overfitting to any particular subset of the

training data, and has instead learned the general features as desired.

In order to minimise overfitting to the data, the commonly employed (Mahsereci et al., 2017)
‘early-stopping’ strategy was employed, and so the mode state after 10 training epochs was
saved. At this point in training, the model generalisation is good (as evidenced by the low
validation dataset loss), but the training loss has not reached its asymptote, which would indicate
possible overfitting to training data. This corresponds well to the findings of Heo et al. in their

presented model, which converged to an asymptote after 7 epochs.
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After training, in order to perform cell detection on an IFC image, the following procedure is

carried out:

1)

2)

4)

Resize image to 512x512 pixels. To process an image, the input image size must match
that used during training, which was 512x512 pixels.

Normalise the image. To account for changes in illumination brightness between different
images (for instance, if incident light from the environment onto the IFC increased
resulting in brighter images), the algorithm normalises the image to have the same mean
and standard deviation of pixel values in each of the 3 colour channels as those on which
it was trained.

Perform inference using the trained neural network. The normalised image is fed forward
through the CNN using the weights and biases learned during training, producing an
output probability density map.

Apply a noise cancellation threshold to the entire density map. Background pixels
(negative detections) are typically weakly positive rather than zero in the density map, so
we first set all pixels below a noise threshold value to zero. The noise threshold was
selected to be the 5™ percentile of the pixel values of the density map to capture positive
detections but exclude very low-confidence false negatives.

Binarize the density map. A threshold must be applied to the probabilities such that those
below a detection confidence threshold are set to zero and those above set to 1. The
threshold must be manually set by the user, but (in theory) should not have to be
changed once an optimum value has been determined, since as the input images were
normalised, the probability density maps should have similar pixel values regardless of
small changes to illumination intensity, etc.

Count connected regions. Cells are counted based on the principle of pixel connectivity,
i.e., all pixels in a connected component share similar pixel intensity values and are in

some way connected with each other.

Figure 81 demonstrates the probability density map output by the trained model and the

subsequently binarized output image for a typical IFC image input, which has been resized to

512x512 pixels.
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Figure 81 — Input image (left), probability density map representing model confidence of the
presence of a cell (middle) and binarized object mask after thresholding the density

map (right).

If rather than simply counting cells, one wished to identify their locations on the original image,
allowing one to subsequently draw bounding boxes, crop the cells out of the full-frame and/or use
a secondary algorithm such as a species classifier on them, one can scale the binarized probability
density map to the same dimensions as the input image (1200x1920 pixels) and overlay it onto
the original image. Figure 82 illustrates this concept; for an input image with 3 cells, the binarized

density map overlayed onto the input correctly indicates the locations of the cells.
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Figure 82 — Input IFC image (a.) and the same image overlayed with a binarized output mask of the
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CNN-predicted cell locations (b.), illustrating how the 3 cells visible can be easily

localised based on the probability density map output by the model.
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444 Evaluation of CNN Performance

All tests were carried out using the same hardware setup used during training. Images were
loaded from a Western Digital Black SN750 1TB Solid State Drive (SSD). The model was run in
GPU-optimised (CUDA) mode and was tested on 500 1200x1920 pixel RGB images from the IFC.
The program completed in 4.27 s, achieving an average framerate of 117.01 frames per second
including image pre-processing. This is significantly slower than the inference speed of the model
as presented by Heo et al., but the source of this performance decrease is not the model itself but
the resizing of the images from 1200x1920 to the 512x512 pixels required by the model,
combined with the fact our images are 3-channel (colour) compared to their single-channel
images. This decreased in speed could potentially be mitigated (if required) if the images were
saved at a lower resolution at the time of capture; while the FLIR camera used in the IFC has
maximum full-frame pixel dimensions of 1200x1920, it is capable of capture at lower resolution

(which also improves the framerate).

To assess the accuracy of the model at counting phytoplankton cells, a comparison with manual
counting of the cells within images was performed. Rhodomonas salina cells were counted by
hand from a set of 50 IFC images containing varying numbers of cells (hence referred to as Image

Set 1), and these images were then passed through the CNN to automatically predict cell counts.

The descriptive statistics summary of result of this comparison is presented in Table 6. The
comparison demonstrates a large difference between the total number of cells counted manually

(593) and those counted by the CNN system (476); difference = 117 (~20.0% of manual counts).
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Table 6 — Table of descriptive statistics of the cell counts from 50 IFC images of R. salina cells, with

cells counted either manually or by the CNN presented within this section.

Image Set 1

N=50 Manual CNN
Sum of all cells across all images: 593 476
Mean cells per image 11.86 9.52
Minimum cells per image 7 6
Maximum cells per image 20 17

To statistically test the correlation between the two methods, the Pearson’s Correlation
Coefficient was calculated for the per-frame counts generated by each counting technique. The
resulting correlation coefficient (r) was 0.881 (3 s.f.), with a p-value of 3.13e-17 (3 s.f.). The high
correlation coefficient indicates a strong positive linear relationship between the cell counts
obtained by the manual and CNN methods. Moreover, the extremely low p-value (significantly
below the common threshold of 0.05) demonstrates that the observed correlation is statistically

significant and unlikely to have occurred by chance.

However, it is important to note that a strong correlation does not necessarily imply good
agreement between the methods, and the significantly larger total number of cells counted across

the entire Image Set by the CNN suggests the model is not performing well.

Therefore, the evaluation also makes use of Bland-Altman analysis (Martin Bland and Altman,
1986) to evaluate the agreement between cell counting using the CNN and manual counting
methods. Bland-Altman analysis is a widely accepted and powerful statistical technique for
comparing two measurement techniques (Dogan, 2018), and involves plotting the differences
between paired measurements from the two methods against the average of those paired
measurements. It is therefore possible to examine the presence of any systematic bias,
proportional errors, or other patterns in the data that may suggest disagreement or limitations in
the methods being compared. The resulting Bland-Altman Analysis plot for comparing the CNN

and manual cell counting techniques across Image Set 1 is presented in Figure 83.
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Blgnd-Altman Analysis Plot For Comparison of CNN and Manual Cell Counting (Image Set 1)
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Figure 83 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method
and manual counting of cells within Image Set 1. The mean difference is -2.34,
indicating a lower mean count by the CNN method. The upper and lower limits of
agreement are 0.56 and -5.2, respectively, illustrating the range within which 95% of

the differences between the two methods are expected to lie.

When interpreting a Bland-Altman plot, the mean difference represents the average of the
differences between the paired measurements from the two methods, providing an estimate of
the systematic bias between the techniques. The limits of agreement, calculated as the mean
difference + 1.96 times the standard deviation of the differences, indicate an interval within which
95% of the differences between the paired measurements are expected to lie, assuming a normal

distribution of differences.

The Bland-Altman plot presented in Figure 83 demonstrates a mean difference of -2.34, which
suggests that, on average, the CNN method counts 2.34 cells fewer than the manual method per
image. This negative value indicates a systematic bias, where the CNN method tends to provide
lower cell counts compared to the manual counting method, and is significant compared to the
total number of cells in each image (ranging from 7 to 20 counted manually). The limits of
agreement, with an upper limit of 0.56 and a lower limit of -5.2, define the range within which

95% of the differences between the paired measurements from the two methods are expected to
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lie. The implication of this is that for a given image, the CNN method's cell count can be anywhere
from 0.56 cells more to 5.2 cells fewer than the manual count in 95% of the cases, assuming a

normal distribution of differences.

To further validate the above finding, a further test on 50 more images, this time using cells from
a different culture of the same species of phytoplankton (hence referred to as Image Set 2), was
carried out. The results of this comparison are presented in Table 7. Once again, the difference
between the number of cells counted manually (189) and by the CNN (348) was large (difference
=159; ~84.1% of manual counts), providing further evidence of the CNN’s inability to count cells

in the IFC images with a statistically similar performance to a human.

Table 7 — Table of descriptive statistics of the cell counts from 50 additional IFC images of R. salina

cells, with cells counted either manually or by the CNN presented within this section.

Image Set 2 Manual CNN
N=50

Sum of all cells across all images: 189 348
Mean cells per image 3.78 6.96
Minimum cells per image 1 2
Maximum cells per image 9 13

The same statistical tests as used previously were carried out to compare the CNN method’s
performance with that of a manual counter. The Pearson’s Correlation Coefficient statistic was
computed to 0.794 (3 s.f.), with a p-value of 5.96e-12 (3 s.f.) this again shows a linear correlation

between the manual and CNN-based cell counts, with a high degree of probability.

The Bland-Altman Analysis of the two techniques used in the images from Image Set 2 is
presented in Figure 84. The mean difference (+3.18) between the CNN and manual methods, and
the significantly higher total cell count across the entire image set, demonstrates that the CNN

systematically detected many more cells per image within Image Set 2 than a manual counter.
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The discrepancy between the CNN model's performance on Image Set 1, where it significantly
under-counted cells, and on Image Set 2, where it significantly over-counted cells compared to
the manual counter, raises concerns about the model's consistency, generalisability, and accuracy

across different datasets.

These contrasting results suggest that the CNN model has not been adequately trained to handle
the variability in cell appearance, image quality, or other factors that may be present in different
sets of images. It is possible that the model has learned specific features or patterns from the

training data that do not generalise well to other datasets, leading to inconsistent performance.

Bland-Altman Analysis Plot For Comparison of CNN and Manual Cell Counting (Image Set 2)
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Figure 84 - Bland-Altman plot comparing cell counts from the machine learning (CNN) method
and manual counting of cells within Image Set 2. The mean difference is 3.18,
indicating a significantly higher mean count by the CNN method. The upper and
lower limits of agreement are 6.3 and 0.1, respectively, illustrating the range within

which 95% of the differences between the two methods are expected to lie.
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While trying to understand the discrepancy between the results of the algorithm on the first and
second sets of manually counted IFC images, the tuning of the Masking Threshold value was
identified as a significant source of variability. As discussed previously, the masking threshold is a
manually set value which must be subjectively tuned to eliminate false positives while avoiding
false negatives. In order to demonstrate this concept, an input IFC image after resizing and
normalisation is presented in Figure 85, along with the output of the generated probability

density maps after masking using two different masking threshold values (M=0.01 and M=0.05).
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Figure 85 — Input image after resizing (top) and masked CNN output probability density
maps. The different masking threshold values selected (0.01 and 0.05) produce
outputs with significantly different numbers of cell detections, with a threshold

of 0.01 resulting in many false positives.
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In the case of the image presented in Figure 85, a masking threshold of 0.05 results in a threshold
mask with the same number of cells as in the input image as determined by manual count,
indicating that in this instance the algorithm can successfully count the number of cells with the
same accuracy as a human. The lower threshold value of 0.01, however leads to many false
positive detections, particularly in the area with maximum background complexity. This is due to
the neural network having some confidence of the presence of plankton cells there despite the
visual artefacts actually resulting from cells adhered to the sides of the flow cells, rather than

those in flow.

The appropriate masking threshold should, when determined, work regardless of the brightness,
contrast and background state of the image input to the network, as the probability density map
should have a similar range of confidence values for positive detections (and for background
noise) regardless of the exact characteristics of the input image used. The fact that the same
masking threshold value works significantly better for the first set of 50 testing images than for
the second set is convincing evidence that the model is not able to predict the locations of cells

with a consistent confidence across input images.

To further investigate this issue, the confidence of the model was assessed by analysing the
means and standard deviation of pixel values within the probability density map, in regions of
positive detections (cell presence) and background (no cell) using the following procedure:

1. Manually draw bounding boxes around the cells in several images from each set of 50 test
IFC images.

2. Run the images through the object detection network to generate corresponding predicted
probability density maps.

3. Extract the pixels from the density map which fall within the bounding boxes drawn in step 1
(with the coordinates of the bounding boxes appropriately scaled for the reduced image
dimensions of density map compared with original image). Calculate the mean and standard
deviation of these pixel values.

4. Set these pixels to 0, so that their values will not be included within the corresponding
calculation for background pixel values.

5. Calculate the mean and standard deviation of all the pixels left within the image.
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In this manner, the value of positive detections and background noise can be analysed. The
procedure was carried out on 3 images from the first unseen set of 50 images, and 3 images from

the second.

The results are presented in Table 8. For each image set, the mean pixel values of pixels in the
predicted density maps that are in the location of cells is approximately 10 times higher than the
mean value of background pixels, which is good and demonstrates that the model can distinguish

between cells and background pixels with at least some degree of confidence.

Table 8 — Pixel values in the probability density map for each of the two sets of 50 images, split by
whether the pixels are contained within a manually labelled bounding box for a cell
or are in the background. Confidence values for cell detections should be much
higher than those in the background, which they are, at approximately 10 times
higher. However, if the model was very effective, confidence values would be
expected to be far higher than presented, at around 5%. Furthermore, the mean
confidence of detections in Image set 1 are different than those in image set 2, which

indicates inconsistent performance of the model across different input image

conditions.
Probability Density Map | Probability Density Map
(Image Set 1) (Image Set 2)
Cells Background Cells Background
Mean Pixel Value | 0.0537 0.0061 | 0.0402 0.0048
Pixel Value SD 0.1264 0.0308 | 0.0939 0.0254

The values, however, indicate why a masking threshold value that works well for one image set
may not be appropriate for another; the pixel values of cells within the first image set are
significantly higher than those of the second image set. If the model had correctly learned a
general mapping between input and the appropriate outputs, the confidence of pixels within cell

regions should be comparable across each Image Set on which it is tested.
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To confirm the discrepancy between confidence values on CNN outputs from Image Sets 1 and 2,
Student’s T-Tests were carried out to compare the means of the pixel values between the first and
second image sets, for regions with cells and background regions respectively. The null
hypotheses HO are that the pixel values for the same regions (cell or background) are the same
between the two image sets. For the background pixels, the T-test generated an effect size of 14.6
and p-value of 3.00x10*° (<<1%). For the pixels within cells, the T-test generated an effect size of
4.69 and p-value of 2.76x10° (<<1%). Therefore, the alternative hypotheses, that the pixel values

for both background and cells are different in each of the two image sets, must be accepted.

It has been conclusively demonstrated, therefore, that although the neural network model
presented should be expected to predict the location of cells with similar (and ideally high)
confidence levels across different image sets, it is inconsistent in its predictions, with this
inconsistency leading to unreliable cell counts. While cell counts could in theory be made more
accurate by regularly checking and altering the masking threshold value such that cells are
positively detected and background pixels are not, in practice this disadvantage nullifies the
sought benefits of using this particular CNN configuration to perform object detection on the IFC
images. The difference in performance described here with the good performance in the initial
implementation by Heo et al. is a result of the significantly increased image complexity; the use of
full colour and the complexity of both the imaged cells and background are too great a challenge

for this algorithm.

In order to address the deficiencies of the explored object detection approach, a second neural

network-based model was investigated, which will be detailed in the following sections.

445 YOLOX for Phytoplankton Detection

YOLO (You Only Look Once) is an object detection model that was introduced in 2016 by Redmon
et al. (2016). It is a single-stage (predictions are made without subsequent thresholding of a
confidence map) object detection model based on a CNN that divides an image into a grid and
predicts bounding boxes and class probabilities for each grid cell, as shown in Figure 86. The
model also uses anchor boxes to improve the accuracy of the bounding box predictions. YOLO is
known for its real-time object detection capabilities and is often used in self-driving cars, robotics

and other applications where inference speed is important (Terven and Cordova-Esparza, 2023).
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Since its introduction several iterations have improved upon the YOLO architecture. YOLOv2 (aka
YOLO 9000) (Redmon and Farhadi, 2017) introduced an improved CNN ‘backbone’, batch

normalisation and several other improvements.

Figure 86 - Top-level overview of the behaviour of a YOLO object detection model when detecting
objects within an image. The image is divided into a grid, then the network predicts
bounding boxes and confidence scores for potential objects within each grid cell,
along with their associated class probability maps. These predictions and class
probability maps are combined to create a detection result, which identifies the

locations and classes of objects within the image. (Wu and Zhou, 2019)

YOLOv3 (Redmon and Farhadi, 2018) again introduced a new backbone, Darknet53 (Figure 87), as
well as other small improvements resulting in better performance overall and particularly for
detection of objects at different scales. Darknet53 makes use of several Residual Layers, layers
which improve the ability of information to flow through the network by introducing skip

connections that allow information to bypass one or more layers in the network.
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Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64x64
Convolutional 64 1 x1

2x| Convolutional 128 3 x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3 x3

Residual 32x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1x1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1

4x| Convolutional 1024 3 x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Figure 87 - The Darknet53 architecture, which consists of 53 convolutional layers and is used as
the backbone for YOLOv3, a modern object detection algorithm. Diagram from

(Redmon and Farhadi, 2018).

YOLOX is a state-of-the-art extension of YOLO that was introduced in 2021 (Ge et al., 2021). It
improves upon prior YOLO derivatives in several ways which result in superior accuracy, speed,
and efficiency. YOLOX uses an improved version of the CNN backbone used by YOLOv3 called
CSPDarknet (Figure 88) that has a higher efficiency and allows for more parameters to be trained.
This efficiency derives from the Cross-Stage Partial connections employed in the CNN which give it
its name. As in a Residual Layer, in CSPDarknet, each layer is connected not only to the next layer
but also to others across the network in what is known as a cross-layer connection. A cross-layer
connection is highlighted in the green box of Figure 88, which illustrates the complete structure of
CSPDarknet. This partial connection strategy allows the network to share information more
efficiently across layers, which can reduce the number of parameters that need to be trained and

can make the network more computationally efficient.

CSPDarknet also utilizes channel splitting, where the channels of the input feature map are split
into two groups, one of which passes through a convolutional layer while the other group is
passed through a cross-stage partial connection layer, which concatenates the feature maps from
multiple layers. This operation further reduces the number of model parameters thus improving

computational efficiency, and is highlighted in the right-hand ‘CSP Block’ section of Figure 88.
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Figure 88 - The CSPDarknet53 neural network architecture, first introduced in YOLOv4. Used as

the backbone for advanced YOLO object detection models, CSPDarknet53 employs

Cross-Stage Partial (CSP) connections, facilitating superior feature extraction

capabilities and enhanced object detection performance across a range of scales in

the input image. The schematic on the right illustrates the structure of a CSP block,

which divides the input features into two streams: one stream passes through a

sequence of convolutional layers, while the other bypasses these layers.

Subsequently, both streams are merged, resulting in an efficient and effective

combination of extracted features. Adapted from (Xu et al., 2021).

In addition to the Backbone previously discussed, YOLOX comprises a Neck consisting of the Path

Aggregation Network (PANet) introduced by Liu et al. (2018). The purpose of the neck is to

concatenate the feature maps from different layers of the backbone network and send them as

inputs to the Prediction Head, which takes the feature maps from the Neck and outputs bounding

boxes and class predictions. YOLOX introduces a novel prediction head module which separates

the classification and bounding box localisation into two separate tasks, which the authors found

to improve accuracy compared to previous YOLO versions which performed coupled predictions.

YOLOX also introduces a Spatial Pyramid Pooling (SPP) module to capture features at multiple

scales by applying pooling operations of different sizes to the backbone-predicted feature map,

producing a new feature map that encodes information about objects at different scales. Using
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Feature Pyramid Networks (FPN) adds allows the model to combine high-level features from the
upper layers of the backbone or neck with lower-level features from the preceding layers. This
produces a set of feature maps with different resolutions that are used to detect objects at

different scales.

In combination, the SPP and FPN connections allow YOLOX to detect objects of different sizes and
scales in an image more accurately and efficiently. In the context of IFC imagery of phytoplankton
cells, these features combine to make YOLOX well suited to the task of detecting multiple
plankton species of widely differing sizes, shapes and aspect ratios. YOLOX was also recently
demonstrated to be capable of performing high-accuracy identification of plankton within
fluorescence imaging (Wang et al., 2022), but has not yet been applied to brightfield, colour

phytoplankton images such as those from the IFC developed here and described in Section 3.

Figure 89 illustrates the entire YOLOX architecture including the Backbone, Neck and Prediction
Head. Compared to the previous Object Detection network investigated, YOLOX is a far more
advanced model which is much better suited to the complexity of IFC imagery, as will be

demonstrated in the testing which follows.
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Figure 89 - The complete YOLOX network architecture, featuring inlaid diagrams of its core components: the Spatial Pyramid Pooling (SPP) module, the Neck (Path
Aggregation Network, or PANet), and the YOLO Prediction Head. These components enable efficient feature extraction, hierarchical feature aggregation,
and accurate bounding box predictions with class probabilities, ultimately resulting in cutting-edge object detection for objects of a wide range of scales.

Adapted from (Chou, 2022)
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YOLOX also has the useful attribute of having been developed in several different levels of
parameter complexity; different versions of the model called YOLOX-I (large), YOLOX-s (small),
YOLOX-nano, etc., have been published with a range of different numbers of parameters. The
different versions of the model have a different number of layers in the neck and backbone, with
the number of CSP blocks and complexity of the PANet neck dictated by version. The lighter-
weight models, i.e., YOLOX-s and YOLOX-nano are small enough to be run on embedded platforms
such as those discussed in section 4.4.2. Nguyen et al. (2022) conducted a comparison of different
YOLO versions on embedded platforms (NVIDIA Jetson Nano and Jetson Xavier AGX) and
determined maximum framerates (including image 1/0 and output processing). A table of model
parameter counts and the results of their investigation is presented in Table 9 below. Compared
to the previous model with ~52,000 parameters, even these small models are extremely complex.
However, due to the parallel computing afforded by GPU-based running of the networks, the
maximum framerate of the models is sufficient to allow real-time (>30 FPS) object detection on

the Jetson Xavier embedded platform.

Table 9 — Comparison of the parameter complexity of the YOLOX-s and YOLOX-nano object
detection models and the framerates at which they can process 512x512 images.

Adapted from Nguyen et al. (2022)

Model Trainable NVIDIA Jetson Nano | NVIDIA Jetson Xavier
Parameters Framerate AGX Framerate
(millions)
YOLOX-s 9.0 8 32
YOLOX-nano 0.91 13 40
4.4.6 YOLOX Training

In order to train the YOLOX model, the same 150 images used for the previous neural network
training were again curated into training and validation datasets. Similarly to the previous CNN
trained, training YOLOX was carried out with images resized to 512x512 pixels, but due to the
complexity of the model, a maximum batch size of 8 was possible using the same PC hardware as

detailed previously.
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Unlike the previous model, however, rather than the point coordinates used to represent cells,
bounding boxes were drawn around the entire cells; though the same image labelling software
(labelme) was used. As discussed in section 4.3, object detection models generating bounding
boxes around detected objects often use the Average Precision performance metrics APXX, where
XX is the loU threshold percentage at which precision is calculated. AP50 and AP95 are two of the
most commonly reported AP metrics within the literature (e.g. (Liang et al., 2023, Xue et al., 2021,
He et al., 2021)), so these were selected for reporting the performance of YOLOX on the IFC

phytoplankton images.

The YOLOX-s model with 9 million parameters was selected as the version of YOLOX to use for the
problem due to its aforementioned ability to be used on embedded platforms. The model was
trained for the same number of epochs (150) as the previous model investigated, and the AP50
and AP95 on the validation datasets were recorded at each epoch. Graphs of AP50 and AP95
against epoch are presented in Figure 90. Similarly to the previous model, it is evident that there
is a rapid increase in performance during the first 20 epochs as the model learns to recognise the
important features of cells within the images, with noisy asymptotic behaviour continuing
between 20 and 150 epochs. Unlike the previous model, performance of YOLOX-s continues to be
noisy throughout the 150 epochs, which suggests that overfitting has not yet occurred during this
training timeframe. This is further backed up by the fact that the AP50 values seem to still be

increasing, on average, towards the end of training.
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YOLOX Training AP50 and AP95 on IFC Validation Dataset
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Figure 90 — Graph of AP50 (Blue) and AP95 (Orange) for YOLOX-s object detection model while
being trained to detect and localise cells of Rhodomonas salina phytoplankton within
images from the acoustically focussed IFC. After 150 epochs of training the AP50 value
is close to 1.0, indicating a good overlap between predicted and ground truth bounding
boxes. The lower AP95 score suggests that the model does not predict bounding boxes
with a very tight alignment to those which were manually labelled to produce the
training dataset, the 95% loU threshold requires a large degree of overlap between the
predicted and ground truth bounding boxes. This is unlikely to be a cause for concern
as the human-labelled bounding boxes were not highly precise to a pixel level,
especially in comparison to the size of the cells themselves, which each take up a very

small proportion of the image at 10X magnification.

An Average Prevision value of 1.0 would indicate that the model has achieved perfect object
detection accuracy on objects in the validation dataset. This means that all objects in the
validation dataset have been correctly detected by the model without any false positives or false
negatives. In the training results of YOLOX-s presented above, AP50 values asymptotically
approach 1.0 whereas AP95 values do not reach significantly above 0.4. This suggests that the
model is able to detect objects with a high degree of accuracy for a lower degree of overlap with
the ground truth bounding boxes, but may struggle to achieve the same level of accuracy for a

higher degree of overlap. Due to the difficulty of drawing bounding boxes accurately for the small
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cell sizes present within the training images, the lower AP95 score is not a major cause for
concern. It is reasonable to expect a less precise overlap between the predicted bounding boxes

and the manually labelled boxes when the latter are known not to be extremely precise.

4.4.7 Evaluation of YOLOX Performance

After training, the model performance was evaluated using the same challenge as for the first
network investigated; 2 sets of 50 unseen (not in the training or validation datasets) IFC images
had their YOLOX-s automated cell counts compared with manual counts. The descriptive statistics
of this comparison on the first 50 images (Image Set 1) is presented in Table 10. For comparison,

the results derived from the first CNN investigated in section 4.4.4 are included again.

Table 10 - Table of descriptive statistics of the cell counts from 50 IFC images of R. salina cells,
with cells counted either manually or by the YOLOX-s object detection network
presented within this section. For the purposes of comparison, the results of the

same analysis using the CNN investigated in section 4.4.4 are also included.

Image Set 1

Manual | YOLOX | First CNN
N=50
Sum of all cells across all images: 593 593 476
Mean cells per image 11.86 11.86 9.52
Minimum cells per image 7 7 6
Maximum cells per image 20 22 17

A Pearson’s Correlation Coefficient test was carried out and the computed test statistic (r) was
0.981 (3 s.f.), with a p-value of 6.70e-36 (3 s.f). This test statistic is far closer to the ideal value of
1.0 than achieved by the previous CNN, which was 0.881 (3 s.f.), with a p-value of 3.13e-17 (3 s.f.).

As in the investigation of the previous CNN (Section 4.4.4), a Bland-Altman analysis was
conducted on the per-image cell counts from Image Set 1 to compare the YOLOX and manual

counting strategies. Figure 91 shows the plot of this analysis. With a mean difference of 0.0 and
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95% confidence intervals of £1.3, the model performance is clearly vastly superior to that of the
simple CNN, and compares very well to the manual cell counts with no systematic bias.

Bland-Altman Analysis Plot For Comparison of YOLOX and Manual Cell Counting (Image Set 1)
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Figure 91 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of cells
within Image Set 1. The mean difference is 0.0, indicating a lack of systematic bias.
The upper and lower limits of agreement are +1.3 and -1.3, respectively, illustrating
the range within which 95% of the differences between the two methods are

expected to lie. These values further demonstrate the absence of systematic bias.

In order to confirm the above finding, the same second set of 50 images as used for the first
model was fed through the trained YOLOX-s model and the cell count recorded. The results of this
comparison with manual cell counts is presented in Table 11, and the same methodology as above

was used to compare the two sets of counts.
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Table 11 - Table of descriptive statistics of the cell counts from the second set of 50 IFC images of
R. salina cells, with cells counted either manually or by the YOLOX-s object detection
network presented within this section. For the purposes of comparison, the results of

the same analysis using the CNN investigated in section 4.4.4 are also included.

Image Set 2
Manual | YOLOX First CNN
N=50
Sum of all cells across all images: 189 198 348
Mean cells per image 3.78 3.96 6.96
Minimum cells per image 1 1 2
Maximum cells per image 9 12 13

For images within the second Image Set, the Pearson’s Correlation Coefficient between manual
and YOLOX-counted cells was computed with a statistic 0.962 and a p-value of 1,22e-28. This
statistic indicates that the YOLOX performed slightly worse on the second Image Set compared to
the previous, a finding which is further backed up by the total cell count across all images being

4.8% higher when counted by YOLOX compared to a human.
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Bland-Altman Analysis Plot For Comparison of YOLOX and Manual Cell Counting (Image Set 2)
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Figure 92 - Bland-Altman plot comparing cell counts from YOLOX and manual counting of
phytoplankton cells within Image Set 2. The mean difference is 0.18, indicating a
slight systematic bias where YOLOX detects more cells per image. The upper and
lower limits of agreement are +1.5 and -1.1, respectively, illustrating the range

within which 95% of the differences between the two methods are expected to lie.

A Bland-Altman Analysis was again carried out to compare the cells counted in each image by a
human and by the YOLOX model, and the plot is presented in Figure 92. Unlike previously, there is
now a small systemic bias, with a mean difference of 0.18 cells per image. The 95% confidence
intervals of 1.5 and -1.1 are skewed in the direction of over-counting, and bar the outliers at low
mean cell counts, the plotted points show that YOLOX tended to predict more cells per image

than a human across the entire set of images.

In order to determine the source of this discrepancy, which was not presented within the previous
test, a qualitative analysis of the input images within Image Set 2 was carried out. Image Set 2 was
found to have significantly increased detritus within the images compared to the previous set,

and while these clumps of debris were not counted as cells by the human, several of them were
mistakenly identified as plankton by the algorithm. An example of one of these misclassifications
is presented in Figure 93, which shows three correctly detected plankton cells and one clump of

detritus which has been classified as a cell (with 63.5% confidence).
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Figure 93 — An illustrative example of a misclassification of detritus as a plankton

cell by YOLOX. While the three cells present in the image are
correctly identified with >70% confidence, the clump of detritus has
been falsely labelled as a cell by the algorithm with 63.5%

confidence.

Despite this, the very close degree of alignment between the cell counts generated by YOLOX and
by human indicate that the model has correctly learned a general mapping between input and
output data, and is reliable enough to be used for the automatic detection, localisation and
counting of plankton cells within IFC images. The amount of cellular detritus within the samples
being processed should, however, be closely monitored to ensure that the algorithm does not

incorrectly label debris as cells.

Based on the above results of the two comparisons between human and YOLOX cell counting, it
can be claimed that YOLOX-s can be used to count cells to a statistically similar performance to

that of a human analyst, unlike the prior neural network investigated in Section 4.4.4.

In addition to the ability of the network to correctly count cells within the IFC images, YOLOX-s

has the distinct advantage of simultaneously classifying and predicting the bounding box of the
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detected objects, as discussed previously. In this experiment only cells of a single species (a
monoculture) were counted, so the model only distinguishes between cells and the background.
The model also performs classification on any objects it detects, however, so it could be easily
adapted to identify different types of cell, provided enough labelled examples were made
available during training. Additionally, though this further work was not within the scope of this
thesis, it should be possible to improve the performance of the algorithm on monoculture
samples by labelling cell detritus as a second class independent from the labelled cells. This would

enable the model to learn to distinguish between cells, debris and background pixels.
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4.5 Conclusion

To address the need to provide fast and accurate automated cell detection in images generated
by the IFC investigated within this thesis, traditional digital image processing using handcrafted
features has been shown to be inadequate. The complexities, which include cells adhered to the
sides of the flow cell, different cell geometries and cells in contact with each other, pose too much
of a challenge to image processing based on brightness, contrast and other features which would

be sufficient on other IFC systems which produce less visually complex imagery.

Machine learning offers the potential to algorithmically determine the set of features which
optimally distinguish the cells within an image from the flow cell background, and to be far more
robust than traditional techniques. Convolutional Neural Networks have been demonstrated to be
very well-suited to the problem of object detection within images and were shown by Heo et al.
(2017) to perform well in another IFC system. They are also well-disposed to be used on small,
embedded platforms such as the NVIDIA Jetson SoMs due to their parallel computing
architecture, an advantage for an IFC platform which may need to be deployed away from existing
computational infrastructure. A model following the implementation of Heo et al. (2017), but with
improvements based on more recent developments in Computer Vision research, was created
and trained on 150 pairs of images and labelled cell coordinates. The model unfortunately did not
perform adequately upon testing on images on which it had not been trained, as there was a
statistically significant difference between the cell counts generated automatically by the

algorithm and those manually counted.

In order to create a more robust and accurate automated cell detection system, the cutting-edge
object detection CNN YOLOX-s was trained on the same 150 images. YOLOX-s demonstrated a far
greater ability to distinguish cells from the flow cell background, including successfully detecting
cells in flow even partially obscured by adhered cells. In comparison with the manually counted
numbers of cells within IFC images, YOLOX-s did not have a statistically significant difference with

the manual counts.

The utility of YOLOX-s at solving the problem of detecting phytoplankton in IFC images even when
the flow cell background is highly complex has therefore been demonstrated. This is the first

implementation of YOLOX-s being used for phytoplankton detection in colour IFC images, and the
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first time a CNN has been used for localising objects within images from an acoustically-focussed
IFC. This approach has the potential to drastically improve upon existing automated cell analysis

of IFC by existing instruments such as the FlowCam and IFCB. YOLOX-s has been demonstrated to
run at over 30 frames per second on the NVIDIA Jetson Xavier AGX platform, a low-cost (~£1000)
computing system designed for Al applications, opening the possibility of the IFC being deployed

in a fully automated sample-and-analyse configuration without any need for human input.
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Chapter 5 Use of the Acoustically-Focussed IFC in

Phytoplankton Experiments

5.1 Introduction

This chapter presents the testing and verification of the developed autonomous, acoustically-
focussed imaging flow cytometer in two experiments with phytoplankton cells, highlighting its
potential as a low-cost, high-throughput imaging method to address diverse research questions

within phytoplankton ecology and aquaculture.

Section 5.2 focuses on a using the IFC to automatically count cells with the image processing
techniques presented in Chapter 4. Preserved phytoplankton cells of a mono-culture, a simplified
analogue to samples those collected and preserved at sea during oceanographical research
cruises, were analysed and results compared to the gold standard of manual counting by
microscopy. This section aims to evaluate the performance, efficiency, and accuracy of the
complete IFC system including automatic cell identification in quantifying cell concentrations. The
outcomes of this comparison provide essential information regarding the IFC's potential as a
viable alternative for traditional microscopy of phytoplankton cells, particularly in settings where

high throughput and autonomous operation are desirable.

In section 5.3, the IFC is used in a long-term experiment with live plankton cells, monitoring the
growth of phytoplankton cultures every few hours from their initial seeding to the end of the
growth phase after more than a week. By measuring cell count at regular intervals, the IFC
enables the tracking of the dynamics of the phytoplankton population over time and at a high
temporal resolution, capturing critical information about growth rates and response to diurnal
lighting conditions. This experiment showcases the IFC's capacity to provide continuous, in-depth,
real-time data on phytoplankton populations. Continuous imaging over a long period is critical as
it offers the capability to autonomously monitor microalgal populations for applications in
ecological studies, phytoplankton biotechnology, aquaculture management, HAB early detection
and environmental monitoring. This continuous application is not possible using most other IFC
available commercially or released in open-source papers due to their discrete sampling regimes
and requirement for supervision, so represents a major advantage of the system laid out within

this thesis.
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Together, these experiments demonstrate the versatility and potential of the acoustically-focused
IFC in addressing a range of research questions related to phytoplankton ecology and biology. By
exploring the IFC's applications in both preserved and live cell experiments, this chapter highlights
the instrument's capacity to contribute to a deeper understanding of phytoplankton communities
and their role in aquatic ecosystems. It is demonstrated that the IFC presented in this thesis has
the potential to provide a novel, unique and low-cost approach to high-throughput autonomous
analysis of algal populations in a manner that would previously be inaccessible to all but the small

number of oceanographic laboratories with the funding for commercial instrumentation.
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5.2 Experimental Validation of Complete System

5.2.1 Experimental Objectives

For the reliable use of the presented IFC as a replacement for a human microscopist, it is critical
that the entire system, including image analysis algorithms, acoustic focussing and imaging
hardware, can autonomously count cells within a sample with the same level of accuracy as a
human. This means that not only does the counting of cells within images need to be accurate,
the number of cells which are imaged prior to counting needs to be a known and consistent
proportion of all the cells present in a given volume of liquid. Only if this is this case can one
confidently extrapolate the overall population of cells within a given volume from an IFC-analysed

sample.

Therefore, in order to validate the cell-counting performance of the presented image analysis
system and the acoustically focussed IFC hardware as a complete system, a cell counting
experiment was devised. A preserved sample of phytoplankton is injected into the IFC, imaged,
and then collected after passing through the complete system. This collected sample will then be
analysed under light microscopy, with the number of cells counted. The captured images will be
analysed using the YOLOX algorithm presented in Chapter 4, and the cell count from each method

compared.

5.2.2 Materials and Methods

Cells of Rhodomonas salina, a motile cryptophyte originating from a brackish, eutrophic, and
lower latitude water body, were obtained from the Culture Collection of Algae and Protozoa
(CCAP), UK. R. salina is a flagellated cryptophyte phytoplankton with a typical cell equivalent
spherical diameter (ESD) of approximately 10 um. R. salina was selected as it is a robust, easily-
cultured and well-studied phytoplankton species and is widely used as an aquaculture feedstock

(Thoisen et al., 2018).

A 5mL sample of R. salina was preserved with Lugol’s lodine 2%, agitated, and introduced to the

IFC using a syringe pump at a volumetric rate of 0.65 mL/min.
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2500 image frames, for a total imaged volume of = 0.769 mL (3s.f.) were captured using the IFC,
and the sample collected from the flow cell outlet. After imaging, 1mL of the collected sample was
pipetted onto a Sedgewick Rafter Cell and given 10 minutes to fully settle. Subsequently, the cells
in 20 pL of this sample were counted manually under a brightfield microscope, at 10X
magnification. 20 uL was selected for the microscope analysis as it is the volume commonly
analysed in the literature when cell abundance is high (Menden-Deuer et al., 2020, Gutiérrez-

Rodriguez et al., 2016).

5.2.3 Results and Discussion

Each individual “count”, which for the IFC represents the cells in 0.30751 L, and for the manual
microscopy represents the cells in a single 1 uL well of the Sedgewick Rafter Cell, - was scaled up
to cell count per mL. The mean cell count of the automated IFC approach was 222,000 cells/mL
(3 s.f.), standard deviation 25,300 (3 s.f.). The mean of the manual cell counts was 228,000
cells/mL (3 s.f.), standard deviation 21,500 (3 s.f.). The 95% confidence intervals for the means of
each method were 219,000~ 238,000 (3 s.f.) for microscopy and 221,000 — 223,000 (3 s.f.) for IFC.
A box and whisker graph was plotted to show the two sets of counts, and is presented in Figure

94,
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Comparison of Manual and Automated Cell Counting Techniques
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Figure 94 - Box and whisker plot of the cell counts generated by: IFC & YOLOX (left/blue), the fully
automated system involving imaging using acoustically focussed IFC and processing
using the YOLOX object detection model; and manual cell counts (right/orange) using
a microscope. The deviations from the mean do not indicate inaccuracies in the
counting method, but rather highlight the non-uniform distribution of cells in each

imaged volume.

The graph in Figure 94 shows that the interquartile range for the automated cell counts was
significantly larger than that of the manual cell counts, and there are more outliers in the IFC
technique. As samples are not completely homogeneous even after agitation, it is unsurprising
that some images contain comparatively more or fewer cells than would be expected if every
image was an equal, uniform sample of the overall population. Comparing the 2500 individual cell
counts generated automatically with the 20 manual counts is therefore not straightforward and
inherently requires a trade-off between analysis speed and ease versus the potentially higher
sample variance and bias of smaller volume samples. It is promising that the entire 95%
confidence interval of the mean of IFC counts is within the same confidence interval of the
microscopy counts, and serves as good evidence that with a greater number of manual counts the

two methods would produce identical means.

A statistical test was used to find the quantitative likelihood of the two cell counting methods
being equivalent. Due to the significantly different number of counts generated by the manual

and automated techniques (20 vs 2,500), the variances between the two groups might be unequal
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and a simple 2-sample T-test would be inappropriate. Therefore, the Mann-Whitney U test (Mann
and Whitney, 1947), a robust non-parametric statistical test that does not assume equal variances
between the two groups, was used, with a null hypothesis, HO, that the two methods are samples

of the same underlying population.

The test statistic was 21805.0, with a p-value of 0.324 (3s.f.) (>0.05), therefore the null hypothesis
is not rejected. It follows that the counts from the two techniques are statistically equivalent, and
it has been demonstrated that the acoustically-focussed IFC in conjunction with YOLOX can
automatically count phytoplankton cells in a sample with an equivalent accuracy to a human using

a microscope.

This experiment demonstrates the potential of the novel IFC developed within this thesis to be
used to automatically analyse fixed phytoplankton samples. This is particularly important as much
phytoplankton research, such as that conducted during research cruises, involves capturing cells,
preserving them, and analysing them at a later stage (Santhanam et al., 2019). The novel IFC

developed in this thesis offers several key advantages over traditional methods:

Firstly, the IFC enables rapid processing and analysis of numerous samples, significantly improving
the throughput of phytoplankton studies compared to manual microscopy or existing IFC
instrumentation. Additionally, by automating the analysis process, the IFC reduces reliance on
human expertise and subjectivity, enabling more consistent results across different samples and

studies.

In conclusion, the successful application of the acoustically-focussed IFC for automatically
analysing preserved phytoplankton samples has significant implications for aquatic ecosystem
research, biotechnology and HAB monitoring. By offering a cost-effective, high-throughput and
automated alternative to traditional methods and commercial IFCs, the acoustically-focussed IFC

has potential to advance phytoplankton research.
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53 Use of Acoustically-Focussed IFC in a Live Phytoplankton

Experiment

5.3.1 Introduction

In order to demonstrate the utility of the acoustically-focussed IFC and image analysis system at
counting not only ‘fixed’ (preserved) populations of dead phytoplankton, but also to analyse in
real-time the population of live algae as cells move and reproduce over time, a second
experiment was devised and will be reported in the following sections. The use of the IFC for this
purpose is important as it demonstrates a capability that is currently not possible using many
traditional instruments such as FlowCam or traditional microscopy, both of which require the
analysis of discrete samples of plankton cultures, rather than being directly connected to and able

to sample from the cultures as they grow.

Therefore, an experiment was carried out with the aim of monitoring the cell count of growing
cultures of phytoplankton over time, with the aim of demonstrating the IFC’s ability to provide a
time-lapse of the fluctuations of cells due to growth and diurnal effects. Culturing vessels of
growth medium were seeded with populations of live phytoplankton and connected to the IFC via
a computer-controlled fluidic system in order to allow the IFC to draw and image samples from
the cultures, count the cells within those images using the previously presented algorithms and
extrapolate those counts to determine the total cell population within the cultures. Additionally,

manual samples were drawn once per day to verify the cell counts from IFC.

Phytoplankton Growth Rate

Phytoplankton are a critical component of aquatic ecosystems and play a vital role in global
biogeochemical cycles. As primary producers, they fix carbon dioxide and produce organic matter
through photosynthesis, supporting higher trophic levels and driving the biological carbon cycle.
Determining the growth rates of individual species is essential for predicting the responses of

marine and freshwater ecosystems to environmental change.
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Growth rate is the rate at which phytoplankton reproduce over a given period. The specific
growth rate exhibited by individual species is influenced by a variety of factors, primarily nutrient

availability, light intensity, temperature, and grazing pressure.

Measuring the growth rate of individual phytoplankton species is essential for understanding their
responses to environmental changes, such as pollution, ocean acidification and climate change.
For example, as discussed in Chapter 2, some species are more sensitive to changes in nutrient
availability than others, leading to shifts in community composition and ecosystem function in

response to eutrophication and other anthropogenic changes to nutrient content.

To measure the growth rate of phytoplankton, researchers often use culture-based methods.
These involve isolating individual species of phytoplankton and culturing them in laboratory
conditions, under controlled environmental conditions. The growth of a culture can be monitored
over time by measuring changes in cell numbers or biomass, using techniques such as cell

counting or optical density (OD) measurements.

The growth dynamics of phytoplankton are complex and involve distinct phases. Generally,
phytoplankton growth can be divided into four stages, which are the lag phase, exponential

growth phase, stationary phase, and death phase. These phases are briefly summarized below.

In the lag phase, the population is adjusting to environmental conditions, and growth is either
slow or non-existent. Cells synthesize new proteins and enzymes to optimize resource utilization,
such as nutrients and light, and prepare for growth. The duration of this stage may vary from a

few hours to several days, depending on species and environmental conditions (Vonshak, 1985).

Once adapted to the environment, the phytoplankton population enters the exponential growth
phase. In this stage, the rate of cell division increases rapidly, and the population size doubles at
an approximately constant rate. This phase is the peak of growth, where the phytoplankton

population attains its maximum abundance and biomass.
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As the population grows, it eventually enters a stationary phase due to resource limitation,
leading to a plateau in population growth. During this phase, the rate of cell division slows down,

and the number of new cells produced is eventually balanced by the number of cells dying.

In the final phase, known as the death phase, the phytoplankton population declines due to
various factors such as resource depletion and environmental stress. The rate of cell death

exceeds the rate of cell division, leading to a decrease in population size and biomass.

A key measurement of phytoplankton productivity reported in the literature is the maximum
growth rate of a given species under specific environmental conditions. This value is also called
the maximum specific growth rate (umax) or intrinsic growth rate (Sun and Ning, 2005). To
determine the maximum growth rate, experiments are conducted that involve monitoring a
phytoplankton monoculture over time. This process typically entails measuring the cell count or
optical density (OD) of the culture at 24-hour intervals until the end of the exponential phase is
reached. By analysing the rate of change in cell count during this phase, it is possible to accurately
estimate the maximum growth rate, which serves as a crucial indicator of the species' potential
for population expansion and overall productivity in its natural environment. This information can
be invaluable for understanding the dynamics of phytoplankton communities, particularly the

speed with which they can bloom (Kremer et al., 2017).
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Diel Vertical Migration

Motile phytoplankton can move up and down within the water column in response to changing
environmental factors such as exposure to photosynthetically available radiation, nutrients, and
the presence of predators. Diel vertical migration (DVM) is a common behaviour observed in
many phytoplankton species, which involves the daily movement of these organisms up and down

the water column (Olli, 1999).

During the day, phytoplankton species exhibiting DVM stay near the surface of the water, where
they can most efficiently absorb sunlight for photosynthesis. As light levels decrease, they sink
towards deeper waters, where the nutrients such as nitrate and phosphate, which are needed for

growth and reproduction, are often more abundant (Eppley et al., 1968).

A unique capability of a device which can continually monitor the cell count within a culture such
as the acoustically-focussed IFC is the indirect observation and potentially quantification of DVM.
As the inlet to the IFC is fixed within the culture and the cells are free to move vertically, our
instrument will sample from only those cells which are approximately at the same vertical level as

the inlet tube.
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5.3.2 Materials and Methods

In the following sections, the experimental plan will be outlined, including the cell cultures,

incubation environment, sampling protocol and data analysis procedures.

Cell culture

The cell culture used was the same Rhodomonas salina as used in the previous experiment
discussed in Section 5.2. The cells were cultured in 500 mL of f/2 medium, a seawater-based
medium enriched with nitrate (742 uM), phosphate (36.2 pM), vitamins, and trace metals
(Hammer et al., 2002) in order to maintain nutrient-saturated growth throughout the course of
the experiment. 4 separate cultures were grown in 2 L conical flasks. The cultures were inoculated
into fresh, sterile medium while in their exponential growth phase, and were placed in an
incubator maintained at a constant temperature of 24°C. The initial cell count was determined by

agitation and sampling of the culture vessels immediately after seeding.

Light conditions

The cultures were illuminated with LED lamps emitting Photosynthetic Photon Flux Density (PPFD)
of 9.6 umol m2sL, Cultures were exposed to light in a 14-hour on, 10-hour off cycle to simulate

natural lighting conditions.

The light intensity was measured using an Ocean FX UV-VIS Spectrometer (Ocean Insight, UK), and

was kept at a constant level throughout the light phases for the duration of the experiment.

Sampling Procedure

The growth of R. salina cells was monitored over 8 days by automatic sampling and analysis using
the acoustically-focussed IFC, at 4-hour intervals, with manual samples taken once per day.
Manual samples were not taken at exact 24-hour intervals due to lab availability, but were + 1
hour of the time of the first sample, other than the final sample which was taken 22 hours after
the penultimate sample. Tables of all sample times (manual and IFC) are presented in Appendix E,

Table 20 and Table 21.
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The automated samples were drawn directly from the culture flasks through LDPE tubing of 0.58
mm Inner Diameter, 0.96 mm Outer Diameter (Smiths Medical Portex, Fisher Scientific, USA) with
an inlet approximately 2 cm from the base of the flask. Samples were pumped using a peristaltic
pump (MiniPuls 3, Gilson, USA) connected to an electronic valve selector (EV750-107,
Rheodyne, USA). Automated samples were of 1 mL, of which 153.755 uL (500 frames) was imaged
using the acoustically focussed IFC. Samples were not recirculated to the culture vessels after

analysis.

Before each automatic sampling event, 2 mL of sterile F/2 medium was automatically pumped
through the IFC system in order to reduce the chance of imaging cells which had previously been
left within the tubing, and to reduce the likelihood of bubbles persisting within the flow cell. The
IFC was set to capture 50 images of the flow cell during this flushing in order to verify the absence
of contamination. Between imaging each phytoplankton sample from the various culture vessels,
a further 1 mL of sterile medium was pumped through the flow cell to further reduce the chance
of cells which might have adhered to the tubing or flow cell incorrectly being imaged twice. After
all 4 cultures were imaged, a further 2 mL of medium was again pumped through the flow cell for
the same reasons given above. The flow cell was kept occupied with sterile medium when not
sampling from the cultures as repeated wetting and drying of the flow cell increases the risk of
bubble formation. When sampling from each culture, enough fluid from the culture was passed
through the IFC prior to initiating imaging to be sure that only cells sampled directly from the

culture would be imaged. This excess culture was discarded, along with medium used for flushing.

A diagram depicting the experimental layout is presented in Figure 95.
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Figure 95 — Layout of system used in the growth rate experiment to measure cell count using

acoustically focussed IFC.

Manual samples were drawn from the culture vessels using a standard 1 mL pipette with sterile
tip, and prior to this sampling the cultures were agitated by gentle swirling for 10 seconds. After
manual sampling, samples were preserved with Lugols’ lodine solution at 2% volume and stored

for later microscopy analysis.

Data analysis

Phytoplankton growth rate was calculated from manual cell counts using the equation given in

Equation 12:

Equation 12 — Formula for specific growth rate of phytoplankton based on cell counts (Levasseur

et al., 1993).

Cn

n = In(—)/At

Cn-1

Where: p is specific growth rate, c, is the measured cell count on day n, ¢,,_4 is the measured cell
count on the previous day, and At is the time between samples (1 day). Wy qx, the maximum

growth rate, is the highest daily specific growth rgate.
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For the automated cell counts generated by IFC, the growth rate was calculated by comparing the
cell counts across different days, grouped by the time of sampling. This approach was taken so
that the growth rate would only be calculated between times when the plankton would be at
approximately the same vertical distribution, as comparing cell counts from the night and day
would introduce error due to DVL. As there were samples processed by IFC every 4 hours during
the experiment, there will be multiple separate growth rate values per sample per day. As the
most important metric of cell growth is the maximum growth rate during the exponential phase,
only the maximum of the 6 daily growth rates will be reported here as this will also allow a

straightforward comparison with the growth rates of manually processed samples.

5.3.3 Results

After manually counting cells within 5 pL of each of the verification samples under a microscope,
the cell counts per mL were extrapolated. Figure 96 presents these cell counts across the duration
of the experiment. There was generally a clear S-shaped growth curve observed for each of the
cultures, with a lag phase and exponential phase until nutrient limitation slows growth. Some of

the cell counts (e.g. Culture #2 on Day 8) appear to be outliers.
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Figure 96 - Cell counts measured through manual microscopy of pipetted and preserved R. salina

throughout the growth rate experiment.
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The specific growth rates for each day of growth were calculated from these manually counted
cell densities for each of the cultures, and the results are presented in Table 12. The maximum
growth rates, qx, Which are bolded in the table, were 1.78 for Culture #1, 0.978 for Culture #2,
0.823 for Culture #3 and 1.236 for Culture #4. These values mostly correspond well with the
literature, in which a range of maximum growth rates of R. salina have been reported between
0.75 and 1.2 per day (Latsos et al., 2021), though Culture #1 appears to be an outlier, possibly due
to an erroneously low cell count on Day 2. The maximum specific growth rate averaged across all

4 cultures is 1.20, which fits within the upper end of reported growth rates for this species.
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Table 12 — Measured specific growth rate (W) of cultures of R. salina determined using the cell count measured with manual microscopy after pipette sampling.

Day | Culture #1 | Culture #1 Culture #2 Culture #2 Culture #3 Culture #2 Culture #4 Culture #4
Cell Count | Growth Rate (M) | cell Count Growth Rate (1) | cell Count Growth Rate (1) | cell Count Growth Rate (p)

(day™) (per ml) (day™) (per ml) (day™) (per ml) (day™)

1 39,000 - 33,400 - 17,200 - 17600 -

2 21,600 -0.591 78,000 0.848 37000 0.766 33600 0.647

3 128,000 1.78 122,800 0.454 118400 1.16 108933 1.18

4 238,600 0.623 326,400 0.978 256600 0.773 225400 0.727

5 568,800 0.869 782,000 0.874 584200 0.823 775666 1.236

6 753,000 0.281 1,100,250 0.341 853000 0.379 868000 0.112

7 824,000 0.090 1,352,750 0.207 1042000 0.200 1087500 0.225

8 895,000 0.082 869,500 -0.441 1096000 0.050 1066500 -0.020
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The cell count measurements as determined by YOLOX analysis of the IFC images is presented in
Figure 97. This graph is an exciting result as it serves as an excellent visual representation of the
diurnal variation of the number of cells at the same vertical height as the sample inlet tube within
the culture. The grey vertical bars on the graph demonstrate the times at which the samples were
agitated prior to the manual sampling of the cultures using a pipette for verification under
microscopy. Clearly, this agitation will affect the number of cells drawn into the IFC by
homogenising the vertical distribution of R. salina throughout the culture vessels, but it is
apparent that the cell counts rise before these mixing events and are still falling over 4 hours
post-agitation, by which time the cells should have returned to a non-agitated state due to their
motility. The cell counts within the L1 medium (sterile culture) used to flush the flow cell are
extremely close to zero throughout the course of the entire experiment, as would be expected,
which is good evidence that contamination and/or adhered cells within the fluidic network or flow

cell were not a problem during the experiment.
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Figure 97 - Automatically measured cell counts based on IFC images of the 4 cultures of R. salina

during the growth rate experiment. L1 is sterile medium, and acts a control.

For a direct comparison between the verification cell counts measured using microscopy and the
automated cell counts using IFC, and to relate the diurnal variation of cell counts observed within
the IFC data to the lighting condition within the incubator, a combined plot is presented in Figure

98. This plot demonstrates the DVL behaviour induced by light availability, which is shown with
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the orange bars on the graph. The graph also makes it clear that the manual cell counts do not

correspond well with the automated cell counts, an issue which will be explored in detail in the

following section.
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Figure 98 — Combined graph of manual (dots) and automatic IFC (lines) cell counts measured
throughout the growth rate experiment. Orange bars represent the times when the
incubator’s lights were on, and black vertical lines are the times at which the samples
were agitated and manual samples drawn off for verification. L1 is sterile medium,

and acts a control.

The full table of specific growth rates calculated using the IFC-measured cell counts, grouped by
sampling time, is presented in Table 22 in Appendix F. Note that a problem with the imaging
system caused by a computer error resulted in only one cell count being determined at 09:00 and

11:00 sample times, hence no growth rate could be calculated for those time points.

The maximum calculated growth rates, regardless of sampling time, using IFC cell counts, are as

follows:

Culture #1: 1.75; Culture #2: 1.34, Culture #3: 1.47, Culture #4: 1.56. (day™)(All to 3 s.f.)
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For Culture #1, the mean maximum specific growth rate is 0.700 day?, with a standard deviation
of 0.408. Culture #2 has a mean growth rate of 0.654 day?, with a standard deviation of 0.251.
Culture #3 exhibits a mean growth rate of 0.913 day?, with a standard deviation of 0.457. Lastly,

Culture #4 has a mean growth rate of 0.994 day?, with a standard deviation of 0.265. (All to 3 s.f.).

While these calculated maximum growth rates align with the literature for the study species, the
range of values obtained depending on when the sample was taken, demonstrated by the large
standard deviations and differences between the mean and maximum values, illustrates the
challenge of calculating growth rates based on continuous measurement of unagitated samples.
Furthermore, the difference of these values calculated using the IFC cell counts with those
obtained from manual cell counting under microscopy, though unsurprising given the difference
between manual and automated counts shown in Figure 98, provides additional evidence of a
problem with the measurement protocol. The possible causes of these differences will be

explored in the following section.

5.34 Discussion

In the results presented in the previous section, it was observed that cell counts obtained through
traditional microscopy were consistently and significantly greater than those derived from
automated IFC for all samples after the initial acclimatisation phase of the cultures. This also
caused significant differences between the growth rates calculated using measurements from
each method. Our systematic approach to investigating the cause of this difference is detailed
below. Firstly, several potential causes are ruled out, then, evidence is presented for a hypothesis
that the discrepancy is caused by active motion of the plankton actively avoiding being drawn into

the inlet tubing.

Failure of Acoustic Focussing?

In order to make sure that the reduced cell count derived from the IFC images was not caused by
a failure of the acoustic focussing mechanism, which would have resulted in cells being out of
focus and hence not counted by the object detection algorithm, a manual investigation of the

captured images was carried out. The successful functioning of acoustic focusing was confirmed
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by the high percentage of in-focus cells captured in the images across the 8 experiment days. If
the acoustic focusing had not been functioning properly, only a small proportion of the cells
would have been in focus at any given time, with the other cells present in the imaging region
randomly distributed through the imaging axis. This qualitative check gives high confidence of the
functional operation of the acoustic focussing when the number of cells in each captured frame is
high, as it is easy to subjectively see the difference between all cells being near to the same focus

plane as opposed to randomly distributed through the thickness axis of the flow cell.

Analysis revealed that across all the images collected during the experiment, only a very small
number of cells were out of focus. This result provides strong evidence that the IFC's acoustic
focusing mechanism was effective in concentrating cells into a single plane throughout the entire
duration of the experiment. Several example images taken from different days of the experiment
were analysed and a typical frame is presented in Figure 99 which clearly demonstrates that even

when there are many cells present in a frame, they are all focussed acoustically.

Figure 99 - A single frame taken from the IFC during imaging of R. salina cells during the growth

rate experiment, demonstrating successful acoustic focussing of all cells.
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Cell loss in Fluidic System?

In addition to the correct operation of the acoustic focussing demonstrated in the IFC, we note
that our experiments have also shown that the cells were not lost due to adherence to the flow
cell or connected tubing (i.e. between the culturing vessels and the IFC). This was determined
through the experiment detailed in Section 5.2, where a sample of fixed cells was imaged using
the IFC and subsequently collected for manual inspection under a microscope. The sample passed
through several centimetres of the flow cell after being imaged, then through a significant length
(20cm) of tubing before being collected for manual assessment. If cells were able to be lost due to
adherence or deposition within the tubing or flow cell, this would have resulted in discrepancies
between the cell counts obtained from the IFC images and those observed manually. The fact that
this was not observed in our experiment suggests the cause of the observed discrepancy in cell
counts within this experiment is not due to cells being pumped out of the culture vessel and then

depositing within the fluidic system before imaging.

Difference in Sampled Populations due to Diel Vertical Migration?

Manual sampling was performed after sample agitation to ensure a uniform distribution of cells,
and should accurately represent the population of phytoplankton within the culture vessels.
Automatic IFC sampling which occurred without prior agitation of the culture, represents only a
count of the cells suspended near the inlet of the tubing connected to the peristaltic pump, and
would therefore the two measurements would be expected to differ if cells occupied discrete
vertical layers. The cyclical fluctuations in cell concentration observed within the IFC-analysed
samples were therefore anticipated due to the fixed position of the sampling tube inlet relative to
the vertical motion of phytoplankton due to Diel Vertical Migration (DVM), but these fluctuations
fail to account for the observed discrepancies. Notably, DVM was ruled out as the sole cause of
the disparity between manual microscopy and IFC cell counts due to the capture of one set of
samples within 10 minutes after agitation of the cultures in preparation for microscopy (the final
day of the experiment, Day 8). Had solely DVM explained the difference between manual and
automated counts, these samples should still have been homogenised due to agitation and IFC-

derived counts should therefore have been identical to manual microscopy.
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Best Hypothesis: Active Avoidance of Sampling

In order to identify possible remaining causes of the observed discrepancy between IFC and
microscopy counts, literature on cell motility was reviewed. Although it was known that
Rhodomonas salina cells were motile, using their flagella to propel themselves vertically within
the culture as part of DVM behaviour, the possibility of them intentionally evading a source of
suction had not considered. Evidence from literature is presented below showing that
phytoplankton such as the R. salina cells studied in this experiment are capable of rapidly
responding to external mechanical stimuli as a predator-avoidance mechanism, and are able to
swim away from inlet tubing when they sense the accompanying fluid shear stresses. A

hypothesis that this is the source of the reduced automatic counts is therefore supported.

This hypothesis also extends to the observed variability in manual cell counts. As discussed
previously, the cell count of a growing phytoplankton population typically occurs in an S-shaped
curve. After an initial acclimatisation phase, cell count grows exponentially, before levelling off as
nutrient limitation occurs at high population density. This S-shape is mostly observed in the
manually counted data, but several unexpected outliers (e.g. Culture #2 on the final day has a
recorded cell count which appears erroneously low compared to previous measurements of the
same population. This and other inconsistent manual cell counts could plausibly have resulted
from the escape of cells from the pipette suction (which also causes shear stresses) while
sampling. The possibility of pipetting causing damage to cells by inducing fluid shear stress has
been investigated in the research (e.g. (Lund, 2016, M. Art et al., 2023)), and is recognised to
trigger the escape response of zooplankton (Singarajah, 1969), but does not appear to be
generally considered within phytoplankton research. The greater variability in manual counts
would correspond to variability of draw rate; unlike the automated sampling which used a fixed
volumetric flow rate of 0.68 mL/min, manually pipetting can result in different draw rates

depending on how quickly the plunger is released.

If this hypothesis is correct, the population of cells imaged by the IFC could have consisted only of
those cells with reduced motility, possibly due to compromised physiological state or even cell
death. It is therefore reasonable to hypothesise that this selective sampling of a small subsection
of the overall population ultimately led to the observed underestimation of cell counts when

utilizing automated imaging flow cytometry in comparison to manual microscopy.

210



Chapter 5

Before assessing whether the cells could have avoided the sample inlet tube while pumping was
underway, it is important to consider whether cells sampled for imaging by IFC would have been
able to swim away from the acoustic focus plane after passing the acoustic transducer, as this
would lead to them being out of focus by the time they were imaged. Previous experimental work
investigating the effect of acoustic focussing on motile phytoplankton has demonstrated that the
focussing mechanism does not disable their motility (Kim et al., 2021), though while in the
acoustic focussing region above the transducer, the acoustic forces can be strong enough to

overcome their motion away from the acoustic focus plane.

In the IFC presented there is, however, a gap of approximately 2mm between the edge of the
acoustic transducer (where cells exit after acoustic focussing) and the imaging region (in front of
the objective lens), in the direction of flow. This gap is due to the size of the objective making it
impractical to position the imaging area closer to the edge of the transducer. Although it was
previously noted that cells were, apart from a small percentage of outliers, in focus within the
images captured during the experiment, the likelihood of having too low a cell count due to the

organisms swimming out of focus of the objective is also considered below.

Blackburn et al. (2022) determined that phytoplankton generally swim at speeds equivalent to 20
times their body length per second, which, for R. salina, translates to approximately 200 um/s.
Previous research using the exact species studied in this experiment measured swimming
velocities of over 150 um/s (Jakobsen et al., 2006). A separate study involved the measurement of
the swimming velocities of R. salina cells under light and dark conditions to determine the effect
on motility of photosynthetically available radiation and measured 82 + 19 um/s and 104 + 22

um/s in the light and dark conditions respectively (Kana et al., 2019).

At the volumetric flow rate utilised in this study (0.68 ml/minute), the velocity of fluid through the
flow cell within the acoustic focus plane (in the centre) is 11.1 mm/s, giving the phytoplankton
approximately 0.18 seconds between leaving the acoustic focussing region 5mm above the
imaging region, and being imaged. The depth of field of the 10X magnification, 0.25NA objective
lens used in the IFC is approximately 8 um (Liu and Hua, 2011). If it is assumed that the sampled
cells exhibited swimming velocities of 100 um/s, which would be supported by the literature
reviewed above, cells could swim over 18 um between leaving the transducer and presenting for

imaging. Less than half of this distance would need to be swum perpendicular to the imaging
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plane for cells to appear heavily out of focus within the captured images and hence not be

successfully counted by the image processing algorithm.

The fact that we do not see many cells out of focus within the captured images suggests that the
cells that entered the IFC were not as mobile as the literature suggests. Given that the swimming
velocities of R. salina cells are expected to follow a normal distribution with a mean around 100
um/s (Kana et al., 2019), it follows that a significant population of cells within the images would
be expected to be out of focus if a representative sample of the complete population was drawn
up for IFC imaging. This supports the hypothesis that cells were escaping the flow field of the inlet

tubing as in this case it would be only the less motile cells that were taken up and imaged.

Research has shown that motile phytoplankton are capable of detecting predation threats by
sensing shear in the fluid flow around their bodies, and actively swim away from high shear forces
(Barry et al., 2015). In addition to swimming away from these forces, some motile phytoplankton
can "jump" - rapidly accelerating to high swimming velocities greater than 5-fold their usual
swimming velocities - in an alternate direction. Jakobsen, Everett, and Strom (2006) examined the
predation of R. salina by predatory ciliates, measuring the mean swimming speed of Rhodomonas
cells at 153 microns per second. Upon detecting the presence of predators, however, the
Rhodomonas cells accelerated to speeds of up to 950 microns per second (mean), effectively

preventing their capture by the ciliates.

Jakobsen (2001) conducted an investigation into the escape behaviours exhibited by plankton
exposed to fluid mechanical signals induced by a siphon flow (a steady flow into a narrow tube), in
a setup closely mirroring the inlet arrangement in the present work. The study focused on various
plankton species of a comparable size to the R. salina investigated within this experiment. Fenchel
and Juel Hansen (2006) also conducted an experiment that paralleled Jakobsen (2001), with both
studies employing narrow siphons (of comparable diameters to the tubing used within this
experiment to pump fluid from the culture vessels to the IFC) while simultaneously observing the
behaviour of motile plankton in response. In both cases, the researchers found that the
phytoplankton cells were capable of detecting and evading the siphon's suction at flow rates

similar to those employed in the present study.
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In order to determine whether these escape swimming velocities would have allowed the main
population of healthy, motile cells to avoid capture by the sampling pump, a comparison the flow
rates used within this experiment with those investigated in the above studies will be carried out.
Fenchel and Hansen (2009) witnessed escape behaviour caused by a siphon of 0.15 mm diameter,
measuring flow velocity of 1 cm/s just outside the tip of the siphon. Jacobsen (2001) used a
siphon of 0.25 mm inner diameter with a velocity of approximately 1 cm/s outside the siphon tip.
In the experiment presented within this chapter we used a tube with 0.58 mm inner diameter tip.
At a flow rate of 0.58 mL/min, this would result in a fluid velocity of 4.23 cm/s (3s.f.) occurring at
the tube inlet, which is greater than but similar to the values utilized in the aforementioned

research.

It is therefore a logical conclusion that the shear forces exerted by the pumping of phytoplankton
culture from the culture vessels into the IFC were almost certainly great enough to trigger the
escape response of the R. salina cells, and this is the reason for the significant difference between
manual and automated sampling approaches is supported. Furthermore, the inconsistencies in
the manual counts are likely due to a fraction of the phytoplankton successfully escaping the

pipette tip, with outliers caused by different draw rates.

Although it is not within the scope of this experiment, future experimental work to quantify the
shear rates at which this escape behaviour occurs could be carried out using different draw rates,

either using a similar automatic sampling setup or an electronically controlled pipette.

The motility and escape responses of zooplankton, the heterotrophic organisms which typically
predate phytoplankton, have been well-understood for decades (Singarajah, 1969, Fleminger and
Clutter, 1965), and some sampling instruments such as the Zooplankton Sampler (McLane, USA)
are specifically designed to induce low fluid shear stress to avoid triggering escape behaviour.
However, the possibility of the same behaviour regularly occurring in motile phytoplankton

species does not seem to be widely considered within the research.

Our literature review uncovered only a single experiment on phytoplankton in which researchers
had discussed the potential introduction of bias due to phytoplankton motility. In Olson et al.’s

investigation of the addition of acoustic focussing to the Imaging Flow Cytobot (IFCB), the authors
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note that motile cells may manage to escape the acoustic focus plane before imaging (Olson et al.,
2017), though escape of the initial sampling prior to acoustic focussing does not appear to have
been considered. Moreover, in-situ direct sampling from aquatic environments, such as by the
IFCB, is increasingly utilised as autonomous technology matures. When samples are pumped
continuously from the environment, there may not be sufficient agitation (e.g., by waves, wind)
for the phytoplankton to be unable to detect and avoid the shear induced by the pump systems
used. IFCB (Olson and Sosik, 2007b), for example, has a comparable inlet tube inner diameter to
the inlet used in our experiment (0.762 mm) and operates at 15 ml/hour (Blackburn et al., 2022).
At these flow rates, it is plausible that the IFCB pumping system could also trigger escape
responses in motile phytoplankton and hence lead to their underrepresentation within the

imaged population.

In conclusion, our findings and the lack of attention to phytoplankton motility within much
literature in the field suggests a possible systemic problem which could lead to incorrect
assessments of the percentage of some motile species within aquatic environments, and a bias in

the cell count in monoculture experiments such as that carried out here.
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Chapter 6 Conclusion & Future Work

6.1 Conclusion

This thesis has presented the development, characterization and application of a novel, low-cost,
high-throughput, acoustically-focussed Imaging Flow Cytometer for real-time, continuous

monitoring of phytoplankton cells.

In Chapter 2, the importance of phytoplankton to the climate, aquatic food chain and global
economy was highlighted. Phytoplankton provide around half of all carbon fixation and are the
primary producers on which the overwhelming majority of marine and freshwater life depends.
Phytoplankton cause Harmful Algal Blooms which can drastically harm ecosystem health and have

severe health and financial effects on coastal communities.

Many research challenges can be addressed using imaging flow cytometry. Without early-
detection by in situ measurement platforms, it is not possible to predict the formation of algal
blooms. Bulk measurement techniques such as satellite imaging and fluorometry do not have the
species-level taxonomic resolution needed to tell the difference between benign and harmful

blooming species.

Counting the number of cells of each phytoplankton species within a water sample is a
fundamental method within oceanographic microbiology and is commonly used to provide an
assessment of ecosystem health and carbon fixation. This process commonly requires the labour-
intensive use of manual microscopy and specialised taxonomic knowledge, professions which are
known to be in decline. Furthermore, industrial applications such as aquaculture and algal
biotechnology require an in-depth understanding of the biomass, health and composition of algal

cultures, which again requires the use of imaging techniques.

Recent global reviews have highlighted the need for far more widespread use of in situ imaging
sensors for addressing some of these research questions. The limiting factors slowing the uptake
of existing IFCs include their prohibitive cost and low throughputs, challenges which are sought to

be addressed with the IFC developed in this thesis.
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Chapter 3 detailed the development process of a low-cost, disposable flow cell which uses an
ultrasonic transducer to induce an acoustic standing wave within the fluid flow. This
acoustophoretic approach allows the focussing of cells into a plane at a known and consistent
distance from a microscope objective such that all cells can be imaged at high speed and quality.
Work presented in Section 3.3 involved the modelling and experimental evaluation of the
acoustically focussed flow cell and build confidence that the acoustic wave would reliably focus
phytoplankton cells across a wide size spectrum. Finally, a discussion of the limitations of our

developed experimental approach and possible alternatives was presented.

The development of a robust protocol to measure the imaging resolution of the IFC was
presented in Section 3.4. Having a reliable method by which to measure the minimum cell size
which could be imaged by the IFC is critical to assessing the phytoplankton which can be analysed
using this device. Some phytoplankton are extremely small (< 1 um) and thus water samples will
typically always contain plankton below the imaging resolution of optical systems. That said, that
the =3um resolution of our device compares extremely favourably with far more expensive

commercial instruments and allows the analysis of a wide range of plankton species.

Section 3.5 details the design and evaluation of the integrated system, including flow cell, imaging
and illumination optics. The design was aimed to be low-cost and easily modifiable platform
which uses predominantly off-the-shelf components in order to create a device which is
maximally accessible to resource-constrained research laboratories. A suitable camera and pulsed
illumination optics such that images will be captures at a high resolution without motion blur,
even at high flow rates, were used. The application of the aforementioned imaging resolution

measurement protocol is described, and the limitations of the approach discussed.

In Chapter 4, the development of an approach to the automatic analysis of the images captured
by the IFC, was presented, comparing several different approaches. First, traditional image
processing-based approaches are summarised and their limitations explored. Next, the
development of an improved version of a convolutional neural network-based object detection
model used for a similar cytometer by another research group was described, but unfortunately it
was incapable of counting the cells within images with a performance equal to that of a human —
a critical metric for the reliable use of an autonomous algorithm. Finally, Sections 4.46 and 4.4.7

present the new use of a cutting-edge Convolutional Neural Network-based object detection
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model, YOLOX, which successfully allows the automatic counting of cells within images with a
performance equal to a human operator. This novel use of YOLOX for IFC images has a significant
potential to allow the in situ, reliable and fully autonomous measurement of cells in aquatic
environments as it can run on an embedded GPU computing system designed for deployment.
Not only is it demonstrated that can YOLOX successfully count phytoplankton cells, there is also
the potential for it to be trained to simultaneously classify species or other classifications of

interest by extending the dataset on which it was trained.

As IFC instruments are increasingly developed to be run continuously over long periods without
human intervention, it is critical that reliable and consistent algorithms process the vast amounts
of image data they generate. Our implementation of YOLOX successfully addresses this important

research challenge in a form that is suitable for remote deployment and real time operation.

Chapter 5 describes two experiments that were undertaken to evaluate the performance of the
IFC on real phytoplankton research problems. The first, presented in Section 5.2, involves the
analysis of a simple, single-species sample of preserved phytoplankton cells. This work is
important as many research scenarios involve the need to analyse preserved samples and it is
critical to have confidence in the ability of the complete IFC system combined with the
autonomous image analysis algorithm described above, to accurately count cells in a sample. It
was found that the IFC successfully counted cells with the same accuracy as a human using the

gold standard of manual microscopy.

In Section 5.3, experiment was introduced in which the IFC was used to measure the cell count of
growing cultures of phytoplankton, at a high temporal resolution, throughout the course of the
growth phases of the cultures. This experiment demonstrated the ability of the IFC to operate
continuously and autonomously over a significant period of time, a capability not shared by most
commercial IFCs such as the FlowCam. Though the aim of the experiment had been to
demonstrate the accuracy of counting of plankton cells using the IFC by comparing the cell counts
with manual verification samples analysed under microscopy, the experiment highlighted a
sampling issue (discussed below) with potentially substantial implications across varied

phytoplankton research scenarios.
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Instruments including IFCs, flow cytometers, and other phytoplankton measuring devices such as
fluorometers are increasingly developed to operate in situ on living cells in addition to analysing
preserved samples taken at a prior date as has historically been more common. As the
sophistication and autonomy of these devices progressively expands, allowing them to generate
useful scientific data with low or even zero manual verification of their measurements, it is crucial
that these instruments accurately quantify the abundance of plankton across the range of species

they sample.

Our experiment clearly demonstrates the risks of incorrectly measuring the number of
phytoplankton cells within a water sample due to the avoidance behaviour of the cells toward
sample inlets. There is existing literature in which experiments have measured the motility of
some flagellated microalgae, and the ability of cells of species such as the Rhodomonas salina
used in our experiment to detect and escape from regions of high fluid shear. There does not,
however, appear to be any research into the possible bias that such predator avoidance

behaviour could introduce into sampling of natural phytoplankton assemblages.

It is possible, therefore, that instruments such as the Imaging Flow CytoBot, in addition to the
many autonomous phytoplankton measurement instruments either recently released or under
development, incorrectly report the number of motile plankton due to them avoiding being
drawn into the device. It is also of great significance that even manual pipetting of these cells may
fail to accurately capture a representative sample of their population density. These systemic
problems could already have led to incorrect data in multiple research projects, a risk which will
only increase as sensor development continues. The following section will explore possible future

work to quantify the problem and suggest possible solutions.

In conclusion, this thesis has presented a novel, low-cost, easy to assemble and easily modifiable
imaging flow cytometer based around a disposable, acoustically-focussed flow cell and
demonstrated its potential to address research questions involving measurement, counting and
classification of phytoplankton. This instrument has the potential to significantly advance the rate
at which images of plankton can be captured around the world by providing a higher-throughput

and cheaper alternative to the small number of currently available devices.
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6.2 Future work

In order to further explore sampling bias due to phytoplankton motility, future experiments could
be devised to assess the magnitude of the problem. These could be straightforward to carry out —
for example, by collecting a sample of a culture through a tube of fixed aperture and pumped at a
specified rate; counting cells within that pumped sample; then preserving the entire culture and
measuring the cell density. By comparing the cell counts of the same culture where one sample
has been pumped and one has not, it would be trivial to measure the percentage of cells which
avoid sampling. The experiment could be repeated with various pumping velocities and using
different inlet tube diameters, including conditions identical to those used on existing
instrumentation. Other experiments could be carried out to further investigate the extent to
which the escape behaviour is present across all phytoplankton species, which would allow the

determination of the magnitude of the problem in real-world in situ sampling applications.

It is also possible to devise experiments to test potential solutions to the problem. Since it has
been demonstrated experimentally that detection of fluid shear around the cell body is the trigger
for phytoplankton escape behaviour, it is likely that affixing a funnel to the end of the sample
inlet, hence reducing the shear rate, would allow sampling without triggering escape jumps.
Therefore, future experiments should test various inlet geometries. Experimentally this would
also be straightforward to achieve by using a similar experiment design as above, where replicate
cultures would be sampled by different inlet types and another sample preserved before counting

in order to elucidate the contribution of each inlet type on measured cell count after sampling.

Section 5.3.4 discussed the fact that motile plankton cells would have been able to swim out of
the focus plane of the instrument if they had been sampled in the first place. To address this
limitation, experiments with motile cells could be conducted where the voltage across the
acoustic transducer was increased or the flow rate increased to reduce the time between

focussing and imaging such that cells cannot swim out of focus.

In the justification of this project (Chapter 2), it was noted that there is a lack of in situ sensors for
measuring phytoplankton abundance and diversity. In its current state, it is only possible to use
the IFC presented within this thesis in an indoor environment. In order to further develop the IFC

to allow its use in the field, there are several additional engineering challenges which could be
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addressed. To begin with, the power supply to the device, which is currently a mains (230V AC)
cable, could be replaced with a battery. This would allow use of the IFC in environments without
access to electrical infrastructure. The peristaltic pump that was used in this work (Gibson
MiniPuls3) is heavy and not designed for operation outside of a laboratory. This pump could be
replaced by an off-the-shelf lightweight pump or a custom 3D-printed pump similar to that used
by the PlanktonScope discussed in Section 2.5.2. For the IFC to be used while exposed to the
elements, water ingress into the device would need to be prevented. This could be achieved by
means of an external enclosure surrounding the flow cell, optics and electronics, with an inlet and

outlet for providing the necessary fluid path for the water to be sampled.

To enable autonomous operation, a biocide reservoir could be added and the flow cell
automatically purged and cleaned on e.g. daily intervals, to prevent or delay biofouling of the
fluidic system. Filtering of the input to prevent the ingress of large particles which may obstruct
the flow cell would likely also be required and could be achieved by means of a standard e.g. 100
pm nylon mesh in the input pipe. Due to the extremely variable number of phytoplankton cells
present in natural water samples, pre-processing of input water may be needed; concentration of
the samples could be achieved using a sedimentation step before imaging the sample, though this
would require work to ensure settling does not create new biases towards less motile species.
Telemetry and image data from the device could be enabled by wired or wireless network
connection to allow the remote monitoring and data connection without the need for a monitor

and keyboard to be connected to the device.

Finally, further training of the machine learning models implemented in Section 4.4 would allow
the use of our IFC for a greatly expanded range of phytoplankton research problems. While the
utility of our models on single-species cultures grown in a laboratory was demonstrated, using
freely available phytoplankton microscopy dataset such as PMID (Li et al., 2020), it would be
possible to train our model to classify cells within mixed samples of plankton communities down
to the species level. Doing so would be relatively straightforward and increase the scientific value
of the data generated by the IFC, but care would need to be taken to ensure the phytoplankton
species represented in the training data was appropriate for the environment from which samples

analysed by the device originated.
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6.3 Summary of Novel Contributions

This thesis presented a body of work involving the design, modelling and testing of a new
acoustically focussed flow cell, building on a previously published design. The flow cell was
improved by modifying the layers to incorporate a cover slip for reduced optical thickness, and
therefore improved imaging performance. This layered design was characterised for its acoustic
resonances and their associated acoustic focussing performance. Finite Element Modelling was
used to predict the performance of the flow cell for different phytoplankton sizes and types,
demonstrating its applicability across a wide range of cells, even at high flow rates compared to
existing instruments. The work of previous authors was built upon by carrying out novel
experiments to quantify uncertainties in the MTF method for measuring image quality and,
applying this knowledge, the work here shows that the optical performance of our device is
sufficient to capture images of even very small (< 5 um diameter) phytoplankton. This is not
possible using commercial instruments such as the FlowCam, which has a reduced minimum cell

size due to its depth-of-focus-increasing optical setup.

A complete, low-cost IFC system around the acoustically-focussed flow cell, a 3D-printed flow cell
holder and a rail system constructed from off-the-shelf parts was designed and presented. This
ensures that our system will be accessible and easily modifiable, thereby increasing access to

high-quality IFC for oceanographic microbiology.

A novel convolutional neural network was developed to detect and localise cells within the
images from the IFC, which although based on an existing approach, integrated more modern
developments in computer vision. After extensive testing this model was replaced by an
implementation of a cutting-edge object detection model which was demonstrated to have the

ability to count cells within images with a performance comparable to a human operator.

Finally, the complete IFC system was tested, which showcased the ability of the IFC to accurately
measure the cell density of a preserved plankton sample with the same performance as manual
microscopy. This highlights the potential of the developed instrument to replace or improve the
traditionally labour-intensive counting of cells using traditional techniques. Furthermore, given
the ability of the machine learning image processing technique utilised to be trained on images of

multiple different species, the complete system has the potential to allow rapid and automated
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analysis of preserved samples of real-world natural phytoplankton assemblages to characterise

the complete aquatic population of microalgae within its operating limits.

The ability of our system to carry out high temporal resolution, autonomous operation over a
significant period was demonstrated by measuring the growth of live cell cultures in an incubator.
This application demonstrates the potential of the IFC to be used in aquaculture and
biotechnology applications, with potentially significant improvements in monitoring and cost
reductions. While further experiments would be required to optimise the device with respect to
motile cells which have been shown to possess the ability to actively avoid sampling, the
instrument presents a novel contribution to aquatic research and satisfies the aims and objectives

laid out at the beginning of this thesis.
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Appendix A  Parameters for KLM Model of Layered

Resonator Flow Cell

Transducer:

Table 13 — Table of parameters defining the transducer used within the KLM model of the

acoustically-focussed flow cell.

Parameter Value Unit
Thickness 1.0 [mm]
Voltage (p-p) 10 \Y
Qm 100

Length 2 [cm]
Width 5 [em]
Dielectric Loss 0.003

Piezoelectric Pressure Constant 2.37x10° [NC]
Permittivity 6.195 x 10° [Fm™]
Sound Velocity 4529.8 [ms™]
Density 7700 [kem=]
Terminating Material (air) Sound Velocity 331.6 [ms?]
Terminating Material (air) Density 1.293 [kem™3]
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Particles:

Table 14 - Table of parameters defining the particles used within the KLM model of the

acoustically-focussed flow cell.

Parameter Value Unit
Sound Velocity 1962 [ms?]
Radius 5 [um]
Density 1055 [kgm™]

Device Layers:

Table 15 - Table of parameters defining the layers of the flow cell used within the KLM model of

acoustic focussing.

Layer Thickness Density Sound Q
[um] [kgm™] Velocity

[ms?]
Glue Gap 1 1080 2640 100
Matching Layer 170 2540 5510 100
Fluid Layer 390 (Defined by T, S) 100
Reflector 1100 2500 5872 100
Terminating 1.293 331.6
Material

Fluid Channel:

Table 16 - Table of parameters defining the fluid channel inside the flow cell, used within the KLM

model.

Width
4 [mm]

Length

6 [cm]
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Appendix B

and Variables

Parameters

COMSOL Finite Element Model Parameters

Table 17 - Table of parameters used in Finite Element Modelling of the acoustically-focussed flow

cell.

Parameter | Expression Value Description
n 0.89 [mPa * s] 8.9E-4 Pa-s Dynamic Viscosity of Medium
a 5[um] 5E-6 m Particle radius
Co 1500[m*s~-1] 1500 m/s Sound Velocity of Medium
(0] 0.279 0.279 Acoustic Contrast Factor
k 2*224]( 8055.4 1/m Wavenumber

0

o
f W 1.9231E6 1/s Frequency
q 1[mL/min] 1.6667E-8 m3/s Volumetric Flow Rate
A height*width 1.56E-6 m? Cross-sectional area of channel
height 390 [um] 3.9E-4m Channel height
width 4[mm] 0.004 m Channel width
length 5[cm] 0.05m Channel length
Po 1023 [kg/m"3] 1023 kg/m3 Density of Medium
Eac 1 * L 29.369 Pa Acoustic energy density

4 (po*cj)

p 520 [kPa] 5.2E5 Pa Acoustic pressure amplitude
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Variables

Table 18 - Table of variables used in Finite Element Modelling of the acoustically-focussed flow

cell.
Variable | Expression Unit Description
F 41ta® x Ey. * ksin(2ky) g N Acoustic Radiation Force
G _, 12n N/m3 | Pressure Gradient (dP/dx)
width height3
height?
VX 9 * G x ( y * (1 - y )) m/s Particle velocity, x component
21 height height
F
vy m/s Particle velocity, y component
6mmna
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Appendix C  Pseudocode for Bead Detection and
Separation Measurement in Double-

Exposure Images

Load Image

Gaussian Filter Image -> Blurredlmage
Binarize Blurredlmage -> Binarylmage

Erode Binarylmage > ErodedBinarylmage
Open ErodedBinarylmage > OpenedBinarylmage
Close Holes OpenedBinarylmage -> ClosedBinarylmage
Watershed Algorithm ClosedBinarylmage -> Watershedimage
Region Proposal Algorithm Watershedlmage -> ImageStats

For Stat in ImageStats:
If Stat.Area > ThresholdSize:
For Each Centroid:
Label Centroid
Prompt User to Input Labels
While Userlnput !=“q”:
For Userlnputl, Userinput2:
Calculate Centroid1, Centroid2 Distance, Angle
Store Distance, Angle
Load Next Image

Where: ThresholdSize is the minimum size (in pixels) a bead image occupies. This must be set to
avoid spurious detections of noise and/or small detritus. A value of 8000 worked well for this

analysis.
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Appendix D

Bill of Materials for IFC

Table 19 - Bill of Materials to construct the optical, imaging and computational hardware for the

IFC.
Supplier Component Description Quantity Total
Cost
(UKE)

Thorlabs CP20S Cage System lIris Diaphragm 2 140.8

Thorlabs ER10 Cage Assembly Rod, 10" Long, @6 mm 4 39.24

Thorlabs ER12 Cage Assembly Rod, 12" Long, @6 mm 3 38.94

Thorlabs CP33T/M SM1-Threaded 30 mm Cage Plate, 0.50" Thick 2 34.9

Thorlabs SM1ZM SM1 Zoom Housing for @1" 1 132.29
Optics

Thorlabs SM1V15 @1" Adjustable Lens Tube, 1.31" Travel 1 27.62
Range

Thorlabs SM1V05 @1" Adjustable Lens Tube, 0.31" Travel 1 23.37
Range

Thorlabs LCP0O2/M 30mm to 60 mm Cage Plate Adapter, M4 Tap 5 158.25

Thorlabs SM1L40 SM1 Lens Tube, 4.00" Thread 1 35.46
Depth

Thorlabs SM1L15 SM1 Lens Tube, 1.50" Thread 1 12.13
Depth

Thorlabs RMSA1 Adapter with External M25 x 0.75 Threads and 1 15.74
Internal RMS Threads

Thorlabs SM1A39 Adapter with External C-Mount Threads and 1 15.91
External SM1 Threads

Thorlabs ER90C 90 Degree "T" 4 38.64
Extension

Thorlabs ACL2520U-DG6 Aspheric Condenser Lens w/ Diffuser, 325 mm, 1 14.69
f=20.1 mm, NA=0.60

Edmund 47-637 25mm Dia. x 50mm FL, VIS 0° Coated, Achromatic 2 161.5

Optics Lens
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Edmund 33-438 20X DIN Achromatic Finite Intl Standard Objective 97.75

Optics

Mouser LZ4-40CW08-0065 LED Engin High Power LED - White 15.43

Electronics

FLIR GS3-U3-23S6C-C Grasshopper3 USB3 2.3 MP, 163 FPS, Sony IMX174, 842.4
Color

DFRobot Xavier NX NVIDIA Jetson Xavier NX Developer Kit 395.41
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AppendixE  Growth Rate Experiment: Manual and

Automated Sample Times

Table 20 - Table of sampling times of the R. salina cultures during the growth rate experiment

(Section 5.3) which were preserved and manually counted using microscopy.

Date Time

23rd March 2022 |[16:30

24th March 2022 |16:00

25th March 2022 | 16:00

26th March 2022 | 15:30

27th March 2022 |15:30

28th March 2022 |17:30

29th March 2022 | 16:30

30th March 2022 | 14:30
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Table 21 - Times at which R. salina samples were automatically pumped into the IFC for imaging.
The IFC was restarted on 26" March at 15:00 due to a connectivity issue, which
resulted in an additional sample being processed that day and a change in the hours

of sampling on subsequent days.

Day Sample | Sample | Sample | Sample | Sample |Sample | Sample

1 2 3 4 5 6 7

23rd March 2022 (17:00 |21:00

24th March 2022 |01:00 |05:00 |09:00 |13:00 |17:00 |21:00

25th March 2022 | 01:00 |05:00 |09:00 |13:00 |17:00 |21:00

26th March 2022 | 01:00 |05:00 |09:00 |13:00 |15:00 |19:00 |23:00

27th March 2022 |03:00 [07:00 |11:00 |15:00 |19:00 |23:00

28th March 2022 |03:00 [07:00 |11:00 |15:00 |19:00 |23:00

29th March 2022 |03:00 |07:00 |11:00 |15:00 |19:00 |23:00

30th March 2022 | 03:00 |07:00 |11:00 |15:00
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Appendix F  Calculated Specific Growth Rates from IFC
Counts of R. salina During Growth Rate
Experiment

Table 22 — Specific Growth Rate of each of the 4 cultures, calculated using the cell counts
measured by IFC, using only those measurements taken at the same time in order to
reduce the potential influence of diurnal changes in vertical distribution.

Bold=maximum growth rate.

Calculated Maximum Specific Growth Rate across the 8 experimental days,
grouped by time of sampling
Sample Time Culture #1 Culture #2 Culture #3 Culture #4
01:00 0.258134 0.507689 -0.09 1.201591
03:00 0.827393 0.708401 1.466809 0.674891
05:00 0.43438 0.498359 0.712013 0.916474
07:00 1.752674 0.647959 1.460398 1.564099
09:00 - - - -
11:00 0.556888 0.491138 0.555596 0.769417
13:00 - - - -
15:00 0.681092 0.685839 0.611873 0.745593
17:00 0.479863 0.387895 1.16038 0.880193
19:00 0.915759 0.683234 1.18074 0.850216
21:00 0.310155 0.590418 0.868966 1.27372
23:00 0.784225 1.344312 1.203302 1.060018

233






Bibliography

Bibliography

ALVAREZ, E., LOPEZ-URRUTIA, A., NOGUEIRA, E. & FRAGA, S. 2011. How to effectively sample the
plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research, 33,
1119-1133.

ANDERSON, D. M., GLIBERT, P. M. & BURKHOLDER, J. M. 2002. Harmful algal blooms and
eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25, 704-726.

ANDERSON, D. M., HOAGLAND, P., KAORU, Y. & WHITE, A. W. 2000. Estimated annual economic
impacts from harmful algal blooms (HABs) in the United States. National Oceanic and
Atmospheric Administration Norman OK National Severe ....

ANGLES, S., JORDI, A. & CAMPBELL, L. 2015. Responses of the coastal phytoplankton community
to tropical cyclones revealed by high-frequency imaging flow cytometry. Limnology and
Oceanography, 60, 1562-1576.

ANGLES, S., JORDI, A., HENRICHS, D. W. & CAMPBELL, L. 2019. Influence of coastal upwelling and
river discharge on the phytoplankton community composition in the northwestern Gulf of
Mexico. Progress in Oceanography, 173, 26-36.

ANTFOLK, M. & LAURELL, T. 2019. Acoustofluidic Blood Component Sample Preparation and
Processing in Medical Applications. Applications of Microfluidic Systems in Biology and
Medicine. Springer.

ASCH, R. G., STOCK, C. A. & SARMIENTO, J. L. 2019. Climate change impacts on mismatches
between phytoplankton blooms and fish spawning phenology. Glob Chang Biol, 25, 2544-
2559.

BACH, J. S. & BRUUS, H. 2020. Theory of acoustic trapping of microparticles in capillary tubes.
Phys Rev E, 101, 023107.

BAKIRMAN, T. 2023. An Assessment of YOLO Architectures for Oil Tank Detection from SPOT
Imagery. International Journal of Environment and Geoinformatics, 10, 9-15.

BARRY, M. T., RUSCONI, R., GUASTO, J. S. & STOCKER, R. 2015. Shear-induced orientational
dynamics and spatial heterogeneity in suspensions of motile phytoplankton. Journal of
The Royal Society Interface, 12, 20150791.

BATTEN, S. D., CLARK, R., FLINKMAN, J., HAYS, G., JOHN, E., JOHN, A. W. G., JONAS, T., LINDLEY, J.
A., STEVENS, D. P. & WALNE, A. 2003. CPR sampling: the technical background, materials
and methods, consistency and comparability. Progress in Oceanography, 58, 193-215.

BAUTISTA-CHAMIZO, E., SENDRA, M., CID, A., SEOANE, M., ROMANO DE ORTE, M. & RIBA, I. 2018.
Will temperature and salinity changes exacerbate the effects of seawater acidification on
the marine microalga Phaeodactylum tricornutum? Sci Total Environ, 634, 87-94.

BEHRENFELD, M. J. 2010. Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton
blooms. Ecology, 91, 977-989.

BENFIELD, M. C., GROSJEAN, P., CULVERHOUSE, P. F., IRIGOIEN, X., SIERACKI, M. E., LOPEZ-
URRUTIA, A., DAM, H. G., HU, Q., DAVIS, C. S., HANSEN, A., PILSKALN, C. H., RISEMAN, E.
M., SCHULTZ, H., UTGOFF, P. E. & GORSKY, G. 2007. RAPID Research on Automated
Plankton Identification. Oceanography, 20, 172-187.

BHATT, P. M., MALHAN, R. K., RAJENDRAN, P., SHAH, B. C., THAKAR, S., YOON, Y. J. & GUPTA, S. K.
2021. Image-Based Surface Defect Detection Using Deep Learning: A Review. Journal of
Computing and Information Science in Engineering, 21.

BHATTACHARYA, D., MEDLIN & LINDA 1998. Algal Phylogeny and the Origin of Land Plants. Plant
Physiology, 116, 9-15.

BIEDER, F., SANDKUEHLER, R. & CATTIN, P. 2021. Comparison of Methods Generalizing Max- and
Average-Pooling.

BISHOP, C. M. 1994. Neural networks and their applications. Review of scientific instruments, 65,
1803-1832.

235



Bibliography

BLACKBURN, N., HAECKY, P., JURGENSONE, I., GRINIENE, E., BRUGEL, S., ANDERSSON, A. &
CARSTENSEN, J. 2022. The use of an automated organism tracking microscope in
mesocosm experiments. Limnology and Oceanography: Methods, 20, 768-780.

BLASCHKO, M. B., HOLNESS, G., MATTAR, M. A,, LISIN, D., UTGOFF, P. E., HANSON, A. R., SCHULTZ,
H., RISEMAN, E. M., SIERACKI, M. E., BALCH, W. M. & TUPPER, B. Automatic In Situ
Identification of Plankton. 2005 Seventh IEEE Workshops on Applications of Computer
Vision (WACV/MOTION'05) - Volume 1, 5-7 Jan. 2005 2005. 79-86.

BOLANOS, L. M., KARP-BOSS, L., CHOI, C. J., WORDEN, A. Z., GRAFF, J. R., HAENTJENS, N., CHASE,
A.P., DELLA PENNA, A., GAUBE, P., MORISON, F., MENDEN-DEUER, S., WESTBERRY, T. K.,
O'MALLEY, R. T., BOSS, E., BEHRENFELD, M. J. & GIOVANNON]I, S. J. 2020. Small
phytoplankton dominate western North Atlantic biomass. ISME J, 14, 1663-1674.

BORN, M. & WOLF, E. 1999. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, Cambridge, Cambridge University Press.

BRIDLE, J. 1989. Training stochastic model recognition algorithms as networks can lead to
maximum mutual information estimation of parameters. Advances in neural information
processing systems, 2.

BROTAS, V., BREWIN, R. J. W., SA, C., BRITO, A. C., SILVA, A., MENDES, C. R., DINIZ, T., KAUFMANN,
M., TARRAN, G., GROOM, S. B., PLATT, T. & SATHYENDRANATH, S. 2013. Deriving
phytoplankton size classes from satellite data: Validation along a trophic gradient in the
eastern Atlantic Ocean. Remote Sensing of Environment, 134, 66-77.

BROWNLEE, E. F., OLSON, R. J. & SOSIK, H. M. 2016. Microzooplankton community structure
investigated with imaging flow cytometry and automated live-cell staining. Marine
Ecology Progress Series, 550, 65-81.

BRUUS, H. 2012. Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a Chip,
12, 1014-1021.

BURKHOLDER, J. M. & GLASGOW JR., H. B. 1997. Pfiesteria piscicida and other Pfiesreria-like
dinoflagellates: Behavior, impacts, and environmental controls. Limnology and
Oceanography, 42, 1052-1075.

BURKHOLDER, J. M., GLIBERT, P. M. & SKELTON, H. M. 2008. Mixotrophy, a major mode of
nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8, 77-93.

BURNS, P. A, IS, IS, IS & IS 2000. Slanted-edge MTF for digital camera and scanner analysis.

BUSKEY, E. J. & HYATT, C. J. 2006. Use of the FlowCAM for semi-automated recognition and
enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae,
5, 685-692.

BUSSI, G., WHITEHEAD, P. G., BOWES, M. J., READ, D. S., PRUDHOMMIE, C. & DADSON, S. J. 2016.
Impacts of climate change, land-use change and phosphorus reduction on phytoplankton
in the River Thames (UK). Sci Total Environ, 572, 1507-1519.

CAMPBELL, L., HENRICHS, D. W., OLSON, R. J. & SOSIK, H. M. 2013. Continuous automated
imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the
Gulf of Mexico. Environmental Science and Pollution Research, 20, 6896-6902.

CAMPBELL, L., HENRICHS, D. W., PEACOCK, E. E., FUTRELLE, J. & SOSIK, H. M. 2016. Imaging
FlowCytobot provides novel insights on phytoplankton community dynamics. MARINE
AND FRESH-WATER HARMFUL ALGAE, 74.

CAMPBELL, L., OLSON, R. J., SOSIK, H. M., ABRAHAM, A., HENRICHS, D. W., HYATT, C. J. & BUSKEY,
E. J. 2010. First Harmful Dinophysis (Dinophyceae, Dinophysiales) Bloom in the U.S. is
Revealed by Automated Imaging Flow Cytometry. Journal of Phycology, 46.

CANNY, J. 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8, 679-698.

CARMICHAEL, W. W. 2001. Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”.
Human and Ecological Risk Assessment: An International Journal, 7, 1393-1407.

CAVALIER-SMITH, T. 1993. Kingdom protozoa and its 18 phyla. Microbiol Rev, 57, 953-94.

CETINIC, I., PERRY, M., D'ASARO, E., BRIGGS, N., POULTON, N., SIERACKI, M. & LEE, C. 2014.
Optical community index to assess spatial patchiness during the 2008 North Atlantic
Bloom. Biogeosciences Discussion, 11, 12833-12870.

236



Bibliography

CHOU, W.-L. 2022. YoloX [Online]. Available: https://hackmd.io/@willy541222/YOLOX [Accessed].

CLOERN, J. E. 2018. Why large cells dominate estuarine phytoplankton. Limnology and
Oceanography, 63, S392-5409.

COLAS, F., TARDIVEL, M., EVRARD, J., FOREST, B., CRASSOUS, M. P., LUNVEN, M. & DANIELOU, M.
M. 2016. Progression of the digitalization system: the FastCAM prototype and its outlook.
Optimisation de I'identification et du dénombrement du micro-phytoplancton avec le
systeme couplé de numeérisation et d’analyse d’images FlowCAM — Zoo/Phytolmage
(systéme innovant) IFREMER.

COLLIER, J. L. 2000. Flow cytometry and the single cell in phycology. Journal of Phycology, 36, 628-
644.

COLLINS, S., ROST, B. & RYNEARSON, T. A. 2014. Evolutionary potential of marine phytoplankton
under ocean acidification. Evol Appl, 7, 140-55.

CULVERHOUSE, P. F., WILLIAMS, R., BENFIELD, M., FLOOD, P. R., SELL, A., F. , MAZZOCCHI, M. G.,
BUTTINO, I. & SIERACKI, M. 2006. Automatic image analysis of plankton: future
perspectives. Marine Ecology Progress Series, 312, 297-309.

DAPENA, C., BRAVO, I., CUADRADO, A. & FIGUEROA, R. I. 2015. Nuclear and cell morphological
changes during the cell cycle and growth of the toxic dinoflagellate Alexandrium
minutum. Protist, 166, 146-60.

DASHKOVA, V., MALASHENKOV, D., POULTON, N., VOROBJEV, I. & BARTENEVA, N. S. 2017.
Imaging flow cytometry for phytoplankton analysis. Methods, 112, 188-200.

DELONG, E. F. 2009. The microbial ocean from genomes to biomes. Nature, 459, 200-206.

DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K. & FEI-FEI, L. Imagenet: A large-scale hierarchical
image database. 2009 IEEE conference on computer vision and pattern recognition, 2009.
leee, 248-255.

DI CARLO, D., IRIMIA, D., TOMPKINS, R. G. & TONER, M. 2007. Continuous inertial focusing,
ordering, and separation of particles in microchannels. Proceedings of the National
Academy of Sciences, 104, 18892-18897.

DOBBINS, J. T. 2000. Chapter 3: Image Quality Metrics for Digital Systems In: KUNDEL, R. L. V. M. J.
B. H. L. (ed.) Handbook of Medical Imaging, Volume 1. Physics and Psychophysics. SPIE
Press.

DOGAN, N. 0. 2018. Bland-Altman analysis: A paradigm to understand correlation and agreement.
Turkish Journal of Emergency Medicine, 18, 139-141.

DOLLAR, P., WOIJEK, C., SCHIELE, B. & PERONA, P. 2011. Pedestrian detection: An evaluation of the
state of the art. IEEE transactions on pattern analysis and machine intelligence, 34, 743-
761.

DOUGLAS, D. H. & PEUCKER, T. K. 1973. Algorithms for the Reduction of the Number of Points
Required to Represent a Digitized Line or Its Caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization, 10, 112-122.

DUBELAAR, G. B., GERRITZEN, P. L., BEEKER, A. E., JONKER, R. R. & TANGEN, K. 1999. Design and
first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh
waters. Cytometry, 37, 247-54.

DUBELAAR, G. B. J. & GERRITZEN, P. L. 2000. CytoBuoy: a step forward towards using flow
cytometry in operational oceanography. 2000, 64, 11.

DUDA, R. O. & HART, P. E. Pattern classification and scene analysis. A Wiley-Interscience
publication, 1974.

DUNKER, S., BOHO, D., WALDCHEN, J. & MADER, P. 2018. Combining high-throughput imaging
flow cytometry and deep learning for efficient species and life-cycle stage identification of
phytoplankton. BMC Ecol, 18, 51.

ELSWORTH, G. W., LOVENDUSKI, N. S., MCKINNON, K. A., KRUMHARDT, K. M. & BRADY, R. X.
2020. Finding the Fingerprint of Anthropogenic Climate Change in Marine Phytoplankton
Abundance. Current Climate Change Reports, 6, 37-46.

EPPLEY, R. W., HOLM-HARISEN, O. & STRICKLAND, J. D. 1968. Some Observations on the Vertical
Migration Ofdinoflagellates. J Phycol, 4, 333-40.

237


https://hackmd.io/@willy541222/YOLOX

Bibliography

ESTRIBEAU, M. & MAGNAN, P. 2004. Fast MTF measurement of CMOS imagers using ISO 12333
slanted-edge methodology, SPIE.

EVANDER, M., JOHANSSON, L., LILLIEHORN, T., PISKUR, J., LINDVALL, M., JOHANSSON, S.,
ALMQVIST, M., LAURELL, T. & NILSSON, J. 2007. Noninvasive acoustic cell trapping in a
microfluidic perfusion system for online bioassays. Analytical chemistry, 79, 2984-2991.

FALKOWSKI, P. G., BARBER, R. T. & SMETACEK, V. 1998. Biogeochemical Controls and Feedbacks
on Ocean Primary Production. Science, 281, 200-206.

FENCHEL, T. & JUEL HANSEN, P. 2006. Motile behaviour of the bloom-forming ciliate Mesodinium
rubrum. Marine Biology Research, 2, 33-40.

FIGLEY, W., PYLE, B. & HALGREN, B. 1979. Chapter 14: Socioeonomic Impacts. /n: SINDERMANN, C.
J. & SWANSON, R. L. (eds.) Oxygen depletion and associated benthic mortalities in New
York Bight, 1976. Rockville, Md.: National Oceanic and Atmospheric Administration.

FLEMINGER, A. & CLUTTER, R. I. 1965. Avoidance of Towed Nets by Zooplankton. Limnology and
Oceanography, 10, 96-104.

FOFONOFF, N. P. & MILLARD JR, R. 1983. Algorithms for the computation of fundamental
properties of seawater.

FOGG, G. E. 1990. Our perceptions of phytoplankton: an historical sketch the first Founders'
Lecture. British Phycological Journal, 25, 103-115.

FORNELL, A., JOHANNESSON, C., SEARLE, S. S., HAPPSTADIUS, A., NILSSON, J. & TENJE, M. 2019.
An acoustofluidic platform for non-contact trapping of cell-laden hydrogel droplets
compatible with optical microscopy. Biomicrofluidics, 13, 044101.

GARETH JAMES, DANIELA WITTEN, TREVOR HASTIE & TIBSHIRANI, R. 2013. An introduction to
statistical learning : with applications in R, New York : Springer, [2013] ©2013.

GAUTAM, N., SANKARAN, S., YASON, J. A., TAN, K. S. W. & GASCOIGNE, N. R. J. 2018. A high
content imaging flow cytometry approach to study mitochondria in T cells: MitoTracker
Green FM dye concentration optimization. Methods, 134-135, 11-19.

GE, Z., LIU, S., WANG, F., LI, Z. & SUN, J. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430.

GEORGE, T. C., BASUI, D. A,, HALL, B. E., LYNCH, D. H., ORTYN, W. E., PERRY, D. J., SEO, M. J,,
ZIMMERMAN, C. A. & MORRISSEY, P. J. 2004. Distinguishing modes of cell death using the
ImageStream® multispectral imaging flow cytometer. Cytometry Part A, 59A, 237-245.

GIRSHICK, R., DONAHUE, J., DARRELL, T. & MALIK, J. Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation. 2014 |EEE Conference on Computer Vision and
Pattern Recognition, 23-28 June 2014 2014. 580-587.

GLIBERT, P. M., ICARUS ALLEN, J., ARTIOLI, Y., BEUSEN, A., BOUWMAN, L., HARLE, J., HOLMES, R.
& HOLT, J. 2014. Vulnerability of coastal ecosystems to changes in harmful algal bloom
distribution in response to climate change: projections based on model analysis. Global
Change Biology, 20, 3845-3858.

GLYNNE-JONES, P., BOLTRYK, R. J., HARRIS, N. R., CRANNY, A. W. & HILL, M. 2010a. Mode-
switching: a new technique for electronically varying the agglomeration position in an
acoustic particle manipulator. Ultrasonics, 50, 68-75.

GLYNNE-JONES, P., BOLTRYK, R. J., HILL, M., ZHANG, F., DONG, L., WILKINSON, J. S., BROWN, T.,
MELVIN, T. & HARRIS, N. R. 2010b. Multi-modal particle manipulator to enhance bead-
based bioassays. Ultrasonics, 50, 235-239.

GOBLER, C. J., DOHERTY, O. M., HATTENRATH-LEHMANN, T. K., GRIFFITH, A. W., KANG, Y. &
LITAKER, R. W. 2017. Ocean warming since 1982 has expanded the niche of toxic algal
blooms in the North Atlantic and North Pacific oceans. Proc Nat/ Acad Sci U S A, 114,
4975-4980.

GODDARD, G. R., SANDERS, C. K., MARTIN, J. C., KADUCHAK, G. & GRAVES, S. W. 2007. Analytical
Performance of an Ultrasonic Particle Focusing Flow Cytometer. Analytical Chemistry, 79,
8740-8746.

GREENBAUM, A., AKBARI, N., FEIZI, A., LUO, W. & OZCAN, A. 2013. Field-Portable Pixel Super-
Resolution Colour Microscope. Plos One, 8.

238



Bibliography

GUTIERREZ-RODRIGUEZ, A., SELPH, K. E. & LANDRY, M. R. 2016. Phytoplankton growth and
microzooplankton grazing dynamics across vertical environmental gradients determined
by transplant in situ dilution experiments. Journal of Plankton Research, 38, 271-289.

GOROCS, Z., TAMAMITSU, M., BIANCO, V., WOLF, P., ROY, S., SHINDO, K., YANNY, K., WU, Y.,
KOYDEMIR, H. C., RIVENSON, Y. & OZCAN, A. 2018. A deep learning-enabled portable
imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of
natural water samples. Light Sci Appl, 7, 66.

HADER, D.-P. 1995. Novel method to determine vertical distributions of phytoplankton in marine
water columns. Environmental and Experimental Botany, 35, 547-555.

HAIN, R., KAHLER, C. J. & TROPEA, C. 2007. Comparison of CCD, CMOS and intensified cameras.
Experiments in Fluids, 42, 403-411.

HALLEGRAEFF, G. M. 1993. A review of harmful algal blooms and their apparent global increase.
Phycologia, 32, 79-99.

HALLEGRAEFF, G. M. 2010. OCEAN CLIMATE CHANGE, PHYTOPLANKTON COMMUNITY
RESPONSES, AND HARMFUL ALGAL BLOOMS: A FORMIDABLE PREDICTIVE CHALLENGE1.
Journal of Phycology, 46, 220-235.

HAMMER, A., SCHUMANN, R. & SCHUBERT, H. 2002. Light and temperature acclimation of
Rhodomonas salina (Cryptophyceae): Photosynthetic performance. Aquatic Microbial
Ecology - AQUAT MICROB ECOL, 29, 287-296.

HAN, Y., GU, Y., ZHANG, A. C. & LO, Y. H. 2016. Review: imaging technologies for flow cytometry.
Lab Chip, 16, 4639-4647.

HARAGUCH], L., JAKOBSEN, H. H., LUNDHOLM, N. & CARSTENSEN, J. 2017. Monitoring natural
phytoplankton communities: a comparison between traditional methods and pulse-shape
recording flow cytometry. Aquatic Microbial Ecology, 80, 77-92.

HARDY, A. C. 1939. Ecological investigations with the Continuous Plankton Recorder: Object, plan
and methods. Hull Bulletins of Marine Ecology, 1, 1-57.

HASINOFF, S. W. 2014. Saturation (imaging). In: IKEUCHI, K. (ed.) Computer Vision: A Reference
Guide. Springer US.

HAYES, N. M., VANNI, M. J., HORGAN, M. J. & RENWICK, W. H. 2015. Climate and land use
interactively affect lake phytoplankton nutrient limitation status. Ecology, 96, 392-402.

HE, J., ERFANI, S., MA, X., BAILEY, J., CHI, Y. & HUA, X.-S. 2021. Alpha-loU: A Family of Power
Intersection over Union Losses for Bounding Box Regression. Advances in Neural
Information Processing Systems, 34, 20230-20242.

HEADLAND, S. E., JONES, H. R., D'SA, A. S. V., PERRETTI, M. & NORLING, L. V. 2014. Cutting-Edge
Analysis of Extracellular Microparticles using ImageStream(X) Imaging Flow Cytometry.
Scientific Reports, 4, 10.

HENSON, S. A,, COLE, H. S., HOPKINS, J., MARTIN, A. P. & YOOL, A. 2018. Detection of climate
change-driven trends in phytoplankton phenology. Glob Chang Biol, 24, e101-e111.

HENSON, S. A., SARMIENTO, J. L., DUNNE, J. P., BOPP, L., LIMA, I., DONEY, S. C., JOHN, J. &
BEAULIEU, C. 2010. Detection of anthropogenic climate change in satellite records of
ocean chlorophyll and productivity. Biogeosciences, 7, 621-640.

HEQ, Y. J., LEE, D., KANG, J., LEE, K. & CHUNG, W. K. 2017. Real-time Image Processing for
Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip. Sci Rep, 7,
11651.

HESS, D., RANE, A., DEMELLO, A. J. & STAVRAKIS, S. 2015. High-throughput, quantitative enzyme
kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. Anal Chem,
87, 4965-72.

HILL, M., GLYNNE-JONES, P., HARRIS, N. R., BOLTRYK, R. J., STANLEY, C. & BOND, D. Trapping and
micromanipulation using ultrasonic fields and dual ultrasonic/magnetic forces. Proc.SPIE,
2010.

HILL, M., SHEN, Y. & HAWKES, J. J. 2002. Modelling of layered resonators for ultrasonic separation.
Ultrasonics, 40, 385-392.

239



Bibliography

HINCAPIE GOMEZ, E., TRYNER, J., ALIGATA, A. J., QUINN, J. C. & MARCHESE, A. J. 2018.
Measurement of acoustic properties of microalgae and implications for the performance
of ultrasonic harvesting systems. Algal Research, 31, 77-86.

HOLZNER, G., DU, Y., CAO, X., CHOO, J., A, J. D. & STAVRAKIS, S. 2018. An optofluidic system with
integrated microlens arrays for parallel imaging flow cytometry. Lab Chip, 18, 3631-3637.

HU, Y., LIU, Y. & LIU, Z. A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and
ASIC. 2022 14th International Conference on Computer Research and Development
(ICCRD), 7-9 Jan. 2022 2022. 100-107.

HUANG, T. J. 2019. Acoustofluidics: Merging acoustics and microfluidics for biomedical
applications. The Journal of the Acoustical Society of America, 145, 1786-1786.

HUSSAIN, M., CHEN, D., CHENG, A., WEI, H. & STANLEY, D. 2013. Change detection from remotely
sensed images: From pixel-based to object-based approaches. ISPRS Journal of
Photogrammetry and Remote Sensing, 80, 91-106.

IOFFE, S. & SZEGEDY, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International conference on machine learning, 2015. pmlr, 448-
456.

ISO 2017. Photography - Electronic still picture imaging - Resolution and spatial frequency
responses. ISO 12233:2017 International Organization for Standardization.

JAKOBSEN, H. 2001. Escape response of planktonic protists to fluid mechanical signals. Marine
Ecology-progress Series - MAR ECOL-PROGR SER, 214, 67-78.

JAKOBSEN, H. H., EVERETT, L. M. & STROM, S. L. 2006. Hydromechanical signaling between the
ciliate Mesodinium pulex and motile protist prey. Aquatic Microbial Ecology, 44, 197-206.

JAYASINGHE, S. N. 2020. Reimagining Flow Cytometric Cell Sorting. Adv Biosyst, 4, e2000019.

JOHNK, K. D., HUISMAN, J. E. F., SHARPLES, J., SOMMELIJER, B. E. N., VISSER, P. M. & STROOM, J.
M. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change
Biology, 14, 495-512.

KAMYKOWSKI, D., PRIDGEN, K. G., MORRISON, J. M., MCCULLOCH, A. A., NYADJRO, E. S.,
THOMAS, C. A. & SINCLAIR, G. A. 2013. Cold front induced changes on the Florida
panhandle shelf during October 2008. Continental Shelf Research, 54, 52-66.

KANA, R., KOTABOVA, E., SEDIVA, B. & KUTHANOVA TRSKOVA, E. 2019. Photoprotective strategies
in the motile cryptophyte alga Rhodomonas salina—role of non-photochemical
quenching, ions, photoinhibition, and cell motility. Folia Microbiologica, 64, 691-703.

KARAMAN, A., PACAL, I., BASTURK, A., AKAY, B., NALBANTOGLU, U., COSKUN, S., SAHIN, O. &
KARABOGA, D. 2023. Robust real-time polyp detection system design based on YOLO
algorithms by optimizing activation functions and hyper-parameters with artificial bee
colony (ABC). Expert Systems with Applications, 221, 119741.

KARLSON, B., GODHE, A., CUSACK, C. & BRESNAN, E. 2010. Introduction to methods for
guantitative phytoplankton analysis. Microscopic and molecular methods for quantitative
phytoplankton analysis, 5.

KASS, M., WITKIN, A. & TERZOPOULGQS, D. 1988. Snakes: Active contour models. International
Journal of Computer Vision, 1, 321-331.

KATSIAPI, M., MOUSTAKA-GOUNI, M., MICHALOUDI, E. & KORMAS, K. A. 2011. Phytoplankton and
water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir,
Greece). Environ Monit Assess, 181, 563-75.

KHEIREDDINE, S., SUDALAIYADUM PERUMAL, A., SMITH, Z. J., NICOLAU, D. V. & WACHSMANN-
HOGIU, S. 2019. Dual-phone illumination-imaging system for high resolution and large
field of view multi-modal microscopy. Lab on a Chip, 19, 825-836.

KIM, H. 2010. An Overview on the Occurrences of Harmful Algal Blooms (HABs) and Mitigation
Strategies in Korean Coastal Waters. Coastal Environmental and Ecosystem Issues of the
East China Sea.

KIM, M., BAYLY, P. V. & MEACHAM, J. M. 2021. Motile cells as probes for characterizing
acoustofluidic devices. Lab on a Chip, 21, 521-533.

KINGMA, D. P. & BA, J. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

240



Bibliography

KINSLER, L. E., FREY, A. R., COPPENS, A. B. & SANDERS, J. V. 1999. Fundamentals of acoustics.

KOHLER, A. 1893. Zeitschrift fiir wissenschaftliche. Mikroskopie X, 433-440

KOUAKOU, C. R. C. & PODER, T. G. 2019. Economic impact of harmful algal blooms on human
health: a systematic review. J Water Health, 17, 499-516.

KRAFT, K., VELHONOIJA, O., EEROLA, T., SUIKKANEN, S., TAMMINEN, T., HARAGUCHI, L.,
YLOSTALO, P., KIELOSTO, S., JOHANSSON, M., LENSU, L., KALVIAINEN, H., HAARIO, H. &
SEPPALA, J. 2022. Towards operational phytoplankton recognition with automated high-
throughput imaging, near-real-time data processing, and convolutional neural networks.
Frontiers in Marine Science, 9.

KREMER, C. T., THOMAS, M. K. & LITCHMAN, E. 2017. Temperature- and size-scaling of
phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic
theory of ecology. Limnology and Oceanography, 62, 1658-1670.

KRIMHOLTZ, R., LEEDOM, D. A. & MATTHAEI, G. L. 1970. New equivalent circuits for elementary
piezoelectric transducers. Electronics Letters, 6, 398-399.

KRIZHEVSKY, A., SUTSKEVER, |. & HINTON, G. E. 2017. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60, 84-90.

KUDELA, R. M., LANE, J. Q. & COCHLAN, W. P. 2008. The potential role of anthropogenically
derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae, 8, 103-
110.

LANEY, S. R. & SOSIK, H. M. 2014. Phytoplankton assemblage structure in and around a massive
under-ice bloom in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in
Oceanography, 105, 30-41.

LATSOS, C., BAKRATSAS, G., MOERDUK, T., VAN HOUCKE, J. & TIMMERMANS, K. R. 2021. Effect of
salinity and pH on growth, phycoerythrin, and non-volatile umami taste active compound
concentration of Rhodomonas salina using a D-optimal design approach. Journal of
Applied Phycology, 33, 3591-3602.

LEGENDRE, L., COURTIES, C. & TROUSSELLIER, M. 2001. Flow cytometry in oceanography 1989—
1999: Environmental challenges and research trends. Cytometry, 44, 164-172.

LEI, C., ITO, T., UGAWA, M., NOZAWA, T., INATA, O., MAKI, M., OKADA, G., KOBAYASHI, H., SUN,
X. L., TIAMSAK, P., TSUMURA, N., SUZUKI, K., DI CARLO, D., OZEKI, Y. & GODA, K. 2016.
High-throughput label-free image cytometry and image-based classification of live
Euglena gracilis. Biomedical Optics Express, 7, 2703-2708.

LEIBACHER, I., HAHN, P. & DUAL, J. 2015. Acoustophoretic cell and particle trapping on
microfluidic sharp edges. Microfluidics and Nanofluidics, 19, 923-933.

LENSHOF, A., MAGNUSSON, C. & LAURELL, T. 2012. Acoustofluidics 8: Applications of
acoustophoresis in continuous flow microsystems. Lab on a Chip, 12, 1210-1223.

LEVASSEUR, M., THOMPSON, P. A. & HARRISON, P. J. 1993. Physiological Acclimation of Marine
Phytoplankton to Different Nitrogen Sources. Journal of Phycology, 29, 587-595.

LEVINSEN, H., NIELSEN, T. G. & HANSEN, B. W. 1999. Plankton community structure and carbon
cycling on the western coast of Greenland during the stratified summer situation. Il.
Heterotrophic dinoflagellates and ciliates. Aquatic Microbial Ecology, 16, 217-232.

LI, Q., SUN, X., DONG, J., SONG, S., ZHANG, T., LIU, D., ZHANG, H., HAN, S. & BEYAN, C. 2020.
Developing a microscopic image dataset in support of intelligent phytoplankton detection
using deep learning. ICES Journal of Marine Science, 77, 1427-1439.

LI, S., GLYNNE-JONES, P., ANDRIOTIS, O. G., CHING, K. Y., JONNALAGADDA, U. S., OREFFO, R. O,
HILL, M. & TARE, R. S. 2014. Application of an acoustofluidic perfusion bioreactor for
cartilage tissue engineering. Lab on a Chip, 14, 4475-4485.

LIANG, J., CHEN, X., LIANG, C., LONG, T., TANG, X., SHI, Z., ZHOU, M., ZHAO, J., LAN, Y. & LONG, Y.
2023. A detection approach for late-autumn shoots of litchi based on unmanned aerial
vehicle (UAV) remote sensing. Computers and Electronics in Agriculture, 204, 107535.

LIM, H. C., LEAW, C. P,, SU, S. N., TENG, S. T., USUP, G., MOHAMMAD-NOOR, N., LUNDHOLM, N.,
KOTAKI, Y. & LIM, P. T. 2012. Morphology and Molecular Characterization of Pseudo-
Nitzschia (Bacillariophyceae) from Malaysian Borneo, Including the New Species Pseudo-
Nitzschia Circumpora Sp. Nov. J Phycol, 48, 1232-47.

241



Bibliography

LIN, W., HASENSTAB, K., MOURA CUNHA, G. & SCHWARTZMAN, A. 2020. Comparison of
handcrafted features and convolutional neural networks for liver MR image adequacy
assessment. Scientific Reports, 10, 20336.

LIU, S. & HUA, H. 2011. Extended depth-of-field microscopic imaging with a variable focus
microscope objective. Optics Express, 19, 353-362.

LIU, S., Ql, L., QIN, H., SHI, J. & JIA, J. Path aggregation network for instance segmentation.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
8759-8768.

LOMBARD, F., BOSS, E., WAITE, A. M., VOGT, M., UITZ, J., STEMMANN, L., SOSIK, H. M., SCHULZ, J.,
ROMAGNAN, J. B., PICHERAL, M., PEARLMAN, J., OHMAN, M. D., NIEHOFF, B., MOLLER, K.
M., MILOSLAVICH, P., LARA-LPEZ, A., KUDELA, R., LOPES, R. M., KIKO, R., KARP-BOSS, L.,
JAFFE, J. S., IVERSEN, M. H., FRISSON, J. O., FENNEL, K., HAUSS, H., GUIDI, L., GORSKY, G.,
GIERING, S. L. C., GAUBE, P., GALLAGER, S., DUBELAAR, G., COWEN, R. K., CARLOTTI, F.,
BRISENO-AVENA, C., BERLINE, L., BENOIT-BIRD, K., BAX, N., BATTEN, S., AYATA, S. D.,
ARTIGAS, L. F. & APPELTANS, W. 2019. Globally Consistent Quantitative Observations of
Planktonic Ecosystems. Frontiers in Marine Science, 6.

LOPEZ-RIQUELME, N., MINGUELA, A., VILLAR-PERMUY, F., CIPRIAN, D., CASTILLEJO, A., ALVAREZ-
LOPEZ, M. R. & SOTO, J. L. 2013. Imaging cytometry for counting circulating tumor cells:
comparative analysis of the CellSearch vs ImageStream systems. Apmis, 121, 1139-1143.

LUND, R. D. 2016. Analyzing the Effect of Pipette Tip Geometries on Fluid Velocity and Shear
Strain Rate: Biomek Wide Bore vs. Standard Pipette Tips. Discovery In Motion.
Indianapolis, IN: Beckman Coulter Life Sciences.

M. ART, N. CHANDELIER, U. GAST & MILLER, D. 2023. A “Shear” Mystery — Uncovered.
APPLICATION NOTE | No. 442. Hamburg - Germany: Eppendorf SE.

MADRID-WOLFF, J. & FORERO, M. 2019. Simple and open 4f Koehler transmitted illumination
system for low-cost microscopic imaging and teaching.

MAHSERECI, M., BALLES, L., LASSNER, C. & HENNIG, P. 2017. Early stopping without a validation
set. arXiv preprint arXiv:1703.09580.

MANN, H. B. & WHITNEY, D. R. 1947. On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, 50-60.
MARANON, E. 2015. Cell size as a key determinant of phytoplankton metabolism and community

structure. Ann Rev Mar Sci, 7, 241-64.

MARIE, D., RIGAUT-JALABERT, F. & VAULOT, D. 2014. An improved protocol for flow cytometry
analysis of phytoplankton cultures and natural samples. Cytometry A, 85, 962-8.

MARTIN BLAND, J. & ALTMAN, D. 1986. Statistical Methods for Assessing Agreement between
Two Methods of Clinical Measurement. The Lancet, 327, 307-310.

MATHWORKS. 2023. Multilabel Image Classification Using Deep Learning [Online]. MathWorks
Available: https://www.mathworks.com/help/deeplearning/ug/multilabel-image-
classification-using-deep-learning.html [Accessed 26 March 2023].

MEDWIN, H. 1975. Speed of sound in water: A simple equation for realistic parameters. Available:
http://hdl.handle.net/10945/40176 [Accessed 2020-07].

MENDEN-DEUER, S., MORISON, F., MONTALBANO, A. L., FRANZE, G., STROCK, J., RUBIN, E.,
MCNAIR, H., MOUW, C. & MARREC, P. 2020. Multi-Instrument Assessment of
Phytoplankton Abundance and Cell Sizes in Mono-Specific Laboratory Cultures and Whole
Plankton Community Composition in the North Atlantic. Frontiers in Marine Science, 7.

MITJA, C., ESCOFET, J., TACHO, A. & REVUELTA, R. 2011. Slanted Edge MTF [Online]. Available:
https://imagej.nih.gov/ij/plugins/se-mtf/index.html [Accessed 11th June 2019].

MIURA, T., MIKAMI, H., ISOZAKI, A., ITO, T., OZEKI, Y. & GODA, K. 2018. On-chip light-sheet
fluorescence imaging flow cytometry at a high flow speed of 1 m/s. Biomed Opt Express,
9, 3424-3433.

MOLINA-NAVARRO, E., MARTINEZ-PEREZ, S., SASTRE-MERLIN, A., VERDUGO-ALTHOFER, M. &
PADISAK, J. 2014. Phytoplankton and suitability of derived metrics for assessing the
ecological status in a limno-reservoir, a Water Framework Directive nondefined type of
Mediterranean waterbody. Lake and Reservoir Management, 30, 46-62.

242


https://www.mathworks.com/help/deeplearning/ug/multilabel-image-classification-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/multilabel-image-classification-using-deep-learning.html
http://hdl.handle.net/10945/40176
https://imagej.nih.gov/ij/plugins/se-mtf/index.html

Bibliography

MOORE, J. K. & ABBOTT, M. R. 2000. Phytoplankton chlorophyll distributions and primary
production in the Southern Ocean. Journal of Geophysical Research-Oceans, 105, 28709-
28722.

MORAN, X. A. G., LOPEZ-URRUTIA, A., CALVO-DIAZ, A. & LI, W. K. W. 2010. Increasing importance
of small phytoplankton in a warmer ocean. Global Change Biology, 16, 1137-1144.

MULLER-KARGER, F. & KUDELA, R. 2016. Essential Ocean Variables (EQV) for Biology and
Ecosystems: Phytoplankton biomass and diversity. In: BATTEN, S. & CHECKLEY, D. (eds.)
Essential Ocean Variables. 10C.

NGUYEN, H.-V., BAE, J.-H., LEE, Y.-E., LEE, H.-S. & KWON, K.-R. 2022. Comparison of Pre-Trained
YOLO Models on Steel Surface Defects Detector Based on Transfer Learning with GPU-
Based Embedded Devices. Sensors, 22, 9926.

NIEMI, A. 1973. Ecology of phytoplankton in the Tvarinne area, SW coast of Finland. I. Dynamics of
hydrography, nutrients, chlorophyll a and phytoplankton. Acta Botanica Fennica.

OLLI, K. 1999. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of
Riga. Journal of Marine Systems, 23, 145-163.

OLSON, R. J., SHALAPYONOK, A., KALB, D. J., GRAVES, S. W. & SOSIK, H. M. 2017. Imaging
FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles.
Limnology and Oceanography-Methods, 15, 867-874.

OLSON, R. J., SHALAPYONOK, A. & SOSIK, H. M. 2003. An automated submersible flow cytometer
for analyzing pico- and nanophytoplankton: FlowCytobot. Deep Sea Research Part I:
Oceanographic Research Papers, 50, 301-315.

OLSON, R. J. & SOSIK, H. M. 2007a. A submersible imaging-in-flow instrument to analyze nano-and
microplankton: Imaging FlowCytobot. Limnology and Oceanography-Methods, 5, 195-203.

OLSON, R. J. & SOSIK, H. M. 2007b. A submersible imaging-in-flow instrument to analyze nano and
microplankton: Imaging FlowCytobot. Limnology and Oceanography: Methods, 5, 195—
203.

PAERL, H. W. & HUISMAN, J. 2009. Climate change: a catalyst for global expansion of harmful
cyanobacterial blooms. Environmental Microbiology Reports, 1, 27-37.

PAERL, H. W. & PAUL, V. J. 2012. Climate change: Links to global expansion of harmful
cyanobacteria. Water Research, 46, 1349-1363.

PAPAGEORGIOU, C. P., OREN, M. & POGGIO, T. A general framework for object detection. Sixth
International Conference on Computer Vision (IEEE Cat. No. 98CH36271), 1998. IEEE, 555-
562.

PARK, J., LEE, H., PARK, C. Y., HASAN, S., HEO, T. Y. & LEE, W. H. 2019. Algal Morphological
Identification in Watersheds for Drinking Water Supply Using Neural Architecture Search
for Convolutional Neural Network. Water, 11, 1338.

PASZTALENIEC, A. & PONIEWOZIK, M. 2010. Phytoplankton based assessment of the ecological
status of four shallow lakes (Eastern Poland) according to Water Framework Directive —a
comparison of approaches. Limnologica - Ecology and Management of Inland Waters, 40,
251-259.

POLLINA, T., LARSON, A. G., LOMBARD, F., LI, H., COLIN, S., DE VARGAS, C. & PRAKASH, M. 2020.
PlanktonScope: Affordable modular imaging platform for citizen oceanography. bioRxiv,
2020.04.23.056978.

POMATI, F., MATTHEWS, B., SEEHAUSEN, O. & IBELINGS, B. W. 2017. Eutrophication and climate
warming alter spatial (depth) co-occurrence patterns of lake phytoplankton assemblages.
Hydrobiologia, 787, 375-385.

POSPISIL, J., FLIEGEL, K. & KLIMA, M. 2017. Assessing resolution in live cell structured illumination
microscopy, SPIE.

POULTON, N. J. 2016. FlowCam: Quantification and Classification of Phytoplankton by Imaging
Flow Cytometry. In: BARTENEVA, N. S. & VOROBIEV, I. A. (eds.) Imaging Flow Cytometry:
Methods and Protocols. New York, NY: Springer New York.

PRAKASH, A., MEDCOF, J. C. & TENNANT, A. D. 1971. Paralytic Shellfish Poisoning in Eastern
Canada, Fisheries Research Board of Canada.

243



Bibliography

RANZATO, M. A., BOUREAU, Y. L. & LECUN, Y. 2008. Sparse feature learning for deep belief
networks. Advances in Neural Information Processing Systems, 20, 1185-1192.

REDMON, J., DIVVALA, S., GIRSHICK, R. & FARHADI, A. You Only Look Once: Unified, Real-Time
Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 27-30 June 2016 2016. 779-788.

REDMON, J. & FARHADI, A. 2017. YOLO9000: Better, Faster, Stronger.

REDMON, J. & FARHADI, A. 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

RICHARDS, T. A., JONES, M. D. M., LEONARD, G. & BASS, D. 2012. Marine Fungi: Their Ecology and
Molecular Diversity. Annual Review of Marine Science, 4, 495-522.

RICHARDSON, A. J. & SCHOEMAN, D. S. 2004. Climate Impact on Plankton Ecosystems in the
Northeast Atlantic. Science, 305, 1609.

RITZMAN, J., BRODBECK, A., BROSTROM, S., MCGREW, S., DREYER, S., KLINGER, T. & MOORE, S. K.
2018. Economic and sociocultural impacts of fisheries closures in two fishing-dependent
communities following the massive 2015 U.S. West Coast harmful algal bloom. Harmful
Algae, 80, 35-45.

RODENACKER, K., HENSE, B., JUTTING, U. & GAIS, P. 2006. Automatic analysis of aqueous
specimens for phytoplankton structure recognition and population estimation.
Microscopy Research and Technique, 69, 708-720.

ROERDINK, J. & MEISTER, A. 2003. The Watershed Transform: Definitions, Algorithms and
Parallelization Strategies. Fundam Inf, 41, 187-228.

ROMERO-MARTINEZ, L., VAN SLOOTEN, C., NEBOT, E., ACEVEDO-MERINO, A. & PEPERZAK, L.
2017. Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water
management. Sci Total Environ, 603-604, 550-561.

SAMIR, S., EMARY, E., EL-SAYED, K. & ONSI, H. 2020. Optimization of a Pre-Trained AlexNet Model
for Detecting and Localizing Image Forgeries. Information [Online], 11.

SANTHANAM, P., PACHIAPPAN, P. & BEGUM, A. 2019. Methods of Collection, Preservation and
Taxonomic Identification of Marine Phytoplankton. In: SANTHANAM, P., BEGUM, A. &
PACHIAPPAN, P. (eds.) Basic and Applied Phytoplankton Biology. Singapore: Springer
Singapore.

SCHMIDT, M., GLASSON, J., EMMELIN, L. & HELBRON, H. 2008. Standards and thresholds for
impact assessment, Springer Science & Business Media.

SCHNEIDER, C. A., RASBAND, W. S. & ELICEIRI, K. W. 2012. NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9, 671.

SCHNEPF, E. & KUHN, S. F. 2000. Food uptake and fine structure of Cryothecomonas longipes sp.
nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms.
Helgoland Marine Research, 54, 18-32.

SCHOPF, J. W. 1993. Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity
of Life. Science, 260, 640-646.

SEE, J. H., CAMPBELL, L., RICHARDSON, T. L., PINCKNEY, J. L., SHEN, R. & GUINASSO JR, N. L. 2005.
COMBINING NEW TECHNOLOGIES FOR DETERMINATION OF PHYTOPLANKTON
COMMUNITY STRUCTURE IN THE NORTHERN GULF OF MEXICO 1. Journal of Phycology,
41, 305-310.

SHAHINFAR, S., MEEK, P. & FALZON, G. 2020. “How many images do | need?” Understanding how
sample size per class affects deep learning model performance metrics for balanced
designs in autonomous wildlife monitoring. Ecological Informatics, 57, 101085.

SHARMA, S. & GULERIA, K. Deep Learning Models for Image Classification: Comparison and
Applications. 2022 2nd International Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), 28-29 April 2022 2022. 1733-1738.

SHERRIT, S., LEARY, S. P., DOLGIN, B. P. & BAR-COHEN, Y. Comparison of the Mason and KLM
equivalent circuits for piezoelectric resonators in the thickness mode. 1999 IEEE
Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), 17-
20 Oct. 1999 1999. 921-926 vol.2.

244



Bibliography

SHI, K., ZHANG, Y., ZHANG, Y., LI, N., QIN, B., ZHU, G. & ZHOU, Y. 2019. Phenology of
Phytoplankton Blooms in a Trophic Lake Observed from Long-Term MODIS Data. Environ
Sci Technol, 53, 2324-2331.

SHIN, H. C., ORTON, M., COLLINS, D. J., DORAN, S. & LEACH, M. 0. 2016a. Chapter 7 - Organ
Detection Using Deep Learning. In: ZHOU, S. K. (ed.) Medical Image Recognition,
Segmentation and Parsing. Academic Press.

SHIN, H. C., ROTH, H. R., GAO, M., LU, L., XU, Z., NOGUES, I., YAO, J., MOLLURA, D. & SUMMERS, R.
M. 2016b. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN
Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging, 35,
1285-98.

SIEBURTH, J. M., SMETACEK, V. & LENZ, J. 1978. Pelagic ecosystem structure: Heterotrophic
compartments of the plankton and their relationship to plankton size fractions 1.
Limnology and Oceanography, 23, 1256-1263.

SIERACKI, M., BENFIELD, M., HANSON, A., DAVIS, C., PILSKALN, C., CHECKLEY, D., SOSIK, H.,
ASHIJIAN, C., CULVERHOUSE, P., COWEN, R., LOPES, R., BALCH, W. & IRIGOIEN, X. 2010.
Optical Plankton Imaging and Analysis Systems for Ocean Observation.

SINGARAIJAH, K. V. 1969. Escape reactions of zooplankton: The avoidance of a pursuing siphon
tube. Journal of Experimental Marine Biology and Ecology, 3, 171-178.

SMAYDA, T. J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to
phytoplankton blooms in the sea. Limnology and Oceanography, 42, 1137-1153.

SMETACEK, V. & CLOERN, J. E. 2008. On Phytoplankton Trends. Science, 319, 1346-1348.

SOYDANER, D. 2020. A Comparison of Optimization Algorithms for Deep Learning. International
Journal of Pattern Recognition and Artificial Intelligence, 34, 2052013.

STAVRAKIS, S., HOLZNER, G., CHOO, J. & DEMELLO, A. 2019. High-throughput microfluidic imaging
flow cytometry. Curr Opin Biotechnol, 55, 36-43.

STRAUR, S. 2018. From Big Data to Deep Learning: A Leap Towards Strong Al or ‘Intelligentia
Obscura’? Big Data and Cognitive Computing, 2, 16.

SUIKKANEN, S., LAAMANEN, M. & HUTTUNEN, M. 2007. Long-term changes in summer
phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf
Science, 71, 580-592.

SUN, J. & NING, X. R. 2005. Marine phytoplankton specific growth rate. J. Adv Earth Sci., 20, 939-
945.

SUN, X., SHEN, F., BREWIN, R. J. W., LI, M. & ZHU, Q. 2022. Light absorption spectra of naturally
mixed phytoplankton assemblages for retrieval of phytoplankton group composition in
coastal oceans. Limnology and Oceanography, 67, 946-961.

TERVEN, J. & CORDOVA-ESPARZA, D. 2023. A Comprehensive Review of YOLO: From YOLOv1 to
YOLOvV8 and Beyond. arXiv preprint arXiv:2304.00501.

THOISEN, C., VU, M. T. T., CARRON-CABARET, T., JEPSEN, P. M., NIELSEN, S. L. & HANSEN, B. W.
2018. Small-scale experiments aimed at optimization of large-scale production of the
microalga Rhodomonas salina. Journal of Applied Phycology, 30, 2193-2202.

THYSSEN, M., TARRAN, G. A., ZUBKOV, M. V., HOLLAND, R. J., GREGORI, G., BURKILL, P. H. &
DENIS, M. 2008. The emergence of automated high-frequency flow cytometry: revealing
temporal and spatial phytoplankton variability. Journal of Plankton Research, 30, 333-343.

TRALLER, J. C. & HILDEBRAND, M. 2013. High throughput imaging to the diatom Cyclotella cryptica
demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol
accumulation. Algal Research, 2, 244-252.

TROMBETTA, T., VIDUSSI, F., MAS, S., PARIN, D., SIMIER, M. & MOSTAIJIR, B. 2019. Water
temperature drives phytoplankton blooms in coastal waters. PLoS One, 14, e0214933.

TSALOGLOU, M.-N. 2016. Microfluidics and in situ Sensors for Microalgae. In: TSALOGLOU, M.-N.
(ed.) Microalgae: Current Research and Applications. Caister Academic Press.

VAINRUB, A. 2008. Precise measurement of the resolution in light microscopy using Fourier
transform. Review of Scientific Instruments, 79, 046112.

VHENGANI, L., GRIFFITH, D. & LYSKO, M. 2012. Effects of slant angle and illumination angle on
MTF estimations.

245



Bibliography

VOELKEL, R., VOGLER, U., BICH, A., PERNET, P., WEIBLE, K. J., HORNUNG, M., ZOBERBIER, R.,
CULLMANN, E., STUERZEBECHER, L., HARZENDORF, T. & ZEITNER, U. D. 2010. Advanced

mask aligner lithography: new illumination system. Optics Express, 18, 20968-20978.

VONSHAK, A. 1985. Micro-Algae: Laboratory Growth Techniques and Outdoor Biomass
Production. In: COOMBS, J., HALL, D. O., LONG, S. P. & SCURLOCK, J. M. O. (eds.)
Techniques in Bioproductivity and Photosynthesis. Pergamon.

WANG, J., TANG, C. & LI, J. Towards Real-time Analysis of Marine Phytoplankton Images Sampled
at High Frame Rate by a YOLOX-based Object Detection Algorithm. OCEANS 2022 -
Chennai, 21-24 Feb. 2022 2022. 1-9.

WANG, Z. A., MOUSTAHFID, H., MUELLER, A. V., MICHEL, A. P. M., MOWLEM, M., GLAZER, B. T.,
MOONEY, T. A., MICHAELS, W., MCQUILLAN, J. S., ROBIDART, J. C., CHURCHILL, J.,
SOURISSEAU, M., DANIEL, A., SCHAAP, A., MONK, S., FRIEDMAN, K. & BREHMER, P. 2019.
Advancing Observation of Ocean Biogeochemistry, Biology, and Ecosystems With Cost-
Effective in situ Sensing Technologies. Frontiers in Marine Science, 6.

WILLERT, C., STASICKI, B., KLINNER, J. & MOESSNER, S. 2010. Pulsed operation of high-power light
emitting diodes for imaging flow velocimetry. Measurement Science and Technology, 21,
075402.

WU, J. & CHAN, R. K. Y. 2013. A fast fluorescence imaging flow cytometer for phytoplankton
analysis. Optics Express, 21, 23921-23926.

WU, M., OZCELIK, A., RUFO, J., WANG, Z., FANG, R. & JUN HUANG, T. 2019a. Acoustofluidic
separation of cells and particles. Microsyst Nanoeng, 5, 32.

WU, Q., MERCHANT, F. & CASTLEMAN, K. R. 2008. Microscope Image Processing, San Diego,
UNITED STATES, Elsevier Science & Technology.

WU, Q. & ZHOU, Y. 2019. Real-Time Object Detection Based on Unmanned Aerial Vehicle.

WU, Z,, JIANG, H., ZHANG, L., YI, K., CUI, H., WANG, F., LIU, W., ZHAO, X., ZHOU, F. & GUO, S.
2019b. The acoustofluidic focusing and separation of rare tumor cells using transparent
lithium niobate transducers. Lab Chip, 19, 3922-3930.

XIE, W., NOBLE, J. A. & ZISSERMAN, A. 2018a. Microscopy cell counting and detection with fully
convolutional regression networks. Computer methods in biomechanics and biomedical
engineering: Imaging & Visualization, 6, 283-292.

XIE, X., FAN, H., WANG, A., ZOU, N. & ZHANG, Y. 2018b. Regularized slanted-edge method for
measuring the modulation transfer function of imaging systems. Applied Optics, 57, 6552-
6558.

XIE, X., FAN, H., WANG, H., WANG, Z. & ZOU, N. 2018c. Error of the slanted edge method for
measuring the modulation transfer function of imaging systems. Applied Optics, 57, B83-
BO1.

XIE, Y., MAO, Z., BACHMAN, H., LI, P., ZHANG, P., REN, L., WU, M. & HUANG, T. J. 2020. Acoustic
Cell Separation Based On Biophysical Properties. Journal of Biomechanical Engineering.

XU, P,, LI, Q., ZHANG, B., WU, F., ZHAO, K., DU, X., YANG, C. & ZHONG, R. 2021. On-Board Real-
Time Ship Detection in HISEA-1 SAR Images Based on CFAR and Lightweight Deep
Learning. Remote Sensing, 13, 1995.

XUE, M., CHEN, M., PENG, D., GUOQ, Y. & CHEN, H. 2021. One Spatio-Temporal Sharpening
Attention Mechanism for Light-Weight YOLO Models Based on Sharpening Spatial
Attention. Sensors, 21, 7949.

YANG, R.-J,, FU, L.-M. & HOU, H.-H. 2018a. Review and perspectives on microfluidic flow
cytometers. Sensors and Actuators B: Chemical, 266, 26-45.

YANG, R. J,, FU, L. M. & HOU, H. H. 2018b. Review and perspectives on microfluidic flow
cytometers. Sensors and Actuators B-Chemical, 266, 26-45.

YANG, T., VITALI, V. & MINZIONI, P. 2018c. Acoustofluidic separation: impact of microfluidic
system design and of sample properties. Microfluidics and Nanofluidics, 22, 44.

YANG, Z. B. & HODGKISS, I. J. 2004. Hong Kong’s worst “red tide” —causative factors reflected in a
phytoplankton study at Port Shelter station in 1998. Harmful Algae, 3, 149-161.

246



Bibliography

YODER, J. A., DONEY, S. C., SIEGEL, D. A. & WILSON, C. 2010. Study of Marine Ecosystems and
Biogeochemistry Now and in the Future Examples of the Unique Contributions from
Space. Oceanography, 23, 104-117.

YUAN, R. & HUI, W. Object Identification and Recognition Using Multiple Contours Based Moment
Invariants. 2008 International Symposium on Information Science and Engineering, 20-22
Dec. 2008 2008. 140-144.

ZARAUZ, L., IRIGOIEN, X. & FERNANDES, J. A. 2008. Changes in plankton size structure and
composition, during the generation of a phytoplankton bloom, in the central Cantabrian
sea. Journal of Plankton Research, 31, 193-207.

ZHANG, J., HARTMAN, J. H., CHEN, C., YANG, S., LI, Q., TIAN, Z., HUANG, P. H., WANG, L., MEYER, J.
N. & HUANG, T. J. 2020. Fluorescence-based sorting of Caenorhabditis elegans via
acoustofluidics. Lab Chip, 20, 1729-1739.

ZHANG, J,, LI, C.,, YIN, Y., ZHANG, J. & GRZEGORZEK, M. 2023. Applications of artificial neural
networks in microorganism image analysis: a comprehensive review from conventional
multilayer perceptron to popular convolutional neural network and potential visual
transformer. Artificial Intelligence Review, 56, 1013-1070.

ZHU, J., JIANG, J., CHEN, X. & TSUI, C.-Y. SparseNN: An energy-efficient neural network accelerator
exploiting input and output sparsity. 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2018. IEEE, 241-244.

ZMIJAN, R. 2016. Visible light detection in microflow cytometry - advancing miniaturisation and
detection methods. Doctoral, University of Southampton.

ZMIJAN, R., JONNALAGADDA, U. S., CARUGO, D., KOCHI, Y., LEMM, E., PACKHAM, G., HILL, M. &
GLYNNE-JONES, P. 2015. High throughput imaging cytometer with acoustic focussing. RSC
Adyv, 5, 83206-83216.

ZOHARY, T., FLAIM, G. & SOMMER, U. 2021. Temperature and the size of freshwater
phytoplankton. Hydrobiologia, 848, 143-155.

247



	Abstract
	Table of Contents
	Table of Tables
	Table of Figures
	Research Thesis: Declaration of Authorship
	Acknowledgements
	Abbreviations and Definitions
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Chapter Outline
	1.3.1 Background (Chapter 2)
	1.3.2 Design and Characterisation of a Novel Low-Cost IFC using Acoustophoretic Focussing (Chapter 3)
	1.3.3 Image Analysis for the Quantification of Phytoplankton in IFC Images (Chapter 4)
	1.3.4 Use of the Acoustically-Focussed IFC in Phytoplankton Experiments (Chapter 5)


	Chapter 2 Background
	2.1 Phytoplankton and Other Aquatic Microorganisms
	2.1.1 Ecological Role
	2.1.2 Diversity

	2.2 Harmful Algal Blooms (HABs)
	2.2.1 Description
	2.2.2 Impacts

	2.3 Observed Trends and Future Behaviours
	2.3.1 Climate Change and Ocean Acidification
	2.3.2 Land use change and Eutrophication

	2.4 Microalgal analysis techniques
	2.4.1 Background
	2.4.2 Technologies

	2.5 Imaging Flow Cytometry
	2.5.1 Introduction
	2.5.2 Current IFC devices used for phytoplankton analysis
	2.5.3 Camera Technologies
	2.5.4 Illumination Techniques
	2.5.5 Focussing Techniques

	2.6 Acoustofluidics
	2.6.1 Introduction
	2.6.2 Current Acoustically Focussed IFC Devices


	Chapter 3 Design and Characterisation of a Novel Low-Cost IFC using Acoustophoretic Focussing
	3.1 Introduction
	3.2 Design Brief
	3.3 Flow-cell implementation
	3.3.1 Approach
	3.3.2 Analytical Investigation of Flow Cell Acoustic Properties (1-D transfer model)
	3.3.3 Finite Element Modelling of Flow Cell Acoustic Focussing (COMSOL)
	3.3.4 Acoustic Focus Analysis – Experimental

	3.4 Imaging Performance Characterisation
	3.4.1 Introduction
	3.4.2 Modulation Transfer Function
	3.4.3 Development of an experimental protocol for IFC resolution characterisation
	3.4.4 Experimental determination of the effect of camera exposure on measured system MTF
	3.4.5 Experimental determination of the effect of edge slant rotation on measured system MTF
	3.4.6 Experimental determination of the effect of focus accuracy on measured system MTF

	3.5 IFC System Design
	3.5.1 Introduction
	3.5.2 System Camera Selection
	3.5.3 First system design approach
	3.5.4 Improved system hardware
	3.5.5 Imaging Performance of IFC System

	3.6 Conclusion

	Chapter 4 Image Analysis for the Quantification of Phytoplankton in IFC Images
	4.1 Introduction
	4.2 Traditional Image Processing
	4.2.1 Introduction
	4.2.2 Example Algorithm
	4.2.3 Limitations
	4.2.4 Limitations in IFC Imagery

	4.3 Machine Learning-based Image Processing
	4.3.1 Introduction
	4.3.2 Neural Networks
	4.3.3 Convolutional Neural Networks

	4.4 Implementation of CNN Processing of Phytoplankton Images
	4.4.1 Introduction
	4.4.2 Hardware
	4.4.3 CNN Investigation for Phytoplankton Detection
	4.4.4 Evaluation of CNN Performance
	4.4.5 YOLOX for Phytoplankton Detection
	4.4.6 YOLOX Training
	4.4.7 Evaluation of YOLOX Performance

	4.5 Conclusion

	Chapter 5 Use of the Acoustically-Focussed IFC in Phytoplankton Experiments
	5.1 Introduction
	5.2 Experimental Validation of Complete System
	5.2.1 Experimental Objectives
	5.2.2 Materials and Methods
	5.2.3 Results and Discussion

	5.3 Use of Acoustically-Focussed IFC in a Live Phytoplankton Experiment
	5.3.1 Introduction
	5.3.2 Materials and Methods
	5.3.3 Results
	5.3.4 Discussion


	Chapter 6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future work
	6.3 Summary of Novel Contributions

	Appendix A Parameters for KLM Model of Layered Resonator Flow Cell
	Appendix B COMSOL Finite Element Model Parameters and Variables
	Appendix C Pseudocode for Bead Detection and Separation Measurement in Double-Exposure Images
	Appendix D Bill of Materials for IFC
	Appendix E Growth Rate Experiment: Manual and Automated Sample Times
	Appendix F Calculated Specific Growth Rates from IFC Counts of R. salina During Growth Rate Experiment
	Bibliography

