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ii

Many cache designs have been proposed to guard against contention-based side-channel

attacks. Specifically, the last-level cache, which is often a shared cache between different

users. One type of well-known cache is the randomisation remapping cache. For exam-

ple, the CEASER-S cache applies an encryption cypher with a periodically changing key

as a cache indexing function. By decreasing the re-keying period, CEASER-S can defeat

even a more aggressive contention-based attack. However, this can lead to performance

degradation. Balancing the performance and the security against contention-based at-

tacks becomes an essential consideration of the cache design.

In this thesis, we propose a novel cache configuration, logical associativity. By applying

this configuration, we propose two secure randomisation remapping cache designs against

contention-based attacks. The first cache we propose is the CEASER-SH cache, which

is based on the CEASER-S cache. This cache allows the cache line to be placed not only

in its mapped cache set but also in the subsequent cache sets. By enlarging the possible

placement positions of the cache line, contention-based attacks are mitigated. Hence,

the cache does not need to decrease the re-keying period significantly which would cause

significant performance degradation. From the simulation results, for example, compared

with CEASER-S, CEASER-SH with a logical associativity of 2 can reduce the miss rate

by about 26% and the CPI by about 0.8% while maintaining the same security level

against an aggressive Prime+Probe attack.

The second secure cache we propose is the Skewed Elastic-Associativity Cache (SEA

cache). Unlike from CEASER-SH, this cache allows each user or each process to have

different local logical associativity settings. Hence, only some users or processes that

request extra protection against contention-based attacks are protected with high logical

associativity. Other users can access the cache, or other pages can be accessed in the

cache with lower latency and higher performance. The simulation results show that the

SEA cache can outperform the CEASER-SH cache in terms of normal user’s performance

and overall security against contention-based attacks with minor extra power consump-

tion. For example, the SEA cache with logical associativity of 1 for normal protection

users and 16 for high protection users achieves better protection against contention-base

attacks and about 0.4% CPI degredation in the normal user’s core with just 0.01W extra

power, compared to the CEASER-SH cache with logical associativity of 8.
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Chapter 1

Introduction

1.1 Cache

In computer systems, there are generally three basic units, as shown in Figure 1.1.

These are the CPU, memory and I/O systems. The CPU does calculations based on the

instructions and data. A memory stores these instructions and data. Finally, the I/O

moves the information in and out of the system [56].

The operation of the computer can be briefly summarised as follow: From the I/O sys-

tem, the instructions and data are sent into the computer system. Then the information

is stored in the memory. Before the CPU executes the instructions or performs a cal-

culation on any data, the memory must send these instructions or data to the CPU.

Otherwise, the CPU may require a stall or move to other tasks that do not depend on

the instructions or data currently stored in the CPU registers. However, the main mem-

ory is typically large and can take a very long time to access any data. As a result, the

speed of transmitting the data from the main memory to the CPU limits the entire com-

puter’s performance. This is also known as the Von Neumann bottleneck [8]. To tackle

the problem, an effective method is adding a cache that is smaller but much faster than

the main memory to temporarily store a copy of some chunks of instructions and data

that the CPU may soon require. The existence of caches reduces the overall fetching

time and dramatically improves the computer’s performance. Normally, a processor has

multiple cache levels, especially for a multi-core processor. The last-level cache refers

to the cache, which is the farthest to the cores. It is generally shared between all cores.

We will explain the architecture of caches further in Section 2.1.

Nevertheless, the cache may expose users’ security-sensitive data under cache timing

side-channel attacks to an attacker, for example, in contention-based attacks. This is

normally caused by the cache sharing between users. Many countermeasure designs

proposed to defeat or mitigate these attacks. We will explain this in detail in Sections

2.4 and 2.5.

1
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Figure 1.1: A basic computer with three essential units. Computer Peripherals are
non-essential units.

1.2 Cloud Computing and Virtualisation

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources that can be rapidly provi-

sioned and released with minimal management effort or service provider interaction [48].

Nowadays, this model has been widely applied to many areas, including industry and

personal use. Cloud computing makes working from home possible, guaranteeing normal

operations for many industries (especially during the Covid-19 pandemic). For personal

use, with the well-developed communication technology, cloud storage and cloud gaming

have become the trend. In general, cloud computing has become an essential resource

in the world.

However, these real applications do not explain the benefits of cloud computing. There

are two core advantages. The first advantage is efficiency. An individual user typically

cannot consume all resources on a computer, including computing power, storage, net-

work etc. This causes resource waste and high capital cost. To effectively manage the

utilisation of hardware resources, cloud computing allows sharing of hardware resources

between different users. This also helps decrease the cost of hardware resources. The

other advantage is elasticity. A user may have various tasks during different periods.

These specific workloads may require contrasting resources. To achieve this, the user
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must upgrade the existing physical hardware. On the other hand, scaling the hardware

resources in and out is simple on the cloud.

Figure 1.2: A comparison of a non-virtualised server (Above) and virtualised server
(Below). VM1 in the virtualised server has been allocated more resources than VM2.

For solving the scaling problem, cloud computing relies on a technology or technique

called virtualisation. Virtualisation is the application of the layering principle through

enforced modularity, whereby the exposed virtual resource appears identical to the un-

derlying physical resource being virtualised [21]. By combining the support of both

hardware and software, an extra layer is introduced between the actual hardware and

the clients’ applications, which enables the indirect utilisation of hardware resources.
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The enforced modularity in virtualisation guarantees that clients cannot bypass the in-

direction layer. Hence, different users cannot directly access other users’ data. This

provides the basic security requirements for sharing the same hardware between differ-

ent users. There are three types of virtualisation techniques: multiplexing, aggregation,

and emulation [21]. Multiplexing indicates that other clients share the same hardware

resources. The sharing is achieved either in space or time. For example, the memory

usage for an individual client can be limited, which is space multiplexing. For a deeper

understanding of virtual memory, see Section 2.2.1. Another example is time multi-

plexing, where multiple users share the same core. The utilisation of the core needs to

be scheduled in time. The second type, aggregation, combines and integrates multiple

hardware resources as one and serves the same client. The last type, emulation, differs

from the previous two. It usually serves clients with a different architecture than the

current physical resources. An example of software that supports such virtualisation is

QEMU [11].

Figure 1.2 compares the non-virtualised server and the virtualised server. The virtualised

server is split into multiple virtual machines. After applying the virtualisation to the

server, the physical machine can be used by different users. Each of the sub-machines is

called a virtual machine. From a user’s perspective, they cannot distinguish these virtual

machines and the physical machines. Because of the abstraction layer of virtualisation,

each virtual machine is isolated from others. To manage these virtual machines, software

called a hypervisor [21] controls the operation of all virtual machines. Each virtual

machine can have its distinct OS. We explain hypervisors and virtual machines in Section

2.2.2.

1.3 Information Security of Cloud

Information security is a major consideration of cloud computing and storage, and in-

cludes three distinct functions: access control, secure communications, and protection

of private data [65]. Access control defines which user can use or access the computing

system or the data. As we have discussed in Section 1.2, virtualisation provides the es-

sential framework for distinguishing between clients. Hence, the access control of users

can be implemented. Secure communication indicates the security of data transmission

between cloud servers and the user’s machine. This is often achieved by performing

encryption and decryption on the transmitted data. Finally, protecting private data

ensures that even if different users share the same physical resources, the private data

should only be accessed by the user themselves. The confidentiality of private data is

the basis of the cloud. Without this protection, any users or the service supplier can

extract secret contents without permission.
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Furthermore, the attacker can violate the user’s privacy [89]. Implementing protection

for private data always requires extra effort, which may include extra computational

power and hardware overheads. Therefore, an important evaluation of protecting pri-

vate data is the performance degradation and the security enhancement. To reduce

performance degradation, private data is typically divided into levels requiring differ-

ent security protections [65]. Thus, different security levels can have different balances

between performance and security.

In this research project, we focused more on protecting private data. As mentioned

above, the difficulty of protecting private data is that the attacker and the victim share

the same physical resources, such as the cache, which is a part of the memory system.

Since the last-level cache is shared between different cores and users, it is usually targeted

by the attacker. One typical attack, which mainly targets the last-level cache, is the

contention-based attack. We further explain this attack and other relevant attacks and

how this type of attack can be leveraged to help the attacker retrieve a user’s security-

sensitive data in Section 2.3.

1.4 Motivations for research

As we have explained in Section 1.2, cloud computing, which is now widely used, has

become essential for organising the modern commercial utilisation of computing system

resources. However, sharing resources may cause information leakage [40, 37]. Some

attackers may find a vulnerability from the hardware level in the computer architecture.

The attacker could retrieve other users’ data by observing a side-channel based on a

specific hardware system. For example, by using a contention-based attack, which is

one type of cache-timing side-channel attack, the attacker could monitor the usage or

the trace of cache lines in the cache, and then if specific data was accessed. Furthermore,

the attacker could deduce or retrieve some sensitive data which skips the protection of

the virtualisation. Such a type of attack can be achieved without physical contact with

the victim’s machine. Therefore, an attacker can apply contention-based attacks to cloud

servers and steal useful information without being noticed by either the cloud vendor or

victims.

Many countermeasures [78, 26, 43, 80, 70, 49, 60, 76] have been proposed in the past

decades. For example, randomisation remapping cache, which is one type of secure cache

against contention-based attacks, has become the design trend. The defence strategy

is passive. We will explain this type of secure cache design and provide state-of-the-

art design examples in Section 2.4.2. Based on randomisation remapping cache, the

cache line is remapped and scattered around in the cache by a dedicated function or a

table. Some designs can provide static but overwhelming protection against contention-

based attacks. They may reduce the cache performance [49] or require huge power and
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hardware overheads [63], which is less practical. Some other designs such as CEASER

[59], and CEASER-S [60] provide flexible protection against contention-based attacks,

using a re-keying function. This type of design avoids huge permanent hardware or power

overheads. However, stronger protections can lead to higher performance degradation,

which affects all users who share the same server. Although, CEASER-S [60], and

another similar design called Scattercache [80], can still defeat an improved attack with

the PPP profiling method [57], the performance degradation can become significant.

Contention-based attacks have been improved, making them easier to implement and

even allowing them to overcome some cache protections in recent years [58]. Hence, such

attacks are likely to be a greater threat in the near future.

Therefore, in our research, we want to propose a secure cache design which can provide

a better balance between cache security against contention-based attacks, cache perfor-

mance, and hardware and power overheads. Such a secure cache should achieve better

performance than the existing randomisation remapping cache with a re-keying function

while providing equivalent or even better protection against aggressive contention-based

attacks that might be developed in the future. Furthermore, we also want to mitigate

the performance degradation to those users or processes that do not require protection

against contention-based attacks. On a cloud server, different users can, therefore, select

either high protection or high performance based on their own requirements.

1.5 Objectives

As mentioned in 1.4, many secure cache designs against contention-based attacks have

been proposed to provide overwhelming protection. These caches can either cause sig-

nificant performance degradation or require large hardware overheads. For example,

Mirage [63] can cause a 20% increase in the cache storage overhead. Instead, we want to

offer a flexible cache design that allows the user to balance between the performance and

the security against contention-based attacks. To achieve these, we set two objectives

in this research project.

1. Propose a randomisation remapping cache design that allows the cache’s associativity

to be adjustable. A privileged user can enhance the protection against a contention-

based attack while sacrificing some cache performance. This cache should achieve a

better performance in terms of cycles per instruction (CPI), and equal security against

contention-based attacks than the CEASER-S cache [60]. The hardware overhead and

power should be less than other randomisation remapping cache designs that provide

fixed high protection but high hardware overheads and power costs. An example of such

an existing cache design is Mirage [63], which requires about a 20% increase in the cache

storage overhead and 18% increase in the total cache power.
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2. Enhance the randomisation remapping cache design. The new cache design should

only provide strong protection against contention-based attacks for specific users or

processes. Hence, it improves the normal user’s cache performance in terms of CPI,

while providing the same or better security against contention-based attacks for the

protected users. Unprivileged users can decide whether they want to be extra protected

or not. Furthermore, the cache access latency should be reduced compared to the design

which meets the first objective. The hardware overhead and power consumption should

be acceptable for a modern commercial processor, such as an AMD5995wx processor [3].

1.6 Thesis Structure

Chapter 2 provides a literature review of cache architectures and cache-based timing side-

channel attacks. Section 2.1 explains the conventional cache architecture and explains

the essential terminologies of caches. Section 2.2 briefly discusses virtualisation and the

hypervisor, which is associated with our cache design in Chapter 5. In Sections 2.3, 2.4,

and 2.5, we then discuss and analyse typical cache timing side-channel attacks and their

countermeasures. Section 2.6 explains the state-of-the-art method of implementing a

contention-based attack. Section 2.7 introduces the simulators and tools that are used in

our research. Finally, we summarise the existing secure cache designs against contention-

based attacks and the gap that the existing designs have not covered in Section 2.8.

Chapter 3 introduces our novel cache protection scheme called logical associativity. We

first explain the motivation in Section 3.1, and then explain logical associativity and

how its three properties can influence the security against contention-based attacks on a

randomisation remapping cache in Section 3.2. We introduce our security simulator in

Section 3.3, which is used for evaluating the security of randomisation remapping cache

against contention-based attacks. Section 3.4 discusses the indexing function selection

of the randomisation remapping cache. Finally, the chapter is summerised in Section

3.5.

Chapter 4 introduces our first secure cache design against contention-based attacks.

The cache is named CEASER-SH. Section 4.1 explains the motivation for proposing

CEASER-SH. Section 4.2 discusses the threat model. Section 4.3 introduces the ar-

chitecture and implementation of CEASER-SH. In Section 4.4, we show the security

evaluation results. Then, in Section 4.5, we evaluated CEASER-SH’s performance with

different tag latencies using the gem5 simulator [15]. We evaluate the hardware overhead

and power consumption in Section 4.6.

Chapter 5 introduces our second secure cache design, namely, the SEA cache. We

first explain the motivation in Section 5.1 and discuss the significant differences and

modifications compared to the CEASER-SH cache in Section 5.2. As in Chapter 4, we
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provide similar evaluations of the SEA cache in Sections 5.3, 5.4, and 5.5. The chapter

is summarised in Section 5.6.

Finally, in Chapter 6, we conclude the thesis. We summarise the pros and cons of the

CEASER-SH design and the SEA cache design in Section 6.1. We then suggest possible

future works in Section 6.2.

1.7 Publications

We have published one paper to date, based on part of Chapter 3 and Chapter 4 of this

thesis. We are preparing another journal paper for IEEE Transactions on Computers.

This paper uses both Chapters 3 and 5 of this thesis. We are aiming to submit this

paper in December 2023. The published work is shown below.

X. Liu and M. Zwolinski, ”Mitigating Cache contention-based Attacks by Logical Asso-

ciativity,” 2022 17th Conference on Ph.D Research in Microelectronics and Electronics

(PRIME), 2022, pp. 229-232, doi: 10.1109/PRIME55000.2022.9816809.



Chapter 2

Cache Architecture and Cache

Timing-side channel attacks

2.1 Cache Architecture

A cache is an intermediate unit between CPU registers and the main memory. It tem-

porarily stores some accessed data or instructions, which helps to reduce the latency

caused by directly accessing the same data from the main memory [31]. This is sup-

ported by the temporal locality of reference: If a particular memory location is referenced

once, then it is likely that the same location will be referenced again shortly [55].

Nowadays, a modern processor usually has different levels of caches. Typically, the cache

has three levels. The L1 cache is the closest cache to the core. Usually, it is divided

into an instruction cache (I-cache) and a data cache (D-cache). L2 and L3 caches are

often unified, which means the data and instructions are hybrid. The L2 cache could be

allocated to one or multiple cores. In terms of size, L1 < L2 < L3. In some processors,

there is no L3 cache. Hence, the L2 is the last level cache. Most processors, including

modern commercial desktop or server CPUs, have an L3 cache as the last-level cache

(LLC), which connects to the main memory. Figure 2.1 shows the memory hierarchy.

The higher level cache normally indicates the cache closer to the cores. For example,

L1 is a higher level cache compared to the L2 cache. Each cache is divided into many

blocks of the same size. These are called Cache blocks or Cache lines. Each cache line

has its own address, usually segmented into three parts: Tag, Index-bits and Offset.

Since each cache line stores many bytes, typically 64, the offset is used to distinguish

between the 64 bytes within a cache line. If the entire cache line is accessed, the cache

ignores the offset bit. The cache tag is used to identify if the currently stored cache

line is the requested one by the processor. The identification is achieved by comparing

the tag from the accessed address and the tag stored in the accessed cache lines. The

Index-bit will be discussed below.

9
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Figure 2.1: The memory hierarchy in a modern computer.

The cache line placement in a cache is determined by the cache line’s index-bit and the

cache’s placement policy, such as direct-mapping, set-associative and fully-associative

cache. If cache lines have the same index-bit, they are allocated into a specific group

of positions in the cache. Such a group is named a Cache Set. Within this cache set,

one or more positions could have the same index-bits. This is called the Cache Way.

The number of cache ways within a set is different for different placement policies. For

a direct-mapped cache, each cache set only contains one way. In other words, when

two cache lines with the same index-bits need to be stored in a direct-mapped cache,

the second accessed cache line must evict the first cache line because there are no other

positions for it. A fully-associative cache is the opposite of a direct-mapped cache. It

has only one set but has the same number of cache ways as the number of blocks in

the cache. In other words, when a cache line is accessed, the cache line can be placed

anywhere because all cache lines share the same cache set. The set-associative cache is

between the fully-associative cache and the direct-mapped cache. In a set-associative

cache, each set can have n ways (1 < n < number of cache lines). A 2-way set-associative

cache example is given in Figure 2.2. If two cache lines with the same index bits need

to be stored in a two-way set-associative cache, both cache lines can reside in the set at

the same time without eviction.

Since the cache is much smaller than the main memory, the requested cache line may not

be present in the cache. This situation is called a cache miss. The opposite is a cache

hit. After the cache experiences a cache miss, it will send a request to the lower level of

memory and wait until the requested block is returned. This procedure can cause some

delay which is called the miss penalty. When a cache miss occurs, the cache must stall

and wait for the incoming cache block. Modern caches use Miss Status Holding Registers

(MSHR), which temporally hold the missing cache line information to mitigate such a

penalty. As a result, the cache can deal with other later cache requests while waiting

for the lower-level memory response of the current cache request.
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A fully-associative cache could have a lower miss rate than a direct-mapped cache be-

cause a particular cache line can be placed anywhere in the cache. However, due to

searching, a fully-associative cache normally suffers higher access latency and power

consumption than a direct-mapped cache. As a compromise, most modern designs use

the set-associative cache.

Figure 2.2: An example of a two-way associative cache. Both cache ways are searched
in parallel.

Based on the placement policy, different cache lines could be mapped to the same cache

set. If there is more than one way in the cache set, a Replacement Policy must be

utilised to determine which way should be replaced by the upcoming cache line. Some

common replacement policies are Least Recently Used (LRU), or Random replacement

policy. When the LRU replacement policy is applied, the least recently used cache line

within the target cache set will be replaced by the incoming cache line. For the Random

replacement policy, one of the cache lines within the targeted cache set is randomly

selected and replaced by the incoming cache line. There are also other replacement

policies, such as the First in First Out (FIFO) replacement policy, Most Recently Used

(MRU) replacement policy and the Bimodal Insertion Policy (BIP) [61].

As we have mentioned, the cache needs to identify if the stored cache line is the requested

cache line by comparing the tag bits. The tag storage in the cache is typically separated

from the data storage. There are two ways to access the data and tag storage. The

first one is sequential access. The cache first searches and compares the tag from the

tag storage. If it is a cache hit, the corresponding cache way and the cache set are then

sent to the data storage for data access. In a parallel access cache, both the data and

the tag are accessed together. Usually, since the tag storage is smaller than the data

storage, searching in the tag storage is faster. Hence, when the data from all cache ways

are read out, the cache could use the hit results from the tag to decide which cache way

should be selected to return the data.

As mentioned at the beginning of this section, there are three cache levels in a modern

processor. The synchronisation between different levels of memory is crucial. Cache
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Inclusion Policy and Cache Write Policy were introduced to manage this. The cache

Inclusion Policy decides if a cache line existing in the higher-level cache should also

appear in a lower cache level. There are three types of inclusion policy: Inclusive,

Exclusive and Non-Inclusive. An inclusive cache ensures that cache lines present in the

lower-level cache are also present in the higher-level cache, whereas the exclusive cache

guarantees that cache lines present in the lower-level cache do not present in the higher-

level cache. In contrast, the non-inclusive cache does not impose strict limitations on

the inclusion of cache lines across different cache levels. The cache Write Policy decides

when other cache levels should update a cache line change if one cache line has been

modified in one cache level. There are two types of write policies, one is Write-Through,

and the other is Write-Back. Write-through updates all cache levels simultaneously but

write-back only updates when the cache line is needed [9]. Although write-through is

much simpler and cleaner than write-back, when a cache line is written multiple times

in a higher-level cache, write-back could be more efficient than write-through. This is

because the cache does not need to update that cache line in the lower-level caches until

the cache line is accessed.

To optimise the power and access latency of the cache, an implementation technique,

multibanked cache [31], can also be applied. A cache can be segmented into several

Cache Banks. Each memory (cache) bank can independently handle a request. Hence,

if the accessed data are stored in different memory (cache) banks, these data can be

accessed simultaneously [45]. Based on the spatial locality of reference, if a memory

location is referenced once, its nearby location is likely to be referenced soon after [55].

The cache sets are distributed in low-order interleaving. This means the distribution

of sets depends on the last bits of the index bits [32]. For example, cache sets 0, 1,

2 and 3 are stored separately in cache banks 0, 1, 2 and 3, respectively. Cache set 4

is also located in bank 0 since the last 2 bits are 00. An example of the cache bank

implementation is the L2 cache of ARM Cortex-A8 processors [5].

2.2 Virtualisation and Hypervisor

In this section, we briefly explain virtualisation and the hypervisor. The Page of the

virtualisation technology, which is highly related to memory access, is the main focus of

the section. This will be an essential factor in our work in Chapter 5.

2.2.1 Virtual Memory

When different processes run on the same machine, they may have conflicts regarding

address usage. A programmer cannot know which addresses have been used by other
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applications on a machine. Therefore address management needs to be achieved au-

tomatically. To make this possible, virtual memory was applied to the computer

architecture.

Before explaining virtual memory, we first define virtualisation. Virtualisation is the

application of the layering principle through enforced modularity, whereby the exposed

virtual resource appears identical to the underlying physical resources [21].

After applying the virtualisation, the conventional machine addresses (or the physical

addresses) are remapped and are called virtual memory. Virtual memory management

is achieved by the OS and hardware cooperating. From the process perspective, the

OS allocates continuous spaces in the memory. These addresses are no different from

the physical memory that the real hardware memory uses. From the OS perspective,

these data can be placed anywhere in the memory, even if the addresses can be mapped

discontinuously.

Besides the ease of memory management, virtual memory also provides a level of data

protection. Since the OS controls the virtual memory mapping, it needs to know which

physical address is allocated to which process. When a process tries to access data that

does not belong to it, the OS refuses its data access, which is called a trap, and to

protects the data security of the process to which that data belongs.

An essential technique used to construct the virtual memory mapping is called Paging.

Paging requires a table to store the mapping between physical and virtual addresses.

Such a table is named a page table. Each page mapping that is stored in the page table

is called a page table entry. Each process has its own page table. A chunk of the virtual

memory is called a page, and a chunk of the physical memory is called a frame [4]. If

each page has the same size, the page table only needs to store the start address of the

frame. Normally, the physical address is needed in an L3 cache access. Hence, before

the cache access, the partial virtual address is used to find the corresponding page table

entry and returns the physical address from the frame.

2.2.2 Hypervisor And Virtual Machine

As discussed in the previous chapter, virtualisation supports multiple processes running

on the same hardware without conflicts with resources such as memory. By adding

another layer of virtualisation to the system, the machine could also be treated as a

set of machines, each having a complete environment including processor, memory and

I/O [21]. These machines are called virtual machines (VMs). Special system software

controls and manages these virtual machines, namely a hypervisor.

For security purposes, the VMs running under the hypervisor should always run with

reduced privileges so that the hypervisor can monitor them. The privilege of a process
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determines if the process is allowed to use some security-sensitive instructions, namely

privileged instructions. There are typically two privilege levels: Privileged Mode (Kernel

Mode) or Unprivileged Mode (User Mode).

2.3 Cache Timing Side-channel Attack

2.3.1 Timing Side-Channel Attack

A side-channel attack is a non-invasive attack that exploits information leakage from

indirect sources or channels, and it normally focuses on the implementation of the cryp-

tographic algorithm instead of the weakness of the algorithm itself [13]. The information

leakage could be of many types: Power consumption, time taken for specific operations,

or electromagnetic radiation. An attacker can analyse the leaked information from

these channels and accelerate the exploitation of the secret key while targeting a cryp-

tographic function. Compared to breaking the cryptographic function by brute force, a

side-channel attack provides a practical method for attackers [2, 12, 53, 81, 28, 20]. As

a real-life example, if a thief wants to steal something from a house, he might need to do

some preparation works before he goes into the house. The most important information

he needs is to figure out when nobody is in the house. He can check the water meter

frequently and see if somebody in the house is using water. Or, in the evening, he can

easily observe if the lights in the house are turned on. These behaviours can also be

treated as real-life side-channel attacks.

In this research, we focus on cache timing side-channel attacks. More specifically, our

target attacks are cache contention-based attacks. We explain the general timing side-

channel attacks first. In this attack, the attacker may measure and analyse a crypto-

graphic system’s timing. The timing of the cryptographic system varies with different

inputs. By observing the timing difference, the attacker may find useful information that

can be used to break the cryptographic system, such as an encryption key. Normally,

attackers apply timing side-channel attacks with other types of side-channel attacks.

Therefore, they can gain as much leakage information as possible. Cache timing side-

channel attacks slightly differ from general timing side-channel attacks. We explain this

attack in the next subsection.

2.3.2 Cache Timing Side-channel Attacks

As mentioned in Section 2.1, cache usage mitigates the latency of accessing some recently

used data directly from the main memory. Therefore, compared with when a major

fraction of the program resides in the cache, there is a noticeable timing difference

regarding the total execution time when none or just small portions of the program are
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stored in the cache. In other words, the timing difference caused by cache hits and

cache misses while running a program can be observed and analysed by the attacker

as a side channel. Figure 2.3 shows the timing difference between a cache miss and

a cache hit. Hence, if the attackers targets the cryptographic process, they can learn

useful information and accelerate the encryption key exploration by statistical analysis

[1]. This type of attack is called a cache timing side-channel attack.

Figure 2.3: A timing comparison between a cache hit and a cache miss.

In the rest of this section, some typical cache timing side-channel attacks and their

categories are discussed. Then, some practical attack examples are introduced and

evaluated. These attack examples leverage the cache timing to learn if a victim cache

line is in the cache and to recover the secret key of a cipher [12, 53, 88] or to help the

attacker to build a covert channel for transmitting other security-sensitive data [37, 40].

2.3.3 Types of Cache Timing Side-Channel Attacks

The cache timing side-channel attacks were split into two categories by what to measure

during the attack. One type is called a Time-Driven attack, and the other type is

called an Access-Driven Attack [54].

For a Time-Driven attack, the attacker compares the victim process’s total run time to

deduce if the victim has used the targeted cache lines. There are two major types of

Time-Driven attacks. They are Evict+Time [53] and Cache Collision Attack [18].

This type of attack usually requires many samples to determine the average run time

of the victim process. The attacker changes the cache state before triggering the victim

process, reflecting a cache hit or miss. Due to that cache hit or miss, running the victim

process differs from the average time.

Table 2.1 shows the attack procedure of Evict+Time. There are two phases in this

attack: the preparation phase and the attack phase. The preparation phase runs the

victim process twice. The first run ensures all the victim process data are loaded into the

cache, and the second run counts the process run time when the process was accessed.
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Preparation phase:
1. The attacker triggers the victim process.
2. The attacker triggers and counts the time taken for the victim process.
Attack phase:
1. The attacker triggers the victim process.
2. Evict : The attacker uses its data to fill in a specific cache set.
3. Time: Triggering the victim process and time again.

Table 2.1: The procedure of Evict+Time attack.

Since the process was accessed, if the self-eviction is ignored, the attacker can guarantee

that most cache lines of the process reside in the cache. The attacker can record the

timing of the second access for comparison in the later attack phase. If the attacker

needs to attack multiple times and the process does not change, the preparation phase

does not need to be repeated. In the attack phase, the attacker triggers or waits for the

cache access of the victim process, the same as the first step of the preparation phase.

Then in the second step, the attacker loads its data into the cache and fills in a cache

set or a few specific cache sets. If the victim process used this cache set in step one, the

victim’s data in such a cache set would be evicted by the attacker’s data. Finally, the

attacker re-triggers the victim process and counts the run time. If the time taken in the

third step of the attack phase is longer than the second step of the preparation phase,

the attacker can be sure that the cache misses are caused by the data accesses in the

second step of the attack. Hence, the attacker can infer which cache set was accessed by

the victim’s process data. As an example, the victim runs an AES encryption process

with the encryption key K. In the preparation phase, the attacker counts the AES

process’s total run time as T1 clock cycles in the second step when the encryption key

is K. During the attack phase, after the attacker ensures the AES process was just

executed with the encryption key K, they fill in a cache set with their own data. Then

they trigger the victim’s AES process and time the total time of execution. For example,

if the total run time now becomes T2 clock cycles, where T2 > T1, the attacker can be

sure that the higher latency is due to the extra miss penalties. Such penalties must be

because the attacker’s data evicted one or more cache lines from that cache set. This

timing difference can tell the attacker those cache lines were accessed while the victim

was running their AES process with the encryption key K. If those cache lines from

the victim process are related to the encryption key, in other words, they are part of

the AES S-box, the attacker could leverage this and accelerate the exploration of the

victim’s AES encryption key. This encryption key exploration process will be discussed

further in Section 2.3.4.

Besides Evict+Time, there is another Time-Driven attack named Cache Collision Attack

[18]. The main idea of this attack is to measure the timing difference caused by the reuse
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of cache lines within the victim process itself. This may be used to refer to security-

sensitive information. For example, in an AES attack, an attacker can find the reuse

of cache lines and estimate the relations between each portion of the key by applying a

cache collision attack [18]. Nevertheless, the cache collision attack is heavily limited by

the victim process and less practical for an attack.

Unlike Time-Driven attacks, Access-Driven attacks do not rely on measuring the victim

process’s total execution time. Instead, the attacker uses their own process to determine

if the victim has accessed a cache set. The attacker first occupies some cache lines and

then triggers the victim process. After the victim process is executed, the attacker re-

accesses those cache lines occupied in the first step. A typical example of this attack is

Prime+Probe [53], which is introduced below.

Attack phase:
1. Prime: The attacker loads cache lines and occupies part of or the entire cache.
2. The victim process is triggered.
3. Probe: The attacker re-accesses those cache lines and measures the time set by
set.

Table 2.2: The procedure of Prime+Probe attack.

Unlike Evict+Time which runs in the order of victim-attacker-victim during the attack

phase, Prime+Probe runs as attacker-victim-attacker. This gives the attacker more

controllability. Also, in an Access-Driven attack, an attacker only needs to compare the

time taken to access each set to distinguish which set has been accessed by the victim.

The set which takes a longer time must be the set accessed by the victim. The attack

precedure is shown in Table 2.2. In the first step of the attack phase, the attacker

primes the cache with their own data. Priming can be achieved by accessing an array

in the attacker’s process. The victim process is then triggered. In the last step, the

attacker re-accesses that array. If a cache set were used during the victim encryption

process, the cache line primed in the first step would be evicted by the victim, leading

to a cache miss. After checking all cache sets, the attacker can retrieve the cache state

changes and deduce which cache set has been accessed by the victim. Prime+Probe

provides a higher fidelity method of exploring if a cache set has been accessed by the

victim compared with Evict+Time, which observes the total run time changes. Also,

in one round, it can observe the state of more than one cache set, which improves the

attack efficiency. Moreover, Prime+Probe requires one less time for the victim to access

each round of the attack compared to Evict+Time. From the attacker’s perspective,

accessing their own data should be much simpler than triggering the victim’s process.

Hence, the Prime+Probe attack is more practical than the Evict+Time attack. Like the

example of Evict+Time, the attacker can utilise Prime+Probe to retrieve victim process

information too.
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Another Access-Driven attack is named Flush+Reload [85]. This attack can be treated

as a special variant of Prime+Probe, which requires a shared memory between the victim

and attacker processes. An instruction called clflush, which normally is used to invalidate

cache lines to maintain cache coherence, is used to evict the specific cache line rather than

the entire cache set. Therefore, it is even more precise. Like Prime+Probe, after evicting

cache lines, it waits until the victim run is finished and then accesses those cache lines

and examines if the victim process accessed those shared cache lines. The weakness

of this attack is that it relies on the shared memory of security-sensitive data. Also,

another variant, the Flush+Flush attack [27], was proposed based on the Flush+Reload

attack. The classification of time-driven and access-driven only distinguishes how the

attacker measures if a cache line is used by the victim but does not cover the root

causes of these attacks. A new classification [42] includes two types of cache timing

side-channel attacks: contention-based attacks and reuse-based attacks. For contention-

based (or conflict-based) attacks, some data from the attacker is mapped to the same

cache set where the targeted victim cache lines are allocated. It is worth noting that the

contention cache lines are different cache lines that have different addresses. When the

contention occurs, either the attacker or the victim can evict the other’s cache line. The

attacker can abuse the deterministic mapping and eviction to prepare the desired cache

state and examine the cache residency of the victim’s targeted cache lines. Finally, the

sensitive data of the victim is retrieved.

Contention-based Attacks
(Find Cache Miss)

Reuse-based Attacks
(Find Cache Hit)

Access-Driven
(Measure attacker
access time)

Prime+Probe
1. Attacker Process Evicts
2. Run Victim Process
3. Attacker Process Checks
Access

Flush+Reload
1. Attacker clflush shared
memory
2. Run Victim Process
3. Attacker Process Checks
Access

Timing-Driven
(Measure victim
total run time)

Evict+Time
1. Run Victim Process
2. Attacker Process Evicts
3. Re-run Victim Process

Cache Collision Attack
1. Run Victim Process
2. Re-run Victim Process

Table 2.3: A summary of timing-cache side-channel attacks.

Unlike the contention-based attack, the reuse-based attack does not rely on the conflict

mapping of two different processes. Instead, it observes if the same data, shared between

the victim and attacker or within the victim itself, is accessed more than once.

A contention-based attack constantly measures the cache miss(es) of addresses and re-

trieves useful information from it. Conversely, a reuse-based attack expects the same

cache line(s) is (are) accessed more than once. In other words, it measures cache hit(s).

A summary of typical cache timing side-channel attacks is shown in Table 2.3.
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2.3.4 Examples of Cache Timing Side-Channel Attacks

In Section 2.3.3, 4 typical cache timing side-channel attacks and their classifications have

been introduced. In this subsection, some real attack examples are explained in detail,

which also explains why cache timing side-channel attacks are dangerous.

As discussed in 2.3.1, most side-channel attacks focus on attacking cryptographic systems

such as an encryption cipher. In the first example, we provide an example of how cache

timing side-channel attacks can be applied to break AES [12, 53]. The second example

is attacking RSA [44], which is an encryption function not based on lookup tables. The

last example is using cache side-channel attacks to build a covert channel. An attacker

can use this covert channel to transmit data between different processes. This is a crucial

step in the well-known attacks: Meltdown [40] and Spectre [37].

2.3.4.1 Cache Timing Side-Channel Attacks on AES

A typical example of a cache timing side-channel attack is using either Evict+Time or

Prime+Probe to attack AES [53]. Here, we explain how an AES First-Round Attack

can be achieved.

Four pre-calculated tables are needed during the AES encryption process, namely T0,

T1, T2, and T3. Each table has 256 table entries, and each table entry has 4 bytes.

Since the widely used cache line size is 64 bytes, each cache line will be filled with

64 ÷ 4 = 16 table entries [25]. In other words, T0, T1, T2, and T3 are each segmented

into 256 ÷ 16 = 16 cache lines, a total of 64 cache lines. It is worth noting that only

the cache lines that store the required table entries will be loaded into the cache during

the encryption process. In the entire AES encryption procedure, the calculation needs

to be done in 10 rounds. In the first 9 rounds, each T0, T1, T2, and T3 will be utilised 4

times per round, 36 times in total. Which table entry is needed during the calculation

depends on the table indices values. These table indices in the first round of encryption

are calculated as Yi = Ki ⊕ Pi. Ki and Pi are parts of truncated key and plaintext,

respectively. For AES-128, the length of the key K and the plaintext P is 128. Since

each Ki and Pi has an 8-bit length, there are 16 truncated parts of the key and the

plaintext.

Since there are 16 table entries stored in the same cache line, the attacker can only know

the first 4 bits of Yi, which is shown as ⟨Yi⟩, by observing the cache state changes and

learning which cache lines that store the pre-calculated tables are used. Then, if the

plaintext is known, the first 4 bits of the Ki can be interpreted. After repeating this for

all 16 truncated parts of the key, half of the key can be recovered.

The major step in this attack is observing and analysing the cache state changes. Two

cache timing side-channel attacks were used: Evict+Time, and Prime+Probe. Using
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one of these attacks, the attacker can examine if any table entries were accessed during

the encryption. Although the attacker cannot distinguish in which round the table entry

was accessed, applying many trials with different plaintexts allows the attacker to find

the probability differences and recognise if table entries in a cache line were accessed in

the first round of encryption.

Also, it is worth noting that the attack that applies Prime+Probe is much more efficient

than applying Evict+Time. This is because Prime+Probe can target multiple cache sets

in one round, and can provide high-fidelity results since it relies more on the attacker’s

cache lines.

Overall, during the first round of the AES encryption process, the pre-calculated tables

are loaded based on the XOR of the plaintext and key. Although the table might be

accessed in later rounds, fixed XOR results of the partial plaintext and the partial key

can always lead to accessing the same cache line in the first round. Since this cache

line is always accessed (with 100% probability of access) instead of probabilistically like

other cache lines, an attacker can distinguish the targeted cache line from many trials.

Finally, the partial table indices of the pre-calculated table stored in that cache line and

known plaintext can help the attacker recover the partial key.

2.3.4.2 Cache Timing Side-Channel Attacks on RSA

Another cache timing side-attack example is applying such an attack to RSA [44], which

is another widely used encryption algorithm. RSA has two different keys, private and

public. The private key is used to decrypt the encrypted message. The public key is

used for encryption. Since the generation of the keys is not related to this section, we

do not discuss this in detail.

For the RSA decryption process, the calculation is done by applying the equation m = cd

mod n. m is the plaintext message, and c is the ciphertext. Users must have two

numbers, d and n, as their private keys during the calculation. By calculating the

equation, the user can recover the plaintext. However, the key size is normally very large.

Some common examples of key lengths are 2048 and 4096 bits. The power calculation,

cd, will require huge computational power. To optimise this, some implementations

of RSA apply a square-and-multiply algorithm. In this algorithm, some intermediate

numbers of squaring are calculated to reduce the rounds of power calculation instead of

computing m directly based on c.

There are two major calculations: Squaring and Mod, Multiplying and Mod. The RSA

implementation takes ccurrent = 1 as its start. It first picks the first bit of d. If d is

1, both calculations should be performed, namely, cnext = c2current mod n followed by

cnext = (ccurrent×d)mod n. cnext in the current operation will become ccurrent in the next

operation. If d is 0, only Squaring-and-Mod is needed. After finishing the operations
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based on the current bit of d, the next bit of d is used to do the same calculations. By

doing such a calculation until the last bit of d is calculated, the user can retrieve the

plaintext.

Although such an implementation dramatically improves the performance and efficiency

of using computational resources, it can also be leveraged with the cache timing side-

channel attack by an attacker to retrieve the victim’s private key. Unlike AES, RSA

does not require a pre-calculated lookup table. However, the intermediate values must

be stored temporarily for the next round of calculations. Although the attacker does not

know where the data could be stored in the cache, an attack on RSA [44] was proposed

to figure out the mapping and read out most of the bits of the victim’s RSA private key.

In this attack, the attacker uses the Prime+Probe attack to occupy a candidate cache

set. Hence, by repeatedly applying the Prime+Probe attack, the attacker tracks the

candidate cache set when the RSA encryption process is running. As we have explained,

RSA only has two different cases: Either it needs to do Squaring and Mod when d is

0, or both Squaring and Mod, and, Multiplying and Mod when d is 1. These two cases

have different timing delays. After accessing the intermediate data from the cache, d = 0

requires 2-3 times more delay than d = 1. Since the same cache set needs to be accessed

many times, when the attacker finds the trace of a cache set which is always accessed

with a regular pattern in terms of timing, they can deduce that this candidate cache set

stores the intermediate values of RSA. If not, the attacker can then discover the trace of

another cache set. Furthermore, by observing the trace of this cache set, they can read

out most bits of d from the timing delays between two adjacent cache accesses. From

their real attack on servers and desktops, the attacker recovered a large portion of the

RSA private key (which weakens the security of the RSA encryption implementation.) .

Overall, an attacker can apply cache timing side-channel attacks to prepare the expected

cache status before each round of the RSA calculation starts. Due to the specific access

pattern of the square-and-multiply algorithm, the attacker can simply recognise that the

cache set stores the intermediate data of RSA. This makes such an attack more practical

than the AES attack, had mentioned in Section 2.3.4.1. Moreover, from the trace of the

cache set, the attacker can read most bits of the private key. By knowing most bits

of the private key, the attacker can use a brute-force attack to find out the rest of the

private key.

2.3.4.3 Covert Channel Attack

Another example of using cache timing side-channel attacks to retrieve sensitive data is

building a covert channel, such as the C5 covert channel [46] . There are two well-known

attacks: Spectre [37] and Meltdown [40]. These attacks leverage the design flaws of other
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parts of the processor’s hardware to retrieve sensitive security data that the attacker

ideally should never access. We start the explanation with the Meltdown attack [40].

The main idea of the Meltdown attack [40] is leveraging the out-of-order (OOO) execu-

tion and the speculation execution of the modern processors. In more detail, as we have

mentioned in Secion 2.2.2, a non-privileged user cannot directly access the privileged

user’s data. When this happens, the processor can raise an exception to the OS and

may terminate the program causing such an exception. Hence, the rest of the program is

not executed. However, this may not be true in an OOO processor. In such a processor,

a sequence of code within the same program is split into a few micro-operations. These

micro-operations are executed in parallel if they are independent of each other. When

these micro-operations are finished in execution, their results are gathered in order. If an

exception is raised, all the results are invalidated by flushing the pipeline. Nevertheless,

when two micro-operations are executed simultaneously and the second micro-operation

is later than the first micro-operation in terms of the code order, the second micro-

operation may be executed before the first micro-operation causes an exception. Even if

the second micro-operation is accessing privileged data, the processor does not recognise

it until either of the micro-operations throws an exception. Unfortunately, although the

processor has flushed the pipeline and does not leave any visible architectural effect for

the attacker to reveal security-sensitive data, there could be microarchitectural effects.

For example, if the second micro-operation accesses a cache line, this cache line can

be stored in the cache. More importantly, this is not affected by the pipeline flushing.

Using the method, an attacker can access an element of an array indexed by privileged

data that he wants to discover. Later, by using any timing cache side-channel attacks

we have introduced in Section 2.3.3, such as Flush+Reload, the attacker can read out

which cache line that stores the array in the cache [40]. Hence, they can deduce the

privileged secret data.

The other attack example is Spectre [37]. Similar to Meltdown , this attack also leverages

speculative execution. Here, an attacker misleads the branch predictor in the processor

and utilises speculative execution to access the victim’s memory space that the attacker

should not be able to touch. Specifically, when the data that is used for determining the

conditional branch is not stored in the cache, to avoid a long time waiting for loading

data from the main memory, the processor uses the previous branching results to execute

the rest of the code. If the attacker trains the branch predictor to take branches many

times, it then executes the code within the branch even if the processor cannot ensure

if this needs to be executed. Like the meltdown attack, attackers can access an array

indexed by the secret data from the victim process. Later, when the processor loads the

data from the main memory and notices it should not take the branch, the corresponding

cache line indexed by the secret data has been loaded into the cache. In other words,

the cache state has been modified. Using timing side-channel attacks, the attacker can
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finally deduce the secret data by examining which element within the array is in the

cache. Unlike Meltdown, Spectre does not rely on any exceptions.

It is worth noting that the root of these attacks’ vulnerability is branch prediction,

speculative execution and out-of-order execution, not the cache. Other microarchitec-

tural states can also construct a covert channel, such as the ALU [40]. In other words,

cache timing side-channel attacks in these attacks are not the principal offender but an

accessory.

2.3.4.4 Summary

In this subsection, we have introduced a few examples of the cache timing side-channel

attacks were used to retrieve other users’ partial keys or data, including privileged

users. In the AES and the RSA examples, the attacker leverages the implementation

of the encryption process and the cache timing to examine the use of pre-calculated

lookup tables that are highly related to the encryption key or the cache set stores the

intermediate number. The attacker can deduce the other users’ encryption keys based

on the usage of these cache lines.

In the Meltdown and Spectre attacks, the attacker leverages the vulnerabilities from

other modules of the processors, such as speculative execution, OOO execution and

branch prediction. Although directly accessing the victim’s data can cause the exception,

the attacker could indirectly access the victim’s data and observe the microarchitectural

state changes. The attacker can read the trace of the cache lines indexed by the victim’s

data. Hence, by checking the residency of those cache lines using cache timing side-

channel attacks, the attacker can finally “access” the victim’s data.

We found that no matter what the attack target is in these cache timing side-channel

attacks, the cache’s vulnerability is never changed. The security-sensitive data can be

reflected in the cache state changes, whether or not the specific cache lines are stored

in the cache. Hence, the attacker has two different methods to observe the cache state

changes in the relative level of the cache. The first way is to examine if the shared cache

lines between the victim’s process and the attacker’s process are used. These are known

as Re-use Based attacks. The second way is to learn the access trace of specific cache

sets. The essential condition for the attacker to achieve this is to find a group of cache

lines within their process, and these cache lines should contend with the victim target

cache line. In other words, the target cache line can evict this group of cache lines and

vice versa. As we explained, this attack is named a contention-based attack.

There is no known real-world attack based on the contention-based attack. This may

be due to the effort of a lot of research to discover and fix the hardware vulnerabilities

caused by the contention-based attack before the real attempts have been made. The

contention-based attack could still be dangerous if it is improved.
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As a result, if we can eliminate or mitigate the root of the attack method, the corre-

sponding attack could be eliminated or become impractical, no matter what the attack

target is.

2.4 Countermeasures of Contention-Based Attacks

In the early years, the cache timing side-channel attacks were only used to attack en-

cryption ciphers such as AES. Some simple countermeasures were proposed, such as

disabling the cache [53]. However, these methods either dramatically sacrifice the per-

formance of using caches or increase the implementation complexity of the encryption

ciphers, making the solutions impractical.

As discussed in Section 2.3.4, many other attacks based on cache timing side-channel

attacks were proposed during the last two decades. Finding solutions for the implemen-

tation of each specific software does not solve the problem. The only feasible solution is

fixing or mitigating the vulnerability caused by the cache itself. Since contention-based

attacks and re-use based attacks have distinct root causes, the countermeasures that

deal with different attacks are designed separately.

Many mitigations and countermeasures were proposed at both hardware and software

levels. Different techniques were applied, such as cache partitioning [78, 26], cache

remapping [78, 43, 80, 70, 49, 59, 60, 76], and other techniques [67, 82, 36, 68, 84].

They all try to balance the cache’s security, performance, and other overheads. The

countermeasures can be divided into two categories: passive strategy and active strategy.

The active strategy detects malicious behaviour and then activates its defence method.

In detail, an active strategy requires the detection of cache side-channel attacks. For

example, the cache can be protected with a dedicated detector against contention-based

attacks. This detector tracks all accesses of the cache. When the detector realises that

there are many cache accesses to a specific cache set, it can deduce that these could

be malicious accesses. Hence, the cache defence can fight back in many ways, such as

limiting cache access from suspicious processes or terminating the process.

On the other hand, a passive strategy always provides the defence no matter if malicious

behaviours or users are found. For example, the cache is frequently remapped after a

period of time. An active strategy always requires accurate detection of contention-based

attacks. If the attacker finds a way to trick and skip the detector, the countermeasure can

be treated as disabled. The detection also needs dedicated hardware or computational

power when it is achieved in software. This may lead to a waste of resources. On the

other hand, a passive strategy treats all accesses equally. However, this may lead to

performance loss since not all users or processes require protection against contention-

based attacks.
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As mentioned in Section 2.3.3, contention-based attacks and reuse-based attacks have

different root causes. Therefore, there are different countermeasures to these two types

of attacks. In this section, we specifically explain some countermeasures with different

techniques for contention-based attacks. These countermeasures may have different

focuses in terms of balancing different factors. We mainly focus on hardware solutions

for mitigating Contention-Based attacks.

2.4.1 Cache Partitioning

Cache partitioning [78] is a strategy that physically separates the victim’s process data

and the attacker’s data. The physical isolation guarantees that the victim’s data will

not contend with other unsecured processes. In other words, only data from selected

processes or only the victim process itself can share the cache ways in the specific cache

set. As a result, the security-sensitive victim cache line cannot be evicted by the at-

tacker’s process at all, which leads to the failure of a contention-based attack. The major

disadvantage of this strategy is that it usually hurts performance since other processes

must be run with lower cache associativity. This type of countermeasure can be seen as

a passive defence strategy.

2.4.1.1 PL Cache

The partition-Locked Cache (PLcache) [78] implemented dynamic cache partitioning,

which uses one extra locked bit, L, to indicate such a cache line is locked. An extra ID

is attached to each cache line to indicate which process this cache line belongs to. The

L bit and ID are also added for the page entry and segmentation table. Hence when

loading the cache line into the cache, the PL cache knows the security information of

the upcoming cache line. Since the OS controls the paging and segmentation, it also

controls the dynamic partitioning of the PL cache. Unlike static cache partitioning,

which statically allocates cache ways to each process, the PL cache provides a finer

granularity. When a new cache line N needs to replace an old cache line O, the PL

cache must check the L bit. If both cache lines N and O are not locked, or both cache

lines are locked and belong to the same process, they can be treated as normal cache

access. However, there are different situations when N has a different L bit and ID.

When the cache line N needs to be locked, it can replace any unlocked or locked cache

lines that belong to the same process. This guarantees that no locked cache lines from the

different processes can interfere with each other. When the cache line N does not need

to be locked and O is a locked line which has been chosen as the replacement victim,

the storage of N bypasses this level of the cache. This design improves cache usage.

Security-sensitive processes can still use most of the cache ways in a cache set. They

can only use the unlocked cache ways for those processes that are not security sensitive.

Compared to static partitioning, the performance degradation is less since more cache
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ways can still be shared between different processes. Although this method distinguishes

between secured and non-secured processes, it does not detect if the malicious behaviour

is performed in the cache. Hence, this design is still a passive defence. However, the

PL cache only lockes the security-sensitive cache lines after all these lines are loaded

into the cache, the pre-calculated lookup tables are loaded gradually during the AES

encryption process. Therefore, after applying Prime+Probe to the PL cache, the cache

lines accessed by the victim (locked cache lines) can still be exposed [38].

2.4.1.2 NoMo Cache

The NoMo cache [26] is another partition-based cache design. It focuses on attacks when

both victim and attacker processes share the L1 cache on a simultaneous multithreading

(SMT) processor. The NoMo cache design’s main idea is to allocate a few cache ways as

unique ways to each process running on the same core. The rest of the designated ways

will be shared between processes. This design prevents a process from monopolising

the entire cache set, which means one process can never use its cache lines to prime a

whole cache set. As we have explained in Section 2.3.3, the attacker can only figure out

the usage of the victim cache line when they can use a group of cache lines to evict or

occupy the potential positions where the victim cache line might be placed. During a

Contention Based attack on the NoMo cache, the attacker can only track the victim cache

line usage when those cache lines are placed in the shared cache ways. Hence, increasing

the minimal guaranteed cache ways can enhance the security against contention-based

attacks on the NoMo cache. As a result, only partial information about the victim’s

cache line access is leaked. From the experimental results of the NoMo cache, the leakage

is dramatically reduced compared to the conventional cache designs. Nevertheless, the

cache partitioning strategy in NoMo still limits the maximum cache way of each process,

which still sacrifices the performance. Especially, the L1 cache normally has relatively

low associativity. When more processes run on the same processor, the available cache

associativity on the L1 cache to each process becomes lower, leading to a high miss rate.

2.4.2 Cache Remapping

Another type of countermeasure is randomised cache remapping [78, 43, 59, 33, 87].

This is also the main focus of the research in this thesis. The cache remapping strategy

is also a passive cache defence. The main principle of this defence is obfuscating the

cache line mappings in a cache, either using a table to store the cache remapping or a

dedicated function to recalculate the index bits of each cache line. Since the remapping

only occurs in the cache, the mapping difference is not visible outside the cache. Hence,

the distribution of the cache lines becomes much harder to predict based on the cache

line address. The benefit of applying cache remapping is that the remapping depends

on the hardware of the cache itself since the attacker can never manipulate the cache
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mapping. Although some enhancements of randomisation remapping cache need the

hypervisor or kernel to be involved, the essential remapping is achieved at the hardware

level.

Based on the attack examples we have explained in 2.3.4, we notice that finding a group

of cache lines that can evict the target cache line, namely the eviction set, is crucial to

contention-based attacks. By applying the cache remapping, the attacker cannot find

the eviction set easily, which increases the attack difficulty. However, while the cache

defences against contention-based attacks are improved, many advanced methods of

finding eviction sets were also proposed [44, 58, 57]. This leads to a race between coun-

termeasures and attacks. In this subsection, we focus on explaining how the remapping

caches were proposed and enhanced. Section 2.6 will explain how the contention-based

attacks (or the method of finding the eviction set) were developed based on the new

countermeasures.

2.4.2.1 Newcache

Newcache [43] is a countermeasure based on the RPcache design [78]. Unlike the RP-

cache, which uses a set-associative cache as the base design, Newcache applies a direct-

mapped cache. The address is randomly remapped by adding a table with the address

to cache set mapping. This table is fused with the address decoder within Newcache.

Hence, an incoming cache line can be placed anywhere in the cache. Since Newcache uses

a direct-mapped cache, there is only one cache way in each cache set. The remapping of

the cache can be seen as a cache-line-level remapping. The protection bit (P bit) and the

Trust Domain Identifier (TDID) are added as part of the index bits. Hence, these bits

are checked during cache access. The P bit indicates if the cache line is protected, and

the TDID is used to distinguish the cache lines between different trust domains. If the

index bits are not matched in the comparison during cache access, this indicates there

is no valid mapping in the cache. The cache then randomly selects a cache line as the

replacement victim. Hence a new mapping needs to be created and stored in the table.

Otherwise, if only the tag comparison mismatches, the Newcache ensures the mapping

is valid, but there is a tag miss. In such cases, the cache miss can be handled as normal.

Newcache can fit with the L1 cache, which defeats the contention-based attacks and does

not drop the cache performance. However, such a design may not be suitable for L2

and L3 caches since both the control logic and the storage overhead are proportionally

increased with the cache size.
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2.4.2.2 CEASER Cache

CEASE cache and CEASER cache [59] are the prototypes of all randomisation remap-

ping caches proposed later, including our cache designs. Both caches utilise an encryp-

tion cipher to encrypt the tag and the index bits of the original address of the accessed

cache lines. The ciphertext, which is the encrypted address of the cache line, is then split

into two parts: encrypted tag and encrypted index bits. The encrypted tag is stored in

the cache the same as in the conventional cache. During cache access, the encrypted tag

is compared with the tag stored in the cache. Hence, the cache returns either a cache

hit or a cache miss. The encrypted index bits determine which cache set should be

selected to store the upcoming cache line. The reason for not using the original tag for

storage and comparison is straightforward. The plaintext and the encrypted ciphertext

with a fixed key are always one-to-one mappings. Hence, using the original or encrypted

address, the cache can find only one specific cache line. This may not be true if the

index bits and original tag bits are from different types of addresses. Since the index

bits in CEASE and CEASER cache must be the encrypted index bits, the easiest design

is storing and comparing the encrypted tag. When a cache line needs to be evicted from

the CEASE or CEASER cache, both caches need to perform the decryption based on

the cache set, encrypted tag and the corresponding encryption key. The major impact

of these cache designs on the cache performance is that the encryption process requires

extra clock cycles. Therefore, finding a secure encryption cipher which needs less com-

putation time is fundamental to such cache designs. To achieve this, an encryption

cipher called Low-Latency Block-Cipher (LLBC) was proposed for the CEASER cache.

LLBC requires one or two clock cycles to encrypt or decrypt. Therefore the latency

due to the cipher is very low and almost negligible for the L3 cache. In terms of se-

curity, both CEASE and CEASER remap the cache based on the LLBC. The key of

the LLBC can be generated from a hardware-based pseudo-random number generator

and stored temporarily in the dedicated storage. Since the encryption and decryption

are entirely achieved at the hardware level, none of the users know how the cache lines

are distributed in the cache. Nevertheless, for the CEASE cache, the attacker can still

construct an eviction set of the target cache line within a few seconds [44]. (This proves

that the CEASE cache, which has static randomisation remapping, can only protect the

cache from contention-based attacks for a short period.)

An enhanced protection defence is added to the CEASE cache to improve its security

against contention-based attacks. Since LLBC achieves the indexing in the cache, when

the LLBC applies the distinct key, the same cache line can be mapped to a completely

different cache set. In other words, the cache mapping becomes different. Hence, they

improve the CEASE cache, which allows the encryption cipher’s encryption key to be

changed periodically. The new design is named the CEASER cache [59]. To achieve the

remapping, the CEASER cache gradually applies re-keying, which means the encryption

key is updated. The CEASER cache requires more hardware to support this function.
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Two registers are used to store the encryption keys. One is the current key, and the

other is the next key. A counter is utilised to indicate when this re-keying should

happen. Rather than counting the clock cycles, it counts the number of cache accesses.

When the counter reaches a threshold value, the counter is reset, and one cache set is

selected to perform the remapping based on the next key. We call such a threshold

value the re-keying period. After the remapping of the set is finished, a register called

the Set-Relocation Pointer (SPtr) stores the next following cache set number, indicating

that the cache set is the next remapping target. After another re-keying period, the

next cache set is remapped in the same way. The entire cache keeps being remapped

until the last cache set is reached. Hence, the next key becomes the current key and is

overwritten in the current key registers. The next key register updates its value with

a new key generated from the random number generator. When the CEASER cache is

accessed, the address of the cache line is encrypted by both the current and the next

keys. For performance, CEASER applies two LLBCs to calculate the encrypted address

in parallel. After the encrypted address is obtained, the encrypted index bits based on

the current key are selected and compared with the values in SPtr. If the encrypted

index bits are larger or equal to SPtr, this means that the cache set is still using the

current key. Then, the encrypted address based on the current key is used, and vice

versa. Such an implementation ensures the entire CEASER cache is remapped after a

fixed number of cache access. Since their designs do not use a table to store the mapping

but calculate on the fly, the hardware overhead does not increase linearly with the size of

the cache. Hence, applying CEASE or CEASER as the L2 or L3 cache is more practical

than the Newcache [43].

However, under an improved contention-based attack [60], which significantly reduces

the time of constructing an eviction set, implementing a contention-based attack on

either CEASE or CEASER cache becomes practical.

Also, the LLBC in the CEASER and CEASE cache was found to be vulnerable due

to a serious flaw in its encryption algorithm [16]. Based on the vulnerability of the

LLBC itself, an attacker might be able to ignore the re-keying function. The encryption

cipher should be replaced to ensure the CEASER cache can still defeat Contention-

Based attacks. PRINCE [19], another low-latency block cipher, was suggested as the

encryption function in CEASER. PRINCE was verified that it does not suffer the same

vulnerability as LLBC. In terms of the performance and overhead, a 7-round PRINCE

has 980ps latency and requires 3737 cells. Under a 3GHz frequency, PRINCE requires 3

clock cycles to compute the ciphertext. For an L3 cache which may need 40 clock cycles

for a cache access, this increase is acceptable.
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2.4.2.3 CEASER-S Cache

Although CEASER provides decent protection, a few methods to accelerate the eviction

set’s construction were proposed [60], which will be discussed further in Section 2.6.1.

These methods dramatically reduce the time taken to find an eviction set. Hence im-

plementing a Contention-Based attack on CEASER becomes practical. As a result, the

CEASER cache is pushed to decrease its re-keying period to maintain security against

such attacks. Nevertheless, as we mentioned above, this can lead to performance degra-

dation of the cache. To further enhance the CEASER cache, it is combined with a

skewed associative cache [66] to prevent contention-based attacks [60]. An example of a

skewed cache is given in Figure 2.4. In this skewed cache, there are two skewed cache

ways. Unlike the conventional cache, each cache way is driven by different index bits.

As a result, a cache line can be mapped to different cache sets when placed in different

cache ways. Furthermore, if two cache lines are mapped to the same cache set in one

of the cache ways, it is unlikely they can be mapped to the same cache set in another

cache way. To achieve the skewed cache, the cache separates cache ways into different

partitions. The cache deploys an identical function and distinct encryption keys for each

cache partition. This cache design is called CEASER-S cache [60]. The encryption key

in each partition is unique so that only the cache ways in the same partition share the

same cache mapping. A 4-partition CEASER-S cache is shown in Figure 2.5.

Figure 2.4: A two-way skewed associative cache example.

It is worth noting that the term “Partition” in the randomisation remapping cache

is entirely distinct from cache partitioning mentioned in 2.4.1. Different from cache

partitioning, the partitions in the CEASER-S cache only indicate they have different

cache mappings based on distinct encryption keys, but any of the cache lines can still

be placed in any of the partitions. Hence, the partition in the CEASER-S cache does

not decrease the efficiency of using the cache. This cache design dramatically increases

the complexity of the remapping. If the attacker is unaware of the CEASER-S cache

architecture, they may build an eviction set as before and use it in a Contention-Based
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Figure 2.5: A 4-partition CEASER-S cache. E indicates the block cipher, and each
partition has its partition.

attack. However, the member of the eviction set is highly unlikely to conflict with the

target cache line. Thus, the attacker may not be able to evict the target cache line from

all possible placements. This can finally lead to a failure of the attack. As a result,

this cache design enhances the remapping to achieve a finer granularity. CEASER-S

dramatically increases the complexity of building an eviction set for Contention-Based

attacks.

2.4.2.4 ScatterCache Cache

ScatterCache [80] is a special case of the CEASER-S cache. ScatterCache has the same

number of partitions and number of cache ways. In other words, each cache way has its

own unique mapping. However, instead of having multiple functions or keys for multiple

cache ways, ScatterCache also suggested another solution: using either a hash function

or an encryption cipher to compute the ciphertext and then truncating the ciphertext

into multiple bits as the index bits of each cache way. This method avoids the overhead

expansion due to the increasing number of cache partitions. With many partitions, find-

ing the eviction set whose member has the same mapping becomes almost impossible for

an attacker. To further improve the security against contention-based attacks, a Security

Domain Identifier (SDID) was proposed in the ScatterCache as an add-on. The hyper-

visor or OS has control of the SDID assignment. Based on the security requirements of

each process, the hypervisor or OS can assign different SDIDs to each process. When

performing the encryption, the SDID is also treated as part of the input and consoli-

dated with the address of the cache line as the plaintext of the encryption cipher or the

input of a hash function. Hence, processes with the same security requirement can share

the same cache mapping. Such an idea is similar to the TDID in Newcache [43]. The
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enhancement of ScatterCache further improves the protection against Contention-Based

attacks on a skewed randomisation remapping cache with a re-keying function.

The ScatterCache and CEASER-S cache mentioned in Section 2.4.2.3 provide better se-

curity against contention-based attacks than the CEASER cache. However, both caches

require more frequent re-keying under the state-of-the-art contention-based attack [57].

This can reduce the cache performance.

2.4.2.5 IE-Cache

Two other secure cache designs [49, 70] were proposed based on ZCache [64], which was

not a secure cache design but only targeted improving cache performance. Although

a skewed associative cache [66] was proposed to reduce contentions and improve cache

performance, one paper [70] claims using a skewed cache on L2 or L3 caches that normally

have a large size has a negligible effect on cache performance.

Figure 2.6: An example of cache replacements within ScatterCache and IE-cache.
(a) shows the mappings of cache line A, B, and C. (b) and (c) show the replacement

procedures in ScatterCache and IE-cache, respectively.

ZCache is based on skewed associative cache [66]. A dedicated hash function drives each

cache way. After the address is hashed, the cache lines are all re-distributed. The unique

feature of ZCache is that the replacement in the cache is a multiple-level replacement.

When a cache line is accessed and needs to replace one of the cache lines that already

resides in the cache, the upcoming cache line randomly selects a cache way and finds the

mapped cache set based on the index bits. After selecting the replacement victim, the

victim is not evicted directly by the new cache line. Instead, this victim then becomes

the first-level replacement victim. The first-level replacement victim can select the

second-level replacement victim, which the first-level replacement victim cache line can

replace. The number of indirection replacement levels is determined when the ZCache

is designed. Nevertheless, ZCache was proposed for improving cache performance by

reducing conflicts between cache lines. Hence, it does not prevent contention-based

attacks.
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IE-cache [49] and another design [70] add multiple cryptographic functions to encrypt

the address of cache lines in Zcache for mitigating contention-based attacks, which is

similar to the changes of the CEASER-S cache [60] on a skewed associative cache [66].

Processes in the cache are divided into two security domains. Each domain has its own

cryptographic function’s key. We provide an example to compare ScatterCache’s and

IE-cache’s replacement differences in Figure 2.6. The mappings of cache lines A, B, and

C are shown in Figure 2.6(a). We assume cache lines, A and B, have been placed in

the cache. C is the incoming cache line. The cache randomly selects way 0 for cache

line C when C is accessed. Based on the address mapping shown in Figure 2.6(a), cache

line A currently occupies cache line C’s position, which means cache line A contends

with C. These are shown in both Figure 2.6(b) and (c). As shown in Figure 2.6(b), in

the ScatterCache, cache line A will be evicted to make space for cache line C. Then,

cache line C is loaded to where cache line A was. However, in the IE-cache with two

indirection replacement levels, cache line A will be placed in another way instead of

being evicted from the cache. For example, cache line A is moved to way 1 and replaces

cache line B. As a result, cache line B is evicted from the cache, and the way 0 set 1

is empty for cache line C. This indirection in IE-cache hides the contentions between

cache lines A and C. The attacker can observe that cache line B is evicted by cache line

C rather than cache line A. This effect confuses the attacker and increases the difficulty

of achieving a contention-based attack. IE-cache’s drawback is that moving one cache

line to another cache way needs more address calculations. In the previous example, if a

cipher were used to calculate the new addresses, IE-cache requires two decryptions and

two encryptions, which cause extra delays.

2.4.2.6 Mirage

Mirage [63] is another randomisation remapping cache design. This cache applies a V-

way cache [62] as its substrate. Similar to the skewed associative cache and ZCache,

the V-way cache was proposed to improve the cache performance by reducing cache

line conflicts. Unlike the traditional cache, the V-way cache has no static one-to-one

mapping between the data and tag storage. The association between tag storage and

data storage are achieved by storing extra pointers, which is similar to Newcache [41].

The address is first parsed when a cache line is accessed, and the cache set is found

based on the index bits. Hence, the tag is compared with all tag storage lines in the set.

If it is a tag hit, the pointer in that tag storage line is used to index the data storage.

Then, the data can be read out as a direct-mapped cache. When a cache line needs to

be evicted from the cache, the pointers stored in the data storage can be utilised to find

the corresponding tag storage and then recover the full address of the cache line. Since

tag and data storage are associated with pointers, a cache line could be stored in any

data storage line.
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In the tag storage, the V-way cache has more tag storage lines than the data storage

lines in each set. For example, an 8-way cache can be built as 12 tag storage lines and 8

data storage lines in a V-way cache. Nevertheless, the number of valid tag storage lines

remains the same as that of data storage lines. The extra tag storage lines in each set

ensure the cache eviction is unlikely to happen even if multiple cache lines mapped to the

same cache set are accessed simultaneously. The V-way cache can then store 12 cache

lines mapped in the same set by validating 4 extra tag storage lines and invalidating 4

tag storage lines from other sets.

Nevertheless, the V-way cache was not designed to defeat Contention-Based attacks.

Based on its design, Mirage was proposed and added some protection schemes on the

V-way cache. The address of the cache line in Mirage is skewed, which performs the

randomisation remapping. Mirage used a 12-round PRINCE encryption cipher as the

function. The special technique is that Mirage applied two encryption functions with a

load-aware selection module. During a cache line access, Mirage does not randomly select

one of the encryption functions or the keys but selects the skewed mapping whose target

set has more invalid tag storage lines. The method differs from the partition selection

in CEASER-S and ScatterCache. By combining a dedicated replacement policy, Mirage

achieves a fully associative like cache.

The major drawback of the Mirage cache is that the overhead is relatively high compared

to other randomisation remapping caches mentioned in this section. The performance

of Mirage was evaluated with Firesim [35], a Rocket-core [6] based simulator. The

power was evaluated by using CACTI6.0 [50]. The baseline system is configured as a

processor with 8 RISC-V cores running at 3GHz and three levels of caches. The hardware

overhead mainly comes from the extra storage required. Since Mirage needs more spare

tags and pointer storage for tag and data storage, a 16 MB LLC implemented as Mirage

needs about 20% extra storage. And the power consumption is increased by about 4W,

compared to a conventional cache. Also, since the association between tag and data

storage is achieved by pointers, Mirage has to search the tag and data in serial, which

increases the access latency.

2.4.2.7 Chameleon Cache

Chameleon Cache [74] is an extension of the randomisation remapping cache designs.

A victim cache [34], which is a small fully associative cache between different levels of

memory to reduce the cache miss, is applied to a randomisation remapping cache with

cache reinsertion. When a new cache line is accessed, the encrypted address is first com-

puted with the remapping function. Based on the encrypted address, the randomisation

remapping cache and the victim cache perform parallel searching of the targeted cache

line. If the cache line is hit in the randomisation remapping cache, the cache hit can be

handled normally. Otherwise, the cache line could be found in the victim cache. Then,
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the cache line is reinserted into the randomisation remapping cache. The cache way is

randomly selected. If the selected place has stored another valid cache line, such a cache

line is swapped with the accessed cache line and placed into the victim cache. In the

last case, the accessed cache line was not found in the randomisation remapping cache

or the victim cache, the cache line is then loaded from the main memory (if this is the

LLC.). This loading may result in a cache line eviction from the randomisation remap-

ping cache. However, the selected victim is moved from the randomisation remapping

cache to the victim cache. When the victim cache is full, a replacement victim cache line

is selected from the victim cache and evicted. As a result, when the Chameleon Cache

performs an access, the evicted cache line may not conflict with the accessed cache line.

This is similar to an indirect eviction in IE-Cache. Hence, it becomes difficult for an

attacker to find a solid eviction set for a contention-based attack. Moreover, Chameleon

applied a reinsertion mechanism to refill the cache lines pushed into the victim cache

back to the randomisation remapping cache. Such a design prevents the attacker from

flushing the victim cache by accessing many random uncached cache lines and exposing

the contentions between the accessed cache line and the target cache line. Periodically,

the cache line in the victim cache is selected and re-stored in the randomisation remap-

ping cache. Since there are more partitions, the reinserted cache line might be reinserted

with a different mapping compared to its previous mapping.

Overall, this design uses a victim cache to perform like a fully-associative cache. Al-

though cache line storage is the same as other randomisation remapping cache, the

reinsertion mechanism and victim cache reduce the contentions between the accessed

cache line and the evicted cache line. Hence, the success rate with an eviction set of the

Contention-Based attack is reduced. This also helps the randomisation remapping cache

keep a relatively high re-keying period even if a stronger profiling method is developed.

However, since the size of the victim cache must be fixed when the cache is designed,

this design does not provide extra flexibility over security or performance.

2.4.2.8 PhantomCache

PhantomCache [73] is a randomisation remapping cache similar to the CEASER-SH

cache design. In this cache design, the address of the accessed cache line will be re-

computed based on salts, random numbers generated from a random number generator

(RNG), and a dedicated hash function. When a cache line is accessed, the tag of the

cache line performs XOR with the MSB part of the salt that has the same length as the

tag. After performing a hash to the XORed results, the hashed value is XORed with

the initial index bits of the cache line address and the rest of the bits from the salt. The

cache lines are remapped in the entire cache by hashing and XORing with a random

number. The cache line is searched in parallel in r different cache sets during each

cache access. The cache line could be placed in any of the sets. These r cache sets are
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computed by using the address and r different random numbers based on the remapping

method above. To perform a low latency data lookup, PhantomCache searches different

cache banks in parallel. Hence, in the best case, all r cache sets are in different cache

banks. The cache only needs to wait for one lookup period in the cache bank and then

determines if it is a cache hit or cache miss. The default setting of PhantomCache

sets r as the number of cache banks applied. If an access results in a cache miss,

the cache randomly selects one of the r cache sets and applies a normal replacement

policy to determine the eviction victim if all cache ways in the set are valid. Overall,

PhantomCache remaps the cache using its own hash function calculated with random

numbers. Since the cache largely increases the number of cache sets where a cache line

can be placed, the eviction probability decreases when applying an eviction set.

However, there are several limitations to the PhantomCache design. First, the hash

function used in PhantomCache is not cryptographically secure. Such a hash function

was proposed for the LLBC in the CEASER cache [59], which was intended to build a

function with low latency. However, using the vulnerability of LLBC [16] significantly

weakens the security of the CEASER cache. A non-cryptographically secure hash func-

tion may become vulnerable. Second, since the salts are completely random, the proba-

bility that the r number of calculated cache sets are all mapped into the different cache

banks is very low. Also, there could be a low probability that all cache sets are mapped

to the same cache bank. Therefore, the cache may require more time for data lookup in

the cache bank than in the ideal case. Third, the number r is fixed in PhantomCache.

Since each cache line requires an extra logr2 bits to store the random number that was

used for the remapping, the hardware design means that the r must be a constant. If

an advanced profiling method is proposed, the PhantomCache cannot enhance its se-

curity against Contention-Based attacks. Fourth, because the PhantomCache relies on

multi-set searching, power consumption is a major design concern. Except for the power

consumption due to the additional logic, the lookup in banks requires at least r times

the dynamic power, which is dramatically increased compared to the conventional cache

design.

2.4.3 Cache Monitoring

There are countermeasures based on monitoring suspicious behaviour in the cache [82,

77, 67], such as over-threshold access to a cache set. After detecting suspicious behaviour,

a monitor enables some defence mechanisms against contention-based attacks. However,

this may also affect the normal process operation.
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2.4.3.1 SHARP Replacement Policy

Secure Hierarchy-Aware Cache Replacement Policy (SHARP) [82] is a novel replacement

policy that defends inclusive caches from cross-core contention-based attacks. When a

cache line is replaced in LLC, it checks this cache line’s status in all private caches.

The status of a cache line in LLC can fall into 3 categories: The first type is a cache

line that does not exist in any of the private caches. The second type is a cache line

that only exists in the private cache, which contains the process causing replacement.

The third type is a cache line that exists in other private caches, which excludes the

process causing the replacement. SHARP treats the first type of cache line as a priority

replacement victim. If there is no first type cache line, it then searches the second type,

then the third type. By replacing the first type, no contention will occur. By replacing

the second type, the contention only exists in one private cache, which the other private

caches from LLC cannot observe. The last type is the most dangerous replacement target

since this replacement can affect other private caches. A monitor is applied in SHARP

to count if the number of replaced type 3 cache lines exceeds a threshold value. If it

does, the process which causes the replacement will be terminated by the OS. However,

this defence strategy could be accidentality triggered by an innocent process.

2.4.3.2 SCAAT

SCAAT [67] combines the idea of cache status monitoring and cache randomisation

remapping in Section 2.4.2. Unlike other randomisation remapping caches, SCAAT only

remaps when the detector detects suspicious behaviour. Combining monitoring and

remapping might be a good idea, but that paper did not evaluate the cache’s security.

Moreover, that paper did not mention which cache level can be implemented like this.

From the performance evaluation and the system design in the paper, such a design

could be more suitable for the L1 cache since their remapping is also achieved using a

table lookup.

2.5 Countermeasures of Reuse-Based Attacks

Many countermeasures mentioned in Section 2.4 cannot defeat the reuse-based attacks

since the fundamental cause of attacks is different, as discussed in section 2.3.3. For

Contention-Based attacks, an attacker uses their cache line, which contains contentions

with the victim’s security-sensitive data, to detect if the target cache lines are accessed.

However, in a Reuse-Based attack, the attack only relies on the same cache line shared

between the attacker and the victim. As a result, even if the entire cache is remapped

or partitioned, the cache access to the same cache line is not affected.
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Sometimes, shared data are writable data. The cache requires two copies of the same

data to allow writing between different users. A Reuse-Based attack can be easily

defeated in such a case since the attacker and the victim do not share the same cache

line. Nevertheless, in most cases, shared data are read-only. Therefore, the cache only

needs to require one copy of such data, but this leaves the vulnerability to the Reuse-

Based attack. The simplest solution is forcing the cache to request multiple copies of the

shared data, even if the data is read-only. The drawback of the method is obvious: Since

one copy of the same data is needed when a user requests the data, the cache storage

may be filled with the same data and not be efficiently used. Hence, the performance of

the cache is degraded.

Some coutermeasures against reuse-based attacks were proposed [82, 42, 52]. We will

briefly discuss some of these countermeasures in this section.

2.5.1 SHARP

As we have mentioned in section 2.4.3.1, SHARP [82] was proposed against both

Contention-Based attacks. Nevertheless, SHARP also proposed the idea to counter a

Reuse-Based attacks. SHARP limits the clflush instruction, a fundamental instruction

used in the Flush+Reload attack [85]. Since the clflush instruction was used to main-

tain cache coherency, it cannot be entirely disabled. Nevertheless, SHARP modified the

permission of the clflush instruction. In the normal user mode, the user cannot use such

instructions to evict any read-only pages. As most of the shared libraries are read-only

files, this prevents the attacker flushing the target cache lines easily. Since writing on

the shared data can allow the cache to request another copy from the main memory,

which is known as Copy-on-Write (CoW), this does not expose any cache line status to

the attacker.

2.5.2 Random Fill Cache

Random fill Cache Architecture [42] was proposed against reuse-based attacks. Com-

pared to SHARP, this cache design is a passive countermeasure. This work determines

that the root of reuse-based attacks is the correlation between cache fill and demand

memory access. In other words, the cache lines existing in the cache must be accessed

before a process. For example, in the Flush+Reload attack, after the attacker evicts the

shared data, if the victim user accesses the target cache line, the cache line must be

brought back to the cache. This deterministic causation is the core factor of the attack.

Based on this point, the Random fill Cache Architecture modified the conventional cache

filling strategy and applied it to the L1 cache. When a cache miss occurs in the L1

cache, the demanded cache line will not be cached in L1 but directly forwarded to the



Chapter 2 Cache Architecture and Cache Timing-side channel attacks 39

processor. Then, one cache line is randomly selected and cached from a pool formed by

the neighbours of the demanded cache line. The Random fill cache only performs the

storage of this selected cache line but does not send it to the processor during this access.

As a result, the cache state change is only caused by the randomly selected cache line.

Hence, the attacker cannot directly learn the cache line usage from the victim process

and the cache state. Although the accessed data is not stored in the cache, filling a

neighbouring cache line in the cache still guarantees the performance of a cache. This is

due to the spatial locality of the memory; if a particular memory location is referenced

once, then the nearby locations are likely to be referenced shortly. Nevertheless, the

Random fill Cache Architecture was proposed for the L1 cache and may not be suitable

for L2 or L3 caches.

2.6 Advanced Contention-based Attacks on Randomisa-

tion Remapping Cache

This section focuses on how contention-based attacks can be achieved on a randomisa-

tion remapping cache since this is essential for evaluating the security of such a cache

design. As explained in Section 2.3.3, a contention-based attack’s core procedure is

using a few cache lines from the attacker process to evict the security-sensitive data.

This eviction could be done easily on a conventional cache but not on a randomisation

remapping cache. Therefore, a critical phase, finding those cache lines which can evict

security-sensitive data, namely the Profiling Phase, must be done at the beginning of

the attack. Many advanced profiling methods have been proposed in the past 5 years

[71, 75, 57]. These methods weaken the randomisation remapping cache’s protection

against contention-based attacks.

After the profiling phase, the attacker uses those identified cache lines to implement

many rounds of contention-based attacks on any of the targets mentioned in Section

2.3.4. The attack processes have been discussed in Section 2.3.3. Such a phase is called

the Exploitation Phase [58]. These two phases will be discussed within the following two

subsections. We will also explain the state-of-the-art profiling method [57].

2.6.1 Profiling Phase

The profiling phase is unnecessary when attacking a conventional cache. The index bit

of the address determines the cache set. Therefore, the attacker only needs to allocate

themselves S ×W continuous cache lines in the attacker program, and then they have

sufficient cache lines to occupy a whole level of cache. S and W indicate the number of

sets and ways in a level of cache. This method becomes impossible in a randomisation

remapping cache since all addresses are remapped using a cryptographic primitive or
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a table. After the remapping, those S × W cache lines will be randomly distributed

and not continuous anymore. Therefore the attacker cannot ensure these cache lines

are sufficient to occupy a cache or even a specific cache set. To successfully achieve

a contention-based attack, the attacker must find a set of cache lines that guarantees

the eviction of the victim cache line or has a higher probability than randomly picking

addresses. This set of cache lines is called the Eviction Set [42]. As mentioned at the

beginning of Section 2.6, finding and constructing enough such eviction sets is called the

Profiling Phase.

2.6.1.1 Profiling For Fully Congruent Eviction Sets

Fully Congruent Eviction (FCE) Sets are the opposite of Partially Congruent Eviction

(PCE) Sets, which indicates that all members in this eviction set have the exact mapping

as the targeted cache line. There are no PCE Sets in conventional caches and caches

that do not have partitions, for example, a CEASER cache [59]. The definitions and the

differences will be further discussed in Section 2.6.1.2.

Some profiling methods for finding the FCE sets were proposed [42, 60]. These methods

use an algorithm to filter out the cache lines that can cause contentions in a cache set.

More specifically, when attacking a cache with static mappings, such as a conventional

cache or CEASE cache [59], repeatedly loading the cache with cache lines will eventually

cause an eviction. This indicates that one cache set is full, and the last cache line belongs

to the cache set. The attacker can finally find the cache lines that contend in a cache set

by accessing part of the accessed cache lines and examining if the contention still exists.

These cache lines then form a FCE set.

2.6.1.2 Profiling For Partially Congruent Eviction Sets

ScatterCache [80] was claimed to defeat a contention-based attack that applied an FCE

set. As discussed in Section 2.4.2, ScatterCache and CEASER-S (we call them CEASER-

S-like Caches below) combine the CEASER cache [59] and Skewed cache [66], signifi-

cantly reducing the possibility of finding a cache line with the exact mapping as a target

cache line. For a CEASER-like cache, if a cache line F can evict the target cache line A,

the attacker can guarantee that before the next re-keying, cache line F is mapped to the

same cache set as cache line A in all cache ways. For a CEASER-S-like Cache, this will

not be true. Since each way has its own mapping, cache lines F and A may be allocated

into the same cache set of way 0, but with an extremely high probability that they do

not share the same set in other cache ways. As a result, cache line F may or may not

evict cache line A when cache line F is accessed next time. Such a cache line is called

as Partially Congruent Cache Line. This cache line F can be used to form a Partially

Congruent Eviction (PCE) Set. Relatively, the attacker still has an very small chance of
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finding a cache line B with the exact mapping as cache line A in all cache ways. Such a

cache line B is called a Fully Congruent Cache Line, which can be used to form a FCE

set as mentioned in Section 2.6.1.1.

Figure 2.7: An example of a FCE set and PCE set. Address A is the victim cache
line. Address B, C, D, and E can form a FCE set and addresses F, G, H, and I can

form a PCE set.

An example of a PCE set and an FCE set are shown in Figure 2.7. In Figure 2.7 (a),

there is a 4-way CEASER-S cache with 4 sets and 4 partitions. In Figure 2.7 (b), address

A is the victim cache line which could be placed into any labelled position in the cache.

Addresses B, C, D and E have the exact mapping as address A, so they can form a FCE

set with 4 eviction cache lines. Addresses F, G, H, and I only have the same mapping

with address A in at least one way, and the mappings in other ways can be ignored.

They can form a PCE set with 4 eviction cache lines. The probability of finding a fully

congruent cache line can be calculated as P = 1
SW , where S and W indicate the number

of cache sets and cache ways, respectively. As fully congruent cache lines are extremely

difficult to find in a CEASER-S-like cache, building an eviction set with fully congruent

cache lines also becomes impractical. However, building a PCE set is the only possible

method of attacking a CEASER-S-like cache. Therefore, Scattercache was also evaluated

by applying a PCE set [80]. However, the evaluation was still not accurate because

the paper made a non-precise assumption: The eviction probability must be ≥ 99%.

Due to this assumption, Scattercache’s security against contention-based attacks was

overestimated.
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Later, Prime+Prune+Probe (PPP) was proposed as a new profiling method [57].

This method enhances and generalises the profiling of PCE sets. PPP decreases the

number of accesses needed to a practical number. We explain the profiling procedure

with an example in Figure 2.8. To avoid confusion with eviction cache lines in Figure 2.7,

we use numbers to represent candidate cache lines.

The first step of profiling is called Prime. The attacker randomly selects K cache lines

and loads them into the cache. These K cache lines are initial candidates for profiling.

When loading these cache lines into the cache, some cache lines could be evicted by other

cache lines within these K cache lines. Hence, the number of cache lines that are left

in the cache is K ′. In the example of Figure 2.8, the attacker loads 6 cache lines (cache

line 0 to 5) into the cache. As mentioned before, the cache way is selected randomly.

Based on the cache mapping table in Figure 2.8(a), the cache lines are placed as shown

in Figure 2.8(b). All potential placements of the victim cache line, cache line A, are

highlighted in green. Both cache lines 0 and 5 are placed in cache way 0. Since both

cache lines are mapped to set 3 way 0, cache line 5, which is accessed later than cache

line 0, evicts cache line 0. Finally, 5 out of 6 cache lines reside in the cache. In this

example, K is 6, and K ′ in this step is 5.

Figure 2.8: An example of the PPP profiling process. (a) shows the table of cache
line mappings, X indicates do not care. (b,c,d,e) shows the four steps of PPP profiling.

In the second step, the attacker re-accesses those K addresses a few times, called pruning.

By doing this, there could be more addresses being cached. In other words, K ′ could

increase while the number of repetitions of the second step increases. When those

evicted cache lines are re-accessed during the pruning, they have a significant chance of
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being placed in another way. Therefore, they may finally get cached. In this case, K ′ is

incremented. In the worst case, this cache line could conflict with any of the K addresses

again, and finally, one cache line is evicted, and another is cached. In this case, the value

of K ′ maintains the value. Overall, the number of cached cache lines K ′ could get very

close to or even equal K by repeated pruning. If there are still cache lines conflicting

after a few iterations of pruning, the attacker can also withdraw those addresses and

use K ′ addresses for the later steps, which is also called aggressive pruning. In our

example, the attacker re-accesses 6 cache lines, which is shown in Figure 2.8(c). Since

cache line 0 was evicted in the previous step, it is loaded back again. This time, cache

line 0 may be placed into another cache way, for example, way 2. Based on its mapping

in Figure 2.8(a), cache line 0 is placed in set 2 way 2, which currently is empty. Since

other cache lines are still in the cache, they will stay where they were.

In the third step, the attacker triggers or waits for the victim process. If the attacker

is lucky, the victim’s cache line can replace an attacker’s cache line. This depends on

the capturing probability of profiling, which will be discussed later. In our example in

Figure 2.8(d), cache line A is the victim cache line. After the victim process is triggered,

cache line A is loaded into the cache. Cache way 0 is randomly selected by the cache.

Based on the mapping, cache line A should be placed in set 3 way 0. Cache line A evicts

cache line 5, which currently occupies this position.

Furthermore, in the last step, the attacker re-accesses K ′ cache lines and examines which

one was missing. The missed cache line is then added to a PCE set. In our example

in Figure 2.8(e), after re-accessing those six cache lines, the attacker can notice cache

line 5 is missing. Therefore, cache line 5 is added into a PCE set, similar to the address

F in Figure 2.7. Other members of a PCE set can also be found like this. It is worth

noting that cache line 4 in Figure 2.8 may become another PCE cache line since it has

the exact mapping as cache line A in way 3.

As mentioned in step three, the probability of a victim cache line evicting one of the

K ′ cache lines is called the capturing probability 1. This probability depends on the

cache mapping, replacement policy and if the victim cache line has already been cached

before the attacker’s profiling starts. When the victim cache line is not cached, and the

replacement policy is the Random replacement policy, each member of K ′ has an equal

probability of being evicted by the victim cache line. Therefore the capturing will only

depend on the coverage of K ′ of total S ×W cache lines or as a formula:

PC =
K ′

S ×W
(2.1)

1In the paper of PPP[57], this is named the catching probability. We rename it as the capturing
probability to avoid confusion.
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It is also worth noting that W cache lines are not enough for a PCE set. When using

the FCE sets, the attacker ensures W cache lines occupy all places where the victim

could be placed. When using the PCE set, this will become probabilistic rather than

deterministic. If the number of cache lines within a PCE set increases, the attacker can

have a better chance to reserve the places where the victim cache line could be placed.

Such probability is named the Eviction Probability, PE . As a trade-off, if the attacker

wants an eviction set with a higher eviction probability, the profiling time required will

be increased. The assumption of ScatterCache [80], which is that the eviction probability

must be 99%, hugely increases the profiling time. The attacker uses an eviction set with

a lower probability which takes less time to build, and can still achieve a contention-

based attack [76]. The eviction probability depends on the size of the eviction set and

the replacement policy. For attacking when the Random replacement policy is applied,

the probability can be calculated as equation 2.2. G indicates the size of the eviction

set.

PE = 1− (1− 1

W
)
G
P (2.2)

There is another issue of profiling that could reduce the probability of building the

eviction set. After the attacker profiles one round, the victim cache line may still reside

in the cache. This may not be a problem if the second round of the profiling successfully

primed the victim cache line. However, if the attacker did not successfully evict the

victim cache line, both the victim cache line and the eviction set’s candidates will remain

in the cache, and no eviction cache line can be found in this round. A solution to this

issue is either accessing many addresses to push out the eviction set or bearing a lower

success rate of the attack [58].

2.6.2 Exploitation Phase

During the exploitation phase, the attacker uses the eviction sets obtained from the

profiling phase to attack the target using one of the contention-based attacks. The

primary process of implementing an attack is similar to what has been mentioned in

Section 2.3.3, but since the eviction set does not guarantee the eviction of the victim

cache line, the attacker may need to take some extra effort. After the attacker primes,

the victim cache line is accessed and may evict one of the cache line from the eviction set.

During the probe step, the eviction set is re-accessed. If the victim cache line was not

evicted by any cache lines from the eviction set, the victim cache line could still remain

in the cache after the probe step. This can disrupt the second round’s exploitation and

further reduce the attack success rate, unless the attacker somehow pushes the victim

cache line out, such as evicting the entire cache [80].
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Another major distinction comes out when the second round of attacks starts. For a

conventional attack using the FCE set, the attack does not need to be repeated on the

same victim cache line, but due to the PE of a PCE set, the attack on the same victim

cache line might need to be repeated a few times. After the first round of exploitation

on an address, the PCE set still resides in the cache. This may not become an issue

if at least one eviction cache line occupies a place that could conflict with the victim

cache line, but it could reduce the eviction probability if fewer places with conflicts are

occupied. Otherwise, the eviction set becomes useless in the worst case when none of it

occupies any conflict places and is stuck in the cache. The attacker may use the clflush

instruction to flush out the eviction set before the next round of exploitation so that the

eviction set can still be reused [76]. Overall, this increases the difficulty of implementing

a real contention-based attack.

2.7 Simulation Tools For Cache Evaluations

To evaluate a secure cache design, designers normally need to consider several aspects of

the cache, such as cache performance, cache security against specific attacks, hardware

overhead and power consumption [59, 80, 63, 74, 73]. To perform these evaluations, de-

signers require some dedicated tools to simulate the proposed cache design and compare

it with the existing cache designs based on the results. We introduce the simulators and

tools that are used in the later chapters.

The gem5 simulator [15] is a well-known open-source simulator, which can be used to

perform computer architecture simulations. The simulator supports multiple instruction

set architectures, including X86, SPARC, MIPS, ARM, etc. By modifying the cache

models in the gem5 simulator, the designer can evaluate the cache performance such as

cache miss rate, Instructions Per Cycle and Miss Per Kilo Instructions, under specific

workloads.

CACTI6.0 [50] is a widely used cache access modelling tool to estimate the delay, power

and area. Since building a cache on a physical chip normally requires a dedicated

memory compiler and lots of effort in building and testing the cache system, most

secure cache designs [59, 80, 63, 74, 73] evaluate their designs in the above aspects by

estimating the cache modifications with CACTI6.0. It allows users to modify cache

configurations, such as cache size, associativity, access mode, etc. It also supports four

different process technologies: 90nm, 65nm, 45nm, and 32nm. Nevertheless, CACTI6.0

cannot estimate the overheads caused by the additional modifications of a dedicated

secure cache controller. To overcome this, the designer must evaluate the cache control

logic modifications separately.

To estimate the cache control logic, at least a gate-level modified cache controller for

the proposed cache design is needed. To do this, for evaluating our caches, we modify
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the control logic of the SiFive inclusive cache [23] and synthesised the logic by using

an open-source Nangate 45nm technology library [69]. We will further discuss these in

Section 4.6.

Based on the contention-based attack with PPP profiling that was discussed in 2.6, we

develope our own security simulator to evaluate the cache security against the contention-

based attack. This will be explained in Section 3.3.

As a short summary, Table 2.4 lists all the tools and evaluation factors.

Evaluation Factors Tools

Cache Performance gem5 simulator [15]

Cache Delay, Power, Area
CACTI6.0 [50] , SiFive inclusive cache
[23], Nangate 45nm technology library [69]

Cache Security Self-developped Security Simulator

Table 2.4: A summary of cache evaluation factors and tools.

2.8 Summary

The cache is used to store data temporarily, and has been used in CPU design for

decades. Due to the memory temporal locality, the accessed data will likely be accessed

again. The cache helps the cores hold more recently used data and avoid a longer stall in

the cores for directly accessing the data from the main memory, dramatically improving

the processor’s performance. However, the normal behaviour of the cache can also be

vulnerable. Compared to a cache miss, a cache hit can show different results regarding

power, timing, etc. For example, an attacker could deduce if a specific cache line was

accessed based on timing differences. This is named as a timing side-channel attack. By

obtaining knowledge of the cache line residency, the attacker could retrieve some useful

information without privilege, such as an other user’s partial encryption key.

Many countermeasures have been proposed against cache timing side-channel attacks

[80, 60, 63, 43]. Most secure cache designs focus on cache contention-based attacks. This

is because a contention-based attack does not require shared data between the attacker

and victim processes. Therefore, a contention-based attack is more dangerous than a

reuse-based attack. The countermeasures can be split into two types: Active defence,

such as a cache monitor, and Passive defence, such as randomisation remapping using a

cryptographic function to obfuscate the entire cache mapping. Passive defence protects

all users so that it cannot be bypassed. We summarised major cache timing side-channel

attacks and their countermeasures on Table 2.5.

Although some existing randomisation remapping cache designs have dramatically in-

creased the difficulty of implementing a contention-based attack, a newer profiling method
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Table 2.5: The summary of major cache timing side-channel attacks and their coun-
termeasures.

Type of attacks Defence Strategy Countermeasures

Cache Partitioning PL Cache [79]
NoMo Cache [26]
Newcache [43]
CEASER Cache [59]
CEASER-S Cache [60]

Contention-Based Cache Remapping ScatterCache [80]
(Prime+Probe, IE-Cache [49]
Evict+Time [53]) Mirage [63]

Chameleon Cache [74]
PhantomCache [73]

Cache Monitoring SHARP[83]
SCAAT [67]

Reuse-Based Disabling CLFLUSH SHARP[83]
(Flush+Reload [85], Bypass Cache Filling Random Fill Cache[42]
Cache Collision[18])

could still weaken such protection against an attack. Increasing the re-keying frequency

could be a solution, but a higher re-keying frequency can lead to cache performance

degradation. Other randomisation remapping cache designs provide more protection

against contention-based attacks but have huge area or power overheads.

Based on the state-of-the-art profiling method mentioned in Section 2.6.1.2, we observed

that cache associativity can significantly impact the implementation of contention-based

attacks. Hence, we propose a novel idea called logical associativity, which will be intro-

duced in chapter 3. The logical associativity allows the user to modify the associativity

dynamically while the processor is powered on. When a contention-based attack is up-

graded by the attacker, the user can adjust the logical associativity, preventing huge

performance degradation due to the high re-keying frequency. We propose two differ-

ent cache designs based on logical associativity in chapters 4 and 5. Using the tools

introduced in 2.7, we also evaluate these cache designs.



Chapter 3

Logical Associativity

As we discussed in Section 2.4, many cache designs against contention-based attacks have

been proposed in the past 15 years. Last-level cache protection has been considered since

2015. Randomisation remapping cache, which we discussed in Section 2.4.2, has become

a practical solution and focus for the secure last-level cache. However, since contention-

based attacks have become stronger, some randomisation cache designs that provide

fixed protection have been cracked and are vulnerable [59].

Some other randomisation cache designs with frequent remapping (re-keying) or per-

manently strong protections have been proposed to fix the security gap caused by new

contention-based attacks. Nevertheless, older designs could be forced to have a high re-

keying frequency, which causes significant performance loss, if a new contention-based

attack is developed in the future. The later designs may require huge overheads and

have performance degradation while providing greater protections.

In this chapter, we explain a novel idea: logical associativity. This idea can be added

to existing cache designs like the CEASER-S cache [60], to enhance the security against

contention-based attacks or to balance the performance of the cache.

We first explain the motivation for logical associativity in Section 3.1. Then, in section

3.2, we discuss the three properties of logical associativity, reconfigurability, overlapping

and alienation, and how these properties enhance the security against contention-based

attacks. Section 3.3 discusses the simulator we implemented for security evaluation.

Section 3.4 explains how the indexing function was selected based on the performance

evaluation. Finally, section 3.5 provides a summary of logical associativity.

48
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3.1 Motivation

While the randomisation remapping cache has been improved, the implementation of

contention-based attacks has also been refined. However, nobody can predict how aggres-

sive contention-based attacks could be in the future. As the hardware designer, we must

not build up a protection scheme for the cache which is only valid against contention-

based attacks with the current implementation complexity level, since a more complex

attack with a stronger profiling method could be proposed later and becomes a more

dangerous threat. However, providing very strong protection against contention-based

attacks may cause unnecessary performance degradation. As a result, secure cache de-

signs against contention-based attacks should provide flexibility to allow users to adjust

between performance and security, based on their requirements.

Based on other research [57, 86], we found that the cache parameters such as cache size,

replacement policy and cache associativity could affect the difficulty of implementing

a cache contention-based attack. Cache associativity especially plays a significant role.

Also, the high re-keying frequency of the randomisation remapping cache can signifi-

cantly reduce the cache performance. Therefore, we propose a novel idea which gives

further flexibility, the flexible associativity of randomisation remapping caches. By in-

creasing the associativity and keeping the re-keying frequency relatively low, the cache

could enhance its security against more aggressive contention-based attacks while the

performance degradation is smaller. We name this method Logical Associativity.

3.2 Introduction of Logical Associativity

In this section, we explain the idea of logical associativity. We first introduce what

logical associativity is, and then discuss three properties of logical associativity: Recon-

figurability, Overlapping and Alienation. We will also explain how these properties can

help the randomisation remapping cache enhance its security against contention-based

attacks.

3.2.1 Logical Associativity

In most existing randomisation remapping last-level cache designs [59, 60, 80], as men-

tioned in 2.4.2, when a cache line needs to be accessed, the address of the cache line

is encrypted by a dedicated function. When the encrypted address is ready, it can be

segmented into two parts, encrypted tag bits and encrypted index bits. The bit width

of the encrypted tag and encrypted index bits are the same as the tag and index bits in

the original address, respectively. The encrypted index bits are used to index the search

in the cache. Unlike existing designs, after the encrypted index-bits are calculated, the
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cache can access not only the set pointed to by the encrypted index-bits, namely the

Home Set, but the following H − 1 cache sets as potential placement positions; we

name this logical associativity.

Figure 3.1: An example of cache access order of the CEASER-S cache with logical
associativity. The cache has 4 cache ways, 4 cache sets and logical associativity of 2.
Green and yellow check marks indicate first round and second accesses, respectively.

These H cache lines form a logical cache set, and the value H is the logical associativity.

Within this logical set, each cache line is a logical cache way. For example, we add the

logical associativity to the existing cache, CEASER-S cache. In Figure 3.1, we show the

access orders in this cache. This is a cache example with 4 cache ways, 4 cache sets and

H = 2. After the encrypted index bits are calculated based on the appropriate key, each

cache way receives the corresponding cache set number. The set numbers are 0,1,2,3

in cache ways 0,1,2,3, respectively. In CEASER-S or ScatterCache, the cache will only

search the cache lines in S0W0, S1W1, S2W2, and S3W3. S indicates the set number,

and W indicates the way number. These blocks are highlighted in green. For a cache

with logical associativity, after the cache searches these 4 cache lines, namely the home

set, the cache then performs burst-lookup-like accesses and accesses the following cache

ways in the corresponding cache set. The cache lines S1W0, S2W1, S3W2, and S0W3

are accessed. Since S3 is the last physical set in the cache, the following cache set of

S3W3 is S0W3.

There are three properties of logical associativity. When it is applied to a randomisation

remapping cache, these properties can help the original cache enhance security against

contention-based attacks. The first property is that the associativity becomes adjustable,
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which is Reconfigurable. Secondly, due to the increase in associativity, the placement

of some cache lines can cause Overlapping, which can further increase the attack

complexity. Lastly, Alienation allows different users to have different associativity. We

explain these three properties further in the later subsections.

3.2.2 Reconfigurability

We know that increasing the cache associativity in a randomisation remapping cache

could dramatically increase the contention-based attack complexity. The reason that

a high associativity could affect the attack complexity is different from re-keying. As

discussed in Section 2.4.2.2, re-keying limits the maximum time for an attack. Therefore,

the attacker can only construct an eviction set with limited sizes. A high associativity

leads to more potential placement positions for the cache accesses. In other words, by

applying an eviction set with the same size, the attacker can only occupy a smaller

portion of the victim’s potential placement positions when the associativity is larger.

However, a higher associativity always means higher cache access latency. An extreme

example would be a fully associative cache, which may not be practical for a large L3

cache implementation.

The reconfigurability of the cache allows the privileged user, for example, a cloud vendor,

to dynamically increase the associativity. Caches with self-reconfigurability have been

proposed for many years, for example the SeReMo cache [30]. Although the original

goal of the self-reconfigurable cache is to reduce the performance impact when high

contention misses are detected, this strategy is also useful to counter a contention-based

attack. In the SeReMo cache, each of the four cache lines is segmented as a module, the

reconfigurability is achieved by re-setting the connection netlists between the modules,

which is similar to the reconfiguration of an FPGA. When the associativity of the cache

is doubled, the set number is halved. In other words, SeReMo temporarily changes the

cache’s physical arrangement.

However, logical associativity achieves reconfigurability in another way. We do not need

to modify the original mapping of the randomisation remapping cache but we can add

another module, namely a logical associativity unit, to store the logical associativity set-

tings and send extra requests to the tag and data storage of the cache. We will explain

this module in Section 4.3.1. The logical associativity can only be set by the privileged

user. After the machine is booted, the privileged user can still modify the logical as-

sociativity. However, the modification is limited to increasing the logical associativity.

To decrease the logical associativity, flushing the entire cache or over-ranged cache lines

is needed. This is because the cache lines placed with the old logical associativity may

not be found with the new logical associativity. An example is shown in Figure 3.2.

The Figure 3.2(a) shows a CEASER-S cache with logical associativity, and the initial

logical associativity is set to 1 (equivalent to no logical associativity). A cache line A
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Figure 3.2: Two examples of the impact of the logical associativity changes on the
existing cache lines. (a) logical associativity is increased from 1 to 2. (b) the converse

case. Now, the cache line A is not accessed. This can cause an error.

is placed in S1W1 under H = 1. If H is now increased to 2, the cache will search set

1 and set 2 in way 1. Therefore, the cache line A could still be found with the new

logical associativity. However, Figure 3.2(b) shows the opposite case. The cache line A

was placed with H = 2. Although the cache line has the encrypted index bits as 1, the

cache line A is placed in S2W1. When the logical associativity decreases to 1, the cache

will only search the home set of way 1, S1W1. Hence, accessing cache line A leads to

a cache miss. Another copy of the cache line A will then be sent to the cache, which

causes a fatal error in the cache operation due to a memory coherence error.

It is worth noting that increasing the logical associativity is not equivalent to increas-

ing the physical (or conventional) associativity or the number of partitions which is the

number of different mappings shared by cache ways. Partitions are explained in Sec-

tion 2.4.2.3. In a skewed randomised remapping cache, such as CEASER-S [60], there

are no correlations between the mappings of each physical cache way. Although the

attacker cannot observe the H set numbers when the logical associativity is set to H,

the mappings in the later H − 1 sets all depend on the Home set number. From such

a perspective, logical associativity is more similar to the partitions in the CEASER-S

cache. The major difference is due to the second property of logical associativity, which

is overlapping as explained next.

3.2.3 Overlapping

As discussed in Section 3.2.2, not only logical associativity could cause the associativity

reconfigurations but also other cache designs [30]. Ideally, doubling the physical asso-

ciativity should have equivalent effectiveness against contention-based attacks as logical

associativity. However, this is not true, due to the overlapping of logical associativity.

Overlapping indicates the overlapping potential placements between different logical

cache sets. Such overlapping could reduce the eviction probability of the attacker’s
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eviction set. Furthermore, this changes the success rate of contention-based attacks.

To explain the overlapping, we first provide three examples in Section 3.2.3.1 to show

the implementation of a contention-based attack on the original CEASER-S cache with

different configurations and without logical associativity. We then compare these with

Contention-Based attacks on the CEASER-S cache with logical associativity in Section

3.2.3.2.

3.2.3.1 Without Logical Associativity

Figure 3.3: An example of the Prime+Probe attack on a CEASER-S cache with one
way and one partition.

A simplified example of a contention-based attack on an example CEASER-S cache

with one cache way is shown in Figure 3.3. We assume the victim cache line V has the

encrypted index bits set to 1. By following the PPP profiling method [58], the attacker

first randomly accesses some cache lines and tries to occupy S1. After a few rounds of

pruning, cache lines F , G, H, and I finally reside in S0, S1, S2, and S3. After the

victim access the cache, cache line G is evicted by cache line V . Hence, by re-accessing

those cache lines, the attacker could access cache line G, which results in a cache miss.

Then, the attacker adds cache line G into their eviction set. During the attack phase,

the attacker accesses their eviction set. Since G has the same encrypted index bits as V ,
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which is 1, G can only be placed in S1 again. Finally, the attacker deduces the victim

cache line V was accessed due to another cache miss of cache line G.

Figure 3.4: An example of the Prime+Probe attack on a CEASER-S cache with 2
ways and 1 partition.

As a comparison, we show a similar example on a CEASER-S cache with two ways but

one partition, in Figure 3.4. During the construction of the eviction set, the victim

cache line V evicts cache line K, and K becomes a member of the eviction set. During

the attack, the cache line V is reloaded into the cache. However, since the cache way

is selected randomly, cache line V could be placed in either cache way 0 or 1. Since

both ways share the same partition, K can also be placed in either way 0 or way 1.

Hence, the probability that K can evict V is 50%, which is less than CEASER-S with

one cache way and one partition in Figure 3.3. In Figure 3.4, the victim cache line V is

successfully evicted by cache line K.

Another example is shown in Figure 3.5. We apply similar conditions as the previous

two examples, except we change the cache to 2 cache ways and 2 partitions. During

the construction of the eviction set, the victim’s cache line V evicts the cache line G

in S1W0. Then, cache line G becomes a member of the eviction cache set. During the

attack, cache line V could be placed in either way 0 or way 1. In this example, cache

line V has been previously stored in way 1. Since way 0 and way 1 are two different

partitions, in way 1, cache line V may to be mapped to a different cache set than S1.

In this example, it is placed in S2W1. Another cache line Z was placed in S1W0 due

to previous accesses. Because cache line V is only congruent cache line G in way 0, the

attacker cannot predict where cache line G could be mapped to in cache way 1. It is
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very unlikely to be mapped to the same set as cache line V , in a real-sized cache. In

other words, the eviction probability of cache line G being in way 1 is equivalent to that

of a random cache line.

Figure 3.5: An example of the Prime+Probe attack on a CEASER-S cache with 2
ways and 2 partitions.

Based on these three examples, we can see that achieving a contention-based attack on

a randomisation remapping cache like the CEASER-S cache becomes more complicated

when the associativity or the number of partitions is increased. When the cache has

one way and one partition, the eviction is always successful since the eviction set can

always occupy the position where the victim cache line will reside. When the cache has

two ways and one partition, the attack success depends on whether the eviction cache

lines and the victim cache line are mapped to the specific partition and the same cache

way. This can be any of the cache ways in that partition. When the cache has two ways

and two partitions, the attack almost can only succeed if the eviction cache lines and

the victim cache line are mapped to the specific cache way.

3.2.3.2 With Logical Associativity

We now provide an example of the logical associativity on a CEASER-S cache with one

cache way and H = 2 is shown in Figure 3.6. As with CEASER-S, F , G, H, and I still

reside in S0, S1, S2, and S3. During the victim access, since H = 2, the cache line V

belongs to logical set 1. This means that the cache line V could be placed in either S1,

which is its home set, or S2. In the example, we assume cache line V is placed in S1
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Figure 3.6: The first case of the Prime+Probe attack on a CEASER-S cache with
logical associativity (Both the victim cache line and eviction cache line share the same

logical set.) .

during the eviction set construction. Cache line G, which was placed in S1, is evicted by

the victim. Hence, similar to other examples in Section 3.2.3.1, the cache line G is added

to the eviction set. However, here comes the uncertainty for the attacker. Such a cache

line G may belong to logical set 0, or logical set 1. In other words, the eviction cache

line may be in the same logical set as the victim-targeted cache line, or there is a partial

set-overlapping in the logical set of both the eviction cache line and the victim-targeted

cache line. Also, when the logical sets of the victim cache line and the eviction cache

line partially overlap, the placement of the victim cache line during the attack can make

the attack completely different. We will discuss these three cases separately.
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In the first case, both G and V are from logical set 1. Hence, in the attack phase, the

attack succeeds if G is placed into the same cache set as V . This is similar to the example

of CEASER-S with one partition and two cache ways in Figure 3.4. In Figure 3.6, we

show examples of a successful attack and a failed attack. When the attack succeeds,

both cache lines must be placed in the same set. Otherwise, for example, G is placed in

S2 but V is in S1, so the eviction of this round failed.

In the second and third cases, which are distinct from CEASER-S without logical as-

sociativity, the eviction cache line belongs to a different logical cache set. For example,

cache line G now belongs to logical set 0. Compared to the first case, these cases have

no obvious difference during the construction of the eviction set for the attacker. How-

ever, a huge impact in terms of the attack complexity can be seen in the attack phase,

as explained in the following paragraphs. In the second case, the victim cache line is

placed in the overlapping range of both cache lines’ logical sets. Whereas in the third

case, the victim cache line is placed outside the overlapping range.

An example of the second case is shown in Figure 3.7. The victim cache line V is still

placed in S1, which is within the overlapping range between logical set 0 and logical

set 1. Hence, the attack succeeds when G is also placed in S1, which is within the

overlapping range. Otherwise, the attack fails if G is placed in the S0.

Figure 3.7: The attack phase under the second case of the Prime+Probe attack on a
CEASER-S cache with logical associativity (The victim cache line and eviction cache
line are from different logical sets, and the victim is placed in the overlapping range.) .



Chapter 3 Logical Associativity 58

Figure 3.8: The attack phase under the third case of the Prime+Probe attack on a
CEASER-S cache with logical associativity (The victim cache line and eviction cache
line are from different logical sets, and the victim is placed outside the overlapping

range.)

The third case is shown in Figure 3.8. The victim cache line V is now placed in S2,

which is different from the placement during the construction of the eviction set. S2 is

outside the range of logical set 0, therefore, the attacker’s cache line G cannot evict V

at all. In other words, the eviction cache line becomes useless.

Compared to the two examples without logical associativity shown in Figure 3.3 and Fig-

ure 3.4, adding logical associativity reduces the effectiveness of the constructed eviction

cache lines. Although such a method is less effective than increasing both the physi-

cal associativity and partitions, logical associativity still provides stronger protections

against contention-based attacks than increasing physical associativity only, which can

be achieved in the SeReMo cache [30].

To prove this, we set up an experiment. We use our own simulator (the simulator is

further discussed in Section 3.3) to compare the effectiveness against a contention-based

attack of increasing logical and physical associativity. In the experiment, three different

CEASER-S cache configurations are compared under Prime+Probe attack, including 16

ways and 16 partitions, 32 ways and 16 partitions, and 32 ways and 32 partitions. These

configurations are applied to an L3 cache with an 8MB size, which is the same cache
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size as in other research [60, 57]. Hence, it allows us to provide a fair comparison and

verify our simulation results based on their previous theoretical results.

Table 3.1: The success rate of Prime+Probe attacks with different associativity.
(H indicates the logical associativity, and P indicates the number of partitions. H=1

indicates no logical associativity.)

Eviction Set Success Rate (%)
Set 16 ways 32 ways

Size (G) P=16 P=32
H=1 H=2 H=1 H=1

176 50 23 29 16

576 90 58 68 44

752 95 67 78 53

We use three cache configurations to compare with the logical associativity of 2, 16

physical cache ways and 16 partitions on a CEASER-S cache. Since the eviction set

is only valid before the entire cache is re-keyed, we ignore the re-keying function for

this experiment. Here, we assume the attacker has successfully built eviction sets with

three sizes (176, 576, 752), which is in line with other work [57]. The success rates

of Prime+Probe on CEASER-S with 16 ways, shown in Table 3.1, align with other

theoretical results [57]. Compared with CEASER-S with 16 cache ways and 16 partitions,

all other caches dramatically reduce the success rates of the Prime+Probe attack. For

example, for the eviction set with 752 members, the success rate on a CEASER-S with 16

cache ways and 16 partitions is about 95%. However, this value is reduced to 67%, 78%

and 53% in other cache configurations, respectively. The logical associativity reduces

the CEASER-S cache attack success rates compared with CEASER-S with 32 ways and

16 partitions, but is still higher than CEASER-S with 32 ways and 32 partitions. This

also applies to attacks using different eviction sets of different sizes.

In conclusion, logical associativity is not just adding a potential placement position for

the cache lines, like increasing the physical cache ways but maintaining the partitions.

With overlapping, it further reduces the effectiveness of the eviction set in an attack so

that the success rate of implementing a contention-based attack will be lower. Although

increasing both the number of partitions and physical cache ways can be more effective

against a contention-based attack, this can only be achieved by physically redesign-

ing the cache architecture, which contradicts the reconfigurability of the randomisation

remapping cache. Overall, logical associativity improves on the SeReMo cache [30] in

mitigating contention-based attacks.
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3.2.4 Alienation

Alienation is another property of logical associativity, which allows cache accesses with

different IDs to have different logical associativity settings. This ID can be a user ID or

a process ID. By providing finer-level protection against contention-based attacks, the

performance degradation can be limited only to the users or processes that require extra

protection. Hence, this can improve the overall cache performance. In this subsection,

we only introduce alienation but do not discuss the implementation. The implementation

will be discussed in Chapter 5.

Figure 3.9: The alienation example of the logical associativity. User 0 has a logical
associativity of 2, and user 1 has a logical associativity of 3.

As we mentioned in 3.2.2, logical associativity does not change the physical connection

netlists in the tag and data storage. Therefore, if the cache knows which process or user

requires what logical associativity, those accesses could be made with distinct logical

associativity. In Figure 3.9, as an example, we show the different logical associativity

views from different users when alienation is applied. When the cache receives a request,

the cache distinguishes the user by their ID. For example, if a processor core is limited to

a specific user each time, the cache only needs to know which core requests the cache line.

After parsing the ID, the cache can access the cache bank with the corresponding logical

associativity. Due to the reconfigurability, the logical associativity setting can even be

increased. User 0’s logical associativity setting is 2 and user 1’s logical associativity is 3.

Since higher logical associativity may lead to higher cache access latency, the user who

has the lower logical associativity can have a better performance. The lowest logical

associativity can be limited to a privileged user.
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3.3 Security Simulator

3.3.1 Brief Introduction to Security Simulator

We developed a security simulator to evaluate the Prime+Probe attack with PPP pro-

filing [57] on randomisation remapping caches. This simulator evaluates the security of

randomisation remapping caches with different configurations under contention-based

attacks. Unlike in the performance evaluations in the later content, we did not use

the gem5 simulator to evaluate security. The reason is that we are not evaluating the

current Prime+Probe attack but the Prime+Probe attack with an advanced profiling

method. Hence, we need to evaluate the security under the worst case. We made some

attacker-friendly assumptions. It is worth noting that in a real attack, these assumptions

are hard to achieve. Therefore, the success rate in a real attack should be less than or

equal to the results in our simulation. The assumptions are: there is only one targeted

victim cache line. An attacker can use all of the time for profiling before re-keying. The

attacker could trigger the access of the targeted cache line itself. Also, an attacker can

use clflush or other equivalent methods to aviod the issues of that the victim cache line

and the PCE sets may stuck in the cache during the profiling phase and the explotation

phase. These issues can reduce the attack success rate, which has been discussed in

2.6.1.2 and 2.6.2. Later, we analyse the obtained eviction set. Under a real attack or on

the gem5 simulator, this is hard to achieve.

Furthermore, in a real attack, the attacking code quality may also affect the attacking

quality. Since the randomised remapping cache with re-keying counts the number of

cache accesses, a bad attacking implementation could waste some cache accesses and

reduce the size of constructed eviction set.

3.3.2 Security Simulator Implementation

As mentioned in 3.3.1, the simulator implements the Prime+Probe attack with PPP

profiling [57]. The structure of the simulator is shown in Figure 3.10.

We separate the simulator into two parts. The first part profile the constructing of the

eviction set. The addresses of the victim-targeted cache line and all cache lines within

the eviction set are stored in a file. The second part of the simulator implements the

Prime+Probe attack using the stored eviction set. By setting the iteration rounds, each

eviction set is used many times. By calculating the average success rate of the attack

when applying different eviction sets, the Prime+Probe attack success rate on a specific

cache is evaluated.

In the profiling phase, the simulator allows the user to define basic cache parameters such

as cache size, cache physical associativity, and replacement policy. Since the simulator
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is used for randomisation remapping cache with or without logical associativity, the

simulator also allows changes to partitions, indexing function, re-keying period, the

maximum size of eviction set, and logical associativity. These parameters can be set

by a user script. In terms of the indexing function, our simulator supports SHA-3 and

PRINCE, we will discuss this in Section 3.4. In the simulator, we use a two-dimensional

array as Tag storage. Since the data storage itself is unnecessary, we ignore it in the

simulator. Each cache line has a dedicated variable to store its access status. This status

can be used for replacement policies like LRU.

Figure 3.10: The structure of our security simulator.

After the simulator is initialised, it randomly selects a value as the address of the victim-

targeted cache line. This value is also saved in the external file for the attacking phase.

All cache lines and their status in the cache are set to 0. Then, the actual profiling

starts. The simulator performs PPP profiling to the cache. The pruning step, which

is the second step of PPP profiling, starts after the fifth round. In each round, the

number of cache accesses is recorded. Also, the eviction cache line is recorded. The

PPP profiling runs until the cache access number reaches the re-keying period, or the

eviction set has reached the expected size. It is worth noting that these two cases are
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for two different circumstances. The former is for constructing the eviction set with the

maximum size within the fixed number of accesses. The latter one is for constructing a

fixed-size eviction set.

In the attacking phase, the user can set the rounds of the Prime+Probe attack for the

eviction set and its targeting victim cache line. The simulator reloads the addresses of

the entire eviction set and the victim target cache line. When using the eviction set

for the attack, we also prune the eviction set after the prime stage. This is to avoid

self-eviction and make use of most cache lines in the eviction set. After each round of

the Prime+Probe attack, the simulator records if the round of the attack succeeded, or

in other words if the victim cache line evicts any of the eviction set. The total success

rate is calculated after all rounds are finished.

3.3.3 Security Simulator Validation

As we discussed in section 3.3.1, the simulator applies the PPP profiling [57] on ran-

domisation remapping caches to construct PCE sets. Then, the simulator can measure

the success rate of evicting a targeted victim cache line when using a constructed PCE

set. Therefore, to validate the simulator, we need to construct and evaluate PCE sets of

some random addresses and compare them to the theoretical results obtained from the

equation 2.2 under different cache configurations.

In detail, we applied 10 different random addresses as the victim addresses in the sim-

ulator and constructed the PCE sets with sizes (G) of 176, 576 and 752 under three

different cache configurations. These configurations include a CEASER-S with 16 ways

and partitions, a CEASER-S with 32 ways and 16 partitions, and a CEASER-S with 32

ways and partitions. The random replacement policy is utilised. Each victim address

and the corresponding PCE set are tested 10k times in Prime+Probe attacks. The suc-

cess rate of the attack represents the eviction probability (PE) in the equation 2.2. The

success rates under different cache configurations are calculated as the average success

rates when applying different victim addresses. The simulated results and the theoretical

results are shown in Table 3.2. By comparing the simulated results and the theoretical

results, we found that the results are very close under different cache configurations. In

details, for example, under a CEASER-S with 16 ways and partitions, the success rates

of attacking 10 different addresses when applying an eviction set with the size of 176 are

50.46%, 50.74%, 49.63%, 51.09%, 49.16%, 49.89%, 50.15%, 49.78%, 49.60% and 50.10%.

The average success rate is 50.1%, which is very close to the theoretical result of 50.8%.

Hence, the simulator is verified.
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Table 3.2: The Prime+Probe success rate comparisons of the simulated results and
the theoretical results under different cache configurations. The values in the brackets

indicate the theoretical results. (P indicates the number of partitions.)

Eviction Set Success Rate (%)
Set 16 ways 32 ways

Size (G) P=16 P=32

176 50.1 (50.8) 28.9 (29.5) 15.8 (16.0)

576 89.6 (90.2) 68.0 (68.1) 43.8 (43.5)

752 94.8 (95.2) 77.8 (77.5) 52.5 (52.6)

3.4 Cryptographic Function Selection

As mentioned in ScatterCache [80], two types of cryptographic functions, SCv1 and

SCv2, could be applied to the randomisation remapping cache. The randomisation

remapping cache with a SCv2 type function, which uses the full range of the encryption

ciphers’ ciphertext as the encrypted address, requires one cryptographic function for each

partition, which could be costly in terms of the hardware overhead in a multi-partition

randomisation remapping design. The SCv1 type function, which only requires partial

ciphertext for indexing each cache way, is more flexible because the output size does

not need to be identical to the width of cache index-bits. From other research [57],

we know that more partitions provide much better protection against contention-based

attacks. Therefore, we set the remapping cache as the full partition. In other words,

each cache way is indexed by different encrypted index bits. Because other research [16]

has exposed the vulnerability of the LLBC cipher originally proposed in the CEASER

cache [59], another suitable cryptographic function needs to be selected.

Although ScatterCache [80] suggested hash functions or many low latency block ciphers

can be used as the SCv1 function, we first need to compare the difference between using

a hash function and an encryption cipher. We simulated and compared two different

CEASER-S implementations with a hash function SHA-3 [24] and an encryption cipher

PRINCE [19]. The reason for selecting these functions are: 1. Both functions are secure

enough for our designs. SHA-3 is the latest member of the Secure Hash Algorithm family.

PRINCE is the popular candidate to replace the original LLBC in the CEASER cache.

This has been proposed elsewhere [80, 63, 16]. 2. There are open-source implementations

of both SHA-3 and PRINCE available. Therefore, we do not need to build one from

scratch.

We think an encryption cipher, such as PRINCE, is more suitable for being the cryp-

tographic function of the randomisation remapping cache. The main reason is that

hardware-implemented hash functions may require many clock cycles to compute the

output, even for some lightweight hash functions or some other ciphers, e.g. Quark [7],
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Hash-One [47], Present [17] [39]. However, the cache performance is sensitive to latency.

Therefore, an encryption cipher, such as PRINCE which only needs 3 clock cycles, is

preferred.

Using encryption ciphers as an SCv2 type function, could provide a better mapping. This

is because encryption ciphers are invertible so the inputs and outputs must be paired

one-to-one. Conversely, hash functions can cause collisions. Due to these collisions, the

cache lines may not be normal distributed in all cache sets. Hence the cache performance

is degraded. Nevertheless, since we are using both functions as SCv1-type functions, this

advantage does not apply to the design.

Figure 3.11: The structure of a SHA3-256 indexed CEASER-S cache.

To validate this hypothesis, we implemented these two functions on the existing CEASER-

S design and simulated them on the gem5 simulator [15]. The design with SHA-3 is

shown in Figure 3.11. When a cache line is accessed in the cache, the original address

of this cache line will be passed to the hardware-implemented SHA-3 256. The hashing

output can be segmented into a few parts. Each part has the same length as the index

bits needed for the CEASER-S and can have bits overlapping. Since SHA-3 does not

rely on keys, the re-keying must be performed in a different way. Therefore, after the

output of the SHA-3 is available, each part of the output will be used to derive the

physical index-bit by calculating an XOR with a relative entry from a table called the

Random Table. This table stores random numbers generated from a random number

generator, which is the same as the generator used in the CEASER cache [59], with the

same length as the index bits. Each cache partition has a random number stored in this

table. This random number should be updated frequently.

For testing, we used the Mibench suite [29] as the benchmark. The latency of both

PRINCE and SHA-3 was considered in the simulation. The latency of PRINCE is 3
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clock cycles [19]. A basic implementation of the SHA-3 latency is 24 cycles [72]. In terms

of the cache configurations, we utilised an ARM O3 CPU model at 2GHz. Both L1 and

L2 caches are set as private caches. Since the performance difference between different

cache models is not obvious when using large caches, we set the cache size relatively

small. The size of each level of cache is 16K, 32K and 256K. The physical associativity

is 4, 8 and 16, respectively. We did not apply re-keying in this experiment since we

mainly compared the differences caused by the cryptographic functions themselves. The

simulations in the later chapters do consider the re-keying. Also, it is worth noting that

we only used these small configurations to compare these two functions. We applied a

different cache configuration to all later simulations. The small configuration is used

because the performance differences are more obvious when using MiBench. However,

these simulations are sufficent for determining the suitable indexing functions.

Figure 3.12: The comparison of normalised hit rate changes between applying
PRINCE and SHA3 as indexing function.

Figure 3.13: The comparison of normalised Instruction Per Cycle changes between
applying PRINCE and SHA3 as indexing function.

The hit rate and the Instructions Per Cycle (IPC) of the CEASER-S cache with two

different functions have been evaluated. Since we only focus on the indexing function

itself, we disabled the rekeying of the CEASER-S in this experiment. Therefore, the

results can only reflect the performance differences between the two functions with or

without logical associativity.

The hit rates are shown in Figure 3.12. The baseline is the hit rate of the conventional

cache with all three levels using the set-associative cache and LRU replacement policy.



Chapter 3 Logical Associativity 67

Both caches have achieved lower hit rates than the baseline. When logical associativity

is applied, the hit rates of both caches are lower than the baseline and are approximately

the same. The reason both indexing functions provide caches with similar hit rates is

that the ciphertext of PRINCE is divided into multiple parts as the index bits in multiple

cache ways. Hence, in terms of reducing collisions, PRINCE loses the benefit of a one-to-

one mapping. Furthermore, the hit rate degradation is also caused by the replacement

policy in the last-level cache since the CEASER-S with full partitions is forced to have

the Random Replacement policy. When increasing the logical associativity, both caches

show lower hit rate degradations. Regarding the IPC shown in Figure 3.13, we found

that the CEASER-S with PRINCE achieves a much lower IPC than with SHA-3. For

example, when the logical associativity is 2, CEASER-S with PRINCE drops about

1.1% in IPC and CEASER-S with SHA3 drops about 2.7% in IPC. Combined with the

hit rates results, we can see that although both caches have similar hit rates, the one

with SHA3 still has worse performance than the one with PRINCE. This is due to the

high latency of SHA3. Hence, the cache with SHA3 requires higher access latency. As

a result, a low-latency cryptographic function which is not vulnerable is a

suitable choice for the indexing function.

Since we did not find any other secure ciphers with lower latency than PRINCE, and

other secure cache designs against contention-based attacks also utilise PRINCE as the

cryptographic function, we decided to apply PRINCE as the SCv1 type indexing function

for our later cache designs.

3.5 Summary

In this chapter, we introduced our new defence scheme for mitigating contention-based

attacks on randomisation remapping cache. We name this Logical Associativity. Unlike

some secure cache designs which provide strong protection but permanent performance

degredation, this scheme allows the user to dynamically increase the logical associativity

of the cache when the extra protection against contention-based attack is needed. Such

configurations can significantly affect the attack complexity, which can help the cache

achieve better performance before a new profiling method is found, and still be protected

even under more advanced profiling methods of contention-based attack. We explained

three properties of logical associativity: Reconfigurability, Overlapping, and Alienation.

These properties are the key factors that logical associativity can mitigate contention-

based attacks.

We introduced our security simulator, which is used to evaluate the success rate of a

Prime+Probe attack on a randomisation remapping cache. We verified the simulator

using theoretical results [57]. We showed logical associativity can reduce the effectiveness

of the eviction set in an attack.
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Finally, we evaluated two types of cryptographic functions for use with logical associa-

tivity. We compared a CEASER-S cache with SHA3 [24], which is a hash function, and

a CEASER-S cache with PRINCE [19], which is an encryption cipher example, on the

gem5 simulator. Both caches’ re-keying functions have been disabled. For achieving

better performance, we decided to choose PRINCE as the indexing function. Since it

has a low latency, which is key to the cache. Another reason is that PRINCE has been

used in other randomisation remapping cache designs [63, 16].



Chapter 4

CEASER-SH Cache

In this chapter, we introduce and evaluate the first cache design with logical associativity,

namely the CEASER-SH cache. This cache is based on the CEASER-S [60] design. We

have introduced logical associativity in chapter 3. In this chapter, we first explain

the motivation of the CEASER-SH cache and then the threat model. After these,

we discuss the implementation of the CEASER-SH cache. We especially focus on how

logical associativity is achieved in the CEASER-SH cache and on the replacement victim

selections. Later, we compare the simulation results of both the CEASER-S cache and

CEASER-SH cache in terms of performance and security. Also, we will evaluate the

hardware overhead and the power consumption of the CEASER-SH cache.

4.1 Motivation

As mentioned in Section 2.3, a cache timing side-channel attack is a powerful attack that

could learn useful information from the cache line residency to accelerate the exploration

of the victim’s key or to build a covert channel and transmit the victim’s sensitive data.

Contention-based attacks, which do not require any shared data between different users,

become the focus of secure cache designs. Although many countermeasure designs have

been proposed in the past years, for example, the cache designs we explained in Section

2.4, the attack has also been developed and upgraded. The advanced attacks push cache

protection to a higher level.

In Section 3.1, to provide flexibility in randomisation remapping caches for future ad-

vanced profiling methods of contention-based attacks, we proposed logical associativity.

We then add this protection scheme to an existing randomisation remapping cache,

CEASER-S [60]. The new cache design is named CEASER-SH.

By performing the simulation, we want to show that CEASER-SH, which has logical

associativity, can achieve better performance than CEASER-S cache while providing

69
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equivalent or better security against contention-based attacks under a much stronger

profiling method.

4.2 Threat Model

As in other works [60, 80], our cache defences are designed only to defeat contention-

based attacks on the LLC. We do not consider other attacks. Both the victim and

the attacker are non-privileged users. The cloud vendor (or the privileged user) can be

trusted.

Figure 4.1: The memory hierarchy of the threat model.

We assume the attacker has the following abilities: The attacker has the ability to al-

locate themselves on the same machine as the victim. The attacker knows the LLC’s

cache configurations, such as the cache architecture, associativity, and cache size. An-

other assumption is that the attacker can trigger the victim process but cannot access

the victim’s addresses directly. This assumption aligns with previous work [60]. It is

worth noting that even if we do not make this assumption, the attack can still be suc-

cessfully implemented. The attacker just needs to wait for the victim themselves to start

the process. Making this attacker-friendly assumption can accelerate the attack process

so that, as a countermeasure designer, we can know the upper limit of the attack and

provide sufficient protection to the cache.

We also assume the cache is configured as below: Each core has its L1 and L2 caches,

which are not shared with other cores; only the LLC is shared between cores. This is
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a practical assumption which has been applied to modern commercial desktop or server

CPUs, for example, an AMD 5995wx processor [3]. The memory hierarchy under such

a threat model is shown in Figure 4.1.

In terms of the LLC (L3 cache), we make the same assumptions as the other research

[57]. First, the attacker can control the input address of the indexing function, therefore

the attacker does not need to consider the virtual and physical address mapping. Second,

the attacker cannot obtain the key and the output of the indexing function. Finally, the

attacker cannot affect the re-keying functionality of the cache.

4.3 CEASER-SH Architecture

CEASER-SH is based on CEASER-S cache [60] and ScatterCache [80]. Both caches

apply a cryptographic function to encrypt the address of the cache line. This achieves

randomised remapping. Hence the attacker can not deduce the mapping and the cache

line residency. The major difference is that CEASER-SH applies logical associativity.

Therefore, we first explain the logical associativity unit, which is used to calculate the

next logical way within the logical set for the corresponding cache way. Then, we

introduce another important part of the CEASER-SH cache, the replacement policy.

CEASER-SH requires modifications on the replacement policy because it needs to select

the replacement victim’s cache set and cache way. Finally, we explain the structure of

the CEASER-SH cache.

4.3.1 Logical Associativity Implementation

The logical associativity module is implemented as shown in Figure 4.2. The input of

the logical associativity module is the encrypted index bits of the home set. The bits

are sent to two multiplexers. Multiplexer M1 selects the input of the adder between the

encrypted index bits and the output of the registers. The adder has the exact length of

the encrypted index bits and keeps adding one to the input. The output of the adder

is connected to the registers, which store the calculated index bits. Multiplexer M2

selects the output between the encrypted index bits of the home set and the output of

the registers. The control signal Bypass only goes to logic 1 during the first clock cycle

when the input is valid. Inc is the output of the comparator between Hcounter and Hreg,

which are not shown in this figure. Hreg stores the logical associativity of the cache,

and Hcounter counts which logical way is currently calculated. When the index bits of

the last logical way have been calculated, Inc goes to logic 0, and Hcounter is reset for

the next access. Based on the implementation, the logical associativity is performed by

accessing multiple cache sets. If a cache hit is achieved, the corresponding set and way

number are temporarily stored in the registers and used to handle the cache requests or

responses after all searching is finished.
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Figure 4.2: The implementation of logical associativity.

As we have mentioned in Section 2.1, there are two cache access modes for accessing

tag and data: parallel and serial. This differs from how the cache handles the tag and

data access. Since the tag is checked before the data is accessed for a serial-access cache,

the data storage is only accessed once. Hence, increasing the logical associativity by

one does not affect the data access. The randomisation remapping cache with logical

associativity needs to add extra cycles for the additional tag accessing when the logical

associativity is increased. An example of the access procedure is shown in Figure 4.3.

The encrypted index bits of the access are S1 and S2 in ways 0 and 1, respectively. The

logical associativity is 3. The tag is searched in W0S1, W0S2, W0S3, W1S2, W1S3

and W1S0. After the tag searching, the cache hit signal and the number of the set that

stores the searched cache line are then sent to the data storage for access. For example,

in Figure 4.3, the accessed cache line is stored in W0S3. Therefore, only W0S3 is

accessed in the data storage.

However, for the parallel-access cache, the tag and data are accessed at the same time

after the encrypted index bits are available. The data access normally requires a few

cycles. Therefore, we cannot wait for the second data access until the first data access

is finished. Nevertheless, we can initiate the data and tag searching of one set simulta-

neously. Because the tag comparison results are always available before the data, if the

tag comparison leads to a miss, the next set number is directly sent to both the tag and

data storage for the next search. In other words, the data output of the previous search

is ignored. Another example is shown in Figure 4.4. The encrypted index bits of the

access are still S1 and S2 in ways 0 and 1, respectively. The logical associativity is 3.
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Figure 4.3: An example of tag-access while the logical associativity is applied and the
cache is under the serial access mode. Circled number indicates the order of accesses.

The cache hit is labelled in blue.

The cache first searches the data and tag of W0S1 and W1S2. After the tag comparison

results in a cache miss, W0S2 and W1S3 are sent to both tag and data storage for the

new access. Although the search of W0S1 and W1S2 is still propagating in the data

storage and will be available after a few cycles, the cache will ignore its result. As a

result, as the serial-access cache, the parallel-access cache also requires extra cycles for

the additional tag access.

Figure 4.4: (a) An example of tag access while the logical associativity is applied
and the cache is under the parallel access mode. Circled number indicates the order of
accesses. The cache hit is labelled in blue. (b) The access timing of each round under

the parallel access mode.
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Overall, in terms of timing, logical associativity requires (H − 1) times the tag access

latency no matter what cache access mode is applied.

4.3.2 Replacement Victim Selection

4.3.2.1 Replacement Policy

In a conventional cache and most randomisation remapping caches, the replacement

policy determines the cache way of the targeted victim cache line when a cache line

replacement occurs. Many replacement policies have been utilised to improve cache

performance, such as LRU, LFU, and BIP [61]. However, other research [57] pointed

out that an attacker could optimise the profiling stage when preparing a contention-

based attack, for example, a cache with LRU. To construct an eviction set with the

same eviction probability on the same randomisation remapping cache, for example on

a CEASER-S cache, a cache with the random replacement policy always requires more

cache accesses than a cache with the LRU replacement policy. This is because most

replacement policies make victim decisions based on the previous access status of the

cache lines within the cache set. An attacker may use this as a shortcut and occupy

the entire targeted cache set very easily by accessing it in a specific order with a small

number of cache lines. For example, an attack [44] uses a doubly-linked list to store the

constructed eviction set. During the attack on the cache with the LRU replacement pol-

icy, the attacker only needs to access this list in reverse order so that no self-eviction can

happen. Furthermore, this increases the effectiveness of the eviction set usage. A cache

with a random replacement policy only selects the victim cache way based on the ran-

domness it has been provided with. Therefore, the replacement becomes probabilistic.

No matter the order in which the attacker accesses, there is always a high probability

that self-eviction occurs. This will push the attacker to prepare more eviction cache lines

before implementing the actual attack. Also, from the implementation perspective, since

CEASER-SH is designed for full partitions, a random replacement policy is essential for

partition selection.

4.3.2.2 Victim Set Selection

The replacement victim cache line is selected within the targeted cache set in a con-

ventional cache. However, the victim could be any logical cache way with all logical

cache sets in the CEASER-SH cache. Therefore, while selecting the victim cache line for

replacement, both the cache set number and the cache way number need to be calculated.

As mentioned in Section 4.3.2.1, CEASER-SH applies a random replacement policy.

Ideally, if the logical associativity is H, to perform the random selection in the cache

set, the victim cache set number can be calculated as equation 4.1. However, the offset
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may require the modulo operation of a random number from the random number gener-

ator. The hardware implementation of the modulo operation requires multiple cycles for

calculation [22]. The extra cycles could further increase the latency of the cache access.

Setvictim = SetHome +Offset(0 ≤ Offset ≤ H − 1) (4.1)

Therefore, instead of calculating the modulo of the random number, we directly use or

add multiple numbers that are truncated from the generated random number to obtain

the offset. In detail, when the logical associativity is 2n, the offset could be directly

obtained from the truncated number. When the logical associativity is not 2n, the offset

number needs to be added. For example, if H = 3, the offset could be 0, 1 or 2. Hence we

truncate 2 one-bit numbers from the random number and add them together. Similarly,

if H = 7, the offset is calculated by adding 2 two-bit numbers, etc. An offset calculation

table is provided in Table 4.1.

Table 4.1: Examples of victim-set offset selection functions for different logical asso-
ciativity.

LA Size Victim-Set Offset Selection Functions

1 0

2 Random[0]

3 Random[0]+Random[15]

4 Random[1:0]

5 Random[1:0]+Random[15]

6 Random[1:0]+Random[15]+Random[14]

7 Random[1:0]+Random[15:14]

8 Random[2:0]

It is worth noting that the victim selection of both the cache set and cache way is

started when the encrypted set is ready. Therefore, the addition operation of the offset

calculation can be finished before the cache hit result becomes valid. Otherwise, in the

worst case, the offset can be pre-calculated even before the access since the victim range

is known and the victim selection is entirely random.

4.3.3 Implementation of CEASER-SH

As we discussed at the beginning of this section, CEASER-SH is based on the CEASER-

S cache [60] and ScatterCache [80]. From our evaluation in Section 3.4, we have shown

that the latency and the security of the function itself are the major considerations of

the indexing function. In the CEASER-SH cache, we again use PRINCE [19] as the

indexing function.
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Figure 4.5: The structure of the CEASER-SH cache, including the cryptographic
function, the logical associativity unit and the victim selection unit.

Figure 4.5 shows the implementation of the CEASER-SH cache controller. Similar to

the CEASER-S cache [60], the CEASER-SH cache applies two indexing functions that

have different keys. The SPtr register stores the current remapping set. After the

comparison, the corresponding index bits are selected by the multiplexer Index Sel.

Later, the index bits are sent to the logical associativity unit of each cache way. By

comparing the H Counter and H Reg, CEASER-SH either sends the bank access

request to the next following cache set or directly sends the home set and prepares for

the next cache access.
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After the bank access requests are sent to the cache banks, the CEASER-SH cache waits

for the response from the cache banks. Since the same cache line should only exist as

one copy in the last-level cache, the CEASER-SH cache can receive at most one cache

hit. The cache reads H responses and records the hit results until the last response

arrives. The number of responses received is stored in H Resp. The actual cache hit

signal is sent after all H sets are accessed because this can prevent timing differences

caused by the location of cache lines. This is achieved by a multiplexer controlled by

the Valid signal. Hence, the attacker cannot infer which logical cache way the victim

cache line belongs to.

If all responses are cache misses, the CEASER-SH cache selects the replacement victim

as we described in Section 4.3.2, and then outputs the victim set and victim way as the

set and way results. Otherwise, it outputs the set and way of the accessed cache line.

4.4 Security Evaluation

In chapter 3, we discussed how logical associativity could decrease the success rate of

a contention-based attack when the eviction set has a fixed size. However, since some

randomisation remapping caches, including CEASER-SH, apply the re-keying function-

ality, the constructed eviction set is only valid before the next re-keying happens. The

re-keying period is measured by the number of cache access per full cache re-keying. For

example, a re-keying period of 9N indicates the full cache is remapped (or re-keyed) after

the cache is accessed 9N times, where N is the number of cache lines in the cache. For an

8MB cache with a 9N re-keying period, N is calculated as 8×1024×1024÷64 = 131, 072

( with 64 Bytes cache line size), and the cache is fully remapped after 1, 179, 648 cache

accesses.

Therefore, in the attack on a randomisation remapping cache with a re-keying function-

ality, the attacker may not be able to construct an eviction set with the expected size.

Besides the re-keying period, the cache configurations could also affect the size of the

constructed eviction set.

As discussed in Section 3.3, we implemented our own security evaluation simulator in

C++. To evaluate our CEASER-SH cache, we simulate its security in two steps. In the

first step, the simulator repeats Prime+Prune+Probe (PPP) until the given re-keying

period is reached. During each round of PPP, the address of the evicted cache line is

added to the eviction set as a member. All the addresses of the eviction set members are

stored. In the second step, the simulator takes the eviction set constructed within the

re-keying period to implement the Prime+Probe attack. Each eviction set is tested in

100k rounds, and the overall success rate of the attacks is recorded. Hence, the success

rate represents the success rate of the contention-based attack under the corresponding

re-keying period. Since we apply the identical parameters in the PPP profiling and
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assumptions as the other research [57], the evaluation results of the CEASER-S from

that research can directly be used to compare with our CEASER-SH cache.

Although we only tested the Prime+Probe attack, it also indicates the security against

an Evict+Time attack. As discussed in Section 2.3.3, the root of both attacks is the same.

However, the Prime+Probe attack achieves higher fidelity and is easier to implement

than the Evict+Time attack. Therefore, we only use the Prime+Probe attack to evaluate

CEASER-SH cache security. This is aligned with other secure cache design evaluations

[49].

Table 4.2: The success rates of the Prime+Probe attack on CEASER-SH cache with
Optimal K (Opt K) values under different re-keying periods (RKP).

H 1 2 3 4 5
❛❛❛❛❛❛
RKP

Opt K 16 16 32 64 128

9 1.00% 0.35% 0.21% 0.20% 0.14%

10 1.17% 0.41% 0.27% 0.23% 0.18%

15 1.78% 0.65% 0.40% 0.35% 0.26%

20 2.40% 0.90% 0.56% 0.47% 0.34%

22 2.80% 1.03% 0.61% 0.52% 0.39%

25 3.14% 1.14% 0.68% 0.58% 0.44%

29 3.68% 1.34% 0.79% 0.68% 0.52%

30 3.75% 1.41% 0.83% 0.72% 0.54%

35 4.45% 1.64% 0.98% 0.83% 0.63%

40 5.05% 1.86% 1.12% 0.93% 0.71%

45 5.65% 2.12% 1.29% 1.07% 0.78%

50 6.27% 2.28% 1.41% 1.15% 0.88%

75 9.63% 3.59% 2.28% 1.78% 1.38%

100 12.26% 4.76% 2.92% 2.26% 1.78%

200 23.15% 9.39% 5.78% 4.53% 3.52%

1000 73.34% 39.39% 26.26% 20.65% 16.49%

For the simulation, we set the following parameters. In terms of the cache configurations,

the cache size is set to 8MB, the associativity is 16 ways. The cache replacement policy

is the random replacement policy. For the profiling parameters, the aggressive pruning

starts after the fifth round of pruning. This parameter is suggested elsewhere [57]. In

the attack, we make the same assumption as Section 3.3.1: we assume there is only

one targeted victim cache line. An attacker can use all of the time for profiling before

re-keying. The attacker could trigger the access of the targeted cache line itself. After

triggering the victim cache line, the attacker can somehow evict it from the cache, e.g.



Chapter 4 CEASER-SH Cache 79

flush the entire cache. These assumptions allow the attacker to find more members of a

PCE set within the re-keying period and achieve the theoretically highest success rate in

a Prime+Probe attack. In other words, these assumptions are friendly to the attacker.

Under such conditions, CEASER-S with full partition may need to reduce the re-keying

period to about 9N to maintain 2-year security against contention-based attacks [57].

It is worth noting that although we apply the completely same assumptions and attack

method as the other research [57], the results we measure are slightly different. In our

evaluations, instead of measuring the success rate of constructing a PCE set with a 95%

eviction probability within a fixed number of cache accesses, we measure the eviction

success rate (or the eviction probability) of a constructed PCE set within a fixed number

of cache accesses. There are two reasons for applying such a measure in our experiment.

First, the success rate of constructing a PCE set with a 95% eviction probability within

22N is too low to measure in an experiment, for example, the success rate within 9N re-

keying period is 2−32. It is impractical to construct 232 eviction sets and measure all of

their eviction probabilities. Second, the selection of a 95% eviction probability may not

be necessary, an attacker may decide to bear with the eviction set with a lower eviction

probability. Nevertheless, both measures reflect the difficulty of finding eviction cache

lines on a randomised remapping cache. If the average PE of the constructed eviction

sets on a cache configuration is higher, which indicates the contentions are easier to find,

the probability of constructing an eviction set with PE = 95% on a cache configuration

must be higher.

Using the simulator, we performed security evaluations of CEASER-SH with different

logical associativity. Also, for comparison, we simulated the security of CEASER-S with

full partitions. We built 10 PCE sets under each configuration (300 PCE sets total).

Each PCE set is tested 100k times in Prime+Probe attacks; hence each configuration

was tested with one million Prime+Probe attacks. We set different K values for different

configurations. The K value, which is the number of initial candidate cache lines,

has been explained in 2.6.1.2. The simulation results in Table 4.2 shows the highest

success rates of the Prime+Probe attack on the CEASER-SH cache with different logical

associativity under different re-keying periods (RKP). The optimal K (OPT K) is the

K value that achieves the highest sccess rate in the corresponding logical associativity.

Based on the results in Table 4.2, we summarise the results in Table 4.2 into Table 4.3,

which shows the equivalent security level between CEASER-S and CEASER-SH with

different logical associativity. The equivalent security level indicates that the CEASER-

SH cache with a re-keying period could provide at least the same level of security against

contention-based attacks as the CEASER-S cache with another re-keying period. The

re-keying period values in the table are equivalent to the re-keying periods of CEASER-S.

A smaller re-keying period indicates better protection against contention-based attacks.

For example, CEASER-SH with logical associativity 2 and a 100N re-keying period has

equivalent security to CEASER-S with a re-keying period of 38N. This result is bold in
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Table 4.3. Alternatively, increasing logical associativity while maintaining the re-keying

period can improve security against contention-based attacks.

Table 4.3: The re-keying periods in the table are multiples of N, where N is the number
of cache lines. These values are equivalent to the re-keying periods of CEASER-S. RKP
(N) is the re-keying period of CEASER-SH, which is the number of accesses per re-

keying. LA is the logical associativity.

RKP (N)

LA 22 29 40 50 75 100

2 9 12 16 19 30 38

3 < 9 < 9 10 13 19 23

4 < 9 < 9 < 9 10 15 19

5 < 9 < 9 < 9 < 9 12 15

However, the re-keying periods and cache configurations not only have an impact on the

security against contention-based attacks but also on the performance of the cache. We

will next compare the performance of both caches.

4.5 Performance Evaluation

4.5.1 Simulation Setup

In this section, we evaluate the performance of the CEASER-SH cache. For comparison,

we implemented both CEASER-S and CEASER-SH on the gem5 simulator [15] for the

performance evaluations. Both caches were set as full partitions. In the rest of this

thesis, when we mention CEASER-S or CEASER-SH, we specifically refer to caches

with full partitions. In other words, the number of cache ways equals the number of

cache partitions, so each cache way has its own unique cache mapping.

We used the ARM O3 CPU model in the gem5 simulator [15] running at a clock speed

of 3GHz. The cache configurations included three levels: L1 cache with a size of 32KB

and an associativity of 4, L2 cache with a size of 512KB and an associativity of 8, and

L3 cache with a size of 8MB and an associativity of 16. Both L1 and L2 caches are

set-associative and not shared between cores. In our simulations, we took into account

the delay of PRINCE, which is 3 clock cycles, which aligns with Mirage [63]. We also

considered the impact of logical associativity on cache latency. This is further discussed

in Section 4.5.2. For comparison purposes, we also tested a conventional set-associative

LLC with a BIP replacement policy, which serves as the baseline in our evaluation [80].
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For the simulation workloads, we applied two benchmarks used in some other security

cache design research [80, 49]. The first is GAP Benchmark Suite [10], and the other

is PARSEC Benchmark Suite [14]. We used all programs in GAP benchmarks. We

applied −g16 − k16 as the parameter, where g is the scale and k is the degree of the

graph generation. This aligns with ScatterCache[80]. For the PARSEC Benchmark

Suite, we used 6 programs including blackscholes, canneal, fluid, freqmine, streamcluster

and swaptions. We did not use MiBench [29], since the workload is too small and the

performance variations on an 8MB LLC are negligible. Although some related research

used SPEC2006/2017 as benchmarks, we did not use them because they are not open-

source benchmarks.

4.5.2 Simulation Results

We simulated both caches with different re-keying periods. As discussed in Section 4.5.1,

we considered two different situations. The results in section 4.5.2.1 are the simulation

results based on our synthesised logic with Nangate45nm PDK, which shows CEASER-

SH requires one clock cycle per logical associativity increment. For some cache imple-

mentations, the tag look-up time could be more than one clock cycle. Additionally, we

evaluated the CEASER-SH cache which requires 2 clock cycles per logical associativity

increment in Section 4.5.2.2.

4.5.2.1 Performance With One Extra Clock Cycle

The performance simulation results of the CEASER-SH cache with one clock cycle per

logical associativity increment are shown in Figure 4.6 and Figure 4.7. In this case, the

cache latency can be calculated as the sum of the base cache latency, the encryption

cipher latency, and the logical associativity increment. For example, when the logical

associativity is increased to 3 from 1 (no logical associativity), the cache latency is set to

45 clock cycles, including 40 cycles as the base cache latency, 3 cycles as the encryption

cipher latency, and 2 cycles due to the logical associativity increasing. Based on this

latency, the Cycle Per Instructions (CPI) and the Misses Per Kilo Instructions (MPKI)

of CEASER-SH with a different re-keying period are shown in Figure 4.6 and Figure 4.7.

The MPKI and CPI are shown for logical associativities ranging from 1 to 5 (H1-H5).

The re-keying period is measured by the number of cache accesses, where N indicates

the size of the cache. For example, a re-keying period of 40N in a cache with 131072

cache lines (8MB if the cache line size is 64B) is 5, 242, 880 cache accesses. Both figures

show the normalised results based on a set-associative cache with same size and the BIP

replacement policy [61].

As shown in Figure 4.6 and Figure 4.7, the MPKI and CPI increase dramatically when

the re-keying period is less than 22N. When the re-keying period decreases, the cache is
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Figure 4.6: The normalised CPI increase of CEASER-SH with one clock cycle tag
access time.

Figure 4.7: The normalised MPKI increaseof CEASER-SH with one clock cycle tag
access time.

remapped more frequently, which leads to more cache misses. Hence, the CPI increases

sharply. The miss rate shows very similar results as the MPKI, therefore we do not

show the miss rate results here. Most workloads follow this trend except Streamcluster,

which has lower CPI and MPKI when the re-keying period is low. The reason appears

to be that Streamcluster does not reuse most of its data since its MPKI under all cache

configurations is close to 1. From Table 4.3 and the cache performance, we found that

increasing the logical associativity can both maintain security against contention-based

attacks and outperform CEASER-S under some configurations. Those configurations

are shown in red in Table 4.3. For example, CEASER-SH with a re-keying period of

22N and logical associativity of 2 has better security against contention-based attacks
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than CEASER-S (CEASER-SH with associativity of 1) with a re-keying period of 9N .

Both configurations, CPI and MPKI are labelled in Figure 4.6 and Figure 4.7. The

results show that the performance penalty of CEASER-SH is a 3.9% increase in CPI

and 70.8% increase in MPKI. The performance penalty of CEASER-S achieves a 3.1%

increase in CPI and 42.1% increase in MPKI. As a comparison, CEASER-SH achieves

a 0.8% lower CPI, and a 28.8% lower MPKI compared to CEASER-S. Note that the

comparison of MPKI and CPI is relative to the baseline configuration mentioned in

the previous paragraph. Overall, CEASER-SH can provide the same or even better

protection against contention-based attacks while performing better when an advanced

profiling method is applied in an attack and pushes the re-keying period of the CEASER-

S cache under 50N accesses per time.

4.5.2.2 Performance With Two Extra Clock Cycles

Figure 4.8: The normalised CPI increase of CEASER-SH with two clock cycles tag
access time.

We also evaluate the performance of the CEASER-SH cache when each tag access needs

two clock cycles. All simulation configurations are identical to Section 4.5.2.1 except for

the cache access latency. The CPI and MPKI are shown in Figure 4.8 and Figure 4.9.

Compared to the performance of the CEASER-SH with 1 clock cycle latency per logical

associativity, which was discussed in section 4.5.2.1, the cache with 2 clock cycles showed

a major difference in CPI. The impacts on the MPKI are negligible. Since each cache

access requires a longer time, this slows down the overall L3 cache access. As a result,

the overall time to finish an instruction is longer.

Nevertheless, from the simulation results shown in Figure 4.8 and Figure 4.9, the

CEASER-SH cache can still achieve better performance under such a high latency while

providing equivalent or better security against contention-based attacks. For example,
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Figure 4.9: The normalised MPKI increaseof CEASER-SH with two clock cycle tag
access time.

CEASER-SH cache with a re-keying period of 22N and logical associativity of 2 achieves

about a 0.5% lower CPI, and a 26.1% lower MPKI compared to CEASER-S with a re-

keying period of 9N .

4.6 Hardware and Power Overhead Estimation

Providing concrete values for hardware and power overheads is always hard. This is

due to many reasons. First, we cannot find an existing open-source L3 cache design.

Certainly, building an L3 cache from scratch is impractical for the project. The only

available and most suitable cache design we found is the SiFive inclusive cache [23].

This is an L2 cache which is used in the Rocket-Chip [6] and BOOM Chip [90]. Both

of them are well-known open-source RISC-V core implementations. Second, we cannot

access the most advanced technology library used to fabricate commercial processors.

Therefore, we can only estimate the area and the power overhead of the CEASER-SH

cache like other secure cache designs [80, 63]. As a result, similar to Mirage [63], we first

estimate the storage and power overhead based on CACTI 6.0 [50], and then estimate the

area and power overhead of the additional control logic with the open-source technology

library Nangate45nm PDK [69].
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4.6.1 Hardware Overhead Evaluation

4.6.1.1 Storage Overhead

The storage overhead of the CEASER-SH is from the additional tag bits, which is

the same as the ScatterCache [80]. In a conventional cache, the index bits are not

stored as part of the tag. The address of the cache line could be recovered directly

from the tag stored and the set number of the cache. However, the set number is the

encrypted index bits. Therefore, the original index bits must be stored as part of the

tag, or the encrypted index bits must be decrypted before recovering the address. Like

other randomisation remapping caches, we choose the former solution because the latter

solution takes another 3 clock cycles due to the decryption.

We set the physical address space as 46-bit, aligned with Mirage [63]. We set the cache

line size as 64B, the L3 cache as 8MB, and 16 ways. The storage comparison between

the CEASER-SH and a conventional cache is shown in table 4.4. In the conventional

cache, 13 bits are used as index bits, and 6 bits are offset bits. Hence, the length of

the tag bits of the conventional cache is 27 bits. Including 2 status bits, each cache

line requires a 29-bit tag entry in a conventional cache. There are 131072 cache lines in

the cache. Therefore the size of tag storage should be 3,801,088 bits which is 464KB.

The CEASER-SH cache requires storing the full tag, which is 40 bits. Including the

status bits, each cache line needs a 42-bits tag entry. The total size of tag storage is

672KB. Since we do not need to modify the data storage, the data storage of either

the conventional cache or the CEASER-SH requires 8192 kB. The total storage sizes

of both caches are 8656KB and 8864KB, respectively. Compared to the conventional

cache, CEASER-SH only requires 2.4 % extra storage, which is minor. Compared to

Mirage [63], which requires about 20% more storage overhead, the increase is negligible.

We use CACTI 6.0 [50] to evaluate the area increase of the additional storage. We also

set the technology size as 45nm, the same as our technology library used to synthesise

the control logic of the CEASER-SH cache. The increased 208 kB storage enlarges the

data and tag array by 2.88mm2. Compared to the area of the entire storage, the area

is increased by about 5.1%, which is practical.

4.6.1.2 Control Logic And Overall Hardware Overhead

Like other randomisation remapping caches, CEASER-SH requires cryptographic func-

tions and re-keying to compute the encrypted index bits for cache line search. As men-

tioned, we use PRINCE as our indexing function. Since the cache needs to compute the

corresponding index bits based on both the current key and the next key, two PRINCE

functions are needed. After adding the logical associativity module and victim selection

module based on SiFive inclusive cache [23], we synthesised the entire control logic with
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the Nangate45nm PDK [69]. The extra logic requires about 0.025mm2, which is 31329

GE. (The area of a NAND2X1 gate in Nangate45nm is 0.798um2.)

Since both CACTI 6.0 and our synthesised results are based on 45nm technology, we

estimate the total area of both storage and control logic increase is less than 2.9mm2.

Compared to a conventional cache, the area is increased by 3.4%. Such area change

is minor compared to the entire die of the processor. If the CEASER-SH design is

synthesised with state-of-the-art technology, the design is certainly practical in terms

of hardware overhead. For example, the AMD Zen2 processor has a 74mm2 7nm CPU

compute die [51].

We did not consider the area reduction due to the change of replacement policy. The

random replacement policy is easier to build than other replacement policies since it

does not need to store any cache line usage information. Hence, using the Random

replacement policy could compensate for some area growth.

Table 4.4: The overhead comparison of a conventional cache and a CEASER-SH cache
with the same configurations.

Cache Size Baseline CEASER-SH
8M Set Associative

Tag Bits 27 27
Storage Status Bits 2 2
Overhead Set Bits - 13

Total Tag Entry Bits 29 42
Tag Store Size 464kB (100%) 672kB (144.8%)
Total Storage 8656kB (100%) 8864kB (102.4%)

Area 55.6 (100%) 58.4 (105.1%)

Additional
Logic Area - 31329 GE

Overhead 0.025mm2

Overall Area 85.84mm2 88.72mm2 ( +3.4%)
( +2.88mm2 )

4.6.2 Power Overhead Evaluation

Similar to the hardware overhead evaluation, we analyse the power consumption in two

parts: cache storage and extra logic. Based on the results of CACTI 6.0 [50], we show

that the conventional cache with the same configurations shown in Section 4.6.1 has

2.01W leakage power. The dynamic power is 0.306nJ per access. As we assumed in

the gem5 simulation, the clock frequency we applied is 3GHz, and the conventional L3

latency is 40 clock cycles. Based on the performance evaluation results, we estimated the

dynamic power is about 0.02W . Hence the total power consumption of the conventional
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cache is 2.03W . We notice that the leakage power of the storage dominates the power

usage of the entire cache.

The CEASER-SH has another 0.06W leakage power for the addition of the tag storage,

and the dynamic power for just accessing both the tag and data array is 0.331nJ per

access. Since the different logical associativity can lead to different dynamic power

consumption, we estimate the power estimation when the logical associativity is 4. While

the extra control logic is synthesised with the maximum frequency by Nangate45nm

PDK, the total power consumption of a CEASER-SH, which works with H = 4, requires

about 2.154W power. As a comparison, compare to a conventional cache, Mirage [63]

increases the power by about 21%, which is triple that of CEASER-SH cache.

Compared to the conventional cache, the required extra power is 0.124W . A modern

desktop CPU, for example, AMD5995wx, needs 280W power under maximum workloads

[3]. Compared to an entire CPU, the power increase in CEASER-SH is negligible.

Nevertheless, the power of the CEASER-SH cache can still be optimised. For example,

when the logical associativity is 4, the CEASER-SH ideally needs to search all 4 cache

sets. In the real implementation, the designer could skip the search after a cache hit

is reached since there could only be no cache line or just one cache line that matches

during the entire search. However, skipping the search does not mean the cache is

ready for the next cache access. The cache still needs to be idle, and pretends it is

still searching the cache line, because maintaining the same cache access latency is

necessary. Otherwise, the timing difference between a cache hit and miss might be

abused as a vulnerability. This modification does not have any changes to the timing.

As a result, such optimisation will not decrease the protection against contention-based

attacks. Since we do not consider any other side-channel attacks, we do not consider if

this optimisation could become vulnerable to other side-channel attacks, such as power

or radiation attacks.

4.7 Summary

In this chapter, we proposed the CEASER-SH cache to mitigate cache contention-based

attacks. Compared to the existing randomisation remapping cache designs, CEASER-

SH provides more flexibility in balancing the performance of the cache and the security

against the contention-based attack. The main idea of the cache is applying logical

associativity that we proposed in chapter 3 to the existing, CEASER-S cache [60]. The

logical associativity allows the cache line to be allocated in its original mapped set

and the H − 1 sets. Due to two properties of logical associativity, reconfigurability

and overlapping, CEASER-SH can provide better performance while having equivalent

or better security than the CEASER-S cache under a much stronger contention-based

attack. For example, based on our simulation results, a CEASER-SH cache with logical
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associativity 2 achieves about a 0.8% lower CPI, and a 28.8% lower MPKI compared to

CEASER-S while providing equivalent security against contention-based attacks.

For the overhead estimation, we used CACTI6.0 to evaluate the power and hardware

overhead of the additional storage required in the CEASER-SH cache design. The addi-

tional control logic to perform the logical associativity is based on the SiFive inclusive

cache. The control logic is synthesised with the Nangate45nmPDK. From the results,

we estimate the overall area addition is about 2.9mm2, which is increased by 3.4%, in-

cluding the storage overhead. The power overhead of the CEASER-SH is also evaluated

in the same way. Since the dynamic power of the CEASER-SH cache is related to the

logical associativity, we show a CEASER-SH cache with logical associativity as 4 re-

quires 0.124W more power than the conventional cache. Compared to the entire CPU,

the power and area overhead are acceptable. Compared with Mirage [63], CEASER-SH

has much less hardware and power overhead.



Chapter 5

SEA Cache

In this chapter, we propose another randomisation remapping cache called the SEA

cache. This cache focus on applying the third property of logical associativity, which

is alienation. The property has been discussed in Section 3.2.4. We first explain the

motivation for the SEA cache. Then, we discuss the SEA cache architecture and its

implementation. Later, we evaluate the SEA cache in terms of performance, security

against contention-based attacks, hardware overhead, and power overhead.

5.1 Motivation

Using the CEASER-SH cache, we have shown that logical associativity cqn be used to

counter contention-based attacks in the last-level cache. The flexibility of associativity

allows the cloud vendor or the privileged users to balance the performance and the secu-

rity themselves. However, the logical associativity in CEASER-SH is modified globally.

In other words, increasing the logical associativity affects all users who share the ma-

chine. Even if some users do not run any security-sensitive programs, they still need to

suffer higher LLC latency if somebody else requires high logical associativity.

Accessing multiple cache sets in the CEASER-SH cache also increases the access latency.

Reducing the access latency can enhance the cache performance. Parallel accessing to

different cache sets within each cache way, which has been applied in PhantomCache [73],

can significantly improve the access latency. Hence, the cache performance is enhanced.

Based on these ideas, we propose another cache design based on CEASER-SH. We name

the cache the Scattered Elastic-Associativity Cache (SEA cache). Such a cache allows

logical associativity changes locally and distinctly between users. Also, the SEA cache

supports both parallel and serial bank access. The threat model of the SEA cache is

identical to that of CEASER-SH, which was discussed in 4.2. This design makes the

randomisation remapping LLC design more feasible.

89
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5.2 SEA Cache Architecture

5.2.1 Introduction to the SEA cache

The general design idea for the SEA cache is similar to that of the CEASER-SH cache in

chapter 4, which applies logical associativity to a randomisation remapping cache. This

section will focus on the major architectural difference between the SEA cache and the

CEASER-SH cache. As mentioned in section 5.1, the SEA cache is proposed to reduce

the unnecessary latency for some users who do not need extra protection, while another

user raises the logical associativity to enhance their security against contention-based

attacks. To achieve this, we need to allow different users to have different logical associa-

tivity so that the users can make their own decision between security and performance,

instead of the vendor.

This is a significant change to the existing randomisation remapping cache. Most of these

cache designs [60, 80], defeat contention-based attacks by setting a re-keying period. The

constructed eviction set is only valid before the next re-keying happens. Therefore, the

attacker must finish the profiling and the attack within the period. The re-keying applies

globally and affects all users because such a parameter is restricted to each physical cache

set and has no relation to the user or the process. The logical associativity provides wider

flexibility to unprivileged users. Hence, they can decide their own trade-off between

performance and the security of the cache.

Since the L2 cache is not shared between cores and each core is only allocated to one

user at run time, the LLC only needs to know what logical associativity is applied to

each core when one of the L2 caches requests data from LLC.

Since the SEA cache needs to access multiple cache-sets simultaneously, the hardware

implementation of logical associativity need to be modified. Based on the PhantomCache

[73] design, we enable parallel access to multiple cache-banks for performing multiple

cache-set simultaneous access. Nevertheless, in the SEA cache, the number of cache sets

that the cache accesses may not be a multiple of the cache bank numbers. For example,

the logical associativity of users A and B are 1 and 3, respectively. If the cache can

only issue 8 parallel access to the 8 cache banks, all the requests from A and B must be

performed to all 8 banks. This results in wasted power. To optimise the SEA cache, we

make an enhancement to make fewer parallel accesses to the banks possible. Hence, in

the example, the cache will only send the requests to 1 bank or 3 banks, depending on

the origin of the access. We explain parallel access to multi-cache-banks enhancement

in Section 5.2.2.2. We will introduce the modifications to logical associativity and how

these affect the cache timing and power consumption.

To provide a finer balance between the performance and the security against contention-

based attacks, we also extended the SEA cache to the process-level protection by bringing
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the modified Security Domain Identifier (SDID) bits into the pages. The SDID was first

introduced in Newcache as a Trust Domain Identifier (TDID) [43], which was used to

provide different cache mappings to processes within different domains. In our SEA

cache, having the SDID can allow the hypervisor to distinguish the logical associativity

of each page. There are two benefits: First, only security-sensitive processes need to

be protected by higher logical associativity. This improves the overall performance and

may reduce power consumption due to fewer cache set accesses. Second, this enables

data sharing between users who share the same logical associativity. The data sharing

allows users to share the same libraries so that the memory can save some space for not

holding multiple copies of the same library for different users.

5.2.2 SEA Implementation

As discussed in Section 5.2.1, compared to the CEASER-SH cache, the SEA cache

has the following features: 1. Alienation: Different users are allowed different logical

associativity. 2. Parallel Bank Access: When logical associativity is higher than 1, the

SEA cache automatically sends requests to multiple cache banks in parallel and achieve

low latency access. 3. Smart Bank Access: For different logical associativity, the SEA

cache can issue a suitable number of requests to each cache bank, which balances the

power consumption of the cache. To meet these goals, we explain the implementation

of the SEA cache.

5.2.2.1 Alienation Implementation

To allow users to have different logical associativity, each user should have a dedicated

register to store its logical associativity setting. In the worst case, each user on the

server is allocated just one core. In this case, the number of registers must be at least

the same as the number of cores in the CPU. A modern server processor, such as AMD

Threadripper 5995wx, can have 64 cores [3], which will require 64 registers for storage

of each user’s logical associativity. Nevertheless, when a user is allocated to more than

one core, their setting only needs to be stored in just one register. When a request is

sent to the SEA cache, the user id is parsed, and the corresponding logical associativity

is used for the cache line access.

5.2.2.2 Parallel Bank Access

Based on CEASER-SH, we found that the computation of the logical associativity should

take one clock cycle. However, when a new request is sent to the CEASER-SH cache,

the ciphertext of PRINCE, which is the home set of the accessed cache line, can bypass

the logical associativity module and be sent to the cache bank as a request. In the
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meantime, the following cache set can be calculated in the logical associativity module.

After taking an extra H − 1 clock cycles, all logical cache ways within all logical cache

sets with size H are sent to cache banks as requests. For a recap, the each of the cache

line of the logical cache set is called logical cache ways, which we have explained in

Section 3.2.1. An example of the request order of a CEASER-SH cache with 2 ways

and H = 4 is shown in Figure 5.1(a). The home set of the access is S1W0 and S2W1.

CEASER-SH cache will issue the first round requests to S1W0 and S2W1, the second

round requests to S2W0 and S3W1, then S3W0 and S4W1, and last S4W0 and S5W1.

The entire access takes 3 more clock cycles than for ScatterCache [80] with the same

configurations.

Figure 5.1: The request orders of CEASER-SH (Way = 2, H = 4) and SEA cache
with the different numbers of cache banks. The numbers indicate the clock cycle in
which a request to access such a cache line is sent to the banks after the home set

becomes valid.

To reduce the latency, we applied a similar method to PhantomCache [73], which ac-

cesses multiple cache banks in parallel to access multiple cache sets. However, due to

the selection of the multiple cache sets, PhantomCache cannot guarantee that all the

accessed cache sets in the same round are distributed normally into all the different

cache banks. This may cause multiple accessed cache sets to be mapped to the same

cache bank. Hence, the PhantomCache may have high latency in some accesses.

Nevertheless, this does not become an issue in the SEA cache. We limit the cache set

number in each cache bank so that it can be expressed as equation 5.1. Here, N is the

calculation round of the logical associativity module, which starts from 0 and ends when

all logical cache ways are requested. Since the set numbers within a logical cache set

must be continuous, if the SEA cache issues at most NumBanks requests to the banks,

there must be no conflicts in bank access. Comparing CEASER-SH in Figure 5.1(a), we
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show a SEA cache example with 4 cache banks in Figure 5.1(b). This SEA cache has

4 banks. The SEA cache first spends one clock cycle to compute the set numbers of all

requests, and then all the requests are sent to the banks in parallel in one round. The

entire access takes only 1 more clock cycle than the ScatterCache [80]. Compared to the

CEASER-SH example shown in Figure 5.1(a), the SEA cache with 4 banks requires 2

fewer clock cycles.

Set = HomeSet+BankOffSet+ (N ×NumBanks) 0 ≤ N <
NumSets

NumBanks
(5.1)

However, even if there are only 2 cache banks, as in the previous example, the SEA

cache is still applicable. It needs to separate all cache accesses into two rounds. This is

shown in Figure 5.1(c). In the first clock cycle, after the home sets of both cache ways

become valid, the SEA cache still needs to compute the set number of the next logical

cache way. After the first clock cycle, both the home sets: S1W0 and S2W1, and the

following sets: S2W0 and S3W1, are sent to the cache banks as requests. Meanwhile,

the other cache sets are calculated based on the first-round cache set numbers. After

the first round is sent to the banks, the second round cache sets become valid and can

be sent to the cache banks. We name the cache sets whose requests are sent to the

same cache bank as the requests to the home set (including the home set itself) as base

cache sets, and other cache sets are named extension cache sets. In Figure 5.1, we

highlight all base cache sets in red.

In the SEA cache, the lowest logical associativity a user can set is 1, which is no logical

associativity. When logical associativity of 1 is applied, we expect the SEA cache to

perform the same as Scattercache [80]. In other words, when a user sets their logical

associativity to 1, the home set number bypasses the logical associativity module and

is directly sent to the cache banks. When the logical associativity of the access user is

higher than 1, the SEA cache should access multi cache-banks in parallel. Since only the

home set does not have to be computed, all other cache set numbers involved in the first

round still need to be computed, which will take one extra clock cycle after the home

set is valid. For example, see S2W0 and S3W1 in Figure 5.1(b,c) have to be calculated.

The logical associativity module is further modified to achieve the specification described

above, as shown in Figure 5.2. The SEA logical associativity module has two modules:

the Base Module and the Extension Module. The Base Module is used for computing

all the base cache sets, and the Extension Module is used for calculating extension

cache sets. An 8 banks SEA cache, for example, requires one Base Module and seven

Extension Modules in each cache way. By applying these modules, the SEA cache can

automatically select the access mode to the cache banks. The serial bank-access mode

is selected when the logical associativity is one, and vice versa. Hence, no extra delay is

added when the logical associativity is one. This is controlled by a signal called Bypass
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Figure 5.2: The implementation of the logical associativity module in the SEA cache.

and the M2 multiplexer. The Bypass signal only goes high when the logical associativity

of the access user is set to 1. This is the major difference between the Base Module and

the Extension Module. Since all extension cache sets must be computed before sending

to banks, they do not need to bypass the logical associativity module. To improve the



Chapter 5 SEA Cache 95

power consumption, the extension modules can be disabled when they are not used

during the access.

When calculating the set numbers, the first round calculation differs from the later

rounds. By adding continuous offsets to the home set, all set numbers in the first round

can be computed and stored in the registers. However, the later rounds add a constant

offset, which is the number of cache banks the SEA cache used, to the previously saved

results in the registers. Hence, we add a multiplexer M4 to select the appropriate offset

in the calculation. Furthermore, in the parallel bank-access mode, the home set is not

bypassed but is saved in the registers. Therefore, the Base module does not require an

M4 multiplexer. The values in the registers of the Base module will be sent at the same

time as the other first-round cache sets and used for computing later-round cache sets.

5.2.2.3 Smart Bank Access

Unlike PhantomCache [73], which always has high power consumption due to the parallel

bank accesses, the SEA cache can partially enable the logical associativity module and

send requests to partial cache banks. The simplest example is what we discussed in

Section 5.2.2.2. The SEA cache can issue only one request in the serial bank-access

mode.

Even in the parallel bank-access mode, the SEA cache can still issue requests to partial

cache banks. For example, if the logical associativity is set to 6 but there are 8 cache

banks in the SEA cache, the SEA cache can issue 6 requests. This can save more power

on bank access. For the logical associativity module, since the Base module is always

used in each cycle, it can be enabled all the time. The Extension Modules can normally

be disabled and enabled with the corresponding logical associativity.

5.2.3 Data sharing in the SEA cache

5.2.3.1 Data sharing problem

In the default SEA cache, each user has their own logical associativity. However, having

different logical associativity for different users could lead to an issue with sharing data.

A user with lower logical associativity may not be able to access the shared cache line

that was accessed by another user with higher logical associativity. This can cause a fatal

error in the memory system due to the data coherence issue. For example, in Figure 5.3,

two users (A and B) share the same machine. Each user controls their own VM. The

logical associativities for users A and B are 3 and 1, respectively. In Figure 5.3(a), user

A accesses the cache line X first. The home set of the cache line X is set 0. However,

since the logical associativity of user A is 3, cache line X might be placed at S0, S1 or
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S2. In this example, X is placed in S1. Figure 5.3(b) shows user B accessing this cache

line X after user A’s access. Due to their logical associativity, the cache will only search

S0. This results in a cache miss. Hence, the cache will request another copy of cache

line X with the same virtual address. This should never happen in a cache since the

cache cannot distinguish these two cache lines X. Particularly if one of the cache lines

is modified, this can cause a data coherence problem.

Figure 5.3: An example of sharing data problem while two users have different logical
associativities, which finally leads to a memory coherence problem.

As a result, we can disable the data sharing between different users in the SEA cache.

This is a simple solution to overcome such an issue. This method was also proposed

against Reuse-Based attacks [85]. However, the memory system may not be used effi-

ciently because dual or multiple copies of cache lines may be required within the same

library, even for read-only. To enable data sharing, the SDID should be used with the

SEA cache. We now explain the use of SDID.

5.2.3.2 SEA cache with SDID

To allow cache lines in a page to be shared between users, the SEA cache must guarantee

that all cache lines within this page are placed with the lowest logical associativity of

all users who share this page. Otherwise, the users who share this page must have

the same logical associativity. However, the default SEA cache only distinguishes the
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logical associativity by the user’s id. Adding an identifier on to each page can solve the

problem. We noticed a similar identifier, called the security domain identifier (SDID),

applied in some secure cache designs [80, 63]. This can also be used but in a different

way in the SEA cache to solve the data-sharing problem. Nevertheless, this cannot be

achieved without the hypervisor and the MMU, which control the paging.

SDID was used to distinguish between different security domains of the processes. Based

on the security requirement of each process, the process is allocated to a different domain

by the hypervisor. The SDID and the address of cache lines are treated as the plaintext

of the indexing function in these cache designs. Therefore, different security domains

lead to distinct mappings even if the same address is accessed. SDID was introduced

to enhance the protection against contention-based attacks. However, the later profiling

method Prime+Prune+Probe may invalidate the security enhancement of the SDID

within those caches.

Ideally, the SDID allows different processes to be mapped with different mappings, and

different mappings can increase the complexity of building the eviction set. This tech-

nique does affect the traditional profiling method but does not affect Prime+Prune+Probe

(PPP) profiling. K cache lines are randomly selected during such a profiling method.

As explained in 2.6.1.2, K is the number of the initial candidates in the PPP profiling.

The Prime and Prune steps are only affected by the distribution of the mapping from

the attacker’s perspective since no victim cache line is accessed in these two steps. After

these steps, some of those K cache lines may be evicted by themselves. Therefore, the

number of cache lines left in the cache is reduced to K ′. Hence, the attacker occupies

K ′ cache lines in the cache, the capturing probability of the PPP is only related to the

coverage of the K ′ candidates in the last-level cache. Therefore, the SDID does not

influence the attack during the profiling stage. Since all eviction cache lines are guar-

anteed to contend with the victim target cache line within one or more cache ways, the

attack’s success rate is decided by the cache way coverage.

In the SEA cache, we can modify and apply the SDID, not for different mappings,

but for achieving different logical associativity for each security domain. Based on the

security requirements of the user, the process can be allocated to the corresponding

security domain. As the default, all users’ pages are assigned the SDID bits with the

lowest logical associativity that the vendor sets. Hence, those processes that do not

require extra protection can share the same logical associativity and data. When a user

asks the hypervisor for extra protection against contention-based attacks, the hypervisor

modifies the SDID bits that have high logical associativity setting in this process’s pages.

By applying such modifications, the SEA cache only needs to compare the SDID in the

page to determine the logical associativity when accessing a cache line.

By having the SDID, the SEA cache can now provide process-level protection against

contention-based attacks. In other words, the SEA cache with SDID further optimises
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the performance and the security by allowing some processes to be protected by high

logical associativity, and other processes can access the cache with relatively low latency.

In a contention-based attack, the attacker may not want their attacking process assigned

the same SDID as the victim process. This is because the targeted process must be given

an SDID with high logical associativity. By having the same logical associativity, the

attacking process does not gain any benefits but suffers from the extra protection due

to the overlapping of logical associativity. From the attacker’s perspective, they must

avoid high logical associativity.

An attacker may want to start a process before the victim so that the cache lines with

the process can be loaded into the cache with low logical associativity until the victim

user requests the shared data. Hence, the protection is weakened. To overcome this

issue, we only allow data sharing within the same protection level (or SDID) and disable

data sharing across different protection levels. A duplication page should be created if a

page needs to be shared between two protection levels. This should work as a Copy-on-

write, which happens when the shared data needs to be written by at least one user in a

conventional hypervisor. Since most of the processes share the normal-protection level,

only the security-sensitive processes request copies of the page. Two domains are enough

for a practical implementation of the SEA cache with the SDID. One domain is set to

have the lowest logical associativity, allowing all processes within this domain to achieve

the lowest latency. We name it the normal protection domain. The other domain is

dedicated to security-sensitive processes. This domain has a high logical associativity

setting. We name it the high protection domain. Therefore, a one-bit SDID is sufficient.

As a result, this data-sharing strategy in the enhanced SEA cache is much more practical

than the default SEA cache.

An example of this is shown in Figure 5.4. Here, the logical associativities of the two

security domains are 1 and 3. Before the sharing starts, process A accesses cache line X

at the normal protection level, which is shown in Figure 5.4(a). In Figure 5.4(b), process

B accesses the same cache line X at the high protection level and triggers the duplication

of the shared page. The SDID of each page is assigned with the corresponding protection

levels. After the new page is created, the cache line X1 is loaded into the cache with

logical associativity 3, which is shown in Figure 5.4(c). This strategy does not prevent

reuse-based attacks since the attacker can also request high-level protection and share

the same page with the victim user. To prevent reuse-based attacks, the SEA cache

can be combined with other protection schemes against reuse-based attacks, such as the

random fill cache [42].

Overall, by allowing different processes to have different logical associativities, the SEA

cache uses the SDID to not only enhance the security against contention-based attacks

and the performance, but also to enable data sharing, which is disabled in the default
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Figure 5.4: An example of SDID and logical associativity changes while the data is
shared between A and B. Where A is in the H = 1 domain (circled in blue) and B is

in the H = 3 domain (circled in red).
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SEA cache. This is entirely distinct from using the SDID in all randomisation remapping

cache designs.

5.3 Security Evaluation

5.3.1 Defence Strategy

The defence strategy and the threat model is not changed for the security of the SEA

cache. However, since the logical associativity becomes a local configuration, both the

attacker and the victim are allowed to set their own logical associativities. The at-

tacker does not know what logical associativity is used by the victim. We name the

logical associativity of the domain/user that the attacker is allocated to as AH and the

domain/user that the victim is allocated to as VH.

Table 5.1: The success rate of the Prime+Probe attack with the eviction set of 752
on the SEA cache with different attacker logical associativity (AH) and victim logical

associativity (VH).

❛❛❛❛❛❛
AH

VH 1 2 3 4 5 6

1 95% 78% 63% 52% 45% 39%

2 77% 68% 56% 48% 42% 37%

3 63% 56% 51% 44% 39% 35%

4 52% 48% 44% 40% 36% 32%

5 45% 41% 40% 36% 34% 31%

6 40% 37% 34% 32% 31% 29%

We further developed our security simulator, which was introduced in 3.3. To evaluate

the impact of the eviction rate of the eviction set under different victim and user logical

associativities, we use constructed eviction sets with a size of 752 to implement the

Prime+Probe attack on the SEA cache with different configurations. Here, we do not

consider re-keying. The results are shown in Table 5.1. When V H is fixed, a higher AH

leads to a lower success rate of eviction. Therefore, from the attacker’s perspective, they

have no reason to increase their logical associativity. During the attack, the attacker

must keep their logical associativity as 1. Hence, we only need to consider the impact of

V H on the success rate. Because the AH is 1, the overlapping of the SEA cache becomes

invalidated. Nevertheless, the reconfigurability is still valid, so an increased V H still

increases the associativity and makes the contention-based attack harder. When the

AH is 1, the eviction probability of the eviction set can be calculated as equation 2.2.
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PE = 1− (1− (
1

V H ×Nw
))

G
P (5.2)

As a comparison, in a CEASER-SH cache, the success rate of applying an eviction set

with a size of 752 for the Prime+Probe attack is reduced to about 40% when the global

logical associativity is 4, as shown in Table 3.1. However, to achieve the equivalent

success rate, the SEA cache requires V H to be adjusted to 6. The increase of V H might

increase the victim LLC access latency, but the victim user only requires the higher

V H when they need to run security-sensitive processes. Other users who do not need

extra protection against contention-based attacks do not need to suffer higher latency.

Nevertheless, if necessary, a privileged user may set the lowest logical associativity higher

and enable the overlapping for even better protection.

5.3.2 SEA Cache Security Simulation Results

Table 5.2: The success rate of the Prime+Probe attack with optimal K (Opt K)
values under different re-keying periods (RPK), the AH is set to 1.

VH 1 2 3 4 5 6 8 16 24
❛❛❛❛❛❛
RKP

Opt K 16 32 32 32 64 64 128 64 64

9 1.00% 0.53% 0.36% 0.23% 0.23% 0.19% 0.11% 0.06% 0.05%

10 1.17% 0.58% 0.41% 0.30% 0.27% 0.20% 0.17% 0.06% 0.05%

15 1.78% 0.95% 0.63% 0.43% 0.38% 0.33% 0.24% 0.11% 0.08%

20 2.40% 1.21% 0.81% 0.65% 0.47% 0.44% 0.32% 0.16% 0.08%

22 2.80% 1.38% 0.82% 0.67% 0.58% 0.48% 0.35% 0.18% 0.14%

25 3.14% 1.50% 0.97% 0.84% 0.67% 0.58% 0.41% 0.19% 0.13%

29 3.68% 1.80% 1.26% 0.93% 0.74% 0.59% 0.48% 0.23% 0.15%

30 3.75% 1.89% 1.25% 0.97% 0.77% 0.65% 0.42% 0.22% 0.18%

35 4.45% 2.28% 1.41% 1.10% 0.95% 0.80% 0.56% 0.30% 0.20%

40 5.05% 2.53% 1.73% 1.22% 1.03% 0.84% 0.58% 0.32% 0.22%

45 5.65% 2.91% 1.89% 1.34% 1.13% 0.96% 0.72% 0.35% 0.29%

50 6.27% 3.17% 2.11% 1.59% 1.32% 1.03% 0.82% 0.41% 0.28%

75 9.63% 4.97% 3.22% 2.43% 1.99% 1.66% 1.25% 0.61% 0.44%

100 12.26% 6.38% 4.15% 3.28% 2.62% 2.17% 1.62% 0.75% 0.58%

200 23.15% 12.34% 8.46% 6.35% 5.12% 4.29% 3.30% 1.63% 1.11%

1000 73.34% 48.94% 35.75% 28.04% 23.42% 19.97% 15.28% 7.89% 5.51%

Since the threat model and the parameters of the PPP profiling are identical to those

in other research [57] and the CEASER-SH cache in Chapter 4, the success rates of the

Prime+Probe attack in these caches can be compared directly.

Considering both the re-keying and the logical associativity in the SEA cache, as with

the CEASER-SH cache, we perform simulations under different re-keying periods. As

discussed in Section 4.4, the unit of the re-keying period is the number of cache access

per time. The number of cache access is evaluated from N , which is the number of



Chapter 5 SEA Cache 102

cache lines in the cache. In the simulations, we set AH to 1. Similar to the results in

Table 4.2, the highest success rates of the attack with different V H, K, and re-keying

periods (RKP) are shown in Table 5.2, where K indicates the size of initial candidates

for PPP profiling. Optimal K is the K value that provides the highest success rate of

the attack under a particular V H.

Compared to the CEASER-SH cache, we show that after the overlapping function of the

logical associativity becomes invalid, the attack’s success rate under different re-keying

periods increases. For example, the attack’s success rate under the 1000N re-keying

period and H=2 is 39.39% in the CEASER-SH cache, which is in red in Table 4.2. The

success rate of the attack under the 1000N re-keying period and V H = 2 increases to

48.94%, which is in red in Table 5.2. Nevertheless, a SEA cache with 1000N re-keying

period and V H = 8 and which has the same latency, can reduce the success rate of

the attack to 15.28%. This dramatically enhances the security against contention-based

attacks.

Table 5.3: The success rate of the Prime+Probe attack with Optimal K (Opt K)
values under different re-keying periods(RPK), the AH is set to 8,16 and 24. (AH = 1

in the first column is for comparison.)

VH/AH 1/1 8/8 16/8 24/8 16/16 24/24
❛❛❛❛❛❛
RKP

Opt K 16 32 64 16 16 32

9 1.00% 0.10% 0.04% 0.04% 0.03% 0.04%

10 1.17% 0.09% 0.06% 0.05% 0.06% 0.05%

15 1.78% 0.17% 0.09% 0.06% 0.07% 0.05%

20 2.40% 0.24% 0.10% 0.10% 0.10% 0.07%

22 2.80% 0.26% 0.14% 0.11% 0.11% 0.07%

25 3.14% 0.26% 0.17% 0.11% 0.13% 0.10%

29 3.68% 0.34% 0.20% 0.15% 0.13% 0.10%

30 3.75% 0.37% 0.19% 0.17% 0.16% 0.12%

35 4.45% 0.40% 0.25% 0.18% 0.21% 0.13%

40 5.05% 0.44% 0.29% 0.19% 0.23% 0.14%

45 5.65% 0.47% 0.29% 0.23% 0.22% 0.17%

50 6.27% 0.60% 0.31% 0.23% 0.27% 0.22%

75 9.63% 0.89% 0.55% 0.42% 0.42% 0.30%

100 12.26% 1.17% 0.72% 0.49% 0.50% 0.35%

200 23.15% 2.30% 1.47% 1.03% 1.04% 0.76%

1000 73.34% 10.78% 6.95% 4.94% 5.64% 3.84%

Another minor impact is that the attacker cannot deduce the victim’s associativity. The

associativity value could impact the optimal K of the PPP profiling. For example, from

Table 5.2, we find that the optimal K tends to be higher when the logical associativity
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increases. In the CEASER-SH cache, since the attacker shares the global logical asso-

ciativity with the victim, they might be able to find the logical associativity by adding

a preparation phase before the attack. In the preparation phase, the attacker could

Prime+Probe their own cache line and measure the eviction probability to deduce the

logical associativity. However, this becomes impossible in the SEA cache since the logi-

cal associativity is applied locally. Nevertheless, without knowing the VH, the attacker

cannot predict the success rate of the attack when applying an eviction set, which can

make the attack implementation even more complicated.

As mentioned, the lowest logical associativity can be set by the privileged users. Table 5.3

shows the success rate of the Prime+Probe attack with Optimal K values under different

re-keying periods when AH is set to 8. When AH is forced to be increased due to

the lowest logical associativity, the SEA cache can provide even better security against

contention-based attacks due to overlapping. As an example, in Table 5.2, when AH = 1,

V H = 8, and the re-keying period is 1000, the attack’s success rate is 15.28%, which is

in blue. Compared this to the result in Table 5.3; when AH = 8, V H = 8, and the re-

keying period is 1000, the attack’s success rate drops to 10.78% (also labelled in blue).

Although increasing AH can enable overlapping and provide better security against

contention-based attacks, this can also reduce the performance for the cores that are in

the normal-protection domain. We will explain this further with performance results in

Section 5.4.2.2.

Overall, when different users need to share a computer or server with an SEA cache as

the LLC, those users who want to be protected can set their logical associativity high.

However, high protection, namely high logical associativity in the domain, can cause

higher access latency and lower performance in terms of CPI. As a result, other users

would prefer the normal-protection domain that provides the best performance and the

lowest cache access latency. From the attacker’s perspective, they want to reduce the

complexity and increase the success rate of contention-based attacks. Therefore, they

would pretend they were normal users, so that they can at least have a lower V H value

during the attack. Since an increase of either V H or AH can reduce the attack success

rate, the privileged user can also set the minimum logical associativity in V H to enable

overlapping, if needed.

5.4 Performance Evaluation

5.4.1 Simulation Setup

In this section, we evaluate the performance of the SEA cache. We use the same cache

configurations in section 4.5.1. Here, we evaluate the SEA cache without the SDID. In

other words, the alienation function of logical associativity is applied to different cores



Chapter 5 SEA Cache 104

or users. In the simulation, we set two workloads on two different cores. Each core has

been set to a different logical associativity value. Core 0 is allocated to a user requiring

extra protection against Contention-Based attacks, and core 1 is allocated to a normal

user who expects high performance and no extra protection.

We apply the same benchmarks as in Section 4.5.1. Since we need one workload on each

of the cores, we choose two programs from either the PARSEC Benchmark Suite [14] or

the GAP Benchmark Suite [10] in each round of the simulations.

In the simulation, we assume there are 8 cache banks. Due to the parallel-bank to

the cache banks, we assume that when the parallel-bank access mode is enabled, which

means the logical associativity of the current access is more than one, the SEA cache

requires one extra clock cycle to compute the extension cache sets. For example, when

the logical associativity is one, the cache access latency is 43 clock cycles, and the cache

access latency is increased to 44 clock cycles when the logical associativity is 2 to 8. In

addition, when the logical associativity exceeds a multiple of 8, the cache access latency

is increased by one clock cycle. For example, when the logical associativity is set between

9 to 16, the cache access latency is increased to 45 clock cycles.

We show the simulation results in the following subsections. Like the CEASER-SH

cache, we compare the CPI and the MPKI for the SEA cache under different logical

associativity.

5.4.2 Simulation Results

We analyse two different configurations. Also, we assume two security domains are used

in the SEA cache. We set core 0 in the high-protection domain and core 1 in the normal-

protection domain. In the first configuration, we set AH, which is the attacker’s logical

associativity (or logical associativity in the normal-protection domain here), constant at

1 and vary the VH, which is the victim’s logical associativity (or logical associativity in

the high-protection domain here). The results under the first configuration are discussed

in Section 5.4.2.1.

A privileged user can set the lowest logical associativity limit for the SEA cache to enable

overlapping and enhance its security against contention-based attacks. Therefore, in the

second configuration, we set AH to 8 and vary the V H. Ideally, we should compare the

CEASER-SH cache with the SEA cache. However, the CEASER-SH does not support

parallel-bank access mode, which will cause significantly high latency compared to the

SEA cache. Therefore, we used the SEA cache with V H = AH, which is equivalent to a

CEASER-SH cache with parallel-bank access mode, instead of directly using the original

CEASER-SH for comparison. This can provide a much fairer comparison. We choose

two examples with V H and AH of 16 and of 24. The simulation results are shown in

Section 5.4.2.2.
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5.4.2.1 AH Set To 1

Figure 5.5: The MPKI of the SEA cache, AH is set to 1.

The MPKI of the SEA cache simulation, when the AH is set to 1, is shown in Figure 5.5.

When the re-keying period is reduced, the different V H values all significantly reduce

their MPKI. This trend is the same as for the CEASER-SH cache shown in Figure 4.5.

Meanwhile, Figure 5.5 shows that the SEA caches with a higher V H lead to a slightly

lower MPKI. For example, when the re-keying period is 5N, the MPKI of the SEA cache

is above 29% when V H2 AH1 and below 29% when V H24 AH1. This is because the

large logical associativity provides more potential placement positions for the cache lines

from core 0 only. Furthermore, due to the cache lines from core 0 being more scattered

when V H is larger, the contentions between the cache lines from these two cores are

reduced. Hence, the overall SEA cache MPKI and the miss rate are slightly reduced

when increasing the VH. Since the miss rates follow the same trend as the MPKI, they

are not shown here.

The CPI of both core 0 and core 1 are shown in Figure 5.6 and Figure 5.7, respectively.

As mentioned at the beginning of Section 5.4.2, the user who requires high protection

against contention-based attacks is allocated to core 0 which has high logical associa-

tivity, whereas the other user is allocated to core 1 which has low logical associativity

with normal protection. From the CPI results for core 0, which are shown in Figure 5.6,

we can see that the SEA caches with V H 2 to 8 (V H2 AH1, V H3 AH1,V H4 AH1,

V H8 AH1) have approximately the same CPI under all re-keying periods. The CPI

for core 0 with V H16 AH1 and V H24 AH1 are always higher than for the SEA caches

with V H 2 to 8. This is because the SEA caches with V H16 AH1 and V H24 AH1 both

have a higher latency when core 0 sends the requsts due to the high logical associativity.

For example in Figure 5.6, when the RKP = 5N , the CPI in core 0 increases by about

0.4% when the V H is increased from 2 to 24. The CPI for core 1 is distinct from the



Chapter 5 SEA Cache 106

Figure 5.6: The CPI of core 0 for the SEA cache. AH is set to 1. Core 0 has different
logical associativity, and the logical associativity of core 1 is set to 1.

Figure 5.7: The CPI of core 1 for the SEA cache. AH is set to 1. Core 0 has different
logical associativity, and the logical associativity of core 1 is set to 1.

CPI in core 0, which is shown in Figure 5.7. The CPI for core 1 is approximately inde-

pendent of the value of VH. The CPI in core 1 with V H16 AH1 and V H24 AH1 are

even slightly lower than V H 2 to 8. This reduction of the CPI could be caused by the

MPKI reduction since a lower MPKI can reduce the total miss penalty. Nevertheless,

the average impact of the V H value on the CPI in core 1 is just about 0.1%, which can

be considered to be negligible.

In summary, from Figure 5.6 and Figure 5.7, we find that an increase in VH, particularly

when V H is increased to 16 and 24, only increases the CPI in core 0 and has almost

no impact on core 1, no matter the re-keying period. Furthermore, from Section 5.3.2,

we know that only increasing V H can also reduce the success rate of contention-based



Chapter 5 SEA Cache 107

attacks. Therefore, the SEA cache can enhance the protection against contention-based

attacks by only changing the victim’s logical associativity while providing no perfor-

mance degradation to other users who do not require that protection.

5.4.2.2 AH Set To 8/16/24

We also simulated the SEA cache with higher AH. In this case, the privileged user may

decide to force the overlapping function of the logical associativity and the lowest logical

associativity to 8, 16 or 24, which are multiples of the number of cache banks. Hence,

the logical associativity in the normal-protection domain (or AH) is set to 8, 16 or 24.

Figure 5.8 shows the MPKI with V H8 AH8, V H16 AH8, V H24 AH8, V H16 AH16,

V H24 AH24. Compared to the results in Figure 5.5, which shows the SEA caches with

AH = 1, the SEA caches with these V H and AH configurations show a lower MPKI

under the same re-keying period. For example, when the re-keying period is 5N , the

SEA caches with AH = 1 and different V H in Figure 5.5 increase the MPKI by about

29%. However, in Figure 5.8, all SEA caches with AH ≥ 8 increase the MPKI by

about 27.7%, which is about 1.3% lower than the former. This is because higher logical

associativity for the accesses from core 1 reduces the overall cache misses.

Figure 5.8: The MPKI of the SEA cache, AH is set between 8 to 24.

In terms of the CPI, the SEA caches with the same V H and different AH show

very similar CPI in core 0 when they have the same re-keying period. For example,

when the re-keying period is 10N , the CPI increase in core 0 with SEA caches with

V H8 AH1, V H16 AH1 and V H24 AH1, shown in Figure 5.6, are 1.2%, 1.4%, 1.5%,

respectively. The CPI increase in core 0 with SEA caches with V H8 AH8, V H16 AH16

and V H24 AH24 are 1.2%, 1.4%, 1.6%, shown in Figure 5.9. These comparisons show

that the increase of AH almost has no effect on CPI in the core 0, which is in the

high-protection domain.
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Figure 5.9: The CPI of core 0 for the SEA cache, both the AH and V H are set
between 8 to 24.

Figure 5.10: The CPI of core 1 for the SEA cache, both the AH and V H are set
between 8 to 24.

Nevertheless, the same cache configurations show different results in CPI in core 1.

For example, when the re-keying period is 10N , the CPI increase in core 1 with SEA

caches with V H8 AH1, V H16 AH1 and V H24 AH1, shown in Figure 5.7, are all below

1%. The CPI increase in core 1 with SEA caches with V H8 AH8, V H16 AH16 and

V H24 AH24 are 1.2%, 1.4%, 1.6%, shown in Figure 5.10. These comparisons show that

the increase of AH results in the increase of CPI in core 1, which is in the normal-

protection domain.

The comparison of SEA caches with V H8 AH8, V H16 AH8, V H16 AH16, V H24 AH8

and V H24 AH24 also shows the same trend. For example, when the re-keying period is

10N , the CPI increases with these SEA cache configurations in core 0 are 1.2%, 1.4%,
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1.4%, 1.6% and 1.6%, shown in Figure 5.9; and in core 1 are 1.2%, 1.1%, 1.1%, 1.4%

and 1.6%, shown in Figure 5.10. SEA caches with the same V H show the same CPI in

core 0 (high-protection domain) and the same AH shows the same CPI in core 1.

Overall, combining the summary in Section 5.4.2, we can conclude that the change

of AH or V H only affect the cache performance for the cache accesses from

their own security domains.

As mentioned at the beginning of Section 5.4.1, since the CEASER-SH cache does not

support parallel-bank access mode, the extremely high latency can significantly increase

the CPI of the cache, which is not a fair comparison. Therefore, instead of comparing

the SEA cache with the CEASER-SH cache, we compare the SEA cache with V H ̸= AH

and V H = AH. From a simulation perspective, the SEA cache with V H = AH can

be directly treated as a CEASER-SH with parallel-bank access mode. For example,

in terms of cache performance, CEASER-SH cache with H = 8, 16, 24 and parallel-

bank access mode is equivalent to SEA cache with V H8AH8, V H16AH16, V H24AH24.

These are also labeled in Figure 5.8, Figure 5.9 and Figure 5.10. Again, it is worth noting

that CEASER-SH and SEA cache have different hardware implementations, so such an

equivalence only applies in the simulation.

During the evaluations, we need to consider both the cache performance and security

against contention-based attacks. This is because changing the logical associativity can

improve either cache performance or security. As an example, we compare the SEA cache

with AH1V H16 and AH8V H8. From the security evaluation table shown in Table 5.2,

when the re-keying period is 10N , the attack success rate on the SEA cache is 0.06%.

From Table 5.3, the attack success rate on the SEA cache with AH8V H8 (equivalent

to CEASER-SH cache with parallel bank access mode and H = 8 ) is 0.10%, which is

higher than the SEA cache. It is worth noting that the parallel-bank access mode has

no effect on the security against contention-based attacks. Therefore, Table 5.3 is still

valid.

For the performance, from Figure 5.7, when the re-keying period is 10N , the CPI increase

with the SEA cache with AH1V H16 is 0.8% on core 1 (normal-protection domain). From

Figure 5.10, when the re-keying period is 10N , the CPI increase with the SEA cache with

AH8V H8 (equivalent to CEASER-SH cache with parallel-bank access mode and H = 8

) is 1.2% on core 1. As a result, under the same re-keying period, the SEA cache achieves

better protection against contention-based attacks in the high-protection domain while

providing better performance (lower CPI) in the normal-protection domain, even if the

CEASER-SH cache also has the parallel-bank access mode.
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5.5 Hardware Overhead and Power Estimation

5.5.1 Hardware Overhead

We analyse the hardware overhead of the SEA cache in the same way as for the CEASER-

SH cache. For a cache with the same configurations, the SEA cache should require the

same storage overhead as the CEASER-SH, discussed in Section 4.6.1.1.

For the control logic, besides the changes on the CEASER-SH cache, the major modi-

fications to the SEA cache are the registers for the logical associativity and the logical

associativity module. We assume there are 8 cache banks for the SEA cache. The logical

associativity module in each cache way requires one base module and seven extension

modules. For a 16-way SEA cache, 16 base modules and 112 extension modules are

required. Each base module or the extension module is formed by an adder, registers

and two multiplexers. The bit width should be aligned with the index-bits of the SEA

cache. For example, for a SEA cache with 8192 cache sets, the bit width should be

13-bit. We assume there are 64 cores. Therefore we need 64 5-bit registers (for allowing

maximum logical associativity equals 32.) to store these values.

After synthesising with Nangate45nm PDK, we found that the total logic area overhead

is 0.048mm2 or 60159 GE. The total area overhead, including the storage, is about

2.93mm2. This area overhead is 0.05mm2 higher than for the CEASER-SH cache,

which is acceptable.

Even if SDID is applied, the hardware overhead is the same. The difference is the use

of the additional registers. When SDID is applied, the number of registers depends on

how many security domains are required. For example, the design only requires two

5-bit registers for supporting a maximum of 32 logical associativity. Where one domain

is the security-insensitive domain, and the other is the security-sensitive domain. The

latter could be set a higher logical associativity by the privileged user. Therefore, the

SEA cache with SDID does not require extra registers for storing logical associativity.

Similar to Scattercache, the SDID can be implemented via the user-defined bits in each

page table entry [80], which does not require extra hardware.

5.5.2 Power Overhead Evaluation

Since the logical associativity of each user is different, the dynamic energy required for

one access might be different. We assume half of the cores use logical associativity 1,

and others use logical associativity 16. Based on the power results from CACTI6.0 [50]

and the synthesised circuits, we estimate the power consumption of the SEA cache. The

overall power consumption is 2.26W . Compared to the conventional cache, it requires

0.24W extra power. The power optimisation method mentioned in Section 4.6.2 also
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Table 5.4: The overhead comparison of a conventional cache, a CEASER-SH cache,
amd a SEA cache with the same configurations.

Cache Size Set Associative CEASER-SH SEA cache
8M Baseline

Tag Bits 27
Status Bits 2

Storage Set Bits - 13
Overhead Total Tag Entry Bits 29 42

Tag Store Size 464KB (100%) 672KB (144.8%)
Total Storage 8656KB (100%) 8864KB (102.4%)

Area 55.6mm2(100%) 58.4mm2 (105.1%)

Additional
Logic Area - 31329 GE 60159 GE

Overhead 0.025mm2 0.048mm2

Additional
Overall Area - 2.88mm2 2.93mm2

Overhead

Overall Area 85.84mm2 88.72mm2 ( +3.4%) 88.77mm2(+3.4%)

applies to the SEA cache. Furthermore, the CEASER-SH cahe with H = 8, in Section

5.4.2.2, consumes 2.25W power. The power consumption is approximately the same as

the SEA cache with AH1VH16.

5.6 Summary

In this chapter, we propose a Scattered Elastic-Associativity Cache (SEA cache) to

further improve the performance of the CEASER-SH cache. In the default SEA cache,

we allocate each core to one specific user at a time. Each user can set their logical

associativity based on their requirements. For users who require extra protection against

Contention-Based attacks, the higher logical associativity can be set locally. Users who

do not require extra protection can keep the default logical associativity and low access

latency. To further enhance the performance of the SEA cache, we apply a similar

parallel bank-access method as PhantomCache[73]. We also discuss how the SEA cache

handles the data sharing with SDID, this also extends the protection from the user level

to the process level.

SEA cache can provide better security against contention-based attacks for specific users

or processes while providing low latency and better cache performance for other users or

processes, compared to the CEASER-SH cache. For example, in our simulations, we set

core 0 as the high-protection domain and core 1 as the normal-protection domain. The

success rate of the Prime+Probe attack on the SEA cache with AH1V H16 and 10N

re-keying periods is 0.06%, and the success rate on the CEASER-SH cache with the

parallel bank-access (equivalent to SEA cache with AH8VH8) and 100 re-keying period

is 0.10%. Meanwhile, by checking the performance, the SEA cache increases the CPI in
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core 1 by 0.8%, compared to the conventional cache. In contrast, the CEASER-SH cache

increases the CPI in core 1 by 1.2%. As a result, compared to CEASER-SH, SEA cache

can provide better security to users require the high-proteciton and better performance

to other normal users.

In terms of the overhead, compared to the conventional cache, we estimate the over-

all area overhead of the SEA cache is about 2.93mm2, including the storage over-

head. Hence, the area is still increased by 3.4%. By setting the logical associativity

to AH1VH16, the SEA cache requires 0.24W more power than the conventional cache.

Also, compared to the CEASER-SH cache, the SEA cache with AH1VH16 only requires

0.01W extra power. As discussed in 4.6.2, this power overhead is negligible in a com-

mercial processor.

Overall, the SEA cache provides a more flexible configuration to the cloud vendor and

the users. Such flexibility allows different users to choose between high performance

or high security against Contention-Based attacks. The hardware overhead of the SEA

cache design is approximately the same as the CEASER-SH cache. Also, the SEA cache

can outperform the CEASER-SH cache in terms of the normal users’ performance and

security against contention-based attacks, while the power consumption increase is very

minor. We conclude that the SEA cache is feasible for the last-level cache design of the

modern server CPU.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Cache is fast-access data storage in a computer system. Caches reduce the overall data

access time compared to fetching data directly from the main memory. However, a

cache sharing between different users can be leveraged by an attacker to retrieve a user’s

security-sensitive data, such as an encryption key. One type of attack is the Contention-

Based attack. Such an attack can help the attacker to check the residency of the targeted

victim cache line in the cache. As a side-channel attack, a contention-based attack can

be achieved remotely and does not require any privileges. Therefore, this type of attack

is dangerous and should be considered in cache system design, especially for a computer

processor used as a cloud server.

Many countermeasures have been proposed to overcome contention-based attacks in the

last 15 years, such as cache partitioning, cache monitoring and cache remapping. Cache

partitioning, for example the NoMo cache [26], physically separates the victim’s and

the attacker’s data in the cache, which guarantees no cache line residency information

can be leaked. Although this method prevents contention-based attacks, it is also an

ineffective use of cache storage. Cache monitoring is an active method that uses an

access monitor to detect if any suspicious behaviour is found in the cache. After sus-

picious behaviour is detected, the cache activates a self-defence method, for example,

terminating the process that triggers the monitoring [77]. However, such behaviour may

be triggered by an innocent process. An other countermeasure is cache remapping. By

using a cryptographic function to recompute the index-bits of the cache line [59, 80] or a

permutation table [78], the cache line is remapped to a different placement in the cache.

A cache design that applies cache remapping is known as a randomisation remapping

cache. Some randomisation remapping cache designs have also added re-keying to en-

hance security against contention-based attacks. Cache remapping does not affect the

normal use of the cache but requires hardware modifications to the cache and increases

113
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the cache access latency. Therefore, many randomisation remapping caches have been

proposed as a solution to contention-based attacks.

While countermeasures to contention-based attacks have been developed, the attacks

have improved as well. Prime+Prune+Probe [58] was proposed as a new profiling

method to accelerate contention-based attacks. By applying the new profiling method,

an attacker can construct the eviction set and achieve an attack much faster than many

secure cache designs expected. To mitigate this more advanced attack, existing randomi-

sation remapping caches, such as ScatterCache [80], must enable re-keying and lower the

re-keying period, which is the period between cache remappings, to enhance the cache

security. However, reducing the re-keying period can also cause performance loss.

To mitigate the performance loss due to the decreased re-keying period, we propose a

new protection scheme for the randomisation remapping cache, which is called Logical

Associativity. This idea added flexibility to the existing randomisation remapping cache.

The idea is inspired by the fact that associativity has a huge impact on the complexity

of implementing a contention-based attack [86]. By applying the logical associativity,

a randomisation remapping cache can increase the logical associativity to balance the

security and the cache performance. Logical associativity allows a cache line to be placed

not only in the cache set that it maps to but also in the following consecutive cache sets.

When the logical associativity is set to 1, the logical associativity of the cache is disabled.

There are three properties of logical associativity: Reconfigurability, Overlapping and

Alienation. Reconfigurability of logical associativity allows logical associativity to be

increased at any time. Overlapping ensures that increasing logical associativity can

provide better protection than increasing the cache ways in a randomisation remapping

cache. Alienation allows different users to have different logical associativity.

Based on the logical associativity idea, we first propose the CEASER-SH cache. This

cache is based on the CEASER-S [60] and ScatterCache [80]. Since in a modern pro-

cessor, the L3 cache is always shared between different users, who are exposed by a

contention-based attack, the CEASER-SH cache is designed as an L3 cache. By utilis-

ing the first two properties of logical associativity, CEASER-SH provides flexible perfor-

mance and protection against contention-based attacks. To evaluate our CEASER-SH

design, we simulated it on the gem5 simulator [15]. We used the GAP Benchmark Suite

and PARSEC Benchmark Suite. We also built our own security simulator to evalu-

ate CEASER-SH under different re-keying periods and logical associativity. We found

that when a more advanced attack pushes the re-keying period lower than 50N cache

accesses per cache re-keying in the CEASER-S cache, the CEASER-SH cache can pro-

vide equivalent or better security while providing better performance by increasing the

logical associativity. For example, when the logical associativity is increased to 2 and

the rekeying period is set to 22N cache accesses per cache re-keying, the CEASER-SH

cache achieves equivalent security to the CEASER-S cache with a re-keying period of

9N cache accesses per cache re-keying. Meanwhile, the CEASER-SH cache has about
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0.8% lower CPI, and about 29% lower MPKI. To evaluate the hardware overhead and

power consumption, we used CACTI6.0 [50]. Also, we synthesised the additional logic

required for logical associativity and remapping using the Nangate45nmPDK. We esti-

mate the overall area overhead is about 2.88mm2, which is a 3.4% increase compared

to a conventional cache with the same cache size, including the storage overhead. A

CEASER-SH cache with logical associativity 4 requires 0.124W more power than a con-

ventional cache. Compared to a commercial processor, for example, an AMD5995wx

processor which needs 280W power under maximum workloads [3], the power overhead

is negligible. By using a state-of-the-art technology library, the overheads will be much

less and feasible to the last-level cache design of the modern computer system. This

fulfils our first objective.

Although CEASER-SH has improved the performance of the randomisation remapping

cache, we found that the logical associativity in CEASER-SH is a global parameter which

affects all users’ performance and security. Not all users require such extra protection.

To only apply the protections to limited users, we extend the CEASER-SH cache and

propose a Skewed Elastic-Associativity Cache (SEA cache). This cache applies another

feature of logical associativity, which is alienation. In the SEA cache, different users are

allowed to have their own local logical associativity settings. Hence, users who do not re-

quire extra protection do not need to suffer the performance degradation caused by other

users who require extra protection. To further improve the SEA cache performance, we

apply for the parallel bank access as in PhantomCache [73]. This design technique re-

duces the access latency of the SEA cache since the SEA cache can issue at most the

same number of requests to cache banks as the number of cache banks. However, in the

default SEA cache, having different logical associativity can cause a data-sharing prob-

lem. With the default SEA cache, we disabled user data sharing. To provide a better

solution, we applied SDID in an enhanced SEA cache to distinguish between protection

levels of different pages. We estimate the overall area overhead is about 2.93mm2, which

is approximately the same as the CEASER-SH cache. The control logic is synthesised

with Nangate45nmPDK, and the cache storage is evaluated using CACTI6.0 with 45nm

technology. By applying similar evaluation methods as CEASER-SH, we find that the

SEA cache can outperform the CEASER-SH cache in terms of the normal user’s perfor-

mance and the security against contention-based attacks, while the power consumption

increase is very minor. For example, the success rate of the Prime+Probe attack on the

SEA cache with AH1V H16 and 10N re-keying period is 0.06%, and the success rate

on the CEASER-SH cache with the parallel bank-access (equivalent to SEA cache with

AH8V H8) and 10N re-keying period is 0.10%. Meanwhile, the SEA cache increases

the CPI in core 1 by 0.8%. In comparison, CEASER-SH increases the CPI in core 1

by 1.2%. As a result, the SEA cache can outperform the CEASER-SH cache in both

security and performance with 0.01W extra power. The total power overhead is less

than 0.1% of an AMD5995wx processor [3]. This achieves our second objective.
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6.2 Future Works

We identify the following three directions for further development and research.

1. In Chapter 4, we selected PRINCE [19], an existing lightweight cipher, as the indexing

function for both the CEASER-SH cache and the SEA cache. Nevertheless, PRINCE still

requires 3 clock cycle to compute the ciphertext. Reducing the latency of the indexing

function could further improve the power and the performance of both the CEASER-SH

cache and the SEA cache. Hence, we think building a dedicated indexing function that

requires less time to compute could be a direction for further developments. Although the

indexing function does not have to be a cryptographic function since the attacker cannot

read either the plaintext (Cache line address) or the ciphertext (Encrypted address),

the function itself should be invulnerable. Otherwise, the function could be abused and

weaken the security of the cache, as for example, LLBC [16].

2. Since we did not find any open-source L3 cache design before we ended the work, we

did not do the place and route. Although from the simulation results, we have shown

solid evidence of the cache performance and security of both the CEASER-SH cache

and the SEA cache, we can only estimate the power and area overhead. The power

consumption may only be accurately evaluated on a fabricated processor. The second

direction is to implement both caches on a real processor, fabricate and evaluate it. Or

evaluate it by post-layout simulations.
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