
 

DEPARTMENT: PERVASIVE HEALTHCARE 

Pervasive Healthcare 

EpiCURB: Learning to Derive Epidemic Control Policies 

The effectiveness of an epidemic control policy relies 

largely on how much effort is invested in every public 

health measure. Unfortunately, it is seldom possible 

to optimally allocate funds to these measures if the 

isolated effect of each intervention cannot be reliably 

estimated. We show how this challenge can be 

overcome by utilizing EpiCURB, a simulation-control 

framework that enables us to measure the effect of 

both untargeted and prioritized interventions on the 

epidemic outcome, where the latter are guided by 

reinforcement learning routines that effectively rank eligible individuals. 

The COVID-19 pandemic has prompted many countries to implement various non-pharmaceuti-

cal public health interventions (NPIs) to prevent the spread of the SARS-CoV-2 virus and protect 

their populations. Effective as they may have been, these policies have rarely been popular 

among the population, and have faced intense scrutiny ever since. Given the choice between im-

plementing interventions that entail significant economic and social costs or allowing the virus to 

spread uncontrollably, authorities faced difficult decisions that could have impacted many lives. 

Balancing NPIs between their individual effectiveness and limitations, their co-occurrence and 

potentially inflicting major unintended consequences has been a persistent challenge for authori-

ties around the globe.1,2 This article demonstrates how simulation-based methods, relying on the 

recently-introduced EpiCURB framework3 and the SEIR-T individual-based mean-field model,4 

along with suitable visualization tools, can support policy makers in optimizing such decisions 

and the budgets allocated for each intervention. 

EpiCURB (Epidemic Control Using Reinforcement learning Budget allocation) is novel compu-

tational approach that advances two previous studies. The first work is by Farrahi et al., who 

used mobile phone communication traces as proxies for interaction networks where an infection 

spreads, and measured the effect of contact tracing on reducing the peak infection rate through 

continuous-time stochastic simulations.5 The second one is by Meirom et al., who proposed a 

reinforcement learning (RL) model based on graph neural networks (GNNs) that can generate 

generalizable epidemic control policies, applicable to heterogeneous networks of tens of thou-

sands of nodes, despite being trained on smaller graphs of 1000 vertices.6 
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In the present work, we introduce a simulation setup that enables policy makers to easily assess 

the effects of individual NPIs in conjunction with other interventions. We also recommend a 

suitable visualization methodology that can guide policy makers in identifying where additional 

resources are necessary to achieve a desired epidemic outcome. With a cost-based model of en-

hancing the intensity and budget of each NPI, authorities would be able to decide which action is 

more effective based off such simulated outcomes. Although our method utilizes an individual-

based mean-field model specific for the SARS-CoV-2 virus,3,4 our approach can be used to study 

any other pathogen, present or future, provided that it can be described via similar equation-

based formulations. 

PUBLIC HEALTH POLICY CHOICES 

Among the various NPIs that were implemented in the COVID-19 pandemic, three types of in-

terventions were the most common and widely used: mobility restrictions, mask mandates, and 

“test and trace” programmes.   

According to the International Organization for Migration (IOM), by June 2020, 219 countries, 

territories or areas had implemented at least one form of mobility restriction, affecting billions of 

people.7 These stringent measures represent some of the most controversial decisions that author-

ities have taken, because they have severely limited the public’s social interactions, and had ad-

verse effects on the economy and society.2 Stay-at-home orders (also known as lockdowns) are 

NPIs that restrict the movement and interaction of people within a community, often with the 

exception of essential activities, such as obtaining food, healthcare, work, or physical activity. 

The extent and duration of these orders can widely differ depending on the context (e.g., availa-

bility of vaccines) and the authorities' objectives (e.g., bringing the effective reproduction num-

ber R under 1). For instance, some stay-at-home orders may target specific segments of the 

population, such as older adults or those with underlying health conditions, while others may en-

compass the entire population. Some lockdowns may be partial, affecting only certain areas or 

sectors, while others may be total, impacting the whole country or region. The efficacy and im-

pact of stay-at-home orders have been widely debated and studied in the literature. Several works 

have found that these measures were pivotal for reducing the caseload of COVID-19, and thus 

implicitly preventing numerous deaths.8,9,10 What is more, some studies have suggested that the 

timing of introducing lockdowns is crucial for their effectiveness and that delaying or relaxing 

them too early can lead to disproportionally more deaths.9,10 In stark contrast, a few authors have 

challenged these claims and argued that stay-at-home orders had little to no effect on the 

COVID-19 mortality.2,11 Claiming to have conducted the first comprehensive analysis of NPIs 

across 180 countries, Herby et al. have shown that lockdowns had no clear impact on COVID-19 

excess deaths or mortality rates compared with countries that imposed them later, less strin-

gently, or not at all.2 One of the main contributing factors to this result, by the authors' claim, is 

the emergence of voluntary behavioral change among the population, which has significantly 

contributed to the reduction in mixing irrespective of the enforced measures. Despite being 

praised by some media outlets and commentators for challenging the conventional wisdom on 

stay-at-home orders and providing evidence for alternative approaches to managing viral out-

breaks, the study has been criticized by several experts for its methodological flaws, data quality 

issues, causal inference problems, and ideological bias.12 Most notably, the meta-analysis fails to 

consider the timing of mandate enactment, which is a critical factor for their success according to 

the literature.9,10 A salient example is the UK government’s lockdown policy, which has faced 

frequent criticism for its suboptimal timing, as well as its laxity and inconsistency, that may have 

ultimately undermined its overall effectiveness.9 In this work, we present a simulation-based 

setup that can be used to identify the optimal levels and timing of interventions such as lock-

downs, considering the current changes in social mixing, which are either voluntary or enforced 

by restrictions on gatherings. 

Mask mandates have also been the subject of extensive debates throughout the COVID-19 pan-

demic,13 with several international bodies or authorities recommending a more relaxed yet incon-

sistent approach to this issue.14 Early studies summarized in the comment paper of Brooks et al. 

have indicated their use have had a significant impact on the spread, with notable mentions in-

cluding a natural experiment in Germany, which found a 47% decrease in the infection growth 
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rate after the introduction of mask mandates, and another in Canada, which estimated a 25% to 

40% decline in the weekly diagnoses following these mandates.15 Lab studies have also con-

firmed that masks significantly reduce the transmission of viral-infused droplets, with the com-

mon surgical and cotton masks shown to block around 50% when the spreader wears it properly, 

and 20%-40% when the receiver uses it correctly.16 More recently, however, a Cochrane review 

that sparked public debate has noted the lack of reliable randomized control trials, concluding 

that existing high-certainty evidence on mask efficiency is limited, and points to an insignificant 

effect of wearing them.17 The review's controversial conclusions have been met with considera-

ble criticism, mostly targeted at the inclusion of a majority of pre-pandemic studies in the meta-

analysis underpinning them.13 Moreover, as the authors admit themselves, the relatively low ad-

herence observed in the scrutinized trials “hampers drawing firm conclusions.”17 Indeed, compli-

ance with mask recommendations is known to have been strikingly low in previous viral 

outbreaks, and it has continued to be low during the COVID-19 pandemic in countries like the 

UK and Netherlands, while others have seen significant surges in their uptake.16 These compli-

ance rates have been significantly influenced by the level of perceived risk and trust among the 

population of each country, which has often been adversely affected by the lack of clear and con-

sistent guidance from the authorities and scientific bodies in those regions, and the insufficient 

evidence on the isolated benefits of masking compared to other preventive measures, such as 

hand hygiene or reducing social contacts.18  Undoubtedly, the task of disentangling the effect of 

each intervention remains challenging, and without this knowledge, consistency and compliance 

with mandates may be compromised. Our simulation-based method can shed some light on this 

issue, enabling policy makers to evaluate the impact of masking in combination with other inter-

ventions, as well as to identify the optimal balance between each intervention’s coverage or 

adoption. Furthermore, the visualizations we propose can facilitate more coherent public health 

policies that can ultimately enhance the civic compliance with them. 

For an epidemic control strategy to be successful in the absence of vaccines or total lockdowns, 

testing and contact tracing must be efficiently executed by the authorities. Unfortunately, “test 

and trace” programmes often suffer from potentially crippling inadequacies.3,4 First of all, man-

ual tracing is upper bounded by staff numbers and their efficiency, leading to intrinsic delays,19 

with memory fallacies of positively-tested individuals often ensuing.20 Digital tracing, on the 

other hand, is rarely optimally adopted by populations,19 with issues such as smartphone access, 

Bluetooth reliability or privacy concerns being important determining factors.20,21 The review of 

Anglemyer et al. have highlighted the importance of understanding how manual and digital con-

tact tracing complement each other in controlling the spread of SARS-CoV-2, and they suggest 

further research on these processes’ combined effects is required.21 Other studies have intro-

duced modelling frameworks aimed at exploring how different levels of tracing efficiency affect 

the epidemic outcomes.4,20 Using the same simulation framework and visualization setup as for 

the other interventions, we also investigate the trade-off between manual and digital tracing that 

policy makers can take into account when distributing resources for contact tracing. The second 

inadequacy stems from the associated costs of running widespread testing and tracing, both in 

terms of monetary and human resources.22 In previous work, we have advocated for the use of 

RL agents backed by GNNs to maximize these interventions' impact under limited budgets.3 In 

the present article, we take this idea a step forward, illustrating how the balancing of budgets can 

be optimized, in a similar fashion as for other NPIs, to achieve the containment level that is de-

sired for a given region. 

COST-BASED ASSESSMENT OF INTERVENTIONS 

Outbreak simulations are a useful tool for determining the impact of different public health inter-

ventions. However, when modelling various policy options simultaneously, there is no clear in-

dication of which interventions need more effort or the expected costs associated with enhancing 

those interventions. Here, we propose a simple, yet powerful, methodology that can guide the 

authorities in making these difficult decisions. 

Our approach entails creating a visual space that allows the policy makers to easily investigate 

the effects of increasing or decreasing the effort and expenditure for each type of intervention. 

This space can be represented in different ways, such as using contour or 3D plots, illustrating 

the influence that combinations of interventions at different strengths have on the simulated 
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epidemic outcome. For demonstration, we employ contour plots as an effective way to visualize 

the variations in these effects. Figure 1 depicts the contours of the mean proportion of individu-

als kept healthy across 50-100 epidemic simulations over various preferential attachment net-

works, under different scenarios of simultaneous interventions: reducing mixing and stay-at-

home orders; reducing mixing and mask mandates; standard digital and manual tracing pro-

cesses, relying on a random testing procedure; or RL-targeted testing and tracing. 

 

Figure 1. Contour plots of the fraction of people kept healthy across simulations by 
combinations of different public health interventions. This graphic illustrates how policy 
makers can assess and allocate resources to each measure, according to the desired level of 
containment. Figures 1a and 1b have marked the reference points mentioned in the text, with 
arrows delineating the space of actions needed to reach the next infection threshold. Figure 1c 
additionally highlights the most relevant region of the space, where uptakes are between 20-50%, 
overlaps between 10-60%, and 10-15% increases in each direction leads to around 8% less 
infections. Figure 1d presents the containment rates achieved by different daily budgets for a 
prioritized testing and tracing policy, derived by an RL+GNN agent. Contours are obtained by 
averaging 50-100 simulations and smoothening with a Gaussian filter. The sampling resolution 
used in these plots matches their corresponding axis ticks. 

Through the utilization of our method, a policy maker would be presented with several choices 

of the form: if the goal is to achieve a 10-15% reduction in the spread, would it be preferred to 

move along the X axis or the Y axis? For example, assume that various factors, such as volun-

tary behavioral changes or closing entertainment venues and schools, have reduced the social 

mixing by about 33% compared to the pre-epidemic level, and that about 20% of the investigated 
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community have been advised to stay at home (e.g., people aged over 70). Figure 1a shows that a 

10% average reduction in the spread can be achieved either by further reducing the social mixing 

by 7.5%, or by increasing the fraction of people staying at home by 12% of the total population. 

Similarly, Figure 1b shows that increasing the mask wearing fraction from 27% to 41% has a 

comparable effect to decreasing the social mixing by more than 25%, resulting in 15% less infec-

tions overall. By applying a transparent cost-benefit analysis that accounts for the economic and 

social implications of scaling up interventions, authorities can use such simulated outcomes to 

determine which of them are most effective to implement or expand. 

A key consideration for allocating resources for testing and tracing is the presence of diminish-

ing returns: as the desired infection reach becomes more stringent, the required budget increase 

must be larger to achieve it. Figure 1c illustrates this point clearly. It also reveals that, for the pa-

rameter configuration under consideration, a reduction of about 8% in the pathogen attack rate is 

achieved by increasing either the digital tracing adoption rates within the acceptable and feasible 

region (20-50%) or the manual tracing coverage in the moderate range (10-60%) by approxi-

mately 10-15% (with smaller effects for the uptake, however). Here, an efficacious cost-based 

assessment can establish which of these actions is more advantageous in each circumstance. For 

example, at lower adoption levels (i.e., < 30%), the uptake can be more viable to improve, since 

simple usability or privacy enhancements could be enough to attract more users. In contrast, be-

yond a certain threshold, increasing the adoption of any application is far more challenging, 

while improving the staffing of the manual process could become significantly more achievable. 

Finally, Figure 1d presents the daily budgeting trade-off between testing and digital tracing when 

an RL agent is tasked to prioritize both processes. Using such visualizations maximizes the bene-

fits of utilizing our previously proposed targeted approach for epidemic control since policy 

makers can optimize the budgets allocated for each intervention in a direct manner. When tests 

in the studied community are insufficient, rationalizing them without compromising on the epi-

demic outcome is possible by increasing the number of contacts that are to be isolated accord-

ingly. Conversely, if the testing budget is less strict, more contacts can be allowed to continue 

their normal behavior. The analysis reveals that the two processes have a similar dependence on 

the budget allocation, highlighting not only the significance of contact tracing, but also the im-

portance of balancing the two for an effective pathogen containment. 

METHODOLOGY 

We employ the EpiCURB framework3 to simulate several epidemics over weighted Holme-Kim 

networks23 of size 𝑁 = 2000 nodes, 𝑚𝐻𝐾 = 3 and 𝑝△ = 0.2. The edge weights are drawn from 

a uniform distribution 𝒰(0.5,1), which represents the varying levels of transmissibility that in-

teractions can have, depending on their duration and distancing. The pathogen is assumed to be 

an early variant of the SARS-CoV-2 virus, which spreads according to an individual-based 

mean-field model that follows an SEIR compartmental formulation with a base transmission rate 

β = 0.0791, average exposed rate 𝜖 = 3.7−1, and average recovery rate γ = 0.05.3,4 

When interventions are prioritized by an RL agent, the epidemic is allowed to progress unhinged 

until 𝑐𝑎 = 5 days and 𝑐𝑖 = 5% infections have been fulfilled. After informing the agent about 

the status of 𝑐𝑘 = 25% of infections, we train it according to our previously published routine, 

reusing the same parameter setting as before,3 and study their behavior under different budgeting 

schemes, ranging from five to 45 daily tests or contacts traced. The rest of the studied interven-

tions occur stochastically across the network and begin after five individuals have been exposed 

to the pathogen. To simulate different levels of mixing reduction, we effectively remove a vary-

ing proportion of the edges from the infection network. For mask mandates, we assume a vary-

ing percentage of compliant wearers among the population, considering their interactions to have 

a 50% lower infection weight than the original sampled value (or 75% if both contacts use one). 

Stay-at-home orders presume the targeted fraction of the nodes and their household immediately 

discontinue their social patterns, stopping the disease from being transmitted to or from these 

hubs. Finally, modelling the trade-off between digital and manual tracing is based on the SEIR-T 

formulation we previously introduced, where the overlap Γ and uptake r parameters are varied, 

while the testing rate τ𝑟 and the tracing effort τ𝑡 remain fixed at a moderate value of 0.05.4 
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CONCLUSION 

This article demonstrates how EpiCURB and an appropriate visualization technique can be used 

to inform budgeting aspects of decision-making in epidemic control. As we exemplify, network-

based simulations can reveal the suitable stringency/strength level of each public health interven-

tion required for attaining the desired degree of containment. When standard packages of such 

measures are deployed, our approach can inform policy makers where additional resources 

should be allocated. Furthermore, when individual-level interventions, such as testing and con-

tact tracing, are prioritized using RL or other node ranking mechanisms, the budgets under which 

these operate can be optimized to maximize their benefits.  

We believe that balancing NPIs in terms of the associated budgets and outcomes is paramount 

for the effective functioning of a society during severe pathogen outbreaks. As such, implement-

ing and assessing our proposed framework on more specific real-world scenarios represent natu-

ral extensions to this work, which could ultimately aid our preparedness for future epidemics. 
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