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Abstract—Index Modulation (IM) is a flexible transmission
scheme capable of striking a flexible performance, through-
put, diversity and complexity trade-off. The concept of Multi-
dimensional IM (MIM) has been developed to combine the ben-
efits of IM in multiple dimensions, such as space and frequency.
Furthermore, Compressed Sensing (CS) can be beneficially com-
bined with IM in order to increase its throughput. However,
having accurate Channel State Information (CSI) is essential for
reliable MIM, which requires high pilot overhead. Hence, Joint
Channel Estimation and Detection (JCED) is harnessed to reduce
the pilot overhead and improve the detection performance at a
modestly increased estimation complexity. We then circumvent
this by proposing Deep Learning (DL) based JCED for CS aided
MIM (CS-MIM) of significantly reducing the complexity, despite
reducing the pilot overhead needed for Channel Estimation
(CE). Furthermore, we conceive training-aided Soft-Decision
(SD) detection. We first analyze the complexity of the conven-
tional joint CE and SD detection followed by proposing our
reduced-complexity learning-aided joint CE and SD detection.
Our simulation results confirm a Deep Neural Network (DNN)
is capable of near-capacity JCED of CS-MIM at a reduced pilot
overhead and reduced complexity both for Hard-Decision (HD)
and SD detection.

Index Terms—Index Modulation, Compressed Sensing-Aided
Multi-Dimensional Index Modulation (CS-MIM), joint channel
estimation and detection, Soft Detection, Machine learning,
Neural Network.

NOMENCLATURE

Acronym
Approx-Log-MAP Approximate Logarithm MAP
BER Bit-Error Ratio
CE Channel Estimation
CP Cyclic Prefix
CS Compressed Sensing
CS-MIM CS-aided MIM
CS-SIM-OFDM Compressed Sensing-aided Sparse Index

Modulation-Orthogonal Frequency Division Multi-
plexing

CSI Channel State Information
DCMC Discrete-Input Continuous-Output Memoryless Chan-

nel
DL Deep Learning
DNN Deep Neural Network
FC Fully-Connected
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FD Frequency Domain
HD Hard-Decision
IFFT Inverse Fast Fourier Transform
IM Index Modulation
JCED Joint Channel Estimation and data Detection
LLR Log-Likelihood Ratio
LSCE Least squared CE
LSTM Long Short-Term Memory
MIM Multi-dimensional Index Modulation
MIMO Multiple-In and Multiple-Out
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
OFDM Orthogonal Frequency Division Multiplexing
OFDM-IM OFDM with Index Modulation
RA receiver antenna
Relu Rectified linear unit
RF Radio Frequency
RSC Recursive Systematic Convolutional
SD Soft-Decision
SIM Subcarrier-Index Modulation
SIM-OFDM Subcarrier-Index Modulated OFDM
SM Spatial Modulation
SpD Spatial Domain
STSK Space-Time Shift Keying
TA transmit antenna
TD Time Domain
Symbols
Nr number of RAs
Nt number of TAs
Nc number of subcarrier for each frame
G number of group
Nf number of subcarrier in FD
Nv number of subcarriers in VD
bg,1 bits for SM at g-th group subcarriers of CS-MIM
bg,2 bits for frequency index modulation at g-th group

subcarriers of CS-MIM
bg,3 bits for STSK mapping at g-th group subcarriers of

CS-MIM
M number of TAs for STSK dispersion matrices
N number of RAs for STSK dispersion matrices
T number of time slots for STSK dispersion matrices
K number of activated index in each subcarrier group in

VD
Q number of dispersion matrices for STSK mapping
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L number of constellation realizations for STSK map-
ping

X STSK codeword
S Space-time symbol block of each subcarrier group in

VD
s Space-time symbol sequence of each subcarrier group

in VD
A CS measurement matrix
sFD Space-time symbol sequence after CS of each subcar-

rier in FD
Y Received signal
Hα channel model in FD
IAC selection pattern of active TAs for each subcarrier

group
S̄ modulated CS-MIM symbol at transmitter
hα channel model in TD
W Additive White Gaussian noise
SFD Space-time symbol block after CS of each subcarrier

in FD
ISI subcarrier index selection pattern for each subcarrier

group
Y p Received pilot symbol
Ĥα estimated CSI in the FD
S̄p pilot modulated CS-MIM symbol
RH the channel’s correlation matrix of channel H
Le output extrinsic LLR after soft demodulation
La de-interleaved LLR sequence of Le

b̂r detected data bits
Ĉ detected coded data bits
Wn weights of n-th neuron
θn bias of n-th neuron
B sample size of current iteration of DNN training phase

I. INTRODUCTION

INDEX Modulation (IM) constitutes a cost- and energy-
efficient technique in the face of escalating throughput

requirements [1] [2] [3]. The concept of IM has evolved from
the idea of space-shift keying proposed by Chau et al. [4]
in 2001, which maps the information to the indices of the
activated Transmit Antennas (TAs). Then, Spatial Modulation
(SM) was proposed, which transmits the classic amplitude-
phase modulated symbols over the activated TA [5] [6]. To
eliminate the influence of Channel State Information (CSI),
differential SM is proposed by Bian et al. [7]. As a further
advance, the concept of IM has been devised by harnessing
the philosophy of SM in several single dimensions, which
was finally further developed to activating multiple of these
dimensions [8] [3].

To elaborate further, the SM is first applied to Orthogonal
Frequency Division Multiplexing (OFDM) transmission to
avoid inter-channel interference [9]. As Subcarrier-IM com-
bined with OFDM (SIM-OFDM) exploits the IM concept in
the Frequency Domain (FD) [10], where extra information can
be delivered by the index of the activated subcarriers. Then
Wen et al. [11] also investigate the IM-aided OFDM (OFDM-
IM), which split the whole available OFDM spectrum into
groups and Iqbal et al. [12] extend OFDM-IM in Multiple-In-
Multiple-Out (MIMO) scheme. Although Tsonev et al. [13]

and Basar et al. [14] investigated enhanced OFDM-IM for
increasing the spectral efficiency, the presence of inactive sub-
carriers resulted in throughput reduction compared to classical
OFDM. Hence, Zhang et al. proposed a novel Compressed
Sensing (CS) [15] aided SIM-OFDM [16] for exploiting the
sparsity of subcarriers to improve the performance, despite
also reducing the detection complexity [17].

As a further evolved arrangement, Space-Time Shift Keying
(STSK) is a multi-functional MIMO technique in the IM
family that utilizes both the Time Domain (TD) and Spatial
Domain (SpD) to strike a flexible diversity vs multiplexing
trade-off [18]. The information bits in STSK are used for
selecting one or several dispersion matrices from a set of
Q dispersion matrices, which spread the signal over T time
slots and M TA elements in the SpD. By the careful design
of dispersion matrices, an improved Bit Error Ratio (BER),
throughput and complexity design trade-off can be struck [19].

Multi-dimensional Index Modulation (MIM) was conceived
by Shamasundar et al. [20]. This scheme enhances the de-
grees of freedom in IM designs by exploiting its advantages
across multiple domains without requiring additional hardware
resources, such as extra Radio Frequency (RF) chains or in-
creased transmission power. As a further development, Zhang
et al. [16] proposed the concept of Compressed Sensing-
aided Sparse Index Modulation-Orthogonal Frequency Di-
vision Multiplexing (CS-SIM-OFDM). Briefly, this scheme
employs Compressed Sensing (CS) [15] to capitalize on the
inherent sparsity of symbols in the Frequency Domain (FD),
thereby improving the system’s throughput [17]. Furthermore,
Lu et al. [21] proposed a method that combines CS techniques
with STSK and OFDM-IM. This integrated approach seeks
to garner the collective benefits of both STSK and OFDM-
IM. Further refinements incorporating SM were discussed in
their subsequent treatise [2]. Additionally, Hemadeh et al.
introduced a multi-functional layered SM paradigm in [3].
This concept aims for maximizing the flexibility in dimension
combinations, optimizing the trade-offs among performance,
hardware costs, and power consumption.

Since the MIM conveys information in several dimensions,
Maximum Likelihood (ML) detection is theoretically capable
of detecting the multi-dimensional signal jointly, albeit at an
escalating complexity upon increasing the degrees of freedom
or dimensions [22]. In [2], CS-aided MIM (CS-MIM) was
proposed, where multiple detection stages were harnessed for
recovering data from the CS, STSK and OFDM-IM domains,
again, at an extremely high complexity.

On the other hand, coherent detection requires the knowl-
edge of CSI, which is estimated by transmitting pilots to
the receiver [23]. Although SM exhibits energy savings by
only employing a single RF chain, the pilot based Channel
Estimator can only obtain the active TAs’ CSI, hence it
requires more time to estimate the whole MIMO channel.
In [24], Faiz et al. proposed recursive least-squares-based
adaptive channel estimator for SM under the assumption that
the MIMO channel experienced block fading. Then, Wu et al.
[25] investigated a novel Channel Estimation (CE) scheme by
exploiting the channel correlation, which significantly reduced
the pilot overhead. Acar et al. [26] employed a systematical
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pilot insertion method to estimate the SM-MIMO channel.
However, the pilot overhead reduces the payload at a given
bandwidth efficiency and the CE complexity increases with
the number of antennas [27].

Historically speaking, Abuthinien et al. [28] proposed a
semi-blind ML-based Joint Channel Estimation and data De-
tection (JCED) scheme for MIMO systems at a minimum
pilot overhead. Furthermore, Chen et al. [29] designed an
iterative JCED for STSK systems, which imposes reduced
complexity, while maintaining a high throughput and attaining
near-optimal BER performance. Similarly, Sugiura et al. [30]
applied JCED in a SM scheme, while Acar et al. [31] proposed
a similar iterative JCED for coded SM-OFDM.

The complexity of ML sequence detection in Gaussian
channels may be deemed practical for one-dimensional IM,
but the complexity of MIM detection increases significantly.
It is therefore of interest to explore sub-optimal receivers that
can approach the performance of the ML detector at a reduced
complexity, such as the Expectation-Maximization algorithm
investigated by Cozzo et al. [32], while employing a reduced
number of pilot symbols.

Deep Learning (DL) has been attracting increasing attention
in wireless communications [38] [39]. For instance, a Deep
Neural Network (DNN) was used for detecting MIMO signals
in [40] [41]. In [42], a DNN was employed for estimating
the channel of OFDM systems and data detection. Recently,
Qing et al. [43] proposed an effective CE and detection scheme
relying on a sophisticated neural network models for achieving
a similar or possible even better detection performance than the
conventional Minimum Mean Square Error (MMSE) arrange-
ment. In [35], Satyanarayana et al. proposed a DNN-aided
semi-blind detector for drastically reducing the pilot overhead
needed for CE of a multi-set STSK scheme, which was also
extended to Soft-Decisions (SD) in [36]. Additionally, both
CE and detection have been performed using neural network
in [37], where Xiang et al. proposed a DNN-based iterative
JCED for SM systems.

However, the JCED techniques presented in the literature
have been designed for single-dimensional IM systems, Fur-
thermore, there is a paucity of research exploiting DL-based
SD detection. Hence, in order to narrow the knowledge gap,
we design a DNN-based JCED for CS-MIM systems, which
can harness both Hard-Decision (HD) as well as SD detection.

Table I boldly contrasts the novelty of this paper to the liter-
ature. Against the above background, the detailed contributions
of this paper are summarized as follows:

• We propose a reduced complexity JCED for HD CS-

MIM, employing a data driven DNN. The proposed
learning aided JCED method is capable of attaining near-
ML performance at a low pilot overhead and complexity.

• We then further extend this DNN-aided JCED CS-MIM
scheme for producing soft information, where we com-
bine our system with channel coding in order to attain an
improved BER performance.

• Our simulation results demonstrate that the proposed
MMSE-based JCED DNN model is capable of out-
performing the conventional MMSE-CE and detection
scheme in different channel environments at a reduced
pilot overhead, while also approaching the performance
of conventional JCED, despite its reduced complexity and
pilot overhead.

The rest of the paper is organized as follows. In Section II,
the system model of CS-MIM is presented. In section III, we
design JCED techniques for our CS-MIM system relying on
our proposed learning-aided detector along with its complexity
analysis. Finally, in Section IV and Section V, we analyze the
results and conclude, respectively.

II. SYSTEM MODEL

In this section, we introduce the transceiver model of
the CS-MIM system employing Nt TAs and Nr Receiver
Antennas (RAs). Fig. 1 shows the block diagram of the CS-
MIM system considered , where an OFDM symbol has Nc

subcarriers, which are then equally divided into G groups.
Each group has Nf = Nc/G subcarriers in the FD1, while Nv

subcarriers of each group are applied for the CS-MIM system
in the Virtual Domain (VD) 2. The FD signal is attained by
compressing the VD signal using CS as detailed in [2], where
Nf is set lower than Nv to increase the throughput. The CS-
aided OFDM symbols will then be transmitted from the acti-
vated TAs decided by the antenna selector of Fig. 1. Then, after
transmission over the wireless channel, the receiver estimates
the channel and detects the signal. In the following, we present
the details of the processing stages at the transmitter and the
receiver.

A. Transmitter

As shown in Fig. 1, b bits are split into G groups, where bg
bits, (g = 1, 2, 3...G) of each group are split into three parts

1FD is the OFDM symbol domain after CS processing, as shown in Fig. 1.
2VD is the actual domain, where subcarrier index modulation is applied

before the CS process as shown in Fig. 1. This concept was firstly introduced
in [16] to illustrate the CS techniques in IM system to improve the spectral
efficiency.

TABLE I: Boldly and explicitly contrasting our contributions to the literature

Contribution proposed* [16] [33] [2] [34] [30] [31] [35] [36] [37]
Index modulation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-dimensional index modulation ✓ ✓ ✓
CS at transmitter ✓ ✓ ✓
Channel estimation ✓ ✓ ✓ ✓ ✓ ✓
Joint channel estimation and detection (JCED) ✓ ✓ ✓ ✓
Learning aided detector ✓ ✓ ✓ ✓ ✓ ✓
Soft Decision detector ✓ ✓ ✓ ✓
Learning aided JCED ✓ ✓
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Fig. 1: CS-MIM system transmitter block diagram.

by the block splitter: bg,1 bits for SM, bg,2 bits for frequency
index modulation, bg,3 bits for STSK to form the space-time
symbols. In the following we detail the different blocks of the
CS-MIM transmitter in Fig. 1.

1) Subcarrier Index Selection: The bit sequence bg,2 is
applied in the subcarrier index selector to activate a subcarrier
in each group, as shown in Fig. 1. Only K subcarriers are
activated out of the Nv available subcarriers and the other
subcarriers remain unused. In the following we consider an
example to illustrate the subcarrier selection procedure, where
we consider the example of K = 2 active subcarrier out
of the Nv = 4 available subcarriers in each group. This
results in 4 possible subcarrier index combinations in total.
Table II shows an example of the subcarrier selection, where
K1,K2 represents the active subcarriers and 0 represents the
inactive subcarriers. Explicitly, when the input bits sequence
is bg,2 = [00], the first and second subcarriers are activated,
as shown in Table II. Then the selected active subcarrier
combination is populated by K space-time symbols, where
the STSK codewords are fenerated by the STSK scheme for
each group.

b2 Indices Allocation
[0 0] (1) [K1 K2 0 0]
[0 1] (2) [0 K1 K2 0]
[1 0] (3) [0 0 K1 K2]
[1 1] (4) [K1 0 0 K2]

TABLE II: An example of subcarrier selection for a CS-MIM
system having K = 2, Nv = 4

2) STSK Encoding: The bit sequences bg,3 of size
K log2(QL) are fed into the STSK encoder of Fig. 1 to
output K STSK codewords {Xi, . . . ,Xi, . . . ,XK} , where
the dispersion matrix spreads the information both over M TAs
and over T time slots in each subcarrier and each space-time

codeword X[i] ∈ CM×T is generated by spreading a conven-
tional L-ary constellation symbol by a specific dispersion ma-
trix selected from Q available dispersion matrices. The STSK
encoder is characterized by the parameters (M,N, T,Q,L),
where M,N, T represent the number of TAs, RAs and time
slots, while Q,L are the number of dispersion matrices and
of L-ary constellation symbols. Then, the space-time symbol
S is generated by mapping the K generated STSK codewords
to the K selected active subcarriers decided by the subcarrier
index selector, while other subcarriers remain inactive and are
set to zero. Considering bg,2 = [00] in the example shown
in Table II, in this case, we assume STSK(M,N, T,Q,L) =
(2, 2, 2, 2), which have codewords {X1, . . . ,X2,X3,X4}.
Then, given the assumption that bg,3 = [0 0 0 1], the space-
time symbols become S = [X1,X2, 0, 0], where we assume
that X1 and X2 are the STSK codewords generated based on
the bit sequence bg,3.

3) Space-Time Symbol Formation and Application of Com-
pressed Sensing: The G groups of space-time symbols S are
assembled by the block creator of Fig. 1 to form a long space-
time frame, which is processed by the space-time mapper to
output a symbol for transmission over multiple TAs and time-
slots, as shown in Fig. 1. Equivalently, the space-time symbols
S of each subcarrier group are mapped to M TAs during T
time slots, which have MT symbol sequences {s1,1, ..., sM,T }
for spreading the M TA’s signals during T time slots.

These symbol sequences {s1,1, ..., sM,T } are then com-
pressed by a CS measurement matrix A ∈ CNf×Nv se-
lected from the Nv-dimensional sm,t(m = 1, 2, ...,M)(t =
1, 2, 3, · · · , T ) in the VD into the Nf -dimensional form in
the signal sm,t

FD. The FD vector sFD
m after CS is then

mapped to the OFDM subcarriers, which can be written as:
sFD
m,t = Asm,t. Similar to conventional OFDM, the FD symbol
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per time slot will be transformed into TD symbols to be
transmitted by their corresponding TAs and then a Cyclic
Prefix (CP) will be added.

b1 Indices Allocation
[0] (1,2) [TA1TA2 0 0]
[1] (3,4) [0 0 TA3TA4]

TABLE III: A look up table example of Antenna selection in
the CS-MIM system having M = 2, Nt = 4.

4) Antenna Selection: After Inverse Fast Fourier Transform
(IFFT) and CP addition, the TD symbols are transmitted by
the activated TAs specified by the antenna selector of Fig. 1.
Explicitly, bg,1 bits are conveyed by the antenna selector
of Fig. 1, which selects M antennas from the Nt available
TAs, where we have NAC antenna combinations in total. To
avoid the correlation caused by sharing the same TA elements
among different antenna combinations, the Distinct Antenna
Combination scheme of [44] is used to decide upon the index
NAC , with b1 = [log2(NAC)]. To elaborate further, let us
consider an example using M = 2, Nt = 4 and NAC = 2. As
shown in Table III, when the input bit is b1 = [0], then the first
and second TAs will be activated to transmit the modulated
symbols in a specific subcarrier block, while the other two
TAs remain inactive. Similarly, if the incoming bit sequence
is b1 = [1], then the third and fourth TAs will be selected to
transmit the symbols. More specifically, for bg,2 = [0 0] and
bg,3 = [0 0] along with STSK (2, 2, 2, 2, 2) we can have the
space-time block formulated as S = [X1, 0, 0, 0] and after CS
the FD SFD may be expressed as

SFD =

[
sFD
1,1 sFD

2,1

sFD
1,2 sFD

2,2

]
(1)

Then, we assume 4 TAs for transmission and bg,1 = [1].
As shown in Table III, we can have the CS-MIM modulated
symbol S̄ formulated as

S̄ =


sFD
1,1 sFD

2,1

sFD
1,2 sFD

2,2

0 0
0 0

 (2)

B. Receiver Structure

We consider a receiver employing NR RAs. The signal
arriving from the transmitter is assumed to be transmitted over
a frequency-selective Rayleigh fading channel and the CSI is
acquired by CE, as discussed in Section III-C.

The CP is removed and then the received signal is trans-
formed to the FD signals by using the Fast Fourier Transform
(FFT), as shown in Fig. 2. The space-time demapper collects
the FD symbols received from Nr RAs over T time slots to
recover the space-time symbols, which are then split into G
groups by the Block Splitter of Fig. 2. Afterwards, the symbols
received by each subcarrier group are represented as Y =
{Y [1]T , . . . ,Y [α]T , . . . ,Y [Nf ]

T }T with Y ∈ CNrNf×T and
Y [α] ∈ CNr×T characterizing the ST structure per group and
the space-time symbol received at the α-th subcarrier of each
subcarrier group, respectively.

Fig. 2: CS-MIM system receiver block diagram

Let the FD channel matrix be represented as Hα ∈ CNr×Nt

for α = 1, . . . , Nf . Then the signal Y [α] ∈ CNr×T (α =
1, . . . , Nf ) received during T time slots for each subcarrier
group can be expressed as [2]

Y [α] = HαS̄[α] +W [α] = HαIACS
FD[α] +W [α], (3)

where S̄ represents the modulated signal after SM at trans-
mitter and SFD[α] ∈ CM×T denotes the space-time symbols
at α subcarriers transmitted from M TAs over T time slots
and W [α] ∈ CNr×T represents the Additive white Gaussian
noise (AWGN) obeying the distribution of CN (0, σ2

N ), and
σ2
N is the noise variance. Furthermore, IAC ∈ CNt×M

denotes the (Nt × M)-element sub-matrix, which describes
the selection pattern of active TAs for each subcarrier group at
the transmitter. For high-integrity detection, accurate channel
information is required, which is attained by employing CE
techniques relying on known pilots in practical model-based
solutions. In the next section, we will discuss CE techniques
suitable for CS-MIM and characterize the JCED method.

III. CHANNEL ESTIMATION AND DETECTION FOR
CS-MIM

Given the received signal Y of (3), the receiver infers the in-
formation bits of the STSK codewords, the bits embedded into
the activated the subcarrier indices and the bits mapped to the
active TAs. This detection process requires the channel state
information, which can be acquired by channel estimation. In
the following, we consider both separate channel estimation
and detection and JCED, where we propose a deep learning
aided JCED technique capable of reducing both the complexity
as well as the pilot overhead without substantially eroding the
performance.

The signal received at the α-th subcarrier during a time slot,
can be represented as
Y α

1
...

Y α
r

...
Y α

Nr

 =



hα
1,1 hα

1,2 · · · hα
1,Nt

hα
2,1 hα

2,2 · · · hα
2,Nt

...
...

. . .
...

...
...

. . .
...

hα
Nr,1

hα
Nr,2

· · · hα
Nr,Nt

 IACS
α(FD)+W α,

(4)
where hα

r,t is the CSI between the r-th RA and the t-th TA
for the α-th subcarrier for subcarrier group g. Additionally,
S[α]FD can be extended as {S1

α, · · · ,S
M
α } for a single time

slot. Then, the channel matrix H corresponding to Nf ST
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signals of each subcarrier group can be expressed in a diagonal
structure of size (NrNf ×NtNf ) as

H = diag{H1,H2, · · · ,HNf
}, (5)

where Hα(α = 1, 2..., Nf ) represents the corresponding CSI
at the α-th subcarrier.

Similarly, the antenna selection pattern matrix associated
with Nf subcarriers of each group ĪAC ∈ CNtNf×MNf has
the structure of

ĪAC = diag{IAC , IAC , · · · , IAC}. (6)

The received signal Y contains Nf space-time symbols at
Nf subcarriers in the FD of each subcarrier group. Given the
received signal model Y [α] ∈ CNr×T , α = 1, . . . , Nf , we can
write Y as

Y = HĪACS
FD +W . (7)

The FD space-time signal can be represented as

SFD = ĀS = ĀISIX, (8)

where Ā ∈ CMNf×MNv is the equivalent measurement matrix
A used for compressing the VD vector and S ∈ CMNv×T

denotes the VD space-time symbol. Then, S can be expanded
as S = ISIX , where X ∈ CMK×T represents K STSK
codewords and ISI ∈ CMNv×MK is the subcarrier index
selection pattern.

Hence, (7) can be rewritten as:

Y = HĪACĀISIX +W . (9)

In the following, we first present the conventional CE and HD
detection for the CS-MIM system considered, followed by the
conventional JCED. Then, we introduce both the conventional
SD detection and the SD-JCED scheme of the CS-MIM
system. Afterwards, we present our proposed NN aided HD-
JCED, where the neural network replaces the exhaustive search
with a learned classification model in order to significantly
reduce the computational complexity, followed by the neural
network aided SD-JCED.

A. Conventional Channel Estimation and Detection

In this section we present the conventional channel estima-
tion and detection designed for the MIM system, followed by
the JCED to output both HD as well as SD values.

Fig. 3: Conventional CE flow chart.

1) Channel Estimation: As shown in Fig. 2, we use the CE
scheme for acquiring the CSI used for detection. Conventional
pilot based CE, which inserts pilots in each symbol may
become inefficient in this context due to randomly activating
both the subcarriers and TAs [26]. We circumvent this problem
by constructing a dedicated pilot frame for estimating the CSI
by the channel estimator for our CS-MIM receiver, as shown in
Fig. 2. This mitigates the challenge of randomness caused by
the TA index selection. The pilot frame has the same size as the
information frame, where only a single TA is activated for each
subcarrier group. In this case, the number of subcarrier groups
G is higher than or equal to that of the TAs Nt. Furthermore,
each of the Nt TAs can be activated more than once in each
frame. Then the CSI of every single TA and subcarrier group
can be estimated by the channel estimator. Afterwards, we can
obtain the estimated CSI matrix Ĥ of the equivalent subcarrier
group by linear interpolation techniques [23].

Fig.3 shows the flow chart of the conventional CE and
detection. Firstly, the pilot symbol Y p is input to the channel
estimator. Then, with the aid of the appropriate CE method,
the estimated CSI Ĥ may be acquired by the detector and then
used for recovering the information bits.

Let us model the received space-time pilot symbol based on
(7) as

Y p = HS̄p +W , (10)

where the space-time pilot symbol is S̄p =
diag{ ¯Sp,1, ¯Sp,2, · · · , ¯Sp,M}.

Then the Least Squared CE (LSCE) is given by

ĤLS = Y pS̄
H
p (S̄pS̄

H
p )−1. (11)

In this case, we can calculate the complexity of LSCE, as
shown in (11). To elaborate, the complexity of LSCE is
dominated by the CSI matrix inversion and multiplication.
Then we can characterize the complexity of LSCE by the
complexity order of OLSCE [NrNtMTN2

f ].
To minimize the estimation Mean Square Error (MSE) of

H , the popular MMSE-CE formulated as

ĤMMSE = Y p(S̄
H
p RHS̄p +N0NfI)

−1S̄
H
p RH , (12)

where RH represents the channel’s correlation matrix [30].
The MMSE-CE requires the calculation of RH and CSI
matrix inversion. Then, we can characterize the computational
complexity as OMMSE−CE [NrNtT (MN2

f +N3
f )].

To track the channel, piecewise linear interpolation is used
for acquiring the CSI, which can be formulated as:

Hn = Ĥnp
+(Ĥnp+1

−Ĥnp
)(
n− np

D
), for np ≤ n ≤ np+1,

(13)
where Ĥnp

and Hn are the estimated CSI matrix at the pilot
symbol position and D denotes the pilot insertion spacing.

2) Maximum Likelihood Detection: The ML detector makes
a joint decision on the TA index of the STSK codewords and
of the subcarrier using an exhaustive search, which can be
formulated as

⟨γ̂, β̂, φ̂⟩ = arg min
γ,β,φ

∥Y −H ĪAC(γ)ĀĪSI(β)Xq,l(φ)∥2,
(14)
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where γ̂, β̂ and φ̂ represent the estimates of the activated TAs
index, the activated subcarrier index and the index of K STSK
codewords in each subcarrier group, respectively [2].

At the receiver, the ML detector carriers out a
full search for evaluating all possible candidates, which
has a complexity order of O[NACNSI(QL)K ] per sub-
carrier group. Then, the total computational complex-
ity of the ML detector relying on perfect CSI can
be expressed as OML[(NrNtMN3

f + NrM
2N2

fNv +

NrNfM
2NvK + NrNfMKT )NACNSI(QL)K ]. With the

aid of the LSCE/MMSE-CE relying on ML, we can have the
total complexity order of CE-aided ML detection formulated
as OLSCE/MMSE−CE +OML

Fig. 4: JCED flow chart.

3) Joint Channel Estimation and Detection: To further im-
prove the detection performance, data detection based iterative
JCED is considered. Fig.4 shows the flow chart of the JCED,
which starts using the same procedure as the conventional CE,
where the estimated CSI is acquired by the channel estimator
with the aid of pilot symbols. Afterwards, we recover the
bits from the received signal and the estimated CSI. Then,
the remodulated symbols created from the recovered bits are
used for updating the CSI.’ This process is then repeated for
several iterations to improve the estimated CSI accuracy. By
exploiting the remodulated symbols, the JCED can increase
the CE accuracy and hence increase the detection performance
without increasing the pilot overhead. Based on [29] and [30],
the JCED of CS-MIM is described by Algorithm 1.

As illustrated in Algorithm 1, there are two thresholds,
which are used for terminate the update loop. First, we
set a maximum number of iterations, Imax, which progres-
sively enhances the CE and detection performance. This
allows for an adjustable algorithmic complexity based on
the number of iterations. The second approach introduces
a termination constant, β, which controls the accuracy of
the CE. Based on the theoretical results of the MMSE-
CE-aided and ML-based detection, we can determine the
MSE gap between conventional CE-based detection and ML
detection, assuming perfect CSI. Consequently, the constant
β can be selected within this gap and should be suffi-
ciently low. In this scenario, the algorithm’s complexity solely

Algorithm 1: LS/MMSE-CE based HD-JCED of CS-
MIM
Input: Pilot symbol Y p, Received signal Y
Output: Detected data b̂r

(t+1)

1 t := 0 // initial iteration index
2 The initial CSI estimated by LSCE or MMSE-CE to

achieve Ĥt = Ĥ(LS/MMSE) with Y p and Y
3 while t ≤ Imax do
4 t = t+ 1
5 Detect the data

b̂r
(t)

= [b̂r
(t)
(1) b̂r

(t)
(2) b̂r

(t)
(3) ... b̂r

(t)
(τ)] and

then remodulated the detected data as
Ŝ

(t)
= [Ŝ

(t)
(1) Ŝ

(t)
(2) Ŝ

(t)
(3) ... Ŝ

(t)
(τ)]

6 Update the estimate CSI with LS estimator with
H

(t+1)
LS = Y (S(t))H(S(t)(S(t))H)−1 or MMSE

estimator with
H

(t+1)
MMSE = Y (S(t) +N0NI)−1S(t)HRH

7 Achieve the updated detected data b̂r
(t+1)

with
H(t+1) and residual of each iteration
∆ = ||Ĥ

(t+1)
− Ĥ

(t)
||2

8 if ∆ ≤ β then
9 quit // given a threshold to end

the loop
10 end
11 end

hinges on the CSI condition, which can be unpredictable.
In general, a suitable termination threshold is chosen to
strike an appropriate performance vs. complexity trade-off.
Alternatively, both threshold may be harnessed for maximizing
the algorithm’s efficiency. In this case, we can represent
the complexity order of the HD-JCED as OHD−JCED =
OLSCE/MMSE−CE + log(β)(OLSCE/MMSE−CE + OML),
if the number of iterations is smaller than Imax. In a nutshell,
the total complexity oder can be expressed as OHD−JCED =
OLSCE/MMSE−CE + Imax(OLSCE/MMSE−CE +OML).

B. Soft Decision Detection

SD detection is employed for attaining near-capacity per-
formance when combined with channel coding by exchanging
soft values between the MIMO detector and the channel
decoder. However, the complexity of the optimal maximum
a posteriori probability MIMO detector rapidly becomes pro-
hibitive upon increasing the modulation order and the number
of TAs [45]. In the following, we will present the conventional
SD detector of CS-MIM, followed by our LS/MMSE-CE
based SD-JCED aided CS-MIM system.

1) Conventional Soft Decision Detection: A channel coded
CS-MIM scheme is shown in Fig. 5, which was proposed in
[2] for achieving near-capacity performance. The information
bit sequence b is encoded by a Recursive Systematic Con-
volutional (RSC) encoder. Then, the coded bit sequence c
is interleaved to generate the interleaved stream u, which is
entered into the CS-MIM modulator of Fig. 1.
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Fig. 5: The transceiver architecture of channel-coded CS-MIM.

At the receiver side of Fig. 5, the pilot data is processed
first for estimating the channel, where the estimated channel
H̄ is entered into the soft CS-MIM receiver that outputs
Log-Likelihood Ratio (LLRs). The LLRs output from the
demodulator are then passed to the de-inteleaver and the RSC
decoder performs soft decoding. In Fig. 5, L(·) represents
the LLRs of the bit sequences, where Le(u) is the extrinsic
LLR output after soft demodulation and La(c) is the de-
interleaved LLR sequence of Le(u), which constitutes the a
priori information for the RSC decoder.

The LLR of a bit is defined as the ratio of probabilities
associated with the logical bits ’1’ and ’0’, which can be
written as L(b) = log p(b=1)

p(b=0) . The conditional probability
p(Y |Xγ,β,φ) of receiving the signal Y of a subcarrier group
defined in (3)is given by [46]

p(Y |Xγ,β,φ)

=
1

(πN0)NT
exp(−||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2

N0
),

(15)
where Xγ,β,φ represents the STSK codewords at the β-th
realization of active subcarriers, which are transmitted through
the ϕ-th realization of an active TA. Furthermore, N0 is
the noise power, where we have σ2

n = N0/2 with N0/2
representing the double-sided noise power spectral density.

Hence, we can formulate the LLR of bit ui as

Le(ui) = ln
p(y|ui = 1)

p(y|ui = 0)

= ln

∑
X

γ,β,φ∈X l
1

p(Y |Xγ,β,φ)∑
X

γ,β,φ∈X l
0

p(Y |Xγ,β,φ)
,

(16)

where X l
1 and X l

0 represent a subset of the legitimate equiv-
alent signal X corresponding to bit ul, when ul = 1 and
ul = 0, respectively, yielding X l

1 ≡ {Xγ,β,φ ∈ X : ui = 1}
and X l

0 ≡ {Xγ,β,φ ∈ X : ui = 0}.
Upon using (15) and (16) we obtain the LLR L(bi) of the bit

sequence conveyed by the received signal Y. To simplify the
LLR calculation, the Approximate Log-MAP (Approx-Log-
MAP) algorithm based on the Jacobian Maximum operation
[47] is used [48], which is given by

Le(ul) = jacXγ,β,φ∈X l
1
(λγ,β,φ)− jacXγ,β,φ∈X l

0
(λγ,β,φ), (17)

where jac(.) denotes the Jacobian maximum operation and the
intrinsic metric of λγ,β,φ is

λγ,β,φ = −||Y −HĪAC(γ)ĀISI(β)Xq,l(φ)||2/N0.
(18)

Algorithm 2: LS/MMSE-CE based SD-JCED of CS-
MIM
Input: Pilot symbol Y p, Received signal Y
Output: Detected data b̂r

(t+1)

1 t := 0 // initial iteration index
2 The initial CSI estimated by LSCE or MMSE-CE to

achieve Ĥ
(t)

= Ĥ(LS/MMSE) with Y p and Y
3 while t ≤ Imax do
4 t = t+ 1
5 Detect the received signal LLR based on

eq.(16)(17) as
L̂

(t)

e = [L̂
(t)

e (1)L̂
(t)

e (2)L̂
(t)

e (3)...L̂
(t)

e (τ)] and the
detected coded data as
Ĉ

(t)
= [Ĉ

(t)
(1)Ĉ

(t)
(2)Ĉ

(t)
(3)...Ĉ

(t)
(τ)]

6 Recover the uncoded data by RSC decoder as

b̂r
(t)

= [b̂r
(t)
(1)b̂r

(t)
(2)b̂r

(t)
(3)...b̂r

(t)
(τ)]

7 re-encode the data and remodulated the re-coded

data as Ŝ
(t)

= [Ŝ
(t)
(1)Ŝ

(t)
(2)Ŝ

(t)
(3)...Ŝ

(t)
(τ)]

8 Update the estimate CSI with LS estimator with
H

(t+1)
LS = Y (S(t))H(S(t)(S(t))H)−1 and MMSE

estimator with
H

(t+1)
MMSE = Y (S(t) +N0NI)−1S(t)HRH

9 ∆ = ||Ĥ
(t+1)

− Ĥ
(t)
||2

10 Achieve the updated detected data b̂r
(t+1)

with

H(t+1) ∆ = ||Ĥ
(t+1)

− Ĥ
(t)
||2

11 if ∆ ≤ β then
12 quit // given a threshold to end

the loop
13 end
14 end

At the receiver, the soft demodulator evaluates the prob-
ability of each bit being logical ’1’ and ’0’. Then it ap-
plies the approx-log-MAP algorithm for obtaining the ex-
trinsic LLRs of the coded bits, which has a complex-
ity order of O[2(cg)(NACNSI(QL)K)], where cg repre-
sents the numbers of coded bits after the RSC encoder
and interleaver. Then, we can have total complexity of
OMAP [cg(NrNtMN3

f + NrM
2N2

fNv + NrNfM
2NvK +

NrNfMKT )NACNSI(QL)K + cg2
cgNACNSI(QL)K ]

2) Soft Decision Joint Channel Estimation and Detec-
tion: Then we can also apply the same JCED algorithm
for SD CS-MIM and the resultant procedure is described
in Algorithm 2. Similarly, we can represent the complexity
of the SD-JCED as OHD−JCED = OLSCE/MMSE−CE +
log(β)(OLSCE/MMSE−CE + OML) or OHD−JCED =
OLSCE/MMSE−CE + Imax(OLSCE/MMSE−CE +OML).

However, both HD and SD JCED impose excessive com-
plexity upon updating the CSI of each symbol. In the follow-
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ing, we propose DNN-based MIM detectors for reducing the
complexity.

C. Proposed Learning based Channel Estimation and Detec-
tion

In this section, we first introduce the DNN-aided HD
detection of CS-MIM. Then, we propose an iteratively updated
DNN model for JCED of CS-MIM. Afterwards, we extend the
proposed DNN-based JCED model to SD CS-MIM systems.

Fig. 6: Fully-connected DNN model for CS-MIM channel
estimation and data detection.

1) Conventional DNN-aided CE and HD detection: The
DNN architecture of Fig. 6 can be harnessed for replacing the
conventional HD data detector of Section III-A2). As shown
in Fig. 6, the pilot symbols Yp and the received symbols Y
constitute the inputs of the L-layer fully-connected network.
The channel Ĥ is estimated from the pilot symbols Yp by the
DNN model during the training phase. Then the output bits û
can be obtained using the estimated channel and the received
signal, yielding the output of

û =fsigmoid(Wn...fRelu{W2(fRelu1 [W1fLSTM (Y ) + θ1])

+ θ2}+ ...+ θn),
(19)

where Wn and θn, n = 1, · · · , L represent the weights
and biases, respectively. A Long Short-Term Memory (LSTM)
layer is employed as the initial layer to capture the nonlinear
relationships between the transmitted signals and the CSI. The
LSTM layer can be mathematically represented as

{Ck, zk} = LSTM(Ck−1, zk−1, xk;ϕk−1), (20)

where Ck is commonly referred to as the cell state [49], which
represents the information flow over time. Additionally, xk

and zk denote the input and output at the k-th symbol instant,
respectively. The term zk−1 represents the output at the k−1-st
instant, and ϕk−1 denotes the LSTM layer’s parameters. These
parameters are stored in the cell state for subsequent iterations
and are shared across them. Then in (19), the Rectified linear
unit (Relu) function of fRelu(s) = max(0, s) is employed for
activating the DNN during the training phase, and the sigmoid
function of fsigmoid(s) =

1
1+e−s is used to obtain the detected

bits û.
Furthermore, the complexity of the Neural Network (NN) is

governed by the operations involved in forward and backward
propagation between each neuron. Generally, the complexity

order of an NN can be expressed as O[nin1]+LO[nlnl−1]+
O[nLno] [36], where ni and no represent the sizes of the input
and output layers, respectively, and nl(l = 1, 2, . . . , L) denotes
the numbers of the hidden layers between them. The equation
of the sigmoid layer is formulated as fsigmoid(s) = 1

1+e−s ,
which has the evaluation complexity order of O[1] and the
LSTM has the complexity order of O[nl(nd+nl)], where nd is
the neural dimension of the input layer of the LSTM. Then we
have the total computational complexity of Fig.6 characterized
as O[4nl(Nf + 2 + nl) +

∑L−1
l (2nl+1nl − nl) + 2nL−1].

The raw input data represented in the complex-valued
matrix form obtained from the received signal Y has to be
vectorized first. We rearrange the complex values by separately
extracting the real as well as imaginary parts and then merging
them into a real-valued vector.

In the training phase, we employ randomly generated data,
which are transmitted over a frequency selective Rayleigh
fading channel using MIM. Then, both the received pilot and
data symbols are employed as the input data of the DNN.
In this case, we use a high pilot overhead for simulating a
high-performance CE scenario. To maximize the performance
of the trained learning-based CE and detection, different
pilot overheads are applied for considering sufficiently diverse
scenarios. The number of training samples required is selected
based on experimentation by gradually increasing the training
size until acceptable MSE values are achieved. In this case,
the MSE loss function of the DNN used for the training is

L(u, û;Wn,θn) =
1

B

B∑
i=1

∥u− û∥2, (21)

where B is the sample size of the current iteration. A stopping
criterion can be defined either by the number of iterations or
by an MSE threshold. Then, the parameter sets {Wn,θn} can
be updated in each training iteration based on our learning
algorithm using gradient descent, which is formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})
represents the gradient of L({Wn,θn}). In our proposed NN
aided detection, we use α = 0.001.

After the training phase, the DNN model learns the mapping
from the received signal and stores both the weight as well
as the bias information, which will be used for producing
the desired outputs based on the input data in the testing
phase. The statistical properties of the input/output data have
to remain the same as those used in training.

2) Separate DNN-aided CE and detection: To further re-
duce the effect of CE error, we propose the two-part DNN
models of Fig. 7 and Fig. 8 for CE and detection, respectively.
Firstly, the fully connected NN of Fig. 7 is used for estimating
the channel using the current received symbol Yτ−1 and next
received a symbol Yτ as input and then it outputs the estimated
CSI Ĥτ , where Ĥτ = {H1

τ , · · · ,H
s
τ , · · · ,H

Nt
τ }.

In this case, the first received symbol is Hτ−1 = Hp,
where Hp is the pilot symbol and the fully connected layer
is used as output layer to learn the CSI. A variety of different
pilot overheads are considered in the training phase to enhance
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Fig. 7: Separate fully-connected DNN model in CE of CS-
MIM systems

CE performance of the trained model in diverse channel
conditions. Then we can obtain the output of the DNN-aided
CE as

Ĥs
τ =WN1

...fRelu{W2(fRelu1
[W 1

1 (Y τ ) + b1])

+ b2}+ ...+ bN1
).

(22)

Fig. 8: Separate fully-connected DNN model for detection in
CS-MIM systems

In this case, we can have the complexity of CE NN as
OCE−NN [

∑L
l−1(2nlnl−1 − nl) + 2nL−1].

The training process optimizes the network weights θ by
minimizing the loss function based on the MSE between the
estimated CSI Ĥ

S

τ of antenna S and current real CSI HS
τ .

In this case, the MSE loss function used for the training is

L(Hs
τ , Ĥ

s
τ ;Wn,θn) =

1

B

B∑
i=1

∥Ĥ
s

τ −Hs
τ∥2, (23)

where B is the sample size of the current iteration.
Fig. 8 shows the DNN employed for detection, which is

performed after completing the CSI estimation using the DNN
of Fig. 7. The output of the first DNN model of Fig. 7, which
is the CSI Hs

τ of a specific activated TA s, and the received
symbol Yτ are used as input for the NN of harnessed for signal
detection. The output of the DNN of Fig. 8 corresponds to the
output bits û, which is formulated as:

û =fsigmoid(Wn...fRelu{W2(fRelu1 [W1fLSTM (Y ) + θ1])

+ θ2}+ ...+ θn).
(24)

Afterwards, the total complexity of two NN is OCE +
Odetection, where Odetection have the same form with the
conventional NN.

In this case, the MSE loss function used for the training is

L(u, û;Wn,θn) =
1

B

B∑
i=1

∥u− û∥2, (25)

where B is the sample size of the current iteration.
3) Proposed DNN-aided JCED: Then, in the following

we propose a NN model for performing the entire JCED
process, as opposed to harnessing thr pair of NNs presented
in Fig. 7 and Fig. 8. The proposed DNN architecture is
shown in Fig. 9. In this case, we have the received signal
Y τ and we represent the estimated CSI of each symbol as O[
{Ĥ0, Ĥ1, Ĥ2, · · · , Ĥτ}, which is estimated using the pilot
symbols Y p

Fig. 9: Fully-connected DNN model for CS-MIM JCED
system

As shown in Fig. 9, the input of the DNN model is the
estimated CSI of the previous symbol Y τ−1 and the current
received signal Y τ . Then, the target output is the detected bit
string of the symbol û and the updated CSI of the current time
slot Ĥ

s

τ , where s represents the activated TA for the current
transmitted symbols.

More specifically, both the estimated CSI obtained by the
DNN model of the previous symbol and the current received
data are entered into the model, which requires an input layer
having [2NtNrNf + 2NrNf ]-nodes. As shown in Fig. 9, the
proposed DNN model can be split into two subgroups. The
first subgroup utilizes the information of the received data and
the estimated CSI to update the estimated CSI of the next
symbol, while the second subgroup detects the transmitted bits
of the current symbol. The proposed DNN-JCED procedure is
described in Algorithm 3.

For HD-JCED, we consider the subgroup of the detection
as a multi-label classification problem, where both the pre-
processed symbols and the estimated CSI are input to a
NN, which outputs the corresponding classification based
candidates of each bits. For the upper subgroup of Fig. 9, the
DNN will update the CSI using the trained weights of each
layer.



11

Algorithm 3: DNN model for JCED of CS-MIM

Input: Estimated CSI Ĥ0, received symbol Y τ

Output: Target bits û; updated estimated CSI Ĥ
s

τ

1 t := 0 // initial iteration index
2 for τ = 1, 2, · · · , T do
3 Input the Y τ and Ĥτ−1 to the proposed DNN

model
4 Use the DNN model with the trained weights to

obtain the detected bits û and updated estimated
CSI, Ĥ

s

τ

5 Update the estimate CSI with LS estimator with
H

(t+1)
LS = Y (S(t))H(S(t)(S(t))H)−1 and MMSE

estimator with
H

(t+1)
MMSE = Y (S(t) +N0NI)−1S(t)HRH

6 Update the corresponding activated s-TA CSI based
on the estimate CSI with LS estimator with Ĥ

s

τ .
// go back to step (3) for next

symbol.
7 end

Then, sigmoid activation is used for the output layer of the
proposed subgroup DNN to generate dependent probabilities
at the output layer of our classification problem. Hence, the
output of the DNN model can be expressed as

Ĥ =W 1
N1

...fRelu{W 1
2 (fRelu1

[W 1
1 (Hτ−1) + b11])

+ b12}+ ...+ b1N1
),

(26)

û =fsigmoid(W
2
N2

...fRelu{W 2
2(fRelu1

[W 2
1(Y τ ) + b21])

+ b22}+ ...+ b2N2
),

(27)

where W 1
n1

and b1n1
,n1 = 1, · · · , N1, represent the weights

and biases of the subgroup layers used for updating the channel
estimate, while W 2

n2
and the bias b2n2

,n2 = 1, · · · , N2,
are the weights and biases of the layers employed for
detecting the information bits. Then, we have the weight
sets of θ1 = {W 1

1, b
1
1,W

1
2, b

1
2, · · · ,W

1
N1

, b1N1
} and θ2 =

{W 2
1, b

2
1,W

2
2, b

2
2, · · · ,W

2
N2

, b2N2
}

As the number of the first layer nodes depends on the input
data size, the appropriate number of nodes should be selected
for the hidden layers which is sufficiently high for attaining an
enhanced BER performance, at reduced detection complexity.
In this case, we designed 3 hidden layers having 64 nodes
used for both subgroups.

In the training phase, we use randomly generated data,
transmitted over the wireless channel using MIM as the input
data and perfect CSI for training the model weights θ1 and
θ2. In this case, the MSE loss function used for the training
is

L(u, û;Wn,θn) =
1

B

B∑
i=1

∥u− û∥2, (28)

where u represents the target labels, û denotes the detected bits
and B is the sample size of the current iteration. Using (19)

and (27), we can obtain the loss function of this DNN model
as

L(θ1,θ2) =
1

BT

B∑
i=1

T∑
t=1

∥Ĥ
s

τ −Hs
τ∥22

+
1

BT

B∑
i=1

T∑
t=1

∥ûτ − uτ∥22.

(29)

We can define a stopping criterion, which can be either the
number of iterations or an MSE threshold. Then, the parameter
sets {Wn,θn} can be updated in each training iteration based
on the learning algorithm using gradient descent, which is
formulated as

{Wn,θn} ← {Wn,θn} − α∇L({Wn,θn}),

where α > 0 is the learning rate and ∇L({Wn,θn})
represents the gradient of L({Wn,θn}). In our proposed NN
aided detection, we use α = 0.001.

Then, during the training phase, the model learns the
mapping from the received signal and stores both the weight
and bias information, followed by outputting the predicted
results that are expected to approximate the desired input data
having similar statistical properties to those of the training.

In this model, the pair of inputs exhibit independent input
connection complexity, which is characterized by O[ni1n1 +
ni2n1]. The complexity of the hidden layers and of the
output layer is identical to that of the conventional NN. More
specifically, we can have the computational complexity of
O[2ni1n1 + 2ni2n1 +

∑L−1
l (2nl+1nl − nl) + 2nL−1]

For our SD-JCED system, we also consider a similar DNN
architecture to that of [36], but we have a different output for
the model. Since the conventional SD detector will obtain the
LLRs of received signal after the CS-MIM soft demodulator,
we replace the detected bits û by the extrinsic LLR Le at
the output. Then the output of the SD DNN model can be
expressed as

Ĥ =W 1
N1

...fRelu{W 1
2 (fRelu1

[W 1
1 (Hτ−1) + b11])

+ b12}+ ...+ b1N1
),

(30)

L̂e =W 2
N2

...fRelu{W 2
2(fRelu1 [W

2
1(Y τ ) + b21])

+ b22 + ...+ b2N2
),

(31)

and the corresponding loss function is

L(θ1,θ2) =
1

BT

B∑
i=1

T∑
t=1

∥Ĥ
s

τ −Hs
τ∥22

+
1

BT

B∑
i=1

T∑
t=1

∥L̂e(τ)−Le(τ)∥22.

(32)

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we characterize the learning-aided CS-MIM
system proposed in Section III relying on both HD and SD.
The performance of the conventional detector will also be
presented for comparison with the proposed methods. We
also consider systems having Nt = 4, 8 with 2 RF chains.
More specifically, only the bits for antenna selection bg,3 is
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changeable. Furthermore, we also investigate the performance
of the proposed methods in different channel conditions. To
characterize the channel conditions, we adjust the normalized
maximum Doppler frequency fm in order to emulate both
slow- and fast-fading channels. We assume that the system’s
signalling rate is 100MBaud and the maximum Doppler fre-
quency is 100Hz, which corresponds to a normalised Doppler
frequency fm of 10−6.

The resultant BER performance is evaluated by Monte-
Carlo simulations. Using the parameters summarized in Ta-
ble IV and the parameters used by the learning models outlined
in Table VI, we investigate a set of five schemes for Nt = 4, 8,
respectively, which are summarised as follows:

1) Scheme 1: HD-ML-based Detection of CS-MIM system
with TAs and RAs Nt = Nr = 4, 8.

a) perfect CSI at receiver.
b) MMSE CE and ML detection.
c) MMSE-aided-JCED.

2) Scheme 2: HD DNN-aided CE and detection of CS-
MIM system with TAs and RAs Nt = Nr = 4, 8.

a) Conventional DNN-aided CE and Detection.
b) DNN-aided JCED with Imax = 3 iteration.

3) Scheme 3: SD Detection of convolutional coded CS-
MIM system with TAs and RAs Nt = Nr = 4, 8.

a) perfect CSI at receiver.
b) MMSE-aided-JCED.

4) Scheme 4: SD DNN-aided JCED of convolutional coded
CS-MIM system with TAs and RAs Nt = Nr = 4, 8.

a) SD conventional DNN-aided CE and Detection.
b) SD DNN-aided JCED with 3 iteration.

TABLE IV: CS-MIM system simulation parameters.

Parameters Values
Multi-carrier System OFDM
Number of subcarriers, Nc 128
Cyclic prefix 16
Number of subcarrier groups, G 16
Number of subcarrier/group, Mg 8
Number of available indices/group, Na 16
Number of active indices/group, K 2
STSK, (M,N, T,Q,L) (2,2,2,2,2)
TAs, Nt 4/8
RAs, Nr 4/8
RSC code, (n, k,K) (2,1,3)

TABLE V: Training configuration for Conventional DNN
detection with CSI-aided

Setting Hard-decision Soft-decision
Input layer LSTM
Activation function ReLu
Number of FC layers in NN 3 3
Number of neurons in each FC [128,256,128] [256,512,256]
Input Received Symbol+Pilot Symbol
output Detected Bits LLR
Activation Function for output layer Sigmoid ReLu
Initial learning rate 0.001
Target SNR for training 25dB 10dB
Training data size 100000
Validation data ratio 0.1

TABLE VI: Training configuration for our learning-aided
JCED methods

Setting Hard-decision Soft-decision
Input Layer FC
Activation Layer ReLu
Number of FC layers in NN 3 3
Number of Neurons in each FC [128,256,128] [256,512,256]
Input Received Symbol+ estimated CSI

Detected Bits LLR
Output Estimated CSI Estimated CSI

Sigmoid ReLu
Activation function for output layer ReLu ReLu
Initial learning rate 0.001
Target SNR for training 25dB 10dB
Training data size 80000
Validation data ratio 0.15

In the following, we present various schemes considered
for comparative analysis in our simulations. Initially, we
demonstrate the performance of JCED and conventional CE
as displayed in Scheme 1 with Nt = 8 and Nt = 4. Then we
also show the benefit of the DNN-based CE and detection as
well as proposed JCED-DNN as listed in Scheme 2. Given
the system parameters of Table IV, the achievable rate is

bG
Nc+LCP

= 1.333 bits/sec/Hz for Nt = 8 and Rt = 1.222
bits/sec/Hz for Nt = 4. Fig. 11 shows the BER of the
Scheme 1 and Scheme 2. Besides, Fig. 11 characterizes
the theoretical maximum rate of CS-MIM in Discrete-Input
Continuous-Output Memoryless Channels (DCMC) for both
the neural network model and conventional CE methods. For
CS-MIM system with 8 TAs, both at transmitter and receiver,
the Scheme 1a) achieves about 1.95 dB at the BER of 10−4

under the assumption of perfect CSI knowledge at the receiver.
In this case, we can achieve highest throughput as shown
in Fig. 10 which is Rt = 1.333 bits/sec/Hz. However, in
more realistic situation, pilot required to deploy CE techniques
and cause pilot overhead. Generally, in the simulation, pilot
symbols are designed and applied. Then, 1% pilot overhead
indicates that every 100 symbols require 1 pilot symbol. As
shown in Fig. 10 and Fig. 11, Scheme 1b) is capable of
achieving an improved performance, but at an increased pilot
overhead. Scheme 1b) associated with 10% pilot overhead
is capable of achieving similar results to those of Scheme
1c). Furthermore, Scheme 1b) associated with 2% overhead
and 5% overhead exhibit a 4dB and 1.7dB discrepance with
respect to the ideal Scheme 1c) at a BER of 10−4, respectively.
When Scheme 1c) of JCED is applied at the receiver, it can
significantly reduce the pilot overhead and yet obtain a near-
ML performance. More specifically, we consider the JCED
under 3 iteration updating and achieve BER of 10−4 only 0.1
dB SNR worse than Scheme 1a) of ML detector with very
few pilot.

We also analysis the detection performance of the system
with 4 TAs. Fig. 12 also shows the DCMC of Scheme 1 and
Scheme 2. With less antennas, firstly, the performance of CS-
MIM is reduced due to reduction of space sparsity. Scheme
1a) having Nt = 4 TAs achieves a BER of 10−4 at 4.3 dB
SNR, as shown in Fig.13. Similarly, along with NT = 8
TAs Scheme 1b) also requires a higher pilot overhead for
achieving a high performance. In conjunction with a 2% pilot
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Fig. 10: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 8 under fm = 10−6. Our simulation
parameter are shown in Table IV and Table VI.

Fig. 11: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 8 under fm = 10−6. Our simulation
parameter are shown in Table IV and Table VI.

overhead Scheme 1b) is about 5 dB worse than Scheme 1a)
and their gap is reduced to 1.6 dB for 5% pilot overhead.
However, Scheme 1c) still succeeds in achieving near-capacity
performance, as shown in Fig. 13.

As we discussed in Section III, the ML detector ap-
plies an exhaustive search having complexity order of
O[NACNSI(QL)K ]. On the other hand, the complexity of the
Neural network is determined by the forward and backward
propagation, where we have the NN complexity order of
O[ninhi +nhinhi+1 + · · ·+nhI

no]
3. In this case, we assume

that the network have I layers and each layer have nerual size
of nhi

(i = 1, 2, 3, · · · , I) and ni, no represents the neural
size of input and output layers. Although the DNN-based
JCED model require at least 3 iteration, which means 3 times
complexity than conventional DNN model, to achieve near-
ML performance, it is several magnitude less of complexity
compared to the conventional JCED either CE-ML detection
method.

3Complexity order of NN only used to compares the ML detection, while
there is no search complexity associated with the NN-aided detection.

Fig. 12: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 4 under fm = 10−6. Our simulation
parameter are shown in Table IV and Table VI.

Fig. 13: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 4 under fm = 10−6. Our simulation
parameter are shown in Table IV and Table VI.

We also conducted simulations for two variants of Scheme
2. Leveraging a high pilot overhead based estimated CSI
from Scheme 1b, the model can be efficiently trained to
achieve improved detection performance, even with a reduced
pilot overhead in challenging channel conditions. As depicted
in Fig. 10, Scheme 2a exhibits a performance that is ap-
proximately 2 dB inferior to Scheme 1a. By employing the
iteratively updated CE model, Scheme 2b further minimizes
the estimated CE error, resulting in a mere 0.9 dB loss at a
BER of 10−4. Notably, Scheme 2b achieves a nearly 1 dB
improvement over Scheme 2a at a computational complexity
of roughly 3×104. This increase in complexity may be deemed
acceptable, especially when compared to the complexity of
Scheme 1b (1.2× 106) and to that of Scheme 1a (8.5× 106)
over three iterations. We also investigate the system associated
with Nt = 4 TAs. Then the performance of Scheme 2 is
slightly degraded owing to is eroded diversity gain. Scheme
2b) attains a BER of 10−4 at SNR of 5.1 dB, while the
conventional CE-aided DNN Scheme 2a) performs 0.8 dB
worse than Scheme 2b).



14

Additionally, we compare the performance for varying
Doppler frequency values. Specifically, we modulate the nor-
malized Doppler frequency fm to emulate channels ranging
from slow to fast variations.In fig. 14 we consider a channel
with normalised Dople frequency offm = 2 × 10−6, while
we used fm = 10−6 in the results in Fig. 11. Scheme 1a
maintains consistent results as observed in Fig. 10, while
Scheme 1b with a 10% overhead incurs a 0.7 dB loss at a
BER of 10−4, compared to the 0.1 dB difference in Fig. 11.
In this context, Scheme 1c with a 5% overhead demonstrates
superior CE accuracy compared to Scheme 1b, necessitating a
higher overhead to achieve near-optimal performance relative
to Scheme 1c in Fig. 11. Similarly, despite the increased over-
head in Scheme 2a and Scheme 2b aiming for enhanced CE
accuracy and detection performance, they exhibit losses of 0.3
dB and 1.3 dB, respectively, at a BER of 10−4 when compared
to their counterparts in Fig. 11. This suggests that Scheme 1c
and Scheme 2b offer some resilience against rapidly varying
channels. As illustrated in Fig. 15 with fm = 10−5, Scheme
2a is 2.6 dB inferior to Scheme 1b in Fig. 11, while Scheme
2b lags by 1.2 dB compared to Scheme 1c in Fig. 11.

Fig. 14: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 8 under fm = 2 × 10−6. Our
simulation parameter are shown in Table IV and Table VI.

Fig. 15: BER performance comparison of HD detector of
Schemes 1,2 with Nt = 8 under fm = 10−5. Our simulation
parameter are shown in Table IV and Table VI.

Let us now consider the performance of SD detection,
where we employ a half-rate RSC encoder as shown in
Table IV. Then we can calculate the maximum achievable
rate is Rt = 0.66667 bits/sec/Hz for system which Nt = 8
and Rt = 0.61111 bits/sec/Hz for system which Nt = 4.
As shown in Fig. 18, Scheme 3a) could achieve a BER of
10−4 at −1.83 dB with perfect CSI acquired at receiver. In
practical situation, CE is required with highly pilot overhead.
Naturally,the Scheme 3c) of JCED detection could achieve
near-ML performance which achieve −1.8dB SNR at 10−4

of BER with few pilot and moderate complexity mounting.
For Nt = 4, the JECD could achieve less difference with ML
detector which is 0.14dB worse than the ML detector. For NN-
based CE and detection, the conventional model Scheme 4a)
leads to about 2 dB gap of 10−4 BER compared with Scheme
3b) and Scheme 3c). With the assist of DNN-based JCED,
we can narrow the gap to 1 dB with 3 iteration updating. For
system with Nt = 4, the performance of DNN-JCED is more
effective with the significant reduce in TA and RA number.

Fig. 16: BER performance comparison of HD and SD detector
of Schemes 1-4 with Nt = 8 under fm = 10−6. Our
simulation parameter are shown in Table IV and Table VI.

Fig. 17: BER performance comparison of HD and SD detector
of Schemes 1-4 with Nt = 4 under fm = 10−6. Our
simulation parameter are shown in Table IV and Table VI.

In Fig. 16 and Fig. 17 , we compare the performance of
the HD and SD. In Fig.16 the benefit of the SD is clearly
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visible, because it provides a sharp BER reduction at an SBR
of about −3 dB, while Scheme 3a) requires -2.2 dB SNR at at
a BER of 10−4. Both Scheme 1b) and Scheme 1c) are capable
of achieving near-optimal results. For learning-based CE and
detection, Scheme 3a) and Scheme 3b) perform slightly worse
than the conventional Scheme 1, while the SD scheme attains a
3.1 dB and 2.9 dB gain compared to the HD-aided Scheme 2a)
and Scheme 2b). As expected, the performance improvement
of SD is worse for Nt = 4 than for Nt = 8, as shown in
Fig.17, where the gap between Scheme 1a) and Scheme 3a)
is about 2.4 dB at a BER of 10−4, compared to a discrepancy
of 3.6 dB in Fig.16.

Fig. 18: BER performance comparison of SD detector with
Scheme 3,4 under fm = 10−6. The simulation parameter are
shown in Table IV and VI

Fig. 18 also characterizes the learning aided JCED-SD
detection methods applied to our CS-MIM system. The NN
based JCED method is about 0.3 dB worse than ML de-
tector with the perfect CSI acquired at receiver. With more
antenna for transmitting, the performance is slightly degrad-
ing. However, the complexity of DNN based JCED is far
small than conventional JCED method with Nt = 8 sys-
tem. For higher number of iterations update, the NN model
will have an improved performance. However, the proposed
learning method has a complexity order of O[2ni1n1 +
2ni2n1 +

∑L−1
l (2nl+1nl − nl) + 2nL−1] compared to

OMAP [cg(NrNtMN3
f + NrM

2N2
fNv + NrNfM

2NvK +

NrNfMKT )NACNSI(QL)K + cg2
cgNACNSI(QL)K ] for

the conventional scheme, where Iit denotes the number of
iterations.

V. CONCLUSION

Both conventional and learning-assisted JCED of CS-MIM
was proposed relying on HD and SD. Our analysis shows
that JCED was the potential of reducing the pilot overhead
and yet improve the detection performance compared to the
separate CE and detection. In simulation, we have first used the
conventional HD JCED of CS-MIM systems communicating
over Rayleigh fading channels and the learning-aided JCED is
capable of achieving similar performance while decrease the
complexity of JCED. Then, a DNN model with subgroups has
been designed for SD JCED in CS-MIM systems, which are

capable of approaching the performance of conventional SD
CS-MIM system with reduced computational complexity. In
summary, our studies and simulation results have shown that
the conventional JCED is capable of achieving a similar BER
performance to the ML detector with idealized CSI.
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