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This article focuses on the development of a deep–learning framework for predicting

distributed quantities around aircraft flying in the transonic regime. These quantities play a

crucial role in determining aerodynamic loads and conducting aeroelastic analysis. Angle of

attack and Mach number are chosen as the two independent parameters for the reduced–order

models. A comparative assessment is conducted between the proposed deep-learning framework

and the Proper Orthogonal Decomposition approach to identify strengths and weaknesses of

each method. The accuracy of the data–driven machine–learning method in modelling transonic,

steady–state aerodynamics is assessed against three benchmark cases of three-dimensional wings.

Despite the challenges of the analyzed scenarios, promising results are obtained for each test case,

showing the effectiveness of the model implemented. Furthermore, the article demonstrates

the application of the method for aeroelastic analysis and uncertainty quantification. This

quantifies robustness and versatility of the implemented model.

Nomenclature
Acronyms

𝐹𝐶𝑁𝑁 = fully–connected neural network

𝐿𝐻𝑆 = Latin Hypercube Sampling

𝑀𝐿 = machine–learning

𝑀𝐴𝑃𝐸 = mean absolute percentage error

𝑀𝑆𝐸 = mean squared error

𝑁𝐼𝑃𝐶𝐸 = Non-Intrusive Polynomial Chaos Expansion
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𝑃𝐷𝐹 = Probability Density Function

𝑃𝑂𝐷 + 𝐼 = proper orthogonal decomposition with interpolation

𝑅𝑂𝑀 = reduced–order model

𝑈𝑄 = uncertainty quantification

Symbols

𝐴𝑜𝐴 = angle of attack, deg

𝑐 = mean chord, m

𝐶𝐷 = drag coefficient

𝐶𝐹 = skin friction coefficient

𝐶𝐿 = lift coefficient

𝐶𝑀𝑦 = pitching moment coefficient

𝐶𝑃 = pressure coefficient

𝑀 = Mach number

𝑅𝑒 = Reynolds number

𝜃 = elastic twist angle, deg

I. Introduction
Computational Fluid Dynamics (CFD) is widely used in engineering applications involving flow analysis. Despite a

steady increase in available computational power, numerical simulations of turbulent flows, multiscale and multiphysics

phenomena remain difficult to tackle, requiring millions of degrees of freedom and several days of computation on high

performance computing architectures. In this perspective, a solution may be represented by reduced–order models

(ROMs) which are a set of theoretical and numerical techniques enabling the reconstruction and represention of the

nonlinear dynamic behaviour of a system with a small number of degree of freedom (DOF). They can provide a more

straightforward formulation of a nonlinear problem, resulting in a better understanding of the physical phenomena as

well as a significant reduction in computational time.

The ability to build lower–order, computationally efficient representations of higher–order dynamical systems is one

of the most essential properties of ROMs. Using these representations, ROMs can efficiently model flow fields while

using significantly less parameters. Conventional ROMs accomplish this by linearly projecting higher–order manifolds

to lower–dimensional space using dimensionality reduction techniques, such as proper orthogonal decomposition

(POD) or the dynamic mode decomposition (DMD). With these ROMs our understanding in different fluid flow areas

has deepened and enabled us to control flow phenomena at low computational costs [1, 2]. However, linear models
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cannot represent with adequate accuracy flow characterized by nonlinear phenomena, such as the shock waves and

viscous effects herein considered, without significant tuning and a high number of modes. In fact, POD, Isomap

and manifold learning proved to be an efficient first approach towards prediction of steady, turbulent aerodynamic

flows [3–7]. Nonetheless, due to their inherently simplified formulation, they were not capable of accurately predicting

strong discontinuities, such as sudden changes in pressure coefficient caused by shock waves.

To address this problem, the use of novel nonlinear ROM might be exploited, such as machine–learning techniques

and deep–learning approaches. The latter introduce nonlinearity in the activation function which allows extracting

key features from diverse types of data and achieving noteworthy results in various fields of research, including fluid

dynamics [8–12]. Successful application of fully–connected neural network (FCNN) architecture may be found in

the prediction of the dynamic response of a nonlinear system in subsonic [13] and transonic regime [14] as well as in

aerodynamic loads estimation during dynamic stall [15]. Also, deep dense networks can serve as surrogate models for

an efficient aircraft design and optimization [16, 17]. Before a standalone use of ANN for steady–state analysis, Zhiwei

et al. [18] opted for a combination of POD, domain decomposition and ANN for predicting flow fields of transonic

airfoils. The domain decomposition technique separates the hard-to-predict regions from the full field and POD has

been adopted in the regions individually. The interpolation of the POD modes outside the training region was achieved

with ANN. Du et al. [19] and Espinosa et al. [20] introduced a novel surrogate aerodynamic framework that enables

rapid airfoil shape optimization. Their proposed approach utilizes data-driven neural network model, with the airfoil

geometric parameters and flight conditions serving as the surrogate inputs. This framework represents a significant

advancement in the field, offering a more efficient and effective approach to aerodynamics prediction. Andres et al. [21]

conducted a thorough review of various algorithms used for predicting aerodynamic data. They concluded that two

crucial factors for enhancing the accuracy of such predictions are machine–learning techniques and model parameters

optimization. Castellanos et al. [22] demonstrated that deep neural networks outperform traditional linear techniques

and highlighted the importance of ROM for problems where the data dimensionality is significantly larger than the

parameters that influence the prediction process. The surrogate model developed from Zhou et al. [23] represents one of

the most recent noteworthy results in this field. Their approach involves combining Convolutional Neural Network

(CNN) with a Residual Network (ResNet) to reconstruct transonic flow field with strong discontinuity, based on inputs

from flow conditions and aerodynamic shape. Through this work, the authors once again demonstrated the remarkable

ability of ANN to effectively handle nonlinearities. In a similar vein, Massegur et al. [24] conducted a study comparing

a local POD model with a Deep Neural Network (DNN) architecture embedded in a Convolutional Auto-Encoder for

aerofoil icing predictions. This comparison underscores the robustness of neural network architectures in handling

substantial variations in design outputs across the icing envelope. Physics–Informed Neural Networks (PINNs) have

shown promising capabilities in flowfield prediction, by incorporating a physical term into the loss function during

the network training process [25–27]. Even though further studies are required to thoroughly validate and assess
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the potential of these methods, these approaches effectively combine the power of deep–learning with the governing

equations of the underlying physics, enhancing the accuracy and reliability of flow predictions.

Keeping in mind these remarkable applications, the current study aims at developing an optimized deep–learning

approach able to predict distributed quantities around aircraft flying in transonic regime. A comparative assessment of

the proposed deep–learning framework with POD approach is introduced in order to highlight the robustness of the

present model with respect to traditional well–established methods.

This research is rooted from the work of Sabater et al. [17] for transonic flowfield predictions, which laid the

foundation for our current study. The innovation in this article lies in the utilization of a machine–learning approach

designed to effectively manage a spectrum of physical phenomena and diverse geometric configurations within three

established test cases involving 3D wings in transonic regime. Additionally, the research extends to the validation of

the model robustness and versatility through an analysis of two practical applications. This dual focus on addressing

complex scenarios and real-world applications underscores the unique contributions and broad applicability of the

proposed machine–learning methodology.

The paper is organized as follows. Section II presents the implemented methodology. In Section III, the test cases

are described, and the effectiveness of the proposed deep–learning framework is assessed. Section IV introduces the

application of the proposed method for aeroelastic analysis and uncertainty quantification. Section V offers a summary

of the findings and conclusions drawn from this study.

II. Methodology
This Section describes the various numerical techniques used to generate the reference simulation data and to build

the reduced–order models.

A. Computational Fluid Dynamics Solver

The dataset used for the ROM approximations has been generated through Computational Fluid Dynamics (CFD)

simulations. Reynolds-averaged Navier–Stokes (RANS) equations are discretized using SU2 v7.2.1 [28], a cell-centered

finite volume method software that converts the partial differential equations into a set of ordinary differential equations.

For all test cases, the one equation Spalart-Allmaras turbulence model is used for closure of the RANS equations. The

convergence method is set to Cauchy method applied to the lift coefficient, considering a variation of 10−7 on the

last 100 iterations. A 1𝑣 multigrid scheme is adopted for accelerating the convergence of CFD simulations. For the

discretization of convective flows, the JST central scheme with artificial dissipation is employed. Gradients of flow

variables are computed using the Green Gauss method. The linear solver chosen is the biconjugate gradient stabilization,

with ILU preconditioner applied.
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B. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a linear technique for dimensionality reduction. It was widely used

for studying nonlinear problems, due to its capacity to extract, from a set of high–dimensional snapshots, the basis

minimizing the error between the original snapshots and their orthogonal projection. This method consists of two steps.

First, it generates a basis of orthonormal vectors, called modes, for the high–dimensional space of the data. Then, the

original system is projected onto a low–dimensional space obtained by truncating the orthonormal basis to retain only

the first few POD modes which embody the target energy of the system and express the essential information of data.

POD may be formulated by taking the singular value decomposition of the snapshots matrix X, which is either the

pressure coefficient or skin friction coefficient surface field in our case study:

X = U𝚺V∗ =
𝑛∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
∗
𝑖 (1)

where the matrix U contains the spatial correlations in the data, V the temporal information and 𝚺 the orthonormal

eigenmodes. In the present work, truncation of the number of modes takes place by choosing a reduced rank 𝑘 < 𝑛

so that only the 𝑘 POD modes which account for 95% of the total energy are conserved upon reconstruction. Several

approaches exist for determining the unknown POD coefficients within the latent space. In our investigation, we

opted for a cubic interpolation technique, striking a balance between computational efficiency and accuracy [29, 30].

Henceforth, we employ the terminology POD+Interpolation (POD+I) to denote the POD coefficients obtained in the in

the two–dimensional parameter space (Mach number and angle of attack) through cubic spline interpolation.

C. Artificial Neural Networks

Artificial Neural Network (ANN) is the most popular nonlinear tool in machine–learning which is usually used in

supervised learning. It is a mathematical model inspired by the architecture of neural network in human brain. As in

the brain, the signals are received by neurons, manipulated and passed to other neurons, as well as in ANN a neuron

receives inputs through its connections; these are weighted, summed and passed through a nonlinear function called

activation function. The output of each neuron can be expressed as:

𝑦𝑙,𝑛 = 𝑓𝑙 (𝑤𝑙,𝑛 · 𝑥𝑙 + 𝑏𝑙,𝑛) (2)

where 𝑙 denotes the layer number, 𝑛 the neuron number in that layer, 𝑤𝑙,𝑛 the weights and 𝑏𝑙,𝑛 the constant term of

the linear mapping for each neuron. The function 𝑓𝑙 () applied to the sum is the nonlinear activation function. The

fully–connected neural network (FCNN), also called dense neural network or multilayer perceptron, is the most simple

neural network architecture, where each neuron from one layer is fully–connected to all neurons in the other layer as

shown in Figure 1.
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Fig. 1 Fully–connected network architecture.

In terms of layers our neural network is made of an input layer, which takes normalized input from the domain,

hidden layers, that take input from another layer and pass output to another layer, and output layer, which makes a

prediction.

The activation function is a crucial component of a neural network. It is connected to each neuron and defines

how the weighted sum of the input is transformed into an output from a node in a layer of the network. The choice of

activation function has a large impact on the capability and performance of the neural network, and, the best choice

could differ according to the problem involved. Therefore, three types of activation function have been tested: TanH,

ReLu and LeakyReLu. The Leaky Rectified Linear unit (LeakyReLu) generalizes the classic ReLu with a slope for

negative values. This activation function helps to avoid dead neurons in the negative region as the gradient of the

negative values is a non–zero value. In this case, the negative slope was set to 𝑎 = 0.02 after a careful assessment aimed

at achieving optimal performance.

𝑓 (𝑥) = max(𝑎𝑥, 𝑥) (3)

Mean Squared Error (MSE) loss function was chosen to evaluate how the machine–learning algorithm models the

data. It is a function that quantifies the difference between the predicted output of the algorithm and the true output.

From the loss function, it is possible to derive the gradients which are used to update the weights. ADAptive Moment

estimation (Adam) [31] was employed during the back–propagation phase for optimising neural network weights and

minimising MSE loss function.

The dataset was divided into 3 distinct sets: the training set, containing the observations used to train the network, the

validation set used to optimise the hyperparameters and avoid overfitting and the test set used to verify the generalisation

ability of the network. Hyperparameters refer to variables that are not learned from the data but are set prior to the

training process. They are essential for defining the architecture and behavior of the neural network.
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The ROM was implemented in the deep–learning python library TensorFlow/Keras. The choice of neural network

architecture fell on fully-connected neural network because it allows the algorithm to predict one specific surface value

at a time, while taking into account the rest of the surface field. A schematic of the deep–learning framework is reported

in Figure 2. Here, it is possible to notice that the ROM utilizes freestream conditions and mesh coordinates as input.

From there, the ROM identification process takes place with the deep-learning framework. The output is a pointwise

prediction of pressure coefficient and skin friction coefficient components.

Fig. 2 Schematic of the deep–learning framework.

1. Bayesian optimization

An important step for improving the prediction capability of the model is the choice of a suitable set of hyperparameters.

An optimization algorithm, which is able to explore the wide design space, is essential. Here, the goal of the algorithm

is to optimize five hyperparameters: learning rate, batch size, activation function, number of neurons and layers.

All the design variables are continuous, except for the activation function which is discrete. The design space for

hyperparameters, including the possible values and step size for each continuous and discrete variable, is presented in

Table 1. The selected continuous variables consist of the learning rate, number of hidden layers, number of neurons

per hidden layer, and batch size. Additionally, activation function is chosen as discrete variable. The chosen ranges

were intentionally set to be sufficiently large. Indeed, throughout the optimization process, it was observed that the

hyperparameters converged to values below the upper limit of the specified ranges.

A Bayesian optimization strategy was employed for optimising the hyperparameters chosen. This automated

technique handles the entire hyperparameter space as a black box, making it possible to determine the influence of the

hyperparameters on the result without the need of manual studies or conventional sensitivity analyses.

The advantage of this type of optimization is that it creates a surrogate probability model of the objective function

and finds the hyperparameters that perform best on the surrogate. It does not search the design space for every possible

combination, but it follows an iterative process, where it starts by choosing the first hyperparameters randomly and

then optimizes the next selection based on the performance of those ones in terms of best score on the validation set
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metric. The hyperparameters found are used to evaluate the objective function, and the algorithm runs till the desired

results are not achieved. Moreover, this Bayesian optimization approach treats discrete variables as continuous, first

applying the optimization procedure and then rounding the suggested continuous point to the nearest discrete value in

the search space before function evaluations. In our work, Keras-Tuner [32] seamlessly integrates Bayesian optimization

with a underlying Gaussian process model [33, 34] into the hyperparameter search process. The acquisition function

used is upper confidence bound (UCB) [34, 35]. 100 trials were run in order to ensure an adequate convergence of the

Bayesian optimization strategy to the optimal set of hyperparameters. A trial indicates a full network training with

specific hyperparameters. At the same time, we constrained the optimization algorithm by imposing 500 epochs on each

trial to find the best architecture in order to limit the computational cost of each training phase. An epoch refers to a

single complete pass through the entire training dataset where the network updates its weights and biases based on the

calculated error. After the optimization phase is completed, the classic training procedure of the neural network takes

place and the optimal weights, which minimize the loss function, are estimated.

Hyperparameter Value Step size
Learning rate 10−4 to 10−6 5 · 10−6

Number of Hidden Layers 1 to 8 1
Number of Neurons per Hidden Layer 4 to 204 8
Batch size 1 to 8 1
Activation function TanH - ReLu - LeakyReLu –

Table 1 Hyperparameters design space.

III. Test cases
In this section, the capability of the machine–learning model to predict distributed aerodynamics quantities in

transonic regime with different levels of geometric complexity and physical phenomena was assessed. Specifically, the

model underwent testing on the Benchmark Super Critical Wing (BSCW) and ONERA M6 test cases, followed by

evaluation on the wing-body configuration for NASA Common Research Model (CRM) (refer to Table 2).

This approach was undertaken to enhance the complexity of the geometry, incorporate diverse physics, and

accommodate varying grid configurations. The progression ranged from a rectangular–wing to a swept–wing and

eventually to a wing–body configuration. Additionally, the grid type changed from structured to unstructured. The

physical phenomena also varied, encompassing changes in shock wave geometry, coupling between shock wave and

separated boundary–layer, and interaction between the fuselage and wing, especially in the junction area, resulting in

the generation of complex vortices, pressure changes and boundary–layer effects.

By conducting evaluations on these different test cases, the performance of the ML model was thoroughly

examined under varying conditions, allowing for a comprehensive assessment of its predictive capabilities in transonic
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aerodynamics.

Test case Configuration Mesh Type Surface Mesh Points
BSCW Wing Structured 130,816
ONERA M6 Wing Structured 149,700
CRM Wing–Body Unstructured 78,829

Table 2 Main features of each test case.

Angle of attack and Mach number were chosen as the two independent parameters for the ROMs. They are in the

ranges of [0, 5] [𝑑𝑒𝑔] and [0.70, 0.84], respectively. This range selection remains consistent across all test cases due to

the analogous flow conditions characterizing the geometries. This choice ensures coherence throughout the analysis and

guarantees a suitable level of complexity in the physics involved. The transonic regime leads to shock wave formation

on the wing of each test case, whereas the high angles of attack to boundary–layer separation.

The necessary number of samples, 𝑛, for 𝐴𝑜𝐴 and 𝑀 are defined through Latin hypercube sampling (LHS) with a

total of 70 points (Figure 3). Sixty percent of the samples (40 flight conditions with circles) are selected for training,

20% (15 flight conditions with squares) are selected for testing, and the remaining 20% (15 with diamonds) are left for

validation.

Fig. 3 Training, test and validation samples for Mach number and angle of attack.

A. Benchmark Super Critical Wing (BSCW)

The first test case is the Benchmark Super Critical Wing (BSCW), which is a transonic rigid semi–span wing with a

rectangular planform and a supercritical airfoil shape from the AIAA Aeroelastic Prediction Workshop [36]. This wing
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is elastically suspended on a flexible mount system with two degrees of freedom, pitch and plunge, and it has been

developed for flutter analysis as it is characterized by shock wave motion, shock–induced boundary–layer separation and

interaction between shock wave and detached boundary–layer. These three types of nonlinearity are challenging for the

ROM predictions.

A mixed-type grid with 15.6 · 106 elements and 130,816 surface elements was generated, structured on the wing

surface and in the first layers of the boundary–layer, voxel in the rest of the computational domain. A 𝑦+ = 1 is adopted,

after a preliminary mesh convergence study that ensured an adequate resolution of the boundary–layer and shock wave.

The computational domain extends 100 chords from the solid wall to the farfield. An impression of the grid can be

obtained from Figure 4.

The JST central scheme with artificial dissipation is adopted for the discretization of convective flows. The gradients

of the flow variables are calculated using a Green Gauss method. The linear solver biconjugate gradient stabilisation is

chosen, with ILU preconditioner applied. Aerodynamic coefficient calculations were performed considering a chord

length of 0.4064 𝑚 and a scaling area of 0.3303 𝑚2.

Fig. 4 Impression of the BSCW CFD grid.

Figure 5 reports the convergence study on the number of training samples of the neural network in terms of Mean

Absolute Percentage Error (MAPE) for BSCW test case. MAPE was calculated averaging the absolute error of each

prediction in the test set. This prediction error is determined weighted averaging the error on each grid point with the

cell area. The power fit figure of values outside of training samples range was added as a dotted line. As expected,

increasing the number of training samples reduces MAPE on test dataset of pressure coefficient. In particular, double the

training samples reduces drastically 𝐶𝑃 error of almost one order of magnitude. Therefore, 40 training samples are kept

for the rest of the paper.
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Fig. 5 Training samples convergence study on pressure coefficient of BSCW test dataset. Dotted line denotes
the power fit figure of values outside of training samples range.

Table 3 shows MAPE on test dataset of pressure coefficient 𝐶𝑃 and skin friction coefficient 𝐶𝐹 . The error is

normalized with respect to the cell area. Neural network behaves better with both quantities, showing its suitability for

the complex aerodynamic problem analyzed.

An in-depth comprehension of error distribution is achieved through error percentile analysis. This entails reporting

the maximum and minimum error values, highlighting the median with an orange line, and using boxes to represent

the 25th and 75th percentiles. Notably, the error band of the FCNN model is narrower, and it exhibits a tendency to

overpredict both 𝐶𝑃 and 𝐶𝐹 . This characteristic is advantageous for certification purposes as the model inclination to

overpredict loads results in a conservative approach.

MAPE [%]

FCNN POD+I
𝐶𝑃 0.5382 0.8958
𝐶𝐹 0.6080 2.2753

Table 3 Error analysis on test dataset of distributed aerodynamics quantities for BSCW test case.

Figure 6 compares pressure coefficient contour of CFD data with the reconstructed surface field employing

two different techniques, POD+I and FCNN. The comparison is conducted on a test sample at 𝑀 = 0.801 and
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𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔], which is one of the most challenging prediction as reported by Righi et al. [37]. A remarkable

agreement is found between CFD and FCNN which is able to predict the strong nonlinear pressure distribution in terms

of shock wave position and size, in contrast with POD+I which overpredicts the size and misspredicts the position which

is more outward. This is due to the POD+I formulation which assumes that the real flow field may be described as a

linear superimposition of flow state. Consequently, making predictions in regions characterized by highly nonlinear

phenomena, such as shock wave and detached boundary–layer, becomes extremely challenging. Same observations

might be pointed out analyzing the skin friction contour in Figure 7. While both methods accurately predict the position

of the shock wave, FCNN provides a precise prediction of the extent of the separated boundary–layer, as denoted by the

violet contour in Figure 7.

Fig. 6 Prediction of the pressure coefficient contour on the upper surface for BSCW test case at 𝑀 = 0.801 and
𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔]. Wing root is located on the left side. Incoming flow impinges onto the wing from the leading
edge.

Fig. 7 Prediction of the skin friction magnitude coefficient contour on the upper surface for BSCW test case at
𝑀 = 0.801 and 𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔]. Wing root is located on the left side. Incoming flow impinges onto the wing
from the leading edge.

Figures 8 and 9 highlight the pressure and skin friction coefficient distribution at three sections along the span of the

BSCW wing at 𝑀 = 0.801 and 𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔]. The POD+I method captures the global trend of the variables

but is unable to resolve any localized features, in contrast to the deep–learning model, which is able to estimate the
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distribution with remarkable accuracy. In fact, we can notice a precise prediction of the pressure peaks in proximity of

the shock location at 20% of the span which the POD+I approach is not able to capture correctly. This behaviour is

likely due to the intrinsic linear formulation of POD+I which does not allow the model to taking into account strong

nonlinearities.

The better estimation of the flowfield using the FCNN is clearly shown from the reconstruction of the aerodynamic

forces. Table 4 shows lift coefficient 𝐶𝐿 , drag coefficient 𝐶𝐷 and pitching moment coefficient 𝐶𝑀𝑦 obtained with each

approach, with a FCNN error less than 1%. 𝐶𝑀𝑦 has been computed with respect to 30% of the chord, considering the

rigid mounting system of the BSCW that induces pitch oscillations around this specific location. Note that aerodynamic

forces are calculated by integrating the pressure coefficient distribution and the skin friction coefficient distribution

over the wing surface. The contribution of shock wave magnitude predominantly influences the 𝐶𝐷 , which both

methods predict accurately. As a result, the error in predicting 𝐶𝐷 is comparatively lower than that of other coefficients.

Conversely, the 𝐶𝐿 and 𝐶𝑀𝑦 are sensitive to the shock wave location. In the POD+I method, there is a misplacement of

the shock wave position, evident in the considerably higher error in 𝐶𝐿 compared to FCNN method. The disparity is

even more pronounced in the case of 𝐶𝑀𝑦 , which is closely tied to the shock wave position. Neural network, renowned

for its capability in pattern recognition, excels in capturing the shock wave position, thereby achieving a remarkably

small error in 𝐶𝑀𝑦 prediction. The relatively larger error in predicting 𝐶𝐿 compared to 𝐶𝑀𝑦 could potentially be

attributed to minor distributed errors across the surface.

Fig. 8 Pressure coefficient sections of BSCW at 𝑀 = 0.801 and 𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔].

Figure 10 compares the pressure coefficient distribution obtained with wind tunnel measurements [38] in two

sections of the wing at 𝑀 = 0.74 and 𝐴𝑜𝐴 = 0.2 [𝑑𝑒𝑔] with the prediction of the presented methods. The flow

conditions in this case involve the absence of boundary–layer separation and a small shock wave on the upper surface
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Fig. 9 Skin friction coefficient sections of BSCW at 𝑀 = 0.801 and 𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔].

CFD FCNN POD+I

Value Error (%) Value Error (%)
𝐶𝐿 0.5256 0.5186 1.3318 0.5122 2.5495
𝐶𝐷 0.0423 0.0422 0.2364 0.0417 1.4184
𝐶𝑀𝑦 -0.0653 -0.0649 0.6125 -0.0629 3.6753

Table 4 Aerodynamic coefficients prediction for BSCW test case at 𝑀 = 0.801 and 𝐴𝑜𝐴 = 3.295 [𝑑𝑒𝑔].

of the wing. Notably, we include experimental data in the figures to demonstrate that under specific conditions, the

surrogate models might exhibit superior performance compared to the full–order model. This improvement can be

attributed to the insights gained during training from data points spanning a wide flight envelope (cite Fahrat papers).

FCNN closes follow CFD in both sections, whereas POD+I misspredicts the pressure distribution at 60% of the span

close to the leading edge showing small fluctuations.

B. ONERA M6

The second test case is the ONERA M6 wing, which represents a classic validation test case due to the relatively

simple geometry and complicated flow physics. It was developed for studying high Reynolds number flows characterized

by separated flow, shock–boundary–layer interaction and complex 𝜆–shaped shock wave.

A mixed-type grid with 18.8 · 106 elements and 149,700 surface elements was generated, structured on the wing

surface and in the first layers of the boundary–layer, voxel in the rest of the computational domain. A 𝑦+ = 1 is adopted.

The computational domain extends 100 chords from the solid wall to the farfield. An impression of the grid can be

obtained from Figure 11.
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Fig. 10 Comparison of pressure coefficient sections of BSCW at 𝑀 = 0.74 and 𝐴𝑜𝐴 = 0.2 [𝑑𝑒𝑔] with
experimental data [38].

The JST central scheme with artificial dissipation is adopted for the discretization of convective flows. The gradients

of the flow variables are calculated using a Green Gauss method. The linear solver biconjugate gradient stabilisation is

chosen, with ILU preconditioner applied. A chord of 0.6461 𝑚 and a scaling area of 0.7532 𝑚2 have been considered

for the aerodynamic forces calculation.

Fig. 11 Impression of the ONERA M6 CFD grid.

Table 3 shows MAPE on test dataset of distributed aerodynamics quantities. The error is normalized with respect

to the cell area. Similar to the previous test case, FCNN consistently outperforms the POD+I method, exhibiting an
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error lower than 0.19% for 𝐶𝑃 and 0.53% for 𝐶𝐹 compared to the POD+I method. A detailed examination of the error

percentile analysis graph reveals a narrower error spread for FCNN, underscoring its higher accuracy on the test dataset

in comparison to the POD+I method.

MAPE [%]

FCNN POD+I
𝐶𝑃 2.4949 2.6836
𝐶𝐹 0.8470 1.3745

Table 5 Error analysis on test dataset of distributed aerodynamics quantities for ONERA M6 test case.

Figure 12 shows the surface pressure coefficient field on a new prediction at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔]

employing two different techniques, POD+I and FCNN. This particular condition was selected due to the availability

of experimental data [39]. It is possible to notice a complex 𝜆–shaped shock wave due to the swept leading edge and

a minimum of the airfoil curvature at about 30% chord. The comparison between CFD and ROMs shows an overall

good prediction of the shock wave in both methods. In Figure 13, the reconstruction of the skin friction coefficient also

demonstrates a good agreement in terms of the shape and position of the 𝜆 shock wave. However, FCNN outperforms

POD+I in terms of magnitude close to the tip area.

Fig. 12 Prediction of the pressure coefficient contour on the upper surface for ONERA M6 test case at
𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔].

The pressure coefficient distribution at several station along the wing span at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔] is
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Fig. 13 Prediction of the skin friction magnitude coefficient contour on the upper surface for ONERA M6 test
case at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔].

reported in Figure 14, where a comparison with available experimental data [39] takes place. In contrast with Figure 12,

the better behaviour of FCNN is clearly shown. At each span station, the neural network closely follows CFD results,

whereas POD+I shows big 𝐶𝑃 oscillations in proximity of the shock wave. This non-smooth pressure field results from

POD modes with small eigenvalues, which get dramatically magnified throughout the interpolation phase. This is

further emphasized by examining the skin friction reconstruction presented in Figure 15. The current results have been

based on POD modes that encompass 95% of the total kinetic energy. Reducing the number of modes only resulted in

poorer outcomes. Conversely, increasing them for accounting 99% of the total energy does not impact significantly on

the results. Therefore, we have made the decision to retain a high number of modes in order to achieve the highest level

of accuracy in the predictions.

In fact, the accurate pressure and skin friction estimation of FCNN brings to a better prediction of aerodynamic

coefficients, as shown in Table 6. Specifically, the FCNN exhibits excellent prediction capabilities for the lift coefficient,

surpassing of almost ten times the performance of POD+I. Additionally, the error of FCNN in the drag and pitching

moment coefficients is less than half of what is achieved with POD+I. The reason behind the lower error of the FCNN

on the lift coefficient compared to the other two coefficients can be understood by examining Figure 12 and 13. These

figures reveal that the contour of the 𝐶𝐹 exhibits non–smooth isolines in the CFD solution, which suggests a simulation

that may not have converged effectively. However, this issue does not impact the deep–learning algorithm, which

is capable of providing accurate solutions even in regions with complex physical phenomena. This highlights the

significant advantage of using deep–learning to regularize CFD data.

C. NASA Common Research Model (CRM)

The third test case is the NASA Common Research Model (CRM), which is a transonic wing–body model from

the AIAA CFD Drag Prediction Workshop [40]. The main features are a conventional low–wing configuration and a

fuselage representative of a wide body commercial aircraft.
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Fig. 14 Comparison of pressure coefficient sections ONERA M6 at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔] with
experimental data [39].

CFD FCNN POD+I

Value Error (%) Value Error (%)
𝐶𝐿 0.2763 0.2761 0.0724 0.2698 2.3525
𝐶𝐷 0.0183 0.0190 3.8251 0.0169 7.6503
𝐶𝑀𝑦 -0.1281 -0.1267 1.0929 -0.1229 4.0593

Table 6 Aerodynamic coefficients prediction for ONERA M6 test case at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔].

The computational grid was derived from the DLR one created for the AIAA Drag Prediction Workshop [41]. The

unstructured grid has 8.8 · 106 elements and 157,374 surface elements. The computational domain extends 100 chords

from the fuselage to the farfield. A 𝑦+ = 1 is adopted. An impression of the grid can be obtained from Figure 16.

18



Fig. 15 Skin friction coefficient sections of ONERA M6 at 𝑀 = 0.8395 and 𝐴𝑜𝐴 = 3.06 [𝑑𝑒𝑔].

The Lax–Friedrichs central scheme with low artificial dissipation set to 0.02 is adopted for the discretization of

convective flows. The gradients of the flow variables are calculated using a Green Gauss method. The linear solver

biconjugate gradient stabilisation is chosen, with ILU preconditioner applied. A chord of 0.1412 𝑚 and a scaling area of

0.1266 𝑚2 were considered for aerodynamic coefficients calculation.

This test case represents the most challenging prediction for our deep–learning framework due to the complex

geometry, physics and grid configuration. It differs from the others as it has a remarkable amount of surface points in

regions with mostly linear flow behavior, such as vast areas of the fuselage, which is advantageous to the linear POD+I

technique. Consequently, we chose to quantify the MAPE exclusively on the wing, which exhibits high nonlinearity. The

results in Table 7 reveal that FCNN outperforms POD+I in both coefficients for the wing. Additionally, when examining

the error percentile analysis graph, it becomes evident that FCNN exhibits a lower error spread compared to POD+I.
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Fig. 16 Impression of the CRM CFD grid. More focus on the red rectangle in Figure 17 and 18.

This underscores the superior performance and accuracy of the developed deep–learning framework in capturing the

nonlinearities.

MAPE [%]

FCNN POD+I
𝐶𝑃 1.7385 3.7136
𝐶𝐹 1.1942 1.2142

Table 7 Error analysis on test dataset of distributed aerodynamics quantities for CRM test case.

Surface pressure contour predictions are shown in Figure 17 on a test sample at 𝑀 = 0.827 and 𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

This specific condition has been selected due to the complex physics involved, in terms of boundary–layer detachment

and shock wave formation on the upper wing surface. These phenomena interplay with the vortex generated at the

wing-fuselage junction, making the prediction particularly challenging. In the absence of local nonlinearities, the

surface pressure distribution can be accurately predicted by both ROMs. Therefore, except for the area next to the wing,

the prediction error on the fuselage is almost nil.

Examining the predictions for 𝐶𝑃 (see Figures 17 and 19), some discrepancies can be observed in the wing–fuselage
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junction and the kink area of the wing. However, the rest of the wing and the fuselage demonstrate more accurate

predictions, which explains why the error for 𝐶𝐿 is lower for FCNN compared to POD+I (refer to Table 8). Conversely,

for𝐶𝐹 , the network demonstrates its ability to regularize the surface field, particularly near the trailing edge, as illustrated

in Figures 18 and 20. The interaction between the fuselage vortex and the wing leads to significant pressure gradients.

This vortex interaction alters the configuration of the shock, as can be noticed when examining cross–sectional slices

along the span (Figure 19). At 20% position, no shock is present. However, as we progress toward the wing tip, the

shock emerges and intensifies. As shown in Figure 19, the POD+I model is unable to predict the location of the suction

peak and shock wave on the wing. As FCNN can handle nonlinearities, it offers considerably better predictions around

the shock area. A more complicated network architecture might be used to address discrepancies that exist close to the

wing–fuselage junction and in the kink area, which can arise due to irregular and non–uniform data distributions [42].

Fig. 17 Prediction of the pressure coefficient contour on the upper surface for CRM test case at 𝑀 = 0.827 and
𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

Fig. 18 Prediction of the skin friction magnitude coefficient contour on the upper surface for CRM test case at
𝑀 = 0.827 and 𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

Overall, the behavior of the FCNN remains reasonable, especially in the prediction of aerodynamic coefficients, as

demonstrated in Table 8. Although the error for 𝐶𝐿 is higher compared to POD+I, the neural network proficiency in

pattern recognition becomes evident in the accurate prediction of the pitching moment which is closely linked to the
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Fig. 19 Pressure coefficient sections of CRM at 𝑀 = 0.827 and 𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

Fig. 20 Skin friction coefficient sections of CRM at 𝑀 = 0.827 and 𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

shock wave placement. This leads to substantial benefits for stability analysis.

CFD FCNN POD+I

Value Error (%) Value Error (%)
𝐶𝐿 0.4927 0.4860 1.3598 0.4874 1.0807
𝐶𝐷 0.0821 0.0787 4.1413 0.0773 5.8738
𝐶𝑀𝑦 -0.0349 -0.0348 0.2865 -0.0238 31.7103

Table 8 Aerodynamic coefficients prediction for CRM at 𝑀 = 0.827 and 𝐴𝑜𝐴 = 4.898 [𝑑𝑒𝑔].

It can be concluded that the deep–learning framework excels in predicting localized phenomena, such as strong
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shocks or flow separation,while also effectively handling data regularization in complex geometric regions. This

effectiveness is credited to its nonlinear formulation, which enhances prediction accuracy. Furthermore, a noteworthy

aspect of the FCNN model is its robustness in extrapolating beyond the sampling area, which sets it apart from the

POD+I approach.

D. Optimal hyperparameters of the network

The Bayesian optimization history of the FCNN hyperparameters tuning is shown in Figure 21. The plot depicts the

evolution of MSE across multiple trials for each test case. Transparent points represent the MSE value at the end of the

training process at each trial. The black dashed line denotes the trend of the error during the optimization. Notably, the

graph highlights a consistent reduction in error throughout the optimization process, emphasizing the effectiveness of

the tuning procedure in identifying the combination of hyperparameters that yield minimal MSE on the validation dataset.

(a) BSCW (b) ONERA M6

(c) CRM

Fig. 21 Hyperparameter optimization history of the FCNN for each test case.

Table 9 shows the hyperparameters of the neural network after the optimization process, where a relation between

the number of surface mesh points assigned in the input layer and the neural network parameters is highlighted.

The optimum learning rate and activation function are similar between BSCW and ONERA M6 test case. This

suggests that an optimal region for certain hyperparameters may exist for test cases characterized by similar physical
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phenomena. Hence, these hyperparameters have been fixed in order to improve the hyperparameter optimization

performance by reducing the design space.

It is important to emphasize that the optimization of the neural network architecture is dependent on the quality of

the data. In the analysis of BSCW test case, the algorithm was tested also using few CFD simulations that could not

reach a low level of residuals. Among the 70 samples, 4 simulations did not attain a high level of convergence. We

conducted training both with and without these simulations, yielding distinct outcomes. This enabled us to observe that,

when the poorly converged simulations were included in the training set, the optimizer tends to converge towards a more

complex network architecture. This complexity was reflected in an observable increase in the number of parameters,

rising from 170,756 to 241,865.

Another noteworthy observation is that, in regions where convergence cannot be easily achieved, the model

demonstrates its capability to provide a smooth solution, effectively regularizing the data. Consequently, under specific

circumstances, the surrogate model might exhibit superior performance compared to the full–order model (cite Fahrat

papers).

Hyperparameter Optimal Value
BSCW ONERA M6 CRM

Learning rate 10−4 10−4 10−4

Number of Hidden Layers 7 6 4
Batch size 6 6 6
Activation function LeakyReLu LeakyReLu LeakyReLu
Number of parameters 170,756 158,180 68,392
Input surface points 130,816 149,700 78,829

Table 9 Optimal hyperparameters for the three test cases.

E. Computing Cost Saving

A comprehensive computational cost analysis was conducted to assess the efficiency of reduced-order methods

compared to the high-order approach, as presented in Table 10. In CFD simulations, it was found that an average of 900

CPU hours is required for a single run, while generating the entire dataset demands approximately 65,000 CPU hours.

The prediction time for a single sample is comparable between the two ROMs. However, the FCNN, which delivers

highly accurate predictions, necessitates computationally demanding optimization and training phases. As a result,

while the POD+I method may suffice during the initial design stages, when precise and reliable results are paramount,

employing neural network becomes an extremely valuable approach despite its greater computational requirements.

One of the primary obstacles we faced throughout this study was the considerable computational cost associated

with each high-fidelity simulation. Consequently, it is crucial to adopt a philosophy aimed at minimizing the amount of

training data necessary to develop an accurate model. Neglecting the costs associated with data generation can pose a
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potential risk, as it may compromise the computational benefits gained from employing a reduced–order model. Hence,

striking a balance between model accuracy and computational efficiency is essential for successful implementation.

Test case CFD (CPU hours) FCNN (GPU hours) POD+I (CPU hours)

Simulation Optimization Training Prediction Training Prediction
(70 runs) (1 run) (100 trials) (1 model) (1 sample) (1 model) (1 sample)

BSCW 42,000 600 10 0.6 0.0001 0.002 0.0002
ONERA M6 126,000 1,800 11 1.6 0.0001 0.002 0.0002
NASA CRM 28,000 400 7 0.4 0.0001 0.002 0.0002

Table 10 Computing cost comparison between ROMs and CFD for each test case.

IV. Applications of the Framework
To evaluate the practical suitability of the proposed method, two applications are introduced. Both concern

assessments which require several repeated evaluations of the aerodynamic forces/moments, which are carried out with

the deep–learning framework. Specifically, we focus on the BSCW test case. The first application is the assessment of the

static aeroelastic displacement in a flow regime in which aerodynamic forces depend nonlinearly on the displacements.

The second application concerns the propagation of aleatoric uncertainties of Mach and angle of attack onto the

aerodynamic forces. In the second case, we utilized neural network to generate high number of samples in a brief

timeframe and employed Polynomial Chaos Expansion (PCE) to examine statistical quantities. Here, we demonstrated

the efficiency of the method and, importantly, we verified that the obtained results align with physical principles. By

assessing performance and robustness of the framework in these applications, we gain valuable insights into the method

potential and ability to tackle complex challenges encountered in practical settings. In fact, the applications show that

the deep–learning framework proposed is both effective (it provides accurate data), efficient (at low cost) and robust (it

lowers the dependence on data quality in every sample).

A. Static Deformation of BSCW

The presented deep–learning framework has been coupled with the structural model of the pitch system of the

BSCW test case to perform aeroelastic analysis. The calculation of the twist angle 𝜃 is derived from the equation

𝐾 · 𝜃 = 𝑀 , wherein 𝐾 represents the stiffness matrix and 𝑀 is the pitching moment. Due to the interdependence of the

pitching moment and the twist angle, the nonlinear characteristics of the problem necessitate an iterative approach for

resolution. Table 11 provides the structural properties of the BSCW wing test case [38, 43, 44]. In this analysis, the

structural damping is neglected, and both the elastic axis and the center of gravity are located at the mid–chord position.

A schematic of the half-span BSCW is shown in Figure 22.

The influence of increasing dynamic pressure on aeroelastic behavior is noteworthy as it enhances the impact of
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Fig. 22 Schematic of the half-span BSCW subject to pitch and plunge motion.

BSCW properties
𝐾𝛼 4018.64 Nm rad−1

𝐾ℎ 38484.12 N m−1

𝑐 0.4064 m
Table 11 Structural properties of the BSCW model.

pressure in relation to structural stiffness. Figure 23 illustrates this effect by presenting the incremental elastic twist

angle 𝜃 [𝑑𝑒𝑔] predicted by the deep–learning framework as a function of dynamic pressure for rigid angles of attack

ranging from 0 to 5 [𝑑𝑒𝑔] at 𝑀 = 0.74. The circular symbols in the figure represent CFD results obtained from Heeg

and Chwalowski [45].

In static aeroelastic solutions with rigid angles of attack equal to or less than 1.15 [𝑑𝑒𝑔], the dynamic pressure

induces a negative twist, resulting in a reduction of the angle of attack (nose down). However, for angles of attack greater

than 1.15 [𝑑𝑒𝑔], the induced elastic twist angle becomes positive (nose up) and increases with dynamic pressure. This

phenomenon can be attributed to a shift in the center of pressure, resulting in a change of sign for the pitching moment.

This, in turn, leads to an increase in the aerodynamic load as the angle of attack rises. A remarkable agreement might be

notice between the presented results and computational ones from Heeg and Chwalowski [45].

To conclude, we want to point out that a static aeroelastic solution has been computed within the presented framework

in 0.002 GPU hours. The problem is nonlinear and necessitates iterative resolution. This stands in stark contrast to the

method proposed by Heeg and Chwalowski [45], which consumed approximately 1000 CPU hours with a gradient

method. Unlike traditional method that would necessitate running a CFD simulation at each step, this approach

demonstrates efficiency and effectiveness in handling aeroelastic simulations.
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Fig. 23 Static elastic twist angles of BSCW at 𝑀 = 0.74 for different initial AoAs.

B. Propagation of Uncertainties of BSCW

The aim of this study is to effectively address the uncertainties associated with flow parameters. This research

is motivated by the significant variability observed in the results of the Second Aeroelastic Prediction Workshop,

particularly the substantial scatter in the test case results [46].

This study leverages the developed deep–learning framework to efficiently generate an high number of samples, and

Non-Intrusive Polynomial Chaos Expansion (NIPCE) technique [47–50] to approximate the probability distribution

associated with the random variables. This technique has been successfully applied to similar problems, as documented

in the literature [51–53]. In the expansion, the variable of interest 𝑌 , which depends on a vector of random variables 𝜉,

is expressed as a series expansion:

𝑌 (𝜉) =
𝑝∑︁

𝑖=𝑜

𝛼𝑖Ψ(𝜉) (4)

Here, Ψ represents multivariate basis functions, often Hermite polynomials for normally distributed random

variables [50, 54], and 𝛼𝑖 are the spectral coefficients. The number of terms in the expansion, denoted by 𝑝, is determined

by the number of random variables 𝑛 and the chosen order of the NIPCE 𝑠, and can be calculated using 𝑝 =
(𝑛+𝑠)!
𝑛!𝑠! .

To determine the spectral coefficients 𝛼𝑖 , a minimum of 𝑚 experiments are required, assuming oversampling with

𝑚 > 𝑛. The 𝑚 values of 𝑌 are sampled using the Latin Hypercube Sampling (LHS) method. In this study, the random

variables Mach number and angle of attack have been selected for analysis (refer to Table 12). It is assumed that the
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random variables follow a normal distribution with given standard deviation, 0.01 for 𝑀 and 0.1 for 𝐴𝑜𝐴. These values

are chosen to align with the order of magnitude of the uncertainty typically encountered during standard wind tunnel

campaigns [55–57]. The NIPCE is constructed using Hermite functions.

RV Distribution Std deviation
𝑀𝑎𝑐ℎ Normal 0.01
𝐴𝑜𝐴 Normal 0.1

Table 12 Freestream Random Variables, their distribution and standard deviation values used to quantify
uncertainty.

Figure 24 displays the Probability Density Function (PDF) of the lift coefficient at 𝑀 = 0.80 and 𝐴𝑜𝐴 = 3.0 [𝑑𝑒𝑔],

which was identified as a condition with significant variability by Righi et al. [37]. It is important to note that the PDF

retains its shape and characteristics as the NIPCE order increases. Moreover, as the NIPCE order is augmented, the PDF

reveals pronounced nonlinearities that become more prominent.

A comparison of the PDFs at various Mach numbers and AoAs is showcased in Figure 25. In the low M-AoA

region, the PDF exhibits a linear behavior, as evidenced by their symmetric distribution. However, as the Mach number

and AoA increase, the PDF displays pronounced nonlinearity, characterized by the observed asymmetry in the curves.

Notably, at 𝑀 = 0.84 and 𝐴𝑜𝐴 = 5 [𝑑𝑒𝑔], this asymmetry is less pronounced. This phenomenon can be attributed to

the complete separation of the boundary–layer and the relatively less intense interaction with the shock wave, lending

support to an explanation grounded in linear theory.

Subsequently, we conduct a sensitivity analysis utilizing Sobol indices to precisely measure the contribution of

individual input variables and their interactions to the overall variability in model output. These indices assist in

discerning the relative importance of each factor. The Sobol indices, depicted in Figure 26, reveal the impact of Mach

variations. It is evident that as the Mach number increases, the influence of Mach, treated as a random variable, becomes

more prominent, primarily due to the intensified compressibility effects. This dominance of Mach is particularly

significant at high Mach numbers, where the flow experiences separation, diminishing the influence of the AoA in

comparison. These findings align well with previously published results by Heeg et al. [46], lending credibility to our

observations.

This study demonstrated that our model could generate the PDF at each condition in only 0.01 GPU hours,

highlighting the efficiency and resource–saving benefits of our approach within this context. Crucially, the obtained

results consistently align with physical principles, underscoring the reliability of the approach. Moreover, it is pertinent

to acknowledge that, although our present focus did not encompass the incorporation of uncertainty into the neural

network, this remains a potential avenue for future exploration and refinement of the proposed methodology.

28



Fig. 24 Probability Density Function of lift coefficient at 𝑀 = 0.80 and 𝐴𝑜𝐴 = 3.0 [𝑑𝑒𝑔], polynomials are
consistent up to 𝑝 = 5, 10,000 samples, 2 Random Variables.

Fig. 25 Probability Density Function of lift coefficient, 𝑝 = 4, 10,000 samples, 2 Random Variables.

V. Conclusions
A deep–learning framework was developed to capture nonlinear phenomena occurring in transonic regime. It was

shown that our method is able to predict distributed quantities which are critical for the determination of aerodynamic
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Fig. 26 Sobol indices of the two random variables for lift coefficient.

loads and aeroelastic analysis.

The analyzed scenarios involved inherent difficulties because of the three–dimensional nature of the flow and the

existence of nonlinear phenomena, such as shock waves and boundary–layer separation. Despite these challenges,

promising results were obtained for the wing–only test cases, showing the effectiveness of the model implemented.

On the other hand, the wing–body test case highlighted some limitation of the method implemented. In fact, it can be

concluded that structured grid, or rather ordered points, impacts in a positive way on the capability prediction of the

deep–learning framework developed.

We have also shown that the proposed approach provides a robust and reliable means to compute the static twist

deformation of the BSCW, while reducing computational complexity and time demands of traditional aeroelastic

simulations. It not only enables a deeper understanding of the wing structural behavior but also contributes to optimizing

wing design for enhanced performance.

We employed Non-Intrusive Polynomial Chaos Expansion (NIPCE) to quantify the impact of uncertainties from

freestream variables in BSCW test case. The resulting confidence intervals were found to be significant, providing

valuable insights that may help explain the considerable variability observed in past Aeroelastic Prediction Workshops.

Notably, the PDFs obtained exhibited varying deviations from the Gaussian distribution, thereby highlighting the

nonlinear nature of the underlying physics.

The impact of the present work on the aerospace community may be summarized in three points. First, the
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optimization of architecture of the neural network is an essential idea to speed up the process of setting up the

hyperparameters and to enhance the model accuracy. Second, regularization of the data is a considerable advantage

of the presented algorithm. In fact, in regions where achieving convergence is challenging, the model showcases its

ability to deliver a smooth solution, effectively regularizing the data. Finally, the adaptability of the proposed approach

extends to other significant areas of research, including unsteady aerodynamics and shape optimization problems. This

adaptability stems from the optimization of the neural network architecture, which enables the identification of the

optimal set of hyperparameters for each specific test case.

Taking the proposed steady–state background as a starting point, the deep–learning framework will be applied to

unsteady responses based on angle of attack step input for pattern recognition.
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