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Abstract: Although studies on species-level classification and mapping using multisource data and
machine learning approaches are plenty, the use of data with ideal placement of central wavelength
and bandwidth at appropriate spatial resolution, for the classification of mangrove species is under-
reported. The species composition of a mangrove forest has been estimated utilising the red-edge
spectral bands and chlorophyll absorption information from AVIRIS-NG and Sentinel-2 data. In
this study, three dominant species, Heritiera fomes, Excoecaria agallocha and Avicennia officinalis, have
been classified using the random forest (RF) model for a mangrove forest in Bhitarkanika Wildlife
Sanctuary, India. Various combinations of reflectance/backscatter bands and vegetation indices
derived from Sentinel-2, AVIRIS-NG, and Sentinel-1 were used for species-level discrimination and
mapping. The RF model showed maximum accuracy using Sentinel-2, followed by the AVIRIS-NG,
in discriminating three dominant species and two mixed compositions. This study indicates the
potential of Sentinel-2 data for discriminating various mangrove species owing to the appropriate
placement of central wavelength and bandwidth in Sentinel-2 at ≥10 m spatial resolution. The
variable importance plots proved that species-level classification could be attempted using red edge
and chlorophyll absorption information. This study has wider applicability in other mangrove forests
around the world.

Keywords: AVIRIS-NG; red edge; Bhitarkanika Wildlife Sanctuary; random forest; species-level
classification

1. Introduction

Studies on plant species-level classification and mapping using multi-sensor data
have always been a challenge, and researchers have attempted to use them for simple
mono-formation plantations and tropical mixed forests using various discriminative algo-
rithms. Species-level mapping helps in the better estimation of various biochemical and
biophysical parameters, such as pigment concentration, leaf area index, primary productiv-
ity, and carbon sequestration, etc., which are useful for forest resource assessment, and for
formulating appropriate conservation and management activities. Unlike diverse tropical
forests, mangrove species occur in relatively dominant formations, thereby offering some
structure to attempt species-level and mixed-groups classification using satellite data. Map-
ping the spatio-temporal distribution of mangrove forests would help in understanding
ongoing changes and project the influence of climate change [1]. The species’ distribution
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in mangrove forests is primarily regulated by salinity level, distance from the sea or estuary
bank, duration and frequency of the tidal inundation, soil composition, etc. [2]. It has been
observed that due to the lowering of pH, the concentration of Excoecaria agallocha species
is increasing at the expense of Heritiera fomes in the Sunderban mangrove forest, eastern
India [3].

The spectral bands and derived indices from the multispectral and hyperspectral re-
mote sensing data are commonly used to distinguish mangrove forest cover from other veg-
etation. Researchers have classified and mapped mangrove and other species based on their
spectral, phenological and physical characteristics, such as height, size, and shape, while
several studies have employed chemical characteristics [4,5]. Recently, Grabska et al. [6]
mapped nine tree species within mixed forests based on their phenological phase and
reported that time-series data use significantly improved forest tree species mapping by
approximately 5–10%. Martin et al. [7] classified 11 forest cover types, including pure and
mixed stands of deciduous and conifer species. This approach combined species-specific
chemical characteristics and previously derived relationships between hyperspectral data
and foliar chemistry. However, a few studies have implemented the entire range of spectral
values to classify and map mangrove forests. Studies mapping mangrove forest extent
using different indices-based approaches were attempted [8,9], with a few on species-
level mapping [10,11]. Vegetation spectral indices use two or more spectral bands, and
enhance particular properties of different species based on their relative reflectance [12].
The Combined Mangrove Recognition Index (CMRI) is a widely used index for mapping
mangrove forest cover [13–15]. Ramdani et al. [16] reported a better accuracy in discrim-
inating mangrove species using principal polar spectral (PPS) indices over vegetation
indices, such as the Normalized Difference Vegetation Index (NDVI). Moreover, the narrow
spectral bands of hyperspectral data are more sensitive to the specific absorption features
corresponding to different species [17]. Various studies have demonstrated the utility of
various narrow spectral bands in the green, red, red edge, and NIR regions of hyperspectral
data in identifying the different mangrove species [18–21]. In particular, Jusoff et al. [22]
explored the potential use of airborne imaging spectrometer for applications (AISA) air-
borne hyperspectral data to assess nine groups of mangrove species, and observed that
they could be easily distinguished in the near-infrared region. Researchers have attempted
mangrove species composition mapping using pixel-based classification approaches, such
as maximum likelihood classification (MLC), spectral unmixing (SU), and spectral angle
mapper (SAM) [23–25]. Cho et al. [26] used the SAM classifier to minimise intraspecific
spectral variability for discriminating among South African savanna tree species.

Several studies have implemented various microwave datasets for mangrove species
classification, as backscatter energy is primarily affected by plant moisture content [2].
Pham et al. [27] classified two mangrove species using a logistics tree model classifier
employing the ALOS-2 microwave data. Multi-sensor remotely sensed datasets (e.g., multi-
spectral, hyperspectral, SAR) provide complementary information to improve species-level
classification and mapping [28,29]. Cao et al. [30] used object-based classification to iden-
tify mangrove species by deriving data synergy from unmanned aerial vehicles (UAVs),
hyperspectral images, and digital surface models (DSMs). Zhang et al. [31] integrated
optical and microwave data for mangrove species classification using various machine
learning models, and obtained good classification accuracy by combining dual polarimetric
synthetic aperture radar (SAR) data. Arasumani et al. [32] surveyed classification exercises
using a multi-sensor dataset with different machine learning approaches. However, this
study implemented random forest (RF), a machine learning model, to discriminate and
classify three dominant mangrove plant species. The RF model has the advantage of
handling high-dimensional intercorrelated data, and efficiently avoids any overfitting [33].
The RF model also quantifies the level of importance of variables based on the out-of-bag
(OOB) data. It indicates the percentage of contribution of each predictor variable used for
generating the model [34]. Naidoo et al. [35] integrated hyperspectral and LiDAR mea-
surements using the RF model to improve savanna species identification. Zhang et al. [29]
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used the Worldview-3 and Radarsat-2 satellite data to classify four mangrove species, and
they found that using SAR data, the classification accuracy was not improved remarkably.
Wong et al. [28] explored the potential of combining hyperspectral and SAR datasets to
map mangrove at the species level, and they suggested using an artificial neural network
classifier for achieving more accurate classification. Xia et al. [36] used a multisensor
dataset (e.g., Sentinel-1 dual-polarimetric SAR, Sentinel-2 multispectral, and Gaofen-3 full-
polarimetric SAR) to cluster the mangrove communities using different pieces of spectral
band combination information.

Green pigments exhibit maximum absorption in the red region between 660 and
680 nm. However, the reflectance at these wavelengths is not useful for the prediction of
chlorophyll content, as it is relatively saturated with low chlorophyll absorption in the
660–680 nm region, thereby reducing the sensitivity to high chlorophyll contents [37]. The
spectral range between the boundary of the red wavelength and the NIR wavelength is
called the red edge position, where a sudden rise in the reflectance is observed for healthy
vegetation. The red edge has the potential to distinguish healthy vegetation from other land
surface features at a site. The red edge is a unique feature of green vegetation because of the
higher and lower reflectance in the NIR and red regions, respectively, due to the scattering
property of the plant tissue [38]. Researchers have demonstrated the potential use of the
red edge wavelength or red edge-based indices to estimate or predict the chlorophyll
content of mangrove species or other vegetation types [10,39,40]. The vegetation indices
are used as a proxy, statistically linked to field-measured biophysical characteristics and
further used for spatio-temporal extrapolation [41]. Suitable vegetation indices employing
spectral bands sensitive to chlorophyll pigmentation are widely used in evaluating leaf
chlorophyll content, such as the Red Edge Chlorophyll Index (ReCI), Red Edge Normalised
Vegetation Index (ReNDVI), and Pigment Specific Normalised Difference for chlorophyll
a and b (PSNDa and PSNDb) (Table 1) [42–45]. The Optimized Soil Adjusted Vegetation
Index (OSAVI) exhibited a significant correlation with chlorophyll pigment absorption [46].

The main goal of this study is to test the potential of using narrow bands of AVIRIS-
NG and broad bands of Sentinel-1 and 2, and their data synergy, to classify and map
three dominant species, using red edge spectral regions as a discriminant of chlorophyll
absorption in a mangrove forest in eastern India.

Table 1. Details of the vegetation indices (VIs) utilised.

Sl. No. Index Name Formula Index Range Interpretation Reference

1

ReNDVI
(Red Edge

Normalised
Vegetation Index)

(R832 − R717)/
(R832 + R717) −1 to 1

Inclusion of red edge band provides a
good proxy of the chlorophyll content

and LAI.
[42,47]

2
ReCI

(Red Edge
Chlorophyll Index)

(R832/R717) − 1 −1 to ∞

The total chlorophyll content is linearly
correlated with the difference between
the reciprocal reflectance of green/red

edge bands and the NIR band.

[39,48]

3
IRECI (Inverted Red

Edge Chlorophyll
Index)

(R783 − R635)/
(R705/R740) 0 to ∞

Incorporates two red edge bands at
wavelength 705 and 740 nm. Least

importance given on red band to avoid
the saturation.

[49]

4

(i) PSNDa and (ii)
PSNDb (Pigment

Specific Normalised
Difference for

chlorophyll a and b)

(i) (R800 − R680)/
(R800 + R680)

(ii) (R800 − R635)/
(R800 + R635)

−1 to 1
Chlorophyll a and b were found to be
sensitive at wavelengths 680 and 635

nm, respectively.
[43]

5
OSAVI (Optimized

Soil Adjusted
Vegetation Index)

(R865 − R660)/
(R865 + R660 + 0.16)

−0.86 to
+0.86

Modified SAVI: value of constant (L)
was optimized to 0.16 to minimise the

background soil reflectance.
[50,51]
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Table 1. Cont.

Sl. No. Index Name Formula Index Range Interpretation Reference

6
NDVI (Normalized

Difference
Vegetation Index)

(R842 − R665)/
(R842 + R665) −1 to 1

A measure of the photosynthetic
activity and is strongly in correlation

with density and vitality of the
vegetation.

[52]

7
MTCI (Meris

Terrestrial
Chlorophyll Index)

(R740 − R705)/
(R705 − R665) −1 to ∞ Used for chlorophyll estimation. [44]

8
PSSRa

(Pigment-Specific
Simple Ratio Index)

R783/R665 0 to ∞

To investigate the potential of a range
of spectral approaches for quantifying
pigments at the scale of the whole plant

canopy.

[43]

9

MCARI (Modified
Chlorophyll

Absorption Ratio
Index)

[(R705 − R665)-0.2
× (R705 − R560)
× (R705/R665)]

−∞ to ∞
To observe the responsiveness to both

leaf chlorophyll concentrations and
ground reflectance.

[53]

2. Materials and Methods
2.1. Study Area

This study was carried out in Bhitarkanika Wildlife Sanctuary (BWS), Odisha, situated
on the eastern coast of India between 20◦4′N to 20◦5′N latitude and 86◦49′E to 86◦56′E
longitude (Figure 1), with an area of about 145 km2. A total of 62 species ofmangrove plants
have been recorded in the Dangamal block of BWS, of which 3 species, as Heritiera fomes,
Excoecaria agallocha, and Avicennia officinalis, are dominant, followed by Cynometra ramiflora,
Sonneratia apetala, Rhizophora mucronata, Aegicera scorniculatum, and Ceriops decandra [54].
BWS is within a tropical warm and humid climate region and receives about 1670 mm of
average annual rainfall. The average temperature varies between 10 ◦C in winter and 43 ◦C
in summer, and the relative humidity ranges from 70% Mean surface reflectance spectra to
84% throughout the year.
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2.2. Satellite and Airborne Data Processing

AVIRIS-NG is a joint airborne campaign carried out by the India Space Research
Organisation (ISRO) and National Aeronautics and Space Administration Jet Propulsion
Laboratory (NASA JPL) onboard an ISRO B200 aircraft [55]. The onboard hyperspectral
sensor recorded DN (Digital Number) values in the spectral range from 380 nm to 2500 nm,
with a bandwidth of 5 nm over 425 spectral bands. Flying at a 4 to 8 km altitude, the
hyperspectral sensor collected data at 4 to 8 m spatial resolution within a swath of 4 to 6 km.
Three levels (L0, L1, and L2) of AVIRIS-NG data are available, where L0 is the raw data
captured by the sensor and recorded in the form of DN values, L1 is the ortho-rectified im-
age containing the radiance value (unit µW/sr/nm/cm2), and the L2 data products are the
atmospherically corrected surface reflectance data (unitless quantity). For the atmospheric
correction, the 6S model and moderate resolution atmospheric transmission (MODTRAN)
module were used, which produced the bottom of the atmosphere reflectance data, with
the least error ranging from 14.9% to 38.4% with respect to in situ measurements [56]. Four
AVIRIS-NG L2 image tiles were used in this classification exercise, of which three were
taken on 25 December 2015, and one on 28 December 2015. AVIRIS-NG level-2 data are
already pre-processed (geo-rectified, atmospherically corrected), so were directly used for
the retrieval of bands and indices after confirming tile rotation and masking out for the
BWS site using the ENVI 5.1 platform.

Sentinel-1, launched by the European Space Agency (ESA) in 2014, carries a SAR sensor
that operates in the C-band (frequency of 5.4 GHz) and provides dual-polarised images (VV
and VH). The dual-polarised images (VV and VH) were downloaded from the Copernicus
website (https://scihub.copernicus.eu/dhus/#/home, accessed on: 19 May 2019) for
23 December 2018 and pre-processed to obtain backscattered intensity values, following
radiometric calibration, speckle filtering, and terrain correction. Sentinel-2, launched by
the ESA in June 2015, uses 13 spectral bands at different spatial resolutions (10, 20, and
60 m). Sentinel-2 data were downloaded and pre-processed using the Sentinel Application
Platform (SNAP) software for the date 26 December 2018. The acquisition time of the
Sentinel-2 image was 10:12 am (IST). The Sen2cor was used for the atmospheric correction
and to generate a bottom-of-atmosphere (BOA) reflectance image that implements different
corrections, such as atmosphere, terrain, and cirrus, in the level-1C top-of-atmosphere
input data. The pre-processed Sentinel-1 and Sentinel-2 data were resampled to 20 m to
match the field sampling mesh size and for utilisation in classification exercises. Tidal
information was taken from an open-source software WXTide32, and from the online
source (https://tides4fishing.com/as/india/bhitarkanika, accessed on: 29 April 2021).
On 26 December 2018, the tidal height had a range between 0.4 m and 2.9 m, whereas
for 28th December this range was 0.5 m to 2.7 m. At the time of image acquisition by the
Sentinel-2 sensor, the tidal height was about 1.2 m. The two-day image acquisition process
covered 26th (at 8:30 am IST) and 28th (at 5:20 am IST) December as part of the AVIRIS-NG
campaign; the tidal height was about 0.9 m and 0.7 m on the respective dates.

2.3. Field Data Collection

We laid Elementary Sampling Units (ESUs) of 20 × 20 m2 to record information on
the composition on Heritiera fomes, Excoecaria agallocha, and Avicennia officinalis species
(Figure S1), including the geolocation (using handheld GPS device) of the centre point of
the ESUs. The ESUs were clustered into singlet and duplet species according to the species
occurrence within a particular ESU. Throughout our field observation, the tidal height
varied between 0.5 m and 2.9 m at high-tide and low-tide, respectively.

2.4. Generation of Vegetation Indices (VIs)

Several vegetation indices were generated that concentrated on the wavelength region
of chlorophyll absorption, as well as the red edge region. Six Vis, including ReNDVI, ReCI,
IRECI, PSNDa, and PSNDb, and six narrow red edge bands, b64, b65, b66, b67, b68, and
b69, were retrieved and pre-processed from the AVIRIS-NG dataset (Table 2). Additionally,

https://scihub.copernicus.eu/dhus/#/home
https://tides4fishing.com/as/india/bhitarkanika


Remote Sens. 2021, 13, 2027 6 of 17

OSAVI MCARI, IRECI, NDVI, PSSRa, and MTCI were computed and pre-processed from
Sentinel-2 data [39,42–44,48–51].

Table 2. Different bands of AVIRIS-NG, Sentinel-1 and 2, and derived VIs used in species-level classification via the RF
model, along with their (model) accuracy estimates. Set 1D and Set 2B provided the highest overall accuracy among all the
combinations (in bold).

Sl. No. Data Used Bands/Indices Used Combination
Group

Overall Accuracy
(In %) Kappa Value

1 AVIRIS-NG
(Red edge bands)

R692, R697, R702, R707, R707,
R717

Set 1A 55 0.33

2 AVIRIS-NG
(VIs)

RENDVI (B92, B69),
RECI (B92, B69),

IRECI (82, 59, 67, 74),
PSNDa (86, 53),
PSNDb (86, 62),
OSAVI (86, 62)

Set 1B 64 0.49

3
AVIRIS-NG

(3 Red edge bands
and 6 VIs)

RENDVI, RECI, IRECI, PSNDa,
PSNDb

and OSAVI
R692, R697, R702

Set 1D 70.2 0.49

4
AVIRIS-NG

(6 Red edge bands
and 6 VIs)

RENDVI, RECI, IRECI, PSNDa,
PSNDb

and OSAVI
R692, R697, R702, R707,

R707, R717

Set 1C 67.6 0.47

6 Sentinel-2
(8 Bands)

R490, R560, R665, R705, R740, R783, R842,
R865

Set 2A 50 0.45

7 Sentinel-2
(5 VIs) MCARI, IRECI, NDVI, PSSRa, MTCI Set 2B 74 0.61

8 Sentinel-2
(5 VIs and 3 bands)

MCARI, IRECI, NDVI, PSSRa, MTCI,
B4, B5, B6 Set 2C 67 0.53

9 Sentinel-1
(Dual Pol SAR data) VH, VV, VH ×VV, ((VV + VV)/2) Set 3 48 0.33

10
Sentinel-1 and 2
(Bands, VIs, and

SAR data)
All above bands, VIs, and SAR data Set 2 + 3 67.5 0.54

2.5. Mangrove and Non-Forest Mapping: Spectral Angle Mapper (SAM)

Different species-level classification approaches were adopted employing the bands,
VIs, or a combination of hyperspectral (AVIRIS-NG), microwave (Sentinel-1), and/or
multispectral (Sentinel-2) sensors. The spectral behaviours of various mangrove species
were analysed with respect to their varying wavelengths. Signatures or spectral reflectance
curves were generated for the three dominant species, Heritiera fomes, E agallocha and
Avicennia officinalis, whereby the mean of nine adjacent pixels was considered. The SAM
classification technique was used to distinguish between the mangrove forests and other
classes, such as water body, river, grassland, agriculture, and fallow land. The SAM
algorithm compares the spectral similarities between the input (reference) spectra and the
target spectra, which overcome the solar illumination factor that affects the image’s DN
values [57]. The SAM classifier was applied on the AVIRIS-NG and Sentinel-2 imagery,
where the ENVI and ArcGIS platforms were used, respectively. The SAM classifier was
employed to extract the mangrove forest area. The end members or the pure spectra
were collected following the minimum noise fraction (MNF) and pixel purity index (PPI).
These end members were used as training sample spectra in the SAM classifier, as it is a
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supervised classification technique. Several spectra were generated using a field reference
corresponding to GPS-based locations. This whole collection of spectral library data for
different features, such as wetland, grassland, water bodies, mangroves, and agricultural
land, was fed to the classifier as a training set with a 10-degree radian for classification.
Here, this classification step was considered an elimination method, as the main goal was
to identify different mangroves species and their mixed combinations.

2.6. Species-Level Mapping: Random Forest

The random forest (RF) model is a nonparametric ensemble classification model that
uses large numbers of classifiers or trees [58]. Hundreds of trees are used for classification,
whereby each tree casts a vote for the output class, and the final output class is determined
based on the majority of votes received by all the trees [59]. The RF classifier uses bagging
to form an ensemble of classification and induction tree-like classifiers [60]. Two-thirds of
the total samples are used as training datasets, and the remaining one-third of the data are
used to estimate the out-of-bag (OOB) error [4]. The performance of the RF model depends
on two parameters, which are the number of variables, used as the input for the RF model,
and the number of decision trees [61]. It can handle high-dimensional and intercorrelated
data and efficiently avoid overfitting [8,33]. It quantifies the level of importance of variables
based on their OOB data, and indicates the contribution of each predictor variable used for
generating the model. VIs and band combinations were used as predictable input variables
in the RF model for generating 10 sets of different species-level classifications (Table 2). Out
of the total 266 ESUs, 166 ESUs were randomly chosen to develop the classification model,
while the remaining 100 ESUs were used to assess the post-classification accuracy. The
input data points were split into 70% and 30% for model training and testing, respectively.
A 10-fold cross-validation approach was adopted to improve the performance of the model
by tuning the “mtry” parameter, whereby the value was optimised based on the least
RMSE. With an appropriate model (good overall and Kappa accuracy), the RF model was
applied to derive a species-level map of BWS using bands, VIs, and a combination of
bands and VIs from different sensors. The “raster”, “rgdal”, “randomForest”, and “caret”
packages were used.

2.7. Accuracy Assessment

Accuracy assessment is an important step in the classification process. The goal is
to quantitatively determine how effectively pixels were clustered into the correct feature
classes according to the ground/reference observations. It is a site-specific method usually
assessed by forming a confusion matrix or error matrix, wherein several matrices are used
to provide a summary of the classification accuracy including the errors, e.g., omission and
commission errors [62,63]. In confusion matrix analysis it is assumed that the pixels are
pure, and that the ground samples/reference points are perfectly co-located on the classi-
fied image where the proportion of mixed pixels depends upon the spatial resolution of
the imagery [64]. Finally, a coefficient of agreement between classified image and reference
points data was calculated using the Kappa coefficient, which indicates the actual agree-
ment between the classification and the observation. The value of the Kappa coefficient lies
between 0 and 1, where the higher values represent a better agreement between the two
datasets. The Kappa coefficient is calculated using the following equation [65]:

K = (P0 − Pe)/(1 − Pe) (1)

where P0 is the proportion of cases correctly classified and Pe is the expected proportion of
cases correctly classified by chance.

All of the data processing steps are depicted in the methodology flowchart (Figure 2).
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3. Results
3.1. Field Assessment of Species Distribution

The dominance of Heritiera fomes, Excoecaria agallocha, and Avicennia officinalis species
at various proportions were observed at the Bhitakanika Wildlife Sanctuary. The next
most dominant mangrove species were Cynometra ramiflora and Bruguiera gymnorhiza. Plots
were laid to record the data for pure and mixed formations in various spatial distribu-
tion locations. In total, 30, 19 and 10 ESUs were dominated by Heritiera fomes at >90%,
80 to 89% and >70 to 79%, respectively (Table 3). A total of 57 and 36 ESUs were laid in
patches dominated at >90% and 80 to 89% by the three candidate species. Further, a total
of 27, 22, and 24 ESUs showed duplet combinations of Heritiera fomes–Excoecaria agallocha
and Excoecaria agallocha–Avicennia officinalis at >70 to 79%, >60 to 69%, and >50 to 59%,
respectively (Table 3). It was also observed that Avicennia officinalis has the highest canopy
cover among the three dominant species, which is why the number of trees per ESU is
lower, even though they are sparser.

Table 3. Details of sampling quadrats along with percentages of dominance of three targeted species (for i. model training, and ii.
post-classification accuracy estimate).

i. Percentage of
Dominance

Heritiera
fomes

Excoecaria
agallocha

Avicennia
officinalis

Heritiera
fomes–Excoecaria

agallocha

Excoecaria
agallocha–Avicennia

officinalis
Row Total

>90% 30 22 5 0 0 57
>80 to 89% 19 14 3 0 0 36
>70 to 79% 10 6 6 3 2 27
>60 to 69% 0 0 2 11 9 22
>50 to 59%

i. Total
0
59

0
42

2
18

13
27

9
20

24
166

ii 30 8 18 37 7 100
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3.2. Species-Level Classification and Mapping Using RF Model

The spectral analysis indicates minor differences in chlorophyll absorption and red
edge wavelength ranges for the three dominant species. However, the reflectance intensity
indicates significant differences in the NIR and SWIR regions, where Avicennia officinalis
has a higher reflectance than the other two species, indicating similar spectral reflectance
(Figure S2). The SAM classifier helped in discriminating vegetation and non-vegetation
areas in BWS. However, species-level classification using the SAM supervised classifier did
not perform well in this study. The SAM classification output provided a broad classified
map, where the mangrove region was segregated from other features in order to mark out
other areas from the entire image before classification with the RF model.

Using six narrow AVIRIS-NG hyperspectral bands (in the red edge spectral range),
the RF model demonstrated 55% overall accuracy, which further improved to over 70%
using six VIs and three narrow bands; however, the kappa accuracy was low (Table 2). The
RF model improved the overall and Kappa accuracy of various Sentinel-2 data-derived
VIs (five vegetation indices, MCARI, IRECI, NDVI, PSSRa, MTCI), with the maxima of
74% overall and 0.61 Kappa accuracy (Table 2). Sentinel-1 dual-pol SAR data with VH, VV,
VH ×VV, and ((VV + VV)/2) combinations demonstrated only 48% overall and 0.33 Kappa
accuracy. However, the combination of Sentinel-1 and 2 bands and VIs demonstrated good
overall (67.5%) and Kappa (0.54) accuracy (Table 2).

It was found that the Heritiera fomes are dominantly distributed in the highlands
of BWS, mostly in homogenous and contiguous patches (Figure 3a–d). The patches of
Heritiera fomes are dominant in the eastern and western parts of BWS along the creeks. Com-
pared to other species, the distribution of Heritiera fomes is more similar, as derived using
the AVIRIS-NG and Sentinel-2 data (Figure 4a,b). The southern and peripheral regions of
the sanctuary are dominated with Avicennia officinalis and Excoecaria agallocha species in dif-
ferent proportions. The dominant compositions of Heritiera fomes, Excoecaria agallocha and
Avicennia officinalis cover 17.29 km2, 12.37 km2, and 3.13 km2, respectively. Mixed species
such as Heritiera fomes–Excoecaria agallocha and Excoecaria agallocha–Avicennia officinalis are
found distributed over 7.6 km2 and 5.5 km2, respectively. The swamp, agricultural land,
river, waterbody, and fallow land cover 5.9 km2. These area statistics were calculated using
the map derived from the Sentinel-2 dataset.

The post-classification accuracy was assessed using 100 data points, revealing a maxi-
mum overall accuracy of 69% and Kappa accuracy of 0.59 using AVIRIS-NG narrow bands
and vegetation indices, followed by 50% (0.34) and 38% (0.2) for Sentinel-2 VIs and Sentinel
1 and 2 combinations, respectively. The user’s and producer’s accuracy for the pure classes
is estimated to be higher for Heritiera fomes than Avicennia officinalis and Excoecaria agallocha,
whereas for mixed classes, the accuracy was observed to be higher for Heritiera fomes and
Avicennia officinalis compared to Avicennia officinalis and Excoecaria agallocha.

3.3. Importance Variables

The importance ranking retrieved using AVIRIS-NG data revealed that the red edge
band (B077) exhibited the maximum contribution (32%), followed by B692 (17%), RECI, and
RENDVI, which contributed equally (12%) to species-level classification (Figure 5a). The
importance plots derived using Sentinel-2-based VIs revealed that red edge-based indices
such as NDVI (44%), PSSRa (24%), and IRECI (21%) make the maximum contributions in
the RF model-based species-level classification (Figure 5b). This plot highlights the most
important variables and their contributions to the classification results derived with the
RF model.
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4. Discussion

Species occurrences were recorded on the ground according to the stand density in
the ESU scale with geolocation information. It may be noted that the Sentinel 1 and 2 pixels
nearly matched with the dimension (20× 20 m2) of the ESU, while the 25 (5× 5 m2) AVIRIS-
NG pixels corresponded to one ESU. It should be mentioned that extensive fieldwork in
this ecosystem is challenging due to the presence of pneumatophores, networks of creeks,
and mud owing to the tidal effects. According to field observations, the impact of the
tidal effect on this study is minimal, as the maximum tidal height was almost 1.2 m on the
image acquisition date. It was found that the Heritiera fomes are dominantly distributed in
the highlands of BWS, and their distribution is mostly homogenous. Avicennia officinalis
and Excoecaria agallocha species are dominant in the peripheral regions of the sanctuary
at different proportions. The spatial distributions of different species could indicate the
effects of tidal inundation and the species-specific salt tolerance capacity. As species-
wise ground spectra were unavailable, the spectral signature collected from the image
highlighted the differential spectral responses of the three dominant species Heritiera fomes,
Excoecaria agallocha, and Avicennia officinalis [66]. The spectral analysis of Avicennia officinalis
showed higher reflectance in the NIR region; this may have been caused by the structure of
the leaves and the leaf phenology phase. Comparatively, the leaves of Avicennia officinalis
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are spongier or softer than those of the other two selected species because of the spongy
mesophyll cells, which induce higher reflectance in the NIR region.

The broad band Sentinel-2 data revealed the maximum classification accuracy (74%)
followed by narrow hyperspectral AVIRIS-NG data (70.2%) in discriminating three domi-
nant species and two mixed compositions (Table 2; Figure 4a,b). Green et al. [67] reported
that high-resolution data may not always yield better results in mangrove species map-
ping due to the presence of mixed pixels, a background soil–water effect, and spectral
saturation in the higher biomass range. However, the ground-based spectral observation
provides better results for mapping mangrove species [68], which are often poorly inter-
preted from satellite imagery [11]. This study used 166 ground-based ESU observations
for developing the RF model, wherein both the pure and mixed-species compositions
were used for model training to minimise model bias [69]. Our training samples were
selected from both homogeneous and heterogeneous ESUs to maintain unbiasedness and a
higher classification accuracy, as stated by Millard and Richardson [69]. Kumar et al. [18]
focussed on the classification of duplet combinations of mangrove species in BWS, while
this study classified and mapped three dominant species (Heritiera fomes, Excoecaria agal-
locha and Avicennia officinalis) and two duplets (Heritiera fomes, Excoecaria agallocha and
Excoecaria agallocha and Avicennia officinalis). Pandey et al. [20] mapped Cerbera oddolam as a
dominant mangrove species out of the ten species identified in their study in BWS. Heenk-
enda et al. [10] employed the much higher resolution Worldview-2 imagery and identified
five mangrove species using the support vector machine (SVM) model. Zhu et al. [70] used
the Worldview-2 dataset and observed 87% classification accuracy, thereby affording them
better results given the higher resolution of the data used. Though spatial information
is vital in accurate classification, here, the 4 m AVIRIS-NG provided marginally inferior
accuracy compared to the 20 m Sentinel-2 data. The higher performance of Sentinel-2 broad
bands indicates the ideal placement of the central wavelengths of important absorption
bands [71].

Xia et al. [36] attempted the classification of mangrove species using multisource
remotely sensed data and found that SAR provided poor results for classifying mixed
stands, which was also observed here. Even data synergy with the addition of SAR
(Sentinel-1) with multispectral (Sentinel-2) data did not improve the result (Table 2). The
Sentinel-1 SAR has a shorter wavelength (C-band) that receives similar backscattering
signals from all the species and thus enables discrimination among them [72]. However, a
study conducted by Zhang et al. [29] on a mangrove ecosystem in Hong Kong observed
that the ensemble of optical and microwave datasets yielded better results in classifying
different plant species than with an individual dataset.

Our study attempted to map mangrove species based on NIR and red edge-based
vegetation indices without in situ spectral measurements (Figures 3 and 4). Zhang et al. [73]
performed an in situ spectral analysis to separate the mangrove species based on spectral
features, and they mentioned that chlorophyll absorption and red edge position are highly
important, as confirmed in this study in BWS, eastern India. The importance variable plots
derived for AVIRIS-NG and Sentinel-2 data also revealed that species-level classification
can be better attempted using red edge bands, red edge-based indices, and chlorophyll
absorption-based indices, as they differ the most in these two regions [74,75]. In general, the
red edge band is used for plant health assessment, but this study found that the red edge
region holds the key for species-level discrimination and mapping of mangrove forests.

Species-level discrimination was possible using the RF model as it uses a subset of
features to build individual clusters, based on a decision made via effective features that
reduces the error for the entire feature vector. The RF model evaluated each attribute inter-
nally [76], and handled the predictor variables well, thus giving multimodal distribution,
and the parameter tuning was easy (Table 2). Arasumani et al. [32] recommended the
use of an RF model for species-level mapping via Sentinel-2 data in the absence of any
hyperspectral imagery.
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Our study has proven that the Sentinel-2 dataset has comparatively better potential
to perform species-level classification. This could be attributed to the ideal placement of
the central wavelength and the appropriate bandwidth. Hyperspectral data have a finer
resolution, giving a salt and pepper effect on the classified map, which is not observed in
the Sentinel-2 data-derived map. The majority of the species’ occurrences are well-mapped
for both the AVIRIS-NG and Sentinel-2 data-derived maps. Few regions indicated dissimi-
larities; such regions suggest higher uncertainty in species mapping (red boxes, Figure 4a,b),
mainly concerning the Excoecaria agallocha and Excoecaria agallocha–Avicennia officinalis
mixed classes, whereas Heritiera fomes followed almost the same distribution in both
the maps. The higher uncertainty in certain regions may be due to the background soil
reflectance caused by lower canopy cover, which could be the reason for the greater uncer-
tainty in the Avicennia officinalis-dominated area.

5. Conclusions

Delineating the species distribution of mangrove forests using remotely sensed datasets
is useful for understanding their ecological behaviour. Of all bands and VIs used, both
AVIRIS-NG and Sentinel-2 provided comparable results, with the latter showing marginally
better accuracy. This study focused on the potential of red edge bands and chlorophyll
absorption bands for species-level mapping of a mangrove forest. The results indicated
that red edge bands and their corresponding indices are useful for species discrimination.
Further attempt at species-level mapping could be made by incorporating the reflectance
bands within 900 nm to 1300 nm and 1533 nm to 1954 nm regions using AVIRIS-NG narrow
bands. In previous studies, researchers achieved higher accuracy by merging multi-sensor
datasets, but our study revealed that a single-sensor dataset (especially Sentinel-2 and
AVIRIS-NG) also has the potential to improve accuracy in classification. This study also
exemplifies that the combination of multisensor (Sentinel-1 and 2) data may not always
perform well, especially in mangrove forests, as Sentinel-1 is not capable of generating
species-wise clusters. However, the higher performance of Sentinel-2 broad bands reit-
erates the importance of the placement of the central wavelengths in absorption bands.
This study exemplifies the potential of broad Sentinel-2 and narrow AVIRIS-NG bands
to classify and map three dominant species, using the red edge spectral region as the
discriminant, in a mangrove forest in eastern India. Further, advanced machine learning
models, such as RF, handled the predictor variables well, enabling multimodal distribution
for optimal classification.
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.3390/rs13112027/s1, Figure S1: Field photographs of (a) Heritiera fomes, (b) Excoecaria agallocha, and
(c) Avicennia officinalis stands measured during field visit, Figure S2: Mean surface reflectance spectra
(VNIR wavelength region) generated using nine adjacent pixels dominated with Heritiera fomes, E
agallocha and Avicennia officinalis.
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