
Citation: Sun, Z.; Dou, L.; Mu, Z.;

Tan, S.; Zong, Z.; Djidjeli, K.; Zhang,

G. A New Boundary Condition

Framework for Particle Method by

Using Local Regular-Distributed

Background Particles—The Special

Case for Poisson Equation. J. Mar. Sci.

Eng. 2023, 11, 2183. https://doi.org/

10.3390/jmse11112183

Academic Editor: Abdellatif

Ouahsine

Received: 14 October 2023

Revised: 9 November 2023

Accepted: 14 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

A New Boundary Condition Framework for Particle Method by
Using Local Regular-Distributed Background Particles—The
Special Case for Poisson Equation
Zhe Sun 1,*, Liyuan Dou 1,*, Zongbao Mu 2, Siyuan Tan 1, Zhi Zong 1,3,4, Kamal Djidjeli 5 and Guiyong Zhang 1,3,4

1 School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China;
tansiyuan@mail.dlut.edu.cn (S.T.); zongzhi@dlut.edu.cn (Z.Z.); gyzhang@dlut.edu.cn (G.Z.)

2 Dalian Shipbuilding Industry Co., Ltd., Dalian 116021, China; kfs@dsic-design.cn
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, China
4 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
5 Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO16 7QF, UK;

kkd@soton.ac.uk
* Correspondence: zsun@dlut.edu.cn (Z.S.); douliyuan@mail.dlut.edu.cn (L.D.)

Abstract: To improve the accuracy of solving the Poisson equation and the efficiency of handling
complex boundary shapes in the particle method, this paper proposes a Local Regular-distributed
Background Particles (LRBP) as an alternative to traditional boundary handling methods. This
method avoids the trouble of arranging virtual particles by introducing background particles, making
it suitable for problems with complex boundary shapes. In addition, based on the framework of
the weak form Poisson equation, the boundary conditions are easily applied, and the calculations
are more accurate. Furthermore, this method allows for different interpolation methods inside and
outside the boundary, providing flexibility and versatility. These characteristics are well demonstrated
in the validation examples, which indicate its potential to solve complex flow problems.

Keywords: meshless method; boundary condition; Poisson equation; background particle

1. Introduction

In the field of ship and ocean engineering, there are numerous free-surface flow
problems. However, traditional grid-based methods face challenges in terms of time-
consuming grid generation and grid distortion when dealing with such problems. In these
cases, various particle (meshless) methods have been proposed. Particle methods discretize
the computational domain using arbitrarily distributed particles, and information such as
mass, momentum, and pressure in fluid dynamics is carried by the moving particles. These
particles evolve in time steps in a Lagrangian manner to track fluid motion and simulate
fluid dynamics by considering interactions among particles. This makes particle methods
uniquely advantageous in dealing with complex flow problems involving intricate moving
boundaries and significant free-surface deformations, and they have been successfully
applied to simulations involving sloshing in a liquid tank [1–3], water impact [4–6], and
fluid–structure interaction problems [7–9], etc.

However, the particle method itself also has some limitations. In the mainstream
particle methods, such as the ISPH (Incompressible Smoothed Particle Hydrodynamics) [10]
and MPS (Moving particle Semi-implicit) [11] methods, the pressure field is obtained by
solving the Poisson equation, and the accuracy of the pressure calculation depends on
the solution of the Poisson equation [12–14]. Neumann boundary conditions or Dirichlet
boundary conditions [15–18] are often required for the solution of the Poisson equation.
Hence, accurately applying boundary conditions is a crucial challenge.

The virtual particle method (abbreviated as VPM), proposed by Koshizuka and
Oka [11], is the most widely used wall boundary condition, which adds several layers of
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virtual particles around solid boundaries to supplement the density of fluid particles. The
innermost boundary particles participate in solving the Poisson equation and achieve the
no-slip condition by setting their velocities to zero. The outermost particles do not con-
tribute to the solution of the Poisson equation, but their pressure values are set as equal to
those of the nearest fluid particles. This approach effectively avoids particle penetration but
increases the computational costs and is difficult to apply to complex-shaped boundaries.

The mirror particle method is another commonly used solid boundary treatment
method that can be traced back to the work of Xie et al. [16]. When internal fluid particles
approach the boundary, mirror particles with the same density and pressure but opposite
velocities are generated outside the solid boundary. These mirror particles are then applied
as Neumann boundary conditions on the solid boundary. Unlike the virtual particle
method, the mirror particle method does not require additional virtual particles but incurs
additional computational costs to calculate the positions of mirror particles.

From the above, it can be observed that there are still some issues with the current
approaches for handling boundary conditions, such as insufficient support domain particles
and difficulties representing complex boundary shapes. To address these problems, this
paper proposes a new boundary treatment method that avoids the placement of virtual
particles and is applicable to representing complex boundary shapes. Specifically, the
method involves placing background particles at the boundary and applying boundary
conditions based on these background particles, as well as the realization of information
transfer between fluid particles and boundary particles.

The remaining sections of this article are arranged as follows: Section 2 mainly in-
troduces the core of this article, which is the application boundary condition algorithm
based on the local regular-distribution background particles, and provides detailed ex-
planations of its implementation details. In Section 3, the convergence accuracy, different
internal particle distributions, and irregular boundary shapes of the method are verified
through the Taylor–Green vortex problem, demonstrating the feasibility and accuracy of
the background particle method.

2. Methodology
2.1. Governing Equations

In the incompressible type meshless methods, such as ISPH and MPS, the pressure
field is usually calculated by the pressure Poisson equation, as follows:

∇2 p = b, (1)

in which ∇2 is the Laplacian operator, p is the pressure field, and b is the known source
term.

Normally, this Poisson equation is subject to the following Neumann or Dirichlet
boundary conditions:

∇p ·⇀n = ∂p
∂n = q on ΓNeumann

p = p on ΓDirichlet
. (2)

This paper aims to find an effective way to accurately impose these boundary condi-
tions while preserving the Lagrangian and meshless properties in the particle methods as
much as possible.

2.2. Enhancing the Boundary Condition Accuracy by Local Regular-Distributed Particles

The insufficiency of the support domain for the particles close to the boundaries is the
main source of the difficulty in enforcing accurate boundary conditions in the particle meth-
ods. As discussed in the Introduction section, various techniques have been proposed based
on the idea of adding additional layers of particles outside the boundary, such as the virtual
particle method and the mirror particle method [11,16]. But, this type of technique usually
needs artificial parameters that must be tuned for different problems. More importantly,
the additional layers make it difficult to accommodate cases with complex geometries.
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In order to fundamentally address the issues related to the insufficiency of the support
domain while still preserving the meshless nature of the method, a new approach is adopted.
This approach (as shown in Figure 1) involves establishing an area with regular-distributed
particles across the boundaries, where the field variables on the particles (i.e., pressure
in this paper) are treated as new unknowns in solving the Poisson equation. In order to
distinguish from the original fluid and solid particles, these newly added particles are
called background particles in this paper.
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Figure 1. Illustration of the method for applying boundary conditions based on local regular-
distributed particles: (a) Closure equations for background particles outside the boundary; (b) Closure
equations for background particles inside the computational domain and closest to the boundary;
(c) Closure equations for background particles closest to the fluid particles; (d) Integration region for
boundary; (e) Integration region within the interior.

This new local regular-distributed background particles (LRBP) method aims to solve
the problem of insufficient particles in the support domain when the fluid particles are
close to the boundary. The core idea of the method is to establish a regular-distributed
background particle area near the boundary and use the new unknown variable (pressure
in this paper) carried by the background particles for spatial discretization. By performing
Poisson equation calculations for each background particle, a new system of equations
is introduced to solve these new unknown variables. When the fluid particles are within
the background particle area, the unknown variables can be indirectly involved in the
calculation by weighted summation from nearby background particles rather than directly
solving the Poisson equation. For fluid particles in the internal flow domain, the boundary
issues will not affect them and, therefore, they can be calculated according to the usual
methods used in particle methods such as ISPH and MPS.

This separation of boundary/near-boundary and inner particles makes this method
easier to implement in particle method algorithms. Unlike the traditional virtual particle
method and the mirror particle method, this method does not need to adapt to bound-
ary shapes and can directly impose boundary conditions on boundary particles without
artificial maintenance.

The remaining questions of implementing this new framework include how to effi-
ciently impose boundary conditions on boundary particles, how to solve new unknown
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variables, and how to accurately interpolate between background particles and fluid parti-
cles within the domain.

For the first question, it is recommended to use a weak form scheme to handle the
boundary conditions, which makes it easier to impose boundary conditions on boundary
particles, especially for Neumann boundary conditions.

For the second question, it is suggested to introduce new equations near the boundary
and its vicinity, such as points between neighboring solid boundary particles, and impose
boundary conditions on them. This will naturally introduce these new unknown variables
into the equation system and make the equation system more representative of the real
situation.

For the last question, it is suggested to use a least squares-type interpolation method
in the background region, while conventional ISPH or MPS-type interpolation methods
can be used in the internal region. This can achieve accurate interpolation and improve the
accuracy and efficiency of the particle methods.

The details of these three key parts in the new framework will be discussed in the
following sections of this paper.

2.3. Weak Form Poisson Equation and Imposing Boundary Condition

Assuming a finite region Ω with an arbitrary boundary Γ, integrating over Ω after
multiplying Equation (1) by an arbitrary test function φ yields the following relationship:

x

Ω

(
∇2 p− b

)
φdΩ = 0, (3)

which is chosen appropriately to satisfy p∇2φ = 0, and then the above equation can be
further written using Gauss’s formula:∮

Γ

[
⇀
n · (φ∇p)−⇀

n · (p∇φ)
]
dS =

x

Ω
bφdΩ, (4)

where
∮

Γ is the integral along the boundary Γ, dΩ denotes the area element on Ω, dS
denotes the length element on Γ, and

⇀
n is the unit normal vector on the boundary.

Further organization leads to the Poisson equation of an integral type in the form of∫
Γ

(
∇p ·⇀n

)
φdΓ−

x

Ω
(∇p · ∇φ)dΩ =

x

Ω
bφdΩ. (5)

In solving practical problems, Poisson’s equation can be solved by various numerical
or analytical methods depending on the specific boundary conditions and the integration
region. For example, the Heaviside step function is chosen as the test function, so the
weakly compressible integral Poisson equation can be expressed as:∫

Γ

(
∇p ·⇀n

)
φdΓ =

x

Ω
bφdΩ. (6)

In the framework of the weakly compressible integral Poisson described above, the
Neumann boundary condition can be easily imposed, thus guaranteeing the consistency of
the whole system of linear equations.

As shown in Figure 1d, when applying boundary conditions on the boundary particles,
the integration domain is a sector region enclosed by the boundary lines. The distribution
function is composed of the known boundary conditions (red lines), the arc of a circle
(black line), and the function over the sector surface area. Therefore, in this case, the
left-hand side integral of Equation (6) is composed of two parts: the line integrals along
the known boundary conditions and the arc. The right-hand side integral represents the
double integration of the source term of the Poisson equation over the sector surface area.
In Figure 1e, where the background particle is integrated within the complete integration
domain, the corresponding integrals of Equation (6) can be directly computed.
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2.4. Closure Equations for the Background Particles
2.4.1. Closure Equations for Different Parts of Background Particles

As mentioned in Section 2.2, when solving the Poisson equation, the pressure variables
on the background particles are treated as new unknowns, resulting in an overdetermined
system of linear equations. Therefore, it is necessary to enforce the computation of the
Poisson equation on the background particles, as given by Equation (6), in order to establish
equations at the locations of the new unknown variables. Based on the distribution of the
background particles, they can be classified into four categories: outside the boundary,
closest to the boundary particles (or on the boundary), inside the background region, and
closest to the fluid particles.

When discretizing the continuous boundary, the positions of the boundary particles
can be represented using background particles on the left and right sides. This means
that complex boundary shapes can also be easily represented. For background particles
outside the boundary (as shown in Figure 1a), the nearest point on the boundary (red point)
can be found, and a new Poisson equation can be introduced with this point as the center.
For background particles inside the computational domain and closest to the boundary
(Figure 1b), the physical information they carry can be understood as the value of the
field variable at a certain point in time. Therefore, the Poisson equation can be directly
written for these particles. The same treatment applies to background particles inside the
background region. When it comes to the background particles closest to the fluid particles,
i.e., Figure 1c, there are sufficient fluid particles in their support domain, which allows the
Poisson equation to be solved according to the ISPH and MPS methods.

In the proposed local regular-distributed particles scheme, when discretizing the
operators on the background region, the smallest shape function construction unit is the
9-point grid formed by the current computing point and its surrounding 8 points. This
ensures that all the unknowns of the background particles are included in the equations and
not overlooked. However, it is important to note that when evaluating Equation (6) on the
boundary discretized points and background particles near the boundary, the integration
regions should avoid overlapping as much as possible to avoid calculation errors.

The following Section 2.5 will describe in detail the construction method of the shape
functions, i.e., how to obtain the expression of the current unit’s function using the 9 un-
knowns of the minimal interpolation function unit, as shown in Figure 2.
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2.4.2. Gauss–Legendre Quadrature Formula

In the framework of the aforementioned weak-form integral equation, the choice of
an appropriate integration method is equally important. The Gauss–Legendre integration
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method is a commonly used numerical integration method that offers high accuracy and
good stability compared to other numerical integration methods. Moreover, it exhibits good
adaptability in handling various types of functions, including high-order polynomials.

The Gauss–Legendre quadrature formula is an implementation within the framework
of Gauss-type quadrature formulas, with specific interpolation nodes and weight coeffi-
cients. In computing the sampling points and weights, the Gauss–Legendre quadrature
formula utilizes the properties of Legendre polynomials to enhance the accuracy of nu-
merical integration, where the quadrature points are the zeros of Legendre polynomials
and the interval is [−1, 1]. Therefore, for the Gauss–Legendre quadrature formula on a
general bounded integration interval [a, b], a simple transformation can be made by setting

x =
b− a

2
t +

b + a
2

, which yields the following equation [19,20]:

I =
b− a

2

∫ 1

−1
f
(

b− a
2

t +
b + a

2

)
dt ≈ b− a

2

n

∑
i=0

Ai f (
b− a

2
ti +

b + a
2

), (7)

where Ai and ti are the weights and Gaussian points on the interval [−1, 1].
In a similar manner, the expression of the double Gauss–Legendre quadrature for-

mula is

I =
∫ 1

−1
dx
∫ 1

−1
f (x, y)dy ≈

m

∑
k=0

n

∑
l=0

Akl f (xk, yl). (8)

Furthermore, the expression on the general integration interval can be obtained
through a change of interval, which yields

I =
∫ b

a dx
∫ d

c f (x, y)dy

=
(b− a)(d− c)

4
∫ 1
−1 ds

∫ 1
−1 f

(
b− a

2
s +

b + a
2

,
d− c

2
t +

d + c
2

)
dt,

= Jac
n
∑

i=1

n
∑

j=1
Ai Aj f

(
x(si), y

(
tj
)) (9)

where si and tj are the Gaussian points, Ai and Aj are the weights, and Jac is the Jacobian
transformation coefficient.

Therefore, the aforementioned Equation (7) can be used to compute the left-hand term
of Equation (6), while Equation (9) can be used to compute the right-hand term.

2.5. Different Interpolation Techniques

As mentioned above, obtaining the gradient operator and Laplace operator of pressure
is also an important step. In the meshless methods, there are already many numerical mod-
els available for the gradient and Laplace operators. Additionally, first-order and second-
order derivatives can be obtained by constructing the expression of the pressure function.

2.5.1. Least Square Type Interpolation Based on Taylor Series Expansion

For a differentiable function f (x, y), the second-order Taylor series expansion at a
given point p(x0, y0) has the following general form [21]:

f (x, y) ≈ f (x0, y0) + (x− x0)
∂ f
∂x

∣∣∣∣p + (y− y0)
∂ f
∂y

∣∣∣∣p + 1
2
(x− x0)

2 ∂2 f
∂x2

∣∣∣∣p + (x− x0)(y− y0)
∂2 f

∂x∂y

∣∣∣∣p + 1
2
(y− y0)

2 ∂2 f
∂y2

∣∣∣∣
p

(10)

and for convenience of expression, it can be abbreviated as

f (x, y) = f0 + h f ′x0 + k f ′y0 +
1
2

h2 f ′′xx0 + hk f ′′xy0 +
1
2

k2 f ′′yy0, (11)

where h = x − x0, k = y − y0, f0 = f (x0, y0), f ′x0 = f ′x(x0, y0), f ′y0 = f ′y(x0, y0),
f ′′xx0 = f ′′xx(x0, y0), f ′′xy0 = f ′′xy(x0, y0), f ′′yy0 = f ′′yy(x0, y0).
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If there are sufficient neighboring points j (j = 1, 2, . . . N) within the support domain of
point p, and the function values f j = f

(
xj, yj

)
are known, the expression of the derivatives

of various orders at point p can be approximated by solving a series of linear equations.
The series of linear equations can be written in matrix form, as follows:

[A]{D f } − { f } = 0, (12)

i.e., 
h1 k1

1
2 h2

1 h1k1
1
2 k2

1

h2 k2
1
2 h2

2 h2k2
1
2 k2

2
...

...
...

...
...

hN kN
1
2 h2

N hNkN
1
2 k2

N





f ′x0

f ′y0

f ′′xx0

f ′′xy0

f ′′yy0


=


f1 − f0

f2 − f0

...

fN − f0

. (13)

From the above equation, it can be seen that the desired derivatives of various orders
are the unknowns. Therefore, in order to solve the above linear equations, there should be
at least 5 neighboring points to the point p. To improve the accuracy of the approximation,
more than 5 points should be used. However, this will lead to the linear equations being
overdetermined. Therefore, according to the least squares method, a weight function w(r)
is introduced, and the following standard error criterion ‖E‖ is defined:

‖E‖ =
N

∑
j=1

(
f0 − f j + hj f ′x0

+ k j f ′y0
+

1
2

h2
j f ′′xx0

+ hjk j f ′′xy0
+

1
2

k2
j f ′′yy0

)
w2

j , (14)

where w(r) is the weighted function in the least squares method, and here it is common to
use the singular weight function in the MPS method.

w(R, dr) =

{
R
dr − 1 0 ≤ dr ≤ R
0 R ≤ dr

(15)

When ∂‖E‖
∂{D f } = 0, the standard error is minimized and, thus, a set of five equations

with five unknowns is obtained, the solving of which leads to the unknown derivatives.

A =



∑ w2
j h2

j ∑ w2
j hjk j ∑ w2

j
1
2 h2

j ∑ w2
j h2

j k j ∑ w2
j

1
2 hjk2

j

∑ w2
j hjk j ∑ w2

j k2
j ∑ w2

j
1
2 h2

j k j ∑ w2
j hjk2

j ∑ w2
j

1
2 k3

j

∑ w2
j

1
2 h3

j ∑ w2
j

1
2 h2

j k j ∑ w2
j

1
4 h4

j ∑ w2
j

1
2 h3

j k j ∑ w2
j

1
4 h2

j k2
j

∑ w2
j h2

j k j ∑ w2
j hjk2

j ∑ w2
j

1
2 h3

j k j ∑ w2
j h2

j k2
j ∑ w2

j
1
2 hjk3

j

∑ w2
j

1
2 hjk2

j ∑ w2
j

1
2 k3

j ∑ w2
j

1
4 h2

j k2
j ∑ w2

j
1
2 hjk3

j ∑ w2
j

1
4 k4

j


, (16)

{D f } =



f ′x0

f ′y0

f ′′xx0

f ′′xy0

f ′′yy0


, { f } =



∑ f jw2
j hj − f0∑ w2

j hj

∑ f jw2
j k j − f0∑ w2

j k j

∑ f jw2
j

h2
j

2 − f0∑ w2
j

h2
j

2

∑ f jw2
j hjk j − f0∑ w2

j hjk j

∑ f jw2
j

k2
j

2 − f0∑ w2
j

k2
j

2


. (17)

2.5.2. Moving Particle Semi-Implicit Method (MPS)

The MPS (Moving Particle Semi-implicit) method, which was first introduced in the
work of Koshizuka and Oka [11], is a meshless numerical method that simplifies the
computation process by using a simplified continuity equation to solve the fluid motion
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equations. Compared to SPH, the MPS method improves the stability and accuracy of
numerical solutions by introducing a semi-implicit handling technique. The implicit
treatment enables the numerical solution to be less sensitive to the choice of time step, thus
allowing for the use of larger time steps. The pressure field of the MPS method is obtained
by solving the pressure Poisson equation using a semi-implicit approach instead of using
the equation of state as in the SPH method.

In addition, the discretization of operators in the MPS method is different from that
in the SPH method. In the MPS method, the gradient operator discretizes the particle
interaction forces based on mathematical concepts, associating them with velocity and
density. Its role is to discretize the pressure gradient using the distances between particles
and the weights of the kernel function. By summing the weighted gradients of all the
particles within the support domain of a particle, the gradient operator can be obtained.

〈∇φ〉i =
d
n0

∑
j 6=i

[
φj − φi∣∣rj − ri

∣∣2 (rj − ri
)
w
(∣∣rj − ri

∣∣)], (18)

where d is the number of spatial dimensions, n0 is the initial particle number density, φ is
the physical quantity, r is the coordinate, and w(r) is the kernel function.

w(r) =


re

r
− 1 (0 ≤ r ≤ re)

0 (re ≤ r)
(19)

The Laplacian operator in the MPS method is analogous to a second-order derivative.
By considering the function values and positions of neighboring particles, the Laplace oper-
ator incorporates the interaction effects between particles into the discretized computation
model. Initially, the Laplace operator in MPS was derived from linear diffusion problems,
where the Laplace operator of a variable is considered equivalent to the temporal diffusion
of that variable. The diffusion of particles is constrained within the support domain of the
kernel function, and the Gaussian function is replaced by the kernel function to obtain the
increment of the physical quantity within a ∆t time step.

Since diffusion is a linear problem, the transport of a physical quantity φ between par-
ticles and neighboring particles in time can be weighted and superimposed. Additionally,
the diffusion problem of a physical quantity φ in the time domain can be regarded as a
Laplacian method. Therefore, the Laplacian operator model is as follows:〈

∇2φ
〉

i
=

2d
n0λ ∑

j 6=i

(
φj − φi

)
w
(∣∣rj − ri

∣∣), (20)

where λ is the compensation for the error introduced by replacing the Gaussian function
with a kernel function.

λ =
∑j 6=i w

(
rj − ri

)∣∣rj − ri
∣∣2

∑j 6=i w
(∣∣rj − ri

∣∣) (21)

3. Numerical Results and Discussion

To demonstrate the accuracy and efficiency of the proposed algorithm for solving
the Poisson equation, the Taylor–Green vortex [22] is chosen as an example for numeri-
cal validation.

The Taylor–Green vortex is a classic fluid dynamics problem that describes a rotating
vortex in a two-dimensional plane. In this problem, the initial velocity distribution of the
vortex satisfies the two-dimensional, steady, incompressible Navier–Stokes equations, and
the velocity and pressure fields of the vortex satisfy the Poisson equation, i.e., Equation (22),
at a given time t = tp.
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∇2 p(x, y) = −2ρ
[
vx(x, y)uy(x, y)− ux(x, y)vy(x, y)

]
, (22)

where p is the pressure, ρ is the fluid density, and the subscripts x and y refer to partial
derivatives with respect to x and y, respectively.

The initial velocity distribution of the Taylor–Green vortex can be represented by a
simple mathematical function, Equations (23) and (24), commonly known as the Green
function. This function takes the form of a mathematically defined rotating rule, which
allows the fluid to form a vortex at the initial moment. The vortex continues to rotate and
deform in a certain pattern over time.

u(x, y, t) = U
(

1− e−2π2ξ
)

sin(2πx) cos(2πy), (23)

v(x, y, t) = −U
(

1− e−2π2ξ
)

cos(2πx) sin(2πy), (24)

where U is the velocity, u and v are the components of velocity vector, ξ = t
T is dimension-

less time, υ is the kinematic viscosity coefficient, and T is a parameter defining the angular
velocity of the vortex.

The Taylor–Green vortex has significant applications, particularly in fluid dynamics
and turbulence research. It is widely used to verify the accuracy and efficiency of numerical
algorithms, as it has a known analytical solution, and the evolution of the vortex can
be simulated numerically. By comparing the numerical results of an algorithm with the
analytical solution, we can assess the performance and accuracy of the algorithm.

In this analysis, the computational domain is set to [0, 2π]× [0, 2π], and the initial
velocity field is given as [23]:

u(x, y, t) = sin x cos ye−2υt, (25)

v(x, y, t) = − cos x sin ye−2υt, (26)

where ρ = 1, υ = 1 m2/s, and t = 10−4 s are selected. The pressure field of the Taylor–
Green vortex is shown in Figure 3.
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Figure 3. Taylor–Green vortex field: solution of the pressure field in Ω = [0, 2π] × [0, 2π] at
t = 10−4 s.

3.1. Validation of Boundary Local Background Particles Method

To verify the effectiveness and accuracy of introducing the background particles
as a replacement for the virtual particle method, a set of different grid sizes is selected
to calculate the pressure field of the Taylor–Green vortex under Neumann boundary
conditions, which refers to the normal derivative of vorticity being zero at the boundary of
the vortices:
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∂p
∂x

(0, y) =
∂p
∂x

(2π, y) =
ρ

4
cos 2y

(
e−2υtp

)2
, (27)

∂p
∂y

(x, 0) =
∂p
∂y

(x, 2π) =
ρ

4
cos 2x

(
e−2υtp

)2
, (28)

and an example of the grid points in the domain is shown in Figure 4.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 4. Regular discretization of domain. The black dot, yellow dot, and blue dot, respectively, 

represent background particles, boundary particles, and fluid particles. 

In the case of regular particle distribution, calculations are performed by combining 

the LRBP method with the MPS method and the least square-type interpolation method 

separately. As shown in Table 1, LS represents the combination of the Least Squares inter-

polation, MPS-LRBP represents the combination of the MPS method and the LRBP 

method, while MPS-VPM represents the combination of the MPS method and the virtual 

particle method. To be�er evaluate the accuracy of solving the Poisson equation by the 

combination of the interpolation functions construction and background particles scheme, 

the 2L  norm and L  norm are introduced for statistical analysis. The variations of the 

errors with the grid size are plo�ed to investigate the convergence order of the proposed 

interpolation method. 

2

2

2

num an

L an

u u
Err

u


 , (29) 

num an

L an

u u
Err

u






 , (30) 

where numu  and anu  are the numerical and analytical solutions, respectively. 

As shown in the convergence curves of Figure 5, with an increase in the particle num-

bers, the convergence rate of the overall pressure field of the least square-type interpola-

tion method combined with the LRBP method tends to be around 3, and the convergence 

rate fluctuates li�le at different initial particle spacings, basically stabilizing around 2.6. 

The convergence rate of the MPS method combined with the LRBP is slightly lower, and 

the convergence rate fluctuates at different initial particle spacings. However, from the 

trend of its convergence curve, it can be seen that its overall convergence rate is around 

2.5, which is still an acceptable and good result. To be�er demonstrate the accuracy of the 

LRBP method, the convergence of the original MPS method combined with VPM (virtual 

particle method) is calculated, and the result is as expected, that is, the convergence rate 

tended to be 1. Therefore, the LRBP method has good numerical accuracy and can be well 

applied in practical computing. 
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represent background particles, boundary particles, and fluid particles.

In the case of regular particle distribution, calculations are performed by combining
the LRBP method with the MPS method and the least square-type interpolation method
separately. As shown in Table 1, LS represents the combination of the Least Squares
interpolation, MPS-LRBP represents the combination of the MPS method and the LRBP
method, while MPS-VPM represents the combination of the MPS method and the virtual
particle method. To better evaluate the accuracy of solving the Poisson equation by the
combination of the interpolation functions construction and background particles scheme,
the L2 norm and L∞ norm are introduced for statistical analysis. The variations of the
errors with the grid size are plotted to investigate the convergence order of the proposed
interpolation method.

ErrL2 =
‖unum − uan‖2
‖uan‖2

, (29)

ErrL∞ =
‖unum − uan‖∞
‖uan‖∞

, (30)

where unum and uan are the numerical and analytical solutions, respectively.
As shown in the convergence curves of Figure 5, with an increase in the particle num-

bers, the convergence rate of the overall pressure field of the least square-type interpolation
method combined with the LRBP method tends to be around 3, and the convergence rate
fluctuates little at different initial particle spacings, basically stabilizing around 2.6. The
convergence rate of the MPS method combined with the LRBP is slightly lower, and the
convergence rate fluctuates at different initial particle spacings. However, from the trend of
its convergence curve, it can be seen that its overall convergence rate is around 2.5, which
is still an acceptable and good result. To better demonstrate the accuracy of the LRBP
method, the convergence of the original MPS method combined with VPM (virtual particle
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method) is calculated, and the result is as expected, that is, the convergence rate tended to
be 1. Therefore, the LRBP method has good numerical accuracy and can be well applied in
practical computing.

Table 1. Convergence study: grid parameters and order of convergence.

Grid Nx Ny
Order of Convergence

LS MPS–LRBP MPS–VPM

ErrL2 ErrL∞ ErrL2 ErrL∞ ErrL2 ErrL∞

1st 21 21
2.5714

2.6201

2.6250

2.6196

2.6106

2.6000

2.5889

2.5776

2.5665

2.5700

2.5897

2.5774

2.5599

2.5416

2.5238

2.5069

2.4910

2.4761

2.4922

2.3156

1.5935

3.9045

0.3337

3.3926

4.8021

3.0669

1.3129

2.4855

2.2794

1.5686

3.7851

0.8071

3.1212

4.0767

2.8146

1.6320

1.2605

1.0774

0.9137

1.0827

1.2138

1.2980

1.3334

1.3413

1.5538

0.6855

0.6919

0.5662

1.5220

2.4241

1.9567

0.3329

0.3075

0.1371

2nd 41 41

3rd 61 61

4th 81 81

5th 101 101

6th 121 121

7th 141 141

8th 161 161

9th 181 181

10th 201 201

Mean value 2.5977 2.5374 2.5793 2.5078 1.2305 0.9582
Global value 2.6035 2.5590 2.4752 2.4301 1.1550 1.0167
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Figure 5. Convergence of the pressure field for the Neumann boundary condition: (a) Least
square-type interpolation; (b) MPS−LRBP (the combination of MPS method and LRBP method);
(c) MPS−VPM (the combination of MPS method and VPM method).
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3.2. Different Choice of Interpolation Methods for Inner Areas

The difference in the size of the influence radius and particle search radius, as well
as the distinct interpolation principles of the two, implies a high degree of flexibility in
the proposed algorithm. When using local background particles instead of placing virtual
particles, different gradient operators and Laplacian models can be used to calculate the
Poisson equation for the particles in the fluid. Next, the coupled calculation with the MPS
method, which is widely used and has sufficient development, will be performed to verify
the compatibility and flexibility of the algorithm.

Due to the flow motion, the particles are not uniformly distributed in space, which
makes it necessary to verify the accuracy of calculations for irregularly distributed points.
As shown in Figure 6, an irregular particle distribution is obtained by applying random
noise to the internal fluid particle points within the computational domain. The parameters
selected in this section are the initial distance dr = π/20 and the support domain radius
re = 2.1dr. The random noise is defined as a uniform distribution within a radius of 0.1dr
around the original position of the 41× 41 regular grid. The randomization process is
repeated to generate 50 groups of irregular distribution.
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Based on the 2-norm, error statistics are performed on the numerical solution of the
Taylor–Green vortex. In 50 sets of non-repeating and irregular initial particle distributions,
as shown in Figure 7, the global 2-norm error combined with the LRBP method is lower,
with a fluctuation range of 0.05–0.25 and an average 2-norm error of about 0.18. In contrast,
the 2-norm error range with the virtual particle method is between 0.27 and 0.35, with
an average 2-norm error of about 0.32. Therefore, combining the LRBP method results
in smaller calculation errors and higher accuracy. In order to analyze the pressure field
more intuitively, a pressure field cloud map and an absolute error cloud map are given
for a certain particle distribution. From Figure 8, it can be seen that the virtual particle
method has lower accuracy in solving the boundary and slightly larger errors in the entire
pressure field, while the LRBP method has improved accuracy in solving the boundary
pressure values and also improved the calculation of the internal pressure field. This proves
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that combining the LRBP method with the MPS method for calculation is feasible and can
improve the calculation accuracy to a certain extent.
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3.3. Different Shapes for the Boundary

To further explore the effectiveness of the background particle method in dealing
with problems with complex boundary shapes, the shape of the computational domain
is changed based on the previous problem. Two boundary conditions are selected: a
triangular boundary and a quarter-circle boundary.

Based on the previous section, it is known that the error is smaller when combining
the background particle method with the MPS method. Therefore, the background particle
method is used at the boundary and the MPS method is used internally. The particles are
evenly distributed and the initial particle spacing for the calculation is dr = π/20, where
the support domain radius is 2.1dr. The particle distribution is shown in Figure 9.
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Figure 9. Particle distribution of triangle boundary (a) and circle boundary (b).

To visually analyze the accuracy of the background particle method in calculating the
boundary pressure values, the numerical solution of the boundary particles is compared
to the theoretical solution in Figures 10 and 11, according to the numbering order of the
boundary particles in the direction of the arrows in Figure 9. For the triangular boundary,
it can be seen that the computational accuracy is consistent, and the error is small on the
boundary. For the quarter-circle boundary, the error is smaller on the straight boundary
compared to the curved boundary, which is due to the discrete nature of the boundary
particles affecting the calculation. At the same time, it can be seen from the error cloud
map that combining the LRBP method improves the accuracy of calculating the boundary
pressure values and is more accurate in solving the internal flow field than using the virtual
particle method, and its error fluctuation range is also smaller. It can be concluded that the
background particle method can effectively handle these types of boundary problems and
has the potential to handle problems with complex boundary shapes.
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4. Conclusions

This article proposes a new boundary handling scheme called Local Regular Distri-
bution Background Particles (LRBP), which retains the meshless characteristics of most
domains while solving problems such as insufficient particles in the local support do-
main of traditional boundary handling methods and difficulty in representing complex
boundaries. Compared to the commonly used virtual particle method (VPM), as a new
approach for boundary handling, this scheme avoids the placement of virtual particles
through background particles, making it easier to represent different boundary shapes
and apply boundary conditions. In addition, information transfer between fluid particles
and boundary particles is achieved by background particles delved into the fluid domain.
To validate the numerical accuracy and ability to handle complex boundary problems of
the proposed LRBP method and the commonly used virtual particle method, the popular
MPS method is used for verification. The boundary handling methods are selected by the
LRBP method and the virtual particle method, respectively. The comparison is conducted
using the Taylor–Green vortex, and the results show that the proposed LRBP method has a
third-order convergence accuracy, which is significantly higher than the first-order accuracy
of the MPS method. Furthermore, under irregular particle distributions, the coupled LRBP
method has a higher flow field solution accuracy than the coupled virtual particle method,
especially at the boundary. Additionally, calculations with complex solid boundaries show
that the LRBP method has better accuracy than the virtual particle method and can han-
dle such problems well. Due to its higher numerical accuracy, applicability, and ability
to handle complex boundary problems, the LRBP method as a new boundary-handling
approach has great potential for application. Currently, LRBP-related work mainly focuses
on its feasibility, accuracy, and applicability, and in future research, it will be necessary to
apply the LRBP method to actual flow problems for further testing. In addition to applying
the LRBP method to solid boundary conditions, the local regular-distributed background
particles can also serve as a medium for information transfer. Therefore, its application to
structural interaction and fluid–structure interaction problems is also a potential area for
future research.
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