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Abstract

Shape is a defining feature of objects, and human observers can effortlessly compare

shapes to determine how similar they are. Yet, to date, no image-computable model can

predict how visually similar or different shapes appear. Such a model would be an invaluable

tool for neuroscientists and could provide insights into computations underlying human

shape perception. To address this need, we developed a model (‘ShapeComp’), based on

over 100 shape features (e.g., area, compactness, Fourier descriptors). When trained to

capture the variance in a database of >25,000 animal silhouettes, ShapeComp accurately

predicts human shape similarity judgments between pairs of shapes without fitting any

parameters to human data. To test the model, we created carefully selected arrays of com-

plex novel shapes using a Generative Adversarial Network trained on the animal silhou-

ettes, which we presented to observers in a wide range of tasks. Our findings show that

incorporating multiple ShapeComp dimensions facilitates the prediction of human shape

similarity across a small number of shapes, and also captures much of the variance in the

multiple arrangements of many shapes. ShapeComp outperforms both conventional pixel-

based metrics and state-of-the-art convolutional neural networks, and can also be used to

generate perceptually uniform stimulus sets, making it a powerful tool for investigating

shape and object representations in the human brain.

Author summary

The ability to describe and compare shapes is crucial in many scientific domains from

visual object recognition to computational morphology and computer graphics. Across

disciplines, considerable effort has been devoted to the study of shape and its influence on

object recognition, yet an important stumbling block is the quantitative characterization

of shape similarity. Here we develop a psychophysically validated model that takes as

input an object’s shape boundary and provides a high-dimensional output that can be

used for predicting visual shape similarity. With this precise control of shape similarity,

the model’s description of shape is a powerful tool that can be used across the neurosci-

ences and artificial intelligence to test role of shape in perception and the brain.
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Introduction

One of the most important goals for biological and artificial vision is the estimation and repre-

sentation of shape. Shape is the most important cue in object recognition [1–4] and is also cru-

cial for many other tasks, including inferring an object’s material properties [5–9], causal

history [10–13], or where and how to grasp it [14–18]. Here we focus on how the visual system

determines the perceptual similarity between different shapes, which is thought to be a core

stage in object perception [19–22] and often used to probe shape processing in the brain [23–

26]. Shape is also central to many other disciplines, including computational morphology [27],

anatomy [28], molecular biology [29], geology [30], meteorology [31], computer vision [32],

and computer graphics [33]. For all these fields, it would be exceedingly useful to be able to

characterize and quantify the visual similarity between different shapes automatically and

objectively (Fig 1A).

Here we sought to develop and validate a model to estimate perceived 2D shape similarity,

directly from images, by combining numerous shape metrics. Our goal was to implement into

a concrete, executable, image-computable model, the widely-held notion that human visual

similarity perception integrates multiple shape descriptors. Specifically, given a pair of shapes,

{f1, f2}, the model should compare and combine shape metric i (of a total of N) to predict the

perceived similarity between shapes, ŝ, on a continuous scale (Fig 1B), ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðf1i � f2iÞ
2

s

.

Although real-world objects are 3D, humans can make many inferences from 2D contours

(e.g., [13, 34, 35]). Many 2D shape representations have been proposed—both for computa-

tional purposes and as models of human perception—each summarizing the shape boundary

or its interior in different ways (Fig 1B; [32]). These include (but are not limited to) basic
shape descriptors (e.g., area, perimeter, solidity; [36]), local comparisons (e.g., Euclidean dis-

tance; Intersection-over-Union, IoU; [37]), correspondence-based metrics (e.g., shape context;

[38]), curvature-based metrics [39], shape signatures (see [32]), shape skeletons [40], and Fourier
descriptors [41].

These different shape descriptors have complementary strengths and weaknesses. Each one

is sensitive to certain aspects of shape, but relatively insensitive to others (Fig 1C–1E). For

example, some metrics are entirely scale or rotation invariant, while others vary depending on

the size or orientation of the object. We tested whether combining many complementary

shape descriptors into a multidimensional composite would capture the many different ways

that human observers compare shapes. We begin by analyzing a large database of real-world

shapes and show that different descriptors do indeed tap into different aspects of shape.

Complementary nature of different shape descriptors

To appreciate the complementary nature of different metrics—and the necessity of combining

them—consider that human visual shape representation is subject to two competing con-

straints (See also, [42–44]). On the one hand, to achieve stable object recognition across

changes in viewpoint and object pose, it is useful for shape descriptors to deliver consistent

descriptions across large changes in the retinal image (‘robustness’). On the other hand, to dis-

criminate finely between different objects with similar shapes, shape descriptors must discern

subtle changes in shape (‘sensitivity’). These two goals are mutually exclusive and different

descriptors necessarily represent a trade-off between them. Yet, the tradeoff for a given shape

descriptor depends on which set of shape transformations we consider. This becomes evident

when we organize descriptors along a continuum that describes their robustness to changes in

shape across a range of transformations—such as rotation, scaling, shearing, or adding noise.
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We illustrate this for two transformations: rotation and bloating (Fig 1C and 1D). Specifi-

cally, we transformed one exemplar from each of 20 different animal categories (e.g., birds,

cows, horses, tortoise) with bloating and rotation transformations of varying magnitudes (see

Methods: Sensitivity/robustness analysis to transformation). We find that the different descrip-

tors are differentially sensitive to the transformations. Some shape descriptors (e.g., solidity
which measures the proportion of the convex hull that is filled by the shape; [45]; Fig 1C and

1D) are entirely invariant across rotations, while others (e.g.,major axis orientation) are sensi-

tive to object orientation. Yet descriptors invariant to rotation may be highly sensitive to other

transformations, like bloating (Fig 1C–1E). Similarly, adding noise to a shape’s contour

strongly affects curvature-based metrics, while only weakly affecting the shape’s major axis ori-

entation (S1 Fig). In Fig 1E, we plot how sensitive 109 different shape descriptors are to the

changes introduced by rotation and bloating, highlighting the descriptors identified in Fig 1B.

Interestingly, for these transformations, there is a trade-off in sensitivity such that descriptors

that are highly sensitive to bloating (e.g., solidity) tend to be less sensitive to rotation, and vice

versa (e.g.,major axis orientation). In other words, as expected, different shape features have

complementary strengths and weaknesses. More generally, the plot shows the wide range of

sensitivities across different shape metrics, indicating that depending on the context or goal,

different shape features may be more or less appropriate [36, 46]. Note, of course, that were we

Fig 1. ShapeComp: a multidimensional perceptual shape similarity model. We readily perceive how similar shape

(A) is from others (numbered 1–5). (B) Outline of our model, which compares shapes across>100 shape descriptors

(6 examples depicted). The distance between shapes on each descriptor was scaled from 0 to 1 based on the range of

values in a database of 25,712 animal shapes. Scaled differences are then linearly combined to yield ‘Full Model’

response. Applying MDS to>330 million shape pairs from the Full Model yields a multidimensional shape space for

shape comparison (‘ShapeComp’). We reasoned that many descriptors would yield a perceptually meaningful

multidimensional shape space due to their complementary nature. (C) Some shape descriptors are highly sensitive to

rotation (e.g., Major Axis Orientation), while (D) other descriptors are highly sensitive to bloating (e.g., Solidity). (E)

Over 100 shape descriptors were evaluated in terms of how much they change when shapes are transformed

(‘sensitivity’).

https://doi.org/10.1371/journal.pcbi.1008981.g001
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to choose other transformations (e.g., S1 Fig), the pattern would be different: here we selected

rotation and bloating simply for illustrative purposes.

The key idea motivating our model is that human vision may resolve the conflicting

demands of robustness and sensitivity by representing shape in a multidimensional space

defined by many shape descriptors (Fig 1B). While it is widely appreciated that visual shape

representations are likely multidimensional, in practice computational implementations of

shape similarity metrics have typically used only a small number of quantities to capture rela-

tionships between shape [46–48]. As opposed to previous work, here we provide a data-driven

implementation that determines the dimensions needed to capture variance among natural

animal shapes. The approach does in fact contain many more dimensions than proposed pre-

viously, sufficiently accounts for human shape similarity, and provides a novel baseline metric

against which more sophisticated computations can be compared.

We do not intend the model to be a simulation of brain processes, but as an efficient means

to predict visual shape similarity judgments. It is unlikely the brain computes the specific

model features considered here, most of which are taken from previous literature (see Supple-

mental S1 Table). Indeed, there are infinitely many other shape descriptors that could also be

considered. Rather, we see the model as a concrete implementation of the idea that human

shape similarity can be predicted by representing shape using multiple, complementary geo-

metrical properties. Indeed, once many features are considered, the specific details of any

given feature become progressively less important (although we do not imply that all shape

descriptors are equally useful for any given task).

Results and discussion

Analysis of real-world shapes

Different shape descriptors are measured in different units, so to combine the features into a

consistent multidimensional space requires identifying a common scale. Given the importance

of real-world stimuli for human behavior, we reasoned that the relative scaling of the many fea-

ture dimensions likely reflects the distribution of feature values across real-world shapes. We

therefore assembled a database of over 25,000 animal silhouettes and for each of them measured

>100 shape descriptors (Methods: Real-world shape analysis). For every pair of shapes, we com-

puted the distances between each descriptor (scaled by their largest distance across the whole

animal dataset; Fig 1B) and then combined the features into a single metric, yielding a multidi-

mensional space. This space exhibited a prominent shape-based organization with nearby loca-

tions sharing similar shape characteristics. For example, approximately elliptical animals like

rabbits, fish, and turtles lie near together (bottom left of Fig 2A), while spindly thin-legged

shapes (e.g., spiders; see insets in Fig 2A) are found in the opposite corner of the space.

As an initial indicator of how well the features account for perceptual similarity with familiar

objects, we took a subset of animal shapes, and measured human similarity judgements (Fig 2B

and 2C) using a multi-arrangement method [49]. We find that the mean perceived similarity

relationships between shapes were quite well predicted by distance in this feature space (Fig

2D–2F, r = 0.63, p< 0.01) suggesting that the 109 shape descriptors explain a substantial por-

tion of the variance in human shape similarity of familiar objects. We suggest that at least some

of the remaining variance is likely to be due to using familiar objects, for which high-level

semantic interpretations are known to influence similarity judgments [50–54]—here, the per-

ceived classes to which the animals belong, rather than their pure geometrical attributes.

We also find that many of the shape descriptors correlate with one another, yielding 22 clus-

ters of related features (using affinity propagation clustering; [55]). Using Multidimensional

Scaling across the 25,712 animal shape samples, we find that 22 dimensions account for more
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than 95.05% of the variance (Fig 2G), whereas the first dimension accounts for only 18.54% of

the variance. We refer to this reduced 22-D space as ShapeComp (Fig 1B), and it is this model

that forms the basis of the majority of our subsequent analyses.

ShapeComp’s dimensions are composites (i.e., weighted linear combination) of the original

shape descriptors, which makes the model fully interpretable, unlike other model classes (e.g.,

neural networks, whose inner functioning researchers still struggle to interpret [56, 57]). Although

we do not believe the brain explicitly computes these specific dimensions, they do organize novel

shapes systematically (see Results:Using Generative Adversarial Networks to create novel natural-
istic outlines). However, because MDS creates a rotation invariant space, individual dimensions

should not be thought of as ‘cardinal axes’ of perceptual shape space. Rather it is the space as a

whole that describes systematic relationships between shapes. Thus, while thinness and leggedness

may not be coded in ShapeComp as unique or cardinal dimension, as hinted in Fig 2A, thin

shapes thinner are nearer to other thin shapes than to thick shapes, and shapes with legs (e.g., spi-

ders) tend to be nearer to other legged shapes (e.g., centipedes) than to those with no legs (e.g.,

fish). It is important to note that our focus on relative similarities between items—rather than

putative ‘cardinal dimensions’ of perceptual space—is not specific to ShapeComp, but is rather a

core assumption of many studies and analyses that compare measurements of human perception

with models or brain activity [58–69]. Indeed, while it may be possible to define ‘cardinal percep-

tual dimensions’ for limited synthetic stimulus arrays [47, 48, 70, 71], we would question whether

there are any meaningful axes that span the complete range of complex naturalistic shapes.

Fig 2. The high-dimensionality of real-world shapes. (A) t-SNE visualization of 2000 animal silhouettes arranged by their similarities

according to a combination of 109 shape descriptors. Colour indicates basic level category. Insets highlight local structure: bloated

shapes with tiny limbs (left); legged rectangular shapes (middle); small spiky shapes (right). To test whether human shape similarity is

predicted in the high-dimensional animal space, we gathered human shape similarity judgments on horses (purple), rabbits (yellow),

and other animals. (B) Human similarity arrangements of horse silhouettes, and (C) of silhouettes across multiple categories of animals

(multidimensional scaling; dissimilarity: distances, criterion: metric stress). Similarity arrangement for (D) horse silhouettes and (E)

multiple categories of animals in the full model based on 109 shape descriptors (multidimensional scaling; dissimilarity: distances,

criterion: metric stress). Shapes with same colour across B and D or C and E are also the same. (F). Human arrangements correlate with

the model for horse (purple), rabbit (yellow), and multiple animal silhouettes (gray) (r = 0.63, p< 0.01). (G). Across 25,712 animal

shapes, 22 dimensions account for>95% of the variance (multidimensional scaling; dissimilarity: distances, criterion: metric stress). We

call these 22 dimensions ShapeComp. (H) The space spanned by these ShapeComp dimensions regularly occurs across combinations of

different animal sets (‘Animals’) and shape descriptors (‘Descriptors’). The pairwise distances across 200 test shapes are highly correlated

across ShapeComp computed from 10 different sets of 500 randomly chosen animal shapes (‘Animals’), and also, but to a lesser degree,

across 10 different sets of randomly selected shape descriptors (‘Descriptors’; 55 out of 109).

https://doi.org/10.1371/journal.pcbi.1008981.g002
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Given these 22-dimensions are composites of the original 109 features, one might ask what

are that best original features? S2A–S2H Fig shows that several of the original features are

highly correlated to each of first 8 dimensions of ShapeComp (which already accounts for

greater than 85% of the variance in animal shapes), suggesting that many features tap into

complementary aspects of shape. Thus, ShapeComp will not undergo major changes if one of

the original features is removed. Similarly, S3A–S3H Fig shows several poor predictors that

presumably vary less across the animal silhouette database than other features. S2I and S3I

Figs show the best and worst features across the full 22D space, respectively. The Shape Con-

text and summaries based on the Shape Context (e.g., histogram of chord lengths) were most

predictive of ShapeComp, while the skeletal and low frequency Fourier descriptors were least

predictive. (Note, however, the less predictive shape descriptors are likely still useful for shape

similarity. Firstly, the features posited here are partial summaries of the original shape descrip-

tors. For example, one feature taken from the shape skeleton was the number of ribs. There are

likely a number of other ways to summarize the shape skeleton that may be more sensitive to

change in animal shapes across our database. Secondly, it is likely that such features play an

important role in finer shape discrimination judgments that go beyond ShapeComp’s

22-dimensions.)

One caveat that concerns the usefulness of any high-dimensional space is its reproducibil-

ity: Does the ShapeComp space come together by chance, e.g., based on a specific animal data-

set, or does ShapeComp capture regularities that tend to occur across animal shapes more

generally? We find that ShapeComp’s space is not brittle, but robust across the selection of ani-

mal shapes or shape descriptors (Fig 2H). Specifically, the distance relationship across 200 test

shapes is highly related when ShapeComp is computed in (1) different random subsets of ani-

mal shapes (0.98� r� 0.99; relationship across 10 different sets), and also, but to a lesser

degree, in (2) different random combinations of shape descriptors (0.69� r� 0.93; relation-

ship across 10 different sets). In addition, despite removing the most predictive features of Sha-

peComp (i.e., 11 features related to the Shape Context and its summaries; listed as descriptors

29–31, and 52–59 in S1 Table) pairwise, distances between shapes remain highly correlated

(r = 0.77, p<0.01). Thus, ShapeComp appears to capture a high-dimensional understanding of

shape that tends to be somewhat independent across the specific selection of animal shapes or

even shape descriptors.

Using Generative Adversarial Networks to create novel naturalistic outlines

To reduce the impact of semantics on shape similarity judgments, we next created novel (unfa-

miliar) shapes using a Generative Adversarial Network (GAN) trained on the animal silhouette

database (see Methods: GAN Shapes). GANs are unsupervised machine learning systems that

pit two neural networks against each other (Fig 3A), yielding complex, naturalistic, yet largely

unfamiliar novel shapes. The GAN also allows parametric shape variations and interpolations

in a continuous ‘shape space’ (Fig 3B–3D). We tested whether GAN shapes evoked percepts of

specific familiar objects by comparing human categorization responses of 100 randomly

selected GAN shapes versus 20 animal shapes. As desired, the most incompatible responses

across observers were found for GAN shapes (Fig 3E), allowing us to identify stimuli with

weak semantic associations, and thus reduce the impact of semantics on shape similarity judg-

ments. Overall, the GAN shapes appear ‘object-like’, but observers agree less about their

semantic interpretation, compared with animal shapes, making them better stimuli for assess-

ing pure shape similarity.

With the GAN’s generator network we can synthesize arbitrary numbers of novel naturalis-

tic looking shapes, and estimate their coordinates in ShapeComp. This serves both to visualize

PLOS COMPUTATIONAL BIOLOGY An image-computable model of human visual shape similarity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008981 June 1, 2021 6 / 34

https://doi.org/10.1371/journal.pcbi.1008981


the dimensions of ShapeComp, and test their role in perceptual shape similarity. As discussed

above, we emphasize the importance of considering ShapeComp as a composite multidimen-

sional space and caution against attempts to interpret individual dimensions as ‘cardinal axes’

of shape space. Nevertheless, to understand the space better, it is still helpful to visualize the

shape characteristics described by individual dimensions. Fig 4 shows such a visualization.

GAN shapes vary in the first 6 (out of 22) MDS dimensions while the remaining dimensions

are held almost constant. At least the first few dimensions are systematically organized with

distinctive and different types of shape at opposite ends of each scale. However, much like the

properties of receptive fields in mid- and high-level visual areas, it is not always easy to verbal-

ize the properties underlying each MDS dimension. For example, dimensions 1 and 3 appear

to modulate horizontal and vertical aspect ratio, respectively, but other factors like number

Fig 3. GANs produce novel naturalistic shapes. (A) Cartoon depiction of a Generative Adversarial Networks (GANs)

that synthesizes novel shape silhouettes. GANs are unsupervised machine learning systems with two competing neural

networks. The generator network synthesizes shapes, while the discriminator network, distinguishes shapes produced

by generator from a database of over 25,000 animal silhouettes. With training, the generator learns to map a high-

dimensional latent vector ‘z’ to the natural animal shapes, producing novel shapes that the discrimantor thinks are real

rather than synthesized. Systematically moving along the high-dimensional latent vector z produces novel shape

variation and interpolations across a shape space (B, C, and D). (E) A normalized histogram with the number of

unique responses across 100 GAN shapes and 20 animal shapes shows that category responses across GAN shapes tend

to be much more inconsistent across participants than animal shapes, confirming that GAN shapes appear more

unfamiliar than animal shapes.

https://doi.org/10.1371/journal.pcbi.1008981.g003
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and extent of limbs also vary. Other dimensions appear to morph between specific types of

shape or specific shape poses (e.g., a shape ‘facing’ left vs. right).

Having confirmed that GAN shapes had less clear semantics than the animal shapes, we

next examined how well the model captures human perception of unfamiliar objects. Specifi-

cally, in the following sections, we sought to test more rigorously (a) whether distance in Sha-

peComp space predicts human shape similarity, (b) whether ShapeComp provides

information above and beyond simpler metrics like pixel similarity, (c) whether human shape

similarity relies on more than one ShapeComp dimension, and (d) whether ShapeComp iden-

tifies perceptual nonlinearities in shape sets.

Distances in ShapeComp model predict human shape similarities for novel

objects

A key criterion for any perceptual shape metric is that pairs of shapes that are close in the

space (Fig 5A, top) should appear more similar than pairs that are distant from each other

(Fig 5A, bottom). To test this, we generated 250 pairs of novel GAN shapes, ranging in their

ShapeComp distance (i.e., predicted similarity), and asked 14 participants to rate how percep-

tually similar each shape pair appeared (Fig 5B). We find that distance in ShapeComp corre-

lates strongly with the mean dissimilarity ratings across observers (r = 0.91, p<0.01) showing

that ShapeComp predicts human shape similarity very well for novel unfamiliar 2D shapes.

Still unclear, however, is whether ShapeComp captures aspects of human shape similarity

perception better than standard benchmark metrics. There are some grounds for expecting

that it might do. Because ShapeComp combines 109 different descriptors—which between

them capture many distinct aspects of shape—it is likely that the model describes shape in a

richer, more human-like way than conventional raw pixel similarity. Moreover, we can test

whether ShapeComp is better at predicting shape similarity than any of its individual metrics.

One challenge in comparing existing metrics and their role in human vision, is that the fea-

tures tend to be strongly correlated with one another. The orthogonal (i.e., decorrelated)

dimensions of ShapeComp allow us to confirm whether human shape similarity relies on line-

arly independent components of the original 109 shape descriptors.

ShapeComp predicts shape similarity better than widely-used pixel

similarity metrics

A standard way to measure the physical similarity between shapes is the Intersection-over-

Union quotient (IoU; [37, 72]; Fig 5C). The method is one of the most widely used in com-

puter vision and machine learning research as a benchmark to evaluate performance in seg-

mentation [73–76], object detection [76, 77], and tracking [78, 79]. For similar shapes, the area

of intersection is a significant proportion of the union, yielding IoU values approaching 1. In

contrast, when shapes differ substantially, the union is much larger than the overlap, so IoU

approaches 0. Despite its simplicity, similar pixel-based metrics have also been used extensively

in perceptual and neuroscientific studies as a benchmark for physical similarity between

objects or shapes [23, 52, 80–86].

To test whether human shape similarity can be approximated by such a simple pixel simi-

larity metric or rather relies on more sophisticated mid-level features like those in ShapeComp,

Fig 4. Interpreting ShapeComp dimensions. Example GAN shapes that vary along the first 6 MDS dimensions. Two shapes (in black) are varied along one

dimension (in different colours, dimensions 1–6) while the remaining dimensions are held roughly constant. The different GAN shapes that varied in their MDS

coordinates were optimized with a genetic algorithm from MATLAB’s global optimization toolbox to reduce RMS error between a GAN shapes 22-D representation

and a desired 22-D representation.

https://doi.org/10.1371/journal.pcbi.1008981.g004
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we created stimulus triplets, consisting of a sample shape, plus two test shapes, which were

equally different from the sample shape in terms of IoU but which differed in ShapeComp dis-

tances (Fig 5D and Methods: pixel similarity triplets). This allowed us to isolate the extent to

which ShapeComp predicted additional components of shape similarity, above and beyond

pixel similarity. The magnitude of the difference between tests and sample in ShapeComp was

varied parametrically across triplets, so that sometimes one test was much nearer to the sample

than another test (Fig 5E). Nineteen new participants viewed the triplets and were asked

which of the two test shapes most resembled the sample on each trial. If shape perception is

perfectly captured by IoU, the two test stimuli should appear equally similar to the standard,

yielding random responses (Fig 5F orange line). However, we find that the slope of a psycho-

metric function fitted to the observers’ judgments is significantly steeper than zero (Fig 5F

blue line; t = -7.63, df = 18, p<0.01). This indicates that ShapeComp correctly predicts which

of the two shapes was more similar to the standard even when pixel similarity is held constant.

Consistent with previous works [23, 44, 80–85, 87], this confirms that human shape similarity

relies on more sophisticated features than pixel similarity alone. Thus, ShapeComp provides a

concrete implementation of the widely held belief that such metrics are insufficient, despite

their continued widespread use in the literature.

ShapeComp captures multidimensional nature of human shape similarity

Although a standard model of comparison in human perception, pixel similarity is a rather

simple model. Many better alternative models are encompassed in the many dimensions of

ShapeComp, where each dimension shows shape variation along an orthogonal dimension. To

verify that human shape similarity considers multiple aspects of ShapeComp (i.e., relies on

more than a single of ShapeComp’s orthogonal dimensions), we generated triplets in which

the test shapes were equated to a given sample shape in terms of one of ShapeComp’s 22

dimensions but varied in terms of the remaining dimensions. The same nineteen participants

as in the pixel similarity experiment were shown these triplets and again reported which test

shape appeared most similar to the sample. If shape perception is entirely captured by any sin-

gle dimension, the two test stimuli should appear equally similar to the sample, yielding ran-

dom responses. Yet Fig 5G shows that fitted psychometric function slopes were significantly

steeper than zero. This confirms that human shape perception relies on more than a single

ShapeComp dimension—when each dimension was held constant, the variations in the

remaining dimensions dominated perception.

We also re-analyzed the ratings from Fig 5B, comparing the human judgments to each Sha-

peComp dimension. Each dimension on its own accounted for only a small portion of the vari-

ance (inset in Fig 5B), again indicating that human observers rely on more than one

Fig 5. ShapeComp predicts human shape similarity across small sets of shapes. (A) Example shape pairs that varied as a function

of ShapeComp distance. (B) Shape similarity ratings averaged across 14 observers for 250 shape pairs highly correlate with distance

in ShapeComp’s 22-dimensional space. Inset: The variance in the similarity ratings accounted for by the different ShapeComp

dimensions. Many ShapeComp dimensions on their own account for some of the variance in human shape similarity ratings.

Shaded error bars are estimated via 1000 bootstrapping across participant responses. (C) Pixel similarity was defined as the standard

Intersection-over-Union (IoU; [37, 72]) (D) Observers viewed shape triads and judged which test appeared more similar to the

sample. (E) ShapeComp distance between test and sample were parametrically varied but pixel similarity was held constant. (F)

Mean probability across participants, that the closer of two test stimuli was perceived as more similar to the sample, as a function of

the relative proximity of the closer test shape. Blue: psychometric function fit; orange: prediction of IoU model. (G) Results of

experiment in which distances from test to sample were equated for one ShapeComp dimension at a time. Mean psychometric

functions slopes were much steeper than predicted if observers relied only on the respective dimension. These results, and that the

variance in the similarity ratings is accounted for by many ShapeComp dimensions, inset in B, support the idea that human shape

perception is based on a high-dimensional feature space.

https://doi.org/10.1371/journal.pcbi.1008981.g005
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ShapeComp dimension. Together, these results confirm that ShapeComp successfully captures

the inherently multidimensional representation of shape in human vision.

Identifying perceptual nonlinearities in shape spaces of novel objects

So far, our evaluations of ShapeComp have focused on judgments of relative similarity among

small sets of stimuli (e.g., of the form “is shape A more similar than shape B is to shape C”).

Yet, an important test for any human shape similarity metric is its ability to predict richer sim-

ilarity relationships within arrays of multiple shapes. To assess this, we tested how well Shape-

Comp identified perceptual non-uniformities in shape spaces generated with the animal-

trained GAN.

The top row in Fig 6 shows four example 2D GAN shape arrays sampled uniformly

across 3 radial distances (Fig 6A and 6B) or along a triangular grid (Fig 6C and 6D). The

second row in Fig 6 shows that ShapeComp’s predicted arrangement of these shapes (in

2D) is non-uniform with a substantial compression around certain items (e.g., the thinner

shapes in Shape Set A). Using a multi-arrangement task (Methods), we find that human

perceived similarities within these arrays were similar in terms of the relative ordering of

shapes and, in many shape sets, also showed the nonuniformities predicted by ShapeComp

(e.g., compression of thinner shapes in Shape Set shown in Fig 6A; mean responses from 16

participants: third row in Fig 6).

To test how well the model predicts participants’ responses, it is instructive to consider the

extent that the perceptual distortions (i.e., deviations from the uniform GAN space) predicted

by ShapeComp predict human shape similarity better than would occur by chance (i.e., under

a random model). To do so, we defined and measured distortions between shape arrays as dif-

ferences between two similarity matrices—each standardized to have unit variance—where

larger differences lead to larger distortions. To test whether ShapeComp is better than a ran-

dom model, we developed a GAN+noise model that distorts the original GAN space by adding

random Gaussian perturbations to the original GAN latent vector coordinates. We set the

noise level of the model to maximize its chance of accounting for the human distortions by

matching the overall distance of the noise perturbations from the original GAN space with the

overall perturbations of the human observers (from the original GAN space). Across four

shape sets where GAN and ShapeComp spaces tended to be less correlated with one another

(0.59<r<0.75), perceptual distortions in GAN space by individual observers were better

accounted for by ShapeComp than the GAN+noise model (Fig 6E). Further, shape sets with

more diversity across their shapes (i.e., that varied more in terms of their underlying Shape-

Comp coordinates) were better predictive of how well ShapeComp distortions matched

humans: Greater variance in ShapeComp across a shape set lead to more overlap with humans

(r = 0.72, p<0.01; Fig 6F). Thus, ShapeComp correctly predicted the direction of perceptual

nonlinearities in the GAN space. This is striking given that the GAN arrays and ShapeComp

are highly correlated, and thus already share much of the variation across their arrangements

of the shape sets.

Deriving perceptually uniform shape spaces of novel objects

To examine shape perception independently of high-level vision, previous work controlled for

perceptual shape similarity through time-consuming measurements (e.g., [52, 54, 86, 88–90]).

With the ability to measure perceptual non-uniformities in hand—and as a second test of the

ability to predict human shape similarity perception in multi-shape arrays—we evaluated Sha-

peComp’s suitability for automatically creating perceptually uniform arrays of novel objects.

To do this, we searched for uniform arrays in the GAN’s latent vector representation that were
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Fig 6. ShapeComp predicts perceptual distortions in human shape similarity across shape arrays. Four example shape sets (A, B, C, D) sampled uniformly in GAN

space (top row). To test whether subtle perceptual distortions in humans were systemically deviated away from GAN space towards ShapeComp, these shape sets were

selected such that the pairwise distances of shapes in ShapeComp varied slightly from GAN (with Pearson correlation values between 0.5< r< 0.75). The arrays are

distorted by ShapeComp (second row) in similar ways to humans (third row; mean across 16 participants). Across arrangements, shapes with same colour are also the same.
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highly correlated with ShapeComp (r>0.9), and had participants arrange these sets based on

their similarity. The top row in Fig 7 shows four arrays (Fig 7A–7D) that ShapeComp predicts

should be arranged almost uniformly. Human similarity arrangements (mean response from

16 participants; second row in Fig 7) are mostly consistent with ShapeComp in terms of the

relative ordering of the shapes. Across three of the four different shapes sets, human responses

are nearly indistinguishable from the predictions of ShapeComp, given the inherent noise

across observers (Fig 7E). In the one case that the model deviates significantly from humans

(Shape Set in Fig 7B), humans tend to weigh certain features (e.g., the apparent tail of the

shape) more heavily than ShapeComp. One way the model may improve its prediction is by

using a different (e.g., fitted) weighted combination of the 22 ShapeComp dimensions. Despite

this one deviation, these results show that combining the high-dimensional outputs of the

GAN with ShapeComp is a useful tool for automatically creating a large number of perceptu-

ally uniform shape spaces.

ShapeComp network

Given the usefulness of creating shape arrays for carefully controlled stimulus sets, and for

neuroscientific investigations on shape, we make available several tools (Fig 8) that allow

experimenters to (1) compute a given shape’s ShapeComp coordinates, and (2) create many

novel shape sets using the GAN. The method can be used to create novel shape arrays with

controlled shape similarity relationships (Fig 9), or can be applied on existing shapes to quan-

tify their shape similarity (e.g., Fig 10).

Although the features underlying ShapeComp are both image computable and interpret-

able, in practice, the codebase is convoluted as it draws on many different sources. Moreover,

(E) Non-uniformities for individual participants (dots) in 4 shape sets (A-D, colours). Squares show average across subjects for given set, where error bars show ± 2 standard

errors. ShapeComp accounted for perceptual distortions away from the original GAN coordinates better than GAN+noise model. (F) Correlation of ShapeComp distortion

with human distortion as a function of the diversity of shapes across the shape set (measured as cumulated variance in shape set across ShapeComp dimensions). Human

distortions better line up with ShapeComp when there is more diversity across shape sets as predicted by ShapeComp. Grey reference line shows y = x.

https://doi.org/10.1371/journal.pcbi.1008981.g006

Fig 7. ShapeComp predicts perceptual uniformities in human shape similarity across shape arrays. (A,B,C,D) The top row shows four example

2D shape arrays that are roughly uniform in ShapeComp and highly correlated to the GAN arrangement (r>0.9). The bottom row shows the mean

arrangement by 16 human observers. (E) In 3 out of 4 shape sets that are highly correlated in terms of GAN and ShapeComp arrangements, human

responses are nearly indistinguishable from the predictions of ShapeComp (blue), given the inherent noise across observers measured as the lower

noise ceiling (red; 95% confidence interval showing correlation of each participant’s data with mean of others). Error bars (in black) show 95%

confidence interval around human-model correlation.

https://doi.org/10.1371/journal.pcbi.1008981.g007
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the computation of all 109 features along with pairwise comparisons with values pre-computed

from a large dataset of stored animal shapes is too slow for real-time applications. Further-

more, as argued above, individual features are less important than the space spanned by them

in concert. Thus, to consolidate ShapeComp into a single, high-speed model, we trained a

multi-layer convolutional neural network on 800,000 GAN shapes that spanned the high-

dimensional space. We trained three versions (MatNet, KerNet1, KerNet2 in Fig 8A–8C) to

provide cross platform capabilities. MatNet and KerNet1 are networks trained in MATLAB

and Keras, respectively, that use the shape’s x,y coordinates as input. KerNet2, also trained in

Keras, uses a 40x40 binary image of the shape as input. Each network takes shapes as input and

Fig 8. ShapeComp neural network for estimating a shape’s 22-Dimensional ShapeComp coordinates. Neural networks in (A) MATLAB (MatNet) and (B) Python

(KerNet1) were trained on 800,000 shapes to get as input the shape x,y coordinates and output the 22D high-dimensional shape space. (C) Kernet2, also in Python, was

trained to output the ShapeComp coordinates from 40×40 image patches. (D) The networks 22-dimensional distances across all pairwise comparisons of 1000 untrained

shapes are highly correlated to the pattern of distances from the original ShapeComp solution.

https://doi.org/10.1371/journal.pcbi.1008981.g008

Fig 9. Using ShapeComp to evaluate shape similarity in existing shape sets. Even with novel shapes from, as an example, the (A) validated circular

shape space set (human data; from [90]), (B) ShapeComp’s predictions show many similarities to humans. While ShapeComp’s arrangement is more

compressed, ShapeComp correctly predicts (i) large gaps between shapes 1 and 15, and 1 and 2, (ii) the circular nature of the data set, (iii) subjective

difference between 1 and 11 is smaller than between 14 and 8, yielding the elongated arrangement. (C) Correlation between ShapeComp and human

similarity judgments for the distances between all possible (105 pairs) (r = 0.78, p<0.01). Given the noise uncertainty across observers–which is unknown

for the circular shape set—ShapeComp appears to be a good model of human behaviour. Note, given that some shapes in the circular shape set (e.g., 5 or 6)

have multiple minimum x-values, we used KerNet2 which is based on images to compute the ShapeComp solution.

https://doi.org/10.1371/journal.pcbi.1008981.g009
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outputs a 22-dimensional vector, representing the values of each of the dimensions of Shape-

Comp (see also Methods: Shape to ShapeComp Network).

The average error of the network in estimating ShapeComp coordinates (in untrained

shapes) is within the range of ShapeComp values that human observers tend to judge as very

similar. Specifically, the network produced a mean error in ShapeComp’s units of 0.45 across

150,000 untrained shapes. For comparison, humans rate shapes within 0.5 ShapeComp units

as highly similar (see Fig 5B), indicating that the neural network provides sufficiently good

approximation to ShapeComp for most practical purposes. More important than absolute

deviation between ShapeComp coordinates is how ShapeComp captures the relationship

between shapes. We find that the network’s predicted distances across the upper triangular

matrix of all pairwise combinations in 1000 untrained shapes is highly related to ShapeComp

(MatNet; r = 0.93, p<0.01; KerNet1; r = 0.94, p<0.01; KerNet2; r = 0.91, p<0.01), which is

significantly larger than the correlation of human shape similarity judgements across different

observers in much smaller shape arrays (Fig 7E).

The networks allow experimenters to identify where arbitrary shapes lie within the 22D

ShapeComp space. For example, applied to artificial stimuli like the human-validated circu-

lar space shape set (from Li et al., 2019; reproduced in Fig 9A), the networks yield a Shape-

Comp solution (in Fig 9B) that is highly related to human judgements (Fig 9C), thus

making the network an efficient and quick way to measure similarity across arrays or pairs

of shape. Paired with a shape generation tool (here, the GAN’s generator network), the Sha-

peComp networks allow the automatic creation of many perceptually uniform shape spaces

(Fig 10).

Fig 10. Synthesizing perceptual uniform shape spaces. ShapeComp paired with GAN can be used to create perceptually uniform shape spaces (A-C)

along a triangular (A, C) or uniform (B) grid or in selecting test shapes that have similar shape similarities (D, near, medium, or far in terms of their

distances in ShapeComp) to the central sample shape.

https://doi.org/10.1371/journal.pcbi.1008981.g010
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ShapeComp predicts human shape similarity better than object recognition

convolutional neural networks (CNNs) for novel shapes

Although shape is thought to be the most important cue to human object recognition, its role in

artificial CNN object recognition is less clear. Some work observes that the networks are good

models of human shape perception [91] while other studies note that conventional CNNs have

some access to local shape information in the form of local edge relations, but they have no

access to global object shapes [92, 93], and are typically biased towards textures [94]. Kubilius

et al. [91] showed that GoogLeNet [95] is highly consistent with human object categorization

based on shape silhouette alone, and showed how similarity in the outputs from its last layer

clearly groups such silhouettes into object categories (e.g., man-made versus natural). It is there-

fore interesting to ask how well such object recognition neural networks predict human similar-

ity judgments of novel objects like those we used for testing our participants and the

ShapeComp model. We tested this by deriving predicted shape similarity from various pre-

trained networks, for the novel GAN shapes from our rating experiment (in Fig 5B) and our

similarity arrangements (in Fig 7). Following Kubilius et al. [91], we defined network shape

similarity as Euclidean distance in their final fully-connected layer (with 1000 units). We find all

the networks we considered were substantially less predictive of human shape similarity than

ShapeComp, both in pairs of shapes and across sets of shapes (Fig 11). For example, Shape-

Comp, was much better at predicting human shape similarity than GoogLeNet in pairs of novel

shapes (Fig 11A) and across shape sets (Fig 11B), highlighting fundamental differences in the

computation of shape by object recognition neural networks and humans. Even the best per-

forming of the networks we tested (Resnet101) correlated poorly with human judgments com-

pared to ShapeComp, despite its vastly larger feature space. Together these findings suggest that

the ability to label objects in natural images is not sufficient to account fully for human shape

Fig 11. Model comparison. ShapeComp is more predictive of human shape similarity than standard object

recognition neural networks across pairs of novel GAN shapes and shape sets. In (A) models are compared to human

shape similarity ratings across pairs of shapes (data from Fig 5B). In (B) models are compared to individual observers’

similarity arrangements (data from Fig 7). For any given shape set, each human observer’s similarity matrix was

correlated with the mean of the other observers (y-axis) and several models (ResNet101, GoogLeNet, or ShapeComp).

The black line shows when an observer is equally correlated to other observers and the model. Only ShapeComp

approaches this line, showing that it is a better model of human shape similarity across novel shape sets. Network

shape similarity was defined as Euclidean distance in their final fully-connected layer (with 1000 units).

https://doi.org/10.1371/journal.pcbi.1008981.g011
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similarity judgments. We speculate that the nature of the shape computations in supervised

object recognition neural networks trained on thousands of natural images is likely one of the

many reasons why they fail to generalize like humans do, often incorrectly classifying cartoon

depictions of images that even children with little experience easily classify. Consistent with this

idea, increasing shape bias in these object recognition networks improves their accuracy and

robustness [94].

General discussion

Many previous studies have sought to measure shape similarity for both familiar and unfamil-

iar objects [23, 52–54, 82, 88, 90, 96–99]. Despite this, the representation of shape in the

human visual system remains elusive, and the basis for shape similarity judgments remains

unclear. In part, this is due to the numerous potential shape descriptors proposed in the past,

including simple metrics, like solidity [36], and contour curvature [39], and more complex

metrics like shape context [38], part-based ones [1, 85], Fourier descriptors [41, 100, 101],

radial frequency components [82, 102], shape skeletons [40, 46, 98, 99, 103–107], linearity

[108] convexity [109–112], triangularity [113], rectilinearity [114], information content [115,

116] and models based on generalized cylinders for describing 3D animal-like objects [117].

While it is widely believed that human shape representations are multidimensional, to date

there has been no comprehensive attempt to implement this idea in a concrete image-comput-

able model. Moreover, the continued widespread use of relatively simplistic pixel-based simi-

larity measures [23, 52, 73–86] points to a significant unmet need for a standard alternative

model. The main contribution of this study is to provide such a model.

Which features does the brain use to represent and compare shapes? It is important to

emphasize that our goal was not to develop a process model of shape representation in the

human brain, but rather to develop an image-computable model that can predict human judg-

ments sufficiently accurately to serve as a baseline for future research. In the present work, rather

than evaluating each of the individual features, we instead sought a means to (1) combine their

strengths and (2) separate out both their shared and their complementary variance. We show

that the space spanned by the features en masse is a useful quantitative tool for understanding

human shape similarity. Indeed, we suggest that the precise feature set is less important than the

space spanned by the features. Given the multiplicity of cells that contribute to representations

of shapes and objects in ventral processing stream, it may not even be possible to describe a com-

plete and unique set of features that the human visual system uses to describe shape. In fact, the

response properties of cell populations may vary significantly across observers, yet similarity

relationships between shapes could still be preserved. Hence it makes more sense to focus on the

feature space as a whole, rather than the contributions of individual putative dimensions.

Another advantage of combining multiple features is the possibility to flexibly re-weight the

features depending on the context or task. For example, Morgenstern, Schmidt, and Fleming

[98] showed that in one-shot categorization observers tend to base their judgments of whether

two novel objects belong to the same category on different features depending on the specific

shapes to be compared. In a similar way, ShapeComp may explain context effects in shape sim-

ilarity. For example, when Shape A is compared with Shape B, one feature may be more impor-

tant in making up a similarity judgement than when Shape A is compared to shape C.

Although we did not explore this possibility here, feature re-weighting could also allow Sha-

peComp’s high-dimensional space to resolve the tension between sensitivity and robustness to

transformations. For example, where robustness to a particular transformation is important for

a given task or judgment (e.g., rigid transformations for view-invariant object recognition) the

visual system could increase the weight assigned to features that are least sensitive to that
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transformation. For other tasks, where sensitivity to particular types of shape distortion are

important (e.g., detecting subtle shape changes associated with the emotional state or intentions

of an animal), the visual system could increase the gain associated with relevant features. Thus,

multidimensional representations allow subsequent visual processes to selectively attend to dif-

ferent aspects of shape, optimizing features for task demands and environmental statistics [118,

119].

Because the features weights in ShapeComp are derived from the statistics of animal shapes,

it is well suited to distinguishing natural shapes. It is intriguing that no fitting was necessary to

predict human shape similarity judgments using ShapeComp—the raw weights derived from

ca. 25,000 natural silhouettes account for most of the variance in Fig 5B. This suggests that nat-

ural shape statistics may play a central role in determining the space humans use to represent

and compare shapes. What remains unclear, however, is (1) whether natural shape statistics

bias shape similarity judgements in artificial shapes or (2) whether a high-dimensional shape

space composed of any set of complementary shape features (even those optimized to differen-

tiate artificial shapes) can predict human shape similarity. We have some support for (1): Sha-

peComp approximately predicts previous shape similarity data based on artificial stimuli. For

example, Li et al. [90] constructed a ‘perceptually circular’ stimulus set, which ShapeComp pre-

dicts quite well (Fig 9). However, further work is needed to reveal the role of natural shape reg-

ularities in shape similarity perception.

Paired with a GAN trained on animal silhouettes, ShapeComp also provides a useful tool

for automating the analysis and synthesis of complex naturalistic 2D shapes for future experi-

ments in cognitive psychology and neuroscience. Novel, perceptually-uniform stimulus arrays

can be generated and probed on the fly (Figs 7 and 10), for example, adaptively modifying sti-

muli in response to brain activity during an experiment. ShapeComp can also help create sin-

gle- or multi-dimensional arrays (Fig 10A–10C), or stimulus sets that are perceptually

equidistant from a given probe stimulus (Fig 10D). Once stimulus sets are controlled for

image-based properties, the role of higher-level aspects of object representations can be probed

in perception, visual search, memory, and other tasks.

Limitations

There are a number of respects in which ShapeComp could be improved in further work.

First, although humans can make many inferences from 2D contours (e.g., [13, 34, 35, 120]),

for many applications it would be desirable to characterize similarity in 3D (e.g., computer

vision and computer graphics [33]; video analysis [121]; topology mapping [122]; molecular

biology [29], human tactile [123–125] and visual perception [126–128]). However, given that

many of the 2D shape descriptors (S1 Table) have equivalents in 3D, and that ShapeComp is

somewhat robust towards which descriptors are used in the model (Fig 2H), it is plausible that

an implementation of ShapeComp based on 3D descriptors applied to 3D mesh representa-

tions would be a strong starting point for developing a model of human shape similarity in 3D.

Second, even highly reduced line drawings often provide additional cues for disambiguat-

ing form within the silhouette boundary [129–136]. For example, Pinna [137] showed how

adding context such as inner line drawings could change our shape percepts as arising from

one to two distinct objects. In addition, Wilder et al. [106] showed how symmetry within local

contours of line drawings facilitates human scene categorization (See also: [138, 139]). Thus,

there are many other ways to derive additional information from line drawings within a scene,

in addition to the shape’s silhouette, which are important for the coding of shape.

Third, shapes in the natural world are often occluded, while ShapeComp was trained only

on non-occluded shapes. Occlusion is challenging because portions of the boundary of the

PLOS COMPUTATIONAL BIOLOGY An image-computable model of human visual shape similarity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008981 June 1, 2021 19 / 34

https://doi.org/10.1371/journal.pcbi.1008981


partially-hidden object are replaced with a completely different contour, belonging to the

occluder. As ShapeComp is based on proximal shape features, rather than a deeper under-

standing of the distal causes of those features, it is ill-suited for comparing shapes across occlu-

sion events. However, ShapeComp could serve as a benchmark to test the role of deeper scene

understandings by characterizing the component of the judgments that can be explained

purely by shallow image features in future research.

Fourth, ShapeComp was trained only on animal shapes. While the training set spans a very

wide range of shape characteristics, future studies could refine ShapeComp by covering other

major superordinate categories such as plants, furniture, tools and vehicles. This would proba-

bly modify the weighting of individual dimensions of ShapeComp, yet may further improve

ShapeComp’s predictions of human similarity judgments.

Fifth, while ShapeComp pools 109 different descriptors from across the literature, there are

many others that were not included. Incorporating additional features would likely change the

precise estimates of similarity made by ShapeComp (although, Fig 2H suggests that using dif-

ferent subsets of features yields similar composite dimensions in MDS). Yet, we believe that

there is no one single shape descriptor that perfectly captures all of human shape similarity

perception, and that the general approach of pooling multiple descriptors provides robust and

sensitive representations.

Sixth, as a model of human perception, ShapeComp is entirely parameter-free in the sense

that no fitting was used to adjust the features or their weights to improve predictions of

human judgments. We saw this as an important component of testing whether weightings

derived from natural shapes predict human perception. However, with over 100 features, Sha-

peComp’s predictions could almost certainly be further improved by explicitly fitting to

human data. However, as noted above, in the human visual system the weighting of features

may even adjust flexibly depending on context or task [e.g., 99]. In future work, it would be

interesting to test whether adding bottom-up or top-down gain control pathways to dynami-

cally regulate features weights, better captures the effects of context-sensitive normalization

and attentional control in human shape similarity judgments.

Finally, ShapeComp is not a physiologically plausible model of shape representation pro-

cesses in the human brain. Future research should seek to model in detail the classes of features

in the neural processing hierarchy that represent shapes in a multidimensional space [140].

We believe that paired with novel image-generating methods, like GANs, ShapeComp can

play a central role in mapping out visual shape representations in cortex.

Conclusions

Shape can be described in many different ways, which have complementary strengths and

weaknesses. We have shown that human shape similarity judgments can be well predicted by

combining many different shape descriptors into a multidimensional representation. The Sha-

peComp model correctly predicts human shape perception across a wide range of conditions.

It captures perceptual subtleties that conventional pixel-based metrics cannot, and provides a

powerful tool for generating and analysing stimuli. Thus, ShapeComp not only provides a

benchmark for future work on object perception, but also provides a proof-of-principle

account of how human shape processing is simultaneously sensitive, robust and flexible.

Methods

Ethics statement

All procedures were approved by the local ethics committee of the Department of Psychology

and Sports Sciences of the Justus-Liebig University Giessen (Lokale Ethik-Kommission des
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Fachbereichs 06, LEK-FB06; application number: 2018–0003) and adhered to the declaration

of Helsinki. All participants provided written informed consent prior to participating.

Sensitivity/robustness analysis to transformation

Shape descriptors. Shape descriptors consisted of simple descriptors like area and perim-

eter, to more complex descriptors like the shape skeleton. A full list of the 109 descriptors is

listed in S1 Table.

Transformation analysis. We illustrate the complementary nature of different shape

descriptors by transforming one sample from each of 20 animal categories (e.g., birds, cows,

horses, tortoise; from [141, 142]) with four 2D transformations (rotation, shear, ‘bloating’ and

noise) of varying strengths. More specifically, the transformations applied to the x,y coordi-

nates of each shapes were as follows:

A) Rotation: We use a rotation matrix R ¼
cos y � sin y

sin y cos y

" #

to rotate the shape around its

centroid such that new[x,y] = R × shape[x,y].
We produced 23 new variants by sampling θ every 15˚.

B) Shear: we applied a shear transform S ¼
1 0

a 1

" #

that slants the shape along the y-axis by

factor a such that new[x,y] = S × shape[x,y].
We used 5 different levels of a ranging from 0.2 to 1.

C) Bloating: we ‘bloat’ the shape with the following transform, such that:

new½x; y� ¼ shape½cartxðr0:75; θÞ; cartyðr0:75; θÞ�:

where r and θ give the radius and angle of location x and y from the shape centroid, and

cartx and carty convert from polar to Cartesian coordinates. We created bloats of increas-

ing magnitudes by iteratively passing a shape through the transformation up to 4 times.

D) Noise: we add random Gaussian noise N(0, σ) to shape’s x,y position. Noise levels varied

from small (0.5% of the maximum distance between any two contour points in a given

shape) to large (4% of the max distance), such that new[x,y] = shape[x,y] + N(0, σ).

For each animal category and shape descriptor, we compute the sensitivity of a given trans-

form (e.g., rotation or bloating), Sij, where i represents 1 of 20 animal categories, and j one of

the 109 shape descriptors. Specifically, we examined how sensitive each shape descriptor j was

to a given transformation by computing the mean differences between shape descriptors for

the original shape with the transformed version, as follows:

Sij ¼

Xn

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
soj � stj

�2
q

� dmin

dmax � dmin

n

where soj is shape descriptor value for the original shape, and stj is descriptor value on one of

the n transformed versions. Given different descriptors are in different units and thus show a

different range of values, to compare sensitivity across descriptors and transformations, we

normalize the differences between the original and transformed shape descriptor with dmin

and dmax, where dmin is the smallest difference between shape soj and any of its transformed

versions stj (including across other comparison transformations), and dmax is the largest
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difference between soj and any of its transformed version (also including across other compari-

son transforms like rotation, bloating or noise). Larger values of Sij indicate that the descriptor

is sensitive to the transformation (i.e., the transformation has a stronger influence on the

shape descriptor). Using MATLAB function ‘nanmean’ to ignore taking the mean across unde-

fined results (e.g., 0/0 or 0×Inf), we then took the mean across the 20 samples as the sensitivity

of the shape descriptor to a given transformation, where larger values indicate more sensitivity:

STj ¼

XN¼20

i

Sij
N , where N is 20 the number of animal categories.

Real-world shape analysis

Animal shape analysis. We amassed 25,712 animal shapes—purchased from shutterstock

(e.g., Natalia Toropova; Big animal silhouttes set), based on 3D animal models (purchased

from https://evermotion.org; e.g., archmodels volume 83) or gathered from previous work

(e.g., [141, 142]). The 3D animal mesh models were used to render a number of additional 2D

silhouettes with varying elevation and azimuth angles. Together, these>25,000 shapes came

from many different animal categories with the bulk being mammals (e.g., dogs, cats, apes,

horses), but also including other categories like fish, reptiles, or insects. For each animal shape,

we calculated 109 shape descriptors (listed in S1 Table) thought to be important for recogni-

tion, synthesis, and perception [32]. The shapes’ x,y coordinates (384×2 resolution) were sam-

pled uniformly and scaled to {0–1} by first subtracting the absolute minimum value of each

coordinate, and then diving by the resulting absolute maximum value. Twenty-six of the shape

descriptors (e.g., shape context) were computed along the contour and require an initial point

for shape matching. Rather than using a matching strategy that depends on context and thus

would differ as one shape is compared to another, we chose a strategy that would be the same

across all shapes, that is, to set the point with the smallest x-value (i.e., leftmost point). In cases

when the smallest x-value on a contour repeated–for example, when it reappeared in a neigh-

boring point (~ 3.5% of animal shapes in the database), or a point further along the contour

(~0.3% of shapes in the database), we chose randomly among the repeated points as the initial

shape point.

Multidimensional scaling and ShapeComp model. We used classical MDS to find an

orthogonal set of shape dimensions that captures the variance in the animal dataset. Specifi-

cally, for each shape descriptor, we computed the Euclidean distance between each pair of

shapes in the dataset:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf ik � f
j
kÞ

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDf ijk Þ
2

q

Where dij is the distance between stimulus i and j on shape descriptor k and f ik and f jk are the

values on shape descriptor k for stimuli i and j. Once the computation for all pairwise compari-

sons was complete, the distances were assembled into a 25,712 × 25,712 similarity matrix and

normalized by their largest distance. We computed this normalized distance, d̂, for all shapes

and shape descriptors to form a 25,712 × 25,712 × 109 entry matrix (shapes2 × shape descrip-

tors). We then computed a 109-dimensional Euclidean distance D across the shape descriptors

for shape pair i and j, as follows:

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X109

k¼1

ðd̂ijkÞ
2

s

:
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We then computed classical MDS on the resultant 25,712 × 25,712 similarity matrix, taking

the first 22-dimensions (see Fig 2 and Results: Analysis of real-world shapes) as the Shape-

Comp model.

Comparison ShapeComp spaces. To test the robustness of the ShapeComp model’s high-

dimensional space, we compare the spaces computed across different (1) animals shapes and

(2) combination of features. In (1) we selected 10 groups of 500 different animal shapes. We

computed a separate ShapeComp space for each of the 10 groups (as described in the preced-

ing section but with 500 samples instead of>25,000 samples). In (2) we computed a separate

ShapeComp space for the same 500 animal shapes, but with a random combination of 55 out

of the 109 shape descriptors. To compare the consistency across the spaces in (1) and (2), we

created a test set with 200 test shapes that were not included in creating any spaces. We then

moved the 200 test shapes into each new ShapeComp space (see Methods: Estimating coordi-

nates for new shapes in pre-existing shape spaces). For each shape space, we then computed

the pairwise distances across the 22 dimensions for each test shape yielding a 200 x 200 similar-

ity matrix. We then computed the Pearson correlation of the upper triangular matrix of each

similarity matrix across the different spaces as a test of ShapeComp’s robustness.

Estimating coordinates for new shapes in pre-existing shape spaces. We estimate the

coordinates for a new shape in the high-dimensional animal MDS space by (1) comparing the

shape descriptors for the new shape with a subset of>25,000 animal shapes, (2) computing a

new MDS solution, and then (3) using Procrustes to move this new MDS solution to the high-

dimensional animal MDS space. Specifically, we computed the Euclidean distance between the

new shape and 500 shapes already located in the animal space, to assemble a 501×501 similar-

ity matrix, and scaled by the largest distance for each feature distance in the complete animal

dataset. We did this for all shape descriptors to form a 501×501×109 matrix (shapes2 × shape

descriptors). We then computed the 109-dimensional Euclidean distance D across shape

descriptors yielding a 501×501 similarity matrix. Applying Classical MDS produced a new

coordinate space for the original 500 shapes. We used Procrustes analysis to identify the linear

transform that maps the MDS coordinates for the 500 animal shapes from the new coordinate

space to the original coordinate space. We then applied this transformation to the new shape

to move it into the original shape space.

Perception of real-world shapes

Participants and stimuli. 15 participants (mean age: 24.7 years; range 20–35) arranged

two sets of twenty shapes (rabbits and horses) from Bai et al. [141, 142]. 10 different partici-

pants (mean age: 30.4; range 25–39) arranged 1 set of 30 shapes that varied across 5 animal cat-

egories (i.e., spiders, turtles, rabbits, horses, and elephants). All participants were paid 8 Euros

per hour, and signed an informed consent approved by the ethics board at Justus-Liebig-Uni-

versity Giessen and in accordance with the Code of Ethics of the World Medical Association

(Declaration of Helsinki). Participants reported normal or corrected-to-normal vision.

Procedure. All experiments were run with an Eizo ColorEdge CG277 LCD monitor (68

cm display size; 1920 × 1200 resolution) on a Mac Mini 2012 2.3 GHz Intel Core i7 with the

psychophysics toolbox [143, 144] in MATLAB version 2015a. Observers sat 57cm from the

monitor such that 1 cm on screen subtended 1˚ visual angle.

Experiments were run in MATLAB using the multi-arrangement code provided by Krieges-

korte & Mur [49] and adapted for the Psychophysics Toolbox. On each trial, participants used

the mouse to arrange all stimuli by their similarity relationships to one another within a circu-

lar arena. At the start of each trial, stimuli were arranged at regular angular intervals in random

order around the arena. To the right of the arena, the current and last selected objects were
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shown larger in size (15˚). Once an arrangement was complete, participants pressed the Return

key to proceed to the next trial. The next trials showed a subset of the objects from the first

trial based on the ‘lift-the-weakest’ algorithm [49]. The arrangements ended after 12 minutes

had elapsed.

GAN shapes

GANs are unsupervised machine learning systems that pit two neural networks against each

other [145, 146] (Fig 3A), The GAN was trained using MatConvNet in MATLAB to synthesize

shapes that it could not distinguish from the animals shapes database. The network architec-

ture and hyperparameters were the same as in Radford et al. [146], except for the following.

The latent z vector was 25×1 (rather than 100×1) and one of the dimensions of the remaining

filter sizes was reduced (from initially matching the other dimension) to 2. A series of four

“fractionally-strided” convolutions then converted the latent vector’s high-level representation

into the shapes’ spatial coordinates. We generated novel shapes using the generator network

trained after 106 epochs by inputting random vectors into its latent variable. We blurred the

shapes with a Gaussian filter with a standard deviation of two neighbouring contour points

and selected shapes without self-intersections.

Visualizing ShapeComp dimensions. To aid interpretation of ShapeComp, we sought to

visualize which shape qualities each dimension independently describes. Accordingly, for each

dimension of ShapeComp, we sought shapes that varied along that dimension, while minimiz-

ing the variations along the other dimensions. To create such shapes, we used the Genetic

Algorithm (GA) in MATLAB’s Global Optimization toolbox, in combination with a neural

network (see ShapeComp Network and Fig 7) that takes as input a shape and returns as output

the shape’s coordinates in ShapeComp’s 22-dimensional space. Specifically, with a population

of 200 neural networks for 250 generations, the objective of the GA was to find shapes in GAN

space that varied along one dimension in ShapeComp while the remaining dimensions are

held roughly constant. The ShapeComp network, its architecture, and error in predicting Sha-

peComp are described in more detail in Methods: Shape to ShapeComp Network.

GAN vs. animal shapes category judgement experiment

Participants. In total, there were forty participants (mean age: 24.4 years;

range 19–33). Half of the participants classified GAN shapes, and the other half classified

animal shapes

Stimuli. Photographs (9×12.5 cm) of 100 GAN shapes with no-self intersections (ran-

domly selected from the GAN latent space) and 20 animal shapes from Bai et. al [141, 142].

Each photograph had a number to indicate shape (1–100 for GAN shapes, 1–20 animal

shapes).

Procedure. Experimenter shuffled the cards, and placed them in front of participant. Par-

ticipant picked up the top card and placed it roughly arm’s length from their view. They called

out the number on the card, and were then asked to judge the category of the shape on the

card. Participants had the option of saying that the shape does not appear like any known cate-

gory. Experimenter entered the responses, while the participant picked up the next card from

the pile. This process continued until the participant finished classifying the whole stack.

Shape similarity rating experiment

Participants. 14 observers participated in the shape similarity rating experiments. Mean

age was 24.4 (range: 21–33). Participants, paid at a rate of 8 euros per hour, signed an informed

consent form approved by the ethics board at Justus-Liebig-University Giessen and in
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accordance with the Code of Ethics of the World Medical Association (Declaration of Hel-

sinki). Participants reported normal or corrected-to-normal vision.

Procedure. As in the other experiments, the experiments were run with an Eizo Color-

Edge CG277 LCD monitor (68 cm display size; 1920 x 1200 resolution) on a Mac Mini 2012

2.3 GHz Intel Core i7 with the psychophysics toolbox [124, 125] in MATLAB version 2015a.

Observers sat 57cm from the monitor such that 1 cm on screen subtended 1˚ visual angle.

Pairwise similarity ratings. 250 GAN shape pairs were chosen that spanned a large range

of distances in ShapeComp. On each trial, stimuli were shown side by side and observer

adjusted a slider to indicate similarity ratings from 0 (‘very dissimilar’) -100 (‘very similar’)

using the mouse. Shapes subtended ~15˚. Shape position (right or left side) was randomized

on each trial. Shape pairs were presented in random order.

Shape Triads Judgements: Pixel similarity and ShapeComp dimensions

experiments

Participants. 19 different observers participated in the pixel similarity and ShapeComp
dimensions experiment. Mean age was 24.3 (range: 20–33). Participants, paid at a rate of 8

euros per hour, signed an informed consent approved by the ethics board at Justus-Liebig-

University Giessen and in accordance with the Code of Ethics of the World Medical Associ-

ation (Declaration of Helsinki). Participants reported normal or corrected-to-normal

vision.

Procedure. We used the same setup as described in Methods: Shape similarity rating
experiment.

Pixel similarity triplets. Stimuli were created using the GAN trained on animal silhou-

ettes (see Results: Using Generative Adversarial Networks to create novel naturalistic outlines).
Using the Genetic Algorithm in MATLAB’s Global Optimization toolbox with a population of

200 neural networks for 250 generations, we used the ShapeComp network (described in

Methods: Shape to ShapeComp Network) to find triplets of GAN shapes in which a sample
shape varied in its ShapeComp distance from two test shapes, tA and tB, while maintaining the

same pixel similarity to both. Specifically, we computed the ShapeComp distance from the

sample to each test, a for tA and b for tB (Fig 5E). We then represented the distances from these

test shapes to the sample as a ratio between the smaller of the distances to the sum of their dis-

tances:

minða; bÞ=ðaþ bÞ

Small values of this ratio indicate one test stimulus was much closer to the sample shape than

the other, in terms of ShapeComp. A maximum value of 0.5 indicates both tests are equally far

from the sample. 70 triplets were created and binned into 7 bins ranging 0.2–0.5, where each

bin contained ~10 triplets. On each trial, the sample shape was presented centrally, flanked by

two test shapes (whose position, left or right of sample was randomized). Shapes subtended 12˚.

Pixel similarity, held constant between the sample and the test shapes, was defined as the Jaccard

index (1—intersection-over-union; [37]). High values indicate high pixel similarity.

ShapeComp dimensions triplets. Similar to the pixel similarity experiment, using the

Genetic Algorithm in MATLAB’s Global Optimization toolbox with a population of 200 neu-

ral networks for 250 generations, we used the ShapeComp network (described in Methods:

Shape to ShapeComp Network) to find shape triplets in which a sample shape varied in its Sha-

peComp distance from two test shapes, tA and tB, while maintaining the same value on one of

the ShapeComp dimensions {1–8}. The distance between sample and test shapes was repre-

sented with the ratio described in pixel similarity triplets.
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Identifying perceptual nonlinearities in shape spaces of novel objects

Procedure. Experiments were run in MATLAB using the multi-arrangement code pro-

vided by Kriegeskorte & Mur [49]. The procedure was the same as in Methods: Perception of
real-world shapes.

Participants. Two groups of 16 observers (mean age: 24.45 years; range: 18–41), including

the first author who was the only author and participant in both groups.

Stimuli. Four GAN shape sets were selected that ranged in their correlation with Shape-

Comp22 network (0.56� r� 0.74). One group of participants arranged two sets with 20

shapes (set a, r = 0.56; set b, r = 0.69). Another group arranged two sets with 25 shapes (set c,

r = 0.74; set d; r = 0.72).

Deriving perceptually uniform shape spaces of novel objects

Procedure. Experiments were run in MATLAB using the multi-arrangement code pro-

vided by Kriegeskorte & Mur [49]. The procedure was the same as in Methods: Perception of
real-world shapes.

Participants. Two groups of 16 observers (mean age: 25.03 years; range: 18–41), including

the first author who was the only author and participant in both groups.

Stimuli. Four sets of 25 shapes for which the GAN’s latent vector and the ShapeComp

neural network (described in more detail in Methods: Shape to ShapeComp Network) pre-

dicted similar pairwise distances (r> 0.9). One group of participants arranged two shape sets

that were uniform in ShapeComp (set A and B). Another group arranged two shape sets that

were uniform in GAN space (set C and D).

Shape to ShapeComp network

We trained several instances of a convolutional neural network, one in MATLAB’s neural net-

work toolbox and two in Keras with TensorFlow–an open source neural network library in

Python. The networks were trained to take as input a 384×2 contour or 40×40 image patch

through multiple neural layers (shown in Fig 7A–7C) and output the 22-dimensional MDS coor-

dinate. To do this, we created a set of 950,000 GAN shapes (800,000 training, 150,000 test images)

and then computed their 22D ShapeComp coordinates (see Methods: Estimating coordinates for
new shapes in pre-existing shape spaces described above). These coordinates served as the desired

network output. The network architecture and training hyperparameters are shown in Fig 7A–

7C. Input shapes yield an estimate of the 22D ShapeComp coordinate as output. We used the

MATLAB neural network implementation to visualize the ShapeComp dimensions in Fig 4 and

to select the stimuli in Experiments with shape-triads and shape spaces (described above). The

purpose of the additional Python-based networks was to provide cross-platform capabilities.

The MATLAB (MatNet), and one of the Keras (KerNet1) networks assume that the mini-

mum x-value of the contour is the first point along the shape, as this is how shape descriptors

that required an initial starting point in the animal database were calculated. While the con-

tour representation is efficient—it packs much more detail about a shape given the same

amount of information (in terms of bytes) in an image representation—it also has shortcom-

ings. One major limitation is the correspondence problem associated with matching a point

on one shape with another. Here we used a simple heuristic—setting the left most point as the

first point on any contour. However, this rule has its own shortcomings. Imagine, for example,

rotating a shape with multiple limbs. As the shape rotates even by a minor amount, the left-

most point can quickly shift a large number of points as a new limb transitions into this posi-

tion making the first point selected across the two similar shapes (and thus their ShapeComp

distances) potentially highly different. One solution is to use the image of the shape rather
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than its contour, as this would bypass the correspondence problem. Moving in this direction,

the second Keras network (KerNet2) was trained to compute ShapeComp using a 40×40 pixel

image as input, rather than a contour represented as (x, y) coordinates.

CNN Shape similarity

We evaluated pre-trained CNNs with MATLAB’s neural network toolbox. Shapes were con-

verted to images that matched the input size of the network. The images showed the shapes

with RGB values of 0 and background with values of 255, however changing the way the shapes

were coded (e.g., inverting the RGB relationships) did not bring large changes in the results.

Following Kubilius et al. [91], we defined network shape similarity as Euclidean distance in

their final fully-connected layer (with 1000 units).

Supporting information

S1 Fig. Over 100 shape descriptors evaluated in terms of their ‘sensitivity’, i.e., how much

they changed when shapes were transformed by noise and shear. Here, solidity, area, and

curviness are more sensitive to noise than shear, while major axis orientation is less sensitive

to noise than shear. That different descriptors are tuned to different transformations highlights

their complementary nature.

(TIFF)

S2 Fig. The original features that best account for ShapeComp. A wordcloud that shows the

20 best features in terms of absolute correlation to each of ShapeComp’s first 8 dimensions

(A-H) and (I) across all 22-dimensions. The largest words in the cloud, the most predictive fea-

tures, are highlighted with colour.

(TIFF)

S3 Fig. The original features that account least for ShapeComp. A wordcloud that shows the

20 features that least predictive (in terms of absolute correlation) to each of ShapeComp’s first

8 dimensions (A-H) and (I) across all 22-dimensions. The largest words in the cloud, the least

predictive features, are highlighted with colour.

(TIFF)

S1 Table. List of 109 shape descriptors in ShapeComp.
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