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How humans visually select where to grasp objects is determined by the physical object
properties (e.g., size, shape, weight), the degrees of freedom of the arm and hand,
as well as the task to be performed. We recently demonstrated that human grasps
are near-optimal with respect to a weighted combination of different cost functions
that make grasps uncomfortable, unstable, or impossible, e.g., due to unnatural grasp
apertures or large torques. Here, we ask whether humans can consciously access these
rules. We test if humans can explicitly judge grasp quality derived from rules regarding
grasp size, orientation, torque, and visibility. More specifically, we test if grasp quality
can be inferred (i) by using visual cues and motor imagery alone, (ii) from watching
grasps executed by others, and (iii) through performing grasps, i.e., receiving visual,
proprioceptive and haptic feedback. Stimuli were novel objects made of 10 cubes of
brass and wood (side length 2.5 cm) in various configurations. On each object, one
near-optimal and one sub-optimal grasp were selected based on one cost function
(e.g., torque), while the other constraints (grasp size, orientation, and visibility) were
kept approximately constant or counterbalanced. Participants were visually cued to
the location of the selected grasps on each object and verbally reported which of the
two grasps was best. Across three experiments, participants were required to either (i)
passively view the static objects and imagine executing the two competing grasps, (ii)
passively view videos of other participants grasping the objects, or (iii) actively grasp the
objects themselves. Our results show that, for a majority of tested objects, participants
could already judge grasp optimality from simply viewing the objects and imagining
to grasp them, but were significantly better in the video and grasping session. These
findings suggest that humans can determine grasp quality even without performing the
grasp—perhaps through motor imagery—and can further refine their understanding of
how to correctly grasp an object through sensorimotor feedback but also by passively
viewing others grasp objects.
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INTRODUCTION

When we try to grasp objects within our field of view, we rarely
fail. We almost never miss the object or have it slip out of our
hands. Thus, humans can very effectively use their sense of sight
to select where and how to grasp objects. Yet for any given
object, there are numerous ways to place our digits on the surface.
Consider a simple sphere of 10 cm diameter and ∼300 cm2

surface area. If we coarsely sample the surface in regions of 3
cm2 (a generous estimate of the surface of a fingertip) there are
approximately 100 surface locations on which to place our digits.
Even when considering simple two-digit precision grips, which
employ only the thumb and forefinger, there are∼10,000 possible
digit configurations that could be attempted. How do humans
visually select which of these configurations is possible and will
lead to a stable grasp?

To answer this question, in recent work (Klein et al., 2020)
we asked participants to grasp 3D polycube objects made of
different materials (wood and brass) using a precision grip.
Even with these objects—geometrically more complex than a
simple sphere—participants consistently selected only a handful
of grasp configurations, with different participants selecting
very similar grasps. This suggests that a common set of rules
constrains how people visually select where to grasp objects.
We formalized this observation, following (Kleinholdermann
et al., 2013), by constructing a computational model that
takes as input the physical stimuli, and outputs optimal
grasp locations on the surface of the objects. Specifically, we
constructed a set of optimality functions related to the size,
shape, and degrees of freedom of the human hand, as well as
to how easily an object can be manipulated after having been
grasped. Model predictions closely agreed with human data,
demonstrating that actors choose near-optimal grasp locations
following this set of rules.

The strongest constraint for two-digit grasps, included in this
computational framework, requires surface normals at contact
locations to be approximately aligned (a concept known as force
closure; Nguyen, 1988). Fingertip configurations that do not
fulfill this constraint, e.g., with thumb and forefinger pushing
on the same side of an object, cannot lift and manipulate the
object. Indeed successful human grasps never fail to meet the
force closure constraint (Kleinholdermann et al., 2013; Klein
et al., 2020). The other constraints we implemented as optimality
functions relate to:

Natural grasp axis: humans exhibit a preferred hand
orientation for precision grip grasping, known as the natural
grasp axis (Roby-Brami et al., 2000; Lederman and Wing, 2003;
Schot et al., 2010; Voudouris et al., 2010), which falls within the
midrange of possible hand and arm joint angles. Grasps rotated
away from the natural grasp axis may result in uncomfortable
(or impossible) hand/arm configurations that require extreme
joint angles. Since these extreme joint angles should be
avoided (Rosenbaum et al., 2001), optimal grasps should exhibit
minimum misalignment with the natural grasp axis.

Grasp aperture: When free to employ any multi-digit
grasp, participants select precision grip grasps only when
the required distance between finger and thumb at contact

(the “grasp aperture”) is smaller than 2.5 cm (Cesari and
Newell, 1999). As grasp size increases, humans progressively
increase the number of digits employed in a grasp. Therefore,
optimal two-digit precision grips should exhibit grasp
apertures below 2.5 cm.

Minimum torque: grasping an object far from its center of mass
results in high torques, which may cause the object to rotate when
manipulated (Goodale et al., 1994; Lederman and Wing, 2003;
Eastough and Edwards, 2006; Lukos et al., 2007; Paulun et al.,
2016). Large gripping forces would be required to counteract
high torques and prevent the object from rotating. Thus, optimal
grasps should have minimum torque.

Object visibility: when grasping an object, the hand might
occlude part of an object from view. This could be detrimental
for subsequent object manipulation, and indeed humans exhibit
spatial biases in their grasping behavior which are consistent with
avoiding object occlusions (Paulun et al., 2014; Maiello et al.,
2019). Therefore, optimal grasps should minimize the portion of
an object occluded from view.

Whereas the force closure constraint is necessary and
immutable, the relative importance given to the other four
constraints varies with object properties (e.g., mass) and
across participants.

Given the computational costs, it seems relatively unlikely
that the brain fully computes these optimality functions for
every possible grasp. Nevertheless, our previous findings suggest
that humans can employ visual information to estimate these
constraints and guide grasp selection. As a further test of our
framework for understanding human grasp selection, here we ask
whether human participants can explicitly report relative grasp
optimality (i.e., which of two candidate grasps would be closer
to optimal). We further ask whether observers can judge grasp
optimality using vision alone, or whether executing a grasp is
necessary to do so.

If participants were indeed better at judging grasp optimality
when executing grasps, this might suggest that tactile (Johansson
and Westling, 1984) and proprioceptive feedback from our arm
and hand (Rosenbaum et al., 2001; Lukos et al., 2013) plays
a role in evaluating grasp quality. Humans may employ these
sources of feedback to learn that certain hand configurations
are uncomfortable, or that one grasp requires more force than
another to pick up the same object.

Additionally, participants might also be able to visually
assess the characteristics of their own movements, such as
the speed and trajectory of the limb. Previous work has in
fact demonstrated that humans can access visual information
of grasping kinematics. For example, human participants can
estimate the size (Campanella et al., 2011; Ansuini et al., 2016)
and weight (Podda et al., 2017) of unseen objects by observing
the reach to grasp movements performed by others. These
sources of visual information are known to play a strong role
in grasp planning and execution, as removing them changes
the kinematics of grasping movements (Connolly and Goodale,
1999), and even simply observing others execute grasping tasks
can improve one’s own grasping performance (Buckingham
et al., 2014). We therefore, ask how much these sources of
visual information might contribute to participant judgements
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of grasp optimality. Specifically, we test whether grasp quality
can be inferred from watching grasps executed by others. If
this were the case, then perhaps vision and proprioception
may be redundant sources of information about grasp quality,
which could aid humans in linking vision and motor control in
action planning.

To test whether humans can explicitly judge grasp quality,
in Experiment 1 we asked participants to report which of two
candidate grasps on an object is best, first using vision alone
(vision session), and then also by attempting both grasps on the
object, one after the other (grasping session). To test whether
visual information about the grasping movements plays a role in
judging grasp quality, in Experiment 2a we asked a new set of
participants to repeat a subset of key conditions from Experiment
1, while we video-recorded their grasping movements. Finally,
in Experiment 2b we showed these recorded movements to
yet another set of participants (video session), and asked them
to judge grasp quality from the videos of grasps executed by
participants from Experiment 2a.

MATERIALS AND METHODS

Participants
We recruited 21 naïve and right-handed participants [16 female,
5 male; mean (range) age: 24 (19–32) years] for Experiment
1, 25 naïve and right-handed participants [17 female, 8 male;
mean (range) age: 23 (20–26)] for Experiment 2a, and 25 naïve
and right-handed participants [18 female, 7 male; mean (range)
age: 24 (19–36)] for Experiment 2b. Participants were staff
and students from Justus Liebig University Giessen, Germany.
In return for their participation, volunteers were paid 8
EURO per hour. Participants reported healthy upper extremities
and normal or corrected to normal vision. All provided
written informed consent. All procedures were approved by

the local ethics committee of Justus Liebig University Giessen
(Lokale Ethik−Kommission des Fachbereichs 06, LEK−FB06;
application number: 2018-0003) and adhered to the tenets of the
declaration of Helsinki.

Apparatus
All Experiments (1, 2a, 2b) were programmed in Matlab version
2018a. Participants were seated at a table with a mounted chin
rest in a brightly lit room. Figure 1 shows a schematic of
the setup. In all experiments, during the vision (Figure 1A)
and grasping sessions (Figure 1B), subjects positioned their
heads in the chinrest before each trial. Stimulus objects were
positioned 34 cm in front of the participant. At this predefined
position, a turntable allowed the experimenter to precisely set
object orientation. In the grasping sessions, participants were
instructed to grasp the objects and move them to a target location
shifted 23 cm to the right side from the initial object location
along the horizontal axis, at a distance of 40 cm relative to
the participant. The starting position for the right thumb and
index finger was 24 cm to the right and 22 cm in front of
the participant. In grasping sessions, objects were grasped with
a precision grip at two predetermined locations. A ZED Mini
stereo camera (Stereolabs) was attached to the front of the
forehead rest to record (720p, 30 fps) grasping movements in
Experiments 2a and 2b. To record videos, a simple recording
program was written in C++, using the ZED SDK, and called
from within the Matlab environment. The camera orientation
was adjustable along the frontal axis and fixed at a downwards
tilt angle of 25◦ to capture the whole movement sequence.
During the experiment, participants did not see the camera
due to its position right in front of their forehead (Figure 1B).
In Experiment 2b (Figure 1C), videos were presented on an
Asus VG248QE monitor (24′′, resolution = 1,920×1,080 pixel)
at 60 Hz, positioned at a distance of 40 cm from the observers.

FIGURE 1 | Schematic representation of the experimental setup. (A) In the vision sessions participants passively viewed objects and evaluated the relative optimality
of preselected grasps without executing the grasps. (B) In the grasping sessions, participants executed grasps prior to judging the grasp quality. A ZED Mini stereo
camera positioned above the participant’s forehead recorded the grasping movements in Experiments 2a and 2b. (C) In the video session, participants from
Experiment 2b viewed recordings of grasps executed by participants from Experiment 2a on a computer monitor.
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Experiment 1
Stimuli
In Experiment 1, we employed 16 3D objects (4 shapes, 4 material
configurations), each made of 10 cubes (2.53 cm3) of beech wood
or brass. Objects with the same shape but different material
configuration varied in mass (light wooden objects: 97 g, heavy
wood/brass objects: 716 g) and mass distribution. These objects
were the same, and were presented at the same orientations, as
described in a previous study (Klein et al., 2020). For each of the
objects, we selected pairs of grasps, one near-optimal and one
sub-optimal, according to one of four grasp optimality criteria:
natural grasp axis; optimal grasp aperture; minimum torque;
optimal visibility. These criteria were mathematically defined as
in our previous work (Klein et al., 2020). For each of these
optimality criteria, we selected pairs of near-optimal and sub-
optimal grasps on four of the 16 objects, while maintaining
the other optimality criteria approximately constant across the
grasp pair or counterbalanced across objects. Figure 2A shows
one example object in which we selected one near-optimal and
one sub-optimal grip with regard to grasp aperture. Figure 2B
shows the optimality values for both grasps following each of
the optimality criteria, and the difference in optimality between
the two grasps. The difference in grasp optimality between
pairs of grasps on all 16 objects for each of the four grasp
optimality criteria is shown in Figure 2C. The selected grasp
pairs were marked on the objects with colored stickers glued
onto the objects’ surface. Thumb grasp locations were marked

in either blue or green (randomly assigned to the near-optimal
and sub-optimal grasps). Index finger locations were marked
in yellow. All objects and selected grasp pairs are shown in
Supplementary Figures 1–4.

Procedure
Experiment 1 consisted of a vision session followed by a grasping
session. In each session, all objects were presented in random
order. In a single trial of either session, participants were
instructed to judge which of the two predefined grasps marked on
the object was better. No specific definition of grasp quality was
given to participants. In the vision session, no physical contact
with the objects was allowed. Participants were instructed to
imagine both grasp movements, one after the other in predefined
but random order, and then verbally to report which of the two
grasps they thought was best. In the grasping session, participants
executed both grasps and verbally reported which grasp was best.
Participants were instructed to perform imagined and real grasps
with a precision grip, i.e., using only thumb and index finger.

Prior to the experiment, participants were introduced to the
objects. All stimuli were laid out on a table, the meaning of
the stickers was explained, and participants were instructed to
view (but not touch) the objects from all angles. Participants
were familiarized with the weight of beech wood and brass
by placing a wooden bar and a brass bar in sequence on the
participants’ outstretched palm for a few seconds. Between trials
of both sessions, and between grasps within one trial, we ensured

FIGURE 2 | Stimulus selection. (A) One example object in which we selected one optimal (blue) and one sub-optimal (green) grasp with respect to grasp aperture.
The right side of the object is made of brass, the left side of beech wood. Blue and green dots represent thumb contact locations; the index finger is to be placed on
the opposing surface. The blue grasp requires a small (2.5 cm) grip aperture, and is thus optimal with respect to grasp aperture. The green grasp requires a large
grip aperture (12.5 cm) and is thus sub-optimal. (B) For the two selected grasps in panel (A), we plot the optimality of the grasps (in normalized, arbitrary units) for
each of the 4 optimality criteria, and the difference in optimality between grasps. (C) The difference in grasp optimality is shown for all pairs of grasps selected on all
16 objects, 4 per optimality criteria. Red indicates the selected near-optimal grasp is better than the selected sub-optimal grasp. Each column corresponds to one of
the 16 objects employed in the study. The object and grasps in panel (A) correspond to the second column of the Aperture subplot in panel (C).

Frontiers in Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 591898

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-591898 November 30, 2022 Time: 15:46 # 5

Maiello et al. Visual and Haptic Grasp Optimality

that participants did not see the experimenter manipulating the
objects by asking participants to keep their eyes closed until the
objects were positioned.

In the vision session, once the stimulus was positioned at
the starting location at its specific orientation, participants (with
their head positioned on the chinrest) were instructed to open
their eyes and visually explore the object. The experimenter
then instructed the participants to imagine executing one of
the two grasps (the green or the blue, randomly selected by
the experimental script). Participants were asked to imagine
reaching toward the object, placing their thumb and index at the
marker locations, picking up the object using a precision grip,
and moving it to the target location. Once participants indicated
that they had finished imagining the first grasp movement, the
experimenter instructed them to imagine executing the other.
Once they had finished imagining both grasps, they were asked
to report which was best, with no time limit. Throughout
the whole vision session, participants were instructed to keep
both hands on their thighs to prevent them from attempting
pantomime grasps.

In the grasping session, on each trial participants positioned
their head on the chinrest, and their thumb and index finger
at the starting location. Once the stimulus was positioned,
participants opened their eyes and the experimenter specified
which grasp to attempt first (green or blue, in random order
to minimize trial order effects; Maiello et al., 2018). Once
the participant reported they were ready, an auditory cue
specified the beginning of the grasping movement. Participants
were required to reach, grasp, pick up and move the
object onto the goal location, and return their hand to the
starting position, all within 3 s. Prior to the second grasp,
the experimenter positioned the current object back on its
starting location while participants kept their eyes closed. Once
the object was positioned, the procedure was repeated for
the second grasp.

Experiments 2a and 2b
Experiment 2a was a replication of Experiment 1, except that
we only employed a subset of the conditions and we recorded
participants’ grasp movements during the grasping session using
the ZED mini stereo camera. The primary purpose of Experiment
2a was thus to capture the video recordings necessary for
Experiment 2b. Compared to Experiment 2a, Experiment 2b
contained an additional experimental session where participants
evaluated grasp quality from the videos of participants from
Experiment 2a.

Stimuli
In Experiments 2a and 2b we employed only 6 objects out of the
16 employed in Experiment 1. This subset of conditions, shown
in Supplementary Figure 5, was selected so that participants
would be at chance performance in the vision condition and
significantly above chance in the grasping condition.

Procedure
The procedure of Experiment2a was identical to that of
Experiment 1, except with fewer conditions.

In contrast to Experiment 1 and 2a, Experiment 2b
consisted of three sessions: first a vision, then a video
session, followed by a grasping session. The first (vision)
and third (grasping) sessions were identical to the first and
second sessions of Experiment 2a. In the video session of
Experiment 2b, participants were shown videos of participants
from Experiment 2a grasping the objects at the predefined
grasp locations. Participants across Experiments 2a and
2b were yoked: each participant from Experiment 2b saw
and evaluated the grasps from only one participant from
Experiment 2a. The videos were taken from the left lens of
the Zed mini stereo camera. Participants sat in front of a
computer monitor.

On each trial, a dialogue box informed subjects which of
the two grasps (green or blue) they would be viewing first.
Participants started the video with a mouse click. Once the first
grasp video was shown, a dialogue box informed participants they
would be viewing the second grasp, and once again, participants
started the video. Each video was shown only once. After
participants had viewed both videos, they reported, via mouse
click, which of the two grasps was better.

Analyses
Data analysis was performed in Matlab version R2018a. The
dependent measure for all analyses was the proportion of trials
in which the model-optimal grasp was rated as “better,”
which we refer to as “Percent correct grasp optimality
judgments.” Differences from chance performance and
between group means were evaluated via unpaired and paired
t-tests, as appropriate (p < 0.05 were considered statistically
significant). We also report the 95% highest density interval
(95% HDI) of the difference from chance or between group
means, obtained via Bayesian estimation (Kruschke, 2013)
using the Matlab Toolbox for Bayesian Estimation by Nils
Winter. We compute effect size as µ− Chance/σ in case of
differences from chance, and as µG1−G2/σG1−G2 in case of
differences between group means. As we are interested in
fairly moderate effects (Cohen, 1988), we define a region of
practical equivalence (ROPE) on effect size from −0.4 to 0.4.
In cases where no statistically significant difference is observed
using frequentist hypothesis testing, we use this ROPE to
assess how credible the null hypothesis is that there exist
no meaningful differences from chance or between group
means (Kruschke, 2011). In such cases, we report the effect
size and percentage of its posterior distribution that falls
within the ROPE.

RESULTS

Experiment 1: Participants Can Report
Whether Grasps Are Optimal Through
Vision Alone, and Perform Better When
Allowed to Execute the Grasps
In Experiment 1, we asked participants to perform imagined and
real grasps on 16 objects and to report which of two predefined
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FIGURE 3 | Judgments of grasp optimality using vision and grasping. Percent
correct grasp optimality judgments for the vision session (left), and the
grasping session (right), averaged across objects and participants. Error bars
indicate 95% bootstrapped confidence intervals of the mean. Chance
performance is 50% correct (dotted line). ∗∗p < 0.01; ∗∗∗p < 0.001.

grasp locations was best. Figure 3, shows that participants
were significantly above chance at judging grasp optimality
when using vision alone [t(20) = 6.63, p = 1.9∗10−06; 95%
HDI = (11, 22)] and also when physically executing the grasps
[t(20) = 15.79, p = 9.3∗10−13; 95% HDI = (25, 33)]. Additionally,
participant judgements significantly improved in the grasping
session compared to the vision session [t(20) = 5.14, p = 5∗10−05;
95% HDI = (8, 19)]. Percent correct grasp optimality judgments
for individual objects, grouped by optimality conditions, are
shown in Supplementary Figures 1–4. Note that we do not
compare performance across optimality conditions as we did
not equate difficulty across conditions, and even within the
same condition task difficulty and performance could vary
markedly.

Experiment 2: Visual and Proprioceptive
Information During Grasping Are
Redundant for Evaluating Grasp
Optimality
The results from Experiment 1 suggest that participants are
better at judging grasp quality when they perform the grasp.
However, Experiment 1 leaves open whether the performance
increase is due to the sensorimotor or visual feedback during
grasp. In Experiment 2, we tested whether visual cues from real
grasp movements were sufficient to improve grasp optimality
judgements. In Experiment 1, performance varied across
optimality criteria and individual objects. Therefore, we selected
the subset of conditions from Experiment 1 that showed the
largest difference between the vision and grasping session.

Figure 4A shows that for these conditions, participants were
at chance in the vision session [t(20) = 0.5, p = 0.62; 95%
HDI = (-8, 13), effect size = 0.11, 88% in ROPE], above
chance when physically executing the grasps [t(20) = 10.25,
p = 2.1∗10−09; 95% HDI = (29, 40)], and performance in
the grasping session was significantly improved compared

to the vision session [t(20) = 4.81, p = 1.1∗10−4; 95%
HDI = (19, 46)].

In Experiment 2a we replicated the results from Experiment
1 on this subset of conditions (Figure 4B): participants were
at chance in the vision session [t(24) = 1.88, p = 0.073; 95%
HDI = (-1, 12)], effect size = 0.38, 53% in ROPE), above
chance when physically executing the grasps [t(24) = 7.27,
p = 1.7∗10−07; 95% HDI = (18, 33)], and performance in
the grasping session was significantly improved compared to
the vision session [t(24) = 3.51, p = 0.0018; 95% HDI = (8,
32)]. During the grasping sessions of Experiment 2 we also
recorded videos of the participants executing the grasps from
approximately the participants’ viewpoint. Example videos are
shown in the Supplementary Material.

In Experiment 2b, participants performed a vision, a
video, and a grasping session on the same conditions
employed in Experiment 2a. Critically, in the video
condition participants judged grasp optimality on videos of
participants from Experiment 2a grasping objects at optimal and
sub-optimal locations.

Similarly to Experiment 2a, Figure 4C shows that in
Experiment 2b, participants were at chance in the vision
session [t(24) = −1.19, p = 0.25; 95% HDI = (-11, 4), effect
size = −0.24, 81% in ROPE]. Conversely, participants were
significantly above chance in both the video [t(24) = 4.58,
p = 1.2∗10−4; 95% HDI = (10, 26)] and grasping sessions
[t(24) = 6.41, p = 1.3∗10−06; 95% HDI = (15, 29)]. Compared
to the vision session, performance was significantly improved
in both the vision [t(24) = 4.23, p = 3∗10−04, 95% HDI = (10,
32)] and grasping sessions [t(24) = 6.35, p = 1.4∗10−06, 95%
HDI = (17, 35)]. Finally, performance in the video and grasping
sessions was equivalent [t(24) = 0.92, p = 0.36; 95% HDI = (-
6, 16)], effect size = 0.18, 83% in ROPE). Percent correct
grasp optimality judgments for individual objects and optimality
conditions for both Experiments 2a and 2b are shown in
Supplementary Figure 5.

It is also worth noting that in Experiment 2b, the grasping
session was always performed last, so the exposure to grasp
videos could conceivably have helped the judgments made in
the grasping session. To test this possibility, we contrasted
performance in the grasping session from Experiment 2b,
with performance in the grasping session from Experiment 2a.
Performance in the grasping sessions was equivalent across
experiments [t(24) = 0.68, p = 0.50; 95% HDI = (-13, 7), effect
size = 0.14, 90% in ROPE], suggesting that the grasp observation
session did not improve the decision-making that comes out of
physically performing the grasps.

DISCUSSION

When grasping objects guided by vision, humans select finger
contact points that are near-optimal according to several
physics- and biomechanics-based constraints (Kleinholdermann
et al., 2013; Klein et al., 2020). Whether these constraints
are explicitly computed in the brain is unknown. Here, we
demonstrate that humans can explicitly judge which of two
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FIGURE 4 | Results from Experiment 2. (A,B) Percent correct grasp optimality judgments for vision and grasping sessions, averaged across objects, and
participants, for (A) the subset of conditions from Experiment 1 that drives the difference between vision and grasping, and (B) the same subset of conditions
replicated in Experiment 2a. (C) Percent correct grasp optimality judgments for vision, video, and grasping sessions, averaged across objects and participants, for
Experiment 2b. In all panels, error bars are 95% bootstrapped confidence intervals of the mean and chance performance is 50% correct (graydotted line).
∗∗∗p < 0.001.

potential grasps on an object is best, based on each of
these constraints.

In our study, participants could distinguish near-optimal from
sub-optimal grasp locations using vision alone, i.e., without
physically executing grasps, presumably using motion imagery.
This well aligns with the notion that motor imagery, the
mental simulation of a motor task, relies on similar neural
substrates as action planning and execution. For example, it
is well-established that simulated actions take the same time
as executed ones (Decety et al., 1989; Jeannerod, 1995). This
temporal similarity has also been shown in a task akin to
the current study. Frak et al. (2001) asked participants to
determine whether contact points marked on a cylindrical
object placed at different orientations would lead to easy,
difficult, or impossible grasps, without grasping the object. The
time to make these estimates varied with object orientation
and task difficulty, and closely matched the time taken to
perform the grasps. These temporal matches hint that imagined
and real actions might rely on similar neural computations.
Indeed it has been shown that motor imagery recruits many
of the same visuomotor areas of the brain, from early visual
cortex (Pilgramm et al., 2016; Zabicki et al., 2016; Monaco
et al., 2020), throughout the dorsal stream and the parietal
lobe leading to primary motor cortex M1 (Hétu et al., 2013),
that are directly involved in action planning and execution
(Hardwick et al., 2018).

In Experiment 1 of our study, judgements of grasp optimality
improved when participants were required to execute the grasps.
What drove this improvement? Since the grasping session always
came after the vision session, it is possible that the improvement

in the grasping session could be due to participants learning
the task or having gained familiarity with the objects. This is
unlikely, however, since we did not provide participants with
any feedback they might have used to learn the task, and
we found no evidence of learning within the single sessions
(see Supplementary Figures 6, 7). In the grasping sessions,
participants were asked to grasp, lift and place the object at
a goal location within 3s. However, they had unlimited time
to plan the grasps prior to each trial. The planning stage in
the grasping sessions was thus similar to the vision sessions.
Therefore, in both sessions participants could build hypotheses
about which grasp should be easier to execute, but only in
the grasping sessions could they test these hypotheses against
their own sensorimotor feedback. Specifically, if participants
needed to make corrective changes once a movement had been
initiated, it is possible that the difference between this event and
the original motor intention could have reached consciousness
and improved their judgements. However, previous research
has shown that the recalibration of reach-to-grasp movements
through haptic feedback occurs outside of perceptual awareness
(Mon-Williams and Bingham, 2007). If participants could not
consciously access the corrections to their original motor plans,
crucial clues to indicate that a grasp was sub-optimal could be
provided by tactile feedback from object slippage (Johansson
and Westling, 1984), the need to apply greater grip forces
than anticipated (Lukos et al., 2013), or proprioceptive feedback
indicating awkward joint configurations (Rosenbaum et al.,
2001).

Tactile and proprioceptive feedback were not the only sources
of information that could have aided judgements in the grasping
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session. Participants could also visually assess the characteristics
of their own movements, such as the speed and trajectory
of the limb. These sources of visual information are known
to play a strong role in grasp execution, as removing them
changes the kinematics of grasping movements (Connolly and
Goodale, 1999). Additionally, even if visual information from
object roll during grasps does not influence the calibration of
digit placement and force control (Lukos et al., 2013), lifting
without visual feedback does impair fingertip force adaptation
(Buckingham and Goodale, 2010; Buckingham et al., 2011). We
therefore, wondered whether these sources of visual information
alone could aid judgements of grasp optimality.

In Experiment 2, we indeed found that viewing videos of other
participants grasping near-optimal and sub-optimal grasps was
sufficient for observers to reach the same level of performance at
reporting which grasp was best as when actually executing grasps.
This does not mean that in the grasping sessions participants
did not rely on tactile and proprioceptive feedback. It suggests
instead, that visual and tactile/proprioceptive feedback may be
redundant sources of information in evaluating grasp quality.
This could help explain how humans are able to exploit action
observation more generally. For example, humans are able to
acquire useful information, such as object size and weight, by
simply observing the movement kinematics of others (Bingham,
1987; Hamilton et al., 2007; Campanella et al., 2011; Ansuini et al.,
2016; Podda et al., 2017). Additionally, observing others execute
grasping tasks, particularly when they make errors, can improve
one’s own grasping performance (Buckingham et al., 2014).
Observing one’s own grasps, particularly when making errors,
could thus link visual and tactile/proprioceptive information
about grasp quality. This in turn would allow us to learn how
best to grasp a novel object by simply looking at someone
else grasping it.

Limitations and Future Directions
Our findings reinforce the notion that motor imagery and
action observation play an important role in learning complex
motor tasks (Gatti et al., 2013). For this reason, motor
imagery and action observation have also shown promise in
aiding and strengthening motor rehabilitation techniques in
a variety of neurological conditions (Sharma et al., 2006;
Mulder, 2007; de Lange et al., 2008; Zimmermann-Schlatter
et al., 2008; Malouin et al., 2013; Mateo et al., 2015).
Within this context, our model-driven method of selecting
optimal—and particularly sub-optimal—grasps could be used to
guide and strengthen mental imagery and action observation
techniques for motor rehabilitation. For example, patients
could be made to imagine, observe, and execute grasps to
object locations, selected through our modeling approach,
which contain the most useful information for re-learning
grasping movements.

In the vision session of Experiment 1, participants were above
chance at judging grasp optimality for a majority of objects (10
out of 16), but not for all. This is likely due to our procedure
for selecting pairs of near-optimal and sub-optimal grasps, which
was not designed to equate task difficulty across objects and
conditions. Yet what makes one pair of grasps more or less

visually distinguishable in terms of optimality? This could be
related to how humans encode the different constraints on grasp
quality through vision. Misjudgments for the pair of grasps
shown in Figure 2 might be due, for example, to inaccuracies in
visually estimating the length of the grasp aperture with respect
to the span of our hand, or to inaccuracies in judging the exact
location of the object’s center of mass from visual 3D shape
and material cues. A potential approach to test this hypothesis
would be to extend our model to be image computable, i.e.,
able to derive the constraints on grasp selection directly from
images of the objects. If the image processing stages of model
were designed to mimic those of the human visual system
(e.g., Chessa et al., 2016; Maiello et al., 2020) we might then
expect the model to begin making the same misjudgments as
human participants.

Even in the grasping sessions, however, in about 20% of trials
participants did not agree with the model predictions. Does this
mean participants could not access the information about grasp
quality? We believe it is more likely that the model predictions
are incomplete. For example, the model does not take into
account that for some grasps with high torques, the objects might
rotate and come to rest against a participants’ palm, stabilizing
an otherwise potentially unstable grasp. Additionally, in the
current work we did not account for the different importance
given by individual participants to the different constraints
(Klein et al., 2020). Inspect for example the data from the last
panel of Supplementary Figure 2. Even though the selected
sub-optimal grasp has much larger grasp aperture than the
selected near-optimal grasp, the sub-optimal grasp has marginally
less torque. Thus, if some participants gave much greater
importance to the torque constraint, this might explain why their
responses disagreed with model predictions. Finally, to avoid
biasing participants toward our expected results, we explicitly
abstained from providing participants with a precise definition
of grasp quality. However, this means different participants
might have interpreted the instructions differently. The concept
of a “better” grasp may have been interpreted in many ways,
such as easier, faster, more accessible, or more comfortable.
It is thus possible that different criteria may lead to different
judgments, and it will be important in future research to link
these subjective dimensions of grasp quality to objective measures
of grasping performance.

In Experiment 2, we found that action observation and action
execution yielded equivalent accuracies. However, it remains
unknown whether the accuracy is equivalent across these two
conditions because an “action observation system” treats them
equivalently, or because there are two systems operating, one
based on action observation and one based on action execution
and efference copy, for example, which can inform the decision-
making process. Nevertheless, the videos from Experiment 2
could provide some further insight into which visual cues
participants were exploiting to determine grasp optimality during
action observation. For example, in Supplementary Video
1 an observer might notice the different time it takes the
participant to lift the same object with two different grasps,
or the slight wobbling of the object when grasped in the
uncomfortable hand orientation. In Supplementary Video 2,
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a prominent visual cue comes from the initial failure in
computing a successful trajectory to the sub-optimal grasp.
A quantitative analysis of the grasping kinematics contained
in these videos, using for example novel image based tracking
algorithms (Mathis et al., 2018), may reveal the exact nature
of the visual information human participants exploit during
action observation and execution. The full video dataset from
Experiment 2, as well as all other data from the study, are
made freely available through the Zenodo repository (doi:
10.5281/zenodo.4382477).

Finally, our approach could be further developed to investigate
the neural underpinning of visual grasp selection. The current
study demonstrates how, through the computational framework
described in Klein et al. (2020), we can identify grasps on
arbitrary objects that isolate the individual components of grasp
selection. In future studies, these unique grasp configurations
could be employed as stimuli for targeted investigations of
brain activity, making it possible to pinpoint the neural loci
of each of the visuomotor computations underlying grasp
planning and execution.

CONCLUSION

We show that humans are capable of judging the relative
optimality between different possible grasps on an object. For
a majority of tested objects and grasp configurations, human
participants could perform these judgments using vision alone,
and refined their estimates of grasp quality using visual and
proprioceptive feedback during grasp execution. These abilities
are likely a key component of how humans visually select grasps
on objects. Remaining challenges will be to identify where and
how grasp optimality is learned and computed in the brain in
order to guide grasp planning and execution.
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Supplementary Figure 1 | Percent correct grasp optimality judgments,
computed across participants from Experiment 1, for the four individual objects in
the natural grasp axis conditions. In each panel, the top object demonstrates the
approximate viewpoint of a participant. Thumb locations for selected grasps were
marked on the objects in green or blue. The position of the opposing index finger
was marked in yellow. The color code only served to mark and identify the grasps
for participants, and was purposely unrelated to the grasp optimality. The middle
and bottom object show the near-optimal and sub-optimal grasps, respectively,
with the objects rotated solely for illustrative purposes, to better show the selected
grasp locations. Error bars represent 95% bootstrapped confidence intervals.

Supplementary Figure 2 | | As Supplementary Figure 1, except for the four
individual objects in the grasp aperture conditions.

Supplementary Figure 3 | As Supplementary Figure 1, except for the four
individual objects in the minimum torque conditions.

Supplementary Figure 4 | As Supplementary Figure 1, except for the four
individual objects in the object visibility conditions.

Supplementary Figure 5 | As Supplementary Figures 1–4, except for the six
individual objects employed in Experiments 2a and 2b.

Supplementary Figure 6 | Participant performance (percent correct grasp
optimality judgments) as a function of trial number for Experiment 1. Dots are the
mean performance across observers; error bars represent 68% bootstrapped
confidence intervals. Dotted lines are best fitting regression lines through the data.
We found no significant correlations between trial number and task performance
in either the Vision Session (r = 0.052, p = 0.34), nor the Grasping Session
(r = −0.041, p = 0.45). There is thus no evidence that performance improved with
more practice and more familiarity with the task and objects.

Supplementary Figure 7 | Percent correct grasp optimality judgments as a
function of trial number for the six objects from Experiment 2a. In the six small
panels, dots are performance, computed across participants, for each of the six
objects ordered as in Supplementary Figure 5. The final panel shows the
average across objects. Error bars represent 68% bootstrapped confidence
intervals. Dotted lines are best fitting regression lines through the data. The
analysis in Supplementary Figure 6 averages across participants based on trial
number. Thus, different objects contribute to the accuracy computed at each trial
number. The large variance in accuracy across objects might thus hide learning
effects. The smaller number of conditions in Experiment 2 allows us to investigate
potential learning effects at the level of individual objects. We observed a
significant positive correlation between trial number and task performance in the
Vision Session only for the U shaped object (second panel, r = 0.93, p = 0.0069;
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all other correlations p > 0.1). Even for this object, this correlation was likely
spurious, as it did not replicate in the data from Experiment 2b (r = 0.18,
p = 0.74). Across objects (rightmost panel), we also found no significant
correlations between trial number and task performance in either the Vision
Session (r = 0.061, p = 0.72), nor the Grasping Session (r = −0.13, p = 0.44).
There is therefore no evidence that performance improved with more practice and
more familiarity with the task and objects.

Supplementary Video 1 | Representative participant from Experiment 2a
executing near-optimal (left) and sub-optimal (right) grasps for one object
belonging to the natural grasp axis conditions.

Supplementary Video 2 | Representative participant from Experiment 2a
executing near-optimal (left) and sub-optimal (right) grasps for one object
belonging to the object visibility conditions.
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