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We uncover a relation between the scattering amplitudes of massive strings and the α′ expansion
of the massless string amplitude at tree level. More precisely, the n-point tree amplitude of n−1
massless and one massive state is written as a linear combination of n+1 massless string amplitudes
at the α′2 order.

INTRODUCTION

The spectrum of string theory contains an infinite
tower of massive higher-spin states alongside the mass-
less excitations. These massive excitations are essential
for the consistency of string theory, such as perturbative
unitarity. And yet, the calculation of scattering ampli-
tudes in the massive sector remains largely unexplored.

As a first line of attack, one may wish to accumulate
data in the hopes of finding all-order patterns. Using the
results of [1], which hugely advanced the former, this pa-
per takes the first steps towards accomplishing the latter.
More specifically, using the Berends-Giele-like construc-
tion of the n-point tree-level string amplitudes involving
one massive and n−1 massless states [1], we identify a

precise relation with the α′2 sector of the (n+1)-point
massless tree-level amplitudes.

The underpinnings of this relation rely on the
combinatorially-rich objects dubbed scalar BRST invari-
ants. They played a major role in the joint analysis of
the α′2 sector of the massless string tree amplitudes and
the low-energy limit of one-loop open string amplitudes
[2]. They are naturally generated using the zero-mode
saturation rules in the pure spinor formalism [3] and
obey several identities [4]. In addition, they are mysteri-
ously connected to a combinatorial algorithm [5] related
to Bern-Carrasco-Johansson (BCJ) amplitude relations
[6] and appear in the context of the descent algebra [7].
As we will see below, yet another relation will be added
to this list.

Note that the factorization of the massless amplitudes
on the massive poles implies that massive and massless
amplitudes are related, see for example [8]. However, the
factorization condition necessarily involves a quadratic
expression of massive amplitudes and, to our knowledge,
has never been used to express a single massive amplitude
in terms of massless data.

To avoid index positioning gymnastics, particle la-
bels will be written mostly downstairs and vector indices
mostly upstairs. Repeated indices are summed over and
[m1 . . .mN ] does not contain 1/N !.

STRING SCATTERING WITH MASSIVE STATES

The bosonic physical states at the first massive level
of the superstring are described by a symmetric trace-
less tensor gmn and a 3-form bmnp of SO(10) subject to
∂mgmn = ∂mbmnp = 0 and comprising 44 and 84 degrees
of freedom, respectively.
In a recent paper [1], the superstring amplitude in-

volving n−1 massless states and one massive state n was
packaged in terms of (n−3)! worldsheet integrals FP

Q and
partial subamplitudes A(1, P, n−1|n) as

A(1, Q, n−1, n) =
∑

P∈Sn−3

FP
QA(1, P, n−1|n) , (1)

where P and Q are words comprised of particle labels
(letters) and FP

Q have the same functional form as the
string disk integrals in the massless string scattering am-
plitude [9–12]; the only difference stems from the mas-
sive constraint k2n = −1/α′ affecting the relations among
Mandelstam variables. These integrals will play no role
in the discussions below, and we will focus our attention
in the partial amplitudes A(1, P |n).
When all external states are bosonic, the partial ampli-

tude with |P | = n−1 massless states and one state from
the first massive multiplet are given by [1]

A(P |n) = ϕmn
P gmn

n + ϕmnp
P bmnp

n , (2)

where gmn and bmnp are the massive polarizations while
the n−1 massless states are encoded in (note the modified
normalization conventions compared to [1]):

ϕmn
P = α′

∑
XY=P

fma
X fan

Y + cyc(P ) , (3)

ϕmnp
P = 2i

∑
XY=P

emXknY e
p
Y − 4i

3

∑
XY Z=P

emXenY e
p
Z + cyc(P ) .

The notation +cyc(P ) instructs to add the cyclic per-
mutations of the letters in P , XY=P denote the decon-
catenations of P into non-empty words X and Y , and
kmij...p = kmi + kmj + · · ·+ kmp . The multiparticle polariza-
tions in (3) obey the recursion [13] (equivalent to [14])

emP =
1

k2P

∑
XY=P

[
emY (kY · eX) + fmn

X enY − (X ↔ Y )
]
,
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fmn
P = kmP enP − knP e

m
P −

∑
XY=P

(
emXenY − enXemY

)
, (4)

starting with the single-particle emi gluon polarization
vector and its field strength fmn

i = kmi eni − kni e
m
i .

Example amplitudes for n = 3, 4 read

A(1, 2|3) = iem1 fnp
2 bmnp

3 + α′fmp
1 fpn

2 gmn
3 + cyc(12)

A(1, 2, 3|4) = i
(
2em1 kn23e

p
23 + 2em12k

n
3 e

p
3 −

4

3
em1 en2 e

p
3

)
bmnp
4

+ α′(fma
1 fan

23 + fma
12 fan

3

)
gmn
4 + cyc(123) (5)

Massless strings at α′2 order: Recall the definition of
AF 4

as the massless disk amplitudes at α′2 order [2]

A(Q) = AYM(Q) + α′2ζ2A
F 4

(Q) + · · · . (6)

We will now propose a map that replaces the massive
external state n by two massless states n and n+1 whose
momenta satisfy 2α′(kn ·kn+1)= −1. It turns the massive

n-point amplitude A(P |n) into sums of massless α′2AF 4

at n+1 points. For convenience, let us use the shorthand
H for this map. More precisely,

H :

{
(grsn , brstn ) → (grsn,n+1, b

rst
n,n+1) ,

α′k2n = −1 → 2α′(kn · kn+1) = −1
(7)

with

grsn,n+1 =
1

8

(
erne

s
n+1 + esne

r
n+1 −

1

3
δrs(en · en+1)

)
(8)

+
α′

12

(
(krnk

s
n − 2krnk

s
n+1)(en · en+1)

+ 3(krn+1e
s
n + ksn+1e

r
n)(kn · en+1)

+ (n ↔ n+1)
)

− α′

12
δrs(kn · en+1)(kn+1 · en)

+
α′2

6
krn,n+1k

s
n,n+1(kn · en+1)(kn+1 · en) ,

brstn,n+1 =
iα′

16

(
k[rn e

s
ne

t]
n+1 + k

[r
n+1e

s
n+1e

t]
n

)
+

iα′2

8

(
k[rn k

s
n+1e

t]
n+1(kn+1 · en)

+ k
[r
n+1k

s
ne

t]
n(kn · en+1)

)
,

For example, with sij = (ki · kj)

A(1, 2|3)
∣∣∣
H

= −α′2AF 4

(1, 2, 3, 4), s34 = − 1

2α′ (9)

A(1, 2, 3|4)
∣∣∣
H

= α′2AF 4

(1, 3, 4, 2, 5)− α′2AF 4

(1, 4, 2, 3, 5)

− α′2AF 4

(1, 2, 5, 3, 4) , s45 = − 1

2α′ .

In general,

A(1, P |n)
∣∣∣
H

= −α′2

6
AF 4

(γ1|P,n,n+1), sn,n+1 = − 1

2α′
(10)

where γ1|P,n,n+1 are the BRST-invariant permutations
related to the descent algebra defined in [7].1 We have
explicitly [15] checked the validity of (10) up to n = 6.
The consistency of (8) can be verified from kmij g

mn
ij =

kmij b
mnp
ij = 0, and that gmn is traceless symmetric while

bmnp is totally antisymmetric. To see this, one uses the
transversality (ki · ei) = 0 and the mass k2i=k2j=0 of the
gluon states and the constraint 2α′(ki · kj) = −1.

DERIVATION

The derivation of the relations (8) and (10) are the re-
sult of an alternative construction of a superstring mas-
sive vertex operator and its subsequent use in an am-
plitude calculation at tree level using the pure spinor
formalism. In the following discussions we will briefly
outline the techniques and reasoning that led to those
relations. More details will appear in a longer paper [16].

CFT basics of the pure spinor formalism: The pure
spinor formalism [3] is based on a conformal field the-
ory (CFT) on the two-dimensional string worldsheet. As
such, the prescription to compute tree-level amplitudes
of string states is given by a correlation function of vertex
operators inserted at points zi on a genus-zero Riemann
surface

A = ⟨V1(z1)V2(z2)V3(z3)

n∏
i=4

∫
dziUi(zi)⟩ (11)

where the brackets ⟨−⟩ indicate a CFT correlation func-
tion (see [17] for a review). The integrated (unin-
tegrated) vertices

∫
Ui (Vi) for physical states at the

mass level n are ghost-number zero (one) expressions
in the cohomology of the pure spinor BRST charge,
Q =

∮
λαdα, with conformal weight n+1 (n) at zero

momentum. λα is a bosonic spinor satisfying the pure
spinor constraint (λγmλ) = 0 and dα is the super-
symmetric Green-Schwarz constraint. Finally, after in-
tegrating out the variables of non-vanishing conformal
weight (see below), the amplitude prescription (11) re-
duces to a correlation involving only the zero-modes of
λα and θα. They are integrated out using the prescrip-
tion ⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)⟩ = 2880α′2.

Massless vertices: The vertex operators for the mass-
less states are given by [3]

V = λαAα , (12)

U = ∂θαAα +ΠmAm + 2α′dαW
α + α′NmnFmn ,

1 Note that (10) is not written in a minimal basis of AF4
ampli-

tudes. Additional KK-like relations [2, 7] were used to arrive at
the examples (9).
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where Aα, A
m, Wα and Fmn are the ten-dimensional2

linearized superfields describing the SYM multiplet while
Πm is a supersymmetric momentum and Nmn is the
Lorentz current of the pure spinor. The superfields sat-
isfy [18]

D(αAβ) = γm
αβAm, DαAm = (γmW )α + ∂mAα, (13)

DαW
β =

1

4
(γmn)α

βFmn, DαFmn = ∂[m(γn]W )α .

The variables λα, θα (∂θα, Πm, dα and Nmn) have con-
formal weight zero (one). Thus, the massless vertices
(12) have conformal weights zero and one, respectively.
Furthermore, the equations of motion (13) imply QV = 0
and QU = ∂V .

Massive unintegrated vertex: The unintegrated ver-
tex operator for the first massive level was constructed
using ten-dimensional superspace in [19],

V = λα∂θβBαβ + λαΠmHαm + 2α′λαdβC
β
α (14)

+α′NmnλαFαmn ,

where Bαβ , H
m
α , Cβ

α and Fαmn are superfields encoding
the massive polarization tensors (and spinors) of the first
massive supermultiplet. Their equations of motion were
spelled out in [19] and they were gauge fixed to

Bαβ = γmnp
αβ Bmnp , ∂mBmnp = 0 , (15)

γmαβHmβ = 0 , ∂mHmα = 0,

Cα
β =

1

4
(γmpnq)αβ∂mBnpq , γmαβFαmn = 0 .

The construction in [19] followed a general ansatz with
the correct conformal weight and ghost number and
BRST invariance QV = 0. Alternatively, one can derive
a mass-level n unintegrated vertex V using the OPEs be-
tween the massless vertices. The prescription is [20, 21]

V3(z) =

∮
z

dwU1(w)V2(z) , 2α′(k1 · k2) = −n, (16)

where U1 and V2 are integrated and unintegrated mass-
less vertices containing the plane waves eik1·X and eik2·X

with k21=k22=0. Under the OPE, the plane waves of U1

and V2 combine to the plane wave ei(k1+k2)·X of V3, and
the nth mass-level condition (k1+k2)

2 = −n/α′ gives rise
to the constraint 2α′(k1 ·k2) = −n, ensuring that the con-
tour integral picks up the correct conformal weight. It
follows from (16) with n=1 that V3(z) is BRST invari-
ant, has ghost number one, and has conformal weight
one at zero momentum. Therefore, it qualifies to be an
unintegrated vertex operator for the first massive level.

2 Recall that ten-dimensional superspace is described by Xm with
m = 1, . . . , 10 and θα with α = 1, . . . , 16.

Long but straightforward calculations using the OPEs
between massless vertices yield an expression for the mas-
sive vertex (16) with the following massless SYM repre-
sentation for the massive superfields:

Bαβ = −2α′ikm2 (γmW1)βA
2
α − α′ikm1 (γnW1)β(γ

mnA2)α

− α′

2
Fmn
1 (γmnD)βA

2
α ,

(17)

Hm
α = Am

1 A2
α + 2α′km1 (k2 ·A1)A2

α

− 2iα′km1 W β
1 DβA

2
α − α′

2
ikm1 Fnp

1 (γnpA2)α ,

Cβ
α = W β

1 A
2
α ,

Fαmn = F 1
mnA

2
α .

Gauge fixing: While the vertex operator (16) with the
explicit SYM realization (17) of its superfields is a legiti-
mate unintegrated vertex operator, it still contains gauge
redundancies due to V3 → V3+QΩ that need to be fixed.
Following the gauge-fixing procedures of [19], a long set
of redefinitions detailed in [16] yields the massless SYM
representation of the massive superfields satisfying the
gauge conditions (15):

Bmnp =
1

18
α′(W1γmnpW2) +

1

9
α′2k1[mk2n(W1γp]W2)

+
1

18
iα′2

[
k2qF 1

q[mF 2
np] + (1 ↔ 2)

]
,

(18)

Hmα =
iα′

6

(
−5iF 1

mn(γ
nW2)α − 2k12mA1

n(γ
nW2)α

+ k1pA
1
n(γ

mnpW2)α

− 4α′k12m (k2 ·A1)k1n(γ
nW2)α + (1 ↔ 2)

)
,

Cβ
α =

1

4
(γmnpq)

β
αik

m
12B

npq ,

Fαmn =
1

16

(
7ik12[mHn]α + ik12q (γq[m)α

βHn]β

)
,

with Bαβ = γmnp
αβ Bmnp.

The massive polarization map (8): We are now in
a position to explain the origin of the prescription (8).
According to the θ expansion analysis of the massive su-
perfields [22], the massive polarizations gmn and bmnp

can be extracted from the massive superfields as

gmn =
1

64
(Dγ(mHn))

∣∣
θ=0

, bmnp =
9

8
Bmnp

∣∣
θ=0

, (19)

where the overall normalizations were chosen for later
convenience. The expressions in (8) follow from the above
definitions using the massless representations (18).
The origin of (10) will become clear in the following

discussion of the three-point amplitude.

Three-point tree amplitude: The string three-point
amplitude with one massive and two massless states was
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firstly computed in the pure spinor formalism in [23] and
simplified in [24]:

A(1, 2|3) = i

2α′ ⟨V1(λγmW2)(λH
m
3 )⟩ , (20)

where particles 1 and 2 are massless SYM states and 3
is massive. The component expansion in terms of po-
larization and momenta of (20) can be evaluated in two
different ways:

1. Using the theta expansion of the massive superfield
Hm

3α in terms of gmn and bmnp derived in [22]. This
yields the expression in (5).

2. Using the massless SYM representation of Hm
3α and

performing the calculations as a regular four-point
pure spinor superspace expression, while imposing
the constraint 2α′(k3 · k4) = −1 after the last step.
This yields (with sij = (ki · kj)),

1

α′2
A(1, 2|3) = (21)

s23

(
(k1 · e2)(k1 · e3)(e1 · e4)− (k1 · e2)(k1 · e4)(e1 · e3)

+(k1 · e2)(k2 · e3)(e1 · e4)− (k1 · e2)(k2 · e4)(e1 · e3)
−(k1 · e2)(k3 · e1)(e3 · e4)− (k1 · e3)(k2 · e1)(e2 · e4)
+(k1 · e3)(k2 · e4)(e1 · e2) + (k1 · e4)(k2 · e1)(e2 · e3)
−(k1 · e4)(k2 · e3)(e1 · e2)− (k2 · e1)(k2 · e3)(e2 · e4)
+(k2 · e1)(k2 · e4)(e2 · e3) + (k2 · e1)(k3 · e2)(e3 · e4)

−(e1 · e2)(e3 · e4)s23
)

+s12

(
(k1 · e2)(k2 · e3)(e1 · e4)− (k1 · e3)(k3 · e2)(e1 · e4)

+(k1 · e4)(k2 · e1)(e2 · e3)− (k1 · e4)(k2 · e3)(e1 · e2)
+(k1 · e4)(k3 · e2)(e1 · e3)− (k2 · e1)(k2 · e3)(e2 · e4)
+(k2 · e1)(k2 · e4)(e2 · e3) + (k2 · e1)(k3 · e2)(e3 · e4)
−(k2 · e3)(k3 · e1)(e2 · e4) + (k2 · e4)(k3 · e1)(e2 · e3)

+(k3 · e1)(k3 · e2)(e3 · e4)− (e1 · e4)(e2 · e3)s12
)

+s12s23

(
(e1 · e3)(e2 · e4)− (e1 · e2)(e3 · e4)

−(e1 · e4)(e2 · e3)
)

which, before imposing the constraint 2α′s12= −1, is
readily recognized as −AF 4

(1, 2, 3, 4), the α′2 correction
to the massless four-point string amplitude (6).
Since both ways compute the same amplitude, there

must be a correspondence between them. Looking for a
similar pattern at higher points led to the proposal (10).
It turns out that capturing the general pattern is eas-

ier using the scalar BRST invariants defined in [2, 5]
and whose bosonic components are available to down-
load from [25]. Starting from (2) and using the map (7),
we explicitly checked that:

A(1, 2|3)
∣∣∣
H

= −α′2⟨C1|2,3,4⟩, s34 = − 1

2α′ (22)

A(1, 2, 3|4)
∣∣∣
H

= −α′2⟨C1|23,4,5⟩, s45 = − 1

2α′

A(1, 2, 3, 4|5)
∣∣∣
H

= −α′2⟨C1|234,5,6⟩, s56 = − 1

2α′

A(1, 2, 3, 4, 5|6)
∣∣∣
H

= −α′2⟨C1|2345,6,7⟩, s67 = − 1

2α′

which, in turn, suggests the generalization

A(1, P |n)
∣∣∣
H

= −α′2⟨C1|P,n,n+1⟩ , sn,n+1 = − 1

2α′ .

(23)

The translation to linear combinations of AF 4

amplitudes
in (10) follows from the permutations γ of [7]

⟨C1|P,Q,R⟩ =
1

6
AF 4

(γ1|P,Q,R). (24)

Further evidence for (23) stems from the fact that both
sides are annihilated by shuffling P = R � S for non-
empty R and S; the left-hand side due to the Kleiss-
Kuijf identity of the massive partial amplitude [1], and
the right-hand side by construction [2, 5]. Therefore, we
uncovered a hidden relation between the massive string
tree amplitude with one massive external state and the
α′2 sector of the purely massless tree-level string ampli-
tudes.

CONCLUSION AND OUTLOOK

In this paper we found a relation between the n-point
string tree amplitude with one massive and n−1 massless
states and linear combinations of n+1 massless string tree
amplitudes at α′2 order. To see this, we defined a map
that replaces the massive polarizations of one massive leg
by the polarizations and momenta of two massless gluons.
Then, after being transformed by this map, the partial
amplitudes A(P |n) of the full string tree amplitude (1),

are written in terms of the α′2 correction of the purely
massless string disk amplitude.
It is not the first time that relations were discovered

where some string states are replaced by others: the
prime example being the KLT relations at tree level trad-
ing one graviton for two gluons [26], see also [27–30] for
relations along the same lines. However, the relation
found in this paper not only trades massive for massless
polarizations but also connects amplitudes at different
orders of α′ expansions.
It will be interesting to extend the observations here to

more external massive states as they will probably give
rise to linear combinations of amplitudes at higher α′ or-
ders. How to characterize the associated permutations?
Another question to investigate is related to the factor-
ization on massive poles of the massless tree amplitudes
[8]. Using the results presented here could lead to some
sort of self consistency built in in the massless tree ampli-
tudes via their α′ expansion. Moreover, similar relations
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are also expected to hold in bosonic string amplitudes,
where a wealth of data is available [31, 32].

Also, it is worth noting that there are more “topolo-
gies” of the scalar BRST invariants starting at multiplic-
ity six; for example, C1|234,5,6 and C1|23,45,6. They have
different combinatorial properties and their expansions
in terms of AF 4

are completely different. As already ex-
plicitly checked in (22), only one topology appears at
(massless) multiplicities six and seven. In general, what
happens to the other topologies? Do they map to some-
thing meaningful?

Finally, it would be desirable to invert the map (7) as a
means of obtaining the massive string amplitudes start-
ing from their massless counterparts. If this is achieved
and extensions with more massive legs and higher orders
in α′ are found, it would mean that all massive ampli-
tudes could be simply extracted from the massless am-
plitudes computed in [9–12].
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in preparation.
[17] C. R. Mafra and O. Schlotterer, Phys. Rept. 1020, 1-162

(2023) [arXiv:2210.14241 [hep-th]].
[18] E. Witten, Nucl.Phys. B 266, 245 (1986).
[19] N. Berkovits and O. Chandia, JHEP 08, 040 (2002)

[arXiv:hep-th/0204121 [hep-th]].
[20] D. Friedan, E.J. Martinec and S.H. Shenker, Nucl. Phys.

B 271 (1986) 93.
[21] S. Chakrabarti, S.P. Kashyap and M. Verma, JHEP 10,

147 (2018) [arXiv:1802.04486 [hep-th]].
[22] S. Chakrabarti, S. P. Kashyap and M. Verma, JHEP 01,

019 (2018) [arXiv:1706.01196 [hep-th]].
[23] S. Chakrabarti, S. P. Kashyap and M. Verma, JHEP 12,

071 (2018) [arXiv:1808.08735 [hep-th]].
[24] C.R. Mafra, unpublished notes 2019.
[25] http://www.southampton.ac.uk/~crm1n16/pss.html
[26] H. Kawai, D. C. Lewellen and S. H. H. Tye, Nucl. Phys.

B 269, 1-23 (1986)
[27] S. Stieberger and T. R. Taylor, Nucl. Phys. B 913, 151-

162 (2016) [arXiv:1606.09616 [hep-th]].
[28] S. Stieberger, [arXiv:2105.06888 [hep-th]].
[29] P. Mazloumi and S. Stieberger, JHEP 06, 125 (2022)

[arXiv:2201.00837 [hep-th]].
[30] S. Stieberger, [arXiv:2212.06816 [hep-th]].
[31] Y. t. Huang, O. Schlotterer and C. Wen, JHEP 09, 155

(2016) [arXiv:1602.01674 [hep-th]].
[32] T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlot-

terer, JHEP 10, 012 (2018) [arXiv:1803.05452 [hep-th]].


