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Abstract A combined analysis of smooth and non-
smooth bifurcations captures the interplay of different
qualitative transitions in a canonicalmodel of an impact
pair, a forced capsule in which a ball moves freely
between impacts on either end of the capsule. The anal-
ysis, generic for the impact pair context, is also relevant
for applications. It is applied to a model of an inclined
vibro-impact energy harvester device,where the energy
is generated via impacts of the ball with a dielectric
polymer on the capsule ends.While sequences of bifur-
cations have been studied extensively in single- degree-
of-freedom impacting models, there are limited results
for two-degree-of-freedom impacting systems such as
the impact pair. Using an analytical characterization
of impacting solutions and their stability based on the
maps between impacts, we obtain sequences of period
doubling and fold bifurcations together with grazing
bifurcations, a particular focus here. Grazing occurs
when a sequence of impacts on either end of the capsule
are augmented by a zero-velocity impact, a transition
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that is fundamentally different from the smooth bifur-
cations that are instead characterized by eigenvalues of
the local behavior. The combined analyses allow iden-
tification of bifurcations also on unstable or unphysi-
cal solutions branches, which we term ghost bifurca-
tions. While these ghost bifurcations are not observed
experimentally or via simple numerical integration of
the model, nevertheless they can influence the birth or
death of complexbehaviors and additional grazing tran-
sitions, as confirmed by comparisons with the numeri-
cal results. The competition between the different bifur-
cations and their ghosts influences the parameter ranges
for favorable energy output; thus, the analyses of bifur-
cation sequences yield important design information.

Keywords Vibro-impact system · Non-smooth
dynamics · Impact pair · Fold bifurcation · Period
doubling bifurcation · Grazing bifurcation · Periodic
solutions · Energy harvesting

1 Introduction

Vibro-impact (VI) systems present a remarkable class
of nonlinear systems where impacts drive the interac-
tion between the system components. A classical VI
system is comprised of a forced mass and motionless
rigid barrier(s) or a pair of moving impacting masses,
either of which can be forced. Some examples of VI
systems are shown in Fig. 1. The simplest VI mod-
els include both that of a ball bouncing on a harmoni-
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cally moving surface, studied in [1,2] and a pendulum
impacting a barrier [3]. A complete dynamical model
includes equations governing behavior both between
impacts and at the impacts. Thus the dynamics fall into
the general class of non-smooth dynamics [4–6]. Even
when a linear system governs the dynamics between
impacts, the VI system exhibits nonlinear behavior
that necessarily follows from these non-smooth inter-
actions.

Modeling the impact dynamics can take on different
levels of complexity. Using a restitution coefficient r ,
defined as the ratio between the mass velocity imme-
diately after and before impact, implies that it happens
instantaneously or on a negligibly short time scale as
compared to the overall system. Typically 0 ≤ r ≤ 1,
depending on the material, shape and contact surfaces
of the impacting bodies. Systems with instantaneous
impacts are strongly nonlinear, given the discontinu-
ous velocities of the impacting bodies before and after
any non-elastic impact, since the velocity is reduced
for r < 1 and changes direction for r > 0.

The specific type of non-smooth nonlinearity, due
to the instantaneous impact approximation in the VI
systems, can facilitate analysis in some cases. Indeed,
when the energy losses due to impacts (r <1) dominate
other damping mechanisms, the latter are neglected,
yielding a conservative system between impacts that
can be studied analytically. Complementing the sys-
tem response with the impact condition(s) for its veloc-
ity allows one to derive an explicit analytical solu-
tion for its periodic motion, as in [7], and to study the
dynamical dependence on system parameters, includ-
ing the classical nonlinear analyses of smooth bifurca-
tions observed in VI systems. Such analytical results
cannot capture the non-smooth behavior explicitly, so
that complementary numerical simulations or semi-
analytical methods are generally required. One type of
non-smooth bifurcation, first reported in [8], is a graz-
ing bifurcation characterized by a zero-velocity impact.
Later, in [9,10] gave a global bifurcation analysis, indi-
cating the importance of the grazing phenomenon on
the global dynamics of VI systems. In the context of
a spring-mass system colliding against a motionless
barrier [11], A. Nordmark introduced the term graz-
ing impact associated with the flow tangential to the
impacting surface. It is treated as a bifurcation, separat-
ing non-impacting and vibro-impacting motions. The
near-grazing two-dimensional map was also derived in
[11], demonstrating the continuity of the bifurcating

Fig. 1 Examples for different VI systems. Sketch of a a two-
degree-of-freedom (TDOF) impact pair subject to base excitation
y2 and a force y1 applied to the mass [12], b a single-degree-
of-freedom (SDOF) system [13], here kb indicates the spring
constant for the barrier, so that as kb → ∞, we recover instan-
taneous impact. c TDOF impact oscillators with motion limiting
constraints for both masses [14], d two oscillators coupled only
by impact [15]

branch with the square root singularity of the corre-
sponding Jacobian at the grazing point.

These earlier analyses of grazing and related maps
generated deep interest in obtaining a better under-
standing of non-smooth dynamics in related SDOFs.
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Fundamental competition of smooth and non-smooth bifurcations 6131

In [16] the authors compared bifurcations in instanta-
neous and soft impact models, hypothesizing the graz-
ing as a limiting case of either a fold (FB) or a period
doubling (PD) bifurcation. Three bifurcation scenar-
ios in the Nordmark map were discovered in [17],
depending on the values of the bifurcation parame-
ter. In [18] the author compared a grazing transition
of a stable periodic orbit with FBs, also considering
coalescing stable and unstable orbits of the impact-
ing solution. Transitions via grazing to either chaotic
attractors or periodic behavior have been studied in
terms of generic bifurcation parameters in [19] and in
terms of increased excitation amplitude in [18]. Baner-
jee et al. [20] discussed the grazing for unstable tra-
jectories in an experimental SDOF system, also calling
the phenomenon “invisible” grazing, since this graz-
ing phenomenon was not possible to observe in the
physical system. Other grazing-related features stud-
ied in SDOF VI systems include a dramatic increase in
eigenvalues of unstable solutions near grazing, in [18],
vanishing singularities of the Jacobian matrix in [21],
sufficient conditions for periodic orbits that branch off
of the grazing bifurcation [22], and comparisons of
Nordmark and Poincaré maps to study grazing born
from high-amplitude chaotic attractors [13]. In addi-
tion to the above-mentioned studies there are others,
including [23–26] SDOF systems with linear dynam-
ics between one-sided impacts, linear SDOFswith two-
sided impacts [27–34] and oblique impacts [35], aswell
as multi-DOF systems with impacts [14,15,36–40].
Relevant information and references for the dynam-
ics and bifurcations in non-smooth systems and related
analytical methods can be found in books [4–6,41,42]
and in the review paper [43].

In this paper we focus on the analysis of grazing and
its interplay with smooth bifurcations, such as period
doubling and saddle node or fold bifurcations (FB),
in the two-sided vibro-impact pair. The term impact
pair is used to clearly distinguish a category of VI sys-
tems where the barriers are moving with respect to the
main impacting mass. In [12], and also in [16], the
authors discussed the different sequences of bifurca-
tion scenarios, including PD, FB, and grazing, in a
two-degree-of-freedom (TDOF) impact pair, with an
additional forcing on the mass. In [37] the authors con-
sidered a vibro-impact pair with a barrier and showed
the cases when the PD bifurcation preceded grazing
bifurcation in a vibro-impact-slider pair. The authors

of [44,45] focused on gear VI dynamics, whosemotion
resembles that of a system with two moving barriers.

They demonstrated that grazing-grazing and PD-
grazing trajectories can appear simultaneously in co-
dimension 2-bifurcation scenarios, creating or destroy-
ing the gaps of periodic motion that separate chaotic
regions in the bifurcation structure [44], and that chaos
may die by grazing or by boundary crisis [45]. Com-
bined analytical and numerical studies in [41] illus-
trate the potential for complex behaviors and transi-
tion, with various sequences of smooth bifurcations,
coexisting periodic behaviors, and grazing bifurcations
for the horizontal impact pair. Existence and stabil-
ity conditions for different types of periodic solutions
for the impact pair are given in [46] and [47], while
sticking and grazing conditions for individual trajec-
tories are discussed in [48]. For complex bifurcation
sequences in SDOF systems, [49] find three scenar-
ios of co-dimension 2 bifurcations (amplitude and fre-
quency of the excitation) in cases where grazing may
lead to a stable impacting solution and [50] considers
degenerate bifurcations, where FB and/or PD bifurca-
tions coincide with the grazing point. The variety of
different options observed and reported in the above-
mentioned publications has been a source of inspiration
for this work, where we consider the phenomenon of
grazing in a wide range of transitions.

A goal of this paper is to develop analytical results
for the impact pair, in particular related to the inter-
play of smooth bifurcations such as PD and FB
and discontinuity-induced grazing bifurcations. The
sequence of different types of bifurcations, as well as
the settings in which both types of bifurcations occur,
has clear implications for the types of solutions that
can and cannot be observed in different parameter con-
texts. In contrast to SDOF systems for which there is
a wealth of analyses, as described above, that consider
the appearance of both grazing and FB or PD bifur-
cations, TDOF systems—and in particular the impact
pair—have not undergone a systematic study. In the
majority of the SDOF studies mentioned above, the
grazing corresponds to the transition between non-
impacting and impacting scenarios only. In contrast,
in the context of the impact pair, the grazing trajec-
tories separate different types of impacting trajectories
and consequently can appear in different sequences that
include smooth bifurcations.

The model we consider in this paper takes the form
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of the “canonical” impact pair, where there is simple
unimodal forcing on the motion of the barriers without
a separate forcing on the mass. Our analysis provides
a framework for studying the general structure that
underpins the sequences and “competition” between
smooth and non-smooth bifurcations in the impact pair.
A formulation in terms of relative displacements facili-
tates handling the impact as a fixed switchingmanifold,
a valuable viewpoint commonly used throughout stud-
ies of non-smooth dynamics. This flexibility allows a
thorough analysis of these sequences without the ten-
dency toward more complex behavior that is specific
to other impact pair type models with additional inputs
and forcing, as in [12,44,45]. At the same time, our
framework provides a foundation for studying these
other scenarios.

Whilewe focusmuchon thegeneral questionof non-
smooth and smooth bifurcations in an impact pair, we
are simultaneously motivated by the relevance of our
analysis in the energy harvesting context. We apply the
results to describe the dynamics and energy harvesting
(EH) capabilities of a VI-EH device whose dynamics
follow that of an impact pair. The device is comprised
of a capsule, both ends of which are covered with flex-
ible membranes made out of dielectric elastomer (DE)
material [51], in which a ball moves freely without
any friction. The capsule is excited externally, and the
ball is excited by impacting one of the membranes, at
the same time deforming the membranes and changing
their capacitance. Thus, this concept falls directly into a
category of a vibro-impact pair, since both the ball and
the membranes, serving as barriers to the ball, move
with respect to each other. The collection of work uti-
lizing VI dynamics for energy harvesting before 2017
can be found in [52]. As the research in this area con-
tinues, new ideas and concepts have been emerging
[53–57].

The paper is structured as follows: In Sect. 2 we pro-
vide a framework for studying the relationship between
smooth and non-smooth grazing bifurcations, includ-
ing the context of the VI-EH model and a notation for
tracking different behaviors on both stable and unsta-
ble or unphysical branches. In Sect. 3.2 we give the
analytical results for both smooth and grazing bifur-
cations. In Sect. 4 we compare the analytical results
to numerical simulations, demonstrating how the ana-
lytical approach provides insight into the sequences
of smooth and non-smooth bifurcations and into addi-
tional complex behaviors.

2 Context and framework

In this section we provide the context of the VI-EH
model in which we develop our analysis of the impact
pair. We also give a framework and notation for study-
ing different families of bifurcations in the general
impact pair system. The approach is then demonstrated
using this framework in the context of theVI-EHmodel
throughout the paper.

2.1 The VI-EH model

We demonstrate the dynamical analyses in the con-
text of an inclined VI-EH system. Figure 2a shows
a schematic of the device, consisting of a cylinder of
mass M moving under the influence of harmonic exci-
tation F(ωτ + ϕ) with period 2π

ω
and a ball of mass m

freely moving inside the cylinder under the influence
of gravity g = 9.8 m/s2. The motion of this system is
described by two equations for the acceleration of the
cylinder and the ball between impacts

Ẍ = F(ωτ + ϕ)

M
, (1)

ẍ = −g sin β , (2)

for X the position of the center of the cylinder, and x
the position of the ball.

We denote τ = τ j as the j th impact with either of
the DEmembranes located on the top ∂T or bottom ∂B
of the cylinder. Then the ball velocity ẋ(τ j ) ≡ ẋ j and
displacement x(τ j ) ≡ x j at the j th impact follow the
impact condition

ẋ+
j = −r ẋ−

j + (r + 1)Ẋ j ,

x j = X j ± s

2
for x j ∈ ∂B(+) or ∂T (−), (3)

where r is the coefficient of restitution and superscripts
−/ + denote the ball velocities just before/after each
impact. This impact condition reflects the fact that the
velocity of the cylinder does not change upon impact,
based on our assumption thatm is negligible compared
to M . Periodic behaviors with different sequences of
impacts are shown in Fig. 2b, alternating ∂T and ∂B
(upper) and periodic behavior with three impacts per
forcing period, two on ∂B and one on ∂T (lower).

Non-dimensionalization of (1) and (2) with (3)
allows us to streamline the analysis, by reducing the
number of parameters to some key dimensionless quan-
tities. Furthermore, we introduce a relative position
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Fig. 2 a Model sketch for the vibro-impact energy harvester,
adapted from [58]. Set of parameters: β angle of incline, ∂B
(bottom) ∂T (top) cylinder DE membranes, s distance between
membranes, M (cylinder) and m (ball) masses. b Illustration of
typicalmotion of the ball (solid red line)within the capsule (dash-
dotted blue lines) with forcingF(ωτ +φ) for different values of
β: one impact on ∂B and ∂T per period for smaller β (π/9); with
two (one) impact(s) on ∂B (∂T ) per period for larger β (4π/9)

Z(t) in terms of the difference of the non-dimensional
displacements of the cylinder X∗ and of the ball x∗ as
in [58,59],

τ = π

ω
t, X (τ ) = Aπ2

Mω2 X
∗(t),

x(τ ) = Aπ2

Mω2 x
∗(t), A ≡‖ F ‖, (4)

Z(t) = X∗(t) − x∗(t),

Z̈(t) = F(π t + ϕ) + Mg sin β

A
= f (t) + ḡ,

‖ F ‖ = 1. (5)

In (5) A is an appropriate norm of the strength of the
forcingF , so that in the dimensionless setting the forc-

ing has the unit norm. Then the impact condition (3)
at the dimensionless time t = t j of the j th impact is
given by

Ż+
j = −r Ż−

j , Z j = ±d

2
, d = Mω2

Aπ2 s, (6)

where d is dimensionless capsule length. Throughout
our study we fix the parameters M = 124.5 g, ω = 5π
Hz, allowing us to focus on variability of the non-
dimensional capsule length d as it varies with dimen-
sional capsule length s or forcing strength A.

The formulation in terms of the relative variable
Z facilitates tracking the dynamics between impacts,
which take place on the fixed switching manifolds
Z = ±d/2. It is straightforward to find Z between
impacts, by integrating (5) over t ∈ (t j , t j+1) with ini-
tial conditions Ż+

j and Z+
j following the impact at t j ,

yielding equations for the relative velocity Ż (t) anddis-
placement Z(t) at times between two impacts. Replac-
ing Ż+

j with Ż−
j via (6), using continuity of the dis-

placement Z+
j = Z−

j , and dropping the superscripts
yields

Ż(t) = −r Ż j + ḡ(t − t j ) + F1(t) − F1(t j ), (7)

Z(t) = Z j − r Ż j (t − t j ) + ḡ

2
(t − t j )

2

+ F2(t) − F2(t j ) − F1(t j )(t − t j ), (8)

where F1(t) = ∫
f (t)dt , F2(t) = ∫

F1(t)dt . These
equations form the basis of our analysis, as we evaluate
them at t = t j+1 to get maps for the relative velocity
and displacement between two impacts, as described
in detail in Sect. 3.1.

While our focus is on the analysis of the general
bifurcation structure, it is valuable to track the influ-
enceof this structure on the energyoutput for theVI-EH
device with DE membranes on both ends of the cap-
sule. Typically DE membranes are made out of acrylic
or silicon-based polymers, which are highly stretch-
able (300–700%), light, and non-conductive, with the
dielectric permittivity coefficient ε being 2–12 times
higher than that of air. Both sides of the membranes
are covered with compliant electrodes, i.e., electrodes,
which can stretch the same amount as the membranes.
Thus, each membrane becomes a variable capacitance
capacitor. Having applied bias voltage at the point of
the maximum membrane deformation, corresponding
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to the maximum value of the capacitance, the exces-
sive voltage can be harvested from the membrane as
it returns to its undeformed state, corresponding to its
minimum capacitance value. Thus, the amount of har-
vested energy is proportional to the difference in the
capacitance between the deformed and undeformed
states, C = ε0εAm/h, where the Am and h are the
areas and the thickness of the membrane at each state.
Note that the features of the proposed concept align
with Fig. 2a and are thus consistent with the relative
motion formulation in terms of Z .

To calculate the electrical power generated by the
device, we use two quantities: the average output volt-
age per impact U I and average voltage over a time
interval UT . These depend nonlinearly on the relative
dimensional velocity Ż at impact. This nonlinear rela-
tionship arises from the deformation of the DE mem-
brane upon impact and involves geometric deflection
quantities and mechanical properties of the material.
These average quantities are calculated by the formu-
las

Uk = U imp
k −Uin, U I = 1

N

N∑

k=1

Uk,

UT = 1

t f − t0

N∑

k=1

Uk , (9)

whereUk is the net output voltage at the kth impact rep-
resenting the difference between the generated voltage
U imp
k and constant input voltageUin = 2000V applied

to the membranes, N is the number of impacts over
a time [t0, t f ] and t f − t0 = ω

π
(τ f − τ0) is the cor-

responding dimensionless time interval. Details on the
energy harvesting parameters are given in Appendix A.

2.2 A framework for dynamics of the impact pair

BothTDOFandSDOFsystems experiencediscontinuity-
induced bifurcations, such as grazing, and traditional
bifurcations such as PD and FB. But the TDOF impact
pair, as in the VI-EH model, has fundamentally differ-
ent sequences of periodic solutions and bifurcations as
compared with SDOF systems that are based on a mass
impacting a fixed barrier. In SDOF systems, it is com-
mon to study bifurcations from a smooth periodic solu-
tion to a non-smooth periodic solution via grazing with
the barrier. However, for the TDOF impact pair, the

simplest periodic solution by definition must involve
impact with at least one side of the capsule, similar to
the bouncing ball. Furthermore, the sequence of bifur-
cations in the TDOF impact pair includes a wider range
of possibilities, including grazing bifurcations gener-
ated via an additional impact per forcing period with
either end of the cylinder, as well as smooth bifurca-
tions such as PD appearingwithout additional impacts.

In order to track the different types of qualitative
behavior in the TDOF impact pair, we employ a nota-
tion that captures different types of impacting behav-
ior. For example, increasing the forcing amplitude A in
the impact pair yields a basic sequence of bifurcations
from a low amplitude state, starting with an impact on
only one end per forcing period T , to a single impact
on each end or to combinations of multiple impacts on
each end that may or may not have period T . To differ-
entiate across the range of impacting solutions, we use
the notation n:m/pT to categorize different periodic
motions for an impact pair with a T -periodic external
excitation, as in [59]. The integers n andm indicate the
number of impacts against the bottom and top, respec-
tively, of the capsule per period T , simplified to n:m
for the cases where p = 1. This notation also cap-
tures sequences of period doubling sequences, such as
transitions from 1:1 to 1:1/pT for p = 2, 4, . . ., as
well as non-smooth bifurcations via grazing. Grazing
occurs for the critical parameter value where the tra-
jectory has a zero relative velocity at impact, so that
beyond this critical value the system dynamics includes
an additional impact (with nonzero impact velocity).
The notation reflects this aswe observe transitions from
n:m behavior to (n + 1):m or n:(m + 1) behavior in
the impact pair. For example, as an impact pair, the VI-
EH system exhibits favorable energy output following
a grazing transition from 1:0 to 1:1 behavior, that is,
where the system moves from impact on only one end
of the capsule to alternating impacts on both ends. This
transition is achieved, e.g., through increased forcing
amplitude, with further increases driving transitions
from 1:1 to either 2:1 or 1:2 behavior via what we
term first-order grazing on the bottom or top of the
capsule. Alternatively, it may undergo a period dou-
bling transition to 1:1/2T prior to any grazing bifur-
cation. For completeness, we also include the notation
n:m/C , indicating complex, aperiodic behavior, where
over long time periods the typical number of impacts
against the bottom (top) of the capsule is n(m). Our
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Fig. 3 Bifurcation diagrams for the relative impact velocity
Żk . Black circles indicate the results from attracting behavior
obtained by numerical simulation of the full system (1)–(3). Solid
(dotted) lines indicate stable (unstable or unphysical) analytical
results for impact velocities Żk for 1:1 and 2:1 solutions. Blue
(green) lines correspond to impacts on ∂B (∂T ). a β = π/9,

r = .3, A = 5 N, decreasing s, 0.16 < s < 0.64 m; b β = π/4,
r = .5, s = 0.5 m, increasing A, 3.1 < A < 14.5; c β = π/3,
r = .5, A = 5 N, decreasing s, 0.19 < s < 0.72 m; d β = π/2,
r = .7, s = 0.5 m, for increasing A, 1.4 < A < 14.5. Labels of
red dots for different bifurcations as given in Table 1

computational results capture the n:m/C behaviors, but
we do not study them analytically in this paper.

Figure 3 provides motivating examples of differ-
ent sequences of bifurcations that commonly appear
for the impact pair (5)–(6) for both smooth and graz-
ing bifurcations. Here and throughout the paper we
take F = A cos(ωτ + φ) in (4)–(5). The markers
on the bifurcation diagrams give values for the impact
velocities Ż j obtained numerically for large t , that is,
for the attracting or stable behavior. These numerical
results are obtained by a continuation-type method for
d decreasing, choosing a value of d, computing over a

sufficiently long time to reach the attracting behavior,
from which we obtain the sequence of values of Ż j at
that value of d. This attracting behavior provides the
initial condition for computing the attractor at the next
value of decreasing d, usually chosen close to the previ-
ous value of d. From (6), d varies linearly with dimen-
sional capsule length s and is inversely proportional to
forcing amplitude A. Then Fig. 3 shows the results for d
decreasing in the continuation-like method, with either
decreasing s or increasing A. The notation fromTable 1
is used to highlight different types of transitions. Some
select analytical results, specifically stable and unstable
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1:1 and 2:1 solutions and the PD andGν:μ
n:m bifurcations,

are shown in Fig. 3 to provide a more complete picture
of the motivating examples. These analyses leading to
these results are discussed in detail in Sect. 3.

We note that the detailed structure of the bifurca-
tion diagram follows from the choice to graph rela-
tive impact velocity vs. a bifurcation parameter. This
choice fits naturally with the expressions for Ż j and Z j

in (7)–(8) which form the basis of the maps between
impacts defined in Sect. 3.1. One could also choose to
use a stroboscopic (Poincaré) map, as in [60] where it
is shown to yield a similar bifurcation structure for the
VI-EH model as shown in this paper. One difference is
that there may be additional discontinuities in the 1:1
branches in the stroboscopic map, resulting from the
shift in the asymmetry of the 1:1 solution. That is, the
phase of the impacts relative to the periodicity of the
stroboscopic map may result in additional discontinu-
ities in the bifurcation diagrambesides those associated
with grazing or other bifurcations.

Figure 3a shows grazing bifurcations for decreasing
s, with transitions from 1:1 to 2:1 and 2:1 to 3:1 solu-
tions, denoted byG2:1

1:1 andG3:1
2:1, respectively. Panel (b)

shows aperiod doubling bifurcation from1:1 to 1:1/2T ,
labeled PD, with the transition labeled PDG from
1:1/pT to 2:1 behavior following additional period dou-
bling, and finally G3:1

2:1. Panel (c) shows PD transitions
from 1:1 solutions to 1:1/2T and from 2:1 to 2:1/2T
for smaller d, followed by PDG from 2:1/pT to 3:1.
In between there is a sequence of period doublings of
1:1/pT behavior, then awindowof n:m/C which termi-
nates in 2:1 periodic behavior. Panel (d) is qualitatively
similar to Panel (c) for d < .4, but there are two sepa-
rate regions of stability for the 1:1 solution. For d > .8,
the 1:1 solution is stable, followed by a sequence of PD
to reach 1:1/pT and eventually chaotic behavior as d
decreases, until a second stability region for the 1:1
solution is reached for d < .4.

Furthermore, the results in Panels (a)–(d) illustrate
several types of transitions to 2:1 behavior, where the
low velocity branch of the stable 2:1 solution does not
reach Ż j = 0. In Panel (a) at the critical point G2:1

1:1, the
1:1 solution meets an unstable 2:1 branch (not shown
in Fig. 3), which in turn meets the stable 2:1 solution
at a fold bifurcation (FB). A similar transition was
observed for a SDOF system in [50]. Figure 3 illus-
trates that the TDOF impact pair exhibits a variety of
transitions in which the FB structure plays a role. In
addition to the 1:1 to 2:1 transition in Panel (a), it is

present in the transition to 2:1 behavior via PDG in
Panel (b), and following n:m/C in Panel (c) via a tran-
sient grazing TG defined in Table 1. For simplicity we
do not label FB and TG in Fig. 3; the mechanisms and
significance of these features in the context of grazing
transitions are discussed in detail in Sect. 4, and labeled
in the figures there.

Table 1 gives the notation to identify and distinguish
first-order grazing transitions Gν:μ

n:m , period doubling
PD, and grazing from period doubled PDG , as shown
in Fig. 3. These are all transitions from a stable solu-
tion to a different stable state, motivating the analytical
study of critical transitions as demonstrated in Sect. 3.
In Table 1 we introduce the term first-order grazing,
since in the impact pair setting, different types of graz-
ing typically yield transitions that add one impact per
forcing period. We also introduce the term higher-
order grazing generically for a collection of different
types of transitions that can add multiple impacts per
forcing period, usually limited to the larger n and/or m
settings. While we do not study higher-order grazing
analytically, we point out some occurrences observed
numerically in Sect. 4.

Beyond Gν:μ
n:m and PD, the analysis allows iden-

tification of critical parameter values on unstable or
unphysical branches. Specifically, we identify first-
order ghost grazing, G̃ν:μ

n:m that is, grazing of unsta-
ble solutions, typically those that have lost stability via
PD. Furthermore, we identify ghost period doubling
P̃D on unphysical branches, occurring on the dotted
branches following grazing, e.g., on the dotted line for
the unphysical 1:1 solution shown in Panel (a) for d
below G2:1

1:1. We refer to these as unphysical solutions
since they violate the containment condition, which
is | Z(t) | < d/2. Similar terminology was used in
[32,50] in a SDOF system, and we discuss it further
in Sect. 3.2. These ghost bifurcations are defined in
Table 1, and their significance in the dynamical behav-
ior and energy output of the VI-EH device implications
are discussed in Sect. 4. One delicate difference to note:
The value Gν:μ

n:m may correspond to a bifurcation to an
unstable ν:μ solution, which generically coexists with
a stable ν:μ solution, so that the transition observed
numerically is from a stable n:m to the stable ν:μ solu-
tion. This was mentioned above in the context of FB
for the critical point G2:1

1:1 in Fig. 3a. This Gν:μ
n:m tran-

sition contrasts with ghost grazing, which corresponds
to grazing of an unstable n:m solution, as discussed in
detail in Sect. 4.1.
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Table 1 Notation for different types of state transitions for the impact pair

Concept Abbreviation Definition

Period doubling PD Period doubling of an n:m solution,
e.g., transition from n:m to n(m)

impacts on ∂B (∂T ) per period T
with period 2T , thus n:m/2T

1st-order grazing Gν:μ
n:m , n > 0, m ≥ 0 (ν, μ) =

(n + 1,m) or (ν, μ) = (n,m + 1)
Grazing on stable n:m branch, with
Ż j = 0 at impact on ∂T or ∂B;
generically indicates transition to
ν:m periodic solutionwith one addi-
tional impact per period T

Grazing from period doubled state PDG Transition via grazing from a
n:m/pT periodic solution to a T -
periodic solution that has an addi-
tional impact per period. For exam-
ple, PDG is used for transitions
from 1:1/pT to 2:1, commonly
observed for p > 1

1st-order ghost grazing G̃ν:μ
n:m , ν and μ as in Gν:μ

n:m Grazing of an unstable n:m solution,
yielding one additional impact per
period T

Period doubling ghost P̃D Period doubling of an unsta-
ble/unphysical periodic n:m solu-
tion

Transient grazing TG Intermittent lowvelocity impacts on
a trajectory, usually for aperiodic
behavior n:m/C

Fold bifurcation FB Birth of a pair of stable and unsta-
ble branches of periodic n:m solu-
tions, stability characterized by real
eigenvalues

Higher-order (ghost) grazing Gρ:δ
n:m ( G̃ρ:δ

n:m ), ρ ≥ n > 0,
δ ≥ m ≥ 0, ρ > n and/or δ > m

Grazing on stable (unstable) n:m
branch, Ż j = 0 at impact on ∂T or
∂B; transition yields multiple addi-
tional impacts per period T

Comparisons of the values of β and r for the dif-
ferent examples shown in Fig. 3 suggest trends that we
confirm in the next section with the analytical results.
For example, grazing transitions are more likely to be
observed for smaller r and β and decreasing s, while
PD is observed more often for larger r and β, and
increasing A. Panel (b) illustrates that for smaller and
intermediate ranges of β and r , and increasing A, PD
of 1:1 solutions precedes transitions to 2:1 solutions,
but grazing occurs for other n:m transitions. Panel (d)
shows separate intervals with different 1:1 solutions
followed by separate PD transitions. Such sequences
are observed for other values of larger β and r , in the
case of A increasing.

In the following we develop a systematic approach
based on the (semi)-analytical results for studying tran-
sitions between n:m/pT solutions for an impact pair.
The analytical approach provides a new structure for
studying sequences of different solutions on stable and
unstable branches, filling a gap in the study of TDOF
impact pair-type systems. The new notation provides
a framework for tracking the bifurcation sequences of
grazing, period doubling, and fold bifurcations, even
for the unstable or unphysical solutions, since these
bifurcation ghosts contribute to the routes to complex
dynamics, as discussed in Sect. 4.2. The added value
of our general semi-analytical study of the dynamics
is its applicability to explain and predict energy output
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in the VI-EH system. For example, transitions from
n:m/pT to (n + 1):m solutions frequently appear via
grazing bifurcations, with changes in average energy
output resulting from the additional impact per forcing
period. With the VI-EH system as a motivation for our
analysis, we focus on smaller values of n and m, for
which that system exhibits larger parameter ranges of
higher energy outputs.

3 Analytical results for bifurcations

We outline the analytical approaches for identifying
smooth bifurcations for n:m periodic solutions for the
impact pair, with explicit equations for 1:1 and 2:1
solutions as in [59]. We also provide the analytical
approach for identifying first-order grazing transitions.
Then these results are combined to capture sequences
of the different PD and grazing bifurcations, includ-
ing their corresponding ghost bifurcations. All results
are illustrated in the context of the VI-EH model (7)
and (8). We note that similar analyses were applied to
a slowly varying subsystem in a vibro-impact nonlin-
ear energy sink, based on an impact pair (see [40] and
references therein.)

3.1 Maps for periodic solutions

In [58,59] analytical descriptions of n:1 periodic
solutions were obtained, based on compositions of
maps from impact to impact. There are four basic non-
linear maps P,  = 1, 2, 3, 4 for the corresponding
transitions between impacts,

P1 : (Z j ∈ ∂B, Ż j , t j ) 
→ (Z j+1 ∈ ∂B, Ż j+1, t j+1),

P2 : (Z j ∈ ∂B, Ż j , t j ) 
→ (Z j+1 ∈ ∂T, Ż j+1, t j+1),

P3 : (Z j ∈ ∂T, Ż j , t j ) 
→ (Z j+1 ∈ ∂B, Ż j+1, t j+1),

P4 : (Z j ∈ ∂T, Ż j , t j ) 
→ (Z j+1 ∈ ∂T , Ż j+1, t j+1) .

(10)

The mathematical expressions for these maps take
different forms depending on whether Z j and Z j+1

are located on either ∂B or ∂T . Specifically, we take
t = t j+1 in (7)–(8) to get the equations for Ż

−
j and Z−

j ,
and dropping − as above, we obtain the maps for P,

Fig. 4 Schematics illustrating the composition of maps and cor-
responding sequence of impacts for a 1:1, 2:1 and n:1 T-periodic
solutions; b 2:2 and n:m T-periodic solutions

 = 1, 2, 3, 4,

Ż j+1 = −r Ż j + ḡ(t j+1 − t j ) + F1(t j+1) − F1(t j ),

(11)

D = −r Ż j (t j+1 − t j ) + ḡ

2
(t j+1 − t j )

2

+ F2(t j+1) − F2(t j ) − F1(t j )(t j+1 − t j ) ,

(12)

where D1 = D4 = 0, D2 = −d and D3 = d.
A n:m periodic solution is then composed of the

sequence of n+m maps Pn−1
1 ◦ P2 ◦ Pm−1

4 ◦ P3 that are
completed during one forcing period of length T . The
sequence involves a transition from ∂B and ∂T (P2) and
vice versa (P3), aswell as consecutive impacts on either
∂B (P1) and ∂T (P4). A diagram of such sequences is
shown in Fig. 4.

Given the inclination angle β > 0, it is not difficult
to imagine that (4)–(6) regularly generate n:1 solutions
for n ≥ 1 of the specific form Pn−1

1 ◦ P2 ◦ P3, which
we focus on here. The maps form the basis for deriv-
ing an analytical form of the periodic motion in terms
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of several quantities: the impact velocities Żk+,  =
0 . . . , n, the time intervals between impacts�tk+−1 =
tk+ − tk+−1 for the n + 1 maps, and the phase differ-
ence at the initial impact ϕk = mod(π tk +ϕ, 2π). The
approaches used in [58,59] determine the n + 2-tuple

(Żk, ϕk,�tk, . . . ,�tk+n−1), (13)

which define the n:1 periodic solution. The n+2 equa-
tions for (13) are obtained through the steps i) sum-
ming the equations for Ż j for all Pj ; ii) summing
the equations for the Z j for all Pj ; iii) n − 1 pair-
wise combinations of the equation for Żk+ j with that
of the impact position Zk+ j+1, applied successively
for j = 1, . . . , n − 1; and iv) Żk from the equa-
tion for position Zk+1 in P1. These n + 2 equations
take the form Żk = h(ϕk,�tk, . . . ,�tk+n−1), and
the remaining Ż j for j = k + 1, . . . , k + n and �tk+n

are determined, respectively, from combining (13) with
(11) for the Pj ’s, and with the periodicity conditions
∑n+1

=1 �tk+−1 = T and Żk+n+1 = Żk . Note that for
this formulation, the analytical solution for the n + 2-
tuple yields the initial impact velocity Żk and phase
shift ϕk for the first map in the sequence Pn−1

1 ◦P2◦P3,
which is P1 for n > 1, and P2 for n = 1.

We focus primarily on transitions from either 1:1 or
2:1 periodic solutions and recall the analytical results
that define these two types of periodic solutions for the
forcing F = A cos(ωt + φ). The three equations for
the triple K∗

3 ≡ (Żk, ϕk,�tk) that determine the 1:1
periodic solution are [58],

Żk = 1

(r − 1)
[F1(tk+1) − F1(tk)]

− ḡ

(r − 1)

(
T

1 + r
− �tk

)

, (14)

Żk = T

r�tk − �tk+1
·
[
g

2
(�tk − �tk+1) − F1(tk)

]

,

(15)

[F1(tk+1) − F1(tk)]2 + [F2(tk+1) − F2(tk]2

=
[

Żk(r − 1) + ḡ

(
T

1 + r
− �tk

)]2

+
[

−d + �tk�tk+1

2T
· [2(r + 1)Żk − ḡT ]

]2
.

(16)

The four equations for the quadrupleK4 ≡ (Żk, ϕk,

�tk,�tk+1) that determine the 2:1 periodic solution
are [59],

Żk = 1

1 − r + r2

[

(r − 1)ḡ�tk − ḡ�tk+1 + (1 − r)F1(tk) + r F1(tk+1) − F1(tk+2) + T ḡ

r + 1

]

. (17)

Żk = 1

r�tk

[
F2(tk+1) − F2(tk)

] + 1

2r
[ḡ�tk − 2F1(tk)] . (18)

Żk = 1

r

[
ḡ�tk + F1(tk+1) − F1(tk)

] − 1

r2�tk+1

[
d + F2(tk+2) − F2(tk+1)

]

− 1

2r2
[
ḡ�tk+1 − 2F1(tk+1)

]
. (19)

Żk =

[
ḡ

2
(�t2k + �t2k+1 + �t2k+2) + F1(tk)(−r2�tk+2 + r�tk+1 − �tk)

]

r3�tk+2 − r2�tk+1 + r�tk
+ (20)

+ F1(tk+1)(r2�tk+2 − r�tk+1 + r�tk+2 − �tk+1)

r3�tk+2 − r2�tk+1 + r�tk
+

+ r2ḡ�tk�tk+2 − r ḡ�tk�tk+1 − r ḡ�tk+1�tk+2 − (1 + r)�tk+2F1(tk+2)

r3�tk+2 − r2�tk+1 + r�tk
. (21)
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The linear stability analysis of the n:1 periodic solu-
tion defined by the n + 2-tuple (13) is based on the
linear techniques of [8,41,61]. The analysis provides
a linear equation for the small perturbation δHk to the
fixed point H∗

k = (tk, Żk) of the n:1 periodic solution,
δHk+(n+1) = Jn+1(H∗

k+i,i=1,...n)δHk . Thematrix Jn+1

is based on the product of Jacobians from the compo-
sition of maps Pj evaluated at the appropriate fixed
values H∗

 that define the n:1 solution.
The details for computing Jn+1 are given in [58,59]

for the 1:1 and 2:1 periodic solutions. The eigenvalues
λi , i = 1, 2 of Jn+1 then give the linear (in)stability of
the n:1 solution, as well as indicating the nature of the
(loss of) stability. For example, |λi | = 1 yields a PD
bifurcation (specifically, λi = −1), resulting in a tran-
sition from 1:1 to 1:1/2T periodic solutions. Figure 6
shows the values d = dPD for transitions to 1:1/2T and
2:1/2T behavior. Depending on the parameter values,
there can be additional period doublings to 1:1/pT and
2:1/pT solutions for p ≥ 2.We do not study these ana-
lytically, but they are observed in the numerical simu-
lations of (5)–(6) shown below.

3.2 Analytical results for grazing bifurcations

In order to compare the prevalence of transitions from
1:1 to 1:1/pT solutions via PD vs. transitions from
1:1 to 2:1 solutions via grazing, we give analytical
conditions for determining first-order grazing bifurca-
tions. The linear stability analysis [58,59] based on the
eigenvalues for the linearized map composition does
not apply in this case, since it assumes the compo-
sition of smooth trajectories. In contrast, grazing is
a discontinuity-induced bifurcation, corresponding to
the critical parameter value at which a smooth trajec-
tory is tangent to the switching surface. Then the loca-
tion of the grazing bifurcation is obtained by using the
maps Pj above, combined with conditions for intersec-
tion of a trajectory with a switching surface.

As discussed above, analytical studies of grazing
in SDOF impacting systems usually consider the first
instance of grazing with a single barrier. Then the focus
is on the transition from a non-impacting smooth peri-
odic behavior to one that has a zero-velocity impact
on the barrier. In contrast, for the TDOF impact pair
system, our focus is on the transition between differ-
ent energy producing n:m/pT behaviors, for n,m ≥ 1.
Therefore we study Gν:μ

n:m and G̃ν:μ
n:m for n,m ≥ 1 as

described in Table 1 above. We restrict our analysis to
first-order grazing as defined there, where one addi-
tional impact per period T follows from the grazing.

In particular, we seek the value dG corresponding to
grazing of n:m periodic solutions. We apply a condi-
tion based on (7), which gives an analytical expression
for the behavior of Ż between impacts on the 1:1 tra-
jectories. In this paper we focus on the condition for
the specific type of grazing that occurs when there is a
zero-velocity contact on the same surface as that of the
previous impact. Then dG is obtained from the generic
condition,

dG = [d | Ż(tG) = −r Ż j + ḡ(tG − t j )

+ F1(tG) − F1(t j ) = 0], (22)

for t j < tG < t j+1, Ż j �= 0, Ż j+1 �= 0,

Z j = Z(tG) = ±d

2
. (23)

This definition of dG states that, following an impact
on ∂B (∂T ) at t j , the ball returns to the same end of
the cylinder at tG with zero impact velocity Ż(tG) and
then continues to the next impact t j+1 with nonzero
impact velocity. The condition (22) follows from eval-
uating (7) at t = tG and combining with the require-
ment that Ż(tG) = 0. The conditions in (23) ensure
that the remainder of the trajectory starts and ends with
nonzero impact velocities on either end of the capsule.

An example of a grazing flowmap decomposition is
shown inFig. 5a. The complete orbit for the 1:1 solution
is given by the composition P2 ◦ P3. The dashed line
shows the map P2 for d > dG , describing the motion
of the ball from point D on ∂B to point A on ∂T (no
grazing). For d = dG , the solid line shows P2 that
connects points D and A and includes point G where
Ż(tG) = 0, Z(tG) = −d/2. This example corresponds
to the first-order grazing transition G2:1

1:1, for example,
as observed in Fig. 3a. Calculating dG from (22)–(23)
for this case uses the triple K3 = (Żk, ϕk,�tk) from
(14)–(16), which defines the 1:1 solution composed of
P2 ◦ P3. Then dG is determined by using this triple
in (22). That is, in (22), Ż j = Żk , ϕ j = ϕk is used
in the definition of F1, t j+1 = t j + �tk , and the ”+“
sign is chosen since grazing occurs on the P2 map,
with Z j = Z(tG) = d/2 on ∂B. In the calculation
we take tk = 0 without loss of generality, since the
calculation is based on the 1:1 periodic solution. Then
we integrate (7) with these values to obtain d = dG
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Fig. 5 a Grazing flow maps P2, P3, contrasting 1:1 periodic
solution with P2 given by the dashed line, versus grazing shown
for P2 given by the solid line. bAnalytical 1:1 solutions (red) and
attracting numerical solutions (blue dotted) in the phase plane.
Green vertical lines indicate ±d/2. Top to bottom: stable 1:1
solutions for ||F || = 6.8, r = .4; period doubling instability for
1:1,with stable 1:1/2T behavior ||F || = 7.35, r = .4; unphysical
1:1 solution (trajectory outside of capsule) following grazing
bifurcation to 2:1 behavior for ||F || = 7.8, r = .25. Other
parameters are β = π/6, s = .5m

from (22). Values dG for G2:1
1:1 and G̃2:1

1:1 are shown for
different values of r and β in Fig. 6a, b.

We also obtain analytical results for first-order
(ghost) grazing transitions from 2:1 solutions, of which
there are two types: G3:1

2:1 (G̃3:1
2:1) as shown in Figs. 3a,

b and 7 and G2:2
2:1 (G̃2:2

2:1), as shown in Fig. 8. To com-
pute dG from (22), we use the values from the quadru-
ple K4 = (Żk, ϕk,�tk,�tk+1), obtained by solving

(17)–(21), which defines the 2:1 solution given by the
composition P1 ◦ P2 ◦ P3. Specifically, for G3:1

2:1, graz-
ing occurs when the P2 map reaches ∂B with vanishing
Ż j . To compute dG forG3:1

2:1, in (22) we set Ż j = Żk+1,
obtained fromK4 and the appropriate map to get Żk+1.
The phase ϕk from K4 is used in the definition of F1,
t j = �tk+1 and t j+1 = �tk+1 + �tk+2, with tk = 0,
based on the T -periodic 2:1 solution. The ”+“ is cho-
sen for Z(t j ) = Z(tG) = d/2 on ∂B. ForG2:2

2:1, grazing
occurs when the P3 map reaches ∂T with Ż j = 0 .
To compute dG for G2:2

2:1, in (22) we set Ż j = Żk+2

obtained from K4 and the appropriate maps to find
Żk+2. The phase ϕk from K4 is used in the definition
of F1, t j = �tk+1 +�tk+2 and t j+1 = T , with tk = 0.
The ”-“ sign is chosen for Z(t j ) = Z(tG) = −d/2 on
∂T . The analytical results fordG corresponding toG3:1

2:1,
G̃3:1

2:1, G2:2
2:1, and G̃2:2

2:1 are shown for different values of
r and β in Fig. 6c, d. While in theory G1:3

1:2 and G2:2
1:2 are

also possible, in general we do not observe these for the
parameter ranges of this study, where β > 0 and where
the restitution coefficient is the same for both ends of
the capsule. The grazing transitions G1:3

1:2 and G2:2
1:2 are

observed, for example, when the ratio of the restitution
coefficients of ∂T to ∂B is less than unity [62].

The analytical calculations for smooth bifurcations
and for grazing allow us to follow unstable or unphysi-
cal n:m solutions, determining G or PD transitions on
these branches. Figure 5b illustrates these types of solu-
tions, showing stable 1:1 behavior, an unstable 1:1 solu-
tion following a PD bifurcation, and an unphysical 1:1
solution violating containment, following G2:1

1:1. Even
though these critical points are on unstable or unphysi-
cal solutions, they have implications for the impact pair
dynamics and energy output of the VI-EH device.

3.3 Comparisons of grazing versus period doubling
bifurcations

Based on the results obtained from the analytical
approaches described above,wecompare the sequences
of the grazing and PD bifurcations. In Fig. 6a, b, for
different values of r , we compare values dG at which
there is a first-order grazing transition G2:1

1:1 with the
values dPD for the PD bifurcation from 1:1 to 1:1/2T .
In Fig. 6c, d we compare values dG for which we have a
first-order grazing transition from a 2:1 solution, either
G3:1

2:1 or G2:2
2:1, vs. dPD for the PD bifurcation from 2:1

to 2:1/2T .
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The analytical results are shown in the d vs. r plane
for different values of β, illustrating the relative loca-
tion of the grazing and period doubling bifurcations,
and their ghost counterparts. For example, if dG > dPD
for a given value of r in Fig. 6a, b, then as we decrease
d, the stable 1:1 solution undergoes a G2:1

1:1 at dG , while
the PD bifurcation of 1:1 to 1:1/2T is not observed,
thus leading to a ghost P̃D. If dG < dPD in Fig. 6a, b,
then PD from stable 1:1 to 1:1/2T behavior is observed,
while the analytical grazing result occurs on the unsta-
ble portion of the 1:1 branch, corresponding to a first-
order grazing ghost G̃2:1

1:1. Similar conclusions follow
from Fig. 6c, d for the 2:1 solution.

Combinations of the Panels (a)–(b) with (c)–(d) in
Fig. 6 show the analytical results for the bifurcations
observed in Fig. 3, which we recall here.

Figure 3a: For small β, r , and decreasing s, grazing

rather than PD is observed:G2:1
1:1 andG3:1

2:1 are observed,
consistent with Fig. 6a, c where dPD < dG for both 1:1
and 2:1 periodic solutions.

Figure 3b: For small and mid-range values of β, r , and
increasing A, we see PD transitions from 1:1 to 1:1/2T
andG3:1

2:1 consistent with Fig. 6b, dwhere dPD > dG for
1:1 solutions and dG > dPD for 2:1 periodic solutions.

Figure 3c: For larger values of β and mid-range r with
decreasing s, we see PD transitions from 1:1 to 1:1/2T
and for 1:2 to 1:2/2T consistent with Fig. 6a, c where
dPD > dG for both 1:1 and 2:1 periodic solutions.

Figure 3d: For larger values of bothβ and r and increas-
ing A, there is a large range of d over which there is a
sequenceof PD corresponding to twodifferent parame-
ter ranges of stable 1:1 solutions, leading to a sequence
of 1:1/pT solutions and to 1:1/C solutions with TG
in some cases. Figure 6b shows the largest d in the
sequence of dPD from 1:1 to 1:1/2T , where we see that
this range is substantially larger for β = 7π/18, π/2
than for smallerβ.While not shown inFig. 6a or b, there
are ranges of d for which there are separate sequences
of 1:1 solutions, followed by 1:1/pT and in some cases
1:1/C , for larger values of r and other values of β, as
discussed further in Fig. 10 where the analytical results
are compared with numerical transitions to 2:1. The
complex behavior observed in Fig. 3d is consistent with
the multiple 1:1 periodic solutions and larger ranges of
bi-stability between different types of periodic solu-
tions that generically appear for larger values of r [62].
Wedonot pursue a detailed analysis of these here, given

that larger values of r are less common for the VI-EH
device of interest. However, for decreasing s there is no
sequence of different 1:1/pT bifurcations, as observed
for increasing A.

The relative location of the curves in Fig. 6 indicates
that for some values of parameters we cannot observe
first-order grazing at all, for decreasing d, while for
other parameters, grazing dominates the transitions.
For larger β and r and decreasing s shown in Fig. 6a,
c, PD bifurcations are generally observed, rather than
first-order grazing. Then the grazing transitions shown
correspond to ghost grazing. For smaller values of β,
the grazing bifurcations of periodic 2:1 solutions tend
to be G̃2:2

2:1 or G2:2
2:1, which follows from the inclina-

tion angle closer to the symmetric case of β = 0. The
prominence of PD and G̃ for larger values of β has
been observed in other studies [62], also showing G
and P̃D for certain combinations of asymmetric r (dif-
ferent r on ∂B and ∂T ) not shown here. In addition
to the influence of β, results in [59] demonstrated that
changes in s for the varying A case can shift the PD
curves as shown in Fig. 6b, d.

We highlight a number of subtle points that are dis-
cussed in detail in the next section. The grazing bifur-
cation Gν:μ

n:m may correspond to an unstable ν:μ branch
which coexists with a stable ν:μ branch via a FB, as
shown in Figs. 7 and 8 for ν = n+1 andμ = m. In that
case the low velocity impact Żk may be bounded away
from zero. These transitions may also be associated
with bi-stability of the n:m and ν:μ branches. In that
case, hysteresis may be observed numerically, i.e., the
observed transitions may be shifted relative to the fixed
analytical results forGν:μ

n:m and PD shown inFig. 6. That
is, using a continuation-type method for decreasing d,
the n:m branch is followed until the Gν:μ

n:m transition is
reached, while for increasing d, the ν:μ branch may be
followed until it loses stability, e.g., at an FB above that
of the Gν:μ

n:m . This hysteresis is not shown in Figs. 3, 7,
and 8, since the numerical continuation-type method
is focused on decreasing d. A final observation from
Fig. 6 is that the analytical results for Gν:μ

n:m rely on a
geometric analysis, in contrast to the analytical results
for smooth bifurcations, based on the eigenvalues. This
difference is typical of non-smooth bifurcations, which
in general cannot be obtained via the techniques for
smooth bifurcations.
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Fig. 6 Bifurcations of the 1:1 periodicmotion in a,b: bluemark-
ers indicate PD and green markers indicate G2:1

1:1 for a A = 5
N, 0.05 < d < 0.5, 0.08 < s < 0.8 m; b 1.24 < A < 15.56
N, s = 0.5 m. Legends for a and b given in panel b. Bifur-

cations of 2:1 periodic motion in c, d: blue markers indicate
PD and green/black markers indicate G3:1

2:1/2:22:1 for c A = 5 N,
0.04 < d < 0.3, 0.06 < s < 0.48 m; d 5.19 < A < 38.96 N,
s = 0.5 m. Legends for c and d given in panel c

4 Comparison to numerical simulations

Figures 7 and 8 show the analytically derived bifur-
cation diagrams and stability results, in terms of Żk

with d as the bifurcation parameter, compared to the
bifurcation diagrams generated numerically via the

continuation-type method discussed above for Fig. 3.
Panel (a) of Figs. 7 and 8 shows sequences with a com-
bination of transitions, as shown in Fig. 3a–c and listed
in Table 1. The numerical results capture complemen-
tary behavior, such as the n:m/pT periodic solutions,
as well as n:m/C behavior, TG, and higher-order graz-
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Fig. 7 a Bifurcation diagram for the relative impact velocity Żk
for β = π/6, ω = 5π Hz, r = 0.3, 0.2217 < s < 0.4016
m, A = 5 N, s decreasing. Solid (dashed) lines indicate the sta-
ble (unstable) analytical results for impact velocities Żk for 1:1
and 2:1 solutions. Blue (green) lines correspond to impacts on
∂B (∂T ). Magenta lines indicate the unstable 2:1 (subcritical)
branch, initiating atG2:1

1:1. Dotted lines for d belowG2:1
1:1 andG3:1

2:1
indicate n:1 analytical solutions that violate containment. Black
open circles show attracting numerical solutions for decreasing
d. Period doubling (grazing) bifurcations are labeled according
to the notation in Table 1. b Phase portrait, c time series of peri-

odic 1:1 solution for d = 0.242, s = 0.389m, Ż(t) = 0.686178,
ϕ = 0.447012. d Phase portrait, e time series of PD 1:1/2T solu-
tion for d = 0.233, s = 0.374, Ż(t) = 0.686668,ϕ = 0.507226.
g Phase portrait of ghost G̃2:1

1:1 for d = 0.205, s = 0.329 m,
Ż(t) = 0.63746, ϕ = 0.351488. Red curve shows initial behav-
ior for one periodwith time series in f, starting on the unstable 2:1
branch; blue curve is attracting 2:1 solution, time series shown
in (h). i Phase portrait and j time series of TG for d = 0.226,
s = 0.363, Ż(t) = 0.6799, ϕ = 0.5209. k Phase portrait of
G3:1

2:1, with inset zoomed to show Żk = 0, with l time series for
d = 0.174, s = 0.28 m, Ż(t) = 0.54359, ϕ = 0.0966201
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ing. The phase plane and time series of certain periodic
solutions are shown, corresponding to critical points
in the bifurcation diagram: n:m/pT periodic solutions
and the PD, G, TG, G̃ and P̃D bifurcations for these
solutions, labeled as in Table 1. Here we discuss the
sequence of these critical points and transitions, as is
consistent with Fig. 6. Below (Sects. 4.1 and 4.2) we
compare and contrast themultiple routes to grazing and
the implications of these critical points.

As shown in Fig. 7a the PD transition from 1:1 to
1:1/2T occurs for larger d than for G̃2:1

1:1 ghost graz-
ing. Figure 7b–e shows phase planes and time series
for values of d just above and below the PD transition.
As d decreases we observe numerically the sequence
of 1:1/2T followed by transient grazing (TG), charac-
terized by irregular small impact velocities Żk on ∂B,
as shown in Fig. 7i, j. For smaller d, there is a stable 2:1
branch, born at a fold bifurcation (FB), as confirmed by
the analytical results for unstable 2:1 (magenta dashed
lines) and stable 2:1 (blue solid line) solutions thatmeet
at FB. The ghost grazing value G̃2:1

1:1 is not observed
in the long time periodic behavior since this grazing
point corresponds to the birth of the unstable subcrit-
ical branch of 2:1 solutions. This unstable behavior is
illustrated in Panels (f)–(h): Panel (f) and the red curve
in Panel (g) show the unstable 2:1 solution at G̃2:1

1:1 for a
short time. The blue lines in Panel (g) indicate the sub-
sequent behavior in time, as the solution moves from
theunstable 2:1 solution to the stable 2:1 solution. Panel
(h) shows the time series for the stable 2:1 solution, to
which the system relaxes after a brief transient. Fig-
ure 9a shows the eigenvalues for the two 2:1 solutions
that exist for d between G̃2:1

1:1 and FB. The unstable 2:1
solution has eigenvalues |λi | > 1, while for the sec-
ond stable 2:1 solution, both eigenvalues |λi | < 1 for
values of d between FB and P̃D.

Decreasing d below G̃2:1
1:1 in Fig. 7a, the system fol-

lows the stable 2:1 solution, until it undergoes an addi-
tional grazing at G3:1

2:1. Thus, even though the eigenval-
ues of the 2:1 solution |λi | < 1 between G3:1

2:1 and P̃D
(see Fig. 9a), that solution is unphysical as it violates
containment following grazing, analogous to Fig. 5.
Figure 7a indicates that the resulting 3:1 solution is
stable at G3:1

2:1, with the fourth branch of this solution
emerging from Żk = 0 at this point. The stability of the
3:1 solution is also illustrated in the phase plane and
time series in Panels (k) and (l).

In contrast to Fig. 7a, in which s decreases, there
is a different sequence of PD and G bifurcations (and

other transitions) in Fig. 8a, in which A increases for
decreasing d with slightly smaller r . Figures8b, c illus-
trateG2:1

1:1, which, as d decreases, is reached before PD.
Then the ghost P̃D of the 1:1 solution occurs for smaller
d and is not observed in the dynamics. At the grazing
point G2:1

1:1 there is an unstable 2:1 solution (magenta
dashed line) that bifurcates subcritically from the 1:1
solution, and there is a FB at which a stable 2:1 solution
meets the unstable one. Corresponding to this subcriti-
cal bifurcation, the value of d for FB is greater than that
forG2:1

1:1. Ford belowG2:1
1:1 the 1:1 solution is unphysical

(red trajectory in Panel (d)) and the solution moves to
the stable 2:1 solution (blue trajectory in Panel (d), time
series in (e)). Figure 9b shows the eigenvalues for the
two 2:1 solutions that exist for d betweenG2:1

1:1 and FB.
The unstable branch of 2:1 solutions has an eigenvalue
|λi | > 1, while for the second branch both eigenvalues
|λi | < 1 for values ofd between FB and PD. Following
PD there is a loss of stability from 2:1 to 2:1/2T behav-
ior, as shown in Panels (f)–(g). Consistent with Fig. 6
for smaller β, we observe G̃2:2

2:1 in Fig. 8h–j, in contrast
with G3:1

2:1 (or G̃3:1
2:1) solutions determined for larger β.

Since PD for 2:1 precedes the grazing for decreasing
d, then the ghost grazing G̃2:2

2:1 (red trajectory in Panel
(i), with time series in (h)) is obtained theoretically,
while the dynamics attract to a more complex alternat-
ing 2:1 and 2:2 solution with period 2T (blue trajectory
in Panel (i), time series in Panel (j)).

4.1 Multiple routes to first-order transitions

Comparison of Figs. 7a and 8a illustrates four differ-
ent mechanisms of first-order transitions that increase
the number of impacts per forcing period by one, e.g.,
n:m/pT to (n+1):m or n:(m+1). Note that these tran-
sitions may occur via different types of transitions, not
only by either G(n+1):m

n:m or Gn:(m+1)
n:m . These all involve

grazing or ghost grazing bifurcations, and we list the
different signature for each that is apparent in the bifur-
cation diagram. Some of these types of non-smooth
bifurcations have been observed in other studies, and
we highlight these connections as well.

1. The stable n:m solution experiences first-order
grazing at Gn+1:m

n:m or Gn:m+1
n:m , at which an addi-

tional impact with Żk = 0 occurs. If this solution
is stable, then an additional low velocity bifurca-
tion branch, initiated at Żk = 0, is also observed in
the numerics, e.g., as in G3:1

2:1 in Fig. 7a, k, and l.
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Fig. 8 a Bifurcation diagram for the relative impact velocity Żk
for β = π/6, r = 0.25, 5.986 < A < 22.23 N, ω = 5π Hz,
s = 0.5 m. Lines and symbols as in Fig. 7. b Phase portrait,
c time series of G2:1

1:1 for d = 0.216567 m, Ż(t) = 0.63741,
ϕ = 0.448723, A = 7.186. d Phase portrait for P̃D behavior for
d = 0.194872, Ż(t) = 0.603884, ϕ = 0.376322, A = 7.986.
Red curve shows unphysical trajectory that violates containment;
blue curve shows stable 2:1 solution with time series shown in

(e). f Phase portrait and g time series of 2:1/2T solution for
d = 0.12484, Ż(t) = 0.485267, ϕ = 0.533536, A = 12.466. h
and j Time series, i phase portrait of ghost G̃2:2

2:1 for d = 0.1132,
Ż(t) = 0.4722, ϕ = 0.5473, A = 13.7478. Red curve shows
unstable trajectory initial behavior of unstable 2:2 trajectory for
one period with time series in (h); blue curve shows attracting
solution, with alternating 2:1 and 2:2 over 2T with time series
shown in (j)
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Fig. 9 Graphs of eigenvalues |λ1,2| to confirm the (in)stability
of the two different 2:1 solutions, with a corresponding to Fig. 7
and b corresponding to Fig. 8. Blue triangles and black circles
correspond to the branch born at FB, stable for a range of d below
FB, with |λ1,2| < 1 between FB and PD or P̃D. Red stars and
magenta crosses are for unstable 2:1 solutions indicated by the
magenta dashed lines in Figs. 7, 8

2. In contrast to the previous item 1., it is also possi-
ble that an unstable (n + 1):m (or n:(m + 1)) solu-
tion follows from the first-order grazing of a sta-
ble n:m solution, yielding Gn+1:m

n:m or Gn:m+1
n:m . This

type of grazing bifurcation has been called “invis-
ible” grazing in the experimental context in [20],
since the grazing was predicted analytically but not
observable, presumably because of the instability.
That case commonly yields a scenario where both a
subcritical unstable bifurcating branch and a stable
branch meet at a FB point. Then there is a range of
bi-stability of the n:m solution with the bifurcating
(n + 1):m or n:(m + 1) solution, discussed fur-
ther under Sect. 4.2. The G2:1

1:1 transition shown in
Fig. 8a–c illustrates this type of grazing transition.

3. A third type of grazing transition occurs in themore
complex PDG transition, where PD or a sequence
of PD’s yield a n:m/pT solution. Examples are
shown in Figs. 3b, c for transitions to 2:1 and 3:1
periodic solutions, respectively. By following the
unstable n:m branch, we may reach a ghost graz-
ing G̃ν:μ

n:m , leading to an unstable branch of the ν:μ
solution. In Sect. 4.2, we describe the relationship
between ghost grazing and PDG or TG, namely,
that a transition via some type of grazing transition
occurs generally at a value of d between the PD
transition to n:m/2T and G̃ν:μ

n:m .
4. There may also be sequences of transient grazing

TG that occur within n:m/C , that eventually disap-
pear when a stable (n+ 1):m or n:(m + 1) solution
branch is available. Such a transition is shown in
Fig. 7, where the FB, corresponding to the birth of
a stable 2:1, quenches the 1:1/C behavior. A similar
transition to a 2:1 solution following 1:1/C appears
in Fig. 3c. Similar transitionswere observed in [44],
explaining some of the gaps in chaotic behavior for
a model of gear dynamics. This model is similar
to that of the impact pair, but it includes additional
forcing frequencies that facilitate larger windows
of chaos.

4.2 Implications for bi-stability, transient behavior,
and complex dynamics

The analytical approach provides knowledge about the
sequence of smooth bifurcations, e.g., PD and FB, and
non-smooth grazing bifurcations. While this analysis
does not provide exact results for the more complex
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bifurcations, it nevertheless provides insight into the
birth and death of these more complex dynamics. We
highlight this insight in a few specific contexts.

Ghost grazing: As mentioned above in the context
of different routes to grazing, in instances where there
is PD of the stable solution and G̃ of the unstable solu-
tion, typically PDG or TG leads to a transition from
n:m to (n + 1):m or n:(m + 1) for values of d above
G̃. The basis for this conclusion is illustrated in the
phase planes where we observe that a trajectory for the
n:m/pT solution is naturally closer to grazing than the
n:m trajectory. This follows from the “loops” in the
phase plane trajectories as shown in Figs. 5 and 7d.
For example, in the map P2 from ∂B → ∂T , these
loops correspond to intervals of increased Z as the bot-
tom of the capsule approaches the ball. Since PD leads
to multiple loops in the phase plane trajectory, one of
these loops on the n:m/2T solution must take values
of Z(t) closer to d/2 (∂B) than the values of Z(t) on
the P2 map for the n:m solution (compare Fig. 7b, d).
Then, the resulting loops from n:m/pT or from n:m/C
yield PDG or TG, respectively, at a larger value of d
than for ghost grazing G̃ν:μ

n:m of n:m solutions. Thus
being able to locate ghost grazing analytically provides
a lower bound on the critical parameter value at which
the n:m-type solution transitions to one with an addi-
tional impact per period. Figure 10 illustrates this for
different parameter combinations as d decreases, e.g.,
PDG orTG transitions to 2:1behavior occur at or before
G̃2:1

1:1, and transitions to 3:1 or 2:2 periodic solutions
precede G̃3:1

2:1 and G̃2:2
2:1, respectively.

Fold bifurcations and bi-stability: The analysis
allows the calculation of both unstable and stable
branches of n:m solutions, and with the corresponding
stability analysis we can identify any FB points. The
location of FB indicates the potential for either inter-
mediate regions of TG or bi-stability between different
periodic solutions.

Regions of bi-stability occur for grazing transitions
to unstable (subcritical) solutions, as shown in Fig. 8a.
A typical signature in a computationally or experi-
mentally observed transition from n:m or n:m/pT to
(n + 1):m is that the additional impact has nonzero
impact velocity at the transition. This feature sug-
gests an underlying grazing bifurcation to an unstable
subcritical (n + 1):m, which in turn meets the stable
(n+1):m solution at FB. These transitions, in the con-
text of bi-stability, may occur from G or from PDG as
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Fig. 10 a Combining Fig. 6a and c with numerically obtained
transitions to 2:1 and 3:1 behavior for β = π/3; b Combining
Fig. 6b and d with numerically obtained transitions to 2:1 and
3:1 behavior for β = π/3; c Combining Fig. 6b and d with
numerically obtained transitions to 2:1, 3:1 and 2:2 behavior for
β = π/6
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shown in Fig. 3a, b. An example of such a grazing point
is given by G2:1

1:1 in Fig. 8a. While the location of G2:1
1:1

is a fixed value determined analytically, the transition
between 1:1 and 2:1 solutions observed numerically
may occur at a different value due to the bi-stability.
For example, one could use the numerical continuation-
type method to follow the stable 2:1 branch for increas-
ing d starting below G2:1

1:1. Then it is possible to follow
this branch to FB rather than reaching the 1:1 solu-
tion at G2:1

1:1, as was observed for decreasing d. This
hysteresis in the numerical results illustrates how the
analytical results are necessary to provide the full pic-
ture, independent of increasing or decreasing d.

In contrast to the bi-stable case, TG tends to occur in
the absence of bi-stability, i.e., when there is no overlap
of stable n:m/pT and (n + 1):m/pT behavior. Then
grazing may follow the sequence of PD’s leading to
n:m/C , so that the grazing occurs intermittently on a
complex trajectory,without a sustainedfirst-order graz-
ing transition. The contrast can be seen by comparing
transitions from 1:1/pT to 2:1 behavior in Fig. 3b and
from 1:1/C to 2:1 in Fig. 3c, as well as transitions from
1:1/C to 2:1 in Fig. 7 and from 1:1 to 2:1 in Fig. 8.
Larger ranges of bi-stability are prevalent for certain
combinations of larger r and β, with other factors such
as increasing A also playing a role. These aspects have
been observed in other studies [58], [62], but we do not
explore them here.

Ghost period doubling: For smaller r , we observe
ranges of β in Fig. 6 where P̃D of the n:m solutions
occur well below Gν:μ

n:m , possibly with PD following
Gν:μ

n:m yielding ν:μ/pT . In this setting P̃D of n:m does
not influence the ν:μ behavior, since the n:m and ν:μ
are different periodic solutions with different dynam-
ics. This separation follows from the dynamical route
to grazing, where the bifurcation is induced purely by
the discontinuity of impact rather than by eigenvalues
or other smooth parametric variation.

The mechanism of a P̃D, as an unphysical solution,
suggests changes in the device design to avoid (or facil-
itate) G occurring before the P̃D. This is particularly
relevant for parameter ranges where the P̃D and Gν:μ

n:m
are in close proximity to each other, near the inter-
section of different colored curves as shown in Fig. 6.
Increased r or β near these intersections could yield a
PD rather than P̃D, which may or may not be desir-
able. In cases where P̃D and Gν:μ

n:m (nearly) coincide,
there may be complex transients or chaotic behavior.
For example, in Fig. 10c, where the PD of the 2:1 solu-

tion and G2:2
2:1 occur in close proximity, there are com-

plex higher- order grazing transitions for small win-
dows of r near these bifurcations. Figure 6 shows that
the proximity of PD and G depends on how d changes
with its underlying dimensional quantities (s and A),
indicating multiple scenarios where small variation in
these parameters can advance PD ahead of the Gν:μ

n:m .
Figure 10 combines the analytical results from

Fig. 6 together with numerically obtained transitions.
As described above, we see that PDG and TG transi-
tions are bounded below by the analytically determined
ghost grazing G̃. These transitions do not necessarily
depend on r continuously, as seen for the PDG/TG
transitions to 2:1 solutions in Panels (b) and (c). Recall
that for larger β and r with decreasing A, there are
two separate ranges of d with stable 1:1 solutions, as
discussed for Fig. 3d. In these cases there is a larger
range of d over which 1:1, 1:1/pT , or 1:1/C solutions
are sustained, so that the PDG or TG transition to 2:1
behavior is shifted to smaller values of d as discussed
in the contexts of Figs. 3 and 6. Similarly, in Fig. 10c
there is a range of d below the PD of the 1:1 curve
for which 1:1/pT and 2:1 solutions are bi-stable. In the
figures we give the PDG/TG curve for decreasing d,
indicating quenching of 1:1/pT or 1:1/C in this set-
ting. Furthermore in Panel (c) for larger r , fluctuations
in the PDG transition to 2:2 correspond to some nar-
rowwindows of bi-stable 3:1 transitions, apparent with
slight variation in initial conditions but not shown in
these figures. As discussed above, here we focus on the
case of decreasing d, but in the case of bi-stability, the
numerically obtained transitions may shift for increas-
ing d due to hysteresis. Other influences of complexity
appear in Fig. 10a, where larger r and β contribute to
fluctuations in transitions to 3:1 from 2:1/pT via PDG

or from 2:1/C following TG, indicating dependence on
initial conditions and numerical sensitivities in the sim-
ulations. Additional irregularities appear in Panel (c),
near the transition from G3:1

2:1 to PD of 2:1 and PDG to
2:2 values (near r = .2). These follow from the coin-
cidence of PD of the 2:1 solution and G2:2

2:1, discussed
above in the context of P̃D. Indeed, a closer exami-
nation of the solution near this transition indicates a
narrow region that takes values very close to that of 3:1
behavior, but in fact is of the form of alternating 3:1
and 2:1 behavior over a 2T period.
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4.3 Implications for the VI-EH device

The PD, Gν:μ
n:m , PDG and TG transitions all have impli-

cations for energy output in the VI-EH device. In gen-
eral, we see that any function dependent on the relative
impact velocity Żk is influenced by these transitions,
e.g., any type of energy measure that is dependent on
Żk , as shown in A. Each of these types of grazing bifur-
cations yields abrupt changes in Żk directly, as well
as changes in the underlying dynamics. In addition,
the stability or complexity properties of these solutions
influence the robustness of the behavior.

Figures 7a and 8a give the bifurcations of Żk in terms
of d in two different settings: for decreasing s, and
increasing A.We emphasize that this is not just amatter
of d increasing with s or decreasing with A, but rather
the locations of the bifurcations are different in these
two cases; this follows from the fact that increasing A
not only reduces d, but also reduces the influence of
gravity, as evidenced from the non-dimensional grav-
ity term ḡ in (5). Likewise the energy output has dif-
ferent sequences in the two different scenarios, follow-
ing from the different bifurcations which indicate criti-
cal parameters at which the energy output may change
abruptly.

Figure 11 shows the energy output corresponding to
the bifurcations in Figs. 7a and 8a in terms of the aver-
age output voltages per impactU I and per time interval
UT , both of which exhibit abrupt changes at parameter
values corresponding to different grazing transitions.
These changes follow directly from the definitions of
U I and UT in (9), since via each grazing transition,
an additional low velocity impact is added per forc-
ing period. In the transitions from n:m to (n + 1):m or
n:(m + 1) behavior, typically the impact velocity for
the additional impact decreases with n,m, leading to
larger drops in U I , while the UT increases with suc-
cessively smaller jumps. In contrast, following the PD
of the 1:1 solution shown in Fig. 7a, the corresponding
U I and UT shown in Fig. 11a change gradually for
successive PD solutions, since the branches for Żk of
the 1:1/pT solutions are changing gradually. Likewise
for a sequence of PD leading to complex behavior, as
in Fig. 8a for small d < 0.12, there is a gradual drop in
U I for complex behavior that includes several impacts
with small Żk . Then there is a discontinuous decrease
in U I , shown numerically in Fig. 11b, following the
subsequent higher- order grazing transitions to 3:2, 4:2,

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24
0

2

4

6

8

10

12
104 (a)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0

2

4

6

8

10

12
104 (b)

Fig. 11 Numerically obtained output voltageUk (black circles),
average value of output voltage per impact U I (red circles) and
per time UT (magenta stars). Solid (dotted) lines correspond to
stable (unstable/unphysical) analytical results for Uk from 1:1
and 2:1 periodic solutions, with blue (green) indicatingUk from
impact on ∂B (∂T ). The results based on Ż(tk) in a Fig. 7a for
β = π/6, r = 0.3, 0.223 < s < 0.4 m, A = 5 N, s decreasing;
b Fig. 8a for β = π/6, r = 0.25, 5.986 < A < 22.23 N, s = 0.5
m

and eventually n:m behavior with large n with frequent
Żk near zero.

Figure 12 compares the influence of the different
types of bifurcations on the energy output, for smaller
and larger values of r . Figure 6 indicates that the
sequence of bifurcations in terms of d can be com-
pletely different for smaller or larger r . These differ-
ences influence the sequence of energy output. For
decreasing s shown in Fig. 12a, for smaller r the tran-
sitions Gn+1:m

n:m occur for larger values of d in contrast
to larger r . The grazing via PDG or TG are postponed
to smaller d for larger r , yielding larger ranges of d
for which U I (UT ) takes larger (smaller) values for
decreasing s. For increasing A, shown in Fig. 12b this
ordering is different, as follows from the relative posi-
tions of G, PD, and PDG transitions shown in Figs. 6
and 10. The G2:1

1:1 transition for smaller r occurs for
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smaller d than the PDG transition from 1:1/pT to 2:1
for larger r , while the PDG transition to 2:2 behavior
for smaller r occurs for larger d than for the PDG with
larger r . Furthermore, increasing A (smaller d) drives
sequences of PD and more complex solutions, partic-
ularly for larger r . As shown in Fig. 12b for smaller
d, U I increases for complex solutions where larger r
expands the range of Żk , while for smaller r these com-
plex solutions add more frequent Żk near 0, so thatU I

decreases.
While the differences in U I and UT follow natu-

rally in regions where different values of r yield differ-
ent n:m/pT solutions for the same value of d, it may
seem counterintuitive that the energy output for the dif-
ferent values of r is comparable for the same type of
n:m behavior, or in some cases larger for smaller r .
This observation, apparent in UT in Fig. 12a and in
both UT and U I in Fig. 12b, follows directly from the
phase differences φk of impacts, relative to minima of
the capsule trajectory, as shown in Fig. 2b. Impacts
that occur away from the minima, where the capsule
and ball move in opposite directions, generate larger
Żk . In contrast, for impacts that occur closer to these
minima,with smaller differences in the capsule and ball
velocities, the relative impact velocities Żk are smaller.
Typically larger r favors solutions where the impact is
near the minima of the capsule trajectory, thus yielding
reduced energy output.

We recall the analytical results for PD,G2:1
1:1 andG3:1

2:1
from Fig. 6 highlighting their connection to the influ-
ence of device features, such as its length s, the angle
β and the restitution coefficient r . Since in a real appli-
cation the excitation amplitude is given, the device and
its energy performance should be designed using the
three parameters mentioned above. Obviously the 1:1
response is the most beneficial EH option, thus where
possible, the device should be designed to sustain this
response under a given excitation. Small values of the
angle β reduce the asymmetry of the device, thereby
expanding the range of a 1:1 response in a shorter
device. The value of the restitution coefficient, which
can be controlled by the thickness of the DE mem-
branes, can also influence the device performance. This
may be especially helpful when the transition to 2:1
motion is inevitable, as demonstrated in Fig. 12.

For larger values of β with s (and thus d) decreas-
ing, the PD transition from 1:1 to 1:1/2T is observed,
with transitions to 2:1 behavior via PDG or TG occur-
ring for s above that for ghost grazing G̃2:1

1:1, as shown

0.1 0.15 0.2 0.25d
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Fig. 12 Average value of output voltage per impactU I and over
time UT with β = π/6, and 0.1 < d < 0.28, for two cases: a
A = 5 N, 0.16 < s < 0.45 m; b 5.56 < A < 15.56, s = 0.5 m

in Fig. 10a. Comparing with Fig. 6a, as β decreases,
the value of dPD decreases until it is below dG given
by G2:1

1:1 for a range of r . This trade-off between the
variation of β, s and r is then captured by the inter-
section of the analytically provided curves for dPD and
dG , indicating parameter combinations that limit the
potential for different types of grazing transitions that
yield additional impacts per forcing period.

5 Conclusions

A combined analysis of smooth and non-smooth
bifurcations provides new insight into the interplay
of smooth and non-smooth bifurcations. The novel
approach is developed in the context of a canonical
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model of an impact pair, a forced capsule in which a
ball moves freely between impacts on either end of the
capsule. The results provide a systematic approach to
study the interplay of different qualitative transitions in
TDOF systems, which have received limited attention
as compared with SDOF systems.

The integrated analytical approachprovides sequences
of bifurcations on stable branches as well as comple-
mentary ghost bifurcations on unstable or unphysical
branches. The foundation of the results is an analyt-
ical characterization of impacting solutions and their
stability based on the maps between impacts. In the
language of non-smooth dynamics, we use composi-
tions of maps based on the smooth dynamics between
intersections with switching manifolds. This founda-
tion provides two different bifurcation analyses, one
traditionally based on eigenvalues as is used widely for
smooth bifurcations, and a second based on the geom-
etry of the intersection of trajectories with the impact-
ing surface, yielding grazing for zero-velocity impacts.
Combining these two approaches, we obtain sequences
of period doubling and fold bifurcations together with
grazing bifurcations, the type of non-smooth bifurca-
tion naturally occurring in impacting systems.With this
analytical basis, we are also able to identify ghost bifur-
cations for both smooth and non-smooth bifurcations
which can occur on unstable or unphysical solutions.

Even though they cannot be observed numerically or
experimentally, ghost bifurcations influence the birth or
quenching of complex behaviors and additional graz-
ing transitions. For example, the ghost grazing bifur-
cation provides a lower bound on a variety of transi-
tions in which an additional impact is added per forc-
ing period. Tracking stable and unstable—sometimes
termed “invisible”—branches allows the identification
of fold bifurcations, which are critical mechanisms in
multiple types of grazing transitions. The proximity of
ghost period doubling bifurcations to grazing bifurca-
tions can yield different transition scenarios with com-
plex quasi-periodic behavior, where a small variation
in the parameters can replace the grazing with period
doubling in the observed dynamics. Transient grazing,
which can occur following sequences of period dou-
bling that culminate in chaoticwindows, can eventually
lead to a quenching of the complex behavior when it
reaches a branch from a grazing bifurcation, typically
at a fold point. All of these influences, indicated by the
analytical results, are confirmed by comparisons with
numerical results.

While the analysis is developed with broader TDOF
systems in mind, we demonstrate that it is also relevant
for applications. It is applied to a model of inclined
vibro-impact energy harvesting (VI-EH) device, where
the energy is generated by the variable capacitance
principle via impacts of the ball with a dielectric poly-
mer on the capsule ends. The desire for new sus-
tainable and renewable power technologies as alter-
natives to conventional batteries has generated strong
interest in energy harvesting, usually characterized by
energy scavenging from vibrations occurring in man-
made machines and structures. As is typical for an
energy harvesting system, the VI-EH system consid-
ered here includes both a mechanical system to absorb
the energy of vibrations, and a transductionmechanism
to convert it to electrical energy. The saturation of ideas
in the linear theory of energy harvesting, i.e., using
linear mechanical and electrical systems, has shifted
the focus of scientists to nonlinear systems, exploiting
their relatively broad bandwidth that allows efficient
energy absorption over a wide range of the excitation
frequency. VI systems, as a class of strongly nonlin-
ear system, can provide this preferred wide bandwidth
once the mass is engaged in the vibro-impact regime.

The competition between the different bifurcations
and their ghosts influences the parameter ranges for
favorable energy output of the VI-EH. The analyses
of the bifurcation sequences provide their parametric
dependencies, indicating the types of transitions that
are more likely for given parameter combinations. For
small restitution coefficients r and small inclined angle
β, first- order grazing bifurcations dominate the lower-
order transitions, i.e., with a small number of impacts
per forcing period being increased by one with a small
relative impact velocity. Then we observe jumps in
the energy output, increasing for output averaged over
time, and decreasing for output averaged per impact.
In contrast, for larger values of r and β, sequences of
period doubling bifurcations are more prevalent, which
can result in aperiodic or chaotic dynamics. In that case
the change in energy output is more gradual during
these sequences, but there are still opportunities for
complex grazing-type transitions which can generate
additional impacts per periodwith small relative impact
velocities. Then the ghost grazing bifurcation gives a
lower bound on these transitions, grazing period dou-
bled solutions PDG and transient grazing TG, at which
there are abrupt changes in energy output. These tran-
sitions are often affiliated with fold bifurcations, near
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which there is the potential for bi-stability of behav-
iors with different energy outputs. By capturing the
different sequences of various types of bifurcations,
the analysis provides direction on how to avoid unde-
sirable behavior that may occur via grazing or period
doubling.

In addition to the valuable insights provided by this
analysis, it also indicates several areas of future study
that are needed, related to bi-stability, global stability
analyses, and aperiodic behavior. Furthermore, given
the important role of the restitution coefficient, the
results point to the need for more realistic models that
take into account interactions of the ball with the mem-
brane.
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Appendix A

In the following Table 2, we present the details of cal-
culating harvested energy versus impact velocity.

Table 2 The output voltage
calculation of the VI-EH
device through the
membrane deformation
upon impact from [51]

Formulas Parameters description

U imp
k =

[
Am,k

πR2
c

]2
Uin U imp

k —the voltage generated by the
membrane deformation at the kth
impact, Uin = 2000V—constant
input voltage applied to the mem-
branes, Rc = 6.3 mm—the radius
of the undeformed membrane

Am,k = 2πR2
b(1 − cosαk) + πR2

c−π(Rb sin αk )
2

cosαk
Am,k - the area of the membrane at
the deformed state Rb = 5 mm—
the radius of the ball

cosαk = −2Rb(δk−Rb)+2Rc

√
R2
c+δ2k−2δk Rb

2[R2
c+(δk−Rb)

2] αk—angle at the kth impact defined
by the largest deflection δk of the
membrane

δk = [
ν+1
2K mV 2

k

] 1
ν+1 K = 4.0847 · 105 and ν = 2.6 -

parameters of the elastic force of the
membrane, Vk—the relative dimen-
sional velocity at the kth impact,
proportional to Żk
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