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Abstract

In recent times, the vibro-impact nonlinear energy sink (VINES) has emerged as a promising passive
mechanism for vibration mitigation in engineering systems. The VINES system consists of a ball
travelling within a cavity of an externally excited linear oscillator (LO). The ball impacts either end
of the cavity, transferring energy from the LO to the ball and mitigating excess oscillations of the
LO. Earlier studies of VINES analysed scenarios with the mass of the ball to be small relative to the
LO, with low forcing amplitude near the resonant frequency of the LO. Improvements in targeted
energy transfer (TET), observed for an increased mass of the ball, motivate an investigation of
VINES for larger mass ratios, using a recently developed semi-analytical map-based approach that
provides the exact solution without the limitations of previous analyses. Complementary analytical
and numerical approaches treat larger mass ratios and higher amplitudes of the external harmonic
excitation for forcing frequencies away from the natural frequency of the LO, identifying parameter
regimes for efficient and inefficient performance based on standard measures of energy transfer. The
analysis identifies multiple regions for the desired behavior with two alternating impacts per forcing
period and provides relevant stability conditions. Numerical results indicate chattering behavior in
regimes where energy transfer is minimal, yielding performance that appears similar to resonance.
This phenomenon can be directly related to the passive nature of the VINES design, where the
natural frequency of the VINES system decreases as the mass of the ball, and thus that of the
system, increases. Then the peak response of the LO is shifted away from its resonant frequency,
allowing excellent energy transfer to be realized there.
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1. Introduction

For vibrating engineering structures, the quest for effective vibration control strategies remains a
perpetual challenge, vital for ensuring the longevity and efficiency of machinery and structures. To
mitigate these excessive vibrations, passive vibration control mechanisms are preferred, particularly
when safeguarding delicate structures and sensitive machinery. Among these strategies, Targeted
Energy Transfer (TET) is one such passive mechanism of vibration attenuation for forced engineer-
ing systems. The core concept of TET revolves around the attachment of a secondary structure
to the primary one, strategically employed to curtail the primary structure’s oscillations. Notably,
the energy transferred from the primary structure to the secondary system is irreversible and can
be dissipated through dampers or used for scavenging the electrical energy [1–4]. In a conventional
TET approach, a second spring mass system is attached and tuned to a primary linear spring mass
system. The effectiveness of this arrangement near the natural frequency of the primary system
and the limitation of the magnitude of the secondary mass have proved to be a bottleneck in its
widespread application [5]. To broaden the frequency range for effective TET, a nonlinear energy
transfer mechanism is developed, attaching the primary structure with a nonlinear energy sink
(NES), is developed. Traditionally, it is realized through a model employing a nonlinear spring and
a linear damper to connect the secondary system to the primary structure [6, 7]. However, this
approach demands meticulous tuning with the primary structure to optimize TET’s performance
across specific frequency ranges [8]. It has also been shown that for a freely vibrating system, TET
will be realized only when the input energy to the system reaches the threshold value that could
engage the NES [8, 9].

There are various types of NES based on the implementation of nonlinearity in the model, such
as NES with piecewise nonlinearity [10], NES with nonlinear dampers [11] or vibro-impact nonlinear
energy sink (VINES) [12, 13]. Among the various NES models, recent studies report VINES as one of
the promising approaches for TET, where energy is dissipated through impacts when the coefficient
of restitution is less than unity. Also, energy transfer through VINES happens on a relatively fast
time scale and is a desirable feature for the rapid control of vibration amplitude in disciplines like
aerospace engineering, ocean engineering and structural engineering [7, 14, 15]. These exceptional
features have motivated the development of different types of VINES models, such as single-sided
VINES [16] with a single impact of attachment with the primary structure, hybrid VINES with
the combination of both linear and nonlinear stiffness [17] and VINES with symmetric piecewise
nonlinearities [10]. Recently, [18] proposed a TET mechanism where the advantages of both the
NES with cubic stiffness and the impacting system have been utilised. The improved performance
of the mechanism has also been validated with the experimental results.

The analysis of a VINES system is challenging as it exhibits non-smooth dynamics, typically
requiring different approaches as compared to those used for smooth dynamical systems. For ana-
lytical investigation, most of the previous studies use multiple time scale methods [19, 20] with the
mass ratio of the ball to the LO to be O(10−2). In [21], response regimes for optimal TET through
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VINES, subjected to periodic excitation, are obtained analytically and experimentally. Also, an
analytical method characterizes the chaotic dynamics of VINES by calculating the Lyapunov expo-
nents and validating with the experimental results [22]. Recently, with a smaller mass ratio, Li et
al. [2] proposed an electromagnetic VINES system which has improved TET via electrical damping.
They demonstrate its application for both energy harvesting and vibration absorption. In another
study [23], the effect of gravity and friction on the energy transfer through VINES is investigated
numerically.

In a recent study [20], an asymptotic solution is proposed for VINES system for a light weight
ball and for small excitation close to the resonant frequency. Analyses of VINES system with small
parameters have been reported widely in the literature [4, 24, 25], providing tools to understand
energy transfer in these regimes. However, less attention has been paid to the performance of VINES
over a broad range of parameters relevant in many industrial/engineering applications. In [26], a
semi-analytical map-based framework for the full VINES system captures the exact states of the
system at consecutive impacts. The framework enables one to analytically obtain exact expressions
for the complex periodic solution and perform the stability analysis. The analytical framework
based on this exact solution enables one to remove the parametric limitations of previous analyses
and accommodate any combination of parameter values in the analysis. This feature of the analysis
is valuable, as straightforward simulations demonstrate the improved performance of TET with
an increased mass ratio over a range of forcing frequencies, even for slightly increased forcing
amplitudes.

With this motivation of improved TET performance over a larger range of parameters, the
VINES model is considered for TET that absorbs vibrations from the primary structure. This
VINES system consists of a ball of mass m moving without friction within a cavity of the LO
having mass M and natural frequency ω0. The LO is subjected to external excitation of frequency
ω. In this study, the emphasis is on exploring the dynamics of the full VINES model for small
to large values of m, for larger excitation amplitudes and for a broad spectrum of the excitation
frequency. One focus of this paper is behavior that provides optimal TET as well as reduced
oscillations of the LO, obtained by the periodic behavior with a pair of alternating impacts on
either end of the cavity per forcing frequency. Using the recently developed semi-analytical map-
based approach [26], we obtain analytical results in multiple parameter regimes for these periodic
solutions and their stability. In particular, this analysis leads to the identification of mass ratios
which yield efficient TET at ω = ω0 as well as other frequency bands.

To better understand this phenomenon, we contrast this optimal behavior with resonance-like
behavior for smaller values of forcing frequency. Given the passive nature of the VINES design,
an alternating chattering behavior is observed for larger mass ratios, characterized by sequences
of multiple impacts with small relative velocities that alternate between either end of the cavity.
This chattering phenomenon is not desirable given the low relative impact velocities, appearing in
regimes showing resonance-type behavior. While it is less prominent for parameter combinations
with smaller values of η and F , consideration of a broader parameter range motivates a closer
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study. The appearance of the alternating chatter for ω < ω0 when m is non-negligible leads to an
exploration of the shift in the peak response of the LO. While for smaller mass ratios (≪ 1) the
effective mass of the system M+m ≈ M , for larger mass ratios the sequence of repeated impacts on
each end of the cavity effectively increases the mass of the system, and hence the natural frequency
of the system (ωs) is different from that of the LO (ω0) at certain forcing frequencies away from ω0.
As a result, the TET may be more robust near the resonant frequency of the LO.

Given the full spectrum of efficient and inefficient TET observed over different parameter combi-
nations, the objective of this study is to analyse the performance of VINES in vibration suppression
through different energy transfer measures over a broad range of parameter values. Throughout,
we use complementary numerical and analytical results to go beyond evaluation of the TET per-
formance, providing a thorough understanding of the dynamical behaviors leading to the different
outcomes. The numerically obtained parameter regimes for effective TET are validated with that
obtained through the analytically obtained solutions and their stability analysis. As the map-based
approach uses closed-form expressions, it is both robust as well as computationally efficient as
compared to the numerical approach over relevant parameter regimes for periodic behavior. The
analytical approach provides a comparison of relative and absolute (impact) velocities that deeply
influence the TET in VINES. The approach also reveals certain types of preferred behavior in pa-
rameter regimes that may have been overlooked based on the numerical simulations. Therefore,
this semi-analytical scheme provides an additional computationally efficient tool to the designer.

This paper is organized as follows: Section 2 discusses the mathematical modeling of the VINES
system and the dimensionless form of the governing system of equations is presented. Section 2.1
defines the different energy transfer measures and discusses the results for small parameters of
VINES. The analytical map-based approach obtained by solving the non-dimensional equations
and linear stability analysis is reported in Section 3. Section 4 discusses the numerical results which
are carried out for several combinations of large parameter values and supported by the analytical
results. The salient outcomes of the study and the future directions are presented in Section 5.

2. Mathematical model

We consider a VINES model, consisting of a ball of mass (m) that travels without friction inside
the cavity of length (2L) of a linear oscillator (LO) of mass (M). Here, the primary mass (M),
attached to the base through a spring of stiffness (k) and a damper with damping coefficient (c),
is subjected to an external excitation of the form (xs(t) = A sin(ωt + φ)) as shown in Fig. 1. The
motion of the LO and the ball between impact (|xm − xb| < L) is smooth and governed by

Mx′′
m(t) + cx′

m(t) + kxm(t) = kA sin(ωt+ φ) + cωA cos(ωt+ φ), (1)

ẍb = 0. (2)

Here, xm(t), xb(t) are the displacements of the mass (M) and the ball, respectively, at time t.
The forcing frequency and phase difference are denoted by ω and φ, respectively. Also, if one
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Figure 1: Schematic of VINES system where a ball of mass m oscillates inside the cavity of the LO of mass M .

is interested in the long-term behavior (steady state solution) of the system, then the choice of
initial conditions becomes immaterial due to dissipation of transients in the absence of co-existing
solutions. Moreover, at condition |xm − xb| = L, impacts between the ball and LO are governed by
the instantaneous Newtonian impact law in conjunction with the conservation of momentum given
by

x′
m

+ − x′
b
+ = −r(x′

m
− − x′

b
−) (3)

Mx′
m

+ +mx′
b
+ = Mx′

m
− +mx′

b
−, (4)

where, r denotes the coefficient of restitution. The superscripts (·)− and (·)+ represent the variables
before and after the impact respectively and (·)′ indicates the derivative with respect to t.

Next, by introducing the dimensionless form of the displacement of the LO zm = xm

L
and the

displacement of the ball zb =
xb

L
where L is the half length of the cavity, Eqs. (1)-(4) can be rewritten

in the non-dimensionalized form as,

|zm − zb| < 1 : z̈m + ηξżm + zm = F sin(Ωτ + φ) + ηξΩF cos(Ωτ + φ)

z̈b = 0 (5)

|zm − zb| = 1 : ż+m − ż+b = −r(ż−m − ż−b )

ż+m + ηż+b = ż−m + ηż−b , (6)

where, ˙ denotes d
dτ
. The various dimensionless parameters used in this study are defined as,

η =
m

M
, Ω =

ω

ω0

, ω0 =

√
k

M
, ξ =

c

mω0

, F =
A

L
, τ = ω0t, ωs =

√
k

M(1 + η)
. (7)
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Here, ωs denotes the natural frequency of the system which consists of the LO and the ball. It
becomes important when the system exhibits alternate chattering-type dynamics for different com-
binations of system parameters.

In the following, the non-dimensional form of the governing equations mentioned in Eqs. (5)-(6)
is used for the analysis and solved numerically using Runge-Kutta method. The impact time is
calculated with an error of O(10−9). The system parameters utilized in this study are consistent
with those specified in [26] as mentioned in Table 1.

Table 1: Numerical value of parameters of the VINES system used in the analysis.

System parameters Value

Mass of LO (M) 3.807 kg

Length of the cavity (2L) 0.03 m

Coefficient of restitution (r) 0.65

Spring constant (k) 11680 N/m

Damping coefficient (c) 2.53 N-s/m

2.1. Energy transfer measures for TET

A number of measures are reported in the literature to quantify the energy transfer through the
TET mechanism, see [21, 27–29] for details. Based on the measures considered in [26], in this study,
two measures are used for quantifying the energy transfer (a) maximum (dimensional) displacement
of the LO (xmax

m ) and (b) ratio of kinetic energy (KE), defined as

xmax
m = L× max

T ∈[0,7000]
(|zm|) and

Kb

Km +Kb

where Km =

〈
1

2
Mż2m

〉
, Kb =

〈
1

2
mż2b

〉
, (8)

whereKm,Kb and T denote the KE of the LO, KE of the ball and total simulation time, respectively.
⟨·⟩ denotes the average operator. For accurate estimation of the average KE of the ball and the
LO, a sufficiently large time history is considered. It has been observed that for the considered
parameter values, the transients are short. Here, Eqs. (5)-(6) are solved for a non-dimensional time
span of 7000 units and the last 3000 data are used for the measures in Eq. (8).

Figure 2 illustrates the effect of varying the mass ratio on energy transfer measures for (small)
amplitude of forcing F , namely 0.05 and 0.1. It is evident from Figs. 2(a) and (b) that with the
increase in F , i.e. with the increase in input energy to the system, the peak of the ratio of KE
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Figure 2: Quantification of energy transfer from the LO to the ball by estimating maximum displacement (red circle)
of the LO (in m) and the ratio of KE of the ball to the total KE of the system (blue star) for different mass ratios
when forcing amplitudes are (a) F = 0.05, (b) F = 0.1 and frequency ratio is Ω = 1.

shifts towards the right and the maximum displacement of the LO is also increased as expected.
Notably, Fig. 2 also highlights that when the energy transfer is maximum, the LO displacement
is minimum, which is a desirable characteristic for a practical forced engineering systems. This
observation suggests that for higher input energy, a ball with small inertia is not a suitable choice
for efficient energy transfer. Consequently, these results serve as a foundation for further exploration
of the effective TET in the context of larger mass ratio and forcing amplitude.

In order to gain further insights into the underlying mechanism for the effective TET through
VINES for η between 0.04 and 0.06 in Fig. 2(a) and above 0.08 in Fig. 2(b), a bifurcation analysis
is carried out as shown in Fig. 3. Figures 3(a) and (b) show the bifurcation diagram for the
relative velocity ẇi(= żm,i − żb,i) at impacts as a function of the parameter η when F be 0.05
and 0.1, respectively. These figures provide noteworthy observations, indicating that when the
system exhibits 1:1-periodic motion i.e., two impacts in a forcing period [1], the ball effectively
absorbs the energy of the LO and consequently reduces the displacement of the LO corresponding
to those parametric regimes. Also, one can observe the secondary peaks in displacement for η values
between 0.02 and 0.04 in Fig. 2(a) and between 0.06 and 0.08 in Fig. 2(b). These parameter ranges
correspond to the transition from 2:1/1:2 solution, i.e., two impacts on one side of the cavity and
one impact on the other side in a forcing period [1], to the chaotic dynamics as evident from the
bifurcation diagram shown in Fig. 3. As a consequence of this transition, energy transfer within
the system decreases, resulting in an increase in the vibration amplitude of the LO.

Figures 4(a) and (c) present the time histories of both ends of the cavity of the LO and the
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Figure 3: Bifurcation diagrams of the relative velocity of the system at impacts with respect to η for Ω = 1 when
(a) F = 0.05 and (b) F = 0.1.

ball for η = 0.05 corresponding to the periodic solution and η = 0.085 when the system exhibits
complex dynamics. For the case when η = 0.05, the ball and the LO have regular impacts when
they are moving in opposite directions. This behavior can be explained in terms of the impact
phase, defined as

φi = mod(Ωτi + φ, 2π), (9)

where, τi denotes the impact time. Specifically, when φi ∈ (0, π), both the ball and the LO move in
the same direction at the right end of the cavity, while φi ∈ (π, 2π) indicates out-of-phase motion,
as shown in Fig. 4(a). This convention is consistent in the rest of the article. For η = 0.05, φi lies
in the interval (π, 2π) and hence results in efficient TET through VINES mechanism. On the other
hand, for η = 0.085, the impacts are irregular, and consequently the energy transfer reduces as
evident from Fig. 2(a). In fact, this phenomenon also results in increased relative velocity as can
be seen in the phase planes shown in Figs. 4(b) and (d). Furthermore, when the ball strikes the LO
as they are moving in the same direction with impact phase φi < π, as exemplified in Fig. 5(a)(for
η = 0.07 and F = 0.1), the energy from the ball is transferred to the LO, resulting in the increased
velocity of the LO which is not desirable for efficient TET. Consequently, the KE ratio decreases
(Fig. 2(a)) and the relative velocity of the system increases. Likewise, the loss of periodicity in the
impact between the ball and the LO, observed in Fig. 5(a), results in reduced energy transfer. For
η = 0.8 and F = 0.1, where Kb

Km+Kb
increases and xmax

m decreases further, the ball and the LO have

regular impacts with φi ∈ (π, 2π) as shown in Fig. 5(c). Consequently, the relative velocity reduces
compared to the irregular impacts case as can be noticed in the phase planes in Figs. 5 (b) and (d).
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Figure 4: First column shows the time histories of the both ends of the cavity of the LO (blue line) and the ball (red
line) when F = 0.05 for (a) η = 0.05 and (c) η = 0.085. Second column, (b) and (d), shows the phase portraits of
the system corresponding to the parameters in (a) and (c), respectively. Here, Ω = 1 and r = 0.65.

These results emphasize the significance of 1:1-periodic solution, with regular alternating impacts
at both ends of the cavity, as being conducive to achieving effective TET through the VINES
mechanism. Additionally, the impact phase φi ∈ (π, 2π) at the right end of the cavity, implies
the LO and the ball are moving in opposite directions, which results in reduced relative impact
velocity. On the other hand, when the system exhibits chaotic dynamics, the impacts become
irregular and also the impact phase at the right end of the cavity can fall outside (π, 2π). This
situation undermines the effectiveness of VINES in facilitating efficient energy transfer.
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Figure 5: First column shows the time histories of the both ends of the cavity of the LO (blue line) and the ball (red
line) when F = 0.1 for (a) η = 0.07 and (c) η = 0.08. Second column, (b) and (d), shows the phase portraits of the
system corresponding to the parameters in (a) and (c), respectively. Here, Ω = 1 and r = 0.65.

3. Map based analytical framework

Earlier studies use analytical approaches based on asymptotics, such as the method of multiple
time scales, to study the VINES system whose accuracy requires significantly small mass ratio
(η ≡ O(10−2)) [30, 31]. These methods have been shown to be accurate for these reduced systems
when Ω ≈ 1 and A is small. However, in a recent study, Liu et al. [26] has proposed a framework,
based on the exact solution of the governing equations, which essentially liberates the analysis from
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the aforementioned constraints associated with small system parameters. We review this framework,
which provides flexibility in selecting the parameters and can be used for studying the dynamics of
VINES for larger A, η and forcing frequencies Ω other than 1.

To define the maps from the present state at impact to the future impact, information of state
variables at the impact is being used. Here, z−j,i, z

+
j,i(ż

−
j,i, ż

+
j,i) denotes the displacement (velocity) of

the mass j = m, b immediately before and after the ith impact, respectively. τi is the time of the ith

impact. The impact conditions in Eq. (6) can be rewritten, using the continuity in displacement at
impact, as

z−j,i = z+j,i j = m, b, zm,i − zb,i = 1(−1) on L(R)

ż+m,i = 1−rη
1+η

ż−m,i +
η(1+r)
1+η

ż−b,i, ż+b,i =
1+r
1+η

ż−m,i +
η−r
1+η

ż−b,i, (10)

where, L and R denote the left and right end of the cavity. For the sake of convenience, the state
of the system before the ith impact is defined using a vector si as

si = (zm,i, żm,i, zb,i, żb,i, τi), (11)

where, zj,i ≡ z−j,i and żj,i ≡ ż−j,i.

Now, to derive the maps from impact to impact, the set of linear differential equations (DEs)
mentioned in Eq. (5) are solved and an explicit solution is obtained for z−j,i, ż

−
j,i in terms of z+j,i−1,

ż+j,i−1 for j = m, b. The expressions in Eq. (10) allow us to write in terms of z−j,i−1, ż
−
j,i−1 only. Hence,

the superscript ”−” is dropped in Eq. (11) and also in the rest of the discussions. By solving the
DEs in Eq. (5), one obtains the displacement and velocity of the LO and the ball as

zm,i = p1,i−1e
− ηξτi

2 sin(ατi) + p2,i−1e
− ηξτi

2 cos(ατi) + q1 sin(Ωτi + φ) + q2 cos(Ωτi + φ)

≡ P(τi−1, τi, zm,i−1, żm,i−1, żb,i−1, φ) (12)

żm,i = p1,i−1e
− ηξτi

2

(
−ηξ

2
sin(ατi) + α cos(ατi)

)
+ p2,i−1e

− ηξτi
2

(
−ηξ

2
cos(ατi)− α sin(ατi)

)
+ q1Ωcos(Ωτi + φ)− q2Ω sin(Ωτi + φ)

≡ Q(τi−1, τi, zm,i−1, żm,i−1, ż2,i−1, φ), (13)

zb,i = zb,i−1 +

(
1 + r

1 + η
żm,i−1 +

η − r

1 + η
żb,i−1

)
(τi − τi−1) (14)

żb,i =
1 + r

1 + η
żm,i−1 +

η − r

1 + η
żb,i−1. (15)

where, α =
√
1− (ηξ)2

4
. The constants p1,i−1 and p2,i−1 are dependent on impact time, displacement

of the LO, velocities of the LO and the ball and the phase as indicated by the arguments of functions

11



P and Q. They are obtained as follows,

q1 =
F (1− Ω2) + F (ηξΩ)2

(ηξΩ)2 + (1− Ω2)2
, q2 =

−FηξΩ3

(ηξΩ)2 + (1− Ω2)2
, (16)

e−
ηξτi−1

2

 sin(ατi−1) cos(ατi−1)

−ηξ
2
sin(ατi−1) + α cos(ατi−1) −α sin(ατi−1)− ηξ

2
cos(ατi−1)

p1,i−1

p2,i−1

 =

 zm,i−1

1−rη
1+η

żm,i−1 +
η(1+r)
1+η

żb,i−1

−

 sin(Ωτi−1 + φ) cos(Ωτi−1 + φ)

Ω cos(Ωτi−1 + φ) −Ω sin(Ωτi−1 + φ)

q1
q2

 . (17)

Now, Eqs. (12)-(15) are used to obtain si from si−1, which require the information about τi in
conjunction with the impact conditions which are

zm,l − zb,l = ±1, ∀ l > 0, l ∈ N. (18)

In order to differentiate between various behaviors, we introduced four different maps Pp which
govern the transition si−1 → si and defined as

P1 : si−1 → si for L 7→ R, P2 : si−1 → si for R 7→ L (19)

P3 : si−1 → si for L 7→ L, P4 : si−1 → si for R 7→ R. (20)

It should be noted that the Eq. (18) differentiates the maps Pp. For example, for P1 and P4,
zm,i − zb,i = −1 and zm,i−1 − zb,i−1 = 1(−1) for P1(P4). Similarly, for P2 and P3, zm,i − zb,i = 1
and zm,i−1 − zb,i−1 = −1(1) for P2(P3). Here, these maps serve as building blocks to analyse the
different periodic solutions of the system. Next, the analytical expressions for the case of 1:1-periodic
solutions based on these maps are presented.

3.1. 1:1 periodic solutions

When the ball impacts alternately at either end of the LO in one forcing period T , one obtains
the 1:1-periodic solution such that si−1 = si+1 with the periodicity conditions

τi+1 − τi−1 = T, zj,i−1 = zj,i+1 and żj,i−1 = żj,i+1, (21)

where, j = m, b. The 1:1 periodic solution can be described as P2(P1(si−1)) = si+1 using the maps.
Here, P1(si−1) = si. Now, the unknown state variables (zm,l, żm,l, ˙zb,l, tl); l = i, i+1 at either end of
the cavity need to be determined by solving the system of equations obtained through Eqs. (12)-(15)
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along with Eq. (18). The desired system of equations in terms of si−1 is given as

zm,i ≡ P(τi−1, τi, zm,i−1, żm,i−1, żb,i−1, φ),

żm,i ≡ Q(τi−1, τi, zm,i−1, ż1,i−1, ż2,i−1, φ),

zb,i = zb,i−1 +

(
1 + r

1 + η
żm,i−1 +

η − r

1 + η
żb,i−1

)
(τi − τi−1),

żb,i =
1 + r

1 + η
żm,i−1 +

η − r

1 + η
żb,i−1, (22)

zm,i − zb,i = −1, zm,i−1 − zb,i−1 = 1, (23)

zm,i+1 ≡ P(τi, τi+1, zm,i, żm,i, żb,i, φ),

żm,i+1 ≡ Q(τi, τi+1, zm,i, żm,i, żb,i, φ),

zb,i+1 = zb,i +

(
1 + r

1 + η
żm,i +

η − r

1 + η
żb,i

)
(τi+1 − τi),

żb,i+1 =
1 + r

1 + η
żm,i +

η − r

1 + η
żb,i, (24)

τi+1 = τi−1 + T. (25)

Here, si+1 in Eq. (24) is written in terms of si−1 by substituting si from the Eq. (22) and using the
periodicity condition, these equations are solved for si−1 and subsequently for si. Also, for the sake
of convenience, τi−1 can be assumed to be 0 for solving the system of equations. For the symmetric
1:1-periodic solution, ∆τi−1 = ∆τi, defined as

∆τi−1 = τi − τi−1, ∆τi = τi+1 − τi, (26)

where τi denotes the time at the ith impact, otherwise the solution is asymmetric. It is also important
to analyse the stability of the obtained periodic solution which will be discussed in the subsequent
section.

3.2. Linear stability analysis

The stability of the 1:1-periodic solution governs the effective and consistent energy transfer
through VINES system. In this study, the linear stability analysis of the 1:1 periodic solution is
found by considering small perturbations to the fixed points of the system. Here, the fixed points
for the composite map P2 ◦ P1 are s∗1 and s∗2 which denote the state of the system during impact
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at the left and right ends of the cavity, respectively. The system is linearized about δsh = 0,
where h = i − 1, i, i + 1 and this linearization results in [δsi+1 ≈ JP2(s

∗
2)JP1(s

∗
1)δsi−1]; see [26] for

mathematical details. Here, JPp ∈ ℜ4×4, where p = 1, 2, denote the Jacobian matrices for P1 and
P2. The state variable zm can be obtained from zb by using Eq. (23) and therefore, JPp can be
obtained as

JPp =



∂żm,i−1+p

∂żm,i−2+p

∂żm,i−1+p

∂żb,i−2+p

∂żm,i−1+p

∂zb,i−2+p

∂żm,i−1+p

∂τi−2+p

∂żb,i−1+p

∂żm,i−2+p

∂żb,i−1+p

∂żb,i−2+p

∂żb,i−1+p

∂zb,i−2+p

∂żb,i−1+p

∂τi−2+p

∂zb,i−1+p

∂żm,i−2+p

∂zb,i−1+p

∂żb,i−2+p

∂zb,i−1+p

∂zb,i−2+p

∂zb,i−1+p

∂τi−2+p

∂τi−1+p

∂żm,i−2+p

∂τi−1+p

∂żb,i−2+p

∂τi−1+p

∂zb,i−2+p

∂τi−1+p

∂τi−2+p

 . (27)

Each of the partial derivatives in Eq. (27) can be obtained numerically, however, in this study these
have been obtained through implicit differentiation of Eqs. (12) - (15) whose expressions can be
found in the Appendix A. For a stable solution, the modulus of the eigenvalues (λ’s) of the matrix
JP2(s

∗
2)JP1(s

∗
1) are less than unity, otherwise the solution is unstable.

Remark: Commonly used techniques in the study of stability of a periodic solution include those
based on Poincàre sections [32] and Floquet theory [33, 34]. In particular, a Floquet theory based
approach requires the computation of monodromy matrix (Φ), a state transition matrix, which
maps the state of the system at τ = 0 to its state after one forcing period T of a smooth dynamical
system. Notably, for non-smooth systems, the calculation of the monodromy matrix for a dynamical
system with impacting surfaces involves the calculation of saltation matrix (S) which maps the state
of the system before an impact, e.g. (z−m, ż

−
m, z

−
b , ż

−
b ), to that after the impact, e.g. (z+m, ż

+
m, z

+
b , ż

+
b ).

Previous studies of non-autonomous systems using Floquet theory typically define the state vector
in terms of displacement and velocity, with the monodromy matrix Φ = S2 · A2 · S1 · A1 for a
solution with the impacting sequence L → R → L, where A1 and A2 denote the state transition
matrices from the left impacting surface (at τ = 0) to the right impacting surface and from the
right impacting surface to the left one (at τ = T ), respectively, while S1 and S2 are the saltation
matrices corresponding to the impact dynamics at the right and left surfaces, respectively. For
example, a recent study [34] considered this formulation, showing that higher order approximations
in the Taylor series expansion of the state vector at impact improves the accuracy of the calculated
impact time substantially, compared to a linear approximation.

In contrast, our study incorporates time τ as one of the state variables, resulting in the state
vector si as mentioned in Eq. (11), which is described by a nonlinear system of equations, given by
Eqs. (22)-(25), for the transitions L → R and R → L. A saltation matrix S could be computed
using the impact conditions as mentioned in Eq. (10). However, given the (linear) simplicity of these
conditions, we substitute Eq. (10) directly into Eqs. (12)-(15). Then, we have an exact nonlinear
map P2 ◦ P1, which gives the system of Eqs. (22)-(25), between the state variables before impact
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Figure 6: First column shows the zoomed version of the bifurcation diagrams shown in Fig. 3. Black dots and red line
represent the numerical and analytical results, respectively. Last column, (b) and (d), shows the effect on absolute
value of the eigenvalues of JP2

JP1
with respect to η. The dotted black line corresponds to |λ| = 1 for the reference.

only (z−m, ż
−
m, z

−
b , ż

−
b , τ). Then, the matrix JP2(s

∗
2)JP1(s

∗
1) describes the local effects of perturbations

to this nonlinear map.

Utilizing the map based approach, as discussed above, the analytical 1:1 periodic solution is
obtained as shown with red circle in the zoomed Figs. 6(a) and (c). It is evident from the Figs. 6(a)
and (c) that the analytical results obtained for the 1:1 periodic solution show an excellent match
with that obtained through the numerical analyses (black dots). Please note that the numerical

15



bifurcation branches are obtained by continuation approach; i.e., for a given η, Eqs. (5)-(6) are
simulated for a longer time interval to obtain an attracting solution which is subsequently used
as an initial condition in the next iteration (typically for a nearby η value). Here, the analytical
results consist of both stable and unstable solutions as depicted in Figs 6(a) and (c) with solid red
and dotted red lines. It can be observed that the absolute value of eigenvalues become greater than
unity for η ⪆ 0.06 in Fig. 6(b) and for η ⪅ 0.08 in Fig. 6(d), indicating the unstable solutions. An
inset in Fig. 6(d) is provided which shows that the |λ|′s are less than unity for η ⪅ 0.06 and hence
the corresponding solutions are stable. It can also be observed in Figs. 6(b) and (d) that one of the
eigenvalues is in close proximity to unity suggesting that the long time dynamics of the solution
could be sensitive to stochastic excitation.

4. VINES over a larger parameter range

The result presented in Fig. 2 clearly indicate that increasing the inertia of the ball essentially
enhances the effectiveness of TET mechanism particularly for the higher forcing amplitude when
Ω = 1. This observation serves as motivation to extend this investigation of TET through VINES
for higher values of η and F . Additionally, it is essential to analyse the system for large parameter
values with Ω other than unity which typically replicate the more realistic engineering problems.
These aspects will be discussed in detail in the subsequent section.

This section, in contrast to the earlier studies, considers the cases where amplitude of excitation
is not necessarily small, as well as values of m over a range of percentage of M . Also, we examine
the effect of excitation frequency, which may not always be close to ω0. To investigate the influence
of excitation amplitude and mass ratio on the TET through VINES, we present contour plots
in Fig. 7 for different frequency ratios. Notably, as the frequency ratio Ω increases, the yellow
region (indicating the maximum value of the KE ratio) also expands, signifying the effective TET
over a wide range of parameter values in the η − F plane. To provide further insights, sectional
views of the results in Fig.7 corresponding to different F are presented in Fig. 8. These sectional
views reveal that the maximum displacement of the LO coincides with the regions where the KE
ratio is low. Figure. 7(d) reveals that the peak response of the LO is attained when η ≈ 0.22 for
Ω = 0.9, which is also evident from Figs. 8(a) and (d). An additional noteworthy observation is
the persistent presence of the yellow region, indicating efficient TET, particularly for Ω ≥ 1 along
the diagonal where η ≈ F . The bifurcation analysis, shown in Fig. 14, highlights these parameter
sets, where the system exhibits the corresponding 1:1-periodic dynamics. It can be seen here that
for appropriate parametric combinations the KE ratio is more than 70% with reduced xmax

m which
reflects the efficient performance of VINES. On the other hand, the bifurcation analysis presented
in Fig. 14 reveals that the VINES system exhibits low KE ratio (blue regions in Figs. 7(a)-(c)) for
parameter values corresponding to chaotic dynamics.

In this study η ≡ O(1) which affects the natural frequency of the system (ωs) when it exhibits
alternating chatter. When η ≪ 1, ωs ≈ ω0 results in the peak response when Ω ≈ 1. This scenario
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Ω = 0.9 Ω = 1 Ω = 1.1

(a) (b) (c)

(d) (e) (f)

Figure 7: Effect of non-dimensional amplitude of forcing F and varying mass ratio η on the ratio of KE of the ball
and the total KE of the system and on the maximum displacement of the LO. First column, (a) and (d), corresponds
to Ω = 0.9; second column, (b) and (e), corresponds to Ω = 1; last column, (c) and (f), corresponds to Ω = 1.1.

has been extensively discussed in the previous studies. However, in this study, we focus on the case
when the mass ratio η ≡ O(1). On account of the ball of significant mass, the overall mass of the
system increases,resulting in a decrease in the natural frequency of the system, as depicted by the
dashed pink line in Figs. 12(a)-(c). Therefore, at η ≈ 0.22, the natural frequency of the system (ωs)
becomes very close to the forcing frequency (ω) when Ω = 0.9 leading to the maximum response.
It can be seen in Fig. 8 that the peaks of the maximum displacement and the KE ratio are shifting
towards lower values of η as the frequency ratio Ω is increasing and has been discussed in detail in
Subsection 4.2.

Also, it can be inferred from Fig. 2(a) that the performance of VINES has improved for η
varying between 0.04 to 0.06. For the corresponding parameter values, the system exhibits 1:1
periodic dynamics as shown in the bifurcation diagram of Fig. 3(a). The time histories shown in
Figs. 4 and 5 emphasize that efficient energy transfer through VINES is achieved for 1:1 periodic
solutions when the ball hits the LO out-of-phase with the forcing. In the subsequent section, we
investigate the effect of impact phase on energy transfer and its relationship to 1:1 periodic solutions
for larger parameter regimes.
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Figure 8: Sectional view of the contour plots shown in Fig. 7 for Ω = 0.9, 1 and 1.1 (left to right) when F = 0.3077
(top row) and F = 0.4 (bottom row).

4.1. Influence of impact phase

It is worth noting that the impact phase φi < π between the ball and the LO is not conducive
to effective TET. The time-series, shown in Figs. 9 and 10, of the (non-dimensional) displacement
of the ball and the LO shows different cases of impact phase for various parameter combinations
of the system. In Fig. 9, we consider a couple of cases when Ω < 1: ω < ωs and ω ≈ ωs. In
the first case, where Ω = 0.8, the ball impacts twice the LO at either end. For the first impact,
the impact phase φi < π, while for the second impact, the impact phase φi falls in the interval
(π, 2π). However, for the same set of parameters (η = 0.2, F = 0.4) at Ω = 0.9, the system exhibits
chattering behavior with repeated impacts having negligible relative impact velocities as indicated
by the phase plane in Fig. 9(d). In fact, at Ω = 0.9 for η = 0.2, the system exhibits chattering
behavior leading to an amplified response of the LO and thus an inefficient TET mechanism.

On the other hand, at ω ≈ ωs, time series plots and phase planes in Figs. 10(a)-(d), correspond-
ing to Figs. 8(e) and (f) where Kb

Km+Kb
is large, illustrate an out-of-phase 1:1 periodic behaviour of

the system with φi ∈ (π, 2π) which essentially helps in vibration attenuation. Additionally, Fig-
ure 7 demonstrates that the frequency ratio Ω is another important parameter that significantly
influences the effective TET through VINES, which will be investigated in the subsequent analysis
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Figure 9: Time history (first column) of the non-dimensional displacement of the LO and the ball and the corre-
sponding phase portrait (second column) of the system when amplitude of excitation is F = 0.4 and η = 0.2. The
first row corresponds to Ω = 0.8 (here, ω < ωs for η = 0.2) and for the second row Ω = 0.9. The second row reveals
the alternating chatter phenomenon, resulting in large amplitude of oscillations, with sequences of small relative
impact velocities.

in Subsection 4.2.
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Figure 10: Time history (first column) of the non-dimensional displacement of the LO and the ball and the corre-
sponding phase portrait (second column) of the system when the amplitude of excitation is F = 0.4. Parameters
used for first row: Ω = 1, η = 0.55; for second row: Ω = 1.1, η = 0.45.

4.2. Dependence of 1:1 solution and alternating chatter on Ω

It should be noted that when the ball and the LO oscillate together with zero relative velocity
(e.g. sticking motion), Eq. (5) becomes

(1 + η)z̈m + ηξżm + zm = F sin(Ωτ + φ) + ηξΩF cos(Ωτ + φ). (28)

Figure 11 compares the maximum displacement of the LO obtained by solving two different sets
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of equations. The red line represents the solution obtained by solving Eqs. (5)-(6), while the black
line depicts the solution of Eq. (28). Both panels illustrate how the alternating chatter phenomenon
in Eqs. (5)-(6) results in a peak in the LO response near Ω ≈ ωs/ω0 < 1, while away from this
value, where no chattering occurs, the response is different from that of Eq. (28). The peak
response reflects that the repeated small velocity impacts of the alternating chatter, dominating
the dynamics throughout the forcing period as shown in Fig. 9(c), effectively increase the mass of
the system to M +m for Ω near ω

ωs
. In both panels, the peaks for Eqs. (5)-(6) are smaller than the

peak response of Eq. (28), since the alternating chatter only approximates a sticking-type behavior
throughout a portion of the forcing period. In Fig. 11(a) the red peak response is slightly smaller

(a) (b)

(c) (d) (e)

Figure 11: First row compares the maximum displacement of the LO for (a) η = 0.2 and (b) η = 0.5 by solving
Eqs. (5)-(6) (red line) and Eq. (28) (black line) when F = 0.4. Note that the vertical axis is shown on a logarithmic
scale. Second row shows the time histories to compare the dynamics obtained by solving Eq. (28) with that exhibited
by VINES. Parameters are: (c) Ω = 0.909396 (≈ ω

ωs
), η = 0.2, (d) Ω = 1.2, η = 0.2, and (e) Ω = 1.1, η = 0.5 when

F = 0.4.
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than the black peak response, indicating a stronger presence of alternating chatter in the system
for η = 0.2.It can also be observed in Fig. 11(c) that the displacement time histories, obtained by
solving Eqs. (5)-(6) and Eq. (28), are qualitatively similar for Ω ≈ ω

ωs
and η = 0.2. On the other

hand, for η = 0.5, the two peaks are shifted away from each other, indicating that the alternating
chatter is less prominent as can be seen in the bifurcation diagram in Fig. 14(e). In the case of
Eq. (28), energy dissipation occurs solely through damping, while in the case of Eqs. (5)-(6), energy
is also dissipated through impacts, resulting in reduced amplitude. Figure 11 also emphasises the
effect of η on ωs by shifting the peak response away from Ω = 1 with an increase in η. We note that
this comparison is relevant only near the peak, i.e. near Ω = ω

ωs
as evident from Fig. 11(c). Away

from this peak the comparison is not relevant, since the black curve is obtained by assuming that
the ball and the LO are moving together as a single entity, while Eqs. (5)-(6) indicate that they do
not move together for Ω away from ω

ωs
as observed in Figs. 11(d) and (e).

Figure 12 provides insights into the influence of frequency ratio Ω and mass ratio η on the
energy transfer measures for different forcing amplitude values. It is observed that as the input
energy increases (from left to right) with increasing F , the parameter range over which a significant
amount of energy is absorbed by the ball also expands. These findings confirm that with suitable
combinations of parameters, remarkable vibration attenuation can be achieved in real engineering
systems subjected to external excitation of O(1). Moreover, the figures indicate that higher forcing
amplitude and/or mass ratio are not always suitable for effective TET. For instance, when F = 0.2
and η = 0.5; refer Fig. 13(c), there is no significant reduction in the maximum displacement of
the LO and the KE ratio Kb

Km+Kb
is relatively low compared to Figs. 13(a) and (b), which is not

desirable for efficient TET. Therefore, for effective energy transfer, it is important to have larger
forcing amplitude F for higher η, see Fig. 13(i) where F = 0.4, η = 0.5. However, Figs. 13(d) and
(g) demonstrate that the opposite combination i.e., a small η with a larger F for specific Ω, is also
suitable for effective TET. Furthermore, Fig. 13 reveals that the maximum displacement does not
necessarily occur near Ω = 1. Due to the presence of the heavy ball, the maximum displacement
shifts to the left (away from Ω = 1) where ωs aligns with the forcing frequency ω. However, for a
specific η value, the system exhibits maximum response at the same Ω with increasing F as evident
in each column of Fig. 13.

In addition to parameter combinations, the nature of the solution also significantly affects the
effectiveness of energy transfer through VINES. To provide further insights into the performance
of VINES, bifurcation diagrams are shown in Fig. 14, illustrating different periodic and chaotic
regimes. These 3-D bifurcation diagrams are depicted for relative impact velocity as a function of
the bifurcation parameters Ω and η for various values of F . In the first column of Fig. 14, focusing
on Ω = 1, it is observed that the window of 1:1 periodic solutions becomes wider and shifts towards
the higher values of η as the amplitude of excitation increases. These 1:1 periodic windows, as shown
in Fig. 12 for Ω = 1, correspond to larger values of Kb

Km+Kb
and lower maximum displacement of the

LO in the η−Ω plane. Moreover, the occurrence of chattering behavior, as shown in Figs. 9(c) and
(d), shifts towards lower η as the system approaches Ω = 1 and the magnitude of relative impact

22



(a) (b) (c)

(d) (e) (f)

F = 0.2 F = 0.3077 F = 0.4

Figure 12: Effect of variation of mass ratio η and frequency ratio Ω on the maximum displacement of the LO and on
the (KE) energy transfer to the ball. First column, (a) and (d), corresponds to F = 0.2; second column, (b) and (e),
corresponds to F = 0.3077; last column, (c) and (f), corresponds to F = 0.4. The dashed pink line in (a)-(c) shows
the effect of η ≡ O(1) on the variation of Ω ≈ ωs

ω0
. The white region marked in (d)-(f) highlights the parameters

range for which energy transfer is maximum and corresponds to the stable 1:1 periodic solution; see Fig. 16 for detail.

velocity increases for larger F . In these parametric combinations one can expect the displacement
of the LO to increase while Kb

Km+Kb
decreases as shown in Fig. 12. Moving to the second column

of Fig. 14 (when Ω > 1), it can be observed that the range of η for which the system exhibits 1:1
periodic behavior shifts towards lower values of η as Ω increases. Furthermore, the width of the 1:1
periodic solution window expands for increasing amplitude of excitation when Ω ≥ 1. Therefore, it
can be concluded that the parametric combination of larger F with larger η yields a higher Kb

Km+Kb

and a lower xmax
m for Ω ≥ 1, resulting in efficient energy transfer. Also, with increasing F , the

boundaries of 1:1 solution appear to exhibit deterioration as seen in Fig. 12(f). Nonetheless, it
is worth noting that the efficient TET can still be achieved in a significant region around this 1:1
periodic solution as shown in Fig. 12(c). Fig. 14 also highlights the region where the system exhibits
chaotic behavior, indicating irregular impacts between the LO and the ball within a forcing period.
These chaotic regimes are associated with a decrease in the efficiency of VINES in vibration control.
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Figure 13: Sectional view of the contour plots shown in Fig. 12 for F = 0.2, 0.3077 and 0.4 (top to bottom) when
η = 0.1, 0.3077 and 0.5 (left to right), respectively.

4.3. Complementary perspectives from the analysis

To ensure the stability of these periodic solutions, it is important to perform stability analysis.
Figure 15(a) presents a comparison between the numerically obtained 1:1 periodic behavior for
Ω = 0.9 and the corresponding analytical solution. The similar comparison has been carried out
for Ω = 1.1 as shown in Fig. 15(c). Both cases (Ω > 1 and Ω < 1) exhibit very good agreement
with each other, indicating the consistency of the results. The stability of these periodic solutions is
examined by analyzing the magnitude of eigenvalues of JP2JP1 as a function of η. In Fig. 15(b) and
(d), the variation of magnitude of eigenvalues are shown for Ω = 0.9 and 1.1, respectively. Based
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Figure 14: 3-D bifurcation diagrams of the relative impact velocity as the parameters η and Ω are varied. The
amplitude of excitation (F ) is 0.2 for (a), (b); 0.3077 for (c), (d) and 0.4 for (e), (f).

on the values of |λ|, stable (solid red line) and unstable (dotted red line) solutions are marked in
Fig. 15(a) and (b). Notably, unlike in Fig. 6(b) and (d) where Ω = 1, all eigenvalues in this case
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Figure 15: Zoomed view of the numerically obtained bifurcation diagrams (black dots) presented in Fig 14 which
are supplemented with the analytically obtained 1:1 solution (red line) when (a) F = 0.3077,Ω = 0.9 and (c)
F = 0.3077,Ω = 1.1. Solid line corresponds to stable solution whereas the broken line shows unstable solutions.
For the stability of the solutions corresponding to these parameter sets, the magnitude of eigenvalues of the matrix
JP2

JP1
are shown in (b) and (d).

are significantly distant from the |λ| = 1 line for the stable solution, suggesting that the system is
less susceptible to small parametric perturbations that could lead to instabilities.

The stability analysis of the 1:1 periodic solution is carried out in the η−Ω parameter space and
the results are depicted in Fig. 16, showing the magnitude of the largest eigenvalue (|λmax|) of the
matrix JP2JP1 for different forcing amplitudes. The orange color regions represent the symmetric
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Figure 16: Based on the stability analysis for 1:1 solution,the magnitude of maximum eigenvalue (|λmax|) correspond-
ing to different η and Ω is obtained for (a) F = 0.2, (b) F = 0.3077 and (c) F = 0.4. The orange and black regions
have |λmax| less than unity which corresponds to symmetric and asymmetric stable 1:1 periodic solution. The white
regions have |λmax| > 1 which correspond to unstable 1:1 solution.

stable 1:1 solution, while the black regions indicate the stable asymmetric 1:1 periodic solution
(|λmax| < 1). On the other hand, the white region corresponds to the unstable 1:1 solution (|λmax| >
1). Comparing Fig. 12 and Fig. 16, it is evident that the regions exhibiting maximum energy transfer
align with the stable 1:1 periodic behavior of the system. In addition, comparing to Fig. 14 especially
for small η and Ω, we note that the 1:1 solutions in these parameter ranges are not apparent from
the contour plot Fig. 12. These solutions provide efficient TET for small η, but their KE ratio
does not stand out in comparison with the KE ratios for larger η. Therefore, Fig. 16 provides an
additional tool for identifying the parametric regimes that facilitate efficient energy transfer in the
η − Ω plane.

5. Conclusions and future directions

This study investigates a forced vibro-impact nonlinear energy sink (VINES) system, where
energy is transferred from the LO to the ball through impacts. The VINES system comprises a
cavity within the LO, allowing the ball to move without friction and interact with the cavity walls,
thereby enabling vibration control of the system. Unlike previous studies that focused on small
parameter values and analysed the system near Ω = 1, this study aims to explore the effectiveness
of TET through VINES for larger parameter values, such as mass ratio and amplitude of excitation,
over a broad frequency regime. To obtain analytical solutions for the two degrees-of-freedom VINES
system, we employ a recently developed semi-analytical map based approach that utilizes the exact
solutions. It is used to analytically obtain various periodic solutions and subsequently to discuss
their stability. This approach provides flexibility in considering the various parametric combinations
of interest and facilitates the analytical exploration for different periodic solutions and their stability
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properties.

This manuscript presents a comprehensive investigation of energy transfer through VINES,
ranging from small parameter values to a broad range of parameters. This study employs two
measures to quantify the effectiveness of energy transfer: the ratio of the KE of the ball to the KE
of the system and the maximum displacement of the LO. For practical engineering applications,
the desired scenarios involve the ratio of KE to be high and sufficiently small xmax

m which can be
achieved when the system exhibits 1:1 periodic behavior. Contour plots obtained through numerical
simulations in the η − Ω plane and η − F plane delineate the parameter regimes where energy
transfer exceeds 70%, accompanied by very small xmax

m . Bifurcation diagrams corresponding to these
parameter regimes reveal the presence of stable 1:1 periodic behavior, while the chaotic dynamics
are observed in the regions where energy transfer is less effective. The salient outcomes from this
study can be summarized as follows:

• The study reveals that significant energy transfer can be achieved in broader parameter
regimes away from Ω = 1 by carefully selecting suitable combination of parameters, resulting
in effective vibration attenuation with reduced xmax

m . Furthermore, it is observed that param-
eter combination leading to out-of-phase, i.e., impact phase φi ∈ (π, 2π), impacts between the
ball and the LO contribute to efficient energy transfer and decreased LO vibration amplitude.

• In contrast to previous studies that emphasize the maximum displacement occurring near
Ω = 1, this study demonstrates that the peak response can occur at different values of
Ω. Specifically, it is observed that the peak displacement shifts to the left of Ω = 1 as η
increases. This finding provides valuable insights for the designer, as they can carefully select
an appropriate η value to ensure smooth operation of the LO near the resonant condition.
However, it is important to note that the location of the peak response remains unaltered for
a specific η when the amplitude of excitation F is varied.

• This study reveals that a greater value of η and larger amplitude of excitation F do not
necessarily guarantee efficient TET through VINES. The findings demonstrate that when F
is smaller than η, the amplitude of vibration is relatively large compared to other cases and
the KE energy ratio is also low, which is not favourable from the perspective of efficient energy
transfer. However, for the opposite scenario where η is larger than F , the TET mechanism
through VINES performs well. These results highlight the importance of considering the
interplay between η and F in achieving efficient energy transfer.

• The linear stability analysis reveals interesting findings regarding the stability of the 1:1
periodic solutions. For Ω = 1, the magnitude of eigenvalues of JP2JP1 associated with the
stable solutions are slightly below unity, indicating a close proximity to the stability boundary.
However, when Ω ̸= 1, the stable 1:1 solutions exhibit 0 < |λ1,2,3,4| < 1 and are sufficiently
distant from the |λ| = 1 boundary. Then the 1:1 periodic solution for Ω ̸= 1 are robust against
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small random fluctuations in excitation or parameter values. These stability characteristics
contribute to the effectiveness and reliability of the TET mechanism in the VINES system.

A host of literature has extensively investigated the performance of VINES in energy transfer
analytically, numerically as well as experimentally when parameters like η and F are small and
Ω ≈ 1. This study takes a novel approach by numerically and analytically exploring the potential for
effective TET through VINES across a broader range of parameters and Ω away from 1. The authors
of this manuscript acknowledge that experimental validation of the findings is an important future
work. In this regard, the experimental set-up at the Institute of Sound and Vibration Research,
University of Southampton is underway, with the aim of conducting the experiments based on the
insights and results reported in this study.

To enhance the realism of the mathematical model, the inclusion of friction is crucial. However,
incorporating friction introduces additional complexities due to the discontinuity across ẇ = 0. A
recent numerical study [23] has shown that friction can improve the performance of the system by
expanding the window of 1:1 periodic solutions. However, the presence of friction also introduces
sticking and sliding dynamics, necessitating further analysis to understand the performance of
system in such scenarios. Additionally, to complement the numerical results, an analytical map-
based framework utilizing exact solutions should be developed. Furthermore, the effect of noise on
the performance of vibro-impact system in energy transfer needs to be investigated. The stability
analysis has revealed a few cases where the magnitude of eigenvalues is close to 1. Therefore,
investigating the behavior of such cases under the influence of noise would be an interesting avenue
of research.
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Appendix A. Expressions for the Jacobian matrix

The entries of the Jacobian matrix mentioned in Eq. (27) can be obtained through implicit dif-
ferentiation of Eqs. (12)-(15). Taking the derivative of Eq. 14 with respect to żm,i−1, żb,i−1, zb,i−1, τi−1
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gives

∂zb,i
∂żm,i−1

= A ∂τi
∂żm,i−1

+
1 + r

1 + η
(τi − τi−1),

∂zb,i
∂żb,i−1

= A ∂τi
∂żb,i−1

+
η − r

1 + η
(τi − τi−1),

∂zb,i
∂zb,i−1

= A ∂τi
∂zb,i−1

+ 1,

∂zb,i
∂τi−1

= A
(

∂τi
∂τi−1

− 1

)
,

(A.1)

where, A =
(

1+r
1+η

żm,i−1 +
η−r
1+η

żb,i−1

)
. Next, using the relation zb,i = zm,i ± 1, we can get

∂zb,i
∂żb,i−1

=
∂p1,i−1

∂żb,i−1

e−
ηξτi
2 sinατi + p1,i−1e

− ηξτi
2

(
−ηξ

2
sinατi + α cosατi

)
∂τi

∂żb,i−1

+
∂p2,i−1

∂żb,i−1

e−
ηξτi
2 cosατi + p2,i−1e

− ηξτi
2

(
−ηξ

2
cosατi − α sinατi

)
∂τi

∂żb,i−1

+ B ∂τi
∂żb,i−1

.

(A.2)

Now, by comparing Eq. (A.2) with the second equation in Eq. (A.1), ∂τi
∂żb,i−1

can be written as

∂τi
∂żb,i−1

=

η−r
1+η

(τi − τi−1)− ∂p1,i−1

∂żb,i−1
e−

ηξτi
2 sinατi − ∂p2,i−1

∂żb,i−1
e−

ηξτi
2 cosατi

∆
, (A.3)

where, ∆ = e−
ηξτi
2 p1,i−1

(−ηξ
2

sinατi + α cosατi
)
+ e−

ηξτi
2 p2,i−1

(−ηξ
2

cosατi − α sinατi
)
+ B − A.

Here, B = Ωq1 cos (Ωτi + φ) − Ωq2 sin (Ωτi + φ),
∂p1,i−1

∂żb,i−1
= e

ηξτi−1
2 cos (ατi−1)

η(1+r)
α(1+η)

and
∂p2,i−1

∂żb,i−1
=

−e
ηξτi−1

2 sin (ατi−1)
η(1+r)
α(1+η)

. Similarly, one can get the partial derivatives of τi with respect to the
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other variables (żm,i−1, zb,i−1, τi−1) as

∂τi
∂żm,i−1

=

1+r
1+η

(τi − τi−1)− ∂p1,i−1

∂żm,i−1
e−

ηξτi
2 sinατi − ∂p2,i−1

∂żm,i−1
e−

ηξτi
2 cosατi

∆
, (A.4)

∂τi
∂zb,i−1

=
1− ∂p1,i−1

∂zb,i−1
e−

ηξτi
2 sinατi − ∂p2,i−1

∂zb,i−1
e−

ηξτi
2 cosατi

∆
, (A.5)

∂τi
∂τi−1

=
−A− ∂p1,i−1

∂τi−1
e−

ηξτi
2 sinατi − ∂p2,i−1

∂τi−1
e−

ηξτi
2 cosατi

∆
. (A.6)

Here,

∂p1,i−1

∂żm,i−1

= e
ηξτi−1

2 cos (ατi−1)
(1− ηr)

α(1 + η)
and

∂p2,i−1

∂żm,i−1

= −e
ηξτi−1

2 sin (ατi−1)
(1− ηr)

α(1 + η)
, (A.7)

∂p1,i−1

∂zb,i−1

= −e
ηξτi−1

2

(
−ηξ

2α
cos (ατi−1)− sin (ατi−1)

)
,

∂p2,i−1

∂zb,i−1

= −e
ηξτi−1

2

(
ηξ

2α
sin (ατi−1)− cos (ατi−1)

)
,

(A.8)

∂p1,i−1

∂τi−1
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ηξ

2
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e
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2

α

[(
ηξα

2
sin (ατi−1)− α2 cos (ατi−1)
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−ηξ
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,
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= −ηξ

2
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α

[(
ηξα
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cos (ατi−1)− α2 sin (ατi−1)
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(
ηξ

2
sin (ατi− 1)− α cos (ατi−1)
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+ Ω2C sin (ατi−1)

+ α cos (ατi−1)

(
1− ηr
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η(1 + r)

1 + η
żb,i−1 − B

)
,

(A.9)
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where, C = q1 sin (Ωτi−1 + φ)+ q2 cos (Ωτi−1 + φ). Finally, taking the derivative of żm,i with respect
to (żm,i−1, żb,i−1, zb,i−1, τi−1), respectively, gives

∂żm,i

∂żm,i−1

= e−
ηξτi
2

(
−ηξ

2
sin (ατi) + α cos (ατi)
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∂p1,i−1
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4
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)
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[(
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4
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)
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+ e−
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2
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−ηξ

2
cos (ατi)− α sin (ατi)

)
∂p2,i−1

∂żm,i−1

,
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