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Abstract. In this paper, we introduce a Halpern iteration process for computing
the common solution of split generalized equilibrium problem and fixed points of
a countable family of Bregman W-mappings with multiple output sets in reflexive
Banach spaces. We prove a strong convergence result for approximating the solutions
of the aforementioned problems under some mild conditions. It is worth mentioning
that the iterative algorithm employ in this article is designed in such a way that it does
not require the prior knowledge of operator norm. We also provide some numerical
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examples to illustrate the performance of our proposed iterative method. The result
discuss in this paper extends and complements many related results in literature.

Keywords: Bregman weak relatively nonexpansive mapping, Bregman W-mapping,

Halpern method, iterative scheme, split generalized equilibrium problem.
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1 Introduction

Let Y be a reflexive Banach space with its dual Y ∗ andD be a nonempty, closed
and convex subset of Y . The Generalized Equilibrium Problem (in brief, GEP)
is to find x∗ ∈ D such that

G(x∗, x) + b(x∗, x)− b(x∗, x∗) ≥ 0, ∀ x ∈ D, (1.1)

where G : D ×D → R is a bifunction and b : D ×D → R is a skew matrix. If
b ≡ 0, then GEP (1.1) reduces to the following Equilibrium Problem (in brief,
EP) which is to find x∗ ∈ D such that

G(x∗, x) ≥ 0, ∀ x ∈ D.

The Equilibrium Problem is known to include many mathematical problems,
for example, variational inclusion problem, complementary problem, saddle
point problem, Nash equilibrium problem in non-cooperative games, minimax
inequality problem, minimization problem, variational inequality problem and
fixed point problem, see [6,11,14,17,19,22,33,34,37]. LetD and E be nonempty,
closed and convex subsets of two real Banach spaces Y1 and Y2 respectively.
Let A : Y1 → Y2 be a bounded linear operator. The Split Feasibility Problem
(in brief, SFP) introduced by Censor and Elfving [15] is to find a point

x∗ ∈ D such that Ax∗ ∈ E. (1.2)

By combining SFP (1.2) and GEP (1.1), we have the Split Generalized Equi-
librium Problem (in brief, SGEP), which is to

find x∗ ∈ D such that G1(x
∗, x) + b1(x

∗, x)− b1(x
∗, x∗) ≥ 0, ∀ x ∈ D, (1.3)

and such that

y∗ = Ax∗ ∈ E solves G2(y
∗, y) + b2(y

∗, y)− b2(y
∗, y∗) ≥ 0, ∀ y ∈ E. (1.4)

We denote by

SGEP (G1, b1, G2, b2) := {x∗ ∈ D : x∗ ∈ GEP (G1, b1) and Ax∗ ∈ GEP (G2, b2)},

where G1, b1 : D×D → R and G2, b2 : E×E → R are bifunctions respectively.
If b1 and b2 equal to zero in (1.3) and (1.4), we have the Split Equilibrium
Problem (in brief, SEP) which is to

find x∗ ∈ D such that G1(x
∗, x) ≥ 0, ∀ x ∈ D, (1.5)
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that solves

y∗ = Ax∗ ∈ E solves G2(y
∗, y) ≥ 0, ∀ y ∈ E. (1.6)

We denote by SEP (G1, G2) the solution set of (1.5)–(1.6). The Split Gen-
eralized Equilibrium Problem is very general in the sense that it includes as
particular cases, split varaitional inequality problem and split minimization
problem, to mention a few, (see [1, 2, 3, 4, 23,24,30,31] ).
To solve GEP (1.1), we need the following assumptions: Let G : D ×D → R.

Assumption 1.3:
(i) G(x, x) = 0, ∀ x ∈ D;
(ii) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0, ∀ x, y ∈ D;
(iii) For each x, y, z ∈ D; lim sup

t→0
G(tz + (1− t)x, y) ≤ G(x, y);

(iv) For each x ∈ D, y 7−→ G(x, y) is convex and lower semicontinuous.

Assumption 1.4: Let b : D ×D → R.
(i) b is skew-symmetric, i.e., b(x, x)−b(x, y)−b(y, x)−b(y, y) ≥ 0, ∀ x, y ∈ D;
(ii) b is convex in the second argument; (iii) b is continuous.

In 2018, Phuengrattana and Lerkchayaphum [32] introduced a shrinking
projection method for solving the common solution of split generalized equilib-
rium problem and fixed point problem of multivalued nonexpansive mappings
in real Hilbert spaces. They proved that the sequence {xn} converges strongly
to projg∆x0, where ∆ := Sol(GEP (1.1) ∩ F (T ) is nonempty.

Our proposed method is endowed with the following characteristics:
(1) We extend the results of [1,2,32] from real Hilbert spaces to a more gen-

eral space which is convex, continuous and strongly coercive Bregman function,
which is bounded on bounded subsets, and uniformly convex and uniformly
smooth on bounded subsets.

(2) Our method does not require computing the projection of the current
iterate onto the intersection of sets Cn and Qn which was used in [5, 18,32].

(3) In the result of [2, 18, 25, 32] and other related results, we were able
to dispense with one of the resolvents of the EP. Using the notion of multiple
output sets, we were able to generalize some related results in literature without
one of the resolvents.

(4) Our method uses self-adaptive stepsizes and the implementation of our
method does not require prior knowledge of the norm of the bounded linear
operator A, see [32].

(5) Our result also generalizes the results of [2,18,25,32] to a type of SGEP
with multiple output sets.

2 Preliminaries

In the sequel, we denote strong and weak convergence by ”→” and ”⇀”, re-
spectively.
The notion of W -mapping was first introduced in 1999 by Atsushiba and Taka-
hashi [8] and since then, it has been considered for a finite family of map-
pings, see ( [19, 20, 27]). The notion was extended to a Banach space by
Naraghirad and Timnak [29] as follows. Let D be a nonempty, closed and
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convex subset of a reflexive Banach space Y . Let {Sn}n∈N be an infinite fam-
ily of Bregman weak relatively nonexpansive mappings of D into itself, and let
{µn,t : t, n ∈ N, 1 ≤ t ≤ n} be a sequence of real numbers such that 0 ≤ µi,j ≤ 1
for every i, j ∈ N with i ≥ j. Then, for any n ∈ N, we define a mapping Wn of
D into itself as follows:

Un,n+1x = x,

Un,nx = projgD(▽g∗[µn,n ▽ g(Sn, Un,n+1x) + (1− µn,n)▽ g(x)]),

Un,n−1x = projgD(▽g∗[µn,n−1 ▽ g(Sn−1Un,nx) + (1− µn,n−1)▽ g(x)]),

...

Un,tx = projgD(▽g∗[µn,t ▽ g(StUn,t+1x) + (1− µn,t)▽ g(x)]),

...

Un,2x = projgD(▽g∗[µn,2 ▽ g(S2Un,3x) + (1− µn,2)▽ g(x)]),

Wn,x = Un,1x = ▽g∗[µn,1 ▽ g(S1Un,2x) + (1− µn,1)▽ g(x)],

for all x ∈ D, where projgD is the Bregman projection from Y onto D. Such a
mapping Wn is called the Bregman W -mapping generated by Sn, Sn−1, . . . , S1

and µn,n, µn,n−1, . . . , µn,1.
Let Y be a reflexive Banach space with Y ∗ its dual and Q be a nonempty

closed and convex subset of Y . Let g : Y → (−∞,+∞] be a proper, lower
semicontinuous and convex function, then the Fenchel conjugate of g denoted
as g∗ : Y ∗ → (−∞,+∞] is defined as

g∗(x∗) = sup{⟨x∗, x⟩ − g(x) : x ∈ Y }, x∗ ∈ Y ∗.

Let the domain of g be denoted as dom(g) = {x ∈ Y : g(x) < +∞}, hence for
any x ∈ intdom(g) and y ∈ Y , we define the right-hand derivative of g at x in
the direction of y by

go(x, y) = lim
t→0+

g(x+ ty)− g(x)

t
.

Let g : Y → (−∞,+∞] be a function, then g is said to be:

(i) Gâteaux differentiable at x if limt→0+
g(x+ty)−g(x)

t exists for any y. In this
case, g0(x, y) coincides with ∇g(x) (the value of the gradient ∇g of g at x);
(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ intdomg;
(iii) Fréchet differentiable at x, if its limit is attained uniformly in ∥y∥ = 1;
(iv) Uniformly Fréchet differentiable on a subset Q of Y , if the above limit is
attained uniformly for x ∈ Q and ∥y∥ = 1.
(v) Essentially smooth, if the subdifferential of g denoted as ∂g is both locally
bounded and single-valued on its domain, where ∂g(x) = {w ∈ Y : g(x)−g(y) ≥
⟨w, y − x⟩, y ∈ Y };
(vi) Essentially strictly convex, if (∂g)−1 is locally bounded on its domain and
g is strictly convex on every convex subset of dom ∂g;
(vii) Legendre, if it is both essentially smooth and essentially strictly convex.
See [9, 10] for more details on Legendre functions.
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Alternatively, a function g is said to be Legendre if it satisfies the following
conditions:
(i) The intdom(g) is nonempty, g is Gâteaux differentiable on intdom(g) and
dom∇g = intdom(g);
(ii) The intdomg∗ is nonempty, g∗ is Gâteaux differentiable on intdomg∗ and
dom∇g∗ = intdom(g).
Let E be a Banach space and Bs := {z ∈ Y : ∥z∥ ≤ s} for all s > 0. Then, a
function g : Y → R is said to be uniformly convex on bounded subsets of Y ,
[see pp. 203 and 221] [39] if ρst > 0 for all s, t > 0, where ρs : [0,+∞) → [0,∞]
is defined by

ρs(t) = inf
x,y∈Bs,∥x−y∥=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of g. The
function g is also said to be uniformly smooth on bounded subsets of Y , [see
pp. 221] [39], if limt↓0

σs

t for all s > 0, where σs : [0,+∞) → [0,∞] is defined
by

σs(t) = sup
x∈B,y∈SY ,α∈(0,1)

αg(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0, and uniformly convex if the function δg : [0,+∞) → [0,+∞)
defined by

δg(t) := sup
{1

2
g(x) +

1

2
g(y)− g(

x+ y

2
) : ∥y − x∥ = t

}
,

satisfies limt↓0
δg(t)

t = 0.

Definition 1. [12] Let Y be a Banach space. A function g : Y → (−∞,∞] is
said to be proper if the interior of its domain dom(g) is nonempty. Let g : Y →
(−∞,∞] be a convex and Gâteaux differentiable function. Then the Bregman
distance corresponding to g is the function Dg : dom(g) × intdom(g) → R
defined by

Dg(x, y) := g(x)− g(y)− ⟨x− y,∇g
Y (y)⟩, ∀ x, y ∈ Y, (2.1)

where ∇g
Y is the gradient function of Y dependent on g. It is clear that

Dg(x, y) ≥ 0 for all x, y ∈ Y .

It is well-known that Bregman distance Dg does not satisfy all the properties
of a metric function because Dg fail to satisfy the symmetric and triangular
inequality property. However, the Bregman distance satisfies the following so-
called three point identity: for any x ∈ dom(g) and y, z ∈ intdom(g),

Dg(x, z) = Dg(x, y) +Dg(y, z) + ⟨x− y,∇g
Y (y)−∇g

Y (z)⟩.

In particular,

Dg(x, y) = −Dg(y, x) + ⟨y − x,∇g
Y (y)−∇g

Y (x)⟩, ∀ x, y ∈ Y.

Math. Model. Anal., 28(4):653–672, 2023.
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The relationship between Dg and ∥.∥ is guaranteed when g is strongly convex
with strong convexity constant ρ > 0, i.e.,

Dg(x, y) ≥
ρ

2
∥x− y∥2, ∀ x ∈ dom(g), y ∈ intdom(g).

Let g : Y → R be a strictly convex and Gâteaux differentiable function and
T : Q → intdom(g) be a mapping, a point x ∈ Q is called a fixed point of T ,
if for all x ∈ Q, Tx = x. We denote by F (T ) the set of all fixed points of T .
Furthermore, a point p ∈ Q is called an asymptotic fixed point of T ifQ contains
a sequence {xn} which converges weakly to p such that limn→∞ ∥Txn−xn∥ = 0.
We denote by F̂ (T ) the set of asymptotic fixed points of T . A point p ∈ Q is
called a strong asymptotic fixed point of T if C contains a sequence {xn} which
converges strongly to p such that limn→∞ ∥Txn − xn∥ = 0. We denote the set
of strong asymptotic fixed points of T by F̃ (T ). It follows from the definition
that F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ).

Let Q be a nonempty closed and convex subset of int(dom g), then we define
an operator T : Q → int(domg) to be:
(i) Bregman relatively nonexpansive, if F (T ) ̸= ∅, and

Dg(p, Tx) ≤ Dg(p, x), ∀ p ∈ F (T ), x ∈ Q and ˆF (T ) = F (T ).

(ii) Bregman weak relatively nonexpansive, if F̃ (T ) ̸= ∅, and

Dg(p, Tx) ≤ Dg(p, x), ∀ p ∈ F (T ), x ∈ Q and ˜F (T ) = F (T ).

(iii) Bregman quasi-nonexpansive mapping if F (T ) ̸= ∅ and

Dg(p, Tx) ≤ Dg(p, x),∀ x ∈ Q and p ∈ F (T ).

(iv) Bregman firmly nonexpansive (BFNE), if

⟨∇g
Y (Tx)−∇g

Y (Ty), Tx− Ty⟩ ≤ ⟨∇g
Y (x)−∇g

Y (y), Tx− Ty⟩, ∀ x, y ∈ Y.

Example 1. [16] Let Y = ℓ2(R), where ℓ2(R) := {σ = (σ1, σ2, . . . , σn, . . .), σi ∈
R :

∞∑
i=1

|σi|2 < ∞}, ∥σ∥ =
( ∞∑
i=1

|σi|)
1
2 ∀ σ ∈ H and let f(x) = 1

2∥x∥
2 for all

x ∈ Y . Let {xn} ⊂ Y be a sequence defined by x0 = (1, 0, 0, 0, . . .), x1 =
(1, 1, 0, 0, . . .), x2 = (1, 0, 1, 0, . . .), . . . , xn = (σn,1, σn,2, σn,3, . . .), . . ., where

σn,k =

{
1, if k = 1, n+ 1,

0, if otherwise, ∀ n ∈ N,

n ∈ N. Define the mapping T : H → H by

Tx =

{
n

n+1x, if x = xn,

−x, if x ̸= xn.
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We define a countable family Sj : H → H by

Sj(x) =

{
n

n+1x, if x = xn,
−j
j+1x, if x ̸= xn,

for all j ≥ 1 and n ≥ 0. It is clear that F (Sj) = {0} for all j ≥ 1.
It can be shown that T and Sj are Bregman quasi-nonexpansive, precisely

Bregman weak relatively nonexpansive (see [16,28]).

Definition 2. [21] Let Q be a nonempty, closed and convex subset of a reflex-
ive Banach space Y and g : Y → (−∞,+∞] be a strongly coercive Bregman
function. Let β and γ be real numbers with β ∈ (−∞, 1) and γ ∈ [0,∞),
respectively. Then a mapping T : Q → Y with F (T ) ̸= ∅ is called Bregman
(β, γ)-demigeneralized if for any x ∈ Q and p ∈ F (T ),

⟨x−p,∇g
Y (x)−∇g

Y (Tx)⟩≥(1− β)Dg(x, Tx) + γDg(Tx, x),∀ x ∈ Y, p ∈ F (T ).

Definition 3. [9, 13] A function g : Y → R is said to be strongly coercive if

lim
∥x∥→∞

g(x)/∥x∥ = ∞.

Definition 4. A mapping T : Q → Y is said to be demiclosed at p if {xn} is
a sequence in Q such that {xn} converges weakly to some x∗ ∈ Q and {Txn}
converges strongly to p, then Tx∗ = p.

Lemma 1. [38] Let Y be a Banach space, s > 0 be a constant, ρs be the
gauge of uniform convexity of g and g : Y → R be a strongly coercive Bregman
function. Then,
(i) For any x, y ∈ Bs and α ∈ (0, 1), we have

Dg

(
x,∇g∗

Y ∗ [α∇g
Y (y) + (1− α)∇g

Y (z)]
)

≤ αDg(x, y) + (1− α)Dg(x, z)− α(1− α)ρs(∥∇g
Y (y)−∇g

Y (z)∥);

(ii) For any x, y ∈ Bs := {z ∈ Y : ∥z∥ ≤ s}, s > 0,

ρs(∥x− y∥) ≤ Dg(x, y).

Lemma 2. [13] Let Y be a reflexive Banach space, g : Y → R be a strongly
coercive Bregman function and V be a function defined by

V (x, x∗) = g(x)− ⟨x, x∗⟩+ g∗(x∗), x ∈ Y, x∗ ∈ Y ∗.

The following assertions also hold:

Dg(x,∇g∗

Y ∗(x
∗)) = V (x, x∗), for all x ∈ Y and x∗ ∈ Y ∗,

V (x, x∗) + ⟨∇g∗

Y ∗(x
∗)− x, y∗⟩ ≤ V (x, x∗ + y∗) for all x ∈ Y and x∗, y∗ ∈ Y ∗.

Also, following a similar approach as in Lemma 2 and for any x∈Y, y∗, z∗∈Br

and α∈(0, 1), we have

Vg(x, αy
∗+(1−α)z∗)≤αVg(x, y

∗)+ (1−α)Vg(x, z
∗)−α(1−α)ρ∗r(∥y∗−x∗∥).

Math. Model. Anal., 28(4):653–672, 2023.
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The resolvent of G : D×D→R with respect to b is the operator resgG,b : Y →2D

defined as follows:

resgG,b(u) ={u0 ∈ D : G(u0, v) + ⟨▽g(u0)−▽g(u), v − u0⟩
+ b(u0, v)− b(u0, u0) ≥ 0,∀ v ∈ D}, ∀ u ∈ Y. (2.2)

We obtain some properties of the resolvent operator resgG,b.

Lemma 3. [29] Let g : Y → (−∞,+∞] be a Gâteaux differentiable and co-
ercive function. Let G, b : D × D → R satisfy Assumptions 1.3 and 1.4,
respectivley, and let resgG,b : Y → 2D be defined by (2.2). Then, the following

hold: (i) dom(resgG,b) = Y, (ii) resgG,b is single-valued,

(iii) resgG,b is a Bregman firmly nonexpansive type mapping, that is,
∀ u, v ∈ Y ,

⟨▽g(resgG,bu)−▽g(resgG,bv), res
g
G,bu− resgG,bv⟩

≤ ⟨▽g(u)−▽g(v), resgG,bu− resgG,bv⟩,

(iv) F (resgG,b) = Sol(GEP (1.1)) is closed and convex,

(v) Dg(q, res
g
G,bu) +Dg(res

g
G,bu, u) ≤ Dg(q, u), ∀ q ∈ F (resgG,b),

(vi) resgG,b is Bregman quasi-nonexpansive.

Lemma 4. [21] Let Y1 and Y2 be two Banach spaces. Let F : Y1 → Y2 be a
bounded linear operator and T : Y2 → Y2 be a Bregman (ϕ, σ)-demigeneralized
for some ϕ ∈ (−∞, 1) and σ ∈ [0,∞). Suppose that K = ran(A) ∩ F (T ) ̸= ∅
(where ran(A) denotes the range of (A). Then for any (x, q) ∈ Y1 ×K,

⟨x− q, F ∗(∇g2
Y2
(T (Fx)))⟩ ≥ (1− ϕ)Dg2(Fx, T (Fx)) + σDg2(T (Fx), Fx)

≥ (1− ϕ)Dg2(Fx, T (Fx)).

So, given any real numbers ξ1 and ξ2, the mapping L1 : Y1 → [0,∞) and
L2 : Y2 → [0.∞) formulated for x ∈ Y1 as

L1(x) =

{ Dg2
(Fx,TFx)

D∗
g1

(F∗(∇g2
Y2

(Fx)),F∗(∇g2
Y2

(TFx))
, if (I − T )Fx ̸= 0,

ξ1, otherwise,

and

L2(x) =


D∗

g1
(∇g1

Y1
(x)−γF∗(∇g2

Y2
(Fx)−∇g2

Y2
(TFx)),∇g1

Y1
(x))

D∗
g1

(F∗(∇g2
Y2

(Fx)),F∗(∇g2
Y2

(TFx))
, if (I − T )Fx ̸= 0,

ξ2, otherwise,

are well-defined, where γ is any nonnegative real number. Moreover, for any
(x, p) ∈ E1 ×K, we have

Dg1(q, y) ≤Dg1(q, x) (2.3)

− (γ(1− ϕ)L1(x)− L2(x))Dg∗
1
(F ∗(∇g2

Y2
(Fx)), F ∗(∇g2

Y2
(TFx)),

where

y = (∇g1
Y1
)−1[∇g1

Y1
(x)− γF ∗(∇g2

Y2
(Fx)−∇g2

Y2
(TFx))].
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Remark 1. It is easy to see from [21] that resgG,b is (0, 1)-demigeneralized.
Therefore, we conclude from (2.3) that

Dg1(q, y)≤Dg1(q, x)−(γL1(x)−L2(x))Dg∗
1
(F ∗(∇g2

Y2
(Fx)), F ∗(∇g2

Y2
((resgG,b)x),

(2.4)

where T = resgG,b.

Lemma 5. [13] Let Y be a Banach space and g : Y → R a Gâteaux differen-
tiable function which is uniformly convex on bounded subsets of Y . Let {xn}n∈N
and {yn}n∈N be bounded sequences in Y . Then,

lim
n→∞

Dg(yn, xn) = 0 ⇐⇒ lim
n→∞

∥yn − xn∥ = 0.

Lemma 6. [29] Let Y be a Banach space and g : Y → R a Gâteaux differen-
tiable function which is uniformly convex on bounded subsets of Y . Let D be a
nonempty, closed and convex subset of Y and S1, S2, . . . , Sn be Bregman weak
relatively nonexpansive mappings of D into itself such that Γ : ∩N

i=1F (Si) ̸= ∅.
Let {µn,t : t, n ∈ N, 1 ≤ t ≤ n} be a sequence of real numbers such that
0 < µn,1 ≤ 1 and 0 < µn,i < 1 for every i = 2, 3, . . . , n. Let Wn be the
Bregman W -maping generated by Sn, Sn−1, . . . , S1 and µn,n, µn,n−1, . . . , µn,1.
Then, the following assertions holds:

(i) F (Wn) =
n⋂

i=1

F (Si),

(ii) for every t = 1, 2, . . . , n, x ∈ D and z ∈ F (Wn), Dg(z, Un,tx) ≤ Dg(z, x)
and Dg(z, StUn,t+1x) ≤ Dg(z, x),
(iii) for every n ∈ N, Wn is a Bregman weak relatively nonexpansive mapping.

Lemma 7. [36] Let g : Y → R be a Gâteaux differentiable and totally con-
vex function. If x0 ∈ Y and the sequence {Dg(xn, x0)} is bounded, then the
sequence {xn} is also bounded.

Definition 5. Let Q be a nonempty closed and convex subset of a reflexive
Banach space Y and g : Y → (−∞,+∞] be a strongly coercive Bregman
function. A Bregman projection of x ∈ int(dom(g)) onto Q ⊂ int(domg) is the
unique vector projgQ(x) ∈ Q satisfying

Dg(proj
g
Q(x), x) = int{Dg(y, x) : y ∈ Q}.

Lemma 8. [35] Let Q be a nonempty closed and convex subset of a reflexive
Banach space Y and x ∈ Y . Let g : Y → R be a strongly coercive Bregman
function. Then,
(i) z = projgQ(x) if and only if ⟨∇g

Y (x)−∇g
Y (z), y − z⟩ ≤ 0, ∀ y ∈ Q.

(ii) Dg(y, proj
g
Q(x)) +Dg(proj

g
Q(x), x) ≤ Dg(y, x), ∀ y ∈ Q.

Lemma 9. [7, 26] Let {an} be a sequence of non-negative real numbers, {γn}
be a sequence of real numbers in (0, 1) with conditions

∑∞
n=1 γn = ∞ and {dn}

be a sequence of real numbers. Assume that

an+1 ≤ (1− γn)an + γndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for every subsequence {ank

} of {an} satisfying the con-
dition: lim supk→∞(ank

− ank+1) ≤ 0, then limn→∞ an = 0.
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3 Main result

Throughout this section, we assume that
Assumption

(1) Let Yj , j = 0, 1, 2, . . . ,m be reflexive Banach spaces with Y0 = Y and
Dj ⊆ Yj , j = 0, 1, 2, . . . ,m be nonempty, closed and convex sets with Dj ⊆
int(domgj), where gj : Yj → (−∞,+∞] is a coercive Bregman functions which
are bounded, uniformly Frechet differentiable and totally convex on bounded
subsets of Yj , j = 0, 1, 2, . . . ,m .
(2) Suppose ∇gj

Yj
, j = 0, 1, 2, . . . ,m be the gradients of Yj dependent on gj

and Kj : Y → Yj , j = 1, 2, . . .m be bounded linear operators. Let Gj , bj :
Dj ×Dj → R, j = 0, 1, 2, . . . ,m satisfy Assumptions 1.3 and 1.4, respectively,
with G0 = G and b0 = b.
(3) Let {Sn} be family of Bregman weak relatively nonexpansive mappings of
D into itself and let {µn,k : k, n ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers
such that 0 < µi,t ≤ 1 for all i ∈ N and every t = 2, 3, . . . , n. Let Wn be the
Bregman W -mapping generated by Sn, Sn−1, . . . , S1 and µn,n, µn,n−1, . . . , µn,1.

(4) Assume that Ω := x∗ ∈ GEP (G, b)
⋂ n⋂

k=1

F (Sk) : Kjx
∗ ∈

m⋂
j=1

GEP (Gj , bj)

is nonempty. Let γ > 0 be a real number and {αn}n∈N, {θj,m} be two sequences
in (0, 1) with

∑m
j=0 θj,m = 1 satisfying the following control conditions:

(i) lim
n→∞

αn = 0,
∞∑

n=1
αn = ∞,

(ii) βn ∈ [0, 1) and 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Algorithm 1. Define a sequence {xn}∞n=1 generated arbitrarily by chosen x1 ∈ E
and any fixed u ∈ E, such that

un = (∇g
Y )

−1
[ m∑
j=0

θj,m(∇g
Y (xn)−γK∗

j (∇
gj
Yj
(IYj−(res

gj
Gj ,bj

)Kjxn))
]
,

zn = (∇g
Y )

−1
[
βn∇g

Y (un) + (1− βn)∇g
Y (Wnun)

]
,

xn+1 = (∇g
Y )

−1
[
αn∇g

Y (u) + (1− αn)∇g
Y (zn)

]
.

(3.1)

Let the sequences {ξ1,n}n∈N and {ξ2,n}n∈N satisfy the following condition:
there exists a positive real number ρ such that

0 < ρ < lim inf
n→∞

ξ2,n/ξ1,n < γ,

where

ξ1,n=


Dgj

(Kjxn,(res
gj
Gj,bj

)Kjxn)

D∗
g(K

∗
j (∇

gj
Yj

(Kjxn)),K∗
j (∇

gj
Ej

((res
gj
Gj,bj

)Kjxn))
, if (I−(res

gj
Gj ,bj

))Kjxn ̸=0,

ξ1, otherwise,

and

ξ2,n=


D∗

g(∇
g
Y (xn)−γK∗

j (∇
gj
Yj

(Kjxn)−∇
gj
Yj

(res
gj
Gj,bj

)Kjxn)),∇g
Y (xn))

D∗
g(K

∗
j (∇

gj
Ej

(Kjxn)),K∗
j (∇

gj
Ej

((res
gj
Gj,bj

)Kjxn))
, if

(I − (res
gj
Gj ,bj

))Kjxn ̸= 0,

ξ2, otherwise.
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Then, the sequence {xn} generated iteratively by Algorithm 1 converges strong-
ly to z = projgΩu, where projgΩ is the Bregman projection of Y onto Ω.

We proceed with the following two steps.
Step 1: Boundedness of the iterative method.

Proof. Let x∗ ∈ Ω, then, from (2.4) and Algorithm 1, we obtain that

Dg(x
∗, un)=Dg

(
x∗, (▽g

Y )
−1

[ m∑
j=0

θj,m(▽g
Y (xn)−γK∗

j (I
Yj−(res

gj
Gj ,bj

)Kjxn))
])

≤ Dg(x
∗, xn)−

m∑
j=0

θj,m(γξ1,n − ξ2,n)D
∗
g

(
K∗

j (▽
gj
Yj
(Kjxn)),

K∗
j (▽

gj
Yj
(res

gj
Gj ,bj

Kjxn))
)
≤ Dg(x

∗, xn). (3.2)

From Algorithm 1, Lemma 2 and (3.2), we obtain that

Dg(x
∗, zn) =Dg

(
x∗, (▽g

Y )
−1[βn ▽g

Y (un) + (1− βn)▽g
Y (Wnun)]

)
=Vg

(
x∗, βn ▽g

Y (un) + (1− βn)▽g
Y (Wnun)

)
=g(x∗)− ⟨x∗, βn ▽g

Y (un) + (1− βn)▽g
Y (Wnun)⟩

+ g∗(βn ▽g
Y (un) + (1− βn)▽g

Y (Wnun))

≤βng(x
∗) + (1− βn)g(x

∗) + βng
∗(▽g

Y (un))

+ (1− βn)g
∗(▽g

Y )g
∗(▽g

Y (Wnun))

=βnVg(x
∗,▽g

Y (un)) + (1− βn)Vg(x
∗,▽g

Y (Wnun))

=βnDg(x
∗, un) + (1− βn)Dg(x

∗,Wnun)

≤βnDg(x
∗, un) + (1− βn)Dg(x

∗, un)

=Dg(x
∗, un) ≤ Dg(x

∗, xn). (3.3)

We conclude from (3.1) and (3.2)–(3.3) that

Dg(x
∗, xn+1) = Dg

(
x∗, (▽g

Y )
−1[αn ▽g

Y (u) + (1− αn)▽g
Y (zn)]

)
≤ αnDg(x

∗, u) + (1− αn)Dg(x
∗, zn) ≤ αnDg(x

∗, u) + (1− αn)Dg(x
∗, un)

≤ αnDg(x
∗, u) + (1− αn)Dg(x

∗, xn) ≤ max{Dg(x
∗, u), Dg(x

∗, xn)}
...

≤ max{Dg(x
∗, u), Dg(x

∗, x1)}, ∀ n ≥ 1.

Thus, we obtain that the sequence {Dg(x
∗, xn)}n∈N is bounded.

Using Lemma 7, then we conclude that {xn} is bounded. Consequently,
{un} and {zn} are bounded.

Step 2: Convergence analysis of the sequences {xn}, {un} and {zn}. From
(3.1), (3.2) and Lemma 1, we obtain

Dg(x
∗, zn) = Dg

(
x∗, (▽g

Y )
−1

[
βn ▽g

Y (un) + (1− βn)▽g
Y (Wnun)

])
Math. Model. Anal., 28(4):653–672, 2023.
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≤βnDg(x
∗, un) + (1− βn)Dg(x

∗,Wnun)

− βn(1− βn)ρs
(
|| ▽g

Y (un)−▽g
Y (Wnun)||

)
≤ Dg(x

∗, xn)−
m∑
j=0

θj,m(γξ1,n − ξ2,n)D
∗
g

(
K∗

j (▽
gj
Yj
(Kjxn)),

K∗
j (▽

gj
Yj
(res

gj
Gj ,bj

Kjxn))
)
−βn(1−βn)ρ

∗
s

(
|| ▽g

Y (un)−▽g
Y (Wnun)||

)
. (3.4)

By applying (3.1) and Lemma 2, we get

Dg(x
∗, xn+1) = Dg

(
x∗, (▽g

Y )
−1[αn ▽g

Y (u) + (1− αn)▽g
Y (zn)]

)
= Vg(x

∗, αn ▽g
Y +(1− αn)▽g

Y (zn)) ≤ Vg(x
∗, αn ▽g

Y (y)

+ (1− αn)▽g
Y (zn)− αn(▽g

Y (u)−▽g
Y (x

∗)))

− ⟨▽g∗

Y ∗(αn ▽g
Y (u) + (1− αn)▽g

Y (zn))− x∗,−αn(▽g
Y (u)−▽g

Y (x
∗))⟩

= Vg(x
∗, αn ▽g

Y (x∗)+(1−αn)▽g
Y (zn))+αn⟨xn+1−x∗,▽g

Y (u)−▽g
Y (x∗)⟩

= Dg(x
∗, (▽g∗

Y ∗)[αn ▽g
Y (x∗) + (1− αn)▽g

Y (zn)])

+ αn⟨xn+1 − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩

≤ αnDg(x
∗, x∗) + (1− αn)Dg(x

∗, zn) + αn⟨xn+1 − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩

= (1− αn)Dg(x
∗, zn) + αn⟨xn+1 − x∗,▽g

Y (u)−▽g
Y (x

∗)⟩
≤ (1− αn)Dg(x

∗, xn)− (1−αn)

×
m∑
j=0

θj,m(γξ1,n−ξ2,n)D
∗
g

(
K∗

j (▽
gj
Yj
(Kjxn)),K

∗
j (▽

gj
Yj
(res

gj
Gj ,bj

Kjxn))
)

− (1− αn)βn(1− βn)ρ
∗
s

(
|| ▽g

Y (un)−▽g
Y (Wnun)||

)
+ αn⟨xn+1 − x∗,▽g

Y (u)−▽g
Y (x

∗)⟩
≤ (1− αn)Dg(x

∗, xn) + αn⟨xn+1 − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩. (3.5)

In view of Lemma 9, we need to show that ⟨xnk+1 − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩ ≤ 0

for every subsequence {Dg(x
∗, xnk

)} of {Dg(x
∗, xn)} satisfying the condition

lim sup
k→∞

{Dg(x
∗, xnk

)−Dg(x
∗, xnnk

+1)} ≤ 0. (3.6)

Applying (3.4) and (3.6), we get that

lim sup
k→∞

(
(1− αnk

)βnk
(1− βnk

)ρ∗s
(
|| ▽g

Y (unk
)−▽g

Y (Wnk
unk

)||
)

≤ lim sup
k→∞

(
αnk

Dg1(x
∗, u) + (1− αnk

)Dg(x
∗, xnk

)−Dg(x
∗, xnk+1

)
)

= lim sup
k→∞

(
Dg(x

∗, xnk
)−Dg(x

∗, xnk+1
)
)
≤ 0. (3.7)

Following the same process as in (3.7), we obtain from (3.5) and (3.6) that

lim sup
k→∞

(
(1− αnk

)

m∑
j=0

θj,m(γξ1,nk
− ξ2,nk

)D∗
g

(
K∗

j (▽
gj
Yj
(Kjxnk

)),
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K∗
j (▽

gj
Yj
(res

gj
Gj ,bj

Kjxnk
))
))

≤ lim sup
k→∞

(
αnk

Dg(x
∗, u) + (1− αnk

)Dg(x
∗, xnk

)−Dg1(x
∗, xnk+1

)
)

= lim sup
k→∞

(
Dg1(x

∗, xnk
)−Dg(x

∗, xnk+1
)
)
≤ 0. (3.8)

Therefore, we conclude from (3.7) and (3.8) that

lim
k→∞

ρ∗s
(
|| ▽g

Y (unk
)−▽g

Y (Wnk
unk

)||
)
= 0,

then

lim
k→∞

(
|| ▽g

Y (unk
)−▽g

Y (Wnk
unk

)||
)
= 0, (3.9)

lim
k→∞

D∗
g

(
K∗

j (▽
gj
Yj
(Kjxnk

)),K∗
j (▽

gj
Yj
(res

gj
Gj ,bj

Kjxnk
))
)
= 0, j = 0, 1, 2, . . . ,m.

(3.10)

So, from Lemma 5 and the properties of ρ∗s, D
∗
g and Kj , we obtain

lim
k→∞

||Kjxnk
− (res

gj
Gj ,bj

Kjxnk
)|| = lim

k→∞
Dgj (Kjxnk

, (res
gj
Gj ,bj

Kjxnk
)) = 0,

j = 0, 1, 2, . . .m, (3.11)

lim
k→∞

∥unk
−Wnk

unk
∥ = 0. (3.12)

On applying Lemma 5, we get

lim
k→∞

Dg(unk
,Wnk

unk
) = 0. (3.13)

We observe from (3.1), (3.10), (3.13) and applying Lemma 5 that
lim
k→∞

Dg(unk
, xnk

) = lim
k→∞

||unk
− xnk

|| = 0,

lim
k→∞

Dg(znk
, unk

) = lim
k→∞

||znk
− unk

|| = 0,

lim
k→∞

Dg(xnk+1, znk
) = lim

k→∞
||xnk+1 − znk

|| = 0.

(3.14)

Using (3.14), we obtain

lim
k→∞

||znk
− xnk

|| = 0 lim
k→∞

||xnk+1
− xnk

|| = 0. (3.15)

Since ▽g
Y is uniformly norm-to-norm continuous on any bounded subset of Y ,

then we obtain from (3.14), (3.15) and Lemma 5 that

lim
k→∞

|| ▽g
Y (unk

)−▽g
Y (xnk

)|| = lim
k→∞

Dg(unk
, xnk

) = 0,

lim
k→∞

|| ▽g
Y (znk

)−▽g
Y (unk

)|| = lim
k→∞

Dg(znk
, unk

) = 0,

lim
k→∞

|| ▽g
Y (xnk+1

)−▽g
Y (znk

)|| = lim
k→∞

Dg(xnk+1
, znk

) = 0,

lim
k→∞

|| ▽g
Y (znk

)−▽g
Y (xnk

)|| = lim
k→∞

Dg(znk
, xnk

) = 0,

lim
k→∞

|| ▽g
Y (xnk+1

)−▽g
Y (xnk

)|| = lim
k→∞

Dg(xnk+1
, xnk

) = 0.
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From (2.1) and (3.1), we obtain that

Dg(x
∗, Un,tun)=Dg(x

∗, projgC(▽
g∗

Y ∗ [µn,t ▽g
Y (StUn,tun)+(1−µn,t)

×▽g
Y (un)]))≤Dg(x

∗,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,tun)+(1−µn,t ▽g

Y (un))])

−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un) + (1− µn,t)▽g

Y (un)])

= g(x∗)− ⟨x∗,▽g
Y (StUn,t+1un) + (1− µn,t)▽g

Y (un)⟩
+ g∗(µn,t ▽g

Y (StUn,t+1un) + (1− µn,t)▽g
Y (un))

−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un)+(1−µn,t)▽g

Y (un)])

≤ µn,tg(x
∗) + (1− µn,1)g(x

∗) + µn,tg
∗(▽g

Y (StUn,3un))

+(1−µn,1)g
∗(▽g

Y (un))−µn,t(1−µn,t)ρ
∗
s1(∥ ▽

g
Y (StUn,2un)

−▽g
Y (un)||)−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un)

+ (1− µn,t)▽g
Y (un)]) = µn,tVg(x

∗,▽g
Y (StUn,2un))+(1−µn,1)

× Vg(x
∗,▽g

Y (un))−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un)

+ (1−µn,t)▽g
Y (un)])−µn,t(1−µn,t)

× ρ∗s1(|| ▽
g
Y (StUn,2un)−▽g

Y (un)||)

−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un) + (1− µn,t)▽g

Y (un)])

≤ µn,tDg(x
∗, Un,t+1un) + (1− µn,1)Dg(x

∗, un)

− µn,t(1− µn,t)ρ
∗
s1(|| ▽

g
Y (StUn,2un)−▽g

Y (un)||)

−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un) + (1− µn,t)▽g

Y (un)])

≤ µn,tDg(x
∗, Un,t+1un) + (1− µn,t)Dg(x

∗, un)

− µn,t(1− µn,t)ρ
∗
s1(|| ▽

g
Y (StUn,2un)−▽g

Y (un)||)

−Dg(Un,tun,▽g∗

Y ∗ [µn,t ▽g
Y (StUn,t+1un) + (1− µn,t)▽g

Y (un)]).

Also,

Dg(x
∗,Wnun) = Dg(x

∗, Un,1un) ≤ µn,1Dg(x
∗, Un,2un) + (1− µn,1)

×Dg(x
∗, un)− µn,1(1− µn,1)ρ

∗
s2(|| ▽

g
Y (S1Un,2un)−▽g

Y (un)||)
≤ µn,1[µn,2Dg(x

∗, Un,3) + (1− µn,2)Dg(x
∗, un)

− µn,2(1− µn,2)ρ
∗
s2(|| ▽

g
Y (S2Un,3un)−▽g

Y (un)||)−Dg(Un,2un,

▽g∗

Y ∗ [µn,2 ▽g
Y (S2Un,3un) + (1− µn,2)▽g

Y (un)])] + (1− µn,1)

×Dg(x
∗, un)− µn,1(1− µn,1)ρ

∗
s2(|| ▽

g
Y (S1Un,2un)−▽g

Y (un)||)
≤ . . . ≤ Dg(x

∗, un)−µn,1(1−µn,1)ρ
∗
s2(|| ▽

g
Y (S1Un,2un)−▽g

Y (un)||)
− µn,1µn,2(1− µn,2)ρ

∗
s2(|| ▽

g
Y (S2Un,3un)−▽g

Y (un)||)

− µn,1Dg(Un,2un,▽g∗

Y ∗ [µn,2 ▽g
Y (S2Un,3un) + (1− µn,2)▽g

Y (un)])

− . . .− µn,1µn,2 · · ·µn,n−1Dg(Un,nun,▽g∗

Y ∗ [µn,n ▽g
Y (SnUn,n+1un)

+ (1− µn,n)▽g
Y un]), (3.16)

for all n ∈ N. Since ▽g
Y is uniformly norm-to-norm continuous on bounded

subsets of Y , by following the same approach as in (3.7) and applying (3.9),
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(3.13), we obtain

lim
k→∞

µnk,1|| ▽
g
Y (S1Unk,2unk

)−▽g
Y (unk

)||

= lim
k→∞

|| ▽g
Y (WnK

unk
)−▽g

Y (unk
)|| = 0.

This implies that

lim
k→∞

|| ▽g
Y (S1Unk,2

unk
)−▽g

Y unk
|| = 0.

From (3.13) and (3.16), we deduce that

lim
k→∞

|| ▽g
Y (StUnk,t+1unk

)−▽g
Y unk

|| = 0,∀ t ∈ N.

Since ▽g∗

Y ∗ is uniformly norm-to-norm continuous on bounded subsets of Y ∗,
we deduce that

lim
k→∞

||StUnk,t+1unk
− unk

|| = 0, ∀ t ∈ N. (3.17)

On the other hand, we obtain

lim
k→∞

Dg(Unk,tunk
,▽g∗

Y ∗ [µnk,t ▽
g
Y (StUnk,t+1, unk

)+(1− µnk,t)▽
g
Y (unkt

)])=0,

∀ t ∈ N with t ≥ 2. This together with Lemma 5 implies that

lim
k→∞

∥Unk,tunk
▽g∗

Y ∗ [(µnk,t+1unk
)+ (1− µn,t)▽g

Y unk
]∥ = 0, (3.18)

∀t ∈ N with k ≥ 2. In view of (3.17), we get

lim
k→∞

||[µn,t ▽g
Y (StUnk,t+1unk

) + (1− µn,t)▽g
Y (unt

)]|| = 0, ∀ t ∈ N.

Therefore,

lim
k→∞

∥ ▽g∗

Y ∗ [▽g
Y (StUnk,t+1, unk

)+(1−µn,t)▽g
Y (unk

)]−unk
∥=0, ∀ t ∈ N.

From (3.13) and (3.17), we get

lim
k→∞

||Unk,tunk
− unk

|| = 0, ∀ t ∈ N.

This together with (3.18) implies that

lim
k→∞

||StUnk,t+1unk
− Unk,t+1unk

|| = 0, ∀ t ∈ N.

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that

{xnk
} converges weakly to z ∈ Ω. Also, from (3.14) and (3.15), there exist

{unkj
} of {unk

} and {znkj
} of {znk

} which converge weakly to z respectively.

Thus, for each j = 0, 1, 2, . . .m, Kj is a bounded linear operator, then it follows
that Kjxnk

⇀ Kjz ∈ Yj as k → ∞.

Math. Model. Anal., 28(4):653–672, 2023.
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From (3.11), Kjz ∈ F (res
gj
Gj ,bj

) = Sol(GEP ), j = 0, 1, 2, . . .m. More so,
since Unk,t+1unk

⇀ z and Sk is Bregman weak relatively nonexpansive, we
obtain from Lemma 6 and (3.13) that z ∈ F (Sk) for every k ∈ N. Hence, we
conclude that z ∈ Ω.

Next our aim is to show that ⟨xnk+1 − z,▽g
Y (u)−▽g

Y (z)⟩ ≤ 0.

lim sup
k→∞

⟨xnk+1
− x∗,▽g

Y (u)−▽g
Y (x

∗)⟩ = lim
j→∞

⟨xnkj
+1 − x∗,▽g

Y (u)−▽g
Y (x

∗)⟩

≤ ⟨z − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩.

Hence, we obtain that

lim sup
k→∞

⟨xnk+1 − z,▽g
Y (u)−▽g

Y (z)⟩ ≤ ⟨z − x∗,▽g
Y (u)−▽g

Y (x
∗)⟩ ≤ 0. (3.19)

On substituting (3.19) and Lemma 9 into (3.5), we conclude that {xn} con-
verges strongly to z. ⊓⊔

4 Numerical example

Example 2. Let Y, Yj = ℓ(R) for j = 0, 1 with Y0 = Y be the linear spaces
whose elements are all 2-summable sequences {xt}∞t=1 of scalars in R, that is
ℓ2(R) := {x = (x1, x2, . . . , xt, . . .), xt ∈ R}, with inner product ⟨., .⟩ : ℓ2 × ℓ2 →
R defined by ⟨x, y⟩ :=

∑∞
t=1 xtyt and the norm ∥.∥ : ℓ2 → ℓ2 defined by

∥x∥ :=
√∑∞

t=1 |xt|2, where x = {xt}∞t=1, y = {yt}∞t=1.

Let Kj : ℓ2 → ℓ2 be given by Kjx = ( jx1

5 , jx2

den , · · · ,
jxt

5 , · · · , ) for all x =
{xt}∞t=1 ∈ ℓ2. Define the set D := {x ∈ ℓ2 : ∥x∥ ≤ 1} and D1 := {y ∈ ℓ2 :
∥y∥ ≤ 1}. We define the mapping G = G0 : D ×D → R, G1 : D1 ×D1 → R
by G(x, y) = x(y−x) ∀ x, y ∈ D and G1(x, y) = (x− 1)(y−x) ∀ x, y ∈ D1, let
b0 = b : D ×D → R and b1 : D1 ×D1 → R be defined by b(x, y) = b1(x, y) =
xy ∀ x, y ∈ D. We observe that G,G1, b and b1 satisfy Assumptions 1.3 and 1.4,
respectively with Sol(GEP (G, b)) = {0} ≠ ∅ and Sol(GEP (G1, b1)) = { 1

2} ≠
∅. For x ∈ D, let Sk be as defined in Example 1.

For this experiment, let αn = 1
n+10 , βn = 1

n3 , θj,m = 1
2j (1 − m

2m+1 ) ∀ j ≥
1, n ≥ 1, γ = 0.25, resgG,b(xn) =

2x5

5 and resgG1,b1
(xn) =

4xn+3
10 . We consider

the following cases for initial values of x1 :

Case 1: x1 = (0.09, 0.45, 0, . . . , 0);

Case 2: x1 = (0.5, 0.5, 0, . . . , 0);

Case 3: x1 = (−0.96, 0.85, . . . , 0);

Case 4: x1 = (1, 1, 0, . . . 0, 1).

The results of this experiment are reported in Figure 1 below.
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Figure 1. Example 2. Top left: Case 1, top right: Case 2, bottom left: Case 3, bottom
right: Case 4.
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