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s u m m a r y   

Background: Artificial intelligence (AI), machine learning and deep learning (including generative AI) are 
increasingly being investigated in the context of research and management of human infection. 
Objectives: We summarise recent and potential future applications of AI and its relevance to clinical in-
fection practice. 
Methods: 1617 PubMed results were screened, with priority given to clinical trials, systematic reviews and 
meta-analyses. This narrative review focusses on studies using prospectively collected real-world data with 
clinical validation, and on research with translational potential, such as novel drug discovery and micro-
biome-based interventions. 
Results: There is some evidence of clinical utility of AI applied to laboratory diagnostics (e.g. digital culture 
plate reading, malaria diagnosis, antimicrobial resistance profiling), clinical imaging analysis (e.g. pul-
monary tuberculosis diagnosis), clinical decision support tools (e.g. sepsis prediction, antimicrobial pre-
scribing) and public health outbreak management (e.g. COVID-19). Most studies to date lack any real-world 
validation or clinical utility metrics. Significant heterogeneity in study design and reporting limits com-
parability. Many practical and ethical issues exist, including algorithm transparency and risk of bias. 
Conclusions: Interest in and development of AI-based tools for infection research and management are 
undoubtedly gaining pace, although the real-world clinical utility to date appears much more modest. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).   

Introduction 

Artificial intelligence (AI) is the ubiquitous earworm of the cur-
rent era, increasingly featuring in news, social media, and even 
medical literature. Indeed, there has been exponential growth in 
publications relating to AI, machine learning (ML) and deep learning 
(DL) (Fig. 1). In recent months, this Journal has published several 
reports of utility of (AI) and machine learning (ML) to improve 
prediction and diagnosis of infectious diseases. For example, Luo 
et al.1 reported the use of ML to generate a predictive model that 
distinguished active from latent tuberculosis with a sensitivity and 
specificity of 88% and 91% respectively. However, the global litera-
ture to date varies significantly in scope, quality and target audience, 
ranging from jargon-rich specialist bioinformatics journals to much 
broader general-interest pieces. The conclusions of authors also vary 
dramatically, from near-evangelical promises that AI will improve 

every aspect of medicine, to doomsday prophecies of AI replacing 
human clinicians outright. In the face of this tsunami, it may be 
challenging for front-line infection clinicians (including infectious 
diseases physicians and medical microbiologists) to ascertain the 
relevance of AI to their own clinical practice. In this Editorial Com-
mentary, we explore key AI publications and milestones over the 
past five years in the diagnosis and management of human infec-
tions. 

Artificial intelligence (AI) refers to the use of algorithms and 
models enabling machines to perform tasks that normally require 
human intelligence. The earliest applications of AI in healthcare re-
lied on expert rules, in which the knowledge and expertise of human 
specialists was used to formulate a series of “if-then” rules (e.g. “if 
the patient is febrile, then request blood cultures”). The first such 
system relating to human infection was MYCIN, introduced by 
Stanford University in the 1970s to suggest antibiotics for severe 
infections based on patient-specific input data, although this system 
was never widely used in clinical practice.2 While expert rules are 
widely used in clinical medicine today, including most clinical de-
cision support systems and calculators, they are often not included 
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in contemporary discussions of AI, which focus primarily on ma-
chine learning and, more recently, deep learning. 

Machine learning (ML) is the subset of AI involving algorithms 
that, unlike expert rules, can define their own rules from input data 
through iterative training and improvement, without explicit human 
programming.3 ML was first applied in medicine in the 1980s and 
1990s in the form of computer-assisted diagnosis systems in medical 
imaging.4 Broadly, machine learning encompasses supervised, un-
supervised and reinforcement learning (Fig. 2). Supervised learning 
algorithms are trained using labelled data (e.g. histological speci-
mens that have already been labelled as normal or diseased by a 
human expert). When applied to unlabelled categorical or con-
tinuous test data, these trained algorithms predict outcomes by 
classification or regression, respectively. Conversely, unsupervised 
ML algorithms are trained on unlabelled data by data-driven (rather 
than human-guided) processes. Such models are used for data 
clustering, feature extraction and dimensionality reduction (e.g. 
identifying patient subgroups based on unlabelled clinical data). 
Finally, reinforcement learning is an environment-driven approach, 
where iterative learning cycles result in a reward or penalty by 
comparison with a pre-defined target (e.g. continuous blood glucose 
monitoring and insulin administration). Clinically-relevant AI 
models often employ more than one of these approaches, and each 
approach can be further subclassified into many different algorithm 
types, the details of which are beyond the scope of this review.3 

Deep learning (DL) refers to an increasingly-popular branch of 
ML employing artificial neural networks (ANN) with multiple pro-
cessing layers, which may employ supervised, unsupervised and 
reinforcement ML approaches.5 DL excels particularly in complex 
tasks involving high-volume and high-dimensional data. However, it 
is computationally more demanding than traditional ML approaches, 
and, as many of its processing layers remain hidden from the human 
user (giving rise to the so-called “black box” of AI), it presents 
greater challenges for model interpretability and accountability. 

Large language models (LLM), including chatbots based on gen-
erative pre-trained transformer (GPT) architecture like ChatGPT and 
GPT-4, are DL models trained on large volumes of data to generate 
human-like text.6 Such generative AI is also capable of producing 
novel non-text outputs (e.g. images, audio and video), marking it out 
as a potentially more disruptive technology than traditional non- 
generative ML. Concerningly, such technology is also being utilised 
in cases of scientific fraud.7 

Predictions of the transformational role of AI in healthcare are 
not new, with the earliest claims dating to the 1950s.8 However, as 
anticipated by Moore’s law, computing speed, memory, compact-
ness, cost, and algorithmic capabilities have improved exponentially 
since then, as has the availability of digital clinical data. This rapid 
rate of development makes accurate forecasting about the future 
role of AI challenging. Here we focus on recent and current appli-
cations of AI in the diagnosis and management of infection, high-
lighting barriers to uptake in clinical practice and ongoing concerns 
and limitations. It is not intended as an exhaustive or specialist re-
view, but rather a practical guide for front-line infection clinicians 
making sense of AI in their own specialty. 

Methods 

An initial MEDLINE/PubMed search was conducted using the search 
terms “(((artificial intelligence[Title/Abstract]) OR (machine learning 
[Title/Abstract]) OR (deep learning[Title/Abstract]) OR (neural network 
[Title/Abstract]) OR (chatGPT[Title/Abstract])) AND ((microbiology 
[Title/Abstract]) OR (infectious diseases[Title/Abstract]) OR (anti-
microbial[Title/Abstract]) OR (antibiotic[Title/Abstract])))”, with pub-
lication date limited to the past five years (up to 31st May 2023). The 
titles of all 1617 results were screened, but full-text articles were only 
reviewed for systematic reviews, meta-analyses and clinical trials or 
real-world algorithm validation, rather than papers dealing solely with 
algorithm development. Additional potentially-relevant papers were 

Fig. 1. Recent trends in PubMed search results. Search field: Title/Abstract; Search terms: artificial intelligence, machine learning, deep learning.  
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identified using the reference lists of included full-text articles. As re-
view articles published within the past five years made references to 
papers published earlier than five years ago, some older full-text arti-
cles were assessed where they were felt to add significant value to this 
review, such as randomised clinical trials employing AI algorithms 
(very rare overall in the literature to date). 

Many papers were identified describing the development of AI 
algorithms for use in the diagnosis and management of human in-
fections, as well as several reviews summarising these. However, 
most articles dealt purely with algorithm development rather than 
clinical deployment, with validation in an external dataset either 
lacking or applying only to retrospective data. Furthermore, algo-
rithm performance was almost always reported using statistical 
metrics such as sensitivity, specificity, or area under the receiver- 
operating characteristic curve (AUROC) (Table 1a), with very few 
reporting any clinical utility metrics, such as impact on patient care 
or efficiency. The focus here is on studies that included prospectively 
collected real-world data, and any reporting clinical outcomes of AI 
algorithm use. Furthermore, we focus on ML, DL and generative AI, 
rather than manually-programmed expert rules. Where research 
applications of AI are explored, we focus primarily on research with 
translational potential, such as development of novel antimicrobials, 
vaccines or microbiome-based therapies. 

Laboratory and imaging diagnostics 

ML and DL algorithms have been investigated in the clinical 
microbiology laboratory, including microorganism detection, 
quantification, and antimicrobial resistance profiling.9 In 2019, the 
automated plate assessment system APAS Compact (Clever Culture 
Systems, Switzerland) became the first AI-based clinical micro-
biology system to receive approval by the US Food and Drug Ad-
ministration (FDA) as a Class II Medical Device.10 Comparing digital 
image analysis of culture plates with traditional plate reading by 
microbiologists, APAS Compact achieved 90.8% sensitivity and 92.8% 
specificity,11 while the more recent APAS Independence improved 
throughput to 200 plates per hour.10 Clever Culture System’s module 
for detecting methicillin-resistant Staphylococcus aureus (MRSA) re-
ceived FDA approval in 2021, achieving 100% negative predictive 
value over a five-month implementation period involving digital 
plate reading of 5913 nasal swab cultures.12 However, the positive 
predictive value was only 60.8%, and cost-effectiveness and clinical 
uptake have not yet been reported. A further AI-based system (using 
supervised ML) integrates urine microscopy results and patient 
clinical data to determine the need for culture, with Burton et al. 
reporting a classification sensitivity of over 95% and a resulting re-
duction in relative workload of 41% since implementation.10 

Fig. 2. Relationship between artificial intelligence (AI), machine learning (ML), deep learning/artificial neural networks (ANN), and generative AI (a); subdivisions and applications 
of ML (b). 
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AI has been applied to the diagnosis of pulmonary tuberculosis 
using computer-assisted analysis of clinical images (including chest 
radiographs and computed tomography).13 In a meta-analysis of 23 
clinical studies pertaining to 124,959 patients, of which 12 were 
conducted prospectively, pooled sensitivity and specificity were 91% 
(95% CI, 89–93%) and 65% (54–75%), respectively, with most com-
paring digital imaging analysis to a human reader. However, there 
was significant heterogeneity in study design, sample size, validation 
and reporting metrics, and no cost-effectiveness analyses were re-
ported. Computer-assisted image analysis of blood films has also 
been applied to the diagnosis of malaria,14 with some models 
achieving accuracy and sensitivity over 99%. However, as for tu-
berculosis, the evidence to date varies in dataset size (a few hundred 
to nearly 30,000 images per study), study design, and reporting 
metrics, with most studies lacking independent clinical validation, 
and generally disappointing results with non-falciparum species. 
ML-assisted blood spectroscopy has also been evaluated for malaria 
diagnosis, with a systematic review summarising results from 58 
studies, although real-world validation and prospective testing to 
date remain limited.15 

An intriguing application of AI is expedited diagnosis of infec-
tions caused by antimicrobial resistant (AMR) organisms by al-
ternatives to conventional culture-based techniques, such as whole 
genome sequencing16,17 and matrix-assisted laser desorption/ioni-
sation–time of flight mass spectrometry (MALDI-TOF).18,19 Using a 
dataset of over 300,000 mass spectra and over 750,000 AMR phe-
notypes, ML combined with MALDI-TOF achieved good detection of 
resistant pathogens, including S. aureus, E. coli and K. pneumoniae 
(AUROC 0.80, 0.74 and 0.74, respectively).18 In a retrospective case 
review, this model would have improved treatment in eight out of 63 
patients, but may have led to inappropriate treatment in one case. 
ML modelling of whole genome sequencing data has yielded pro-
mising initial results for highly clonal organisms with well-defined 
single nucleotide variants, such as M. tuberculosis. However, ML 
model performance varies significantly with assembly quality, 

feature selection, resistance metrics, and drug or organism of in-
terest, and clinical utility of this approach remains unclear. 

Clinical decision support 

Beyond the laboratory, AI algorithms have been developed and 
applied to offer clinical decision support, including prediction and 
stratification of sepsis, antimicrobial prescribing and stewardship 
advice, and prediction of colonisation with AMR organisms.9,20 

A trio of papers was identified relating to real-world im-
plementation of ML algorithms (using supervised gradient-boosted 
decision trees) by the USA-based company Dascena to facilitate early 
sepsis detection.21–23 A prospective open-label multi-centre study 
of 17,758 adult patients at nine hospitals (2017–2018) reported 
clinical improvement for at least one month following ML algorithm 
use, compared with a period prior to implementation (in-hospital 
mortality 2.34%, length of stay (LOS) 3.27 days, 30-day readmission 
28.12%, compared with 3.86%, 4.83 days and 36.4% respectively, 
p  <  0.001 for all three outcomes).23 However, no control group was 
included, and so it possible that the improvements were due to 
factors other than algorithm deployment, such as clinician engage-
ment during the intervention period. In a smaller study using the 
same algorithm, 67 intensive care unit (ICU) patients were rando-
mised to monitoring using either the ML algorithm (n = 67) or 
standard of care (n = 75) over a three-month period.22 Improvements 
were noted in hospital LOS (10.3 days versus 13.0 days, p = 0.042), 
ICU LOS (6.31 days versus 8.40 days, p = 0.03) and in-hospital mor-
tality (8.96% versus 21.3%, p = 0.018), with patients having blood 
cultures taken and receiving antibiotics approximately 2.8 h earlier 
than controls when sepsis was suspected. Dascena has also trialled 
an ML algorithm for predicting need for invasive ventilation in 
COVID-19 infection.24 This prospective multi-centre trial of 197 pa-
tients reported superior sensitivity, specificity and diagnostic odds 
ratio compared to the Modified Early Warning Score (MEWS). 
However, the authors assumed a linear relationship between MEWS 

Table 1 
Reporting metrics commonly used in published evaluations of artificial intelligence algorithms. AUROC: area under receiver operating curve; DOR: diagnostic odds ratio; FN: false 
negatives; FP: false positives; FPR: false positive rate; MCC: Matthews correlation coefficient; PPV: positive predictive value; TN: true negatives; TNR: true negative rate; TP: true 
positives; TPR: true positive rate; *: multiplied by.     

a. Description and calculation of algorithm reporting metrics 

Metric Description [metric range] Equation  

Sensitivity (recall, TPR) Ratio of correctly labelled positives to all condition positives [0 to 1] 
+
TP

P FN

Specificity (TNR) Ratio of correctly labelled negatives to all condition negatives [0 to 1] 
+

TN
FP

Precision (PPV) Ratio of correctly labelled positives to all condition positives [0 to 1] 
+
TP

P FP

Accuracy Ratio of correctly labelled datapoints to all datapoints in dataset [0 to 1] +
+ + +

TP TN
TP TN F FP

F1-score Harmonic mean of precision and sensitivity [0 to 1] 
+

2 * sensitivity * precision
(sensitivity precision)

MCC Considers all four binary classification variables (TP, TN, FP, FN) [-1 to 1] 
+ + + +

(TP * TN) (FP * FN)
(TP FP) * (TP FN) * (TN FP) * (TN FN)

DOR Odds ratio of positive labelling for condition positive versus negative 
[0 to positive infinity] 

TP * TN
FP * FN

AUROC Area under TPR (sensitivity) plotted against FPR (1-specificity) [0 to 1] Various approaches exist, relying on integration of ROC     

b. Hypothetical dataset with calculated reporting metrics  

Condition positive = 92 Condition negative = 8  

Labelled positive = 90 TP = 88 FP = 2 
Labelled negative = 10 FN = 4 TN = 6     

Metric Calculation Result  

Sensitivity 88 / (88+4) 0.957 
Specificity 6 / (6+2) 0.75 
Precision 88 / (88+2) 0.978 
Accuracy (88+6) / (88+6+2+4) 0.94 
F1-score 2*0.978*0.957/(0.978*0.957) 0.968 
MCC (88*6)-(2*4)/ √(88+2)*(88+4)*(6+2)*(6+4) 0.845 
DOR 88*6/2*4 66 

A.A. Theodosiou and R.C. Read Journal of Infection 87 (2023) 287–294 

290 



score and probability of needing mechanical ventilation without 
offering any evidence that the MEWS score can or should be used in 
this way, limiting the usefulness of this comparison. 

Regarding clinical support for antimicrobial prescribing, we 
identified several studies describing expert rules systems in clinical 
practice or ML algorithm development with no clinical validation, 
but only one study reporting real-world use of an ML algorithm.25 

During a five-week period, 515 piperacillin-tazobactam prescrip-
tions were prospectively evaluated by a trained supervised ML al-
gorithm, and also by the hospital’s existing expert rules system and 
pharmacists. The pharmacists issued 43 recommendations to correct 
inappropriate prescribing, of which 38 were predicted by the expert 
rules system compared with only 17 by the ML algorithm (although 
these included all 5 that the expert rules system failed to identify). 
However, the authors did not comment on whether these systems 
detected any inappropriate prescribing missed by the pharmacists. 
An additional paper described the protocol for a cluster-randomised 
open-label cross-over controlled trial comparing standard of care 
with a neural network-based algorithm providing real-time feedback 
to antimicrobial prescribers, although the results of this trial have 
not yet been published.26 

In clinical management, the facility to predict infection with AMR 
organisms may expedite prescribing of appropriate antimicrobial 
therapy. A systematic review of twenty-two algorithms predicting 
colonisation with AMR organisms reported that previous admission, 
recent antibiotic exposure, age and sex were the most useful risk 
factors for predicting carriage, although almost all studies relied on 
retrospective data or lacked clinical validation.27 Only one study, 
involving an artificial neural network for MRSA prediction, had a 
prospective case-control design with clinical validation. The model 
predicted MRSA colonisation with 85.6% accuracy (91.3% sensitivity, 
80.0% specificity), although no patient care outcomes were reported, 
and validation in an independent dataset was not performed.28 

Infectious disease surveillance and public health 

A recent systematic review of 237 articles on AI for infectious 
disease surveillance and biopreparedness summarised applications 
for tracking temporal incidence, disease risk factors and spatial 
movement of people, although the authors highlight ongoing issues 
with uncertainty quantification, handling missing data, and incon-
sistent reporting metrics.29 However, some ML and DL-based sys-
tems have already seen real-world application in surveillance and 
public health, with many leveraging the ever-growing availability of 
person-specific data arising from social media, global positioning 
systems, and wearable healthcare trackers.30 

Resources such as HealthMap employ natural language proces-
sing of online news media and expert-curated resources (such as 
ProMED) to provided automated global outbreak alerts, including 
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2).31,32 

Similarly, ensemble ML models based on regional and seasonal 
epidemiological data are used by the US Centres for Disease Control 
and Prevention (CDC) to forecast annual influenza patterns.33 Com-
bining whole genome sequencing of clinical bacterial isolates, elec-
tronic health record mining and ML has proven effective at 
retrospectively identifying undetected hospital outbreaks, with 
Sundermann et al. offering cost-effectiveness analyses compared 
with traditional infection prevention approaches, although pro-
spective clinical trial data are lacking.34 

More recently, the COVID-19 pandemic has seen ML applied to 
rapid and scalable genomic classification and lineage mapping, as-
sisting in both outbreak epidemiology and probing potential zoo-
notic origins of the virus.35 The reinforcement ML system Eva was 
implemented at all Greek borders to reduce SARS-CoV2 transmis-
sion36; ML-targeted testing based on demographic data and test 

results of previous travellers led to detection of 1.85 times more 
asymptomatic infected travellers than random surveillance, and up 
to four times more during peak travel periods. Impressively, the ZOE 
COVID Study used a smartphone app to collect potential COVID-19 
symptom data from over 2.6 million participants, used to predict 
probable infection, and providing valuable real-world public health 
information on disease trajectory and vaccine efficacy.37 

AI in infection research 

Computer-assisted drug discovery is nothing new. For example, 
zanamivir and oseltamivir were designed using structure-based 
strategies, in which virtual screening (so-called “docking”) was 
combined with traditional X-ray crystallography.38 Conventional 
drug development is usually characterised by very high rates of 
costly pre-clinical testing attrition, which may be partly overcome 
through drug discovery using ML (particularly DL) models.39 Such 
approaches have recently been applied to prediction of drug targets, 
molecular structure, pharmacokinetics and toxicity, including de 
novo in silico design and virtual screening of large drug databases for 
putative novel antimicrobials.40,41 More recently, the novel anti-
microbial halicin was identified by a deep neural network screening 
over 6000 compounds in the Drug Repurposing Hub database, along 
with a further eight antibacterial compounds by screening over 107 
million molecules in the ZINC15 database.42 Much pre-clinical re-
search is currently in progress investigating the antimicrobial 
properties of AI-discovered non-ribosomal peptides, bacteriocins, 
and marine products, although clinical trials using AI-designed 
drugs are still lacking. One of the most significant milestones in the 
field of computer-assisted drug design is the ability to accurately 
predict three-dimensional protein structure, including the neural 
network-based model AlphaFold.43 Such advances may also expedite 
the development of novel vaccines, and ML-based resources such as 
VaxiJen and Vaxign-ML have already been deployed in reverse vac-
cinology over the past decade to assist in antigen prediction.44 

The human microbiome presents a further research area with 
significant translational potential and scope to benefit from AI ad-
vances. The microbiome is the overall community of microbes in-
habiting a host, and is increasingly recognised as playing a crucial 
role in human health and disease.45 However, inherent features of 
microbiome datasets can make such research computationally de-
manding, including their high-dimensional, compositional, hetero-
geneous, and sparse nature.46 ML methods are well-suited to 
navigating these challenges, and have been applied to microbiome 
feature selection and regression, prediction of host phenotypes from 
microbiome data, and identifying environmental or clinical risk 
factors from microbiome signatures. Such applications may facilitate 
microbiome-based therapies and personalised medical or lifestyle 
interventions. For example, an ML algorithm has been shown to 
reliably predict faecal transplant donors associated with greater 
success of microbiome engraftment in the recipient.47 Moreover, the 
ZOE Predict study employed AI-based analysis of continuous blood 
glucose monitoring, faecal metagenomics and detailed dietary, life-
style and biometric measures to study the relationship between diet, 
gut microbiome and metabolism in over 1000 participants. ZOE now 
offer personalised dietary advice commercially to its customers, 
based on the user’s own faecal microbiome, glucose monitoring and 
biometric data.48 As the focus of microbiome research moves pro-
gressively from purely descriptive analyses to more systems-based 
and clinically-focussed questions, AI is predicted to play an in-
creasingly important role in expediting microbiome-based ther-
apeutics.49 However, gold standards for conducting microbiome 
research are lacking, and the significant heterogeneity between 
studies and between human participants mean that promise of truly 
personalised medicine is still some years from being realised. 
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Generative AI in infection research and clinical practice 

Generative AI has dominated news, social media and popular 
culture in recent months, since the chatbot ChatGPT became the 
fastest-growing consumer application in history, with over 100 
million monthly users within two months of its release. There have 
been a flurry journal articles on the role of generative AI in medicine, 
including editorials, examples of academic manuscripts or discharge 
summaries written entirely by ChatGPT, and reports of ChatGPT 
passing medical exams and suggesting management of hypothetical 
clinical cases. A recent systematic review of 60 such papers high-
lighted the potential for ChatGPT and other generative AI resources 
to assist in medical research (e.g. scientific writing, literature review, 
and data analysis) and clinical practice (e.g. medical record keeping 
and administration, generating diagnoses and management plans, 
improving public health messaging and patient health literacy).50 On 
the negative side, commonly cited concerns included risk of bias, 
plagiarism, data privacy, transparency, inaccurate information, mis-
information, copyright and legal issues. The World Association of 
Medical Editors have issued recommendations for the use of gen-
erative AI in academic writing, stating that chatbots cannot be listed 
as authors, editors need appropriate tools to detect AI-generated 
content, and authors should be transparent about chatbot involve-
ment and remain ultimately responsible for their work.51 

Discussion 

It is clear that interest in AI has extended to almost all aspects of 
human infection management and research (Fig. 3), although con-
crete evidence of clinical utility remains much more modest. While 
accurate forecasting remains challenging, several concerns, limita-
tions and opportunities have been widely highlighted, and aware-
ness of these could help front-line clinicians keep abreast of AI 
developments in their own practice. 

At present, AI-based research lacks consensus standards for study 
design, data sources and handling, reporting metrics, and model 
validation, leading to significant heterogeneity in study quality and 
limiting reproducibility and meta-analysis (Table 1b). Furthermore, 
although future clinical utility is often alluded to, very few studies 
address how to integrate AI into existing clinical and laboratory 
workflow. It is unclear to what extent models developed using a 
particular dataset can be extrapolated to other populations; of note, 
the majority of clinical support models developed to date are based 
on secondary care (especially ICU) rather than primary care data, and 
on data from high-income rather than low- and middle-income 
countries (LMIC).9 A notable exception to the latter is smartphone- 
based applications designed for use in resource-poor settings, such 
as an antibiogram image analysis point-of-care tool spearheaded 
and used in the field by the charity Medecins Sans Frontieres.52 

For ML algorithms to achieve mainstream clinical utility, issues of 
accountability must first be addressed. As ML (especially DL) models 
include several hidden processing layers, it may be impossible for 
clinicians (and even the programming engineer) to determine how 
any given model has arrived at a particular output.53 This so-called 
“black box” is especially pertinent when considering AI hallucina-
tions, the phenomenon in which a generative AI tool confidently 
asserts a factual inaccuracy.50 Commentators have also warned that 
over-reliance on AI in clinical practice may lead to physician de- 
skilling, and that AI models may be less able to navigate uncertainty, 
nuance and individual patient contexts than a human clinician.53 

Such issues highlight the importance of the user’s own expertise 
when using AI models, as a non-specialist practitioner or member of 
the public may be more susceptible to these pitfalls than a specialist 
aiming to supplement (rather than replace) their clinical expertise. 

Several ethical, social and legal issues relating to AI use in 
medicine have been identified and systematically reviewed, in-
cluding data governance, privacy, and equitable access.54 These are 
particularly relevant when considering disease surveillance models 
based on data from the general public, rather than consenting 

Fig. 3. Examples of artificial intelligence (AI) applications in research and management of human infections. AMR: antimicrobial resistance; MALDI-TOF: matrix-assisted laser 
desorption/ionisation–time of flight mass spectrometry; WGS: whole genome sequencing. 
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patients. There is also concern that incorporation of AI-based tools 
into clinical practice could magnify existing inequalities and biases. 
Several studies and systematic reviews have identified implicit bias 
amongst healthcare professionals,55 based on race, ethnicity, gender, 
age, and weight, and, concerningly, no widely used interventions 
have been shown to cause a meaningful and lasting reduction in 
such biases.56 Social and health inequalities also disproportionately 
impact particular groups, and training datasets may not be re-
presentative of all target populations, leading to both data-driven 
and algorithm bias.57 Thus, ML algorithms trained on labelled or 
unlabelled data may arrive at biased conclusions, and even amplify 
underlying inequalities. For example, an AI algorithm using health 
costs as a proxy for healthcare needs falsely interpreted lower per- 
capita health spending on black patients as an indication that this 
group was healthier than corresponding white patients, resulting in 
inappropriate racial prioritisation of white patients in the algo-
rithm’s outputs. 

There have been calls to address these issues, to facilitate con-
structive uptake of AI into healthcare. The US FDA, UK Medicines and 
Healthcare products Regulatory Agency (MHRA) and Health Canada 
have jointly identified ten guiding principles to inform the devel-
opment of Good Machine Learning Practice, promoting safe, effective 
and high-quality medical devices that use AI and ML. These em-
phasise the need for multi-disciplinary expertise, robust cyberse-
curity and risk management, representative population data, 
independent training and validation data sets, and focus on the role 
of human factors and interpretability (“human in the loop”). Other 
commentators have advocated for open science practices, including 
code and data sharing, participant-centred algorithm development, 
and more clinical trial data.57 

Conclusions 

Artificial intelligence has undoubtedly generated a range of in-
triguing tools with potential application to research and manage-
ment of human infections. However, at the time of writing, the real- 
world utility of almost all such AI applications remains unclear, and 
several practical and ethical issues must be addressed before 
widespread uptake of AI in infection medicine can be expected. 
Provided further clinical trial data, regulation and reporting stan-
dards are forthcoming, AI is well-placed to improve accuracy and 
efficiency in laboratory diagnostics, clinical support, public health 
and infection research. It does not, however, appear poised to re-
place front-line infection clinicians or academics any time soon. 
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