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Abstract—Channel estimation and data detection constitute
a pair of pivotal modules in multiple-input multiple-output
(MIMO) communication systems, where achieving accurate chan-
nel estimation is particularly important for large-scale MIMO
communications. However, more accurate channel estimation
requires more resources. Hence, we investigate the joint opti-
mization of the channel estimator, transmit precoder and receiver
in large-scale MIMO systems. In contrast to the classic signal
processing philosophy, the joint optimization aims for solving two
equations in the face of realistic channel estimation and data
transmission imperfections. Closed-form solutions are derived
for a pair of schemes. For the first one, the joint optimization
consists of the three procedures of channel estimation, data
estimation and channel refinement. In this method, the estimated
data symbols are also harnessed as pilots, based on which the
channel estimation performance is improved. As for the second
scheme, since data estimation is our final goal and channel
estimation is only an intermediate step, the channel estimation
procedure is substituted into the data estimation regime without
deriving an explicit solution for the estimated channel. Given
our objective of optimizing the data estimation performance, the
channel estimator and data transceiver are jointly optimized, and
the intricate linkages between these two methods are discussed.
Finally, several numerical results are provided for demonstrating
the performance advantages over the traditional designs.

Index Terms—Joint optimization, robust transceiver design,
channel estimation refinement, and MIMO communications.

I. INTRODUCTION

The performance of pilot-aided multiple-input multiple-
output (MIMO) communications critically depends on that of
channel estimation and data detection [1]–[7]. In the channel
estimation procedure, the pilots are transmitted from the source
to destination for estimating the MIMO channel state infor-
mation (CSI) harnessed for data estimation [8]–[10]. Hence,
it is plausible that accurate CSI is an important premise to
guarantee spectral-and power-efficient MIMO communications
[11]–[16].
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Below we briefly highlight the development of pilot-aided
MIMO communications. The most naive design relies on
assuming that the estimated CSI is perfect and proceeds to
data estimation. Therefore, the channel estimation and data
estimation are decoupled into a pair of independent designs.
This naive technique significantly simplifies pilot-aided MIMO
designs and adequate performance can be guaranteed, provided
that the estimated CSI is accurate enough. Naturally, when
considering the practical limitations during transmissions, like
the coherence time, training interval, etc., the CSI becomes
inaccurate. Robust statistics may be adopted for analyzing the
effects of channel estimation errors and for robust transceiver
optimization in the face of channel errors [17]–[19]. In this
category, there is an abundance of literature on robust MIMO
transceiver designs conceived for different system models or
error models [20]–[23]. Regarding the robust designs or the
joint optimization of the pilots and the transmit precoder
(TPC), the kernel idea behind them is to take the effects of
channel estimation errors into account in data transmissions.
The alternative concept of decision-directed channel estima-
tion is based on exploiting the specific data symbols that
are reliably estimated as pilots in turn. This idea is widely
harnessed in coded communication systems [24]–[27].

In addition, some methods of joint channel estimation and
data estimation were proposed for RIS-assisted communi-
cation systems to strike an attractive trade-off between the
system performance and computational complexity. Specifi-
cally, the authors of [28] discussed channel estimation in RIS-
assisted systems where message passing algorithms are applied
to deal with a large number of unknown parameters. Then,
the authors of [29] extended this scheme to solve the joint
optimization of channel estimation and data recovery. By con-
trast, the authors of [30] proposed a low-complexity channel
estimation and precoder design, aiming for maximizing the
achievable rate of RIS systems.

Throughout the evolution of MIMO technologies, their
operating frequencies gradually increased and the dimension-
ality of antenna arrays also became much higher [31]–[36].
These facts intrinsically erode the optimality of the traditional
separate designs. On one hand, more and more resources might
be needed to achieve accurate channel estimation for high-
dimensional MIMO systems [37]. On the other hand, high-
performance communications always require accurate CSI.
Furthermore, the effects of limited coherence time and the
hardware costs make the problem much tougher. Clearly,
channel estimation in large-scale MIMO communications is
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usually performed under strictly limited bandwidth resources
and the ensuing data transmission has to cope with non-
negligible channel estimation errors, where a certain target
performance has to be guaranteed. This represents a challenge.
Again, channel estimation and data estimation have a close
relationship with each other and this is put under the micro-
scope in the topical context of large-scale MIMO systems in
the absence of channel coding. They are also boldly contrasted
to the authoritative literature in Table I.

TABLE I
KEY ATTRIBUTES OF THIS PAPER CONTRASTED TO THE EXISTING JOINT

MIMO DESIGNS

[25] [27] FM-JO QMO-JO
Transmit-side correlation
channel model

√ √

Joint design of channel esti-
mator and data transceiver

√ √ √ √

Precoder design
√ √

Refinement of channel
√ √ √

Optimization criterion MSE
√ √ √

Thus, the joint optimization of the channel estimator and
data transceiver subject to a specific channel estimation error
is proposed, which unveils the intricate connection of channel
estimation and data transmission more accurately and it strikes
a compelling trade-off between the channel estimation accu-
racy and the data transmission efficiency. The contributions
of our work are discussed below in more depth.
• We provide novel mathematical insights for characteriz-

ing pilot-aided MIMO communications. By employing
linear operators at both the transmitter and receiver, we
solve a pair of linear equation arrays in the face of
random noise terms in the channel estimation and data
estimation procedures, respectively. Although the effect
of additive noise is impossible to remove completely,
the formulations of the equation arrays are quite similar,
because the error models follow a similar robust design
philosophy.

• Channel estimation and data estimation can be iteratively
optimized by our Functional Module Based Joint Opti-
mization (FM-JO). Based on the estimation error model
of the channel estimation procedure, the accuracy of data
estimation can be improved. On the other hand, with the
estimation error model in our data estimation procedure
and the estimated data used as pilots, the accuracy of
channel estimation can be improved.

• Since our ultimate goal is to transmit data, where channel
estimation is just an intermediate step for pilot-aided
transmissions, the channel estimation signal model may
be incorporated into the data transmission signal model.
Then, Quadratic Matrix Optimization Based Joint Opti-
mization (QMO-JO) is proposed, where the channel esti-
mator and signal transceiver can be jointly optimized by
relying on quadratic matrix optimization. Explicitly, the
channel estimator, the receiver’s equalizer and the TPC
may be jointly optimized. Additionally, the optimized
data equalizer and TPC matrices can be substituted into
our channel estimation refinement scheme for improving
the channel estimation accuracy as in our FM-JO scheme.

• Based on the numerical results, we will demonstrate
that the joint optimization has better performance than
the separate designs. Our joint optimization philosophy
strikes an estimation accuracy vs. computational com-
plexity trade-off and subsumes the traditional separate
designs as special cases.

The organization of the paper is as follows. In Section II, our
signal models are introduced, and both the channel estimation
and data estimation problems are formulated mathematically.
In Section III, the FM-JO algorithm is proposed, which reflects
the mutual relationships between the channel estimation and
data estimation. In Section IV, the QMO-JO algorithm is con-
ceived, which intrinsically amalgamates the channel estimation
module with the data estimator without obtaining an explicit
channel estimation solution. With the objective of optimizing
the data estimation performance, the channel estimator and
data transceiver are jointly optimized. Then, the relationships
between these two schemes are investigated, followed by our
numerical results in Section V to demonstrate the performance
advantages of the proposed joint optimization algorithms over
the traditional separate optimization algorithms. Finally, we
conclude in Section VI.

TABLE II
MAIN NOTATIONS

F NT × r, linear TPC matrix
GCE TP ×NT, linear channel estimator
G̃CE TP ×NT, linear channel estimator after channel refinement
GDE r ×NR, linear equalizer
G̃DE r ×NR, linear equalizer after channel refinement
H NR ×NT, channel matrix
ND NR × TD, noise matrix during data transmission
NP NR × TP, noise matrix during pilot transmission
TD length of data signal
TP length of pilot sequence
NR number of receive antennas
NT number of transmit antennas
r number of data stream

XD r × TP, data signal matrix
XP NT × TP, pilot signal matrix
Ψ NT ×NT, transmit-side correlation matrix

The main notations are illustrated in Table II. The symbol
AH denotes the Hermitian transpose of a general matrix A.
Tr(A) represents the trace of a square matrix A. For a positive
semidefinite matrix A, the matrix A

1
2 denotes the Hermitian

square root of A.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We commence by outlining the signal models of channel
estimation and data transmission, as the basis of jointly opti-
mizing the channel estimator and transceiver. The most widely
studied point-to-point MIMO channel model is investigated,
where the transmit antenna spatial correlation is taken into
account [8]. The scenario is that of the large-scale MIMO
uplink transmission, where we assume that the antenna sep-
aration and the angle of spread at the base station (BS) are
adequate. Thus, the antenna’s spatial correlation at the BS may
be ignored, and hence it is modeled by an identity matrix. The
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corresponding channel matrix H is given by the following
equation [38], [39]

H = HWΨ
1
2 , (1)

where the elements of the matrix HW are independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and unit variance. The positive definite matrix
Ψ > 0 is the transmit-side correlation matrix [38]. This is a
widely used channel model in the authoritative literature [39].
Based on the channel model given in (1), the pilots and data
are assumed to be transmitted in a time division duplexing
manner. Specifically, the pilot sequences are sent first from
the transmitter to the receiver for the estimation of the channel
matrix. Then, the receiver sends the estimated channel matrix
back to the transmitter through the feedback channel. Based
on the estimated channel matrix, the transmitter appropriately
configures the TPC matrix, and then the data signals are
precoded and transmitted over the wireless channels. Finally,
the signals are recovered at the receiver, for example by a
linear equalizer.

Based on the above discussions, our received signal is
formulated as

Y = H[XP,FXD] + [NP,ND], (2)

which is processed in two phases, namely channel estimation
and data transmission. On the righthand side of the equation,
the first signal block XP represents the pilot signal matrix that
is known to both the source and destination [6]. The matrix F
denotes the linear TPC matrix, which is designed based on the
CSI [40], [41]. The matrix XD is the data signal matrix, which
will be recovered at the receiver. Finally, the matrices NP and
ND represent the corresponding random additive noise matrix
during pilot transmission and data transmission, respectively.

Our objective is to recover XD as accurately as possible
based on the observation Y . The traditional technique de-
couples (2) into a pair of successive phases [20], [42], i.e.,
Y = [YP,YD] formulated as

YP = HXP + NP,

YD = HFXD + ND. (3)

In the first phase, the channel matrix H is estimated based on
the first equation in (3). In the second phase, upon substituting
the estimated H into the second equation in (3), XD will be
recovered. This has been widely used as an efficient pilot-aided
MIMO technique, in which the estimation error is passed on
to the second step, hence degrading the accuracy of the data
recovery. Here we analyze this problem more deeply. Due to
the limited channel coherence time, the length (the number of
columns) in the transmitted signals is also constrained. When
the dimensions of H are high, as in massive MIMO systems,
more resources have to be allocated to channel estimation
for achieving higher channel estimation accuracy and hence
high-integrity data recovery [42]. Since the maximum transmit
power is usually fixed, the easiest way of allocating more
resources to channel estimation is to increase the length
of pilots, i.e, the number of columns in XP [39], which
inevitably reduces the fraction of data symbols. As a result,

the normalized payload of the system is reduced. Again, we
note that the key objective here is to recover XD, and the
estimation of H is only an intermediate step/computation.
From a pure mathematical perspective, we aim for solving the
equation array given in (3). However, in contrast to classical
linear algebra, there are random noise matrices in the equation
array in (3). Bearing in mind the computational complexity,
only linear transceivers are taken into account in this work.
The received signals are processed by the receiver, and the
signal model in (3) is transformed into

YPGCE = HXPGCE + NPGCE,

GDEYD = GDEHFXD + GDEND, (4)

where GCE is the linear channel estimator harnessed for
estimating the channel matrix and GDE is the linear equal-
izer employed for recovering the desired data signals. The
traditional logic is to find GCE and GDE in a sequential
manner. The channel estimator GCE is designed first based
on the former equation in (4), which may rely on different
performance metrics. Then, the estimated channel matrix is
assumed to be the perfect CSI H , and the linear transceiver
matrices F and GDE are optimized based on the second
equation in (4) according to the minimum mean square error
(MMSE) criterion, for example.

For practical communication systems, such as massive
MIMO communication systems, where the channel matrix is
of large dimension, accurate channel estimation will need a
large amount of resources. However, considering the stringent
resource limitations and coherence time, it is difficult to
estimate the channel accurately based on the first equation
in (4), and increasing the pilot overhead leads to efficiency
losses for the whole system. To strike a trade-off between the
channel estimation accuracy and training resources, the linear
estimator GCE, linear equalizer GDE and linear TPC F should
be jointly optimized for improving the data integrity, which is
the focus of this paper.

On the other hand, the data is also subjected to the same
channel as the pilots and hence it may be exploited for improv-
ing the channel estimation accuracy. Because of the channel
impairment imposed on both the channel estimation and data
estimation procedures, it seems much more challenging to
solve (4) in a joint optimization manner than in the absence
of channel impairments, namely when linear algebra may be
applied.

Our objective is to jointly optimize the channel estimator
and data transceiver from a pure signal processing viewpoint.
In the following, a pair of different techniques is exploited
for the joint optimization of the channel estimator and data
transceiver. The above-mentioned FM-JO is an extension of
the existing widely used rationale. The mutual relationship
between channel estimation and data estimation is established
based on the corresponding estimation error models. This
technique accrues from the robust transceiver optimization
philosophy [1], in which the specific channel estimation error
model is taken into account during the transceiver optimization
for attaining performance improvements. Once the estimated
data and its specific estimation error model become available,
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a similar robust channel estimation process can be performed
in order to improve the channel estimation accuracy. As a
result, the first kind of joint optimization consists of three
parts, namely channel estimation, data estimation and channel
refinement. The main difference among the existing algorithms
[22], [23], [38], [39] arises from the channel refinement
procedure. Explicitly, based on the estimated data and its
corresponding estimation error model as well as the pilot, the
channel matrix is estimated again for improving the estimation
accuracy. It is worth noting that the last two procedures can be
implemented in an iterative manner. By contrast, the QMO-
JO technique is significantly different from the previous one.
Inspired by the fact that the final goal of pilot-aided communi-
cations is to transmit high-integrity data, we note that channel
estimation is only an intermediate step. Therefore, strictly
speaking, the performance of channel estimation should be
quantified in terms of the final data integrity. In the second
joint optimization regime, the channel estimation procedure
is directly substituted into the data estimation procedure,
optionally followed by the channel refinement for further
enhancing the system performance.

III. JOINT TRANSCEIVER AND CHANNEL ESTIMATOR
OPTIMIZATION

In this section, the joint optimization of the transceiver
and channel estimator is investigated by relying on alternating
optimization iterating between these two functional modules
based on matrix-monotonic optimization [17]. This can be
viewed as an extension based on the classic separate designs.
Specifically, in traditional designs, only the estimated chan-
nel and its estimation error model are incorporated in the
transceiver designs. However, there is a paucity of literature
on jointly exploiting the estimated data and its estimation
error model in the channel estimation procedure. Hence, in
this paper the iterations between these two procedures are
taken into account. In the channel estimation procedure, both
the estimated channel matrix and the corresponding channel
estimation error model are derived. Following that, in the
data estimation procedure, the estimated data matrix and the
corresponding data estimation error model can be obtained.
It is worth noting that the data estimation error model is
relevant to the channel estimation error model in the precoding
procedure. Then, the estimated data are exploited as pilots
and the channel estimation is refined based on the estimated
data, the data estimation error model and the pilots. Finally,
given the refined channel matrix and the updated channel error
model, the transceiver may be further optimized to re-estimate
the data signals.

A. Channel Estimation Procedure

According to the popular MMSE criterion and based on the
signal model discussed in (4), the estimated channel matrix
equals to [17]:

Ĥ = YPGCE, (5)

where the channel estimator GCE is chosen to minimize the
following channel estimation MSE matrix

E{∆HH∆H}
=(XPGCE − I)HRH(XPGCE − I) + GH

CERNGCE, (6)

where ∆H = H−Ĥ is the channel estimation error, and the
noise covariance matrix RN as well as the channel covariance
matrix RH are defined as follows

RN = E{NHN} = σ2
nNRI,

RH = E{HHH} = NRΨ. (7)

The optimal LMMSE channel estimator GCE minimizing the
MSE matrix in (6) is [39]

GCE = (XH
PRHXP + σ2

nNRI)−1XH
PRH. (8)

The corresponding channel estimation error model is [38], [39]

H = Ĥ + ∆H, ∆H = EC,WΦ
1/2
C , (9)

where EC,W has i.i.d. Gaussian random elements, and ΦC

equals to

ΦC =

(
Ψ−1 +

1

σ2
n

XPX
H
P

)−1
. (10)

Given the estimated MIMO channel matrix, the key task is now
to recover the desired data signals. Then the question arises
whether the channel estimation accuracy is satisfactory for the
data estimation. Here, we would like to point out an important
fact that when the channel has been estimated, there exists a
simple method of verifying the channel estimation accuracy,
which is formulated in the following.

Based on the estimated channel matrix Ĥ and the channel
estimation error model in (9), the signal model in the channel
estimation procedure can be further rewritten as

YP = (Ĥ + ∆H)XP + NP. (11)

Based on the reformulated signal model, there is a very
simple strategy to evaluate whether the channel estimation
performance is satisfactory. If the performance target is not
met, further actions are needed to improve the estimation
performance. Based on (11), if taking XP as the unknown
data, the corresponding estimated pilot signals using the classic
Wiener filter G are given by:

X̂P = GYP, (12)

where G = ĤH
[
ĤĤH + (σ2

n + Tr(ΦC))I
]−1

is closely
related to the error-dependent estimated channel. Based on
the estimated X̂P, if the following inequality is satisfied

‖X̂P −XP‖2F > τ, (13)

where ‖·‖F denotes the Frobenius norm and the positive scalar
τ is a predefined estimation accuracy target, this means that the
channel estimation accuracy is not good enough. Therefore,
more resources or other methods are required for improving
the estimation accuracy. In other words, the estimated channel
should further be refined in order to achieve higher estimation
accuracy.
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B. Data Estimation Procedure

Based on the estimated channel and the corresponding chan-
nel estimation error model, in the data estimation procedure,
the signal model is given as follows

YD = (YPGCE + ∆H)FXD + ND. (14)

It is plausible that when the estimation error is high, robust
designs are of great importance to guarantee the overall system
performance. When the channel estimation model is taken into
account, the resultant regime is referred as robust transceiver
optimization. In the following, some further results are given,
which constitute the necessary basis for the ensuing analysis
and design. Based on the signal model in (4), the estimated
data is represented as

X̂D =GDEYD

=GDE(YPGCE + ∆H)FXD + GDEND. (15)

When employing the MMSE criterion, the data transceiver
GDE and F aim for minimizing the following data estimation
MSE

E{Tr(∆XD∆XH
D)}

=E
{

Tr
((

X̂D −XD

)(
X̂D −XD

)H)}
=TDTr

{
I −GDEYPGCEF − (GDEYPGCEF )H

+ (GDE[YPGCEFFHGH
CEY

H
P + σ2

nI

+ ITr(FFHΦC)]GH
DE)
}
. (16)

The detailed derivations are given in Appendix A. The
LMMSE equalizer GDE minimizing the sum MSE in (16)
may be formulated as:

GDE =(YPGCEF )H[YPGCEFFHGH
CEY

H
P + σ2

nI

+ ITr(FFHΦC)]−1. (17)

Then the corresponding data estimation error model is repre-
sented as follows

XD = X̂D + ∆XD, (18)

with the estimation error term ∆XD given by:

∆XD = Φ
1/2
D ED,W,

ΦD =

(
FHGH

CEY
H
P YPGCEF

σ2
n + Tr(FFHΦC)

+ I

)−1
. (19)

The elements of ED,W are i.i.d. distributed random variables
with zero mean and unit variance.

The TPC optimization aims for solving the following equiv-
alent optimization problem subject to the power constraints PD

min
F

Tr

[(
FHGH

CEY
H
P YPGCEF

σ2
n + Tr(FFHΦC)

+ I

)−1]
s.t. Tr(FFH) ≤ PD, (20)

which can be efficiently solved by using the matrix-monotonic
optimization framework of [17]. Due to space limitation, the

detailed derivation procedure of the optimal TPC is omitted
here. The optimal linear TPC is given by [17]

F =

√
PD

Tr[(σ2
nI + PDΦC)−1FeqFH

eq]
(σ2

nI + PDΦC)−
1
2Feq,

(21)

with Feq being equivalent to

Feq = UC

[(
1
√
µ

Λ
− 1

2

C −Λ−1C

)+
] 1

2

, (22)

where µ is the Lagrange multiplier for the sum power con-
straint, which is found by bisection search and ensures that
the Pareto optimal solution Tr(FeqF

H
eq) = PD achieved. The

matrices UC and ΛC are defined based on the following
eigenvalue decomposition (EVD)

(σ2
nI + PDΦC)−

1
2GH

CEY
H
P YPGCE(σ2

nI + PDΦC)−
1
2

=UCΛCU
H
C , (23)

where ΛC is a diagonal matrix with nonzero diagonal elements
in a non-increasing order and UH

CUC = I . As a result, we
could optimize F in (21), and then calculate GDE in (17)
without iterations.

C. Channel Refinement Procedure

The above discussions represent the traditional way of
dealing with channel estimation and data estimation. However,
as discussed in [5], provided that the length of the pilot
sequences is higher than the number of antennas, the optimal
overall performance may be achieved. It might happen in
large-scale MIMO systems that the channel block length is not
long enough, or the energy to be allocated is insufficient. Here,
we propose an extension of the traditional scheme, to deal with
this potential deficiency. First, a few pilots are sent for channel
estimation. The number of the pilots may be set equal to or
even lower than the number of antennas. The corresponding
performance will be discussed in Section V. Then, the data
signals are transmitted, and estimated at the receiver. The
recovered data symbols may then be used as pilots given their
known statistical characteristics ΦD, in order to re-estimate the
channel. Based on the estimated data signals and the associated
estimation error model, there is more information that can be
exploited for improving the channel estimation performance
without increasing the pilot overhead. Similar to the above-
mentioned robust transceiver optimization, this kind of design
may be termed as robust channel estimation. Specifically, upon
reusing the estimated data symbols as pilots and together with
the corresponding data estimation error model, the resultant
channel estimation model is now rewritten as

Y = H[XP,F (X̂D + ∆XD)] + [NP,ND]. (24)

In contrast to the first equation in (3), the term F (X̂D+∆XD)
in (24) is also harnessed as pilot signals. After performing
linear channel estimation, the channel is re-estimated as

H̃ = Y G̃CE. (25)
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The channel estimator G̃CE aims for minimizing the following
MSE matrix

E{∆H̃H∆H̃}
=G̃H

CEΣG̃CE−RH[XP,FX̂D]G̃CE

− G̃H
CE[XP,FX̂D]HRH + RH + σ2

nNRG̃
H
CEG̃CE, (26)

where

Σ =

[
XH

PRHXP XH
PRHFX̂D

X̂H
DFHRHXP X̂H

DFHRHFX̂D + σ1I

]
,

σ1 =Tr(ΦDF
HRHF ). (27)

The detailed derivations can be found in Appendix B. Based
on (26) and the definition of Σ, the optimal channel estimator
G̃CE can be derived to be [43]

G̃CE = (Σ + σ2
nNRI)−1[XP,FX̂D]HRH, (28)

and the corresponding data estimation MSE matrix of (26),
given the optimal channel estimator in (28), is further rewritten
in the following form:

E{∆H̃H∆H̃}
=RH −RH[XP,FX̂D](Σ + σ2

nNRI)−1[XP,FX̂D]HRH

,NRΦ̃C. (29)

According to Appendix C, the value of MSE matrix of
channel refinement is reduced:

Tr(E{∆H̃H∆H̃} − E{∆HH∆H})

=− Tr[NR(ΦCFX̂D)(
σ1
NR

I + σ2
nI + X̂H

DFHΦCFX̂D)−1

× (ΦCFX̂D)H] < 0. (30)

Since MSE involves expectation operation, the knowledge of
channel statistics is what matters. In our work, we assume
perfect knowledge on channel statistics such as noise variance
and covariance matrices. Hence, the error propagation could
be reduced. Additionally, the scenario of imperfect channel
statistics is left for the future work.

After the channel refinement, the updated channel estima-
tion error model becomes:

H = H̃ + ∆H̃, ∆H̃ = ẼC,WΦ̃
1/2
C . (31)

Based on the refined estimated CSI and its estimation error
model, the signal transmission model can be reformulated as
follows

X̃D = G̃DE(Y G̃CE + ∆H̃)FXD + G̃DEND. (32)

In data transmission, the transceiver optimization typically
aims for minimizing the following sum MSE

E
{
Tr(∆X̃D∆X̃H

D)
}

=Tr
(
TDI − TDG̃DEY G̃CEF − TD(G̃DEY G̃CEF )H

+ TD(G̃DE[Y G̃CEFFHG̃H
CEY

H + σ2
nI

+ ITr(FFHΦ̃C)]G̃H
DE)
)
. (33)

The detailed derivations for the expectation of
E{Tr(∆X̃D∆X̃H

D)} are given in Appendix D. Based
on the sum objective function in (33), it is readily seen
that the optimal equalizer is the LMMSE equalizer of the
following form:

G̃DE =(Y G̃CEF )H[Y G̃CEFFHG̃H
CEY

H

+ σ2
nI + ITr(FFHΦ̃C)]−1, (34)

and substituting (34) into (33) the data estimation error can
be rewritten as

E
{

Tr(∆X̃D∆X̃H
D)
}

=TDTr

(FHG̃H
CEY

HY G̃CEF

σ2
n + Tr(FFHΦ̃C)

+ I

)−1
,TDTr

(
Φ̃D

)
. (35)

At this stage, a single round of channel refinement was
completed, but the iterative channel refinement procedures
may be continued for further improving the accuracy of the
hitherto received data or the future transmitted and received
data. However, to strike a beneficial performance vs. complex-
ity trade-off, we only consider a single round of improvements
in the simulation part and the simulation results show that a
satisfactory performance can be achieved.

D. Channel Refinement Relying on Current Received Data

At the end of Section III-C, we acquired the refined channel
estimation and re-estimated data signals after a single round.
Then, we could utilize the re-estimated data for improving the
channel estimation again, and channel refinement as well as
data re-estimation may be processed in an alternating manner
until convergence, where the estimators G̃CE, G̃DE and the
corresponding estimation error models would be updated in
each iteration. They are similar to the ones given in Sec-
tion III-C.

In the channel refinement procedures, the updated channel
estimator is

G̃CE = (Σ + σ2
nNRI)−1[XP,FX̃D]HRH, (36)

where

Σ =

[
XH

PRHXP XH
PRHFX̃D

X̃H
DFHRHXP X̃H

DFHRHFX̃D + σ2I

]
,

σ2 =Tr(Φ̃DF
HRHF ), (37)

and the MSE matrix of channel estimation error is written as

E{∆H̃H∆H̃} =RH −RH[XP,FX̃D](Σ + σ2
nNRI)−1

× [XP,FX̃D]HRH

,NRΦ̃C. (38)

Upon reverting to the data estimation, the data estimator is
updated as

G̃DE =(Y G̃CEF )H[Y G̃CEFFHG̃H
CEY

H + σ2
nI

+ ITr(FFHΦ̃C)]−1, (39)
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xP,1 ... xP,TP xD,1 ... xD,TD

pilot data

GDE

Fig. 1. Iterative optimization associated with current data.

and the data estimation error becomes:

E
{

Tr(∆X̃D∆X̃H
D)
}

=TDTr

(FHG̃H
CEY

HY G̃CEF

σ2
n + Tr(FFHΦ̃C)

+ I

)−1
,TDTr

(
Φ̃D

)
. (40)

It may also be interpreted as an iterative optimization of a
single data segment, which is illustrated in Fig. 1. Given the
improvement of channel estimation accuracy, the sum MSE
of data estimation error would tend to converge to a certain
value, but several iterations might be harnessed at the cost of
substantial computational overheads.

E. Channel Refinement Relying on Successive Received Data

Here, we consider iterative optimization across several data
segments. If the channel’s coherence time is quite long or
the updated channel estimation and updated recovered data
could be calculated in a timely manner, we could optimize
the TPC F̃ for the next data transmission with the results in
Section III-C. The corresponding TPC optimization problem
is

min
F̃

Tr

( F̃HG̃H
CEY

HY G̃CEF̃

σ2
n + Tr(F̃ F̃HΦ̃C)

+ I

)−1
s.t. Tr(F̃ F̃H) ≤ PD, (41)

which is the same as the optimization problem (20), and can
be efficiently solved based on matrix-monotonic optimization
[17].

When new data is precoded with F̃ and transmitted, we
have:

YD,new = HF̃XD,new + ND,new

= (Y G̃CE + ∆H̃)F̃XD,new + ND,new, (42)

and then we can use the updated estimator to recover the new
received data X̂D,new = G̃DEYD,new

G̃DE =(Y G̃CEF̃ )H[Y G̃CEF̃ F̃HG̃H
CEY

H + σ2
nI

+ ITr(F̃ F̃HΦ̃C)]−1. (43)
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YD,new,1 ... YD,new,TD

new data

...

...YP,1 ... YP,TP YD,1 ... YD,TD
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F
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GDE
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GCE,new

Channel refinement

F

 

GDE / GDE / GDE,1 & GDE,2  

Fig. 2. Iterative optimization associated with successive data.

The corresponding data estimation error matrix becomes:

E
{

Tr(∆X̂D,new∆X̂H
D,new)

}
=TD,newTr

( F̃HG̃H
CEY

HY G̃CEF̃

σ2
n + Tr(F̃ F̃HΦ̃C)

+ I

)−1
,TD,newTr

(
Φ̃D,new

)
. (44)

Then we may exploit the new received data as pilots again
for refining the channel estimation as discussed before, e.g.
with [XP,F (X̃D + ∆X̃D), F̃ (X̂D,new + ∆X̂D,new)]. The
optimal channel estimator is updated as

G̃CE,new =(Σnew + σ2
nNRI)−1[XP,FX̃D, F̃ X̂D,new]HRH,

(45)

where Σnew is defined in (46).
The modified channel estimation is H̃new = YnewG̃CE,new,

where Ynew = [YP,YD,YD,new], and the MSE matrix of the
channel estimation error becomes:

E{∆H̃H
new∆H̃new}

=RH −RH[XP,FX̃D, F̃ X̂D,new](Σnew + σ2
nNRI)−1

× [XP,FX̃D, F̃ X̂D,new]HRH

,NRΦ̃C,new. (47)

Then as for the data estimation, since different segments
of data are precoded with different TPCs, the updated data
equalizers with respect to different sequences are

G̃DE,1 =(YnewG̃CE,newF )H[σ2
nI + ITr(FFHΦ̃C,new)

+ YnewG̃CE,newFFHG̃H
CE,newY

H
new]−1 (48)

G̃DE,2 =(YnewG̃CE,newF̃ )H[σ2
nI + ITr(F̃ F̃HΦ̃C,new)

+ YnewG̃CE,newF̃ F̃HG̃H
CE,newY

H
new]−1, (49)

and different data estimation errors may be derived, respec-
tively. The schematic is depicted in Fig. 2. Note that, with
more data segments harnessed as pilots, they are supposed
to be recovered using different equalizers, correspondingly
resulting in different estimation error models.
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IV. JOINT QUADRATIC MATRIX OPTIMIZATION

Inspired by the fact that the final goal is to recover the
desired data, channel estimation is only an intermediate step,
and hence the QMO-JO regime is proposed. A straightforward
solution is to simply embed the channel estimation procedure
into the data estimation procedure, where no explicit channel
estimation is required. Then joint optimization is performed
by optimizing the data estimation performance. Based on the
previous discussions, from a pure mathematical viewpoint, the
joint transceiver design has to solve the following equation
array

YP = HXP + NP,

yD = HFQs + n. (50)

Here, it is worth noting that NP and n represent a random
matrix and random vector, respectively. In order to recover
the desired signal accurately, the channel matrix H can be
estimated based on the first equation. After performing linear
channel estimation GCE,Q, the estimated channel may be
expressed as ĤQ = YPGCE,Q, and thus the recovered signal
can be written as:

ŝ =GDE,Q(ĤQ + ∆HQ)FQs + GDE,Qn

=GDE,QYPGCE,QFQs

+ GDE,Q(H −HXPGCE,Q −NPGCE,Q)FQs

+ GDE,Qn, (51)

where GDE,Q is the linear equalizer matrix at the destina-
tion and FQ is the linear TPC matrix at source. The joint
optimization of the estimator and transceiver, which aims
for minimizing the data estimation MSE subject to a power
constraint, is formulated as

min
A

E{‖W 1
2 [GDE,QYPGCE,QFQs

+ GDE,Q(H −HXPGCE,Q −NPGCE,Q)FQs

+ GDE,Qn− s]‖2} − log |W |
s.t. Tr(FQFQ

H)≤PD, (52)

where W is the weighting matrix, E{ssH} = I , and we
have the set A = {(GDE,Q,GCE,Q,FQ)}. The weighted
MSE minimization in (52) is more general than the sum
MSE. In our work, W is a constant matrix and if W is
taken as optimization variable as well, the optimization (52)
is equivalent to the maximization of the mutual information
in the data transmission phase. As derived in Appendix E, the
objective function in (52) equals

E{‖W 1
2 [GDE,QYPGCE,QFQs

+ GDE,Q(H −HXPGCE,Q −NPGCE,Q)FQs

+ GDE,Qn− s]‖2} − log |W |
=Tr[WGDE,Q(YPGCE,QFQ)(YPGCE,QFQ)HGH

DE,Q + W

−WGDE,QYPGCE,QFQ − (WGDE,QYPGCE,QFQ)H]

+ σ2
n Tr(WGDE,QG

H
DE,Q)

+ Tr[Ψ(I −XPGCE,Q)FQF
H
Q (I −XPGCE,Q)H]

× Tr(WGDE,QG
H
DE,Q)

+ σ2
n Tr(GCE,QFQF

H
QGH

CE,Q) Tr(WGDE,QG
H
DE,Q)

− log |W |
,ΦD,Q. (53)

It is readily seen that the joint optimization problem (52)
exhibits quadratic properties with respect to any single matrix
variable. This kind of optimization problems are termed as
quadratic matrix optimization. In the following, the optimiza-
tion problem (52) is solved by alternatively optimizing GDE,Q,
GCE,Q, and FQ with the rest variables fixed. At each iteration,
the closed-form optimization solutions of GDE,Q, GCE,Q, and
FQ can be derived and thus the convergence of the proposed
algorithm may be guaranteed.

1) Optimization of GCE,Q: The optimization with respect
to GCE,Q is unconstrained and the objective function (OF)
is also convex with respect to GCE,Q, i.e., it is a standard
quadratic function. Then, the optimal GCE,Q can be solved
directly based on its corresponding complex matrix derivative
operation.

In order to optimize the channel estimator GCE,Q, the OF
of (52) with respect to GCE,Q is reformulated as

E{‖W 1
2 [GDE,QYPGCE,QFQs

+ GDE,Q(H −HXPGCE,Q −NPGCE,Q)FQs

+ GDE,Qn− s]‖2} − log |W |
=Tr[GCE,QFQF

H
QGH

CE,QY
H
P GH

DE,QWGDE,QYP

− FQWGDE,QYPGCE,Q − (WGDE,QYPGCE,QFQ)H]

+ σ2
nTr(WGDE,QG

H
DE,Q)Tr(GCE,QFQF

H
QGH

CE,Q)

+ Tr[GCE,QFQF
H
QGH

CE,QX
H
P ΨXP

−GCE,QFQF
H
Q ΨXP −XH

P ΨFQF
H
QGH

CE,Q]

× Tr(WGDE,QG
H
DE,Q) + cp, (54)

where cp is the term independent of GCE,Q. Then, the optimal
solution of GCE,Q may be shown to be:

GCE,Q =[Y H
P GH

DE,QWGDE,QYP + Tr(WGDE,QG
H
DE,Q)

× (σ2
nI + XH

P ΨXP)]−1[FQWGDE,QYP

+ Tr(WGDE,QG
H
DE,Q)FQF

H
Q ΨXP]H(FQF

H
Q )−1.

(55)

Σnew =

 XH
PRHXP XH

PRHFX̃D XH
PRHF̃ X̂D,new

X̃H
DFHRHXP X̃H

DFHRHFX̃D + φ1I X̃H
DFHRHF̃ X̂D,new

X̂H
D,newF̃

HRHXP X̂H
D,newF̃

HRHFX̃D X̂H
D,newF̃

HRHF̃ X̂D,new + φ2I

 ,
φ1 = Tr(Φ̃DF

HRHF ), φ2 = Tr(Φ̃D,newF̃
HRHF̃ ). (46)
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2) Optimization of GDE,Q: The optimization of GDE,Q

is similar to GCE,Q. Specifically, the optimization is an
unconstrained convex problem. Following a similar logic, the
optimal solution of GDE,Q is obtained as

GDE,Q =(YPGCE,QFQ)H
(
(YPGCE,QFQ)(YPGCE,QFQ)H

+{Tr[Ψ(I−XPGCE,Q)FQF
H
Q (I−XPGCE,Q)H]

+σ2
nTr(GCE,QFQF

H
QGH

CE,Q)+σ2
n}I

)−1
, (56)

which is in nature an LMMS equalizer. Defining the following
auxiliary matrix variable ΦC,Q

ΦC,Q =(XPGCE,Q − I)HΨ(XPGCE,Q − I)

+ σ2
nG

H
CE,QGCE,Q, (57)

the optimization problem (53) is equivalent to

min
FQ,GCE,Q

Tr

W (
FH
QGH

CE,QY
H
P YPGCE,QFQ

σ2
n + Tr(FQFQ

HΦC,Q)
+ I

)−1
s.t. ΦC,Q = (XPGCE,Q − I)HΨ(XPGCE,Q − I)

+ σ2
nG

H
CE,QGCE,Q,

Tr(FQF
H
Q ) ≤ PD. (58)

It is worth emphasizing that the optimization of GDE,Q has
been omitted and only GCE,Q and FQ have to be optimized
in an alternating manner, after which the optimal GDE,Q is
obtained in (56). It is also plausible that the optimization of
FQ in (58) can be solved efficiently based on the framework
of matrix-monotonic optimization. Moreover, the convergence
speed of the proposed alternating algorithm has been acceler-
ated.

3) Optimization of FQ: Similar to Section III-B, the opti-
mal linear TPC FQ is

FQ =

√
PD

Tr[(σ2
nI + PDΦC,Q)−1Feq,QFH

eq,Q]

× (σ2
nI + PDΦC,Q)−

1
2Feq,Q, (59)

where the rectangular matrix Feq,Q equals

Feq,Q = UQ

[(
1
√
µQ

Λ
− 1

2

Q −Λ−1Q

)+
] 1

2

, (60)

and µQ is the Lagrange multiplier guaranteeing
Tr(Feq,QF

H
eq,Q) = PD satisfied. The matrices UQ and

ΛQ are defined based on the following EVD

(σ2
nI+PDΦC,Q)−

1
2GH

CE,QY
H
P YPGCE,Q(σ2

nI+PDΦC,Q)−
1
2

=UQΛQU
H
Q , (61)

where ΛQ is a diagonal matrix with nonzero diagonal elements
in a non-increasing order and UH

QUQ = I .
4) Discussion: The main differences between FM-JO and

QMO-JO are whether to find an explicit channel estimation
solution and the update criterion of GCE. Explicitly, in FM-JO,
GCE is firstly optimized to minimize the MSE of channel esti-
mation error before the data estimation and channel refinement
phases. By contrast, in QMO-JO, GCE,Q is jointly optimized

with GDE,Q and FQ to minimize the MSE of data estimation
error. It seems that FM-JO before channel refinement is a
special case of QMO-JO, where GCE,Q is fixed, and only
GDE,Q and FQ are optimized jointly. Furthermore, the optimal
GCE in FM-JO is almost the same as GCE,Q in QMO-JO at
high SNR, which tends to be X−1P . It will also be demon-
strated in Section V. At the same time, following the idea of
channel refinement in FM-JO, this may also be conducted in
QMO-JO for improving the system performance, which we
term as QMO-FM-JO. Section V will explore whether there
exists a further beneficial performance improvement. First,
we jointly optimize the transceiver as in Section IV with
the knowledge of transmitted pilot signals and received pilot
signals for minimizing the error of data estimation ΦD,Q.

Then, following the logic in Section III, the recovered data
signals are taken into account for refining the estimation of
the channel. The updated channel estimator G̃CE,Q may be
expressed as

G̃CE,Q = (ΣQ + σ2
nNRI)−1[XP,FQX̂D,Q]HRH, (62)

where X̂D,Q = GDE,QYD and

ΣQ =

[
XH

PRHXP XH
PRHFQX̂D,Q

X̂H
D,QFQ

HRHXP X̂H
D,QF

H
QRHFQX̂D,Q + σ3I

]
,

σ3 =Tr(ΦD,QF
H
QRHFQ). (63)

The corresponding estimation error of the refined estimated
channel may be shown to be

E{∆H̃H
Q∆H̃Q}=RH−RH[XP,FQX̂D,Q](ΣQ+σ2

nNRI)−1

×[XP,FQX̂D,Q]HRH

,Φ̃C,Q. (64)

As a result, the updated equalizer associated with Y =
[YP,YD] is

G̃DE,Q =(Y G̃CE,QFQ)H[Y G̃CE,QFQF
H
Q G̃H

CE,QY
H

+ σ2
nI + ITr(FQFQ

HΦ̃C,Q)]−1, (65)

and error of data estimation is

Tr

(FH
Q G̃H

CE,QY
HY G̃CE,QFQ

σ2
n + Tr(FQFQ

HΦ̃C,Q)
+ I

)−1 . (66)

The QMO-FM-JO procedure is illustrated in Algorithm 1,
where both QMO-JO and FM-JO may be viewed as the special
parts or particular steps of it.

In addition, inspired by the connection between FM-JO
and QMO-JO, the channel refinement and data re-estimation
may be solved together, which only minimizes the MSE of
data re-estimation error with the aid of the estimated data
via jointly optimizing G̃CE,Q and G̃DE,Q. Upon defining
X = [XP,FQXD], X = [XP,FQX̂D,Q], the OF is written
as

E{‖W 1
2 [GDE,QY GCE,QFQs + GDE,Q(H −HXGCE,Q

−NGCE,Q)FQs + GDE,Qn− s]‖2} − log |W |

=Tr[WGDE,Q(Y GCE,QFQ)(Y GCE,QFQ)HG
H

DE,Q + W
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Algorithm 1 Joint optimization of the channel estimator and
data transceiver along with channel estimation refinement

1. Initialize G
(0)
CE,Q and i = 1.

repeat
2. Update F

(i)
Q with fixed G

(i−1)
CE,Q in (59).

3. Update G
(i)
CE,Q with fixed F

(i)
Q in (55).

until the convergence of objective function in (52)
4. Design GDE,Q in (56) and obtain recovered data X̂D,Q.
5. Re-estimate channel H̃ with updated G̃CE,Q in (62).
6. Re-estimate data X̃D,Q with updated G̃DE,Q in (65) in
turn.

−WGDE,QY GCE,QFQ − (WGDE,QY GCE,QFQ)H]

+ σ2
n Tr(WGDE,QG

H

DE,Q) + Tr(WGDE,QG
H

DE,Q)

× Tr[ΨFQF
H
Q + ΨX GCE,QFQF

H
QG

H

CE,QX
H

−ΨX GCE,QFQF
H
Q −ΨFQF

H
QG

H

CE,QX
H

+ Tr(GCE,QFQF
H
QG

H

CE,Q)ΨFQΦD,QF
H
Q ]

+ σ2
n Tr(GCE,QFQF

H
QG

H

CE,Q) Tr(WGDE,QG
H

DE,Q)

− log |W |. (67)

We then iteratively update GCE,Q and GDE,Q until the
convergence of the OF. Fixing GCE,Q, the optimal solution
of GDE,Q becomes:

GDE,Q =(Y GCE,QFQ)H((Y GCE,QFQ)(Y GCE,QFQ)H

+{Tr[Ψ(I−X GCE,Q)FQF
H
Q (I−X GCE,Q)H]

+ Tr(GCE,QFQF
H
QG

H

CE,Q)Tr(ΨFQΦD,QF
H
Q )

+ σ2
nTr(GCE,QFQF

H
QG

H

CE,Q) + σ2
n}I)−1, (68)

and the solution of GCE,Q with fixed GDE,Q becomes:

GCE,Q =[Tr(WGDE,QG
H

DE,Q)([σ2
n + Tr(ΨFQΦD,QF

H
Q )]I

+ X
H

ΨX) + Y HG
H

DE,QWGDE,QY ]−1

× [Tr(WGDE,QG
H

DE,Q)FQF
H
Q ΨX

+ FQWGDE,QY ]H(FQF
H
Q )−1. (69)

5) Complexity Analysis: The computational complexity of
the proposed algorithm mainly comes from the matrix mul-
tiplication and matrix decompositions. The specific computa-
tional complexity of each procedure is illustrated in Table III.
Observe that the computational complexity of channel refine-
ment and data re-estimation is highly dependent on the length
of the estimated data, which is exploited as pilots.

TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSED ALGORITHM

Algorithm/Procedure Computational Complexity
Conventional

method
Channel Estimation O(N3)

Data Estimation O(N3)

FM-JO Channel Refinement O((TD + TP)
3)

Data Re-estimation O(N2(TD + TP))
QMO-JO O(N3)
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Fig. 3. The MSE of channel estimation associated withNT = NR = r = 64.
The results of the conventional method are evaluated from the MSE metrics
in Eq. (6) and those of FM-JO with different TD are from the MSE metrics
in Eq. (26).
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Fig. 4. The MSE of data estimation associated with NT = NR = r = 64.
The results of FM-JO, QMO-JO and QMO-FM-JO are evaluated from the
MSE metrics in Eq. (33), Eq. (53) and Eq. (66), respectively.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, some simulation results are given to access
the performance of the proposed joint optimization of the
channel estimator and data transceiver. The most widely used
exponential correlation model, i.e., [Ψ]i,j = θ|i−j| [17] is
adopted for the transmit correlation matrix, and θ is set as
0.4 without loss of generality. The transmitted pilot signals
are orthogonal, data signals are QPSK modulated, and the
simulation results are averaged over 104 independent random
realizations. The length of the transmitted symbols to compute
the BER is set to 104. Algorithm in [25] is chosen as the
baseline algorithm. A single round of channel estimation
refinement is adapted in the simulation.

First, we investigate the scenario of NT = NR = 64,
and discuss the influence of different levels of noise on the
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Fig. 5. The MSE of data estimation under different numbers of antennas and
data streams.

performance of the proposed scheme. Note that, E{ssH} = I
and the SNR mentioned here is 10lg( 1

σ2
n

) dB. In Fig. 3, the
MSE of FM-JO is always better than that of the conventional
method, which only optimizes GCE once. This shows that
the FM-JO beneficially exploits the transmitted data for im-
proving the accuracy of channel estimation. When the length
of the data used for channel refinement is TD = 4TP, the
performance gap between the conventional method and FM-
JO becomes obvious in Fig. 3 and Fig. 4, compared to the
situation of TD = 2TP. This is because the longer transmitted
data provides more information for the channel estimator
and enhances the performance of data recovery, albeit at
higher computational complexity. Although the algorithm in
[25] also used data-aided channel estimation, its performance
improvement was lower than that of FM-JO relying on our
precoder design.

Additionally, as illustrated in Fig. 4, the MSE of QMO-
JO is lower than that of FM-JO at low SNRs. Since the data
estimation is inaccurate due to the poor channel estimation
at low SNRs, the channel refinement is inefficient, while the
QMO-JO succeeds in jointly optimizing the parameters for
minimizing the MSE of data estimation, thereby attaining
improved system performance. At a high SNR, the MSE of
FM-JO is superior to that of QMO-JO, since it processes more
accurate estimated data as pilots. Furthermore, QMO-FM-JO
combines the advantages of FM-JO and QMO-JO. At a low
SNR, the MSE of QMO-FM-JO is almost the same as that
of FM-JO, since the inefficient channel estimation neutralizes
the improvements caused by the QMO-JO. Upon increasing
the SNRs, the QMO-FM-JO starts to perform better than the
FM-JO, and they perform similarly at a high SNR, due to the
specific characteristics of QMO-JO.

Then we discuss the effect of different numbers of antennas
and data streams. Fig. 5 shows that when the number of data
streams is equal to the number of antennas, the NT = NR =
64 scheme performs slightly better than NT = NR = 8.
Since the sum power of the precoder is constant, having
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Fig. 6. The MSE of data estimation versus α associated with NT = NR =
64 at SNR=25dB.

more antennas means that less power is allocated for each
antenna, hence resulting in a modest improvement of the
performance. In addition, when the number of data streams
is set as 8, the scenario of NT = NR = 64 is superior to
NT = NR = 8, thus improving the spectral efficiency of the
communication system. However, the improvement of FM-JO
with TD = 10TP is almost the same as for TD = 5TP. This
indicates that when the number of antennas is high, more data
is required for channel refinement to achieve higher accuracy.

Let us denote the ratio of pilot sequence length to the
number of transmit antennas by α. The above simulations are
based on the assumption that the training sequence lengths
are equal to the number of transmit antennas, i.e. α = 1.
Fig. 6 illustrates the situation when the SNR is 25dB. The
proposed algorithms show excellent performance compared
to the baseline algorithm, even when there is a shortage of
pilots. The estimated data in FM-JO may be reused as pilots
for efficiently refining the channel estimation and the QMO-
JO scheme jointly optimizes the channel and data estimation.
Furthermore, the performances of the proposed algorithms
are similar, when insufficient pilots are used. Observe that,
the FM-JO associated with TD = 10TP performs better in
the data-aided mode. Additionally, it also demonstrates that
increasing the length of pilots beyond the number of antennas
slightly improves the MSE of data estimation at a high SNR,
but not sufficiently for justifying the increased pilot overhead.

Let us now consider the ultimate BER criterion to illustrate
the performance of data detection. The baseline algorithm
is that the TPC F is simply a DFT matrix, and GCE and
GDE are optimized as in (8) and (17), respectively. Fig. 7
shows the performance of QMO-JO vs. SNR, where QMO-JO
is seen to outperform the baseline and gradually approaches
the performance based on perfect CSI. Furthermore, Fig. 8
indicates that QMO-JO compensates well for the shortage of
pilots.

Fig. 9 shows the convergence of the proposed algorithms.
Observed that they both converge within 3 iterations. As for
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Fig. 7. The BER of data detection in QMO-JO versus SNR associated with
NT = NR = 16.

0.5 0.6 0.7 0.8 0.9 1 1.1
10

-4

10
-3

10
-2

10
-1

10
0

B
E

R

BER of Data Detection

baseline

QMO-JO

Perfect CSI

Fig. 8. The BER of data detection in QMO-JO versus α with NT = NR =
16 when the SNR is 20dB.

FM-JO, we have shown theoretically that the refined channel
aided by the data exhibits a lower MSE than the conventional
method solely relying on pilots. It also shows that an attractive
performance vs. computational complexity trade-off may be
attained after a single iteration. As for QMO-JO, since we
were able to derive the optimal solution in every iteration with
all other variables fixed, it is seen to converge to a fixed point
and thus a reduced MSE is achieved.

It may be concluded that, at high SNR, FM-JO is preferred
for channel estimation and data recovery in order to achieve
improved performance, but this is achieved at an increased
computation overhead. By contrast, at low SNR or in face of
insufficient training resources, QMO-JO has the edge. This
is because GCE that minimizes the channel estimation error
might not be optimal in terms of minimizing the MSE of data
estimation at low SNRs, particularly leading to avalanche-like
error proliferation during channel refinement.

0 1 2 3 4 5

Iteration index

10
-2

10
-1

10
0

M
S

E

MSE of Data Estimation

FM-JO: Td=5Tp

FM-JO: Td=10Tp

QMO-JO

Fig. 9. The convergence of data estimation based on FM-JO with the length
of data TD = 5TP and TD = 10TP, and QMO-JO, when the number of
antennas is 64× 64 and we have SNR=25dB.

VI. SUMMERY AND CONCLUSIONS

In this paper, the joint optimization of the channel estimator
and data transceiver was considered. The joint optimization
relied on solving a pair of linear matrix equalities in the
presence of noise terms in each. The channel estimation and
data transmission phases were jointly designed. The channel
estimation accuracy affects the data transmission and estimated
data can also be reused as pilots to improve the channel
estimation accuracy. In the FM-JO solution, the estimation
error models the impact of channel estimation on data esti-
mation and of data estimation on channel estimation, which is
investigated. In the QMO-JO algorithm, the channel estimation
phase is incorporated into the data estimation and then a joint
optimization problem is formulated. Closed-form solutions
are derived and connections of these algorithms are also
investigated. Finally, the simulation results have illustrated the
performance benefits of the proposed algorithms.

APPENDIX A
DERIVATIONS FOR E{Tr(∆XD∆XH

D)}
In this appendix, the quadratic expectation term in (16)

is derived. Assuming E{XDX
H
D} = TDI and perform-

ing statistical expectation operations over ∆XD, the term
E{Tr(∆XD∆XH

D)} equals to [44]

E{Tr(∆XD∆XH
D)}

=E
{

Tr[
(
X̂D −XD

)(
X̂D −XD

)H
]
}

=E
{

Tr([GDE(YPGCE + ∆H)FXD + GDEND −XD]

× [GDE(YPGCE + ∆H)FXD + GDEND −XD]
H

)
}

=TDE
{

Tr([GDE(YPGCE + ∆H)F − I)]

× [GDE(YPGCE + ∆H)F − I]H
}

+ σ2
nTDTr(GDEG

H
DE)
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=TDTr{I −GDEYPGCEF − (GDEYPGCEF )H

+ (GDE[YPGCEFFHGH
CEY

H
P + σ2

nI

+ ITr(FFHΦC)]GH
DE)}. (70)

APPENDIX B
DERIVATIONS FOR E{∆H̃H∆H̃}

Taking the statistical expectation over ∆H̃ , the quadratic
term E{∆H̃H∆H̃} equals to

E{∆H̃H∆H̃}
=E{(Y G̃CE −H)H(Y G̃CE −H)}
=E{(H([XP,F (X̂D+∆XD)]G̃CE−I)+[NP,ND]G̃CE)H

× (H([XP,F (X̂D+∆XD)]G̃CE−I)+[NP,ND]G̃CE)}
=E{(G̃H

CE[XP,F (X̂D + ∆XD)]H − I)HHH

× ([XP,F (X̂D + ∆XD)]G̃CE − I)}+ σ2
nNRG̃

H
CEG̃CE

=E{G̃H
CE[XP,F (X̂D+∆XD)]HRH

× [XP,F (X̂D+∆XD)]G̃CE}−RH[XP,FX̂D]G̃CE

− G̃H
CE[XP,FX̂D]HRH + RH + σ2

nNRG̃
H
CEG̃CE. (71)

The quadratic term in the first term of the fourth equality in
(71) can be further reformulated into the following formula

E{[XP,F (X̂D + ∆XD)]HRH[XP,F (X̂D + ∆XD)]}

=

[
XH

PRHXP XH
PRHFX̂D

X̂H
DFHRHXP X̂H

DFHRHFX̂D+ITr(ΦDF
HRHF )

]
,Σ. (72)

As a result, we finally have

E{∆H̃H∆H̃}
=G̃H

CEΣG̃CE−RH[XP,FX̂D]G̃CE−G̃H
CE[XP,FX̂D]HRH

+ RH + σ2
nNRG̃

H
CEG̃CE. (73)

APPENDIX C
DERIVATIONS FOR E{∆H̃H∆H̃} WITH OPTIMAL G̃CE

The MSE of channel refinement relying on the optimal G̃CE

may be rewritten as

E{∆H̃H∆H̃}
=RH −RH[XP,FX̂D](Σ + σ2

nNRI)−1[XP,FX̂D]HRH,
(74)

and we define [
A U
V D

]
= Σ + σ2

nNRI. (75)

Based on the inversion of the block matrix and the Woodbury
identity, we arrive at:

[XP,FX̂D](Σ + σ2
nNRI)−1[XP,FX̂D]H

=XPA
−1XH

P + (XPA
−1U − FX̂D)(D − V A−1U)−1

× (V A−1XH
P − X̂H

DFH)

=XP(XH
PRHXP + σ2

nNRI)−1XH
P + Ψ−1ΦCFX̂D

× (σ1I + σ2
nNRI +NRX̂

H
DFHΦCFX̂D)−1

× (Ψ−1ΦCFX̂D)H. (76)

Then, the MSE of channel refinement is simplified to

E{∆H̃H∆H̃}
=NRΦC −NR(ΦCFX̂D)

× (
σ1
NR

I + σ2
nI + X̂H

DFHΦCFX̂D)−1(ΦCFX̂D)H.

(77)

APPENDIX D
DERIVATIONS FOR E{Tr(∆X̃D∆X̃H

D)}
Upon performing the statistical expectation over ∆X̃D, the

resultant quadratic term equals to

E{Tr(∆X̃D∆X̃H
D)}

=E
{

Tr
[(
X̃D −XD

)(
X̃D −XD

)H]}
=E
{

Tr
([

G̃DE(Y G̃CE + ∆H̃)FXD + G̃DEND −XD

]
×
[
G̃DE(Y G̃CE + ∆H̃)FXD + G̃DEND −XD

]H)}
=TDE

{
Tr([G̃DE(Y G̃CE + ∆H̃)F − I]

×[G̃DE(Y G̃CE + ∆H̃)F − I]H)
}

+σ2
nTDTr(G̃DEG̃

H
DE)

=TDTr[I − G̃DEY G̃CEF − (G̃DEY G̃CEF )H

+ (G̃DE[Y G̃CEFFHG̃H
CEY

H + σ2
nI

+ ITr(FFHΦ̃C)]G̃H
DE)]. (78)

APPENDIX E
THE OBJECTIVE FUNCTION OF JOINT OPTIMIZATION (52)

In this appendix, the objective function of the joint opti-
mization problem (52) is derived. The detailed mathematical
derivation procedure is formulated as

E{‖W 1
2 [GDE,QYPGCE,QFs+GDE,Q(H−HXPGCE,Q

−NPGCE,Q)Fs + GDE,Qn− s]‖2} − log |W |
=E{Tr(W

1
2 [GDE,QYPGCE,QFs+GDE,Q(H

−HXPGCE,Q −NPGCE,Q)Fs + GDE,Qn− s])

× (W
1
2 [GDE,QYPGCE,QFs + GDE,Q(H−HXPGCE,Q

−NPGCE,Q)Fs + GDE,Qn− s])H} − log |W |
=E{Tr([W

1
2GDE,Q(YPGCE,Q + H −HXPGCE,Q

−NPGCE,Q)F −W
1
2 ]

× [W
1
2GDE,Q(YPGCE,Q + H −HXPGCE,Q

−NPGCE,Q)F −W
1
2 ]H)}

+ σ2
nTr(WGDE,QG

H
DE,Q)− log |W |

=E{Tr([W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2]

×[W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2 ]H)}
+ E{Tr[(W

1
2GDE,QNPGCE,QF )

× (W
1
2GDE,QNPGCE,QF )H]}

+ σ2
nTr(WGDE,QG

H
DE,Q)− log |W |



14

=E{Tr([W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2]

×[W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2 ]H)}
+ σ2

nTr(GCE,QFFHGH
CE,Q)Tr(WGDE,QG

H
DE,Q)

+ σ2
nTr(WGDE,QG

H
DE,Q)− log |W |. (79)

The first term in the final equality of (79) is further reformu-
lated into

E{Tr([W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2 ]

×[W
1
2GDE,Q(YPGCE,Q+H−HXPGCE,Q)F−W 1

2 ]H)}
=Tr[(W

1
2GDE,QYPGCE,QF −W

1
2 )

× (W
1
2GDE,QYPGCE,QF −W

1
2 )H]

+ E{Tr([W
1
2GDE,QH(I −XPGCE,Q)F ]

× [W
1
2GDE,QH(I −XPGCE,Q)F ]H)}

=Tr[WGDE,Q(YPGCE,QF )(YPGCE,QF )HGH
DE,Q + W

−WGDE,QYPGCE,QF − (WGDE,QYPGCE,QF )H]

+ Tr[Ψ(I −XPGCE,Q)FFH(I −XPGCE,Q)H]

× Tr(WGDE,QG
H
DE,Q)

+ σ2
n Tr(GCE,QFFHGH

CE,Q)Tr(WGDE,QG
H
DE,Q).

(80)

Therefore, the objective function of the joint optimization (52)
can be reformulated into

E{‖W 1
2 [GDE,QYPGCE,QFs+GDE,Q(H−HXPGCE,Q

−NPGCE,Q)Fs + GDE,Qn− s]‖2} − log |W |
=Tr[WGDE,Q(YPGCE,QF )(YPGCE,QF )HGH

DE,Q + W

−WGDE,QYPGCE,QF − (WGDE,QYPGCE,QF )H]

+ σ2
n Tr(WGDE,QG

H
DE,Q) + Tr(WGDE,QG

H
DE,Q)

× Tr[Ψ(I −XPGCE,Q)FFH(I −XPGCE,Q)H]

+ σ2
n Tr(GCE,QFFHGH

CE,Q)Tr(WGDE,QG
H
DE,Q)

− log |W |. (81)
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