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Mode attraction, rejection and control in
nonlinear multimode optics

Kunhao Ji 1 , Ian Davidson 1, Jayanta Sahu1, David J. Richardson1,2,
Stefan Wabnitz 3 & Massimiliano Guasoni 1

Novel fundamental notions helping in the interpretation of the complex
dynamics of nonlinear systems are essential to our understanding and ability
to exploit them. In this work we predict and demonstrate experimentally a
fundamental property of Kerr-nonlinear media, which we name mode rejec-
tion and takes placewhen two intense counter-propagatingbeams interact in a
multimodewaveguide. In stark contrast tomode attraction phenomena,mode
rejection leads to the selective suppression of a spatial mode in the forward
beam, which is controlled via the counter-propagating backward beam.
Starting from this observation we generalise the ideas of attraction and
rejection in nonlinear multimode systems of arbitrary dimension, which paves
the way towards a more general idea of all-optical mode control. These ideas
represent universal tools to explore novel dynamics and applications in a
variety of optical and non-optical nonlinear systems. Coherent beam combi-
nation in polarisation-maintaining multicore fibres is demonstrated as
example.

Multimode waveguides have become one of themajor research topics
of the last decade in optics. The initial interest in multimode optical
fibres for next-generation optical communication systems1,2 has
rapidly spread to a diversity of applications, including astronomy3,
high-speed datacentres4, imaging5 and more recently integrated
photonics6, which attests to the relevance of this fieldwithin the broad
photonics community7.

The massive interest in multimode fibres has triggered the
investigation of nonlinear effects in these systems. Whether it repre-
sents an issue to avoid or to exploit for high-power lasers8 and optical
communications9, nonlinear dynamics in multimode waveguides
undoubtedly represents a rapidly growing research field. Indeed,
nonlinear coupling amongdifferent spatialmodes—mediatedby cross-
phase modulation, four-wave mixing and Raman scattering- and its
interplaywith temporal dispersiongives rise to complex,multi-faceted
dynamics where much is still unknown10–15.

Over the last few years novel scenarios have been disclosed,
including wideband supercontinuum mediated by intermodal

nonlinear interactions16,17, nonlinear conversion via intermodal four-
wave-mixing18,19, spatio-temporal multimode solitons20 and mode-
locking21, pulse combining22 and spatial beam self-cleaning13,23, to
name a few. All the above-mentioned phenomena share a co-
propagating geometry, whereas counter-propagating geometries in
multimode waveguides have so far been left largely unexplored.

Nonlinear counter-propagating systems have been extensively
studied in single-mode waveguides since the ‘80 s, where new funda-
mental results have been demonstrated, along with relevant applica-
tions. This includes spatial/temporal chaos and bistability24–27 aswell as
the existence of special polarisation states that play the role of robust
attractor states.

The notion of attraction plays a central role in mathematics and
physics. The existence of system attractors has been observed in dif-
ferent kind of optical fibres, from isotropic28, to highly birefringent29,30

up to randomly birefringent fibres31. While different types of fibre
exhibit different kinds of attractors, the underlying attraction process
is characterised by a similar dynamic32: independently of its input
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polarisation state, a forward signal (FS) is attracted towards an
attractor state that is fixed by a counter-propagating backward
control beam (BCB), launched at the opposite fibre end. The attraction
process is driven by the Kerr-nonlinear interaction between the FS
and BCB. As a result, for an increasing degree of nonlinearity, the
attraction becomes more effective and robust to external perturba-
tions (Fig. 1a, b).

These two features—robustness and independence of the input
conditions—are peculiarities of the counter-propagating setup,
whereas they are not present in standard co-propagating systems33,34.
Besides the fundamental interest, these outcomes have been exploited
to implement a variety of novel optical devices, including lossless all-
optical polarisers35, all-optical polarisation scramblers36 and nonlinear
focusing mirrors for temporal compression37.

Differently from single-mode waveguides, counter-propagating
setups inmultimodewaveguides have been little addressed so far. The
existence of mode attractors in a fibre supporting two spatial modes
has been envisaged34,38,39. However, this process has been measured
and quantified for the first time only recently in our work ref. 39.
Moreover, there has not been any attempt to analyse themost general
case ofmultimode waveguides supporting any number of modes. This
is arguably due to the additional complexity intrinsic to the counter-
propagating multimode dynamics, both in terms of fundamental
understanding as well as of the experimental setup.

Nevertheless, the richness of recent results in nonlinear multi-
mode waveguides, along with earlier outcomes in single-mode fibres
with counter-propagating configurations as depicted above, let us to
anticipate a variety of nonlinear phenomena in counter-propagating
multimode systems. The scope of this paper is to initiate research in
this direction.

Here, we generalise the idea of mode attraction in waveguides
supporting an arbitrary numberN ofmodes.Moreover, we predict and

demonstrate experimentally a novel fundamental property that we
namemode rejection. As illustrated in Fig. 1c, d, this effect can be seen
as the inverse of the attraction process. It is only by moving to wave-
guides supporting N > 2 modes that mode rejection can be properly
understood and distinguished from mode attraction.

In this work, the waveguides of choice are multimode and multi-
core optical fibres. It should be noted however that our results can be
promptly adapted to different optical (e.g. integrated waveguides) or
even non-optical systems exhibiting Kerr-like nonlinearity. The choice
of multimode/multicore fibres is driven by two considerations. Firstly,
these fibres benefit from a decade of improved manufacturing pro-
cesses as well as a wide array of devices for efficient mode manipula-
tion, decomposition and characterisation, which are key steps in our
investigation. Secondly, these fibres represent versatile platforms for
exploring not only fundamental physics but also new applications.
Here, we provide an example of coherent beam combination based on
the new notion of mode rejection.

Our outcomes broaden our knowledge on the complex nonlinear
multimode dynamics and open the path towards a more general idea
of all-optical mode control. More generally, they shed new light into
the fundamental ideas of attraction, rejection and control in the fra-
mework of nonlinear multimode systems, including but not limited to
optical fibres.

Results
Theory of mode attraction and rejection
Our theoretical investigation focuses on two distinct scenarios. Firstly,
we consider a polarisation maintaining (PM) fibre of length L, sup-
porting the propagation of an arbitrary number N of spatial modes
linearly polarised along one of its birefringence axes. The FS (BCB)
enters the fibre at z =0 (z= L) and excites a combination of spatial
modes, whose amplitude is indicated by fn(z,t) (bn(z,t)), n = {1,2,…N}.
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Fig. 1 | Illustration of mode attraction and rejection inmultimode waveguides.
The input FS (FSin) and input BCB (BCBin) are launched at the two opposite ends of
anopticalfibre. a,bModeattraction in single-mode isotropicopticalfibres. In these
fibres, the left and right circular polarisation states play the role of robust attrac-
tors. When the BCB is turned off (a), the mode content of the output FS (FSout)
mirrors the input one (right and left-circular polarisations have respectively relative
powers Pr and Pl, where Pr and Pl are arbitrary and Pr + Pl = 100%). When the BCB is
turned on and has a similar power to the FS (b), their nonlinear interactionmodifies
the mode content. If the input BCB is coupled to one circular polarisation mode
(left circularly polarised in this example), then irrespective of the mode content of
the input FS, the output FS is attracted to the mode of the input BCB (100% of the

power in the left circularly polarised mode). c, d Mode rejection in multimode
optical fibre. In this example the fibre supports 3 modes indicated with M1,M2,M3.
When the BCB is turned off (c), themode content of the output FSmirrors the input
one (relative power P1 for modeM1, P2 forM2 and P3 forM3, where P1, P2 and P3 are
arbitrary and P1 + P2 + P3 = 100%). When the BCB is turned on and has a similar
power to the FS (d), their nonlinear interaction modifies the mode content. If the
input BCB is fully coupled to one spatial mode (M1 in this example), then irre-
spective of themode content of the input FS, the output FS rejects themode of the
input BCB (0% power in modeM1). The specific amount of power on the remaining
modes (P2,out for M2 and P3,out for M3, where P2,out + P3,out = 100%) depends on the
system parameters.
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We find that their spatio-temporal evolution is described by the set of
coupled nonlinear Schrödinger equations Eq. (1) (see Methods).

Secondly, we consider the case of a single-mode isotropic fibre.
Differently from the previous case, it can only support the propagation
of N = 2 modes. These are quasi-degenerate modes with orthogonal
circular polarisation, whose dynamics is well-known and is described
by Eq. (2) with N = 2 (see Methods). One of the key-points of our ana-
lysis is that we extend the study of Eq. (2) to an arbitrary dimension
N > 2. Despite the existence of fibre systems where Eq. (2) with N > 2
could apply is yet unknown, however this extension allows for a direct
comparison between Eq. (1) and Eq. (2) in the general case N > 2, which
ultimately leads to a new understanding of the nonlinear mode
dynamics in counter-propagating systems.

We note that Eq. (1) and Eq. (2) are similar but differ in the last
term on the right-hand side, which describes the power exchange
among forward and backward modes. The main outcome of our the-
oretical investigation is that, under certain conditions on the Kerr
coefficients, both Eq. (1) and Eq. (2) are integrable: therefore, they can
be solved analytically (see Methods and Supplementary information
note 1). The analytical solution discloses a new fundamental property.

In the case of Eq. (1), by calling Pf =
P

n f n
�� ��2 (Pb =

P
n bn

�� ��2) the
total injected FS (BCB) power and DR(z) the normalised correlation
coefficient DR zð Þ=Pn f n zð Þbn zð Þ=Q with Q = (Pf Pb)1/2, one finds that
DR(L) decreases as 1/(L ·Q): therefore, |DR(L) |→0 for sufficiently large L
orQ.Mode rejection is a direct consequenceof this property. Indeed, if
the input BCB is launched into an individual mode only, say the mode-
m, such that |bm(L)| = Pb1/2 and bn(L) = 0∀n ≠m, then |DR(L)| reduces to |
fm(L)|/Pf1/2. The condition |DR(L) |→0 implies therefore that fm(L) ∼0:
namely, irrespective of the mode distribution of the input FS in z =0,
the output FS in z = L carries no energy in themode-m, that is to say the
mode-m is rejected at the output.

On the other hand, Eq. (2) are characterised by opposite dynam-
ics. Indeed, if we call DA zð Þ=Pn f n zð Þb*

n zð Þ=Q, then |DA(L) |→ 1 for
increasingly large L or Q. Now, if the input BCB is launched into an
individual mode only, say, the mode-m, then |DA(L)| = |fm(L)|/Pf1/2→ 1
and therefore |fm(L) | 2 ∼ Pf, which means that all the power of the
output FS gets coupled into the same mode-m of the input BCB. This
generalises the idea of mode attraction in the case of N-dimensional
systems, with N arbitrary.

In conclusion, Eqs. (1) and (2) describe the two opposite processes
of mode rejection and attraction in the case of arbitrary dimension N.

Their difference is intimately related to the nature of the energy-
exchange term that couples the forward and the backward beams. The
schematic in the Supplementary information note 5 summarises these
results. We highlight that it is only in systems supporting more than 2
modes (N > 2) that one can fully appreciate the idea of mode rejection.
Indeed, in bimodal systems the rejection of one mode could be mis-
leadingly interpreted as the attraction towards the other mode34,39.

Our theoretical analysis is supported by a simulation tool that
numerically solves Eqs. (1) and (2). Besides confirming the theoretical
predictions, the simulations reveal that mode rejection and attraction
takeplace in themost general casewhere the Kerr coefficients are fully
arbitrary (See Supplementary information note 2). Therefore, these
phenomena represent universal features of nonlinear counter-
propagating systems.

Experimental results on mode rejection
As anticipated, the existence of optical fibres where Eq. (2) with N > 2
may apply is yet unknown. On the other hand, the case of Eq. (1) with
N > 2 is relevant to PMmultimode fibres. Therefore, in our experiments
we have conducted a systematic investigation in a variety of PM mul-
timode andmulticore fibres, in order to provide the first experimental
evidence of the mode rejection principle. Details on the fibres and
experimental parameters are provided in Fig. 2b and Supplementary
information note 3, including the choice of the optical power to
achieve the high levels of system nonlinearity required. In our setup
(Fig. 2a), an in-house built linearly polarised source (central wave-
length λ = 1040 nm, 500 ps pulses) is split into two beams that form
the input FS and BCB. Cameras are placed in the near- and far-field to
measure the spatial intensity profiles of the output beams, and these
images are then used to estimate the mode content of the output FS
via amode decomposition technique covering all guidedmodes of the
fibre (seeMethods and Supplementary information note 4 for details).

The first fibres under test were a homemade dual-core fibre (DCF)
and tri-core fibre (TCF).Multicorefibres represent a novel platform for
exploring nonlinear effects in counter-propagating systems, which
allow generalisation of our theoretical predictions beyond standard
single-core multimode fibres. Furthermore, these fibres allow us to
characterise the robustness of mode rejection against a variety of
simultaneous fabrication imperfections, which include random varia-
tions of core radii, shape and core-to-core distance. Spatial light
modulators and phase-plates were used to control the intensity and
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Fig. 2 | Experimental setup and testfibres. a Schematic of the experimental setup
and beam path for the FS (in yellow) and the BCB (in red). PBS=polarisation beam
splitter; SLM=spatial light modulator; PM=power meter; PP=phase plate; FF=far-
field; NF=near-field. The fibre ends z =0 (input FS, output BCB) and z = L (output FS,
input BCB) are indicated with black dashed lines. b Microscope image of the 3 test
fibres and related spatial modes used in the experiments: a homemade dual-core
fibre (DCF) supporting 2 modes (SMe,o), a homemade tri-core fibre (TCF) sup-
porting 3modes (SM1,2,3) and a commercial polarisationmaintaining fibre (PM-6MF)

from Thorlabs supporting 6 distinct modes at λ = 1040nm (LP01,11a,11b, 21a,21b,02). In
our experiments each spatial mode is linearly polarised along one of the birefrin-
gence axes of the fibres under test (see Supplementary information note 3). The
substantial birefringence of the fibres ensures that the input polarisation is main-
tained ( > 10dB polarisation extinction ratio). The spatial mode profiles in the near-
field (NF) and the far-field (FF) of the DCF and TCF are reported at the bottom and
can be compared against the camera images shown in Figs. 3–5 to appreciate the
mode rejection dynamics. For the Thorlabs fibre just the NF modes are reported.
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phase of light coupled into each core, and hence to excite an arbitrary
combination of modes.

Figure 3 displays the experimental results obtained in a 1-m
long DCF that supports the propagation of an even and an odd
supermode, here indicated with SMe and SMo. The FS and BCB are
co-polarised. On one side, the input FS is launched with fixed
power, coupled to different arbitrary combinations of modes. At
the opposite fibre end, the input BCB is launched with variable
power, and it is coupled to the odd (Fig. 3a) or the even (Fig. 3b, c)
supermode. In line with our theoretical predictions, experiments
confirm that, for increasing values of BCB power, the output FS
gradually rejects the BCB mode. The numerical simulation of Eq.
(1) shows a good match with the experiments when using com-
parable parameters (pulse width, peak powers and Kerr coeffi-
cients, see also Supplementary information note 3).

Note that, irrespective of the mode distribution of the input FS,
according to our theoretical model and our numerical simulations full
rejection (i.e. no output FS power coupled into the input BCB mode)
could be in principle achieved by appropriately increasing the forward
and backward powers Pf and Pb. However, in our experiments the
maximumcoupled peak power Pf + Pb is limited to 12 kWby the optical
source in use, which explains why only partial rejection was observed.
It is worth noting that the power requirement could be substantially
mitigated by resorting to highly nonlinear fibres, which includes fibres
with non-silica host.

As previously mentioned, when a fibre supports just two guided
modes, as is the case for the DCF, then rejection of one mode corre-
sponds to attraction towards the other mode. This opens up the pos-
sibility to lock the output FS to either the even or the odd supermode
in an all-optical way. In the case under analysis, when the BCB is cou-
pled to the odd (even) supermode, then the output FS undergoes
rejection of that mode, and consequently it is attracted towards the
even (odd) supermode, which corresponds to a condition of in-phase
(out-of-phase) coherent combination of the two cores. This is con-
firmed by the observation of the far–field intensity profile of the out-
put FS on the camera, which shows a transition towards an in-phase
(out-of-phase) coherent combination when increasing the power of
theBCBcoupled to theodd (even) supermode, as reported in Fig.3 and

in the Supplementary movies 1–3 (see Supplementary informa-
tion note 4).

A striking property of mode rejection is its robustness against
external perturbations, which is illustrated in Fig. 4a. Moving and/or
bending the fibremodifies the launching conditions of the FS andmay
lead to random coupling among the fibre modes. When the BCB is
turned off, this results in randomvariations of the output FS. However,
when the BCB is turned on and is coupled to onemode (SMe in Fig. 4a),
then mode rejection takes place, irrespective of the launching condi-
tions. As a result, we observe the effective rejection of thatmode in the
output FS (relative power of SMe < 10% in Fig. 4a). Consequently, we
can robustly lock the output FS to either one or the other supermode.

A further relevant feature of mode rejection is that it can be
controlled via the relative angle of polarisation orientation between
the FS and the BCB. When the FS and BCB are orthogonally polarised,
the power-exchange term of Eq. (1) is reduced by a factor of 3 (see
Methods), which leads to a substantial suppression of the power
exchangebetween the FS andBCB, ultimately compromising themode
rejection process. This is confirmed by the results in Fig. 4b, which
shows the evolution of mode rejection as a function of the relative
angle α between the input FS and the BCB in the DCF. When α =0 deg
(i.e. the FS and the BCB are co-polarised), a strong rejection of the BCB
mode is observed (relative power of SMe = 10% in Fig. 4b), which gra-
dually reduces for increasing values of α. When α = 90 deg (i.e. the FS
and BCB are orthogonally-polarised), the far-field intensity of the
output FS resembles the case where the BCB is turned off, indicating
that mode rejection is substantially suppressed.

Our experiments with the TCF, reported in Fig. 5, show similar
outcomes, and again suggest that mode rejection is robust against
standard fibre fabrication imperfections (see Supplementary infor-
mation note 3). Indeed, the TCF supports 3 guided supermodes
(SM1,SM2, SM3), and in goodagreementwith thenumerical simulations
mode rejection is observed when the BCB is coupled to any of these.

Further experiments were carried out in a single-core few-mode
PM fibre supporting up to 6 modes at λ = 1040nm. Although the
specific evolution of the power carried by eachmode is dependent on
the input FS mode content, rejection of the input BCB mode was
consistently achieved, irrespective of the input FS. Figure 6 reports a
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Fig. 3 | Mode rejection in the DCF. Mode decomposition of output FS in the DCF
fibre (1m long) for different launching conditions (experiments(exp): dots; simu-
lations(simu): lines). The bottom images show the far-field intensities of the output
FS for 3 distinct values of BCB power. The input FS is coupled to different combi-
nationsofSMe andSMo (see relative power of input FSon the topof eachpanel) and
launchedwith fixed power of 3.75 kW,6.5 kWand 6.2 kW in (a–c) respectively. If the
input BCB is coupled to SMo (a), then the output FS rejects SMo and is therefore
mainly coupled to SMe.When the BCB power =5.1 kW, ~90%of the output FS power
is coupled toSMe.Consequently, the output FS far-fieldexhibits one single lobeand

resembles the mode SMe-FF of Fig. 2b, corresponding to in-phase combination of
the cores. On the contrary, if the input BCB is coupled to SMe (b, c), then the output
FS undergoes rejection of SMe and is therefore mainly coupled to SMo. When the
BCB power = 5.6 kW, ~81% and 98% of the output FS power is coupled to SMo in
cases b and c, respectively. Consequently, the output FS far-field exhibits two
distinct symmetric lobes and resembles themode SMo-FF of Fig. 2b, corresponding
to out-of-phase combination of the cores. Error bars of ±3% are added to the
measured relative power of the rejected mode, which represents the estimated
uncertainty of our mode decomposition algorithm.
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few illustrative examples (see also Supplementary information note 4
and related Supplementary movies 7–9).

Dynamic of the backward control beam
Equation (1) are invariant with respect to the exchange between FS and
BCB modes. However, different boundary conditions apply to the
input FS and to the input BCB, which reflects their different roles.

Because the input BCB plays the role of the control beam, its
mode content is fixed and coupled to one single mode. For this
reason, the output FS systematically undergoes rejection irre-
spectively of the input FS mode content. On the other hand, the
input FS plays the role of a probe beam with arbitrary mode
content. Therefore, the output BCB does not undergo any rejec-
tion dynamics, because different input FSs lead to different out-
put BCB mode contents.

It is interesting to note that, in the special case of a two-mode-fibre
having the Kerr coefficients all identical, the mode content of the
output BCB is attracted towards the orthogonal modal state of the
input FS34 when they have the same power. This is confirmed by our
experiments in the home-made DCF, where the above-mentioned
condition on the Kerr coefficients ismet with excellent approximation
(γ11 ~ γ12 ~ γ22, see Supplementary information note 3). In the example
illustrated in Fig. 7 the input BCB is coupled to supermode SMo,
whereas the input FS to a combination of 60% SMe and 40% SMo. As
expected, the output FS undergoes rejection of the input BCB mode.
On the other hand, the output BCB achieves a mode content of ~40%
SMe and ~60% SMo when the two beams have the same power (see
green dashed vertical line).

These considerations have an important consequence when the
input FS has a random mode content in time. In that case the amount

a b

BCB-off

BCB (SMe) Polarisation Control

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
po

w
er

 o
f S

M
e

0 20 40 60
Angle α (deg)

80 90

Robustness

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
po

w
er

 o
f S

M
e

1 2 3 4
Fibre perturbation

5

BCB-off
BCB-on

Fig. 4 | Robustness and control of mode rejection. Input FS and BCB are linearly
polarised and launchedwith ~ 5 kWpeak power in the DCF. aMode decomposition
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different points. For each perturbation, the mode decomposition of the output FS

is computed, and the output FS far-field intensity is imaged when the BCB is either
turned off or on. When BCB is on, robust rejection of SMe occurs in the output FS
( < 10% power in all 5 cases). b Mode decomposition and far-field intensity of the
output FS as a function of the relative angleα between the polarisation orientations
of the input FS and the BCB. The far-field with BCB off is reported for comparison.
Error bars of ±3% are added to the measured relative power, which represents the
estimated uncertainty of our mode decomposition algorithm.
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simulations, indicating that full rejection maybe achieved by increasing the total
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mode decomposition algorithm.
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of disorder of the input FS is transferred to the output BCB, whose
mode content becomes therefore randomly distributed. This dynamic
is similar to that of polarisation attraction phenomena in single-mode
fibres34, where a mutual exchange in the degree of polarisation is
achieved between FS andBCB, that is to say, the polarisation attraction
undergone by the output FS takes place at the expense of a depolar-
isation of the output BCB.

Towards the idea of mode control
Mode attraction and rejection take place when the input BCB is cou-
pled to one individual mode. We envisage further novel scenarios in
the most general case where the input BCB is coupled to an arbitrary
set of modes. In this framework, one may wonder whether for a given
input FS it is possible to achieve a specific output FSmode distribution
by opportunely setting the input BCB. Once again the theoretical fra-
mework developed for the special case γnn = γ and γnm = (1/2)γ (n ≠m)
gives a clue on some possible scenario. For example, following the
steps introduced in the Supplementary informationnote 1, wefind that
for a given input FS it is possible to focus all the output FS power into
one single mode, say mode-k, provided that the input BCB has the

following configuration: jb̂k Lð Þj∼0, b̂n Lð Þ∼ � ijf̂ n 0ð Þjeiϕkn=r if n ≠ k,

where r = ð1� jf̂ k 0ð Þj2Þ
1=2

and ϕkn is the relative phase between the
input FS mode-k and mode-n.

Note that this outcome should not be confused with the notion of
mode attraction, which is fundamentally different. Indeed, mode
attraction implies that for afixed input BCBcoupled to onemode, then
the output FS is attracted towards thatmode for any arbitrary input FS.
On the contrary, in the case mentioned above, the input BCB is not
fixed, but depends on the specific input FS mode power distribution
and relative phase.

We have performed some preliminary experiments in our TCF
where the input BCB is coupled to a combination ofmodes, rather than
just one mode. In Fig. 8 we observe that, for the same input FS, dif-
ferent input BCBs give rise to substantially different output FS mode
distributions.

These preliminary results pave the way towards a more general
idea of mode control, that is to say, the ability to control on demand
and all-optically (and then potentially at ultrafast rate) the mode
content of the output FS via the BCB. The latter may be even
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On the other hand, the output BCB does not undergo rejection, as illustrated in (c).
Indeed, the mode content of the output BCB in stationary regime strictly depends
on the fibre parameters and the input FS, which is in general arbitrary. In this
example, because the fibre is bimodal and theKerr coefficients are almost identical,
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SMo) when the 2 beams have the same power (5.05 kW, see green dashed line in c).
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generated via back-reflection of the FS, thus without the need for an
independent and additional optical source31. A new idea of light-self
organization then emerges, where the output FS is shaped in time
and space depending on its input state, leading to new opportu-
nities like all-optical switching or highly scalable coherent combi-
nation in multimode and multicore waveguides, to name a few.
These ideas are of course speculative at the moment and additional
extensive investigation will be required to put them into practice.
However, the theoretical and experimental results reported in this
work represent ideal tools to address the above-mentioned
opportunities and related challenges.

Discussion
In this work, we investigated the nonlinear dynamics of multimode
optical waveguides with a counter-propagating geometry. We identi-
fied two classes of multimode systems that exhibit the two opposite
dynamics of mode rejection and attraction.

The first class is characterised by the occurrence of mode
rejection, and is described by Eq. (1). It is only when moving to
systems supporting more than two modes that the peculiar
dynamics of mode rejection can be properly understood and dif-
ferentiated from mode attraction. We provide systematic evidence
of mode rejection in a variety of home-made multicore fibres and
commercial multimode fibres. Our experimental outcomes high-
light the robustness of mode rejection against standard fabrication
imperfections and external perturbations, as well as the ability to
control this process via the relative state of polarisation among the
FS and the BCB.

The second class of multimode systems is characterised by
effective mode attraction towards the BCB mode, and is described
by Eq. (2). Isotropic single-mode fibres exhibiting polarisation
mode attraction represent the lowest-dimensional example (N = 2)
belonging to this class. Although polarisation mode attraction has
been predicted and demonstrated almost two decades ago,
our theoretical analysis generalises the idea of mode attraction
to systems of arbitrary dimension N. The scope of this general-
isation is two-fold. Firstly, it allows a direct comparison between

Eqs. (1) and (2), and therefore between the fundamental notions of
rejection and attraction, in systems of arbitrary dimension N. Sec-
ond, it sheds light on the universality of these processes, which
goes beyond bidimensional systems. Although currently it is yet
unknown the existence of multimode systems where Eq. (2) with
N > 2 applies, however these may be found in the future, either in
optical fibres or different physical systems.

We note that the ideas of mode attraction and rejection are
intrinsically related to an input BCB that is coupled to one singlemode.
However, an even more rich scenario emerges when the input BCB is
coupled to a combination of modes, which brings forward the more
general idea of modal control. This may inspire a plethora of new
applications, including all-optical switching for space-division-multi-
plexing, or tuneable coherent combination for high-power lasers, of
which the experimental outcomes illustrated in Figs. 3 and4 are indeed
a basic example in the case of a dual-core fibre.

Our theoretical analysis may be adapted to the case where the
BCB (FS) is generated as a back-reflection of the FS (BCB) through a set
of mirrors31 or a cavity. This could lead to new understanding and
concepts in multimode optical parametric oscillators and lasers, and
related applications.

In conclusion, by predicting the existence ofmode attraction and
rejection in multimode waveguides of arbitrary dimension N, and by
providing experimental evidence of the latter, this work sets the basis
for a novel understanding of the complex dynamics in nonlinear
multimode waveguides and suggests new scenarios and applications
that can be explored by means of the theoretical, numerical and
experimental tools introduced in this paper. The schematic in the
Supplementary information note 5 reports a conceptual map of the
above-mentioned outcomes.

It is worth noting that the ideas and theoretical results intro-
duced in this paper encompass but are not limited to optical wave-
guides. The fundamental notions of attraction and rejection may be
used to investigate any nonlinear system described by formally
similar sets of equations, which includes classical wave thermalisa-
tion and condensation phenomena40–42 or non-optical systems like
hydrodynamics43,44 and matter-wave Bose-Einstein condensates45.
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Fig. 8 | Preliminary experiments of all-optical mode control. Differently from
Figs. 3–7, where the input BCB is coupled to one single mode leading to mode
rejection, now the input BCB is coupled to a combination of modes (see relative
power of input FS and BCB on the top of a and b). The bottom images show the far-
field intensities of the output FS when the BCB power is either 0W or 6.6 kW. The
input FS is almost identical in (a and b), and consequently the corresponding
output FS is almost identical in the two cases when BCB is turned off (see the far-

fieldwith BCB =0W in a andb). On the contrary, the input BCB is different in (a and
b). We see that different mode distributions of the input BCB give rise to different
mode distributions of the output FS (see the far-fieldwith BCB = 6.6 KW in a and b).
These results seem to suggest that, byproperly setting the input BCB, the output FS
could be shaped on demand in time and space. Error bars of ±3% are added to the
measured relative powers, which represents the estimateduncertainty of ourmode
decomposition algorithm.
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Methods
Theoretical framework and numerical simulations
The following theoretical analysis applies to multimode and multi-
core fibres that, as previously mentioned, represent the waveguides
of choice in our experiments. Nevertheless, this analysis could be
readily adapted to different kind of Kerr-nonlinear waveguides by
taking into account the related specific nonlinear cubic response.
Here we consider two beams centred at the same carrier wavelength
that are counter-propagating in a multimode optical fibre and
coupled to a combination of N guided spatial modes. We focus on a
polarisation-maintaining (PM) step-index geometry as it represents
the ideal scenario to investigate the complex multimode dynamics,
without the burden induced by random polarisation variations.

We follow a standard procedure starting from the Maxwell
equations and then we ignore the fast-oscillating terms that average
out to 034,46,47. We also ignore Raman scattering, which indeed turns
out to be negligible for the power levels used in our experiments. We
finally derive the following set of coupled Schrödinger equations for
the forward and backward modal amplitudes:

∂zf n + v
�1
n ∂t f n = � iγnn f n

�� ��2f n + if n X
N

m= 1

γnm κ bm

�� ��2 + 2 f m
�� ��2� �

+ iκb*
n

XN
m= 1

m≠n

γnmbmf m

�∂zbn + v
�1
n ∂tbn = � iγnn bn

�� ��2bn + ibn

XN
m= 1

γnm κ f m
�� ��2 + 2 bm

�� ��2� �

+ iκf *n
XN
m= 1

m≠n

γnmbmf m

ð1Þ

Where: κ=2 for linearly co-polarised counter-propagating beams,
whereas κ=2/3 when these are orthogonally polarised; fn(z,t) and
bn(z,t) are respectively the amplitude of the forward and backward
mode-n; vn is the related group velocity; γnm are the nonlinear Kerr
coefficients computed from the intramodal and intermodal effective
areas48 (see Supplementary information note 3 for details on the
parameters). The latter require the calculation of the spatial mode
profiles, which are computed with a finite-element-method software
(Comsol Multiphysics 5.6) and take into account the actual refractive
index profile of the fibres under test as measured by means of an
Optical Fiber Analyser (Rayphotonics IFA-100). While the first and
second term on the right-hand-side of Eq. (1) describe respectively self
and cross-phase modulation, the last term represents the intermodal
power exchange among forward and backward modes. In order to
simplify our analysis, the group velocity dispersion (GVD) and the
higher-order dispersion terms are not included in Eq. (1)34,49. Indeed,
the largest GVD coefficient at the wavelength of interest (λ = 1040nm)
is β2max ∼25 ps2/km, whereas the pulses used in our experiments are
t0 = 0.5 ns wide. This corresponds to a minimum dispersion length t02/
β2max of several km, therefore order of magnitudes longer than the
fibres under test. Similarly, propagation losses arenegligible due to the
short length of the fibres in use.

Note that in the counter-propagating setup the input forward and
backward fields are injected respectively at z =0 and z = L. Therefore,
the boundary conditions for Eq. (1) that fix the initial state of the for-
ward and backward modes are fn(z =0,t) and bn(z = L,t), respectively.
A further boundary condition defines the fields at t =0 inside the fiber
(0 < z < L). We assume the fibre is empty, that is to say, fn(z,t =0)
=bn(z,t =0) = 0.

If one considers now two counter-propagating beams in an iso-
tropic single-mode fibre, their spatio-temporal dynamics is described

by the following set of equations49 with N = 2 and κ=2:

∂zf n + v
�1
n ∂t f n = � iγnn f n

�� ��2f n + if n X
N

m= 1

γnm κ bm

�� ��2 + 2 f m
�� ��2� �

+ iκbn

XN
m= 1

m≠n

γnmb
*
mf m

�∂zbn + v
�1
n ∂tbn = � iγnn bn

�� ��2bn + ibn

XN
m= 1

γnm κ f m
�� ��2 + 2 bm

�� ��2� �

+ iκf n
XN
m= 1

m≠n

γnmbmf
*
m

ð2Þ

Where f1 and f2 (b1 and b2) indicate themodal amplitude of the forward
(backward) right and left-circular polarisation modes, respectively.
However, as anticipated in the section Results, in this work we extend
the study of Eq. (2) to the most general case of arbitrary dimen-
sion N > 2.

The difference between the intermodal power exchange terms in
Eq. (1) and Eq. (2) is ultimately responsible for drastically different
dynamics, which results in mode rejection in the case of Eq. (1),
whereas attraction in Eq. (2).

Equations (1) and (2) have been solved via a standard finite-
differencemethod49. The validity and the robustness of our numerical
algorithm have been tested both via comparison with a different
integration method (shooting method) as well as direct comparison
with analytical (see Supplementary information note 2) and experi-
mental (see Figs. 3–5) results.

Similarly to what has been reported in previous studies of polar-
isation attraction in single-mode fibres33, our numerical simulations
show that when the input mode amplitudes are steady (fn(0,t) ≡ fn(0),
bn(L,t) ≡ bn(L)), then after a transient time the fields relax towards a
stationary state fn(z) ≡ fn(z,t) and bn(z) ≡ bn(z,t) at any point inside the
fibre (see Supplementary Figs. 2–3). Note that in the experiments,
rather than steady input fields, ns pulses are used to enhance the peak
power and hence the system nonlinearity. However, this does not
change the rejection and attraction dynamics under investigation, as
far as one replaces the fibre length with the actual interaction length
Lin = 2 · t0 · c (c=speed of light in the fibre) among the forward and
backward pulses, and once the modal amplitudes are replaced with
their own average value over the pulse duration.

We note that if FS and BCB are centred at different carrier
wavelengths, say λF and λB respectively, then the intermodal
power exchange interactions (last terms on the right-hand-side of
Eqs. (1) and (2)) are subject to a nonlinear phase mismatch
Δβnm = βn(λF) − βn(λB) + βm(λB) − βm(λF), where βn(λ) is the propaga-
tion constant of the mode-n at wavelength λ. The overall dynamics
discussed in our manuscript remain unchanged whenever the
interaction length Lin is much shorter than the corresponding beat
length 2π/Δβnm. By expanding in Taylor series the phase-mismatch
Δβnm, we find after some algebra that the condition Lin ≪ 2π/Δβnm
can be recast as follows: Δλ ≪ λ0

2/ (c Lin Δβ1,nm), where Δλ = λF − λB,
λ0 = (λF + λB)/2 is the central wavelength and Δβ1,nm is the differ-
ential inverse group velocity between mode-n and mode-m. In the
case of the fibres under test, whose parameters are reported in
Supplementary information note 3, we find Δλ ≪ 25 nm, therefore
the systemdynamics would be unaffected if FS and BCB are detuned
a few nanometres apart.

Theory of mode rejection
As previously mentioned, after a transient time the mode amplitudes
typically achieve stationary states fn(z) ≡ fn(z,t) and bn(z) ≡ bn(z,t).
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These are used in the subsequent analysis. Along with the correlation
coefficient DR(L) =∑ fn(L)bn(L)/Q introduced in the section Results, it
is useful to introduce the coefficient DR

(in) =∑ fn(0)bn(L)/Q. Both |DR|
and |DR

(in)| lies in the range 0 to 1. DR(L) depends on the output
amplitudes fn(L) and is therefore unknown. On the other hand, DR

(in)

represents the correlation among the input forward and input
backward mode amplitudes and is therefore fixed by the boundary
conditions. The cornerstone of our theoretical analysis consists in
the derivation of a relation between DR(L) and DR

(in). When the Kerr
coefficients γnn = γ are the same and γnm = (1/2)γ, Eq. (1) turn out to be
integrable. Under this condition, starting from Eq. (1) the following
relation is found (details of the mathematics are provided in the
Supplementary information note 1):

sin2 Thð Þ=
h2 � jD inð Þ

R j
2
� v2

� �
� h2

h2�v2
� �

h2 �w2
� � ð3Þ

Where v =ΔP/(2Q);w=Ptot/(2Q); h2 = v2 + |DR(L) | 2, being Ptot = Pf + Pb the
total power, ΔP = Pb−Pf the differential backward-forward power;
T = (Tf Tb)1/2. The quantity Tf = LγPf indicates the total number of
nonlinear lengths for the FS. Similarly, Tb = LγPb represents the total
number of nonlinear lengths for the BCB. The geometric average
T = (Tf Tb)1/2 is therefore a key parameter, as it can be interpreted as an
indicator of the overall system nonlinearity.

Equation (3) can be solved graphically, which provides a clear
understanding of the most suitable configurations under which
effective mode rejection can be achieved. When the system non-
linearity is substantial and the forward andbackwardpower are equally
distributed (ΔP ~ 0), we find that |DR(L)| ~ asin( |DR

(in)|) /T (see Supple-
mentary information note 1) and then ultimately DR(L) ~ 0 in a strongly
nonlinear regime (T≫ 1). As anticipated in the section Results, this
implies effective rejection of mode-m when the BCB is coupled to
that mode.

Theory of mode attraction
Starting from Eq. (2) we can elaborate a theory that explains the mode
attraction process, which follows similar steps to those previously
illustrated in the case of mode rejection. We first introduce the cor-
relation coefficients DA(L) =∑ fn(L)bn(L)*/Q and DA

(in) =∑ fn(0)bn(L)*/Q,
whichare the counterpartof the coefficientsDR(L) andDR

(in) used in the
framework of mode rejection. Finally, from Eq. (2) we derive the fol-
lowing relation between DA(L) and DA

(in) (details of the mathematics in
the Supplementary information note 1):

sin2 Thð Þ=
h02 + jD

in
� �
A j

2

�w2

0
@

1
A � h02

h02�v2
� �

h02 �w2
� � ð4Þ

Where h’2 =w2 – |DA(L) | 2. Equation (4) can be solved graphically.
When the system nonlinearity is substantial and the forward
and backward power are equally distributed (ΔP ~ 0), then |DA(L)| ~ [1 –
acos(|DA

(in)|)2/T2]1/2, therefore |DA | ~ 1 in a strong nonlinear regime
(T≫ 1). As anticipated in the section Results, this implies effective
attraction of the output FS towards the mode of the input BCB.

Multicore fibre fabrication
The DCF and TCF used in this work have a core size of ~5 µm, a
numerical aperture of ~0.15 and a core-to-core distance of ~9.5 µm
(see Supplementary information note 3). The core disposition in
both the DCF and TCF confers a substantial birefringence (>+10 dB
polarisation extinction ratio), which allow for effective polarisation
maintenance. Both these fibres were fabricated via a stack and draw

process in the cleanrooms of the University of Southampton.
Initially a series of doped and pure fused silica rods were drawn to
precise dimensions matching a carefully designed stack plan. The
pure fused silica rods were drawn fromHeraeus F300 glass whereas
the doped glass rods came from a commercial preform fabricated
externally (Prysmian) to an in-house generated design. All the rods
used were drawn on our fibre drawing tower with extreme care
taken to ensure their outside diameter (OD) was precisely con-
trolled and its variation minimised. The rods were then stack inside
an F300 tube such that the interstitial gaps between them were
minimised to reduce the likelihood of any structural deformation
during the fibre drawing process when these gaps are removed via
the application of a vacuum. The DCF and TCF were drawn from
different stacks, due to the differing fibre geometries. To ensure the
cleanliness of both stacks they were built in a class 100 cleanroom
area, with care taken in the handling of the rods to minimise the
possibility of contamination, and then carefully prepared on a glass
working lathe prior to fibre drawing. This was done to ensure the
final fibre is free from any internal or external contaminants (that
could disrupt the fibres’ structure or optical properties) and reduce
the likelihood of breakage during fibre drawing, characterisation,
and use. The fibres were coated with a standard UV-cured high
refractive index polymer coating (Desolite DSM-314) both to pro-
tect the fibre and to help strip any light that may inadvertently be
launched into the fibres jacket glass during its use.

Experiments
We conducted experiments by launching ~500ps long pulses at a
wavelength of 1040nm from an in-house all-fiberized ytterbium mas-
ter oscillator power amplifier with linearly-polarised output at the two
ends of the fibres under test. The coupled power and polarisation of
the FS and the BCB are tuned with a suitable combination of polar-
isation beam splitters and wave plates. A water-cooling spatial light
modulator (Holoeye PLUTO-2-NIR-149) is employed to control the
coupling of the BCB, whereas in the case of the FS a spatial phase-plate
is used to excite an arbitrary combination of modes. The coupling
conditions are controlled by optimising the phase pattern on the SLM
and by adjusting the position of phase plate using a precision three-
axis stage.

The output from each end of the fibres under test is sampled by a
wedge and the near- and far-field beam profiles are imaged on a CCD
camera. The near-and far-field profiles are then used to estimate the
mode content of the FS and BCB via mode decomposition50. By
numerically calculating the mode weight and relative phase in an
iterative process (Stochastic Parallel Gradient Descent algorithm is
successfully applied51), a reconstructed spatial distribution is obtained
and is compared with the measured spatial profile to iteratively opti-
mise the mode decomposition results. The reconstructed spatial dis-
tribution has a correlation factor of ~99%with respect to themeasured
profile for different mode combinations and different fibres (see
Supplementary information note 4 and related Supplementary
movies 1–9 for details).

Data availability
The data are available at ref. 52.
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