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Computing observables in conformal field theories (CFTs) in generic backgrounds and
states represents an outstanding problem. In this thesis we develop a formalism to
efficiently impose the kinematic constraints on the correlators of such theories based on
the geometric construction of the ambient space by Fefferman and Graham. The latter
is a Ricci-flat spacetime that can be thought of as a generalisation of the embedding
space used for CFTs in vacuum and on conformally flat spaces.

We test this formalism in the case of Euclidean thermal CFTs. We find perfect agreement
with results from the thermal operator product expansion. We further produce novel
holographic results for thermal scalar 2-point functions, which match the predictions of
the ambient space formalism and provide new insight into both the analytic structure
of these correlators and the role played by the double-twist spectrum. We then apply
our formalism to CFTs on squashed spheres, generating new expressions for their scalar
2-point correlators.

Finally, we establish connections of the ambient space with proposed approaches to flat
holography and with the physics at spatial infinity in Beig-Schmidt gauge. By studying
Einstein’s equations at spatial infinity we are able to prove the antipodal matching of
the asymptotic BMS charges, a crucial assumption at the basis of a well-defined gravi-
tational scattering problem in General Relativity and celestial holography.
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Chapter 1

Introduction

Gravity is a long-range force that is experimentally well-described by General Relativity
(GR).1 The theories that capture to exceptional accuracies the remaining forces of nature
and matter as we know it at low energies are quantum field theories (QFTs).

It has been a self-evident fact since Newton and his apple tree that matter couples
to the gravitational field. As an unavoidable consequence, also the gravitational field
must exhibit a quantum nature – if the dynamics of matter is quantum, the dynamics of
gravity must be quantum too. Although not apparent at any of the energy scales so far
probed experimentally, we expect this quantum nature to become manifest at sufficiently
high energies. This line of reasoning calls for a quantum UV completion of gravity, which
is now to be meant as a low-energy effective field theory (EFT), regardless of whether
such EFT is GR or a low-energy modified gravity theory.

Aside from its own theoretical relevance, there is already compelling evidence in our
universe that urges us to find a consistent theory of quantum gravity. Such evidence in
particular includes black holes. Data supporting their existence in our universe has been
collected using several experimental approaches, recently culminating in the direct proves
from gravitational waves detections [2] and interferometric images in the infrared [3].
According to GR, black holes typically involve a curvature singularity inside their horizon,
a hint that the classical description of such gravitational systems breaks down there.
Another prominent physical setting where classical gravity fails is realised by the early
phases of the universe, whose full understanding is conventionally thought of as attainable
only through a quantum gravity description.

The most promising and best developed candidate for a theory of quantum gravity is
string theory, a framework which has already provided countless insights on the quantum
nature of black holes (see e.g. [4, 5]) and which is able to produce predictions on the
particle spectrum and cosmological observables we see in the sky [6]. Unpleasantly, most

1There is well-known experimental data [1] at the galactic scales that lends itself to interpretations
in terms of modified theories of gravity. Reassuringly, whether one’s favourite classical theory of gravity
is GR or a modified gravity theory will not play any role in the following.
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of the control we have of string theory is at a perturbative level; an important exception
is represented by the Anti de Sitter / conformal field theory (AdS/CFT) duality.

This duality is a realisation of the so-called holographic principle [7, 8], which states
that a theory of quantum gravity can be equivalently described as a non-gravitational
quantum theory in one dimension less. Historically this assertion finds its origin in the
study of black hole physics, in particular in the form of the black hole entropy in semi-
classical gravity [9]. The so-called Bekenstein-Hawking entropy of a black hole takes the
form

SBH =
A

4G
, (1.1)

where G is the gravitational coupling constant and A is the area of the black hole event
horizon. It is in this sense that the information stored in a black hole in d+1 dimensions
is effectively encoded in an observable related to a d-dimensional hypersurface.

In particular, the AdS/CFT correspondence states that any consistent quantum grav-
ity theory on a (d+ 1)–dimensional space with negative cosmological constant (possibly
times a compact space) is equivalent to a CFT on a d-dimensional manifold which can
be thought of as living at the boundary of the former (d+1)–dimensional space [10–12].
In Section 1.3 we explain this statement in details, and it suffices for now to remark that
by equivalence we mean that the physical observables in one theory can be computed
using the dual theory. Moreover, in d = 4 AdS/CFT has a well-motivated string theory
realisation.

As we review in Section 1.1, CFTs constitute a special family of quantum field theories
that enjoy a large set of symmetry, conformal symmetry. They are ubiquitous in nature
since they appear as fixed points under Renormalisation Group flow, and at second-order
phase transitions. However through the eyes of AdS/CFT, CFTs and closely related
theories also describe quantum gravity. The classification of consistent conformal field
theories and the development of techniques to characterise their observables thus become
even more important problems to address – any result on these issues directly translates
into a statement about quantum gravity and its observables.

Recently some progress has been made towards mapping the space of consistent
CFTs using bootstrap techniques [13, 14] (see [15] for a complete review). Conformal
symmetry highly constrains CFT observables [16, 17]. In particular both 2-point and 3-
point functions of primary operators are fixed by conformal symmetry up to constants,
while higher-point functions are fixed up to functions of cross-ratios. To this regard, an
important tool is the embedding space formalism [18–21], which can be used to efficiently
implement the kinematical constraints on CFT n–point functions of arbitrary spin. It
takes advantage of the fact that the conformal group SO(1, d+1) in d dimensions can be
realised as the Lorentz group in (d + 2) dimensions. Imposing conformal invariance on
CFT observables on any d-dimensional conformally flat background2 simply reduces to

2By conformally flat space we mean a manifold whose metric is related to that of flat space by a
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demanding Lorentz invariance on the embedding space R1,d+1, as we review in Section 1.2.
This entails that finding conformal blocks and conformally-invariant tensor structures
reduces to listing tensors on (d+ 2)–dimensional Minkowski spacetime.

However, most known techniques address CFTs in the vacuum state and on confor-
mally flat backgrounds, and much fewer results are known for more general setups such
as CFTs in non-trivial states and on generic source backgrounds. One of the most rel-
evant such examples are thermal CFTs; aside from being of high interest as condensed
matter systems, via AdS/CFT they represent full quantum gravity black hole solutions.

One of the major achievements in this thesis is the development of a new framework
that generalises the embedding space to CFTs on generic backgrounds and states. More
specifically, the setup of the problem we addressed is the following. Given a CFT on
a (generically non-conformally flat) metric background g(0) and in a state defined by
the VEVs {⟨Oi⟩}, we would like to encode such information in a (d + 2)–dimensional
spacetime, which is meant to be used to conveniently impose the kinematical constraints
on the CFT observables.

For a fixed d–dimensional metric g(0), there is a canonical way to construct a (d+2)–
dimensional spacetime with similar properties to the embedding space. Such construction
is known as the ambient space [22, 23]. It has an important role in the mathematical
literature in the context of conformal geometry, and we believe its potential in high-
energy physics is far from being fully explored.

In Chapter 2 we give a detailed presentation of the ambient space geometry, review-
ing its properties and how it canonically incorporates Weyl covariance. By construction,
the ambient space is Ricci-flat and exhibits a nullcone structure analogous to the one of
Minkowski space. The d-dimensional manifold with metric g(0) is recovered as a section
of the ambient nullcone. Weyl transformations are realised as a special class of ambi-
ent diffeomorphisms that preserve the nullcone structure. In Section 2.2 we obtain a
coordinate transformation illustrating how the ambient space can be related to the em-
bedding space for conformally flat g(0) (and vanishing VEVs), and how this provides us
with important guiding principles to extend the embedding space formalism to CFTs in
non-trivial backgrounds.

In Chapter 3 we present new material detailing how to find and classify ambient
isometries. Our results show that similarly to the embedding space, the residual conformal
Killing vectors on g(0) are lifted to isometries on the ambient space.3

There is however another piece of CFT data that must be encoded in the ambient
space in some way, that is the CFT state {⟨Oi⟩}. In Chapter 4 we propose a prescription
to attain this for CFTs where the multi-stress tensor operators acquire a VEV, as first
presented in [24]. Such prescription is inspired by the AdS/CFT dictionary, although
it does not rely on it. More specifically, the ambient space geometry can be canonically

Weyl transformation.
3For non-conformally flat g(0), conformal symmetries only form a subgroup of SO(1, d+ 1).

14



sliced in terms of (d+1)–dimensional hyperbolic spaces. According to our proposal, given
a background g(0) and a state {⟨Oi⟩}, the associated ambient space has the hyperbolic
spaces prescribed by AdS/CFT for that background and state as slices. This requirement
fully fixes the ambient space geometry in terms of g(0) and {⟨Oi⟩}.

To efficiently implement the kinematical constraints imposed by Weyl invariance and
by the residual conformal symmetries of a CFT in a given background and state in a
similar fashion as the embedding space, we must find appropriate geometrical quantities
on the ambient space. We analyse them in Section 4.1, while in Section 4.2 we illustrate
how to assemble them into suitable building blocks. The latter ultimately consist of
the geodesic distances between insertions as well as of a class of multi-local curvature
invariants on the prescribed ambient space. In Sections 4.3 and 4.4 we write the most
general form that scalar n-point functions take in terms of such ambient building blocks,
while in Section 4.5 we discuss the generalisation to correlators of arbitrary spin and to
different CFT states.

As it will become apparent in the following, the ambient space formalism produces
strong predictions on the form of CFT correlators. In Chapter 5 we apply it to ther-
mal CFTs, which as it was remarked, describe black holes in quantum gravity through
AdS/CFT. In Section 5.4 we compare our results with the thermal operator product ex-
pansion (OPE) [25] finding perfect agreement. In Section 5.5 we produce novel results on
thermal holographic scalar 2-point functions (both perturbative and non-perturbative in
the temperature), in particular shedding light on the analytic structure of such correla-
tors. Along the way we illustrate a new regime where the thermal holographic correlator
can be computed exactly to arbitrarily high order in momentum space, and we show
how double-twist contributions to scalar 2-point functions arise as a consequence of the
periodic time direction. We then successfully test the ambient space predictions against
these holographic results.

In Chapter 6 we study CFTs on squashed spheres and their correlators using the
ambient space formalism. Squashed spheres are an interesting class of non-conformally
flat backgrounds which display very limited isometries. The squashing can be thought
of as a parameter informing us about the breaking of conformal invariance – in the
limit of zero squashing, we recover a round sphere and hence full background conformal
symmetry. Although CFTs on squashed spheres have been studied in the literature (see
in particular [26–33]), the problem of finding the general solutions to the kinematic
constraints on correlators has never been tackled due to the peculiarities of these theories
as compared with CFTs on conformally flat backgrounds. We initiate such program by
first discussing the general form of 1-point functions on squashed spheres. This allows us
to set up the ambient formalism for this class of theories in Section 6.3, and in Section
6.4 geodesics on such ambient spaces are solved perturbatively at small squashing. In
Section 6.5 we construct the relevant ambient building blocks and we give expressions
for scalar 2-point functions of these theories. Interestingly, we find a mismatch with
a previous Ansatz made for scalar 2-point functions on squashed spheres in [27]. We
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conclude in Section 6.6 with open questions regarding CFTs on squashed spheres and
how the ambient formalism can be fruitfully applied to these setups.

Aside from being a useful tool to study correlators in non-trivial backgrounds and
states, the ambient space has also an intriguing holographic flavour in that it encodes
observables of a d-dimensional non-gravitating CFT into geometric quantities on a (d+2)-
dimensional Ricci-flat spacetime. Supposedly being a codimension-2 kind of holography,
this appears quite different from AdS/CFT. However, one of the currently best motivated
bottom-up approaches to holography in spacetimes with vanishing cosmological constant
is codimension-2 and is known as celestial holography [34–38].

As we review in Section 7.2, in celestial holography scattering processes in four di-
mensional Minkowski are proposed to be dual to CFT correlators on a two-dimensional
section of null infinity, the so-called celestial sphere. In a scattering process on Minkowski
space, data on the celestial sphere at past null infinity evolves along the nullcone up to
the celestial sphere at future null infinity. Thus in this picture the holographic data at
infinity is strictly connected to the physics on the nullcone, which is an essential fea-
ture of the ambient geometry. These observations motivate our endeavours in Sections
7.3 and 7.4 to relate the ambient construction to celestial holography. As a bonus, the
ambient space is Ricci-flat as opposed to Riemann-flat, meaning that it may contain im-
portant information about how to generalise the celestial framework to asymptotically
flat spacetimes other than four-dimensional Minkowski.

More specifically, in Sections 7.3 and 7.4 we discuss how the asymptotic symmetries of
spacetimes with a vanishing cosmological constant are related to the ambient isometries
presented in Chapter 3, and how the asymptotic gravitational data maps to the degrees
of freedom in the ambient geometry. To this aim we also present the Beig-Schmidt gauge
[39], an adapted set of coordinates to describe gravitational physics in a neighbourhood
of past, spatial and future infinities. Interestingly, it can be thought of as a generalisation
of the ambient geometry where the lightcone structure is generally broken. Finally, we
comment at length on the relations of celestial holography and the ambient space with
an alternative approach to flat holography first presented in [40,41]. This approach uses
a non-compact dimensional reduction based on the hyperbolic slicing of Minkowski space
and it has recently regained a certain popularity (see among the others [42–45]).

A crucial step in the construction of celestial holography consists in the assumption of
the antipodal matching of the asymptotic charges between past infinity and future infinity
across spatial infinity. Although this is a trivial assumption in Minkowski spacetime, it
becomes highly non-trivial when considering spacetimes which are not perturbatively
close to Minkowski space, where spatial infinity is typically a non-differentiable locus, as
we discuss in Section 8.1. This represents a particularly interesting problem as many of
the efforts in flat holography are towards the generalisation of the existing frameworks
based on Minkowski spacetime (where they often reduce to matching symmetries) to
excited flat bulks, where the dynamics of the dual QFT plays an essential role [46–49].

In Chapter 8 we prove these antipodal matching conditions for the asymptotic charges
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in a large class of spacetimes with vanishing cosmological constant, as first presented in
[50]. We do so by studying the dynamics of the gravitational field near spatial infinity. We
prescribe data at past null infinity, and evolve it in a vicinity of spatial infinity up to future
infinity. Note that it is the choice of the prescribed data at past null infinity that specifies
to which class of spacetimes we are restricting. Since spatial infinity is in general a singular
locus, the key feature of our approach is to work in a neighbourhood of spatial infinity,
instead of taking the limit of all the quantities to spatial infinity. In practice, we fix data
at past null infinity using the Bondi gauge (reviewed in Section 7.1), and map these
degrees of freedom to the free functions in the Beig-Schmidt gauge. Such fields in Beig-
Schmidt have a defined parity under the antipodal map as a consequence of Einstein’s
equations. This entails specific parity properties of the fields in Bondi gauge, from which
the antipodal matching of the asymptotic charges follows. This is an important step
towards the definition of a gravitational scattering problem in generic spacetimes with a
vanishing cosmological constant, as well as a milestone towards an extension of celestial
holography beyond Minkowski spacetime.

Conventions. Unless stated otherwise, in this thesis we denote (d + 2)-dimensional
indices by capital Latin letters, (d + 1)-dimensional indices by lowercase Greek letters,
and d-dimensional indices by lowercase Latin letters. In most of Chapters 7 and 8 we
however use a different convention: four-dimensional indices are labelled by lowercase
Greek letters, three-dimensional indices by lowercase Latin letters, and two-dimensional
indices by capital Latin letters.

1.1 Conformal field theories
Euclidean CFTs in d > 2 dimensions are quantum field theories whose symmetries realise
the conformal group SO(1, d + 1) when defined on a conformally flat background g(0)
and in the vacuum state [16, 17, 51–54]. Denoting by xi the coordinates on g(0), the
infinitesimal generators ξ of conformal transformations must satisfy the conformal Killing
equations,

∇iξj +∇jξi = 2ψ g(0)ij, (1.2)

where ψ(x) = 1
d
∇lξ

l is the conformal factor. These equations mean that we are allowing
the metric components to change at most by a rescaling under any such diffeomorphism,

Lξg(0)ij = 2ψ g(0)ij , (1.3)

where L is the Lie derivative operator. If we specialise to flat space, g(0)ij = δij, the most
general infinitesimal transformation takes the form

ξ =
[
ai + ωijx

j + λxi + bix2 − 2bkxkx
i
]
∂i. (1.4)
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Here aj parametrises the d translations Pj, while the antisymmetric ωij parametrises
the rotations Mij. These are proper Killing vectors and do not generate a rescaling of
the metric components. The transformations parametrised by λ are dilations D, while
the d parameters bj parametrise special conformal transformations Kj. They produce a
rescaling of the metric components with conformal factor

ψ(x) = λ− 2b · x . (1.5)

CFT operators must fall into representations of the conformal group and it is con-
ventional to organise the operator spectrum in terms of lowest weight representations.
Recalling the anti-commutators

[D,Pj] = Pj, [D,Kj] = −Kj, (1.6)

we define primary operators O as the lowest weight states, satisfying at the origin xj = 0

[D,O(0)] = ∆O(0) , [Kj, O(0)] = 0 , (1.7)

and transforming in the appropriate SO(d) representation according to their spin. Here
∆ is the scaling dimension of the primary O. Descendant operators of a given primary are
constructed by acting with the translation operator Pj, and they have scaling dimensions
greater than ∆.

If a quantum theory is invariant under a set of transformations, its observables must
satisfy corresponding Ward Identities. In CFTs, the conformal Ward Identities for an
n-point function can be written as

n∑
i=1

L(i)
ξ ⟨O1(x1) . . . On(xn)⟩ = 0, (1.8)

for each of the d(d+1)
2

generators ξ of the conformal group. The symbol L(i) denotes the
Lie derivative acting on the i-th insertion only. Unless Weyl anomalies are present, under
a Weyl transformation of the metric g(0) → Ω2(x)g(0) CFT correlators also satisfy

⟨O1(x1) . . . On(xn)⟩Ω2g(0)
= Ω(x1)

−∆1 . . .Ω(xn)
−∆n ⟨O1(x1) . . . On(xn)⟩g(0) , (1.9)

regardless of the spin of the operators.
Solving the differential equations provided by these Ward Identities strongly con-

strains the form of low-point functions. 1-point functions are all vanishing, while 2- and 3-
point functions are fixed up to an overall constant. For instance, indicating |xi−xj|= xij,
on flat space scalar 2-point functions take the form

⟨O(x1)O(x2)⟩ =
C∆

(x12)2∆
, (1.10)
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non-vanishing only for ∆1 = ∆2 = ∆, while for scalar 3-point functions

⟨O(x1)O(x2)O3(x3)⟩ =
C123

(x12)v123(x13)v132(x23)v231
, vijk = ∆i +∆j −∆k . (1.11)

Generic scalar n-point functions with n ≥ 4 are instead only fixed up to functions of the
so-called cross-ratios. We can write them as

⟨O1(x1) . . . On(xn)⟩ =
(∏
i<j

(xij)
2αij

)
f (y) , (1.12)

where αij are defined through ∆i = −∑n
j=1 αij, and y denotes the set of cross-ratios

y[pqrs] =
xprxqs
xpqxrs

. (1.13)

The constants C∆, Cijk and the function f(y) are not fixed by the kinematic constraints
and they encode the dynamics of the CFT. In the next section we review how to conve-
niently implement these constraints on correlators using a geometric approach.

A particularly powerful statement in CFT is the operator product expansion (OPE).
Inside a correlator, the product of two operators O1(x1) and O2(x2) evaluated at non-
coincident insertion points x1 ̸= x2 can be decomposed as a sum over the primaries ϕ of
the theory and all their descendants,

O1(x1)O2(x2) =
∑

ϕ∈O×O

h12ϕ(xi, ∂i)ϕ(x2) . (1.14)

This sum can be proven [55] to be convergent, with radius of convergence defined by the
position of the other closest insertion.

1.2 The embedding space
The key idea at the root of the embedding space construction is that conformal trans-
formations on Rd form the group SO(1, d + 1), and hence can be realised as Lorentz
transformations in the embedding space, R1,d+1. The advantage of this perspective is
that conformally-covariant quantities on Rd can be easily represented as Lorentz ten-
sors [18–21,56]. In this section we review how to embed Rd into R1,d+1 and how this can
be used to efficiently constrain CFT correlation functions.

To find an embedding we parameterise R1,d+1 with a set of coordinates XM =(
X0, X i, Xd+1

)
and the Minkowski metric, ds2 = ηMNdX

MdXN . A Lorentz invariant
locus of R1,d+1 is given by X2 = const. This gives a d + 1 dimensional space which we
need to reduce further to d dimensions. This is achieved by restricting to the lightcone,
X2 = 0 and picking a section X+ = F(X i), where X± = X0 ±Xd+1.
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X0

Xd+1

XA

X’A

Figure 1.1: The points XA and X ′A lie on different lightcone sections but on the same
light-ray. Hence they are represented by the same point on the projective slice.

The only sectional choice which gives Rd and preserves conformal transformations
X̃A = ΛABX

B is given by a constant function, X+ = t, with the embedding map

XM = t

(
1 + x2

2
, xi,

1− x2

2

)
, (1.15)

where xi denote coordinates on Rd with the induced metric g(0)ij = t2δij. Here, changing
the choice of constant t can be viewed as a gauge transformation. More precisely, one can
define an equivalence of points in embedding space, based on whether they are connected
by a light-ray,

XA ∼ X ′A ⇐⇒ X ′A = tXA, (1.16)

for some non-vanishing real t (see Figure 1.1). This amounts to describing Rd with
projective coordinates,

xi =
X i

X+
, (1.17)

and one can simply work on this projective slice. This is a particularly useful perspective
that will be adopted in the ambient space construction.

The more general choice of lightcone section X+ = F(X i) = Ω(xi) allows one to
describe manifolds other than Rd. In this case, the embedding map takes the form

XM = Ω(x)

(
1 + x2

2
, xi,

1− x2

2

)
, (1.18)

with a conformally flat induced metric, g(0)ij = Ω(x)2δij. This is the most general class of
d−dimensional spacetimes that can be embedded in the Minkowski lightcone preserving
its structure. Thus, global rescalings of the embedding coordinates (generated by the
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dilation vector XM∂M) end up describing the same projective slice, while local rescalings
induce Weyl transformations on the CFT background.

The embedding space machinery outlined above allows one to write all kinematic
constraints on conformal correlators in a simple and convenient fashion. In particular,
conformal invariance is realised by Lorentz invariance in the embedding space, while
Weyl covariance is realised by the freedom in the choice of the lightcone section, F(X+).
In what follows, we treat correlators on the embedding space as multi-local conformal
densities depending on the insertion points on the lightcone {Xi} and with dimensions
{∆i}, where i = 1 . . . n labels the insertion.

Invariance under Lorentz transformations, generated by JMN = XM∂N − XN∂M ,
result in the following Ward Identities

n∑
i=1

J
(i)
MN ⟨O1(X1) . . . On(Xn)⟩ = 0, (1.19)

where J
(i)
MN acts on Xi. This is simply a rewriting of the conformal Ward Identities

(1.8) in embedding language. Thus, finding the form of correlators on the embedding
space reduces to enumerating the compatible Lorentz tensor structures. For 2- and 3-
point functions of scalar primaries, the only available invariants consist in the pairwise
products of the insertion points,

Xij = −2Xi ·Xj, (1.20)

which are equal to the square distances x2ij = |xi−xj|2 once reduced onto a d-dimensional
section.

For Weyl transformations, correlators of a CFT on a background g(0) transform as
(1.9). In the embedding space, the correlator on the left hand side is simply the embedding
space correlator in a different lightcone section. Thus the transformation (1.9) is realised
by an adjustment to the function F(X i), giving different embedding maps (1.18). For
instance the invariants Xij transform as

Xij → Ω(xi)Ω(xj)Xij (1.21)

and consequently constrain the form of the correlator.
Note that in the above discussion, we had to take into account the whole lightcone and

not just the projective slice so as to make correlators well-defined on every d−dimensional
conformally flat space. Being defined exclusively on the lightcone, correlators in the
embedding space are determined up to contributions ∼ X2. This gauge redundancy will
play an interesting role when discussing the ambient space.

Let us consider some simple examples for illustration. For scalar 2-point functions
with embedding insertions X1 and X2, Lorentz invariance implies that it must be a
function of the invariant X12. Furthermore, Weyl covariance fixes this function up to a
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multiplicative constant, and makes the 2-point function non-vanishing only for identical
operators,

⟨O(X1)O(X2)⟩ =
C∆

(X12)
∆
, (1.22)

where O is an operator of dimension ∆. This expression returns the correct CFT corre-
lator (1.10) once reduced back onto the lightcone section. Following similar arguments
for scalar 3-point functions, Lorentz invariance and Weyl covariance determine

⟨O1O2O3⟩ =
C123

(X12)α123(X13)α132(X23)α231
, αijk =

∆i +∆j −∆k

2
, (1.23)

again matching the form of (1.11). Finally, as we know scalar higher-point functions are
only fixed by conformal symmetry up to functions of the cross-ratios. We can conveniently
express them on the embedding space as

⟨O1(X1) . . . On(Xn)⟩ =
(∏
i<j

(Xij)
αij

)
f (u) , (1.24)

where αij are defined as in (1.12), while now we denote the cross-ratios by

u[pqrs] =
XprXqs

XpqXrs

. (1.25)

Note that the expression (1.24) automatically satisfies the requirement of Weyl-covariance
(1.9) as a consequence of the scaling property (1.21).

Without going into details, we point out that the embedding space formalism is
particularly powerful for dealing with spinning correlators, since elaborate conformal
tensor structures can be written as simple tensors on the embedding space, where useful
differential operators can also be constructed [20,21,57].

Finally we note that the embedding space is a useful tool for treating holographic
duals of CFTs. This is because aside from the lightcone X2 = 0 discussed above, another
Lorentz-invariant locus in the embedding space is Euclidean AdSd+1, given by the upper
half-hyperboloid

X2 = −R2 with X0 > 0, (1.26)
and the Poincaré patch ds2 = R2

r2
[dr2 + δijdx

idxj] via the map

XM =
(
X0, X i, Xd+1

)
= R

(
1 + x2 + r2

2r
,
xi

r
,
1− x2 − r2

2r

)
. (1.27)

A key observation is that the embedding space allows one to represent bulk and boundary
point covariantly in the same language. Denoting by X and P the bulk and boundary
point respectively, the scalar bulk-to-boundary propagator reads

K∆(X,P ) =
C ′

∆

(−2P ·X)∆
. (1.28)
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Note that modulo the normalization, its form matches that of scalar 2-point functions
(1.22).

1.3 Overview of AdS/CFT
In this section we provide an introduction to the key concept of AdS/CFT that will be
used in the following chapters. The AdS/CFT duality [10–12,58,59] can be stated as an
equality between the partition functions of two theories. The first is a gravitating theory
with negative cosmological constant, and the second one is a QFT in one dimension less,

Zgrav
[
ϕ(0)

]
= ZQFT

[
ϕ(0)

]
, (1.29)

where for the gravitational theory ϕ(0) represents the prescribed values of the bulk fields
at the boundary, while for the dual QFT ϕ(0) plays the role of the sources for the dual
operators. Denoting the bulk by M and its boundary by ∂M ,

Zgrav
[
ϕ(0)

]
=

∫
ϕ(0)

Dϕ e−S[ϕ] , (1.30)

ZQFT
[
ϕ(0)

]
=

〈
exp

(
−
∫
∂M

ddxOϕ(0)

)〉
QFT

. (1.31)

Several checks have been performed for the duality (1.29) in the classical bulk limit,
where the gravitational partition function reduces to the bulk onshell action, while the
QFT partition function becomes the generating function of connected correlators,

Sonshell
[
ϕ(0)

]
= −WQFT

[
ϕ(0)

]
. (1.32)

In this thesis we will work in this limit, where gravity in the bulk is classical.
One of the best understood setups realising (1.29) is type IIB string theory on AdS5×

S5 backgrounds, which is conjectured to be dual to a SU(N) N = 4 Super Yang-
Mills gauge theory. For generic coupling and number of colors, (1.29) becomes the only
available fully-non-perturbative definition of string theory on AdS5 × S5 backgrounds.
When the boundary theory is strongly coupled and has a large number of colors, it
reduces to the classical bulk limit (1.32), becoming the equivalence between classical
type IIB supergravity dynamics on an ALAdS5 space and strongly-coupled N = 4 Super
Yang-Mills at large N .

This realisation of the AdS/CFT conjecture has passed several tests. Historically, the
first evidence in support of this duality came from the matching of quantities that are in-
dependent of the coupling of the theories since they are protected by non-renormalisation
theorems due to supersymmetry. These include the matching of correlators involving BPS
operators [59–61] and the matching of conformal anomalies [62–64].
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In the following subsections we discuss how to extract boundary observables using
the bulk theory in the classical regime (1.32). This framework goes under the name of
holographic renormalisation [62, 63,65–67].

1.3.1 ALAdS asymptotics

The first step to extract boundary observables from the bulk dynamics consists in study-
ing the relation between bulk and boundary geometry [22, 65–67]. We formally define
an asymptotically locally AdS (ALAdS) spacetime as the interior of a manifold with
boundary, whose metric can be written in the form

g+µν =
L2

F (xµ)2
ḡ+µν , (1.33)

where ḡ+ is regular in the limit to the boundary and F (xµ) has a simple zero there. We
further demand it to be a solution to Einstein’s equations with a negative cosmological
constant,

R+
µν +

d

L2
g+µν = 0. (1.34)

Given an ALAdS bulk, one can ask how to construct a boundary metric. From (1.33),
the easiest way to construct a boundary metric is to multiply the bulk metric by a
function r which has a simple zero at the boundary, so as to compensate the divergence
in the prefactor. The resulting metric

g(0) = r2g+µν
∣∣
r=0

(1.35)

is well-defined at the boundary. Observe that r = F (xµ) is an acceptable choice, however
one can equivalently pick any function which is a regular local rescaling of F (xµ), e.g.
r = eΩ(x)F (xµ). Thus with the prescription (1.35) we are not constructing a single
boundary metric. Instead, we are providing the boundary with a conformal class of
metrics

[
g(0)
]
, defined as

ĝ ∈
[
g(0)
]

iff ĝ = e2Ω(x)g(0), (1.36)

for some non-singular Ω(x), all related by a Weyl transformation. This procedure is the
conformal compactification of ALAdS manifolds.

Conversely, one could ask to what extent a fixed conformal class at the boundary r = 0
determines the bulk geometry. In [22] it was shown that after picking a representative
g(0) from the conformal class

[
g(0)
]
, one can think of it as an initial condition which can

be evolved near the boundary using the bulk Einstein’s equations (1.34). One can choose
suitable coordinates xµ = (r, xi) near the boundary of the bulk (normally referred to as
the Fefferman-Graham gauge) in which the metric takes the form

ds2 = g+µνdx
µdxν =

L2

r2
(
dr2 + gij(x, r)dx

idxj
)
, (1.37)
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with boundary at r → 0. The metric gij(x, r) induced on a constant-r slice is not fixed a
priori, except for its boundary value gij(x, 0) = g(0)ij(x). One can evolve such boundary
condition using the bulk equations by solving them perturbatively near the boundary.
In full generality, the expansion is of the form

g(x, r) = g(0) + r2g(2) + · · ·+ rd
(
g(d) + h(d) log r

)
+ . . . (1.38)

for even d, while for odd d it reads

g(x, r) = g(0) + r2g(2) + · · ·+ rdg(d) + . . . . (1.39)

The most important feature of this expansion is that fixed a g(0), all the coefficients
of order up to O(rd) are fully determined, except for the trace-free part of g(d). More
precisely, Einstein’s equations fix the trace gij(0)g(d)ij and the divergence ∇ig(d)ij only. For
odd d, g(d)ij is traceless and divergenceless. Holographically the role of g(0) is the metric
background of the CFT and thus the source for the dual stress tensor. In the following
subsection we delve into the holographic interpretation of g(d) and h(d).

Finally, we mention that in this framework it is possible to show that boundary Weyl
transformations correspond to a specific class of bulk diffeomorphisms [68, 69], while
boundary conformal symmetries are mapped to bulk asymptotic isometries [70]. For
instance, this entails that in pure Euclidean AdSd+1 with d ≥ 3 the boundary conformal
transformations SO(1, d + 1) are realised as bulk Killing vectors. This fact plays an
important role in the embedding space as we illustrate in Section 1.2, as well as in the
ambient space (see Section 2.4 and Chapter 3).

1.3.2 The holographic stress tensor

Through equation (1.32), boundary correlators can be found by taking functional deriva-
tives of the bulk onshell action with respect to the corresponding boundary sources,

⟨O(x1) . . . O(xn)⟩ = (−1)n
δnSonshell

[
ϕ(0)

]
δϕ(0)(x1) · · · δϕ(0)(xn)

∣∣∣∣∣
ϕ(0)=0

. (1.40)

For correlators of stress tensor operators we thus have to set the bulk gravitational action

S =
1

16πG

[∫
M

dd+1x
√
g+
(
R[g+] + 2Λ

)
−
∫
∂M

ddx
√
γ 2K

]
, (1.41)

onshell, and then take derivatives with respect to the boundary metric g(0). The first
piece in (1.41) is the Einstein-Hilbert action, while the second piece is the Gibbons-
Hawking-York boundary term [71,72]. Here γij is the metric induced onto ∂M by g+ and
K is the trace of the extrinsic curvature of ∂M .
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As it is, the action (1.41) however diverges because of the double-pole in the metric
g+ at r = 0, which leads to a divergence in the induced metric γ as well as in the bulk
volume term. In order to extract a finite bulk onshell action, we first evaluate (1.41) on a
regulated surface close to the boundary, then we renormalise it via the addition of local
and covariant bulk counterterms. This is the procedure of holographic renormalisation
for the bulk gravity action [62,63,65–67].

The expansions (1.38) and (1.39) are in terms of even powers of r (at least up to
O(rd) in odd d) and it is thus convenient to turn to the new radial coordinate ρ = r2.
We pick ρ = ϵ as a regulating surface so that the regulated bulk action reads

Sreg =
1

16πG

[∫
ρ≥ϵ

dd+1x
√
g+
(
R[g+] + 2Λ

)
−
∫
ρ=ϵ

ddx
√
γ 2K

]
, (1.42)

where now γ and K are the induced metric and scalar extrinsic curvature on the ρ = ϵ
surface. Plugging the onshell expansions (1.38) and (1.39) into Sreg, we find a number of
poles dependent on the dimension d as well as a logarithmic divergence (appearing only
for even d),

Sreg =
1

16πG

∫
ddx

√
g(0)

[
ϵ−d/2a(0) + · · ·+ ϵ−1a(d−2) − log ϵ a(d)

]
+O(ϵ0) , (1.43)

where all the coefficients a(k) are local and covariant in terms of g(0), and they do not
involve g(d).

One can now define a renormalised onshell bulk action by subtracting these divergent
terms from the regulated action and then taking the limit ϵ→ 0,

Sren = lim
ϵ→0

1

16πG

[
Sreg −

∫
ddx

√
g(0)

(
ϵ−d/2a(0) + · · ·+ ϵ−1a(d−2) − log ϵ a(d)

)]
. (1.44)

The 1-point function of the boundary stress tensor can then be computed as

⟨Tij(x)⟩ =
2

√
g(0)

δSren

δgij(0)(x)
= lim

ϵ→0

(
1

ϵd/2−1
Tij[γ]

)
, (1.45)

where Tij[γ] is the classical stress tensor of the classical theory living on the surface ρ = ϵ
and with action Sren.

Evaluating (1.45) yields

⟨Tij(x)⟩ =
d

16πG

[
g(d)ij + Y

(d)
ij

]
, (1.46)

where Y
(d)
ij are scheme-dependent terms which are local functions of g(0) and whose

expression depends on the dimension d. Up to d = 5,

Y
(2k+1)
ij = 0 , Y

(2)
ij = −g(0)ij tr g(2) , (1.47)
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Y
(4)
ij = −1

8
g(0)ij

[
(tr g(2))

2 − tr g2(2)
]
− 1

2
(g2(2))ij +

1

4
g(2)ij tr g(2) . (1.48)

Therefore g(d) encodes the VEV of the operator dual to the background metric g(0). Note
that the fact that g(d)ij is traceless for odd d ensures that ⟨Tij(x)⟩ is traceless too, a result
in agreement with the absence of Weyl anomalies for the metric sector in odd d.

The regulated action Sreg in (1.44) as well as the power-law divergences are invari-
ant under the full set of bulk diffeomorphisms, while the logarithmically divergent piece
breaks the class of bulk diffeomorphisms that induce Weyl transformations at the bound-
ary. Thus from the boundary perspective we see the appearance of the boundary Weyl
anomaly through (1.32),

Sren
[
e2Ω(x)g(0)

]
= Sren

[
g(0)
]
+A

[
g(0),Ω

]
. (1.49)

Sren and the boundary generating function thus exhibit a dependence on the boundary
representative g(0). For infinitesimal Ω the anomaly A

[
g(0),Ω

]
is proportional to the

coefficient a(d) in the logarithmically divergent piece in (1.43) [62]. One can subsequently
show [69] that the coefficient h(d) appearing in the bulk metric expansion contains the
metric variation of the anomaly,

h(d)ij =
υ(d)√
g(0)

δ

δgij(0)

∫
ddx

√
g(0)A , (1.50)

where υ(d) is a constant dependent on the dimension d.

1.3.3 The holographic scalar

A similar process of holographic renormalisation can be carried out for bulk matter fields,
either coupled to the metric or uncoupled, at least as long as they are dual to a relevant
or marginal operator in the boundary QFT. In this subsection we present the procedure
and the results for a probe massive scalar on an ALAdS bulk [67, 69], a case which will
be extensively used in several parts of this thesis, including Section 2.5 and Chapter 5.

The relevant action for this case is

S =
1

2

∫
dd+1x

√
g+
(
g+µν∂µΦ∂νΦ +m2Φ2

)
(1.51)

on a fixed Euclidean ALAdS background g+. We start by studying its solutions space.
Solving the bulk equation

(−2+ +m2)Φ = 0 (1.52)

order by order at small ρ, one obtains a near-boundary expansion of the form

Φ(x, ρ) = ρ
d−∆
2 ϕ(x, ρ) = ρ

d−∆
2 ϕ(0) + ρ

d−∆
2

+1ϕ(2) + · · ·+ ρ
∆
2 (ϕ(2∆−d) + ψ(2∆−d) log ρ) + . . . .

(1.53)
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Here ∆ will play the role of the conformal dimension of the boundary operator O dual
to Φ, and it is related to the mass by

m2 = ∆(∆− d) . (1.54)

All the orders up to O(ρ∆/2) are fully determined by ϕ(0) except for ϕ(2∆−d) which is not
fixed by the Dirichlet boundary condition. The logarithmic term is only present when
∆ = d

2
+ κ, κ = 0, 1 . . . . Using a holographic renormalisation prescription, we intend to

provide a dual interpretation for ϕ(0), ϕ(2∆−d) and ψ(2∆−d).
Also in this case, the onshell action is divergent and must be renormalised. Consid-

ering a regularisation hypersurface at ρ = ϵ, the regularised onshell action takes the
form

Sreg = −
∫
ρ=ϵ

ddx
√
G(ϵ)GρρΦ∂ρΦ = −

∫
ρ=ϵ

ddx
√
gρ

d
2
−∆

[
d−∆

2
ϕ2 + ρϕ∂ρϕ

]
(1.55)

=

∫
ddx

√
g(0)

[
ϵ−∆+d/2aM(0) + · · ·+ ϵ−1aM(2∆−d+2) − log ϵ aM(2∆−d)

]
+O(ϵ0) , (1.56)

where the coefficients aM(k) are local in ϕ(0). The logarithmic divergence appears for ∆ =
d
2
+ κ, κ = 0, 1 . . . .

As in the gravitational case, we define a renormalised onshell action by subtracting
these divergent terms from the onshell action,

Sren = lim
ϵ→0

1

16πG

[
Sreg −

∫
ddx

√
g(0)

(
ϵ−∆+d/2aM(0) + · · ·+ ϵ−1aM(2∆−d+2) − log ϵ aM(2∆−d)

)]
.

(1.57)
As they are, however, the coefficients aM(k) (and hence the counterterms in (1.57)) are not
covariant under bulk diffeomorphisms, and for this reason we have to re-express them in
terms of the bulk field Φ, formally inverting the expansions Φ(ϕ(0)) and g+(g(0)) in ρ to
sufficiently high order (according to the dimension d).

Through (1.32), the 1-point function of the operator dual to the bulk field Φ in the
presence of the source ϕ(0) can thus be computed as

⟨O(x)⟩ = − 1
√
g(0)

δSren

δϕ(0)(x)
, (1.58)

which yields

⟨O(x)⟩ = (2∆− d)ϕ(2∆−d)(x) + F(ϕ(0)(x), g(0)(x), g(d)(x)) , (1.59)

where F(ϕ(0), g(0), g(d)) is in general a scheme-dependent local function of the metric
coefficients in the near-boundary expansion, as well as the source ϕ(0). Thus the coefficient
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ϕ(2∆−d) in the near-boundary expansion of the scalar field encodes the 1-point function
of the dual scalar operator in the presence of sources.

In explicit computations on a given background, the coefficient ϕ(2∆−d) is fixed non-
locally with respect to the Dirichlet value ϕ(0) by the solution of the bulk differential
problem. This entails that to obtain the scalar 2-point function ⟨OO⟩ it is sufficient to
differentiate the 1-point function (1.59) once more and set ϕ(0) = 0,

⟨O(x)O(y)⟩ = (2∆− d)
δϕ(2∆−d)(x)

δϕ(0)(y)
+

δ

δϕ(0)(y)
F(ϕ(0)(x), g(0)(x), g(d)(x))

∣∣∣∣
ϕ(0)=0

. (1.60)

We will discuss an explicit example of such a computation in Section 5.5, where we study
the holographic scalar 2-point function of a massive scalar field on a planar AdS black
hole bulk.

Observe that similarly to the gravitational case, the renormalised action (1.57) trans-
forms anomalously under Weyl transformations because of the logarithmically divergent
piece. The coefficient aM(2∆−d) can be related to the scalar Weyl anomaly for a given d

and ∆. Note that such term is present only when ∆ = d
2
+κ, κ = 0, 1 . . . as expected for

anomalies in the scalar sector.
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Chapter 2

The ambient space

In this chapter we present the geometric construction of the ambient space. Our aim
here as well as in Chapters 3 to 6 is to extend the embedding formalism to more general
settings where conformal invariance may be broken, including non-conformally flat CFT
backgrounds and generic states, so that we may usefully constrain the form of correlators
in such settings. To achieve this we adopt the ambient space [22,23] as our principal tool,
a (d+ 2)-dimensional spacetime that replaces the embedding space.

In Section 2.1 we discuss how to construct ambient spaces given a CFT background
g(0), in such a way that the key features of the embedding space are maintained. These
consist in a notion of local flatness, as well as a nullcone structure (which is closely related
to the presence of the dilation vector X · ∂ on the embedding space). When the CFT
background g(0) is conformally flat and the state is trivial, the ambient space reduces to
the embedding space, as we establish in Section 2.2. In Section 2.3 we present several
other special classes of ambient spaces and their properties, while in Section 2.4 one of
the crucial features of the ambient construction is discussed, that is how it canonically
encodes Weyl covariance. Finally, in Section 2.5 we review a family of Weyl-covariant
differential operators that can be constructed on the metric g(0) using the ambient space.

2.1 Constructing ambient spaces
There are two key defining features of the ambient space. The first is the existence of a
null scaling isometry T (called a homothetic vector in mathematics literature), obeying
LT g̃ = 2g̃ where g̃ is metric of the (d + 2)−dimensional ambient space. Note that T
is a conformal Killing vector of the ambient space and is non-Killing. The existence
of T reflects the fact that CFT correlators on any background and state satisfy Weyl-
covariance constraints, playing a role analogous to the embedding space’s X ·∂X dilation
vector.

The second defining feature is Ricci-flatness. To depart from the embedding space we
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must depart from R1,d+1. Riemann-flatness is too restrictive, as this results in a formalism
locally equivalent to the embedding space, leaving Ricci-flatness is the next most natural
class of spacetimes. One may wish to consider further relaxing this by introducing matter
with a stress-tensor, but we will not do so for the present discussion; we will comment
on the role of such extensions in Section 4.5.

Given a d-dimensional conformal manifold with coordinates xi and a representa-
tive g(0)ij(x) of the conformal class of metrics [g(0)ij(x)], one is able to construct a new
d + 2-dimensional spacetime with these two requirements, the ambient space [22, 23].
Parameterising the d+ 2 ambient space directions with the coordinates X̃M = (t, xi, ρ),
the most general ambient space metric is given by

g̃ = 2ρdt2 + 2tdtdρ+ t2gij(x, ρ)dx
idxj, (2.1)

where gij(x, 0) = g(0)ij(x) and where gij(x, ρ) is such that R̃MN = 0. In these coordinates
the homothetic vector is given by

T = t∂t, (2.2)

and we note the useful property ∇̃ATB = g̃AB.
The meaning t and ρ is depicted in Figure 2.1. The coordinate t is related to ambi-

ent scale transformations, generated by the homothety T . Intuitively, the coordinate ρ
describes the distance from the nullcone.1 While t is taken to be strictly positive, ρ is
real and we place the nullcone at ρ = 0. Hence, projecting onto the boundary amounts
to setting t = 1 and ρ = 0 where one recovers g(0)ij(x). As in the embedding space, the
nullcone is obtained by rescaling g(0)ij and as such it is covered by the coordinates t and
xi, in analogy with (1.15). Choosing a specific t corresponds to restricting to a specific
section of the nullcone.

Knowing the d-dimensional metric together with the presence of the dilations T
completely fixes the geometry on the nullcone. The specific form of (2.1) follows from
a convenient gauge choice such that ρ and t are geodesic coordinates in a vicinity of
the nullcone. By this we mean that starting at a fixed point (t, x, 0) on the nullcone,
the curve γ(ρ) = (t, x, ρ) is a geodesic for the ambient metric g̃. Similarly, any curve
γ(t) = (t, x, ρ) starting at (t0, x, ρ) is a geodesic for the ambient metric g̃. This fixes the
ambient geometry to take the form of a Gaussian null foliation [73,74] near the ambient
lightcone, resulting in (2.1). Observe that the t-dependence is completely fixed by the
choice of gauge and homogeneity. In particular, at ρ = 0 a dilation generated by T = t∂t
will produce a rescaling of the boundary metric as desired.

Solving the equations R̃MN = 0 determines the components gij(x, ρ), with boundary
1We call it nullcone to keep in mind the relation to the corresponding surface of the embedding space.

As we will see shortly, in the ambient space it is a null submanifold with a degenerate induced metric,
which can be represented as a cone space of the arbitrary manifold g(0).

31



19/05/2020 Enrico Parisini ‐ Ambient Space 14

The embedding space

xi

ρ

t

xi

ρ

t

Figure 2.1: This cartoon illustrates qualitatively the meaning of the ambient coordinates:
t and xi span the nullcone, while ρ describes the distance from it.

conditions given by the d-dimensional metric gij(x, 0) = g(0)ij(x). These are,

R̃ij = ρg′′ij − ρgklg′ikg
′
lj +

1

2
ρgklg′klg

′
ij −

(
d

2
− 1

)
g′ij −

1

2
gklg′klgij +Rij = 0 , (2.3a)

R̃iρ =
1

2
gkl (∇kg

′
il −∇ig

′
kl) = 0 , (2.3b)

R̃ρρ = −1

2
gklg′′kl +

1

4
glkgpqg′kpg

′
ql = 0 , (2.3c)

where the primes denote derivatives in ρ, while Rij and ∇i indicate the Ricci tensor and
the covariant derivative of gij(x, ρ) evaluated at fixed ρ.

General properties of gij(x, ρ) maybe studied through solutions of (2.3a), (2.3b),
(2.3c) obtained in a perturbative expansion at small ρ, i.e. a near-nullcone expansion. In
terms of the boundary metric g(0)ij(x), one has

gij(x, ρ) = g(0)ij(x) + 2Pij ρ+ · · ·+ ρ
d
2

(
g(d)ij + h(d)ij log ρ

)
+ . . . (2.4)

for even dimensions d, while for odd d one has

gij(x, ρ) = g(0)ij(x) + 2Pij ρ+ · · ·+ ρ
d
2 g(d)ij + . . . , (2.5)

where the coefficient of the expansion only depend on x, and Pij is the boundary Schouten
tensor

Pij =
1

d− 2

(
Rij −

R

2(d− 1)
g(0)ij

)
. (2.6)

Remarkably, all the coefficients including hij are completely fixed by the boundary metric
up to order O

(
ρd/2

)
, while only the trace and divergence of g(d)ij are determined by g(0)ij.

The remaining transverse traceless piece of g(d)ij constitutes the second piece of boundary
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data required for general solutions of the set of second order differential equations (2.3).
Note that gij(x, ρ) is in general non-analytic at ρ = 0 since at order O

(
ρd/2

)
logarithmic

contributions are present for even d and for non-conformally flat g(0), while half-odd
powers of ρ appears for odd d starting at O

(
ρd/2

)
.

The similarity to the usual holographic expansion for asymptotically locally AdS
spaces is striking, and we can make this relation more precise by performing the following
coordinate transformation,

ρ = −r
2

2
, t =

s

r
, (2.7)

with r, s > 0, covering the region ρ < 0. The ambient metric becomes

g̃ = −ds2 + s2
(
dr2 + gij(x, r)dx

idxj

r2

)
, (2.8)

where the piece in parentheses must solve the vacuum Einstein equations with a negative
cosmological constant in d+ 1 dimensions, as a consequence of Ricci-flatness in d+ 2.

Let us prove this statement. Denoting the (d + 1)-dimensional metric withing the
brackets in (2.8) by g+µν , we start by noting that (2.8) can be seen as conformal to a
metric ḡ through g̃ = s2ḡ, with

ḡ = −ds
2

s2
+

1

r2
(
dr2 + gij(x, r)dx

idxj .
)

(2.9)

Using the properties of the Riemann tensor under Weyl rescaling one can show that the
Riemann and Ricci tensor components for g̃ are related to the ones for ḡ by

R̃ABMN = s2
[
R̄ABMN + ḡAM

(
ḡNB +

δ0Nδ
0
B

s2

)
− ḡAN

(
ḡMB +

δ0Mδ
0
B

s2

)
+ḡA0

(
δ0N ḡMB − δ0M ḡNB

)]
,

(2.10)

R̃MN = R̄MN + d

[
δ0Mδ

0
N

s2
+ ḡMN

]
. (2.11)

The metric ḡ is in diagonal block form, meaning that the the corresponding Riemann
and Ricci tensors are analogously factorized,

RMN = gABRAMBN = Rcdδ
c
Mδ

d
N +Rklδ

k
Mδ

l
N . (2.12)

If we then restrict to the directions xµ = (xi, r), equation (2.11) reduces to

R̃µν = R+
µν + dg+µν , (2.13)

so that requiring Ricci-flatness for an ambient metric yields the Einstein condition for
the corresponding ALAdS sections g+.
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Figure 2.2: This cartoon illustrates qualitatively the meaning of the ambient coordinates:
t and xi span the nullcone, while ρ describes the distance from it.

We thus conclude that hypersurfaces at fixed s are ALAdS metrics of radius s in
d+1 dimensions and we recognise gij(x, r) as the usual near-boundary Fefferman-Graham
expansion. This is a generalization of the AdS slicing of the embedding space (1.27), as
sketched in Figure 2.2. Note also that the d−dimensional manifold is recovered in the
limit r → 0 and s → 0, keeping fixed t = s

r
= 1. The homothetic vector reads T = s∂s

in these coordinates.
This hyperbolic slicing illustrates several interesting properties of the ambient space.

First, it tells us that the coefficients in (2.4) and (2.5) contain precisely the same infor-
mation as the corresponding ones in the usual holographic expansion2 as presented in
Section 1.3. In particular, g(d)ij is related to the VEV of the boundary stress tensor, while
the boundary metric g(0)ij(x) plays the role of its source. Finally, h(d)ij is proportional
to the metric variation of the boundary Weyl anomaly. Therefore the ambient space ge-
ometrically encodes both the generic CFT background as well as its possibly non-trivial
state. Importantly, it does so in a Weyl-covariant way as we will remark later.

Another important consequence of this slicing is that exact ambient solutions can be
found starting from ALAdS geometries in the Fefferman-Graham gauge by considering
the AdS radius as a new coordinate s and fibering it according to (2.8). This automatically
solves the Ricci-flatness equations.

Note that the change of coordinates (2.7) only covers negative ρ’s. Alternatively we
can change coordinates with

ρ = +
r2

2
, t =

s

r
, (2.14)

2Observe that the ambient coordinate ρ is proportional to the holographic ρHolo as defined in Sub-
section 1.3.2 according to ρ = − 1

2ρHolo.
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leading to the metric

g̃ = ds2 + s2
(−dr2 + gij(x, r)dx

idxj

r2

)
. (2.15)

As expected from the analogy with Minkowski, here we are covering the ρ > 0 region of
the ambient space with a foliation in terms of (d+1)−dimensional asymptotically locally
dS (ALdS) spaces. One can move from the positive ρ region to the negative ρ region by
taking the analytic continuation s→ is and r → ir of the radius and Fefferman-Graham
coordinate, recovering the well-known map from Euclidean AdS to dS spaces. Similarly
to the case of negative ρ, we can find exact ambient geometries in this patch by plugging
ALdS metrics in the brackets of (2.15).

2.2 Relation to the embedding space
To illustrate the relationship between the embedding space presented in Section 1.2 and
the more general ambient metric (2.1), we start by rewriting the (d + 2)−dimensional
Minkowski metric ds2 = ηMNdX

MdXN in terms of the Gaussian null coordinates X̃M =
(t, xi, ρ). In view of a comparison with the Poincaré slicing of the embedding space (1.27)
we consider a flat boundary g(0)ij = δij. Defining X± = X0 ±Xd+1, a suitable change of
coordinates3 is

t = X+, ρ =
ηMNX

MXN

2(X+)2
, xi =

X i

X+
, (2.16)

with inverse map

X0 =
t

2

(
1− 2ρ+ x2

)
, X i = txi, Xd+1 =

t

2

(
1 + 2ρ− x2

)
. (2.17)

The resulting ambient metric is

g̃ = 2ρdt2 + 2tdtdρ+ t2δijdx
idxj, (2.18)

which is simply Minkowski space in Gaussian null coordinates. From the map (2.17) it is
clear that fixing a value of t determines a single slice of the nullcone, where the boundary
directions xi play the role of the projective coordinates (1.17), being independent of the
section one picks. The coordinate ρ tells us how far from the nullcone we are, with
ρ > 0 the region with a timelike separation from the origin, and ρ < 0 spacelike. As
a consistency check, note that the map (2.17) reduces to the embedding (1.15) taking
ρ = 0 and matches the AdS slicing (1.27) using the change of coordinates (2.7).

Comparing the ambient metric (2.18) to the general expansion at small ρ, we im-
mediately recognise in which sense the embedding formalism can be generalised via the

3A similar set of coordinates for Minkowski was used in [75].
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ambient space. The latter can describe non-trivial states at the boundary in case of a
non-vanishing stress tensor VEV turned on. In addition to this, we remark that a similar
map from the embedding space to the ambient formulation as in (2.16) can be found for
any conformally flat boundary metric, not only for g(0)ij(x) = δij. Assuming the bound-
ary data g(d)ij vanishes, one can check that the ambient space is locally Minkowski (i.e.
its Riemann tensor vanishes) if and only if the boundary metric g(0)ij(x) is conformally
flat. A special case is d = 2, where all boundaries are conformally flat, where one can
show [23] that the 4-dimensional ambient space is automatically Riemann-flat, even for
non-vanishing stress tensor VEVs. In Section 2.3 we provide more details and proofs
regarding these statements.

Let us now turn our attention to embedding space correlation functions. Focussing
on scalar 2-point functions on Rd, their extension to the ambient space must also be
a scalar and this entails that one has to find building blocks which are scalars under
ambient diffeomorphisms.4

In the embedding space one can simply use insertion coordinates XM
i to construct

scalars as in (1.20), since Minkowski space is in fact locally isomorphic to its tangent
space. In ambient space however, (t, xi, ρ) are merely coordinates on a curved manifold,
and cannot be directly contracted at different insertion points to construct scalars, as
these belong to different tangent spaces. Fortunately, by definition, the ambient space
comes equipped with the homothetic vector T = t∂t. Since T coincides with X = XM∂M
in the flat case, it is natural to replace the positions of the insertions in the ambient
space is the vector field T evaluated at the insertion points.

Consider two ambient insertion points X̃i, X̃j. In order to construct a scalar quantity
under ambient diffeomorphisms we need to contract and sum the vectors T (X̃i) and
T (X̃j) belonging to different tangent spaces. To this aim we use parallel transport to
move one vector to another tangent space along a geodesic. One now has two vectors
belonging to the same tangent space and their contraction with the ambient metric at
that point results in a well-defined scalar.

This prescription allowing one to generalise Xij is valid for any ambient space. We
will discuss it at length in Chapter 4. For now let us check it reproduces the known
embedding space invariant in (1.20) in the case of a flat boundary with ambient metric
(2.18). Given two points not necessarily on the lightcone

X̃0 = (t0, x0, ρ0), X̃1 = (t1, x1, ρ1), (2.19)

as a first step parallel transport requires solving the geodesic equations from X̃0 to X̃1

¨̃
XM(λ) + ΓMAB(λ)

˙̃
XA(λ)

˙̃
XB(λ) = 0, (2.20)

4We will explain in detail this statement in Subsection 2.4, where in particular it will be shown
which class of diffeomorphisms is relevant in this context and why we are requiring full diffeomorphism
invariance.
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where ΓMAB here refers to the ambient connection. On the flat ambient space (2.18) they
can be easily solved,

t(λ) = Aλ+B, (2.21a)

xm(λ) =
Em

Aλ+B
+ Fm, (2.21b)

ρ(λ) =
EmEm

2(Aλ+B)2
+

G

Aλ+B
+H, (2.21c)

with a total of 2(d+2) integration constants accounting for the components of the initial
and final point (2.19) of the geodesic. We set the endpoints to correspond to the values
of the affine parameter λ = 0 and λ = 1 respectively, fixing the integration constants to

A = −t0 + t1, B = t0, Em = t0t1
xm1 − xm0
t0 − t1

, (2.22a)

Fm =
t1x

m
1 − t0x

m
0

t1 − t0
H = −E

mEm + 2Gt0
2t20

, (2.22b)

G = − t0t1
(t0 − t1)2

[
(t0 + t1)(x1 − x0)

2 + 2(t0 − t1)(ρ0 − ρ1)
]
. (2.22c)

These geodesics are of course simply straight lines on Minkowski in disguise. We now
have to evolve the initial condition T (λ = 0) = T0 = (t0, 0, 0) at X̃0 to the point X̃1

along these geodesics using the parallel transport equations

˙̃
XM(λ) ∇̃MT

A(λ) = 0. (2.23)

In this case also these equations can be solved exactly and after imposing the boundary
conditions at the endpoints, at λ = 1 one finds

T̂0 ≡ T0(1) =

(
t0,−

t0
2t1

[
(xi0 − xi1)

2 − 2(ρ0 − ρ1)
]
,
t0
t1
(xi0 − xi1)

)
. (2.24)

We define the ambient analogue X̃ij of the embedding space invariant Xij as the con-
traction of T1 = (t1, 0, 0) with T̂0 using the ambient metric evaluated at X̃1. This leads
to

X̃01 ≡ −2 T̂0 · T1 = t0t1
(
(xi0 − xi1)

2 − 2(ρ0 + ρ1)
)
. (2.25)

Placing the insertions on the lightcone section ρ0,1 = 0, t0,1 = 1, one recovers the expected
value of the embedding space invariant X01. For more general ambient spaces, we treat
the calculation of this invariant in more details in Section 4.2 and in Appendix B.

As already discussed when constructing the ambient space, and as we will see in
more detail in Section 2.4, the conformal dimension under Weyl transformations of an
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ambient object coincides with minus its weight in t. This fixes scalar 2-point functions
of dimension ∆ and bulk-to-boundary propagators to the known forms,

⟨O1(X̃1)O2(X̃2)⟩ =
C∆

(X̃12)∆

∣∣∣∣∣t1,2→1
ρ1,2→0

=
C∆

(x12)2∆
(2.26)

K∆(r0, x1;x2) =
C ′

∆

(X̃12)∆

∣∣∣∣∣t1→1
ρ1→0

=
C ′

∆

R∆

(
r0

(x12)2 + r20

)∆

, (2.27)

where we set t1 = R
r1

and ρ1 = − r21
2
, and R is the AdS radius.

2.3 Special classes of ambient spaces
In this section we describe special families of ambient spaces that will be relevant for the
applications of the ambient space formalism appearing in Chapters 5 and 6. Restricting to
specific classes of d-dimensional metrics g(0) yields further properties and simplifications
in the form of the corresponding ambient metric. Vice versa, additional conditions on
the ambient space impose constraints on g(0) and typically constrains the quantity g(d)
(and hence the stress tensor VEV) in terms of g(0).

In what follows we discuss flat ambient spaces, which are locally equivalent to Minkowski
space; ambient spaces associated to conformally Einstein metrics g(0), where the logarith-
mic piece h(d)ij appearing in (2.4) is identically zero; ambient spaces satisfying (anti)self-
duality conditions on their Weyl tensor, for which the stress tensor VEV piece in the
ambient expansion is fixed in terms of the boundary geometry g(0).

2.3.1 Conformally flat g(0)
In this section we study the implications of the requirement of either the ambient space
or the metric g(0), and we describe how these two conditions are related. We first discuss
the case of d ≥ 3 and then the special case of d = 2.

d ≥ 3

As a preliminary observation note that due to the Ricci-flatness of the ambient space,
an ambient space is conformally flat if and only if it is Riemann-flat,

W̃ABMN = 0 ⇐⇒ R̃ABMN = 0, (2.28)

where we denote the ambient Weyl tensor by W̃ .
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Given a (conformally) flat ambient space, it is easy to show that also its ALAdS
sections must be conformally flat. Starting from equation (2.10), once projected onto the
xµ = (xi, r) components along the ALAdS sections, the condition R̃ABMN = 0 implies
that

R+
αβµν + g+αµg

+
βν − g+ανg

+
βµ = 0. (2.29)

Using then (d + 1)-dimensional Einstein’s equations R+
µν + dg+µν = 0, from (2.29) it

follows that W+
αβµν = 0. Hence we have shown that any flat ambient metric is made

of conformally flat ALAdS sections. Furthermore, the equations R̃ABMN = 0 do not
contain additional conditions besides W+

αβµν = 0, since R̃0BMN = 0 is guaranteed by the
homothetic symmetry of the ambient space t∂t = s∂s (where by the index 0 we indicate
the s component). We conclude that an ambient space is flat if and only if its ALAdS
sections are conformally flat.

Let us now turn to the implications of ambient Riemann-flatness for the metric g(0).
One can show [23, 76] that g(0) must be conformally flat, and the ambient ρ expansion
truncates,

g̃ = 2ρdt2 + 2tdtdρ+ t2
[
g(0)ij + 2Pijρ+ P k

i Pkjρ
2
]
dxidxj , (2.30)

where as before Pij is the Schouten tensor associated to g(0). Thus there is no freedom in
the choice of the stress tensor VEV, which is fully fixed by the requirement of ambient
flatness.

Vice versa, an ambient space associated to a conformally flat g(0) has a small-ρ ex-
pansion of the form,

g̃ = 2ρdt2 + 2tdtdρ+ t2
[
g(0)ij + 2Pijρ+ P k

i Pkjρ
2 +O

(
ρ

d
2

)]
dxidxj , (2.31)

where the order O
(
ρ

d
2

)
encodes a possible non-vanishing stress tensor VEV. An ambient

space of this form will be object of study in Chapter 5. As we discuss in Section 4.1, an
ambient space with conformally flat g(0) has an associated Riemann tensor of particularly
simple form.

As an illustration of these properties, let us consider a CFT on a Euclidean AdSd
background, with metric

g(0)ijdx
idxj =

dz2 + dxadx
a

z2
, (2.32)

with a = 2 . . . d. For a vanishing stress tensor VEV, using 2.31 the ambient expansion
reads

g̃ = 2ρdt2 + 2tdtdρ+ t2
(
1− ρ

2

)2 dz2 + dxadx
a

z2
. (2.33)

and the change of coordinates mapping this space to Minkowski is

X0 =
t

2
√
2z

(
2 + z2 + x2

) (
1− ρ

2

)
, X1 = t

(
1 +

ρ

2

)
, (2.34)
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Xa =
t

z
xa
(
1− ρ

2

)
, Xd+1 =

t

2
√
2z

(
2− z2 − x2

) (
1− ρ

2

)
.

To summarise, an ambient space is flat if and only if g(0) is conformally flat and has
vanishing stress tensor VEV. It is therefore in such case that the ambient space is locally
diffeomorphic to the embedding space. Whenever g(0) is non-conformally flat or there is
a non-vanishing stress tensor VEV, the ambient space represents a generalisation of the
embedding space geometry.

d = 2

Consider now a generic g(0) in d = 2. Following similar arguments as for the d ≥ 3 case,
one can show that the Weyl tensors of both the ambient space and of its ALAdS sections
are vanishing, entailing that for d = 2 any ambient space is necessarily flat (and thus
locally diffeomorphic to the embedding space). Solving the Ricci-flatness equations, the
ambient geometry can be shown to take the form [23,76]

g̃ = 2ρdt2 + 2tdtdρ+ t2
[
g(0)ij + 2Lijρ+ L k

i Lkjρ
2
]
dxidxj , (2.35)

where Lij encodes the 2-dimensional stress tensor VEV. It is partially constrained by
the requirements

Lii =
1

2
R , ∇jLij =

1

2
∇iR . (2.36)

2.3.2 Conformally Einstein g(0)

In this section we present properties of the ambient spaces associated to a conformally
Einstein g(0). As customary, by Einstein manifold we mean a space where the Ricci tensor
is proportional to the metric,

Rij = 2λ(d− 1)g(0)ij, (2.37)

for some constant λ. The case λ = 1
2L2 includes Sd, λ = 0 the plane, while λ = − 1

2L2

the hyperboloid Hd. The d-dimensional Schouten tensor for such class of metrics is Pij =
λg(0)ij.

For any d ≥ 3 solving Ricci-flatness one can show [23] that the ambient geometry
takes the form,

g̃ = 2ρdt2 + 2tdtdρ+ t2
[
(1 + λρ)2g(0)ij + g(d)ijρ

d
2 +O

(
ρ

d
2
+1
)]
dxidxj . (2.38)

An interesting feature of this expansion is that the logarithmic piece h(d)ij (referred to as
the obstruction tensor in the mathematical literature) appearing in the general expansion
(2.4) is automatically vanishing for Einstein g(0) in any dimension d. We anticipate that
these properties extend to the whole class of ambient spaces associated to a conformally
Einstein g(0) through the observations of Section 2.4.
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2.3.3 Self-dual ambient spaces

Another class of interesting ambient spaces consist in self-dual and anti-self-dual solu-
tions. A representative of these geometries will appear in Chapter 6.

We focus on d = 3 and it is convenient to take the perspective of each 4-dimensional
ALAdS slice rather than of the related ambient space. We denote the conformal com-
pactification of the ALAdS sections by g = dr2 + gr, with gr = gij(x, r)dx

idxj as in
equation (2.8). We also define the three-dimensional volume form induced by gr onto the
boundary r = 0 as

µijk = µ0ijk =
√

det gr εijk . (2.39)

The conformal compactification g determines a Hodge operator ∗ on the bulk 2-forms
such that (∗)2 = 1 and coinciding with the one induced by g+ (since the Hodge operator
is Weyl-invariant). Given then the 4-dimensional Weyl tensor Wαβγδ of the ALAdS slice5,
we can define its dual as

(∗W )αβγδ =
1

2
µ ρσ
αβ Wρσγδ . (2.40)

We will say that W+
αβγδ is (anti)self-dual if

Wαβγδ = ±(∗W )αβγδ . (2.41)

As a consequence, we can split any Weyl tensor according to the eigenvalues ±1 of the
Hodge operator,

Wαβγδ = W
(+)
αβγδ +W

(−)
αβγδ , (2.42)

effectively decomposing the Weyl bundle in two sub-bundles

W = W+ ⊕W−. (2.43)

Self-dual Weyl tensors have vanishing projection onto W− and vice versa for the anti-
self-dual case. One interesting observation is that in case of (anti)self-duality, any of the
two sub-bundles with eigenvalues ±1 is isomorphic to the space of symmetric traceless
2-tensors on the d-dimensional boundary, as it is easy to show in the Fefferman-Graham
gauge [23]. In particular, the independent degrees of freedom of the bulk Weyl tensor in
the (anti)self-dual case can be conveniently gathered in the components Wrirj.

As a consequence, the independent equations for (anti)self-duality read

Wrirj = ±(∗W )rirj , (2.44)

These components read

Wrirj = − 1

4r2
tf

[
g′′ij + 2Rij −

1

2
tr[g′]g′ij

]
, (2.45a)

(∗W )rirj =
1

2r2
µ kl
(i ∇lg

′
j)k, (2.45b)

5Above we denoted it by W+
αβγδ; here we remove the + to avoid cluttering.
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where traces, Rij and ∇l are computed with gij(x, r) at fixed r. Primes indicate deriva-
tives in r and tf stands for the trace-free part. Therefore the (anti)self-duality conditions
read

tf

[
g′′ij + 2Rij −

1

2
tr[g′]g′ij

]
± 2µ kl

(i ∇lg
′
j)k = 0. (2.46)

One can solve the self-duality condition order by order in small r and find that in d = 3
an ALAdS metric (and hence an ambient space) is (anti)self-dual if and only if

g(3)ij = ±2Cij, (2.47)

where we have repackaged the 3-dimensional Cotton tensor Cijk into a 2-tensor according
to

Cij = µ kl
i Cjkl . (2.48)

The condition (2.47) is consistent with the general properties of g(3) as a consequence of
the properties of the Cotton tensor,

• C[ijk] = 0 −→ gijCij = 0,

• gijCijk = 0 −→ Cij is symmetric,

• ∇iCijk = 0 −→ ∇iCij = 0.

Therefore through (2.47) (anti)self-duality of the ambient space (or equivalently (anti)self-
duality of its ALAdS sections) constrains the stress tensor VEV in terms of the metric
g(0).

2.4 Weyl invariance and the Weyl connection
In the previous sections we discussed how the ambient construction reduces to the em-
bedding space for CFTs on conformally flat d-dimensional backgrounds in the vacuum
state. Correlators must be invariant under conformal transformations, which are conve-
niently realised as symmetries in the embedding space. As detailed in Chapter 3, the
same happens in the ambient space. In particular, conformal Killing vectors on g(0) are
lifted to near-lightcone isometries on the ambient space. Such a feature is already present
in standard holography as one relates asymptotic symmetries in the bulk to conformal
transformations on the boundary. This property of the ambient space can be thought
of as inherited from the ALAdS realization (2.8), where asymptotic symmetries on the
ALAdS slices are to be understood as near-nullcone isometries on the ambient space.

Given a conformal symmetry transformation, the corresponding Ward identity in the
CFT constrains ambient correlators in the same way as embedding correlators. For each
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such isometry K in d+ 2 dimensions, ambient correlators F of quasi-primary operators
must satisfy

n∑
i=1

L(i)
K F (X1, X2 . . . Xn) = 0 , (2.49)

where L(i) is the Lie derivative operator acting on the i-th insertion point and where
F is a tensor on the ambient space, in general with different tensorial transformation
properties for each insertion.

Since we are interested in CFT backgrounds and states that may break all near-
lightcone isometries K that so usefully constrain correlators through (2.49), how then
is the ambient space formalism useful? The answer is Weyl covariance, which represents
the universal kinematical constraint on correlators. For a CFT on a generic background
g(0) it reads as in (1.9).6

Assume we have an ambient space g̃ of the form (2.1) constructed from the CFT
background metric g(0)ij; we wish to construct another one compatible with the metric
ĝ(0)ij = e2Ω(x)g(0)ij. It turns out these two ambient spaces are locally diffeomorphic, so
that in a new set of coordinates (t̂, x̂i, ρ̂) the ambient metric g̃ reads

g̃ = 2ρ̂dt̂2 + 2t̂dt̂dρ̂+ t̂2ĝij(x̂, ρ̂)dx̂
idx̂j , (2.50)

which induces the metric ĝ(0)ij(x̂) when taking ρ̂ = 0, t̂ = 1. Formally (2.50) is an ambient
space constructed from the metric ĝ(0)ij. One can interpret this fact as the statement that
an ambient space is canonically related not only to g(0)ij but to the whole conformal class
of metrics [g(0)], all equivalent to g(0) modulo a Weyl transformation.7

The coordinate transformation from (t, xi, ρ) to (t̂, x̂i, ρ̂) can be easily found by work-
ing perturbatively in ρ.8 Algorithmically, one imposes order by order that the background
metric induced at ρ̂ = 0, t̂ = 1 is the Weyl-rescaled ĝ(0)ij, as well as that the ambient
gauge is preserved (i.e. t̂ and ρ̂ are Gaussian null coordinates). For what follows we are
interested only in the first few orders,

t̂ = e−Ω(x)t

[
1− 1

2
ΩiΩiρ+O(ρ2)

]
, (2.51a)

x̂i = xi + Ωiρ+O(ρ2) , (2.51b)

ρ̂ = e2Ω(x)ρ+O(ρ2) , (2.51c)

with Ωi = ∂iΩ and where indices are raised and lowered using g(0)ij.

6In this context we do not discuss the contributions from Weyl anomalies that can be arise in even
dimensions d.

7This parallels the case of (d+1)-dimensional ALAdS spaces, where Weyl transformations are induced
onto the boundary by a special class of bulk diffeomorphisms (see e.g. [65, 68]).

8We proceed in this way to keep the discussion as general as possible. Given an exact ambient solution
to all orders in ρ, this diffeomorphism may be found in closed form.
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As anticipated on the nullcone ρ = 0 this diffeomorphism reduces to a local rescaling
of the coordinate t. This is the analogue of the local rescaling of the projective section in
the embedding space in (1.18) which leads to a Weyl-rescaled background. This agrees
with the intuition that t measures the engineering dimensions of ambient quantities. In
particular, the scalar invariant X̃ij defined in equation (2.25) for conformally flat back-
grounds is manifestly homogeneous in t in both insertions X̃ij ∝ titj, hence transforms
homogeneously under Weyl transformations with dimension −2. Analogously, X12 is a
dimension −2 invariant in the embedding space.

The fact that Weyl transformations are induced by ambient diffeomorphisms rep-
resents the key property of the ambient space and it has been the main motivation
for its use in conformal geometry, allowing one to find and classify Weyl-invariant ob-
jects on arbitrary d-dimensional manifolds [22,23,77–86]. This aspect is obscured in the
ALAdSd+1 realization and in the standard holographic setup. There one focuses on a
single hyperbolic slice of radius s, effectively quotienting by the action of the homothety
T = s∂s.

Our goal is to use the ambient space to study correlators, meant as multi-local tenso-
rial objects living on the ambient nullcone. To impose their Weyl-covariance, one has to
study the precise action of the diffeomorphisms (2.51) on ambient tensors when restricted
to the nullcone [23,77,80].

Let us focus on vector fields on the ambient space for simplicity. It will be straight-
forward to generalise the discussion to any ambient tensor. When we restrict an ambient
vector field to the nullcone, its components will only depend on t and xi. There turns
out to be a privileged class of ambient vectors whose components can be written in the
form

V M =

(
v0(x),

vi(x)

t
,
vρ(x)

t

)
(2.52)

once restricted to the CFT background.9 Here t should be thought of as a formal parame-
ter t = 1 which keeps track of the weight under Weyl transformations of each component.
In conformal geometry, the vector (2.52) is known as a (weight 0) tractor.

More specifically, under the ambient diffeomorphisms (2.51) the components of any
such vector restricted to g(0) transform according to

V̂ M =
∂
̂̃
XM

∂X̃N
V N

∣∣∣∣∣∣
ρ=0

=

Ω−1
[
v0 −Υiv

i − 1
2
ΥiΥ

ivρ
]

1
t
[vi +Υivρ]

Ω2

t
vρ

 , (2.53)

where Υi = Ω−1Ωi. The resulting components V̂ M have the same weight in t as the initial
vector (2.52) and thus this transformation preserves the class of tractor fields. We can

9By doing this we are effectively constructing a (d+2)-dimensional vector bundle on the d-dimensional
background.
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rewrite this action in terms of a linear transformation on the (d + 2)-dimensional space
of such vector fields,

U(Ω)MN =

Ω−1 −ΥnΩ
−1 −1

2
ΥiΥ

iΩ−1

0 δmn Ω
−1 ΥmΩ−1

0 0 Ω

 , (2.54)

parametrised by a function Ω(x) on the CFT background.
One can analogously define weight w tractors as the restriction to a d-dimensional

nullcone section of ambient vectors with an additional overall homogeneity of tw with
respect to (2.52). Weighted tractors can be simply thought of as the restriction of ambient
vectors V = V M∂M with homogeneity w − 1 in t to the section t = 1 of the nullcone.
They transform as

V̂ M = Ωw U(Ω)MNV
N (2.55)

under a Weyl transformation.
If we further inspect the components of the ambient connection, the action of the

ambient covariant derivative along the xi directions (once restricted to the d-dimensional
section) Dk ≡ ∇̃

∣∣∣
ρ=0
t=1

can be split as

Dk = ∇k +Ak, with (Ak)
M
N =

 0 −Pkn 0
P m
k 0 δmk
0 −gkn 0

 , (2.56)

where the first piece is simply the covariant derivative compatible with the background
metric g(0), under which v0 and vρ are scalars. Thus the ambient connection acts on a
tractor (of any weight) as

DkV
M = ∂kV

M + δMm Γmknv
n + (Ak)

M
N V

N . (2.57)

The additional piece Ak that the ambient connection induces onto the CFT background
is what makes Dk covariant under Weyl transformations when acting on tractors. In
particular one can check that Dk commutes with Weyl transformations U(Ω), i.e. DkV

M

transforms in the same way as V M ,

D̂k U(Ω) = U(Ω)Dk , (2.58)

where D̂k indicates the covariant derivative compatible with the ambient metric (2.50).
This shows that the ambient connection canonically induces a Weyl connection on the
boundary. Finding Weyl covariant objects in d dimensions (such as CFT correlators) boils
down to the study of multiplets under Weyl transformations given by the matrix U(Ω).
It is in this sense that Weyl transformations are linearly realised on the ambient nullcone,
similarly to what happens for conformal symmetries in the embedding space. This is the
perspective adopted in the so-called tractor calculus [80, 87]. In Section 4.5 we discuss
the implications for the computation of spinning correlators in general backgrounds and
states.
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2.5 GJMS conformal operators
In this section we review a class of differential operators that can be defined using the
ambient space. Their importance resides in the fact that they can be used on objects of
a certain scaling dimension to produce new objects of a different scaling dimension. It is
in this sense that they can be thought of as a first example of weight-shifting operators,
which will be discussed more in detail in Section 4.5.

The original paper [78] constructs a family of differential operators P2k of order 2k
which are conformally covariant and act on scalars ϕ(0)(x) of conformal weight w = k− d

2
.

They takes the form
P2k = 2k + . . . , (2.59)

where 2 = ∇i∇i is the Laplacian associated to g(0) and where the dots denote corrections
involving the d-dimensional curvature. The resulting scalar P2kϕ has conformal weight
w − 2k = −w − d in t. These operators can thus be thought of as conformal Laplacians
in d dimensions.

Let us now turn to their construction using the ambient space. We first fix an ambient
space g̃

[
g(0), g(d)

]
associated to a d-dimensional metric g(0) and stress tensor VEV g(d).

By definition, a field ϕ(0)(x) is a conformal density of weight w in d dimensions if under
conformal rescaling of the metric

ĝ(0)ij = Ω2g(0)ij ⇒ ϕ̂(0) = Ωwϕ(0). (2.60)

In CFT terms, the conformal weight w is therefore minus the scaling dimension ∆. From
the form of the coordinate transformation (2.51) inducing a d-dimensional Weyl trans-
formation, one concludes the canonical nullcone extension of such a conformal density
field is the homogeneous function

f(t, x) = twϕ(0)(x). (2.61)

We now would like to solve the massless Klein-Gordon equation

2g̃f(t, x, ρ) = 0 (2.62)

on the ambient space g̃
[
g(0), g(d)

]
with Dirichlet boundary condition at ρ = 0

f(t, x, ρ = 0) = twϕ(0)(x) . (2.63)

This boundary condition does not fully characterise the second order problem, and we
expect an integration function to appear in the solution.

By parametrizing the conformal weight as w = k − d
2
, k = 1, 2 . . . , for a straight

ambient metric in normal form we can rewrite the ambient box operator as

2g̃f(t, x, ρ)

tw−2
= −2ρϕ′′ +

(
2k − 2− ρgijg′ij

)
ϕ′ +2ϕ+

1

2

(
k − d

2

)
gijg′ijϕ (2.64)
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where as usual primes denote derivatives in ρ and we defined f(t, x, ρ) = twϕ(x, ρ) . The
solution to equation (2.62) has then a ρ expansion of the form [78]

ϕ(x, ρ) = ϕ(0)(x) + ρϕ(1)(x) + · · ·+ ρk
[
ϕ(k)(x) + ψ(k)(x) log ρ

]
+O

(
ρk+1

)
, (2.65)

where ψ(k)(x) as well as all the coefficients ϕ(m) up to m = k− 1 are determined by ϕ(0).
The conformally covariant operator P2k is then defined through the equality

P2kϕ(0) = ckψ(k) , (2.66)

where ck is an arbitrary constant. The logarithmic term in (2.65) is present only for
integer k and thus the differential operators P2k can only be defined for integer k.

As an example, in the case of k = 1 the expansion for ϕ takes the form

ϕ(x, ρ) = ϕ(0) + ρ
(
ϕ(1) + ψ(1) log ρ

)
+ . . . . (2.67)

Evaluating (2.64) at ρ = 0, one finds an equation for ψ(1), which leads to

ψ(1) =
1

2

[
2ϕ(0) −

n− 2

4(n− 1)
Rϕ(0)

]
. (2.68)

One does not find any equation for ϕ(1), which constitutes the other piece of boundary
data to be specified.

It is possible to find the following recursive relation for the coefficient ϕ(ℓ+1),

2(ℓ+ 1− k)ϕ(ℓ+1) = ∂(ℓ)ρ

[
2ϕ− gijg′ij

(
ρϕ′ − w

2
ϕ
)]∣∣∣

ρ=0
, (2.69)

which holds as long as ℓ < k. From this, one can show that ϕ(ℓ+1) involves all the
coefficients of the ambient metric expansion g(m) with m ≤ ℓ, in addition to the trace of
g(ℓ). This means that an equation for ψ(k) appears after differentiating (2.64) k− 1 times
and it involves tr[g(k)], on top of all the lower order coefficients g(m) with m < k.

Notice that ϕ(1) contains 2ϕ(0), and similarly ϕ(2) ∼ 2ϕ(1) ∼ 22ϕ(0), so that ϕ(ℓ) will
have leading term 2ℓϕ(0) and ψ(k) ∼ 2kϕ(0) + . . . .

For specific classes of metrics g(0), equation (2.64) simplifies considerably and one can
find the operators P2k in a closed form. For flat boundaries, gij(x, ρ) = δij are constants
and P2k = 2k. For conformally Einstein g(0) such that Rij = 2λ(d−1)g(0)ij, and vanishing
g(d) they take the following closed form,

P2k =
k∏
j=1

(−2+ 2λcj), (2.70)

with cj =
(
d
2
+ j − 1

) (
d
2
− j
)
.
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A connection can be made between these results and holography switching from the
ambient coordinates (t, x, ρ) to the ALAdS slicing picture in equation (2.8). In these
coordinates (s, r, x), the ambient box operator factorizes as

2g̃f = −∂2sf +
gµν+
s2

∂µ∂νf + Γ̃M00 ∂Mf − gµν+
s2

Γ̃Mµν ∂Mf, (2.71)

where Γ̃M00 = 0 and
Γ̃Mµν = δMσ

(
Γ+
)σ
µν

+ sg+µνδ
M
0 . (2.72)

Then
2g̃f = −∂2sf − d+ 1

s
∂sf +

1

s2
2+f , (2.73)

where 2+ indicates the box operator on an ALAdS slice. Under the coordinate transfor-
mation (2.7), f(t, x, ρ) = twϕ(x, ρ) = sw

rw
ϕ(x, r). By defining F (x, r) = ϕ(x,r)

rw
, one finds

that
2g̃f = sw−2

[
2+ − w(w + d)

]
F (x, r). (2.74)

Therefore the equation 2g̃f = 0 for the ambient extension of a conformal density field
of weight w corresponds to the bulk equations of a massive scalar field F (x, r) with
M2 = w(w+ d). This can be interpreted as a generalisation of the calculation performed
for example in [40] on Minkowski space, where the dynamics of a massless scalar in four
dimensions is decomposed in terms of an infinite number of massive scalar modes on the
Euclidean AdS sections of Minkowski. In this section we have restricted for simplicity to
one such mode by fixing a specific conformal weight w.

Via this map, the properties of the expansion (2.65) can be easily related to those
of the holographic scalar computation in Subsection 1.3.3 through the identifications of
ϕ(0) and ϕ(k) as the holographic source and VEV for the dual scalar operator, as well as
by identifying w = ∆ − d. Holographically, it is then the coefficient ψ(k) related to the
scalar Weyl anomaly to define the conformal powers of the boundary Laplacian P2k.
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Chapter 3

Ambient isometries

As anticipated in Section 2.4, in this chapter we show that any conformal Killing vector
of the CFT background g(0) can be lifted to a near-nullcone isometry on the ambient
space. This is analogous to what happens in the embedding space formalism, where d-
dimensional conformal transformations are lifted to Lorentz transformations in (d+ 2)-
dimensional Minkowski spacetime. We first summarise the results, and in the sections
below we provide the details of the computation as well as several examples.

Consider a conformal transformation generated in d dimensions by E(0)
j (x) satisfying

∇iE
(0)
j +∇jE

(0)
i = 2ψ g(0)ij(x), (3.1)

with conformal factor ψ(x) = 1
d
∇lE

l
(0). One can extend it to the ambient space (at least

close enough to the nullcone) as an isometry K with components

K(t, ρ, x) = −tψ(x) ∂t + 2ρψ(x) ∂ρ + Ei(ρ, x) ∂i (3.2)

Here we denote
Ej(ρ, x) = Ej

(0)(x) + (∂iψ)

∫ ρ

0

dρ′gij(x, ρ′), (3.3)

where the integral of the inverse metric expansion yields for the first few orders

Ej(ρ, x) = Ej
(0)(x) + (∂iψ)

[
gij(0) ρ− P ijρ2 + o

(
ρ2
)]
. (3.4)

3.1 Derivation of the ambient isometries and their re-
lation with conformal symmetries

We would like to study the solutions to the Killing equation on a given ambient space g̃
with fixed free data

{
g(0), g(d)

}
. Working in the ambient coordinates X̃M = (t, xi, ρ), a

Killing vector
K = K0∂t +Kρ∂ρ +Ki∂i (3.5)
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satisfies
∇̃MKN + ∇̃NKM = 0, (3.6)

which can be expanded as

∂0K0 = 0, (3.7)
∂ρKρ = 0, (3.8)

∂0Kj + ∂jK0 =
2

t
Kj, (3.9)

∂0Kρ + ∂ρK0 =
2

t
Kρ, (3.10)

∂iKρ + ∂ρKi = gmlg′ilKm. (3.11)
∇iKj +∇jKi = −tg′ijK0 + 2

(
−gij + ρg′ij

)
Kρ, (3.12)

The first two equations imply that the Killing vector components depend on the coor-
dinates according to K0(x, ρ), Ki(t, x, ρ), Kρ(t, x). Equations (3.9) and (3.10) allow one
to fix the t and ρ dependence of KM . In particular, from (3.10) one finds that

K0(x, ρ) = A(x)ρ+B(x), (3.13)
Kρ(t, x) = t [ta(x) + A(x)] , (3.14)

for some integration functions a,A and B. From (3.9) then it follows that

Kj(t, x, ρ) = t [ρ∂jA(x) + ∂jB(x) + tEj(x, ρ)] , (3.15)

for some undetermined vector Ej(x, ρ).
If we plug these functions into (3.11), we find

t
[
∂ia(x) + ∂ρEi(x, ρ)− gmlg′ilEm(x, ρ)

]
+ 2∂iA(x)− gmlg′il (ρ∂mA(x) + ∂mB(x)) = 0,

(3.16)
which can be split into two equations,

∂ρEi(x, ρ)− gmlg′ilEm(x, ρ) + ∂ia(x) = 0 (3.17)

∂iA(x)−
1

2
gmlg′il (ρ∂mA(x) + ∂mB(x)) = 0. (3.18)

Similarly, from equation (3.12) one finds

∇iEj(x, ρ) +∇jEi(x, ρ) = 2(−gij + ρg′ij)a(x), (3.19)

∇i∂j [ρA(x) +B(x)] = −1

2
g′ij [ρA(x) +B(x)] + (−gij + ρg′ij)A(x). (3.20)
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The functions a,A and B do not depend on ρ and we can find them by considering the
equations above at ρ = 0. Here the components KM reduce to

K0(x, 0) = B(x), (3.21a)

Kj(t, x, 0) = t
[
∂jB(x) + tE

(0)
j (x)

]
, (3.21b)

Kρ(t, x) = t [ta(x) + A(x)] , (3.21c)

where E(0)
j (x) = Ej(x, ρ = 0). Equations (3.17)-(3.20) at ρ = 0 read

E
(1)
i (x)− gm(1)iE

(0)
m (x) + ∂ia(x) = 0 (3.22)

∂iA(x)−
1

2
gm(1)i∂mB(x) = 0. (3.23)

∇iE
(0)
j (x) +∇jE

(0)
i (x) + 2g(0)ija(x) = 0, (3.24)

∇i∂jB(x) +
1

2
g(1)ijB(x) + g(0)ijA(x) = 0, (3.25)

where g(1)ij = 2Pij, tr[g(1)] = R
d−1

and indices are raised and lowered with the metric g(0).
Let us focus on (3.22) and (3.24) first. The latter has precisely the form of the

conformal Killing equation for E(0)
i (x) on g(0), and in particular its trace implies that at

any ρ

a(x) = −1

d
∇iE

i
(0)(x), (3.26)

so that (3.24) can be rewritten as equation (3.1). One can also rewrite equation (3.17)
as

∂ρEi(x, ρ)− gmlg′ilEm(x, ρ)−
1

d
∂i
(
∇lE

l
(0)

)
= 0, (3.27)

which can be integrated yielding (3.3) and (3.3). Therefore, given a conformal Killing
vector E(0)

j (x) on g(0) satisfying (3.1), one can use (3.2) and (3.3) to define its ambient
extension KM , which is an isometry. The scalars A(x) and B(x) appearing in the general
solution of the ambient Killing vector equations described above are instead independent
and ultimately related to ambient translational invariance, as we show in the following
sections.

3.2 The B(x) ambient isometries
We now turn to (3.23) and (3.25). From the trace part of (3.25),

A(x) = −1

d

[
2+

1

2
tr[g(1)]

]
B(x) = −1

d

[
2+

R

2(d− 1)

]
B(x). (3.28)
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Equations (3.23) and (3.25) respectively can thus be rewritten as[
2∂i2+ dgm(1)i∂m + tr[g(1)]∂i + ∂i(tr g(1))

]
B(x) = 0 (3.29a)[

∇i∂j −
1

d
g(0)ij2+

1

2

(
g(1)ij −

1

d
tr[g(1)]g(0)ij

)]
B(x) = 0. (3.29b)

These are two equations that B(x) must satisfy at any ρ in order for KM to be a Killing
vector on the ambient space. We can simplify them noting that by the second Bianchi
identity and the commutator of two covariant derivatives

∇jRij =
1

2
∇iR, [∇j,∇i]V

k = Rk
mjiV

m, (3.30)

the covariant derivative ∇j of (3.29b) reads

∂i2B +
d

d− 2

[
Rim − R

d(d− 1)
g(0)im

]
∂mB +

d− 1

2
(∇iR)B = 0 (3.31)

By subtracting it from (3.29a), we obtain

(∇iR)B(x) = 0. (3.32)

Therefore, the equations (3.29) are satisfied in two cases, wither ∇iR = 0 or B = 0. If
∇iR = 0, then a new class of ambient Killing vectors parametrized by B is turned on
besides those related to conformal symmetries E(0)

j on g(0). Their components read

K0(x) = −1

d

[
2+

R

2(d− 1)

]
B, (3.33a)

Kρ(t, ρ, x) =
1

td

[
ρ2+

R

2(d− 1)
ρ+ d

]
B, (3.33b)

Ki(t, ρ, x) =
gij(x, ρ)

t

[
δmj + ρPm

j

]
∂mB. (3.33c)

For a conformally flat g(0), these isometries are simply the d + 2 translations of the
embedding space in disguise, as we check in Section 3.3. More generally, the fact that the
d-dimensional manifold must have constant curvature for the B(x) transformations to be
present means that locally g(0) is either a sphere, Euclidean space or a hyperboloid if we
assume it is a complete manifold. In all these cases the ambient space near the nullcone
is locally Minkowski and hence there we expect translations to be isometries. We check
this explicitly in the case of Euclidean AdS g(0) in Section 3.4. In less trivial cases fewer
such isometries may exist but nevertheless one can prove in full generality that they form
a self-commuting sub-algebra as we discuss in Section 3.4. In practice these additional
symmetries are useful to find an adapted set of coordinates to rewrite the ambient space
as Minkowski if d+2 such isometries exist. Note that generally when a stress tensor VEV
g(d) is present in the ambient expansion this additional class of B(x) ambient isometries
does not exist, even for g(0) with constant sectional curvature ∇iR = 0.
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3.3 Ambient isometries for flat g(0)
We now discuss the ambient isometries in the case of flat g(0)ij = δij. Here R = 0 and as
we discussed in Section 1.1, the generator of conformal transformations in d dimensions
is

E(0) =
[
ai + ωijx

j + λxi + bix2 − 2bkxkx
i
]
∂i. (3.34)

Since in this case

ψ(x) =
1

d
∇ · E(0) = λ− 2b · x, (3.35)

Ej(x, ρ) = Ej
(0) − 2ρbj, (3.36)

its ambient extension has components

K0 = −t (λ− 2b · x) , (3.37a)
Ki = Ei

(0) − 2ρbi, (3.37b)

Kρ = 2ρ (λ− 2b · x) . (3.37c)

The equations (3.29) for B are simply

∂2∂iB = 0, (3.38)(
∂i∂j −

1

d
∂2δij

)
B = 0. (3.39)

The most general form of B is then is

B(x) = C + Tix
i + αxixi , (3.40)

where C, Ti and α are d+ 2 integration constants.
Through (3.33), the corresponding ambient isometries read

K(t, x, ρ) = −2α∂t +
1

t

[
T i + 2αxi

]
∂i +

1

t

[
C + T ixi + α(x2 + 2ρ)

]
∂ρ . (3.41)

We can thus identify the following three classes of ambient isometries related to B(x),

K(C) =
1

t
∂ρ, (3.42a)

K(i) =
1

t
(∂i + xi∂ρ) , (3.42b)

K(α) = −2∂t +
2xi

t
∂i +

1

t

(
x2 + 2ρ

)
∂ρ. (3.42c)
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Using the change to Cartesian coordinates (2.17) and defining X± = X0 ±Xd+1, these
vectors read on Minkowski

K(C) = −∂0 + ∂d+1, (3.43a)
K(i) = ∂i, (3.43b)
K(α) = −∂0 − ∂d+1. (3.43c)

As anticipated, we conclude that on flat ambient spaces B(x) transformations correspond
to the d+ 2 translations.

If we turn on both B(x) and E(0)
j , the most general ambient Killing vector is

K0 = −2α− t (λ− 2b · x) , (3.44a)

Ki =
1

t

(
T i + 2αxi

)
+ Ei

(0) − 2ρbi, (3.44b)

K∞ =
1

t

[
C + T ixi + αx2

]
+ 2ρ

(
λ− 2b · x+ α

t

)
, (3.44c)

with E(0)
j given by (3.34). One can check that their commutators reproduce the Poincaré

algebra ISO(1, d+ 1).

3.4 Ambient isometries for g(0) with ∇iR = 0

In this section we consider ambient spaces where g(0) has constant sectional curvature,
∇iR = 0. Parametrising the Ricci scalar as R = 2λd(d − 1) and restricting to d > 2,
this entails that Rij = 2λ(d − 1)gij + Hij, with Hij traceless symmetric and satisfying
∇jHij = 0 due to Bianchi identities. Accordingly,

Pij = λgij +
Hij

d− 2
, g(1)ij = 2Pij , tr

[
g(1)
]
=

R

d− 1
= 2dλ . (3.45)

The class of isometries parametrized by B(x) in this case are of the form

K0(x, ρ) =
[
1− ρ

d
(2+ dλ)

]
B(x), (3.46a)

Kj(t, x, ρ) = t

[
ρ

(
H i

j

d− 2
+ λδij

)
+ δij

]
∂iB(x), (3.46b)

Kρ(t, x) = − t

d
(2+ dλ)B(x), (3.46c)

with B(x) satisfying (3.29b), i.e.[
∇i∂j −

1

d
gij2+

Hij

d− 2

]
B = 0, (3.47)
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which can be checked to imply (3.29a) once derived in ∇j.
The case of Einstein g(0) (with Hij = 0) is more tractable. The ambient isometries

parametrised by B(x) become

K0(x, ρ) =
[
1− ρ

d
(2+ dλ)

]
B(x), (3.48a)

Kj(t, x, ρ) = t (1 + λρ) ∂jB(x), (3.48b)

Kρ(t, x) = − t

d
(2+ dλ)B(x), (3.48c)

with B(x) satisfying (3.29b), i.e.

∇i∂jB =
1

d
gij2B. (3.49)

Given ∇iR = 0, the latter implies (3.29a), that is

(2+ 2λ) ∂iB(x) = 0, (3.50)

or equivalently
∂i (2+ 2λd)B(x) = 0. (3.51)

If we fix two generic Killing vectors KM(B1) and KN(B2) (where B1 and B2 indicate
two different choices of the transformations parameters contained in B), one can check
that they commute for Einstein boundaries by virtue of equations (3.49) and (3.51).
Thus, the B isometries constitute a Cartan subalgebra of the ambient isometries. This
is compatible with them being translations on the ambient space.

3.4.1 AdSd.

Consider the example of a Euclidean AdSd in Poincaré coordinates as the g(0) metric,

g(z, x) =
1

z2
(
dz2 + dxadxa

)
, a = 2 . . . d, (3.52)

which is Einstein with λ = −1
2
. Assuming no stress tensor VEV, the subsequent ambient

metric is
g̃ = 2ρdt2 + 2tdtdρ+ t2

(
1− ρ

2

)2
g(z, x). (3.53)

From equation (3.51) we conclude that

(2− d)B(z, x) = αd, (3.54)

for some constant α, so that we can rewrite (3.49) as

∇i∂jB = gij(B + α). (3.55)
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From the i = j = z component we find

B(z, x) =
S(x)

z
+ zT (x)− α, (3.56)

while the remaining equations constrain T to be a constant, as well as imposing that

∂a∂bS = 0 for a ̸= b, (3.57a)
∂2aS = 2T, (3.57b)

leading to S(x) = β + vaxa + Tx2. Therefore, B(z, x) contains again d+ 2 free constant
parameters. It reads

B(z, xa) =
β

z
+
vaxa

z
+ T

(
z +

x2

z

)
− α. (3.58)

The corresponding transformations on the ambient space are

K(β) = − 1

2z
∂t −

1

t
(
1− ρ

2

)∂z + 1

zt

(
1 +

ρ

2

)
∂ρ, (3.59a)

K(a) = − 1

2z
xa∂t −

xa

t
(
1− ρ

2

)∂z + z

t
(
1− ρ

2

)∂a + 1

zt

(
1 +

ρ

2

)
xa∂ρ, (3.59b)

K(T ) = − 1

2z
(z2 + x2)∂t +

z2 − x2

t
(
1− ρ

2

)∂z + 2z

t
(
1− ρ

2

)xb∂b + z2 + x2

zt

(
1 +

ρ

2

)
∂ρ, (3.59c)

K(α) = −1

2
∂t −

1

t

(
1− ρ

2

)
∂ρ. (3.59d)

One can check explicitly that commute with each other. Through the coordinate trans-
formation (2.34) one can indeed show these are the translations on Minkowski space.

Turning to the ambient isometries inducing conformal transformations on g(0), recall
that being AdS conformally flat, a conformal vector on the flat space parametrized by
(z, xa) such as (3.34) is also a conformal vector on AdS. Thus in this case

E(0) = ξz∂z + ξa∂a, (3.60)

with

ξz = az + ωzaxa + λz + (x2 − z2)bz − 2zbaxa, (3.61a)
ξa = aa + ωabxb + λxa + (x2 + z2)ba − 2(bzz + bcxc)x

a, (3.61b)

with associated conformal factor

ψ = −1

z

[
az − ωzaxa + (z2 + x2)bz

]
. (3.62)
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so that from (3.3) one finds

Ej(x, ρ) = ξj + gij(x)
ρ

1− ρ
2

∂iψ. (3.63)

The components of this class of ambient isometries thus read,

K0(t, x, ρ) =
t

z

[
az − ωzaxa + (z2 + x2)bz

]
, (3.64a)

Kz(x, ρ) = ξz +
ρ

1− ρ
2

[
az − ωzaxa + (x2 − z2)bz

]
, (3.64b)

Ka(x, ρ) = ξa +
zρ

1− ρ
2

[ωza − 2xabz] , (3.64c)

Kρ(x, ρ) = −2ρ

z

[
az − ωzaxa + (z2 + x2)bz

]
. (3.64d)

3.5 Concluding remarks
In the context of the ALAdS realization it is well known that conformal symmetries are
mapped to asymptotic symmetries in the bulk and a statement analogous to (3.2) can be
found for instance in [70]. This relation between conformal transformations on g(0) and
ambient isometries can thus be seen as inherited from the ALAdS slicing (2.15). Note
that by definition any ambient space is also endowed with a conformal Killing vector,
the homothety T = t∂t under which LT g̃ = 2g̃.

CFT correlators on a given non-conformally flat metric g(0) satisfy Ward Identities
associated to the residual conformal symmetries of the background. From the ambient
perspective, such Ward Identities take the form (2.49) and thus require to know the
generators of such symmetries on g(0) as well as their ambient extension. However it may
not be a trivial task to identify them for complex enough geometries. For this reason, in
Appendix A we illustrate useful techniques to determine the conformal Killing vectors
for several classes of manifolds g(0).

We now wish to make few comment about the use that we can make of the ambient
isometries (3.2) and (3.33). First of all, they help find adapted coordinates to describe the
ambient geometry. They also play an important role when solving the geodesic equations
on a given ambient space since they provide first integrals of motion that allow one to
automatically reduce part of the geodesic equations to first order ODEs (see Appendix
B for more details). As we will see in Chapter 4, solving the geodesic equations on a
given ambient space is a crucial step for the ambient formalism. Finally, these ambient
isometries may further constrain the form of ambient correlators when considering more
general states requiring additional ingredients other than the ambient metric and covari-
ant derivatives of the curvature, and may enter themselves as ingredients for ambient
building blocks. We refer the reader to Chapter 4 for more comments on these issues.
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Let us finally redirect the reader to Chapter 7 for the discussion of an interesting
connection between ambient isometries and the asymptotic symmetries of flat spacetimes
as addressed in the context of flat holography.
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Chapter 4

Ambient correlators

Given a CFT in a state defined by the VEVs {⟨Oi⟩} and on the metric background g(0),
we must find a prescription to associate a specific ambient space to it. As discussed in
Section 2.1 the data g(0) are not enough to specify the ambient metric, since one must also
provide additional near-nullcone data g(d)ij. Once this data is specified the construction
proceeds by fulfilling the Ricci-flatness condition. It is natural to associate g(d)ij with the
VEV of the stress-energy tensor in some way.

In order to provide a concrete proposal, we lean on AdS/CFT. As reviewed in Sub-
section 1.3.2, according to AdS/CFT any hyperbolic slice of an ambient space in the
form (2.8) encodes the dynamics of a CFT on the background g(0) and in a precise state.
We propose to associate a CFT in the state {⟨Oi⟩} and background g(0) to the ambient
space constructed with the corresponding ALAdS slices according to AdS/CFT. Other
states where additional VEVs are turned on would require an extension of the ambient
space to accommodate for such additional data. In this case one should include other
matter fields and a modification of the Ricci-flatness condition.

This proposal does not necessarily mean that the resulting ambient-space analysis
only applies to holographic CFTs. Recall that the embedding space solves the kinematics
of CFTs in the vacuum state on conformally flat backgrounds, and its hyperbolic slices
are pure (A)dS spaces. Nonetheless, we know that using the embedding space we can
solve the symmetry constraints on correlators not only for theories which are strictly-
speaking holographically dual to pure AdS, but also for free or weakly coupled CFTs in
the vacuum state. The ambient space will be treated in a similar way: although we use the
AdS/CFT dictionary to construct it, we expect it to allow one to solve the kinematical
constraints of any CFT in that background and state, also non-holographic ones. We will
explicitly see this in the example of thermal CFTs discussed in Chapter 5.

Let us now construct Weyl-covariant building blocks that can appear in correlators
of a CFT on the metric background g(0) with a given stress tensor VEV ⟨Tij⟩, using the
corresponding ambient space we prescribed. The focus will be on scalar n-point functions
as a first test of the formalism. The case of flat ambient space correlators described in
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Section 2.2 will guide our steps. There, for scalar n-point functions the only available
building block is Xij. Since the ambient space accounts for setups with less symmetry
we expect a larger number of allowed invariants than in the embedding space. After
assembling these Weyl-covariant building blocks into correlators on the ambient space,
the CFT correlators are obtained by taking the projection onto a section of the nullcone.
We assume the section to be at t = 1; through a Weyl transformation it is easy to
move to a conformally-related section. In Section 4.5 we describe how to generalise this
discussion to spinning correlators.

4.1 The ingredients
We have to identify the (d + 2)-dimensional objects that are suitable ingredients for
constructing Weyl-covariant building blocks.The objects at hand are the ambient space
metric and covariant derivative. Whilst in some sense these objects survive in the embed-
ding space limit as the Minkowski metric and partial derivative, the ambient Riemann
tensor R̃ABCD does not. Thus, R̃ABCD and its ambient covariant derivatives form natural
ingredients that embody departures from embedding space results.

For correlation functions the other important ingredient is the homothetic vector, T .
As discussed in Section 2.2, T provides the ambient space generalisation of the embedding
space insertion pointsXi for correlation functions. For n-point functions we have multiple
distinct insertion points and need to parallel transport all relevant quantities to the same
point, so that everything lives in the same tangent space and contractions can be made.
Typically the geodesics along which we transport leave the ambient nullcone and explore
the bulk of ambient space. This means that transported quantities get affected by the
non-trivial (d+ 1)-dimensional ALAdS geometry. The ambient curvature itself contains
information about the state. Explicitly,

even d: (∇̃ρ)
d
2
−2R̃ρijρ =

t2

2

(
d

2

)
! g(d)ij + F [g(0)] +O(ρ) , (4.1)

odd d: (∇̃ρ)
d+1
2

−2R̃ρijρ =
t2

2
√
π
Γ

(
d

2
+ 1

)
g(d)ij√
ρ

+O(ρ0) , (4.2)

where F [g(0)] is a local functional of g(0), while g(d)ij is related to the state in the pre-
scription outlined above. This is one of the main ways the CFT state enters the building
blocks that we are constructing.

Note that in more general settings where other operators take non-vanishing VEVs
these must be added to the legitimate ingredients. If residual conformal Killing vectors
are present, the corresponding ambient isometries and their parallel transport may also
enter the list of ingredients necessary to construct a complete set of invariants.

Finally, we close this subsection by listing some useful properties of the ambient
Riemann tensor, R̃ABCD. The Weyl, Cotton and Bach tensors can be obtained as the
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restriction of the ambient curvature to the d-dimensional background [23]1,

R̃ijkl

∣∣∣
ρ=0,t=1

= Wijkl , R̃ρjkl

∣∣∣
ρ=0,t=1

= Cjkl , R̃ρjkρ

∣∣∣
ρ=0,t=1

= − Bij

d− 4
. (4.3)

Working perturbatively at small ρ one can obtain expressions in closed form for the
components of the ambient Riemann tensor. For conformally flat g(0),

R̃ρjkρ =
d

4

(
d

2
− 1

)
g(d)jk ρ

d
2
−2t2 +O(ρ

d
2
−1) , (4.4)

R̃ρjkl =
d

4

[
∇lg(d)jk −∇kg(d)jl

]
ρ

d
2
−1t2 +O(ρ

d
2 ) , (4.5)

R̃ijkl =
d

4

(
g(0)ilg(d)jk + g(0)jkg(d)il − g(0)ikg(d)jl − g(0)jlg(d)ik

)
ρ

d
2
−1t2 +O(ρ

d
2 ) , (4.6)

while for generic g(0) in d = 3 the components take the same form as above except for

R̃ρjkl = [∇lPjk −∇kPjl] t
2 +

d

4

[
∇lg(d)jk −∇kg(d)jl

]
ρ

d
2
−1t2 +O(ρ) . (4.7)

where Pij is the boundary Schouten tensor, (2.6). We will make use of these expressions
later when studying CFTs at finite temperature and on squashed sphere backgrounds.

4.2 The building blocks
We now construct building blocks on the ambient space that can enter CFT correlators
based on Weyl covariance. Following the previous discussion, using parallel transport we
must combine the local quantities

T, g̃, (∇̃)kR̃iem (k = 0, 1 . . . ), (4.8)

evaluated at the different insertion points.2 We first focus on scalar invariants, turning
to invariants with spin in Section 4.5.

The simplest scalar invariant whose expression we are missing on a generic ambient
space is X̃ij, the ambient space analogue of the square-distance between insertions. We
construct it just as prescribed in the flat case in Section 2.2: we parallel transport Ti =
T (X̃i) to X̃j yielding T̂i, which we then contract with Tj = T (X̃j) at X̃j. In Appendix B
we discuss in detail how to find geodesics between two points lying on a section of the

1Here we are assuming that d ̸= 4. If d = 4, as we will remark later, the stress tensor VEV contained
in g(d)ij enters the R̃ρjkρ

∣∣∣
ρ=0,t=1

components, and thus these cannot be written only in terms of the

boundary metric g(0). As a consequence, the expression in (4.3) is no longer valid in d = 4.
2Note that gradients of T do not need to be considered since ∇̃ATB = g̃AB .
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ambient nullcone, how to perform the parallel transport and finally obtain T̂i. The key
result is that

X̃ij = −2 T̂i · Tj = ℓ(X̃i, X̃j)
2, (4.9)

where ℓ(X̃i, X̃j) is the geodesic distance between the two insertion points on the ambient
space. This generalises the result we found earlier for the flat background, (2.25). Note
that it does not matter which insertion we parallel transport, the result is symmetric
under i↔ j.

Note that the invariant (4.9) relies on the existence of an ambient geodesic between
the two insertions. It is conceivable that in some cases no such geodesic exists, in which
case we lose this building block for constructing correlators. It is also possible that there
is more than one geodesic, in which case there will be an enhancement in the number of
available invariants to build correlators.3 However, under mild assumptions given any two
points on the ambient nullcone there is one and only one geodesic connecting them [88,89].

In addition to X̃ij we can construct new bi-local scalar invariants by directly using
the ambient curvature and its covariant derivatives. Assembling these ingredients one
immediately discovers that not all such invariants are independent, due to a number of
identities: the contractions of T with Riemann are trivial [23],

TDj R̃ABCD = 0, (4.10)

and contractions with gradients of Riemann are redundant since,

TDj R̃ABCD,M1...Mr = −
r∑
s=1

R̃ABCMs,M1...M̂s...Mr
, (4.11a)

T Pj R̃ABCD,M1...MsPMs+1...Mr = −(s+ 2)R̃ABCD,M1...Mr

−
r∑

t=s+1

R̃ABCD,M1...MsMtMs+1...M̂t...Mr
,

(4.11b)

where commas denote covariant derivatives and hatted indices are understood as re-
moved. These properties, along with Ricci-flatness R̃AB = 0, reduce the number of inde-
pendent scalar invariants.

Based on these observations, in what follows we restrict our attention to the following
set of scalar invariants constructed at Xj, the weighted curvature invariants :

W
(k,n)
ij ∼ contr

[
T̂i ⊗ . . .⊗ (∇̃)r1Riem ⊗ . . .⊗ (∇̃)rkRiem

]
, (4.12)

3This latter possibility occurs for states described by thermal AdS spaces, where there is an infinite
number of geodesics connecting any two nullcone points, enumerated by the number of windings around
the thermal circle. Indeed, a sum over such contributions is required to reproduce the corresponding
thermal correlator, as we show later in Section 5.5.3.
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where contr indicates the full contraction of all the indices using the ambient metric at
Xj. They are diffeomorphism invariants in d + 2 dimensions, while displaying a precise
weight under Weyl transformations (hence being Weyl covariant quantities). Since T̂i
are obtained by parallel transport, one can build a distinct set of invariants for each
corresponding geodesic.

We have labelled the W (k,n)
ij by the number of Riemann’s they contain, k. This is a

good label once we fix some redundancies. The first redundancy is associated to use of
the identity ∇̃DR̃ABCD = 0 which follows from the second Bianchi identity and Ricci-
flatness. Because of this, we require that none of the covariant derivatives within each
factor (∇̃)rRiem in (4.12) are contracted with the Riemann tensor itself, regardless of
the ordering. This is because by repeated commutation of the covariant derivatives one
can eventually reach a form where ∇̃DR̃ABCD = 0 can be applied to one term; all
remaining terms then take the form of other terms appearing in (4.12) with higher k.
The second redundancy is the remaining ordering ambiguity of the covariant derivatives
within each factor (∇̃)rRiem, which we fix by symmetrisation, as a matter of convention.
The remaining label n enumerates all possible invariants with that k.

As a note of caution, the weighted curvature invariants (4.12) do not necessarily
include all possible invariants. For example, we have not considered covariant derivatives
of T̂i at X̃j, nor do we consider parallel transport of the ambient curvature and its
covariant derivatives from X̃i to X̃j. In what follows we assume that (4.12) constitute a
basis without including such contributions. Evidence in support of these assumptions is
brought by the results presented in the explicit examples in Chapters 5 and 6 where we
show that the invariants of the form (4.12) under these assumptions constitute a basis.

Let us discuss invariants with k = 0, 1, 2. There are no nontrivial k = 0 weighted
curvature invariants, since without Riemanns in (4.12) there are only contractions of T̂i
which are zero; there is just the identity. There are also no k = 1 weighted curvature
invariants, and a proof of this result proceeds as follows. At most two of the indices of
Riemann can be contracted with T̂i due to the antisymmetry of Riemann indices. Thus
at least two of the four indices of the ambient Riemann are to be contracted with either
the inverse metric or covariant derivatives. Any contraction with an inverse metric yields
zero by Ricci-flatness. Any contraction with covariant derivatives is a term that is not
a member of the k = 1 set of invariants, according to the definition given above. Later,
in the examples discussed in Chapters 5 and 6 we provide explicit examples of k = 2
building blocks, which play an important role in constructing ambient 2-point functions.

As explained in Section 2.4 the engineering dimension, ∆, of an ambient scalar is
minus its overall weight in t. It can be easily computed with the same rules used in
the embedding space4, by viewing TM and ∇̃M as dimension −1 and 1 quantities re-

4For ease of comparison with the mathematical literature, we observe this is not the perspective
typically adopted in conformal geometry. There the metric g̃ and the Riemann (meant as tensors) both
have dimensions –2 following from their homogeneity in t, while T and the ambient derivative ∇̃M have
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spectively. The Riemann tensor contains two derivatives of the metric and we conclude
it has dimension 2. For weighted curvature invariant (4.12) with k Riemann tensors, r
covariant derivatives and ℓ T̂i vectors,

∆ = 2k + r − ℓ. (4.13)

Note that r+ℓ must be even in order to be able to build a scalar with an integral number
of inverse metrics. From (4.13) this entails that all such invariants have even dimensions.

If an invariant of the form (4.12) has ∆ ̸= 0 we can easily construct a ∆ = 0 invariant
from it by multiplying by an appropriate power of X̃ij. However, a useful class of ∆ = 0
invariants are those of the form (4.12) with 2k + r = ℓ. Due to the symmetries of the
Riemann tensor their structure is completely fixed and one can list them in full generality.
If we define the partial contraction

R(r̂)
AC = T̂M1

i . . . T̂Mr̂
i T̂Ui T̂

V
i ∇̃M1 . . . ∇̃Mr̂

R̃AUCV , (4.14)

any ∆ = 0 curvature scalar constructed out of k Riemann’s and r derivatives can be
written as a linear combination of chains of the form

R(r1)M2

M1
R(r2)M3

M2
. . .R(rk)M1

Mk
, (4.15)

where each such chain is constrained to have
∑

i ri = r. We will utilise invariants from
this class in Sections 5 and 6.

A caveat to be aware of concerns the limit of expressions of the form (4.12) to a
section of the nullcone ρ = 0, t = 1. In particular this involves the behaviour of the
ambient Riemann tensor when approaching the nullcone, some examples of which are
given in (4.1)-(4.2) and (4.4)-(4.7). From the metric expansion one can show that in even
d only non-negative integer powers of ρ appear in components of the ambient Riemann
tensor, while in odd d fractional powers of ρ appear when a non-vanishing g(d) is present.
For odd d the RHS of equation (4.2) diverges for ρ→ 0. By taking more derivatives such
divergences become stronger. For the purpose of constructing ambient invariants this
means that scalars constructed using curvature terms (∇̃)rR̃ with high enough r may be
singular in odd d when restricted to the boundary. Such terms must either be discarded,
or combined into linear combinations to cancel such infinities. Despite these apparent
complications for odd d, we were able to find a complete basis of curvature invariants for
the d = 3 example of a CFT on a squashed 3-sphere in Chapter 6.

Analogously to the embedding formalism, correlators in d + 2 dimensions must be
invariant under the (near-nullcone) isometries encoding d-dimensional conformal sym-
metries. Geodesics and geodesic transport preserve the symmetries of the geometry

dimension zero. Their components have of course different weight, and this is what one considers in the
embedding formalism instead. For example, the vector T = t∂t has weight zero in t, while its components
TM = tδM0 clearly have dimension –1. In practice either perspectives lead to the same answer (4.13),
hence in the main discussion we stick to the component-based picture, which is rather unnatural from
the perspective of conformal geometry but very common in the QFT literature.
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and hence ambient building blocks constructed out of the ambient metric and covari-
ant derivatives of the curvature automatically satisfy the constraints imposed by the
near-nullcone symmetries. One can explicitly see this for instance in the invariants con-
structed in Section 5.3 in the case of thermal CFTs – they are invariant under the residual
symmetries of the CFT. To conclude, the prescription for the ambient building blocks
discussed here automatically implements the residual conformal Ward Identities, leaving
Weyl covariance as the only non-trivial kinematic constraint to be imposed.

4.3 Scalar 2-point functions

In the previous sections we constructed a class of ambient invariants – namely, X̃ij (4.9)
and W (k,n)

ij (4.12) – that enter CFT correlators on general backgrounds and states based
on Weyl covariance. We now propose a general form of ambient scalar 2-point functions
that arranges those invariants so as to exhibit the required properties,

⟨O(X̃1)O(X̃2)⟩ =
C∆

(X̃12)∆
lim
ρ→0
t→1

[
1 +

∞∑
k=2

I(k)
2

]
, (4.16)

where
I(k)
2 =

∑
n

cnX̃
∆n/2
12 W

(k,n)
12 , (4.17)

and ∆n denotes the dimension of W (k,n)
ij given by (4.13). The constant coefficients cn are

determined by the dynamics of the CFT. The sum over k in (4.16) starts from terms of
order O(R̃iem)2 since in Subsection 4.2 we proved that I(1)

2 = 0, while I(0)
2 is just the

identity, already accounted for as the first term in (4.16). The overall scaling dimension
is −2∆, as required by Weyl covariance. The correlator is analytic in curvatures and
continuously connected to the flat space limit in which X̃12 → X12 and I(k)

2 → 0, where
we recover the embedding space 2-point function (2.26) with the same constant C∆.

As discussed in Section 4.2 there may be more than one geodesic path connecting the
two insertion points. Parallel transporting along each of them can generate independent
invariants and thus an implicit sum over all the ambient geodesics connecting X̃1 and
X̃2 is understood in the RHS of (4.16).

Let us now discuss which states we expect to be able to describe using (4.16). For
a CFT in any background g(0) and state, at short distances the background becomes
approximately flat and as such we should have a convergent OPE of the form (1.14). We
can use it to reduce a 2-point function of a scalar operator O of scaling dimension ∆ to
a sum of 1-point functions of exchanged operators,

⟨O(x1)O(x2)⟩ ≃
1

|x12|2∆
∑

ϕ∈O×O

hϕ(xi, ∂i) ⟨ϕ(x2)⟩ , (4.18)
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where the ≃ is understood as an equality modulo contact terms. Since R̃iem ∼ ⟨T ⟩ (see
(4.1) and (4.2)) schematically we have that I(k)

2 ∼ ⟨T ⟩k. Therefore we expect (4.16) to
account for the multi-stress tensor contributions in (4.18), at least for large-N theories
where multi-stress tensor 1-point functions factorise. However, we conjecture that our
curvature invariants provide a basis for multi-stress tensor contributions also for theories
which are not at large-N . Operators other than the multi-stress tensors contributing to
the RHS of (4.18) must be captured using other classes of ambient invariants, and we
comment on this issue in Section 4.5. We stress that the multi-stress tensors are universal
contributions in any CFT correlator, and this is what the ambient geometry captures
through (4.16).

For holographic CFTs the ambient 2-point function (4.16) has an additional interpre-
tation, providing multi-stress tensor corrections to the well-known geodesic approxima-
tion of 2-point functions in the context of AdS/CFT [90,91]. In Appendix B we discuss
how the presence of the homothetic vector T on the ambient space fully fixes the compo-
nent of a particle trajectory along that direction. As we show in Appendix C if we focus
on geodesics connecting points on the ambient nullcone, the remaining d + 1 equations
for the unknown components of the geodesic path turn out to be the geodesic equations
on the ALAdSd+1 section associated to that ambient space in a non-affine parametrisa-
tion. In this picture, the endpoints of the geodesic are boundary points on the conformal
compactification of ALAdSd+1. In Appendix C we further prove that the square-geodesic
distance on the ambient space X̃12 is related to the (renormalised) geodesic distance on
the associated ALAdSd+1 space. Through (4.9) we can write their relation as

1

(X̃12)∆
= r−2∆e−∆LAdS

∣∣
r=0

(4.19)

for an arbitrary real ∆, where r is the Fefferman-Graham coordinate on the ALAdS space
as in the metric (2.7). Here LAdS indicates the (divergent) length of the corresponding
geodesic on the ALAdSd+1 section. The RHS of (4.19) coincides with the geodesic ap-
proximation for a scalar 2-point function of an operator of dimension ∆ in the context of
AdS/CFT. It can be argued to follow from the saddle-point approximation of the first-
quantised path integral for a massive particle and consequently its validity is restricted
to the large-∆ regime. We can thus interpret the ambient curvature invariants in (4.16)
as encoding the quantum corrections from the multi-stress tensor contributions at finite
∆ beyond the semi-classical approximation provided by (X̃12)

−∆.
Given that I(1) = 0, the coefficient in the ambient expansion at order O(R̃iem)

predicted by the geodesic approximation is exact. Therefore a universal prediction from
the ambient formalism is that correlators in the geodesic approximation are exact up to
order O(R̃iem)2 corrections if no other operator with scaling dimension ∆ < 2d acquires
a VEV.
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4.4 Scalar higher-point functions
Similar expressions to (4.16) can be written for scalar higher-point functions. In the
ambient formalism scalar 3-point functions read

⟨O1O2O3⟩ =
C123

(X̃12)α123(X̃13)α132(X̃23)α231

lim
ρ→0
t→1

[
1 +

∞∑
k=2

I(k)
3

]
, (4.20)

where the αijk coefficients are the same as those defined in (1.23) to ensure the correct
scaling properties. To recover the expression on the embedding space in the flat limit, C123

must be the same as in (1.23). Here I(k)
3 denote linear combinations of weight-0 curvature

invariants containing k ambient Riemanns and constructed with the pairwise parallel
transport of tensors from the three insertions X̃1, X̃2, X̃3. The fact that bi-local invariants
provide a basis for 3- and higher-point functions (with no need to resort to n-local
invariants) is justified by the following remarks. First, this is what happens in embedding
space correlators with arbitrary spin and with an arbitrary number of insertions. Second
and more fundamental, as stressed above the OPE is expected to converge at short
enough distances in general backgrounds and states, and OPE contractions are pairwise.

The linear combinations I(k)
3 are thus products of bi-local invariants from the three

insertion points and as such they can be decomposed in terms of the 2-point linear
combinations I(m)

2 with generic coefficients. From I(1)
2 = 0 it follows that I(1)

3 = 0;
furthermore one can check explicitly that

I(2)
3 (X̃1, X̃2, X̃3) = P

(2)
3 (X̃1, X̃2, X̃3) , (4.21)

I(3)
3 (X̃1, X̃2, X̃3) = P

(3)
3 (X̃1, X̃2, X̃3) , (4.22)

where we defined

P
(k)
3 (X̃1, X̃2, X̃3) = I(k)

2 (X̃1, X̃2) + I(k)
2 (X̃1, X̃3) + I(k)

2 (X̃2, X̃3), (4.23)

and where each I(k)
2 is thought of as containing generic different constant coefficients.

Turning to fourth order invariants, the most general linear combination is of the form

I(4)
3 (123) = P

(4)
3 (123) + I(2)

2 (12) I(2)
2 (13) + I(2)

2 (12) I(2)
2 (23) + I(2)

2 (13) I(2)
2 (23) , (4.24)

where we adopted a convention where one denotes Xℓ by ℓ. The last three terms can be
rewritten as [P

(2)
3 (123)]2. The latter also includes [I(2)

2 (12)]2, [I(2)
2 (13)]2 and [I(2)

2 (23)]2.
Note that these three terms are already contained in P

(4)
3 (123) and their appearance

in [P
(2)
3 (123)]2 can be reabsorbed by shifting the corresponding arbitrary coefficients

in P
(4)
3 (123). All in all we can rewrite the linear combination of fourth order 3-point

invariants as
I(4)
3 (123) = P

(4)
3 (123) +

(
P

(2)
3 (123)

)2
. (4.25)
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Studying higher orders one finds the following recursive relation between order k and
order k − 2 invariants,

I(k)
3 (123) = P

(k)
3 (123) + P

(2)
3 (123)P

(k−2)
3 (123) . (4.26)

Using these recursion relations one finds the expression for the general linear combination
of curvature invariants of order k in terms of the bi-locals I(k)

2 (X̃i, X̃j) involved in 2-point
functions,

k even: I(k)
3 (X̃1, X̃2, X̃3) =

k/2∑
ℓ=1

(
P

(2)
3

) k
2
−ℓ
P

(2ℓ)
3 , (4.27)

k odd: I(k)
3 (X̃1, X̃2, X̃3) =

k/2∑
ℓ=3/2

(
P

(2)
3

) k
2
−ℓ
P

(2ℓ)
3 , (4.28)

where the sum in the odd case is over half-odd ℓ. These expressions are manifestly sym-
metric (modulo the different coefficients in the linear combinations) under permutations
of the insertion points X̃i and are of the appropriate order in the ambient Riemann. The
full 3-point function is not invariant under permutations of the three insertion points for
different scaling dimensions ∆i. However this different behaviour under Weyl transfor-
mations is accounted for by the overall factor in front of (4.20).

Let us now turn to scalar n-point functions. Based on our assumptions and on a
consistent reduction to (1.24) in the flat limit, their form on the ambient space is fixed
to

⟨O1(X̃1) . . . On(X̃n)⟩ =
(∏
i<j

X̃
αij

ij

)
lim
ρ→0
t→1

[
f (u) +

∞∑
k=2

I(k)
n

]
, (4.29)

where the cross-ratios u are now in terms of the ambient geodesic distances

u[pqrs] =
X̃prX̃qs

X̃pqX̃rs

, (4.30)

and f is the same function of the cross-ratios present in the corresponding correlator for
the same CFT in vacuum on flat space.

Using combinatorial arguments similar to those for 3-point functions one can straight-
forwardly generalise (4.27)-(4.28) to any n,

k even: I(k)
n (X̃1 . . . X̃n) =

k/2∑
ℓ=1

(
P (2)
n

) k
2
−ℓ
P (2ℓ)
n , (4.31)

k odd: I(k)
n (X̃1 . . . X̃n) =

k/2∑
ℓ=3/2

(
P (2)
n

) k
2
−ℓ
P (2ℓ)
n . (4.32)
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Here we defined
P (k)
n (X̃1 . . . X̃n) =

∑
(Y,Z)∈Cn

2 (X̃1...X̃n)

I(k)
2 (Y, Z) , (4.33)

where the sum is over the
(
n
2

)
pairwise combinations (Y, Z) of the points (X̃1 . . . X̃n).

This definition reduces to (4.23) for n = 3.
These combinatorial relations show that knowing the ambient curvature invariants

that enter the scalar 2-point function up to a certain order k allows one to straightfor-
wardly write the form of generic ambient scalar n-point functions to the same order k.
In particular, I(1)

2 = 0 implies I(1)
n = 0 for any n. This entails that the universal validity

of the geodesic approximation up to O(R̃iem2) corrections extends to any scalar n-point
function in any CFT on generic backgrounds and states, as long as no operator with
scaling dimension lower or equal than d has a non-vanishing VEV. Here by geodesic
approximation of a generic n-point function we mean the first term

(∏
X̃
αij

ij

)
f(u) in

(4.29).

4.5 Open directions: correlators with spin and more
general states

We would like now to provide some comments on how to generalise the scalar correla-
tors discussed above to those with spin. As before, the embedding space correlators are
generalised to ambient correlators by adopting the homothetic vector TM in lieu of the
position on Minkowski XM , and the ambient metric g̃MN instead of ηMN . On top of this,
one considers generically infinite sum of ambient curvature invariants which vanish in
the flat limit.

The building blocks to be used in this case must have free indices on the ambient
space, meaning that curvature invariants will be of the same form as (4.12), where con-
tractions are understood as partial contractions so as to end up with the appropriate
spin. Such free ambient indices transform as generic ambient tensors (i.e. weighted tractor
tensors when restricted to the nullcone) under Weyl transformations through the matrix
UM

N(Ω). We thus conjecture that a set of ambient curvature invariants with such partial
contractions form a basis for multi-stress tensor contributions to n-point functions of
general spin.

As is customary in the embedding space [20], for practical purposes it is convenient to
reduce the problem of classifying ambient spinning structures to finding scalar structures
by considering ambient polarisation vectors ZM

(i), one at each insertion point, and treating
them as additional local ingredients to be used to construct scalar bi-local invariants
besides (4.8). The number of Z(i)’s that such invariants must contain is fixed by the spin
of the inserted operators. To retrieve the spinning expression on the ambient space it is
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sufficient to use appropriate differential operators acting on the Z(i)’s.
However there exists a possible alternative path for spinning ambient building blocks.

The relationship described in Section 2.4 between tractor and ambient connections allows
one to generalise the so-called weight- and spin-shifting operators on the embedding
space introduced in [57] to the ambient space. These differential operators act on tensor
structures modifying their scaling dimension and spin, and by leveraging the many results
of tractor calculus one is able to generalise them to the ambient space.

More precisely, given such operators on the embedding space it is sufficient to perform
the map

XM → TM , ∂M → ∇̃M , ηMN → g̃MN , (4.34)

giving local weight- and spin-shifting operators on the ambient space. Operators obtained
in this way satisfy all the required properties of a weight- or spin-shifting operator as
put forward in the flat space case [57]. Note that to use these operators requires pairwise
contractions to obtain bi-local differential operators acting on two distinct insertions,
and on the ambient space this involves parallel transport of differential operators.

We should point out that the use of these differential operators on the embedding
space is subject to issues regarding the completeness of the resulting tensor structures.
The same issues will also arise for their ambient space counterparts. Nevertheless, am-
bient weight- and spin-shifting operators surely appears as an interesting way to study
correlators with spin. We defer more detailed discussions of these issues and generalisa-
tions to future work.

As mentioned at the beginning of this chapter, according to our prescription it would
be necessary to couple the ambient metric to matter fields in (d + 2) dimensions in
case of more general states where operators other than the multi-stress tensors acquire
a non-vanishing VEV. In such setups the ambient equations take the form of Einstein’s
equations sourced by matter fields. The scaling dimensions of the corresponding CFT
operators specify their required weight in t similarly to the probe ambient scalar example
presented in Section 2.5. The homothetic symmetry T as well as the ambient nullcone
structure are thus preserved. This ensures that Weyl covariance is still canonically en-
coded in the ambient geometry, although no longer Ricci-flat. In this case the ALAdS
sections encode the matter sources and VEVs that define the CFT state as per AdS/CFT.
The matter fields in (d+2) dimensions become additional ambient ingredients that must
be used to construct invariants. The framework we discussed in this chapter is thus con-
ceptually unmodified for more general states, and it would be interesting to explicitly
compute ambient correlators for such cases.
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Chapter 5

Finite temperature CFTs

In this section we apply the ambient space formalism to finite temperature CFTs, and our
goal is to show that the the ambient 2-point function (4.16) accounts for the multi-stress
tensor contributions as conjectured in the previous chapter. To this aim, after a review
of the properties of Euclidean CFTs at finite temperature in Section 5.1, we set up the
ambient space suitable for this problem, we perturbatively solve the ambient geodesics
and construct the appropriate ambient curvature invariants in Sections 5.2 and 5.3. We
then construct the ambient scalar 2-point function and we indeed confirm that it captures
the multi-stress tensor blocks in the OPE limit in Section 5.4. As a corollary, this also
confirms that the ambient invariants represent a kinematic basis for generic CFTs, and
not only for holographic ones.

To test the ambient predictions beyond the OPE regime, we also perform novel holo-
graphic computations for the scalar 2-point function on the planar AdS black hole. In
Subsection 5.5.1 we describe a perturbative computation at large inverse temperature
yielding the 2-point function to first order for generic d and ∆ and to arbitrarily high
order for odd d+2∆, and they confirm that the ambient invariants account for the multi-
stress tensor contributions. To test this statement in a fully non-perturbative regime, in
Subsection 5.5.2 we present a numerical holographic computation on the same AdS black
hole bulk. Its results signal the appearance of different operators contributing to the 2-
point function, the so-called double-twist spectrum. For generic ∆ these operators do not
mix with the multi-stress tensors, supporting the conclusions of the ambient formalism
at the non-perturbative level.

In Subsection 5.5.3 we use the insights from these holographic computations to pro-
vide new understanding on the non-perturbative nature of double-twist operators and
on the analytic structure of thermal scalar 2-point functions. First, we show how the
double-twist spectrum is produced by summing the multi-stress tensor blocks over ther-
mal images for a large class of correlators. In particular, we provide explicit expressions
for the double-twist OPE coefficients as functions of the multi-stress tensor OPE coef-
ficients. From the asymptotic behaviour at large order of the perturbative holographic
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2-point function for d = 4 and ∆ = 3/2 we are also able to extract the radius of con-
vergence of the thermal OPE in this case, and its value is less than β as originally
conjectured in [25]. We also discuss possible ways to extend the ambient space formalism
to capture such double-twist contributions in correlators. We conclude the chapter with
the simpler case of d = 2 thermal CFTs, where the ambient space is locally Riemann-flat,
all curvature invariants vanish and the ambient formalism accounts for the full 2-point
function.

5.1 Thermal CFTs and the ambient setup
Euclidean thermal CFTs in d dimensions on flat space live on the thermal cylinder
S1
β × Rd−1 where β is the inverse temperature. We parametrise this background with

coordinates xi = (τ, xa) where 0 ≤ τ < β. This geometry breaks conformal invariance
because of the length scale β; the only global symmetries remaining are translations
along the τ and xa directions, as well as rotations on Rd−1. We restrict our analysis to
states which respect these spacetime symmetries and do not spontaneously break them
further.

These residual symmetries fully constrain 1-point functions. By translational symme-
try they are non-vanishing only for primary operators, and rotational symmetry implies
they must be constant tensors of the form

⟨Oi1...iJ ⟩(β)∆ =
bO
β∆

(
ei1 . . . eiJ − traces

)
, (5.1)

where ei is the unit vector along τ [25]. In particular, for the stress tensor VEV we have

⟨Tij⟩(β) =
c(d)
βd

diag (1− d, 1, . . . , 1) , (5.2)

which is traceless, as expected on the thermal cylinder. From now on (unless stated
otherwise) we restrict our attention to d = 4; we will comment later on the generalisation
to any d. Given the state specified by (5.2), the ambient space to be used has the AdS
planar black hole as ALAdS5 slices. The six-dimensional ambient geometry relevant for
this problem then reads

g̃ = −ds2 + s2

z2

[
dz2

1− z4

z4H

+

(
1− z4

z4H

)
dτ 2 + δabdx

adxb

]
, (5.3)

with a, b = 1, 2, 3, horizon scale zH = π/β and compact time direction 0 ≤ τ < β. This
choice of AdS bulk metric corresponds to c(4) = 2π4 in (5.2); it is straightforward to
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rescale the temperature to attain a generic c(4). Finally note that (5.3) is not in the usual
Fefferman-Graham ambient gauge (2.8), which can be reached with the transformation

z =
r√

1 + r4

4z4H

. (5.4)

Our aim is to find the expression for scalar 2-point functions in such a thermal CFT
using the ambient space formalism. This translates into finding the ambient building
blocks that account for the multi-stress tensor contributions. Following the prescription
in (4.16) we set up the problem so as to identify these invariants order by order in the
ambient Riemann. In this specific case, since β is the only scale in the CFT, we have

R̃iem ∼ β−4. (5.5)

Thus the Riemann expansion in (4.16) can be viewed either as an expansion in small
temperature, or as an expansion in small distance between insertions. The former allows
us to use β power-counting to organise the number of Riemann tensors in (4.16). The
latter allows us to make contact with the thermal OPE, presented in Section 5.3.

As a first step we find the relevant ambient invariants up to second order in the
Riemann tensor.

5.2 Ambient geodesics and geodesic transport
To implement the ambient formalism, we must identify the geodesics between the two
insertion points on the ambient nullcone and compute the corresponding geodesic dis-
tance. As we showed in Section 4.2 this yields the invariant X̃12. Adopting the ambient
parametrisation X̃M = (t, z, τ, xa) and using the residual rotational and translational
symmetries of the problem, we can move the two insertions to lie at X̃1 = (t1, 0, 0, 0, 0, 0)

and X̃2 = (t2, 0, τf , xf , 0, 0).
The strategy to solve the geodesic equations is the following. Because of the presence

of the homothetic vector T = s∂s, the expression for the trajectory along s = r t is
automatically fixed up to an integration constant (the square geodesic length C) as from
equation (B.10). The second order geodesic equation for s then becomes a first order
equation involving z, τ and x1 and their derivatives. One can get rid of τ̇ and ẋ1 using
the equations for the integrals of motion related to translations along τ and x1,

τ̇ =
A1z

2

λ(1− λ)
(
1− z4

z4H

) , ẋ1 =
A2z

2

λ(1− λ)
, (5.6)

with A1, A2 constants of motion. The geodesic equation for s thus becomes a non-linear
first order equation in z only,

4λ2(1− λ)2ż2 − 4A2
2z

8

z4H
+
z6

z4H
+ 4

(
A2

1 + A2
2

)
z4 − z2 = 0. (5.7)
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The three equations (5.6) and (5.7) are the only independent equations left.
We are interested in computing ambient correlators, which are expressed as expan-

sions in terms of the ambient Riemann. Given (5.5), it is sufficient to solve the geodesic
equations perturbatively, considering the distance between the insertions as small com-
pared to the inverse temperature. Denoting the distance between the insertions on the
thermal cylinder by |x|=

√
τ 2f + x2f , this corresponds to the regime |x|/β ≪ 1. We solve

the equations by expanding the trajectory z, τ, x1 and the integration constants C,A1, A2

as,

z(λ) =
∞∑
k=0

z(k)(λ)

z4kH
, Ai =

∞∑
k=0

A
(k)
i

z4kH
, (5.8)

and analogously for τ, x1 and C. This is a consistent expansion since in this pertur-
bative scheme we intend to capture the corrections to geodesics on (d + 2)-dimensional
Minkowski provided by the non-trivial geometry on the ALAdS slices, where only powers
of z4H appear. We start by solving equation (5.7) in z(λ) order by order. By subsequently
feeding the z(k)(λ)’s into (5.6) one finds the coefficients in the expansion of τ and x1.

At each perturbative order, the solution just obtained contains six integration con-
stants, that is A(k)

1 , A
(k)
2 , C(k) as well as the three following from the integration of the

first order equations (5.6)-(5.7). These can be fixed order by order imposing the boundary
conditions1

τ(0) = 0 , τ(1) = τf , (5.9a)
x1(0) = 0 , x1(1) = xf , (5.9b)

lim
λ→0

s(λ)

z(λ)
= t1 , lim

λ→1

s(λ)

z(λ)
= t2 . (5.9c)

The leading order of both the trajectory and the integration constants coincide with
the corresponding Minkowski expressions shown in Subsection 2.2. Following this inte-
gration scheme and renaming τf → τ and xf → x, to second order in the perturbative
parameter the invariant X̃12 reads,

X̃12 = t1t2|x|2
[
1 +

|x|2(x2 − 3τ 2)

120z4H
− |x|4(91τ 4 − 98τ 2x2 + 19x4)

201600z8H
+O

( |x|12
z12H

)]
. (5.10)

One can straightforwardly proceed to arbitrarily high order. Through the relation be-
tween the ambient and AdS geodesic lengths (4.19) this result matches the geodesic
distance on the AdS planar black hole found in [92,93].

1Note that z differs from the Fefferman-Graham coordinate r by O
(
z−4
H

)
corrections. However, close

to the boundary λ → 0, 1 the behaviour in λ of z(λ) and r(λ) is the same and this ensures we can use
(5.9c) as boundary conditions.
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5.3 The ambient 2-point function

After finding the geodesic trajectories and X̃12 we turn to the curvature invariants. As a
first step we are interested in writing the ambient 2-point function (4.16) up to second
order in the ambient Riemann. The homothetic vector T can be parallel transported
along the perturbative geodesics we are considering order by order in z−4

H taking the
form

T̂ = T̂ (0) +
∞∑
n=1

T̂ (n)

z4nH
, (5.11)

where T̂ (0) is the homothetic vector (2.24) transported on the flat ambient space. Since
I(1)
2 = 0, it is sufficient to use T̂ (0) for invariants up to second order in the Riemann

because higher order T̂ (n)’s contribute at order O(R̃iem)3 in contractions of the form
(4.12).

We now turn to determining a basis of ambient invariants quadratic in the curvature.
In principle one could pick them to be of any scaling dimension and then multiply them
by the appropriate power of X̃12. As we discussed in Section 4.2, invariants with vanishing
scaling dimension are particularly rigid in their structure and thus easy to completely
classify. Their general form is given in equation (4.15) and if we restrict to k = 2 curvature
tensors, one can show that in the present setup there are only three independent such
invariants of order O(z−8

H ). One possible choice is

e0 = R(0)
AC R(0)AC =

3

4

|x|8
z8H

+O

( |x|
zH

)12

, (5.12a)

e1 = R(1)
AC R(0)AC = −|x|6

z8H
(3τ 2 + 7x2) +O

( |x|
zH

)12

, (5.12b)

e2 = R(1)
AC R(1)AC = 4

|x|4
z8H

(3τ 4 + 16τ 2x2 + 17x4) +O

( |x|
zH

)12

, (5.12c)

where the subscripts refer to the number of covariant derivatives required to construct
them, with the tensors R(r) defined in (4.14). In these expressions we have already taken
the limit from generic ambient points to the CFT background on the nullcone. As we
detail in Appendix D any curvature invariant quadratic in the ambient Riemann can be
obtained as a linear combination of the form

I(2)
2 = c0e0 + c1e1 + c2e2 . (5.13)

Putting all together, we assemble the ambient scalar 2-point function for operators
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of scaling dimension ∆ as prescribed by equation (4.16),

⟨O(τ, x)O(0)⟩(β)d=4,∆ =
C∆

|x|2∆

[
1− ∆(x2 − 3τ 2)|x|2

120π−4β4
+

|x|4
π−8β8

[
3

4

(
c0 +

∆(63∆ + 170)

30240

)
|x|4

−
(
c1 +

∆(14∆ + 39)

25200

)
|x|2(3τ 2+7x2) + 4

(
c2 +

∆(7∆ + 20)

201600

)
(3τ 4+16τ 2x2+17x4)

]
+O

( |x|
β

)12
]
. (5.14)

Here the constants ci are to be fixed by the dynamics of the specific thermal CFT, and
they quantify the quantum corrections to the semi-classical geodesic approximation as
discussed in Section 4.3.

5.4 Matching with the thermal OPE
As reviewed in Section 4.3, the OPE is expected to converge for CFTs on generic back-
grounds and states for short enough distances. It can thus be used to reduce 2-point
functions to a sum over 1-point functions as in equation (4.18). Specialising to thermal
CFTs on flat space and given the form (5.1) of 1-point functions, it was argued in [25]
that for a distance between insertions shorter than the thermal radius |x|< β one can
expand a scalar correlation function of two operators of dimension ∆ as

⟨O(τ, x)O(0)⟩(β)d,∆ =
∑

ϕ∈O×O

aϕ
β∆ϕ

C
(ν)
J (q)|x|∆ϕ−2∆ , (5.15)

where J and ∆ϕ are the spin and scaling dimension of the exchanged operator ϕ, and we
defined ν = d

2
−1 and aϕ =

fOOϕbϕ
cϕ

J
2J (ν)J

. Here cϕ and fOϕϕ are the 2- and 3-point function

coefficients on flat space, while C(ν)
J (q) are Gegenbauer polynomials of the dimensionless

ratio q = τ/|x|.
The products C(ν)

J (q)|x|∆ϕ−2∆ can be thought of as thermal conformal blocks. The
fact that in thermal CFTs 1- and 2-point functions contain non-trivial dynamical data
through the coefficients aϕ mirrors the freedom in the coefficients ci appearing in the
ambient 2-point function (5.14). In this subsection we would like to make this connection
more precise by relating the coefficients aϕ with the ci.

As anticipated in Section 4.3 we expect the ambient curvature invariants to account
for the multi-stress tensor contributions :T n: . These operators are defined as the n + 1
symmetrised traceless partial contractions of tensor products of n stress tensors, with
scaling dimensions nd in d dimensions and even spins ranging from J = 0 to J = 2n.
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Their contribution takes the form

⟨O(τ, x)O(0)⟩(β)d,∆ ⊃
∞∑
n=0

2n∑
J=0
J even

a
(T )
n,J C

(ν)
J (q)

|x|nd−2∆

βnd
. (5.16)

Comparing (5.14) with (5.16) to second order in the stress tensor yields the following
dictionary re-expressing the thermal OPE coefficients in terms of the ambient free coef-
ficients for any ∆ in d = 4,

a
(T )
0,0 = C∆, a

(T )
1,0 = 0, a

(T )
1,2 =

∆

120
C∆, (5.17)

a
(T )
2,0 =

(
3c0
4

− 6c1 + 52c2 +
∆(7∆ + 18)

201600

)
C∆, (5.18)

a
(T )
2,2 =

(
c1 − 15c2 +

∆(7∆ + 12)

201600

)
C∆, (5.19)

a
(T )
2,4 =

(
c2 +

∆(7∆ + 20)

201600

)
C∆. (5.20)

Note once more that the ambient prediction at first order in the stress tensor is fully
fixed by the geodesic distance factor (X̃12)

−∆ as a consequence of I(1)
2 = 0.

The relations (5.17)-(5.20) entail that to this order, ambient curvature invariants
and thermal conformal blocks are two equivalent bases to describe multi-stress tensor
contributions. This can be made more precise by mapping the thermal conformal blocks
to the basis of curvature invariants {e0, e1, e2}. After taking the large-N limit in the
CFT the multi-stress tensor VEVs factorise, ⟨:T n :⟩ ∼ ⟨T ⟩n. Denoting the stress tensor
VEV (5.2) by Tij to avoid cluttering, in terms of Tij the double-stress tensor VEVs with
J = 0, 2, 4 read,

⟨T 2⟩ = T klTkl, (5.21a)

⟨T 2⟩ij = TikT
k
j −

1

4
T klTklδij, (5.21b)

⟨T 2⟩ijkl = Σijkl −
3

4
δ(ijΣ

m
kl)m +

1

16
Σm n

m n δ(ijδkl), (5.21c)

where we defined Σijkl = T(ijTkl). In terms of these the second order curvature invariants
can be written as

64 e0 = ⟨T 2⟩ |x|8, (5.22a)
8 e1 = ⟨T 2⟩ij xixj|x|6−⟨T 2⟩ |x|8, (5.22b)

4 e2 = ⟨T 2⟩ijkl xixjxkxl|x|4−
15

2
⟨T 2⟩ij xixj|x|6+

13

3
⟨T 2⟩ |x|8. (5.22c)
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Thus the thermal conformal blocks at order n = 2 in the large-N limit are simply
proportional to trace modifications of the ambient invariants ei. In Appendix D we
describe how to extend these conclusions to any order in the ambient Riemann and
to other dimensions d. In particular we argue that the dimensionless invariants (4.15)
constructed as chains of tensors R(r) form a basis for the contribution of generic multi-
stress tensor operators :T n: for thermal CFTs in even dimensions d.2

At finite N , typically more operators take non-trivial VEVs and contribute in correla-
tors, meaning that usually additional ambient invariants are required. However conformal
blocks retain their form independently of the regime the theory is in, since they follow
from kinematics and not from dynamics. In the thermal case this means that the thermal
conformal blocks describing the multi-stress tensor contributions in (5.16) are the same
Gegenbauer polynomials at any N . We have shown that multi-stress tensor conformal
blocks are equivalent to the basis of ambient curvature invariants of the form (4.15) at
large N . We now conclude that this equivalence extends trivially to finite N : the ambient
curvature invariants provide a basis for multi-stress tensor contributions in any thermal
CFT.

This represents strong evidence for the conjectured validity of the ambient formalism
as a tool to solve the kinematics of generic CFTs. In this case it was possible to compare
the ambient prediction with OPE computations and we found perfect agreement even
for non-holographic CFTs. In Chapter 6 we treat CFTs on squashed spheres, where no
OPE result is available and the ambient formalism produces genuinely new predictions.

5.5 Matching with a holographic correlator
In the previous section we showed that ambient 2-point functions account for the multi-
stress tensor contributions to correlators in thermal CFTs (holographic or otherwise).
We did this by comparing with the thermal OPE. In this section we check this statement
through a holographic computation, without relying on the thermal OPE. To this aim
we will study holographic correlators in the state dual to the Euclidean AdSd+1 planar
black hole with metric

ds2 =
1

z2

 dz2

1− zd

zdH

+

(
1− zd

zdH

)
dτ 2 + δabdx

adxb

 . (5.23)

The dual CFT is in the same background and state as the previous subsections, with
inverse temperature β = 4πzH/d and stress tensor expectation value (5.2). This problem

2As we discussed in Section 4.2, in odd d divergences appear in the ambient Riemann in the limit
ρ → 0. This implies that some of the weight-0 scalars (4.15) may diverge and other invariants must be
used in addition to them. We will see this explicitly in Chapter 6.

78



involves solving the free scalar equation

[−2d+1 +∆(∆− d)] Φ(z, τ, x) = 0 (5.24)

on the fixed background (5.23), subject to Dirichlet conditions at the boundary z → 0
and regularity conditions in the bulk interior z → ∞. Here ∆ is the scaling dimension of
the operator whose 2-point function we wish to compute.

Translational symmetry along the boundary directions and periodicity along τ allow
one to expand the scalar fields in Fourier modes,

Φ(z, τ, x) =
∑
m∈Z

∫
dd−1k ei(ωmτ+k·x)B(z, ωm,k), (5.25)

where ωm = 2πm/β are the Matsubara frequencies. Defining k =
√
ω2
m + k2 and after

rescaling the radial coordinate as r = kz, rH = kzH and redefining rH = ϵ−
1
d , equation

(5.24) reads

r
(
ϵrd − 1

) (
rB′′(r)

(
ϵrd − 1

)
+B′(r)

(
ϵrd + d− 1

))
+B(r)

((
∆(∆− d) + r2

) (
ϵrd − 1

)
− ω2

m

k2
ϵrd+2

)
= 0.

(5.26)

where we left the dependence of B on ωm and k implicit.
This equation is of Heun type. We will first solve it perturbatively in the limit of short

boundary distance between the insertions (or equivalently at high momenta) with respect
to the thermal radius, ϵ = (kzH)

−d ≪ 1. In this regime we are able to compare with the
expansion in the curvature of ambient correlators (and also double-check results from
the thermal OPE). We will then turn to a fully-non-perturbative numerical computation
to further check the ambient correlator, as well as to study effects that may elude the
perturbative analysis.

5.5.1 Perturbative 2-point function

We set up the perturbative problem by expanding at ϵ ≪ 1 corresponding to large
momenta k ≫ (zH)

−1,

B(r) =
∞∑
n=0

bn(r)ϵ
n . (5.27)

The equations for the first few orders read

D b0(r) = 0, (5.28a)
D b1(r) = rd−2

[
b0(r)

(
∆(∆− d) +

(
η2 + 1

)
r2
)
+ drb′0(r)

]
, (5.28b)

D b2(r) = rd−2
[
b0(r)r

d
(
∆(∆− d) +

(
2η2 + 1

)
r2
)
+ b1(r)

(
∆(∆− d) +

(
η2 + 1

)
r2
)

+dr
(
rdb′0(r) + b′1(r)

)]
, (5.28c)
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where we defined η = ωm/k and the differential operator

D = ∂2r +
1− d

r
∂r −

∆(∆− d) + k2

r2
. (5.29)

The perturbative equations at a generic order n reads

D bn(r) =
n∑
ℓ=1

rℓd−1
[
db′n−ℓ(r) + r

(
∆(∆− d) + (1 + ℓη2)r2

)
bn−ℓ(r)

]
. (5.30)

The solution to the leading order equation (5.28a) corresponds to a free scalar wavefunc-
tion on pure Euclidean AdSd+1. Defining κ = ∆− d

2
, if we assume κ is not an integer3, a

possible choice for the basis of the solutions space is in terms of modified Bessel functions
of the first kind,

u1(r) =

√
π

2
r

d
2 I−κ(r) , u2(r) =

√
π

2
r

d
2 Iκ(r) . (5.31)

Imposing regularity in the interior r → ∞ fixes the leading order solution to a modified
Bessel function of the second kind,

b0 = u2 − u1 = −
√

2

π
cos

(
2κ− 1

2
π

)
Kκ(r), (5.32)

recovering the expected solution on pure AdS (see e.g. [67]).
Solving the first order equation (5.28b) is more involved, and we refer the reader to

Appendix E for a detailed computation. The holographic correlator to first order in ϵ in
momentum space results in

⟨OO⟩(β)d,∆ (ωm,k) = −2d−2∆Γ
(
d
2
−∆+ 1

)
Γ
(
−d

2
+∆+ 1

) k2∆−d

[
1+ (5.33)

π3/2+d(−1)d+1 cot
(
πd
2

)
Γ
(
−d

2
− 1

2

)
csc2(π∆) sin

(
1
2
π(d− 2∆)

)
(k2 − dω2

m)

4Γ
(
1− d

2

)
Γ(−∆)Γ(∆− d) kd+2βd

+O(ϵ2)

]
.

Note that for even d and integer ∆ or for odd d and half-integer ∆ with ∆ > d
2

one has
poles in the scaling dimension. For example in d = 4 and ∆ = 3 the leading terms are

⟨OO⟩(β)d=4,∆=3 =
k2

4(∆− 3)
+
k2

4

(
log

k2

4
+ 2γ − 1 +

4

5

(
1− 4ω2

m

)
ϵ

)
+O (∆− 3) +O(ϵ2).

(5.34)
3For such values of ∆ the CFT correlators have short-distance singularities leading to conformal

anomalies [94]. On the bulk side a different choice of basis for the solution space must be made since
m is half-odd implying u1 = u2. As reviewed in Subsection 1.3.1, logarithmic terms also appear in the
Fefferman-Graham near-boundary expansion [66] and in this case the present analysis must be modified.
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These divergent contributions constitute contact terms in position space and we discard
them.

Solving the second order equation (5.28c) and higher is particularly involved for
general d and ∆. A simplification happens when 2∆+ d is integer (i.e. κ is half-odd). In
this case the homogeneous solutions can be written in terms of products of polynomials
and exponentials since

Iκ(r) =

√
2

π
iκ−

3
2 rκ
(
1

r

d
dr

)κ− 1
2 sinh r

r
,

I−κ(r) =

√
2

π
iκ−

3
2 rκ+1

(
1

r

d
dr

)κ+ 1
2 cosh r

r
.

(5.35)

This observation allows one to find a case-by-case solution to arbitrarily high order in
the inverse temperature. Considering for simplicity d

2
≤ ∆ ≤ d, the generic form of such

momentum space correlators is

⟨OO⟩(β)d,∆ (ωn,k) =
1

kd−2∆

∞∑
q=0

πqd

kq(d+2)βqd

q∑
j=0

α
(q)
j k2q−2jω2j

n , (5.36)

where the coefficients α(q)
j are in terms of d and ∆. Up to second order it reads explicitly

⟨OO⟩(β)d,∆ (ωm,k) =
α
(0)
0

kd−2∆
+
α
(1)
0 k2 + α

(1)
1 ω2

m

π−d k2d−2∆+2βd
+
α
(2)
0 k4 + α

(2)
1 k2ω2

m + α
(2)
2 ω4

m

π−2d k3d−2∆+4β2d
+O (kβ)−3d .

(5.37)
The coefficients α(0)

0 , α
(1)
0 and α

(1)
1 for generic d and ∆ can be extracted from (5.33);

in particular, α(1)
1 = (1 − d)α

(1)
0 . As an example, for d = 4 and ∆ = 3

2
the first few

coefficients take the values

α
(0)
0 = −1, α

(1)
0 = − 3

16
, α

(1)
1 =

9

16
, (5.38)

α
(2)
0 = −2637

512
, α

(2)
1 =

11511

256
, α

(2)
2 = −10773

512
. (5.39)

Transforming momentum space correlators of the form (5.37) back to position space
is subtle since the Fourier transform should be performed over all real momenta and all
Matsubara frequencies, while the expression for the correlators we have found is only valid
at large frequencies ωm ≫ 1/β. To explicitly perform the Fourier transform one should
thus resum the perturbative expansion to assess the full dependence on k and ωm. One
should assume the sum (5.36) is convergent, although there are hints that it contains non-
perturbative effects in the Lorentzian case [95,96]. As we discuss in Subsection 5.5.3, such
non-perturbative parts do not affect the multi-stress tensor blocks we wish to compute,
hence for us this subtlety will not play any role.
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Furthermore, it is particularly hard to directly compute the compact Fourier trans-
form (5.25) of expansions of the form (5.36). However, note that as a consequence of the
Poisson summation formula the compact Fourier transform over the Matsubara frequen-
cies can be recast as a sum over images of the non-compact Fourier transform,

⟨O(τ, x)O(0)⟩(β)d,∆ =
∑
m∈Z

∫
dd−1k eiωmτ+ik·x ⟨OO⟩d,∆ (ωm,k)

=
∑
m∈Z

∫ ∞

−∞
dω

∫
dd−1k eiω(τ+mβ)+ik·x ⟨OO⟩d,∆ (ω,k)

≡
∑
m∈Z

⟨O(τ +mβ, x)O(0)⟩(T )d,∆ .

(5.40)

Therefore we proceed as follows. We compute the non-compact Fourier transform of the
momentum space correlator (5.37) order by order in the perturbative expansion to obtain
the non-compact correlator ⟨O(τ, x)O(0)⟩(T )d,∆ . As we motivate in Subsection 5.5.2, the
sum over images does not affect the multi-stress tensor contributions in position space
as long as κ is not an integer. Thus knowing the non-compact correlator is sufficient
to match the multi-stress tensor contributions with the predictions from the ambient
space.4

Let us now perform the non-compact Fourier transform of the perturbative terms in
the expansion (5.37). The Fourier transform of a spherically symmetric distribution in
momentum space reduces to a Hankel transform,

F (x) =

∫
ddpf(|p|)eip·x = (2π)

d
2

|x| d2−1

∫ ∞

0

dpf(p)J d
2
−1(|x|p)p

d
2

=
(2π)

d
2

|x| d2−1
H d

2
−1

[
p

d
2
−1f(p)

]
(x) .

(5.41)

The non-compact transform of each order in (5.37) can thus be rewritten as a linear
combination of derivatives of Hankel transforms. Defining the integral

Iγ(τ, x) ≡
∫
ddp|p|γeip·x = (2π)

d
2

|x| d2−1
H d

2
−1

[
pγ+

d
2
−1
]
(x) =

πd/22γ+dΓ
(
d+γ
2

)
Γ
(
−γ

2

) 1

|x|γ+d , (5.42)

4In Subsection 5.5.2 we further comment on these points.
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one can rewrite the first few orders of the correlator in position space as

⟨O(τ, x)O(0)⟩[0]d,∆ = α
(0)
0 I2∆−d , (5.43)

⟨O(τ, x)O(0)⟩[d]d,∆ = α
(1)
0

[
I2∆−2d − d

(
∂τ
i

)2

I2∆−2d−2

]
, (5.44)

⟨O(τ, x)O(0)⟩[2d]d,∆ = α
(2)
0 I2∆−3d + (α

(2)
1 − 2α

(2)
0 )

(
∂τ
i

)2

I2∆−3d−2

+ (α
(2)
2 − α

(2)
1 + α

(2)
0 )

(
∂τ
i

)4

I2∆−3d−4. (5.45)

These relations can be straightforwardly obtained to arbitrarily high order.
Using these expressions on (5.33) one finds the position space correlator at general

d and ∆ to first order. Normalising the operators so that the leading order constant is
normalised to 1, the non-compact 2-point function reads

⟨O(τ, x)O(0)⟩(T )d,∆ =
1

|x|2∆
[
1 + λ̃1

(
x2−(d− 1)τ 2

) |x|d−2

βd

]
+O

( |x|
β

)2d

, (5.46)

with

λ̃1 =

(
4π

d

)d √π(−1)d+1∆Γ
(
−d

2
− 1

2

)
sin(π(d−∆))

2d+2Γ
(
1− d

2

)
tan
(
πd
2

)
sin(π∆)

. (5.47)

One can check that this expression matches both the geodesic approximation and the
ambient correlator (5.14) to first order in β−d for d = 4. This result hence substanti-
ates the universality of the geodesic approximation for the stress tensor contribution as
predicted by the ambient space formalism.

Furthermore, using (5.43)-(5.45) on (5.37) one is able to check for odd 2∆ + d that
the higher orders in |x|/β of such position space correlators can be decomposed in terms
of the ambient curvature invariants. For instance, for d = 4 and ∆ = 3

2
the correlator up

to second order reads

⟨O(τ, x)O(0)⟩(T )
d=4,∆= 3

2

=
1

|x|3
[
1− π4 |x|2(x2 − 3τ 2)

80 β4
(5.48)

−π8 |x|4(479τ 4 − 1162τ 2x2 + 199x4)

268800 β8
+O

( |x|12
β12

)]
,

which fixes the coefficients in (5.14) to

c0 = − 53

1575
, c1 = − 11

1120
, c2 = − 11

16800
. (5.49)

This brings further evidence that the ambient curvature invariants form a basis for
the multi-stress tensor spectrum and it confirms the ambient prediction (5.14). Via the

83



relations between ambient and thermal OPE coefficients (5.17)-(5.20), this also represents
a non-trivial check of the expansion in terms of thermal conformal blocks (5.16) in a non-
trivial thermal state, in particular beyond the large-∆ regime studied in [92, 93] and to
arbitrarily high order in |x|/β.

5.5.2 Non-perturbative 2-point function

In this subsection we discuss the non-perturbative effects in |x|/β → 0 entering the
thermal holographic correlator on the planar black hole background. In momentum space
such contributions can be studied along the lines of [96,97], at least perturbatively in the
instanton number. We are however interested in the correlator in position space and for
this purpose we resort to a numerical calculation, fully non-perturbative in the boundary
temperature.

Since we are not working perturbatively in |x|/β, to compute the position space 2-
point function we must solve (5.24) on the Euclidean cigar geometry with period β. The
boundary conditions are a delta-function source at τ = |x⃗|= 0 and we demand regularity
in the interior. With the Euclidean time circle τ , the holographic radial direction z, and
noting a rotational symmetry in the spatial boundary directions xi, this leaves a 3d PDE
problem. Without loss of generality we set zH = 1 so that β = π. Next, we make the
following coordinate changes,

z = 1− ρ2, τ =
1

2
ϕ, |x⃗|= R

1−R2
. (5.50)

In these coordinates we have ρ ∈ [0, 1] where ρ = 0 is the tip of the Euclidean cigar
geometry and ρ = 1 is the conformal boundary, ϕ = (0, 2π] is the angle around the
thermal circle, and R ∈ [0, 1) where R = 0 is the origin of spatial coordinates on the
boundary and R = 1 is the compactification of spatial infinity.

The principal numerical challenge is handling the delta function source at the origin
on the boundary. We subtract a function from Φ with the correct singularity structure,
i.e. we define a new field Ψ via,

Φ = Ψ+ G̃AdS (5.51)

where G̃AdS is an analytically known function containing the correct source behaviour.
A candidate function is the vacuum AdS bulk-boundary propagator,

z∆

(τ 2 + r2 + z2)∆
=

(1− ρ2)∆(
ϕ2

4
+ (1− ρ2)2 + R2

(1−R2)2

)∆ . (5.52)

however this is not periodic in ϕ. To address this we make the replacement

ϕ2 → 2

3
(7− cos(ϕ)) sin

(
ϕ

2

)2

. (5.53)
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The resulting function G̃AdS is then periodic ϕ ∼ ϕ + 2π, contains no additional singu-
larities, and is regular in the interior. Hence to find the 2-point function we now need to
solve,

(2−∆(∆− d))Ψ = − (2−∆(∆− d)) G̃AdS. (5.54)

where Ψ obeys a Dirichlet zero boundary condition at the conformal boundary, and is
also regular in the interior.

We work with ∆ = 5/2, so that the near boundary behaviour of Ψ is,

Ψ = a(τ, r)z
3
2 + b(τ, r)z

5
2 + . . . = a(τ, r)(1− ρ2)

3
2 + b(τ, r)(1− ρ2)

5
2 + . . . (5.55)

To this order the z expansion is equivalent to the Fefferman-Graham expansion. Note
that

Φ = a(τ, r)z
3
2 +

(
b(τ, r) +

1152
√
6

(15 + 24r2 − 16 cos(2τ) + cos(4τ))
5
2

)
z

5
2 + . . . (5.56)

We define
Ψ = (1− ρ2)

3
2H (5.57)

enforce a = 0 through a Dirichlet boundary condition Hρ=1 = 0, and read off b from the
solution as b = ∂ρH|ρ=1. The two point function is then given by the data b, corrected
by the subtracted function,

⟨O(0, 0)O(τ, r)⟩ = b(τ, r) +
1152

√
6

(15 + 24r2 − 16 cos(2τ) + cos(4τ))
5
2

. (5.58)

For the rest of the problem we enforce tip of the cigar regularity with ∂ρH|ρ=0 = 0, origin
regularity on the boundary with ∂RH|R=0 = 0, and at spatial infinity on the boundary
the response to the delta should vanish, so we also set H|R=1 = 0.

The PDE is discritised using a grid of Nρ, Nϕ, NR points in the ρ, ϕ,R directions
respectively. We utilize Chebyschev collocation in ρ with second-order finite difference
methods for ϕ and R. This discritisation of (5.54) give rise to a linear problem

MH = S (5.59)

where M is a matrix of size (NρNϕNR)
2 and S is a vector of size NρNϕNR. We then solve

for H, read off b = ∂ρH|ρ=1 and compute ⟨O(0, 0)O(τ, r)⟩ using (5.58).
The results at d = 4, ∆ = 5/2 are shown in figure 5.1. In particular, the behaviour of

the 2-point function in the limit x → 0 is consistent with the prediction of the ambient
formalism (5.14) and with the perturbative holographic value (5.46).

In Figure 5.2 we show the results for d = 4, ∆ = 3/2. The behaviour of the first
subleading term in τ → 0 differs from that expected for the single stress tensor block,
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Figure 5.1: Non-perturbative thermal 2-point function for d = 4, ∆ = 5/2 from hologra-
phy. Left:. Contour plot of the 2-point function over the full range of the thermal circle.
Right: Showing a log-log plot to illustrate the leading behaviour at xi = 0 near τ = 0
(black dots). The power-law behaviour is consistent with the analytically derived stress
tensor contribution (red line).

and it is compatible with the exchange of an operator of dimension ∆ = 3. This suggests
the appearance of the operator :OO: belonging to the so-called double-twist spectrum.
These are operators of the schematic form :O2n∂i1 . . . ∂iJO:, symmetric and traceless in
the J indices. They are primaries with scaling dimensions ∆p,J = 2∆+ 2p+ J and even
spin J . Given their dimensions and tensorial properties, double-twist operators appear
in the thermal OPE (5.15) with blocks of the form,

⟨O(τ, x)O(0)⟩βd,∆ ⊃ 1

β2∆

∞∑
p=0

∞∑
J=0
Jeven

a
(OO)
p,J C

(ν)
J (q)

( |x|
β

)2p+J

. (5.60)

In the limit x→ 0 the n = 0, J = 0 block precisely reproduces the scaling in τ displayed
in Figure 5.2, and our non-perturbative computation thus makes a prediction for the
dynamical OPE coefficient

a
(OO)
0,0 ≃ 1.1 . (5.61)

We discuss the appearance of the double-twist spectrum and its non-perturbative nature
at length in Subsection 5.5.3.

In Figure 5.2 we also show the second-subleading behaviour which we recognise as
the stress tensor block. Also in this case the value of its coefficient is compatible with
the ambient result (5.46), thus confirming the ambient prediction about the exactness
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Figure 5.2: Non-perturbative thermal 2-point function for d = 4, ∆ = 3/2 from hologra-
phy. Showing a log-log plot to illustrate the leading behaviour at xi = 0 near τ = 0 (black
dots). Left: With the leading conformal behaviour subtracted, the remaining power-law
at short distances is consistent with the leading term in the double-twist spectrum, a(OO)

0,0

(red line). Right: Making a further subtraction to remove the leading double-twist con-
tribution reveals the analytically derived stress tensor contribution (grey line).

of the stress tensor coefficient at the non-perturbative level. The numerical value of the
coefficient also matches the perturbative analytic correlator (5.46), supporting the claim
that multi-stress tensors do not receive non-perturbative corrections (as long as κ is not
integer).

5.5.3 Obtaining the double-twist spectrum

In position space the presence of double-twist operators in the holographic scalar 2-point
function on the planar black hole has been argued in [25, 98–102]. For non-integer κ
they exhibit no mixing with the multi-stress tensors and hence they do not modify the
conclusions concerning the first-order exactness of the geodesic approximation as well as
the completeness of the basis for multi-stress tensors provided by the ambient curvature
invariants. Let us now make few observations on the non-perturbative nature of double-
twist operators, so as to clarify why they are absent in perturbative correlators such as
(5.46) and (5.48).

In Euclidean signature there is evidence from [103] that double-twist contributions
cannot appear as perturbative terms in an expansion of a momentum space 2-point
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function of the form (5.36).5 This statement is supported by our analytic perturbative
results in momentum space, where only the multi-stress tensor spectrum is present.

For Lorentzian thermal CFTs it has been argued in [96] that the double twist spectrum
arises by Fourier transforming non-perturbative contributions present in the momentum
space 2-point function [95]. Similar non-perturbative pieces ∼ e−βω in the momentum
space holographic correlator may be present also in Euclidean signature as they are not
captured by the perturbative treatment of Subsection 5.5.1. They may yield double-twist
contributions in the non-compact correlator once transformed to position space.

To gain some intuition, consider the simple case of thermal AdSd+1 in the bulk. The
scalar 2-point function takes the form of a sum over images (5.40) of the correlator
computed on Euclidean AdS (which consists in the sole identity block),

⟨O(τ, x)O(0)⟩(β)∆ =
∑
m∈Z

1

[(τ +mβ)2 + x2]∆
. (5.62)

Note that this sum over images is intrinsically non-perturbative in |x|/β → 0, as β is kept
finite while the correlator on the non-compact bulk must be evaluated at parametrically
large Euclidean time τ+mβ. In this case the sum over images can be carried out explicitly
and gives rise to the double-twist spectrum.

Following this observation we now show how the double-twist spectrum arises by a
sum over images of the non-compact correlator containing multi-stress tensor contribu-
tions as prescribed by (5.40). Let us assume that the two insertions are separated along
τ only. Following the discussion in Subsection 5.5.1, the non-compact correlator contains
only multi-stress tensor blocks, taking the form,6

⟨O(τ)O(0)⟩(T )d,∆ =
∞∑
n=0

a
(T )
n

β2∆

∣∣∣∣ τβ
∣∣∣∣nd−2∆

, (5.63)

since in the limit x→ 0 the sum of the multi-stress tensor contributions of different spin
at a given order d reduces to a power of τ times a collective constant a(T )n . As an OPE
this expression is valid in some interval 0 < |τ |< τ ∗.

In order to perform the image sum of (5.63) it is convenient to analytically continue
the complex τ plane. Because of the absolute value in (5.63), we first focus on the case

5Note that the discussion in [103] is based on Fourier transforming the thermal conformal blocks in
(5.15) to momentum space. This is a questionable procedure since the Fourier transform is performed
over the full thermal cylinder S1 × Rd−1, while the thermal OPE is convergent only for |x|< β. In
addition to this, the thermal OPE (being based on the flat space OPE) does not capture the contact
terms in the 2-point function. In the current state it thus appears to us far from obvious that the analysis
of [103] can be trusted in full generality.

6We comment later on how this discussion generalises when additional operators enter the OPE limit
of the non-compact correlator.

88



τ > 0 where,

⟨O(τ)O(0)⟩(+)
d,∆ =

∞∑
n=0

a
(T )
n

β2∆

(
τ

β

)nd−2∆

. (5.64)

We then subsequently continue to τ ∈ C so that (5.64) is valid in an annulus 0 < |τ |< τ ∗,
with τ ∗ corresponding to the smallest radius at which there will be singularities in the
complex τ plane. We then attempt to analytically continue beyond τ ∗, to a function
which we denote G+(τ). We assume that there are no singularities of G+(τ) lying on the
positive real axis, that is, the only singularity of the non-compact correlator is the one
at coincident points.

To extend the range of validity of the sum (5.64) we take G+ to be composed of
singular and non-singular parts,

G+(τ) =
∑
ℓ

Wℓ(τ) +
∞∑
n=0

ã
(T )
n

β2∆

(
τ

β

)nd−2∆

, (5.65)

where the first sum includes all poles and branch points whose positions are governed by
the parameters yℓ,

Wℓ(τ) =
1

τ 2∆
A(ℓ)(

(τ/β)d − yℓ

)µ(ℓ) , (5.66)

with non-negative real µ(ℓ). The second sum in (5.65) has an infinite radius of convergence.
With G+(τ) known, the sum over images (5.40) is given by

⟨O(τ)O(0)⟩(β)d,∆ = G+(τ) +
∞∑
m=1

[G+(τ +m) +G+(−τ +m)] . (5.67)

In Appendix F we give a detailed account of how to perform these sums over images.
The resulting thermal correlator arising from the non-compact correlator (5.65) reads

⟨O(τ)O(0)⟩(β)d,∆ =
∞∑
n=0

a
(T )
n

β2∆

∣∣∣∣ τβ
∣∣∣∣nd−2∆

+
1

β2∆

∞∑
p=0

[
a(OO)

reg, p +
∑
ℓ

a
(OO)
(ℓ) p

]
τ 2p

β2p
, (5.68)

where we defined the coefficients

a(OO)
reg, p = 2

∞∑
n=0

Γ(2p+ 2∆− nd)

(2p)! Γ(2∆− nd)
ζ(2p+ 2∆− nd) ã(T )n , (5.69)

a
(OO)
(ℓ) p =

2A(ℓ)

(2p)!

∞∑
j=0

(
µ(ℓ) + j − 1

j

)[
(5.70)

(yℓ)
j (d(µ(ℓ) + j) + 2∆)2p ζ(2p+ d(µ(ℓ) + j) + 2∆,M∗

(ℓ))

+ (−1)j(−τℓ)−µ(ℓ)−j (2∆− dj)2p

(
ζ(2p+ 2∆− dj)− ζ(2p+ 2∆− dj,M∗

(ℓ))

)]
,
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as well as M∗
(ℓ) =

⌈
|yℓ|1/d

⌉
. The first sum in (5.68) contains the multi-stress tensor

spectrum (5.63), left untouched by the sum over images. This result justifies directly
matching the ambient correlator with the non-compact 2-point function ⟨O(τ, x)O(0)⟩(T )d,∆.
Furthermore, through the second sum this expression (5.68) provides a prediction for the
double-twist coefficients, taking as an input the multi-stress tensor coefficients a(T )n and
the singularities of the analytically continued non-compact correlator (in particular, their
positions, orders and the factors A(ℓ)). Although this computation was carried out in the
limit x→ 0, these same techniques can be applied in the case of non-vanishing x, as well
as for theories where space-like directions are compact.

As mentioned, non-perturbative effects ∼ e−βω in momentum space may yield addi-
tional regular and singular contributions besides the multi-stress tensor operators in the
non-compact correlator (5.63). In that case this computation can be repeated without
obstructions. The form of the double-twist coefficients changes accordingly, while the
structure of (5.68) is preserved. This suggests that under sum over images any opera-
tor entering the OPE limit of the non-compact correlator contributes to the double-twist
coefficients in an analogous way to multi-stress tensors. We can conclude that the double-
twist spectrum in the holographic Euclidean thermal 2-point function on the planar black
hole arises from the sum over images of the non-compact position space correlator, and
it may receive further contributions from possible non-perturbative pieces in momentum
space, whose existence was not probed in our perturbative computation.

Let us now examine how these results apply to the holographic thermal 2-point
function on the planar black hole. Using the techniques of Subsection 5.5.1, for ∆ = 3

2

and d = 4 we computed the momentum space correlator (5.36) up to order O (kβ)−360,
from which we extracted the first 91 coefficients a(T )n in (5.63). The asymptotic growth
at large n is captured by a

(T )
n ≈ (−1)n4n, meaning that the radius of convergence of

this non-compact correlator is 1/
√
2 ≃ 0.707 and that the four closest singularities to

the origin on the complex τ -plane are the four roots of 1 + 4τ 4 = 0. We were however
unable to robustly subtract this singular behaviour from the series obtained to order
O (|x|/β)−360, so as to attain an infinite radius of convergence for the remainder as in
equation (5.65), and subsequently use (5.68) to make predictions on the double-twist
coefficients.

The physical interpretation for these singularities in the complex τ -plane is not cur-
rently clear. Similar singularities have appeared in the large−∆ eikonal approximation
of holographic correlators on Lorentzian AdS black holes in [95], and they signal the
presence of a singularity beyond the horizon. Our computations are carried out at fi-
nite ∆ and they may provide important information about the signature of a black hole
singularity in the dual correlators. We also note that this provide the first fully-fledged
explicit example where the radius of convergence of the thermal OPE in this setup is
less than β, as conjectured in the analysis of [25].

For our purposes, an interesting question is how to account for these double-twist
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contributions using ambient invariants. For CFTs in thermal states dual to thermal AdS
and BTZ, the ambient space is a quotient of (d+2)-dimensional Minkowski space (being
each ALAdSd+1 slice simply a quotient of Euclidean AdS). One can check that the double-
twist spectrum arises automatically from the sum over the distinct geodesics that connect
the same two nullcone points, which is implicit in the prescription (4.16). In particular,
the ambient correlator is equal to a sum of terms X̃−∆

12 , each evaluated on one among
the infinite distinct ambient geodesics that wrap the thermal circle, each characterised
by a different winding.

However, as we detail in Appendix G there is a unique geodesic on the AdS planar
black hole that connects two given boundary points, and hence there is only one ambient
geodesic that connects a given pair of points on the nullcone. This entails that there are
no periodic ambient geodesics to sum over, suggesting that double-twist contributions
must be described by a novel class of invariants on the ambient space. We leave this
interesting question to future work.

5.6 The d = 2 case and the BTZ black hole
As a simpler example we would like to study thermal correlators in d = 2 Euclidean
CFTs using the ambient formalism. Following the literature, we parametrise the thermal
cylinder with coordinates xi = (τ, ϕ) with 0 ≤ τ < β and consider for now a non-compact
ϕ. The states we are interested in are characterised by a stress tensor VEV of the form
(5.2), which we write in d = 2 as

⟨Tij⟩ dxidxj =
π

4Gβ2

(
dτ 2 + dϕ2

)
. (5.71)

The ambient space one must use is then a foliation of Euclidean BTZ black holes,

g̃ = −ds2 + s2
[

dr2

r2 − r2H
+
(
r2 − r2H

)
dτ 2 + r2dϕ2

]
, (5.72)

with rH = 2π/β and r > rH . The radial r coordinate is related to the ambient ρ
coordinate by

r =
1− 2ρ2

2
√−2ρ

rH . (5.73)

Let us now study scalar 2-point functions in such thermal state using this am-
bient space. Leveraging translational symmetries and turning to the ambient gauge
X̃ = (t, ρ, τ, ϕ) as in (2.1), we place the insertion points at

X̃1 = (t1, 0, 0, 0) , X̃2 = (t2, 0, τ, ϕ) . (5.74)
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Through the coordinate transformation

X0 =
s r

rH
cosh(rHϕ), X1 =

s r

rH
sinh(rHϕ) , (5.75)

X2 = s

√
r2

r2H
− 1 cos(rHτ) X3 = s

√
r2

r2H
− 1 sin(rHτ) , (5.76)

one can show the ambient metric (5.72) describes the geometry of Minkowski space on
the whole region in the causal future of the origin XM = 0. As we discussed in Section
2.2, any 4-dimensional ambient space is locally diffeomorphic to Minkowski space. This
entails that all ambient curvature invariants are identically vanishing, and the only non-
trivial building block is the geodesic distance square X̃12.

Geodesics on this geometry are simply straight lines on Minkowski. The boundary
conditions (5.74) fix the integration constants, yielding

X0(λ) =
1

2

[
t0 − t0λ+ t1λ cosh(rHϕ)

]
, X1(λ) =

1

2
t1λ sinh(rHϕ) , (5.77)

X2(λ) =
1

2

[
t0 − t0λ+ t1λ cos(rHτ)

]
, X3(λ) =

1

2
t1λ sin(rHτ) . (5.78)

We thus obtain the invariant

X̃12 =
t0t1
2

[
cosh(rHϕ)− cos(rHτ)

]
. (5.79)

Contrarily to Thermal AdS, there is only one geodesic connecting any pair of insertion
points on the thermal cylinder for non-compact ϕ, regardless of the periodicity in τ . This
is analogous to what happens with the higher dimensional black brane as discussed in
Subsection 5.5.3 and Appendix G. The resulting ambient 2-point function is therefore

⟨O(τ, ϕ)O(0)⟩(β)d=2,∆ =
1

β2∆

C∆

[ cosh 2πϕ
β

− cos 2πτ
β
]∆
. (5.80)

Expanding this correlator in the OPE limit, only negative even powers of β appear,
describing the multi-stress tensor spectrum.

The non-singular BTZ black hole geometry is however periodic in ϕ with period
2π, and on the corresponding ambient space one has an infinite number of geodesics.
Their form is the same as in equations (5.77)-(5.78) with ϕ → ϕ + 2πm, where m ∈ Z
parametrises the winding around the ϕ circle. There is an invariant analogue to (5.79)
for each such geodesic, yielding a correlator of the form,

⟨O(τ, ϕ)O(0)⟩(β)d=2,∆ =
1

β2∆

∞∑
m=−∞

C∆

[ cosh 2π(ϕ+2πm)
β

− cos 2πτ
β
]∆
. (5.81)

This expression matches the corresponding holographic result [104, 105], and represents
another successful test of the ambient formalism.
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Chapter 6

CFTs on squashed spheres

Squashed spheres are a class of non-conformally flat and non-Einstein manifolds and
represent an interesting case of study to make predictions using the ambient space for-
malism. Previous works on CFTs on squashed spheres include [26–33].

Let us summarise the content of this chapter. In Section 6.1 we review the geometry of
squashed spheres and their symmetries, and in Section 6.2 we study how such symmetries
constrain the form of CFT 1- and 2-point functions on these metric backgrounds. In
Section 6.3 we set up the appropriate class of ambient spaces to be used in this case,
and in Section 6.4 we solve the geodesic equations on such ambient spaces. In Section
6.5 we build the relevant ambient curvature invariants and we assemble them into an
ambient scalar 2-point function, allowing us to point out a mismatch with the Ansatz
for the holographic correlator on squashed spheres considered in [27]. We conclude this
chapter with interesting open questions concerning the classification of observables of
CFTs on squashed spheres and the potential of the ambient space formalism for this
class of theories.

6.1 Geometry
In odd d = 2k+1 their geometry can be conveniently written in terms as a Hopf fibration
S1 −→ Sdα −→ CPk with metric

ds2 = gCPk +
d+ 1

1 + α

(
dψ +

ACPk

d+ 1

)2

, (6.1)

with gCPk normalized such that RCPk

ab = gCP
k

ab , and where ACPk is related to the Kähler
form J on CPk by J = dACPk . The real parameter α defines the squashing. For α = 0 we
recover the round sphere Sd, while in the limiting case α → ∞ we obtain the cylinder
R× S2k.
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The complex projective space CPk has SU(k + 1) = SU
(
d+1
2

)
as isometry group.

Thus for generic α, squashed spheres have
(
d+1
2

)2 independent isometries generating
SU

(
d+1
2

)
× U(1). In the round sphere case α = 0, one has an enhancement of the

isometry group to SO(d+ 1), i.e. d(d+1)
2

isometries.
Fixing to d = 3 for concreteness, the geometry reads

ds2 = dθ2 + sin2 θdφ2 +
1

1 + α
(dψ + cos θdφ)2 , (6.2)

where 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π are the Euler angles. 1 As anticipated, these
spaces are not Einstein but they are close to being Einstein in the sense that one can
recast their Ricci tensor as

Rij(θ) =
R

3
gij(θ) +Hij(θ), (6.3)

where Hij is traceless, so that they have constant curvature R = 3+4α
2(1+α)

. Their Cotton
tensor is non-vanishing, hence they are non-conformally flat. From the results in Sub-
section 2.3.1, this means that regardless of the CFT state, their ambient space locally is
not flat space.

For generic α, the squashing breaks SO(4) ≃ SU(2)L × SU(2)R down to SU(2)L ×
U(1)R. Thus d = 3 squashed spheres are endowed with only four out of the six isometries
of round spheres. These isometries can be written as

K1 = − sinφ∂θ +
cosφ

sin θ
∂ψ − cot θ cosφ∂φ, (6.4)

K2 = cosφ∂θ +
sinφ

sin θ
∂ψ − cot θ sinφ∂φ, (6.5)

K3 = ∂φ, (6.6)
K4 = ∂ψ, (6.7)

where K4 generates the residual U(1)R symmetry. No additional conformal Killing vector
is present for a generic squashing α.

6.2 Ward Identities and correlators
The Ward Identities associated to the vectors K1 . . . K4 fix scalar 1-point functions of
quasi-primary operators to constants, while a dependence on θ is allowed for 1-point
functions of operators with spin. Defining the invariant 1-form

ζ = dψ + cos θdφ, LKi
ζ = 0 , (6.8)

1Performing the limit α → 0 on the metric (6.2) yields a degenerate geometry. We can attain a
non-degenerate metric by first unwrapping the fibred S1 so that 0 ≤ ψ <∞, and subsequently rescaling
it as ψ̃ = ψ√

1+α
.
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a generic spin-1 1-point function can be written as

⟨Oi(θ)⟩α = u1 ζi , (6.9)

and a generic spin-2 1-point function can be written as

⟨Oij(θ)⟩α = u2 ζi ζj + u
(tr)
2 g(0)ij , (6.10)

where the constants u2 and u(tr)2 are fixed by dynamics. Note that no antisymmetric part is
allowed. ⟨Oij(θ)⟩α has a non-trivial dependence on θ, which entails that an infinite tower
of descendants can be constructed acting with three-dimensional covariant derivatives
on the squashed sphere.

The form of scalar 2-point functions of quasi-primary operators is partially fixed by
the Ward Identities

[LKi
(θ1, φ1, ψ1) + LKi

(θ2, φ2, ψ2)] ⟨O1O2⟩α = 0 . (6.11)

Leveraging rotational symmetry along ψ and φ, we can move the first insertion to lie at
ψ1 = φ1 = 0 and the second insertion to be at ψ2 = ψ, φ2 = φ. Adopting the basis of
cross-ratios from [27], scalar 2-point correlators must be of the form

⟨O1(θ1, 0, 0)O2(θ2, ψ, φ)⟩α = F (v1, v2), (6.12)

where

v1 = cos
θ1
2
cos

θ2
2
cos

ψ + φ

2
+ sin

θ1
2
sin

θ2
2
cos

ψ − φ

2
, (6.13a)

v2 =
1

2
(1 + cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) . (6.13b)

Although it will not be pursued in the following sections, an alternative interesting
perspective is to consider the squashing as a metric variation and use conformal pertur-
bation theory [30]. Writing the squashed sphere metric as a power expansion in small
α,

g(0) = g + αh+ . . . , (6.14)

where g is the metric on the round S3, we can interpret a small squashing as the defor-
mation of the boundary action by

S[g(0), ϕ] = S[g, ϕ] + α δS[g, ϕ] + . . . = S[g, ϕ]− α

2

∫
d3x

√
ghµνTµν + . . . . (6.15)

Assuming the CFT partition function and observables are analytic in α, the 2-point
functions take the following structure,

⟨O(x1)O(x2)⟩g(0) =
∫
DϕO(x1)O(x2)e

−S[g(0),ϕ]

= ⟨O(x1)O(x2)⟩g −
α

2

∫
d3x

√
g ⟨T̃ (x)O(x1)O(x2)⟩g + . . . ,

(6.16)
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with T̃ (x) = hµν(x)Tµν(x) dimension 3 operator. This turns a 2-point function on a
squashed sphere into a sum of higher point functions on a round sphere involving addi-
tional stress tensors, averaged on the round sphere.

6.3 The ambient setup
We intend to study CFTs on squashed spheres in states with a non-vanishing stress
tensor VEV. To describe the multi-stress tensor contributions of their correlators using
the ambient formalism we have to identify suitable bulks with a squashed 3-sphere as
a boundary and a non-vanishing holographic stress tensor VEV. Four-dimensional AdS
Taub-NUT and -bolt spaces allow one to study a wide class of such states. Their metric
reads [106]

ds2 =
dr2

V (r)
+ (r2 − n2)(dθ2 + sin2 θdφ2) + 4n2V (r) (dψ + cos θdφ)2 , (6.17)

where we defined

V (r) =
r2 + n2 − 2mr + (r4 − 6n2r2 − 3n4)

r2 − n2
. (6.18)

The nut parameter is related to the squashing of the boundary by n = (2
√
α + 1)−1, and

the boundary is reached for r → ∞. The holographic stress tensor 1-point function in
such geometries is parametrised by the mass parameter m as

u2 = − 3

8π

m

1 + α
, u

(tr)
2 =

m

8π
, (6.19)

and as such they can be used to describe any state where
u2

u
(tr)
2

= − 3

1 + α
. (6.20)

As an illustrative example, the CFT state that we consider is characterised by
the stress tensor VEV associated to the self-dual AdS Taub-NUT geometry with no
conical singularities. The ambient space we need is then (2.8) with metric (6.17) as
(d + 1)−dimensional hyperbolic slices, and with the choice of the mass parameter m =

α

2(1+α)3/2
. For later convenience, we write explicitly the stress tensor VEV ⟨Tij⟩α =

3
16π
g(3)ij, with

g(3)ijdx
idxj =

α

3(α + 1)3/2

[
dθ2 − 2dψ2

1 + α
− 4 cos θ

1 + α
dψdφ− (α + 3) cos 2θ − α + 1

2(α + 1)
dφ2

]
=
α

3

[
dθ2 − 2dψ2 − 4 cos θ dψdφ− 3 cos 2θ + 1

2
dφ2

]
+O(α2),

(6.21)
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We work perturbatively in small α. To avoid cluttering in the expressions below we fix
θ1 = 0, rename θ2 = θ and define χ = (φ + ψ)/2. The two insertion points on the
ambient space are thus X̃1 = (s1, r1, 0, 0, 0) and X̃2 = (s2, r2, θ, ψ, φ), where the limit to
the lightcone si, ri → ∞ with fixed si/ri = ti = 1 is understood.

6.4 Geodesics
Let us first solve the geodesic equations on this geometry between X̃1 and X̃2 so as to
obtain the invariant X̃12. In this case it is convenient to compute the (divergent) geodesic
length LAdS on a fixed hyperbolic slice and then use the relation (4.19) to find the finite
ambient invariant X̃12.

We hence consider the 4-dimensional self-dual AdS Taub-NUT metric (6.17) with
m = α

2(1+α)3/2
. We would like to study geodesics on this background with endpoints on the

boundary r → ∞ at the generic points x1 = (θ1, 0, 0) and x2 = (θ2, ψ, φ) corresponding
to the values of the affine parameter λ = 0 and λ = 1 respectively. For simplicity we
restrict to θ1 = θ2 = 0 and fix the dynamics along θ.

The boundary isometries (6.4)-(6.7) are also bulk isometries and one can use them to
partially integrate the bulk geodesic equations. From the integrals of motion related to
translational symmetries (6.6)-(6.7) along φ and ψ one obtains the first-order equations

φ̇ =
Aφ

n2 − r2
, (6.22)

ψ̇ = − Aψ(n+ r)

4n2(n− r) (−3n2 + 2nr + r2 + 1)
− Aφ
n2 − r2

, (6.23)

where Aψ and Aφ are the constants of motions. Using equations (6.22)-(6.23) the 4-
velocity constraint in the bulk ẋµẋµ = L2

AdS can be expanded as

4n2(n+ r(λ))ṙ(λ)2 + nA2
ψ + 4

(
1− 3n2

)
n3L2

AdS+

r(λ)
(
A2
ψ − 4n2L2

AdSr(λ)(n+ r(λ)) + 4n2
(
5n2 − 1

)
L2

AdS

)
= 0 .

(6.24)

Instead of solving directly this equation in r(λ), we find it more convenient to use it to
simplify the form of the second-order radial equation by removing the ṙ(λ)2 term. The
radial equation that we are going to solve then reads

(n+ r(λ))2r̈(λ)− L2
AdS

(
n− 4n3 + r(λ)(n+ r(λ))2

)
= 0 . (6.25)

The strategy is to first solve this radial equation. To regulate the divergence in the
geodesic distance as one approaches the boundary we use boundary conditions r(0) =
r(1) = R with a radial regulator R to be eventually set to infinity.

One then plugs the solution r(λ) into the angular equations and solves them subject
to the Dirichlet boundary conditions at x1 and x2. This fully determines the trajectory.
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Finally, substituting the onshell r(λ) and Aψ into (6.24) allows one to find the value of
LAdS in terms of the boundary points x1 and x2.

Note that Aφ does not appear in (6.24), meaning that to obtain the geodesic distance
LAdS it is sufficient to solve the reduced ODE

χ̇(λ) +
Aψ(n+ r(λ))

8n2(n− r(λ)) (−3n2 + 2nr(λ) + r(λ)2 + 1)
= 0 , (6.26)

in terms of χ(λ) = ψ(λ)+φ(λ)
2

with boundary conditions χ(0) = 0 and χ(1) = χ.
The explicit solution to (6.25) can be found in terms of inverse elliptic functions.

However we are interested in an α → 0 expansion of the geodesic distance, which cor-
responds to an n → 1

2
expansion in the current parametrisation. We thus expand the

unknown functions and integration constants as

r(λ) =
∞∑
k=0

(
n− 1

2

)k
rk(λ) , χ(λ) =

∞∑
k=0

(
n− 1

2

)k
χk(λ) , (6.27)

Aψ =
∞∑
k=0

(
n− 1

2

)k
A

(k)
ψ , LAdS =

∞∑
k=0

(
n− 1

2

)k
L
(k)
AdS . (6.28)

At leading order k = 0 the bulk is simply global Euclidean AdS4 and the boundary is a
round sphere. Following this integration scheme, one finds

r0(λ) =
(8− 8 cosχ)−λ

[
64λR2λ+1(1− cosχ)2λ + 8R3−2λ(1− cosχ)

]
1 + 8R2(1− cosχ)

, (6.29)

χ0(λ) = −
χ arctan

[
8 sinχ(cosχ−1)(R4λ(8−8 cosχ)2λ−1)

R4λ−2(8−8 cosχ)2λ(8R2(cosχ−1) cosχ−1)−8(cosχ−1)((8R2−1) cosχ−8R2)

]
arctan

[
sinχ(−32R4(cos 2χ−4 cosχ)−96R4+1)

cosχ(32R4(−4 cosχ+cos 2χ+1)+(1−8R2)2)+16R2

] , (6.30)

L
(0)
AdS = log

[
8R2(1− cosχ)

]
, (6.31)

A
(0)
ψ = −

√
32R4 cos 2χ− 16R2 cosχ− 32R4 + 16R2 + 1

4 (8R2 cosχ− 8R2 − 1)
× (6.32)

arctanh

[
(−8R2 cosχ+ 8R2 − 1)

√
32R4 cos 2χ− 16R2 cosχ− 32R4 + 16R2 + 1

64R4(cosχ− 1) cosχ+ 1

]−1

.

The solution at first order is rather lengthier and we avoid displaying it here. The first
order geodesic distance at leading order in R → ∞ takes however a particularly compact
form,

L
(1)
AdS =

[
4(π − χ) sin3 χ

2
+ cos

χ

2
+ 3 cos

3χ

2

]
sec3

χ

2
. (6.33)
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Knowing L(0)
AdS and L(1)

AdS, one can compute the invariant X̃12 to first order in α through
(4.19) setting R → ∞. It reads

X̃12 = 8(1− v1)

[
1 + α

(
1− 3v1
1 + v1

+ (arccos v1 − π)

(
1− v1
1 + v1

) 3
2

)
+O(α)2

]
. (6.34)

In the limit θ1 → θ2 we are considering here the cross ratios reduce to v1 = cosχ
and v2 = 1. The fact that v2 trivialises means that only v1 can appear in invariants
contributing to correlators such as (6.34) in this limit.

6.5 Invariants and ambient 2-point functions
Using the techniques developed in Appendix B one can straightforwardly compute the
parallel transported vector T̂1 from X̃1 to X̃2. In particular, to order O(α0) the hyperbolic
sections are global AdS4 spaces and the ambient geometry is simply Minkowski spacetime.
Thus, to find T̂1 to this order in α it is sufficient to take the Euler vector in Minkowski
XM∂M evaluated at the point X̃1, and make a transformation XM → X̃M = (s, r, θ, ψ, φ)
to the ambient coordinates. This change of coordinates reads

X0 = t
(
1− ρ

2

)
, (6.35a)

X1 = t
(
1 +

ρ

2

)
sin

(
θ

2

)
cos

(
ϕ− ψ

2

)
, (6.35b)

X2 = t
(
1 +

ρ

2

)
sin

(
θ

2

)
sin

(
ϕ− ψ

2

)
, (6.35c)

X3 = t
(
1 +

ρ

2

)
cos

(
θ

2

)
cos

(
ψ + ϕ

2

)
, (6.35d)

X4 = t
(
1 +

ρ

2

)
cos

(
θ

2

)
sin

(
ψ + ϕ

2

)
, (6.35e)

where the ambient t and ρ are related to the AdS Taub-NUT radial coordinate (at zero-th
order in α) by

t =
s

4
(√

r2 − 1
4
+ r
) , (6.36)

ρ = −8

(√
r2 − 1

4
+ r

)2

. (6.37)
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The resulting transported T̂1 is consequently

T̂1 =
cos θ

2
cosχ+ 1

2r
∂s +

cos θ
2
cosχ− 1

64r
∂r (6.38)

− 2 sin
θ

2
cosχ∂θ − sec

θ

2
sinχ∂ψ − sec

θ

2
sinχ∂φ +O(α).

From equations (4.4), (4.6) and (4.7) the non-vanishing components of the ambient Rie-
mann read

R̃rirj = − 3t2

2r5
g(3)ij +O(α2),

R̃rijk =
t2

r3
(
∇kg(3)ij −∇jg(3)ik

)
+O(α2), (6.39)

R̃ijkl =
3t2

2r

[
g(0)ikg(3)jl + g(0)jlg(3)ik − (l ↔ k)

]
+O(α)2.

These ingredients can be assembled to form the ambient curvature invariants that
enter scalar correlators. As we showed in Section 4.2 the ambient formalism predicts that
the single-stress tensor contributions to scalar correlators are fully fixed by the leading
geodesic distance (X̃12)

−∆. Since ⟨Tij⟩α = O(α), the leading curvature invariants are of
order O(α)2. As expected due to the infinite tower of non-trivial descendants of :T 2:,
one can construct an infinite number of independent ambient curvature invariants at
this order. However, in a short distance expansion the dominant contributions can be
identified as the three invariants accounting for the three independent ∼ ⟨:T 2 :⟩ contri-
butions, while the others include a higher and higher number of covariant derivatives
and are thus subleading. Focusing on the dominant ones, a suitable basis is provided by
the three curvature invariants

(∇R̃iem)2 =
42α2

t6
+O(α)3, (6.40)

R̃(1)
AC R̃(1)AC = 18α2 sin2 θ

2

[
3− cos θ − 2 cos2

θ

2
cos 2χ

]2
+O(α)3, (6.41)

R̃(0)
AC R̃(2)AC =

3

2
α2

[
−3 + 5 cos θ − 2 cos2

θ

2
cos 2χ

][
3− cos θ − 2 cos2

θ

2
cos 2χ

]2
+O(α)3,

(6.42)

where the tensors R(r) are defined in (4.14). Using the expressions for the ambient Rie-
mann components in (6.39) one can explicitly check that these invariants do not contain
derivatives of the stress tensor VEV, ensuring they describe the independent : T 2 : blocks.

Note that weight-0 invariants of the form (4.14) constructed as chains of tensors
R(r) are not sufficient to account for all the three :T 2: blocks, as opposed to the finite
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temperature example in Chapter 5 where they can be used as a basis for any multi-
stress tensor contribution :T n: as we showed. The difference resides in the fact that in
the present case the dimension of the CFT background is odd. As discussed in the end of
Section 4.2 this causes a number of ambient invariants to be either divergent or vanishing
in the limit to the nullcone, as it is the case for instance for R̃(0)

AC R̃(0)AC here.
Following the prescription in Section 4.3, the scalar 2-point function in this back-

ground and state takes the form

⟨O(X1)O(X2)⟩α =
C∆

(X̃12)∆

[
1 +

3

2
α2

[
28c1 −

(
2 cos2

θ

2
cos 2χ+ cos θ − 3

)2
×

(
6c2(cos θ − 1) + c3

(
2 cos2

θ

2
cos 2χ− 5 cos θ + 3

))
+ . . .

]
+O(α3)

]
, (6.43)

where c1, c2 and c3 are theory-dependent constants, while the dots denote subleading
terms in the short distance limit. These contributions can be constructed in a similar way
using invariants containing more ambient covariant derivatives, while multi-stress tensor
blocks can be accounted for with invariants of higher order in the ambient Riemann.

Given the form (6.34) of the invariant X̃12, in the case of θ = 0 we are able to
explicitly write the form of the scalar 2-point function to first order in α,

⟨O(X̃1)O(X̃2)⟩α =
C∆8

−∆

(1− v1)∆

[
1−∆

(
1− 3v1
1 + v1

+ (arccos v1 − π)

(
1− v1
1 + v1

) 3
2

)
α+

+O(α)2

]
. (6.44)

In [27] the same holographic scalar 2-point function was computed for ∆ = 1 by making
an Ansatz on the form of the bulk propagator. In the limit θ1 = θ2 = 0, the expression
provided in [27] reduces to the correlator on the round sphere

⟨O(X̃1)O(X̃2)⟩
[Ansatz]

α =
2

1− v1
, (6.45)

to all orders in α. Comparing it with (6.44) we note a clash with the predictions of
the ambient space formalism. We observe that both (6.44) and (6.45) satisfy the correct
kinematic constraints. We discuss some of the possible routes to discriminate between
them in the next section.

6.6 Outlooks
There are several interesting directions one can take to further develop what presented
in this chapter.

101



First of all, there is currently no available general treatment of 1-point functions of
arbitrary spin on squashed spheres. In Section 6.2 we initiated the study of the allowed
tensor structures for spin up to two using the invariant 1-form ζ. As an immediate
consequence, a generalisation to arbitrary spin would allow one to study the OPE limit
of two point functions on squashed spheres and the corresponding conformal blocks,
similarly to what pursued in [25] for thermal 2-point functions.

It would also be interesting to develop the approach making use of conformal pertur-
bation theory described at the end of Section 6.2. So far such perspective has only been
adopted for the computation of the free energy corrections due to squashing in [30], and
it appears especially promising to study the dynamics encoded in correlators on squashed
spheres.

Note that both the OPE limit and conformal perturbation theory would be able
to resolve the tension between the ambient 2-point function (6.44) and the proposed
holographic correlator (6.45). Alternatively, to this aim it may be interesting to perform
a numerical integration of the scalar propagator on the four-dimensional self-dual AdS
Taub-NUT spacetime and extract the corresponding 2-point function. To our knowledge,
this has never been carried out.

Regarding ambient correlators for theories on squashed spheres, an open direction
concerns listing the ambient curvature invariants accounting for an arbitrary number of
stress tensors and their descendants. In addition, from the discussion in Section 4.4 know-
ing the 2-point ambient blocks would straightforwardly allow one to study higher-point
functions on squashed spheres, which are completely unexplored as of now. Similarly, any
information from the ambient formalism related to spinning correlators would prove ex-
tremely useful in characterising these theories. We hope to return to these open questions
in the future.
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Chapter 7

Flat holography, the Beig-Schmidt
gauge and the ambient space

As we discussed in the previous chapters, the ambient space is a Ricci-flat spacetime
which can be locally characterised by the metric (2.1). Geometric quantities and fields
on this (d+ 2)-dimensional geometry are related to QFT observables of a d-dimensional
theory. From this perspective the ambient space has a manifest holographic flavour, and
one may wonder whether it is able to provide a better understanding of holography for
asymptotically flat spacetimes. Studying this connection will be the goal of this chapter.

Conventions. Unless specified otherwise, in this chapter as well as in Chapter 8 we
adopt the most common indices notations in the flat holography literature. We indicate
four-dimensional directions with lowercase Greek letters; three-dimensional indices are
lowercase Latin letters; two-dimensional indices are denoted by capital Latin letters.

Before delving into flat holography, it is convenient to discuss the kind of spacetimes
flat holography intends to address and their asymptotic structure. We fix d+2 = 4 space-
time dimensions. The conformal compactification of Minkowski spacetime is depicted in
Figure 7.1. We consider the Minkowski metric in the form

ds2 = −dt2 + dr2 + r2dΩ2
2 , (7.1)

and define the null coordinates v = t + r, u = t − r. The lines denoted by I − and
I + indicate past and future null infinity, where null trajectories start and end. Different
points on I + (I −) are identified by r → ∞ and u = const (v = const). The locus i0
represents spatial infinity, reached for r → ∞ at constant finite t. It can be approached
from I + (I −) in the limit u → −∞ (v → ∞). The loci i± are called past and future
infinity and they are reached for t → ±∞ and finite r; timelike trajectories start at i−
and end at i+. For future convenience, we indicate the locus resulting from the limit on
I + to u→ −∞ as I +

− , and similarly the limit on I − to v → ∞ as I −
+ .
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Figure 7.1: This figure displays the conformal compactification of Minkowski spacetime.

The class of spacetimes whose asymptotic structure is of this form are called asymp-
totically Minkowski (or asymptotically flat) spacetimes. We will see what the form of
their metric is near I (Section 7.1) and near i0 (Section 7.3). The key difference with
Minkowski spacetime that will play a role in Chapter 8 is that i0 is in general a singular
locus in asymptotically Minkowski spacetimes. In particular, it becomes singular as soon
as the spacetime exhibits a non-vanishing ADM mass, and in this case the result of a
limit to spatial infinity depends on the direction of the limit itself [107–110].

Asymptotically locally flat spacetimes are a further generalisation, and their asymp-
totic structure may be significantly different. In particular, also I − and I + may exhibit
singularities: either of them may not be a connected manifold and they may not extend
up to i± and i0. Conceptually they are considerably harder to describe holographically,
to the same extent as ALAdS spacetimes where bulk matter back-reacts on the boundary
structure (for instance, this is the case for matter corresponding to irrelevant deforma-
tions in the boundary theory [111–116]).

In the next section we review the Bondi gauge, a convenient set of coordinates to de-
scribe physics in a neighbourhood of null infinity. We also review the study of asymptotic
symmetries at null infinity and their charges. In Section 7.2 we discuss current proposals
of flat holography and the role these asymptotic symmetries play. We then turn to fu-
ture, past and spatial infinity by discussing the properties of the Beig-Schmidt gauge in
Section 7.3. Finally, in Section 7.4 we analyse the connections between the Beig-Schmidt
gauge and the ambient space, and what they entail for flat holography.
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7.1 The Bondi gauge and the BMS asymptotic sym-
metry group

A suitable chart to describe the gravitational field at null infinity is the Bondi gauge.
Focusing for now on I +, one can define the so-called retarded Bondi coordinates (u, r, xA)
[117–119]. This is a gauge that one can choose in space-time with general asymptotics
and it is adapted to a family of outgoing null surfaces u = const. The angular coordinates
xA, A = 1, 2 describe a space which is conformal to S2 [120], and we impose xA to be
constant along these null rays. Such conditions imply the metric conditions guu = 0 and
guA = 0. Finally, the radial coordinate r varies along these light rays and it is chosen so
that

∂r det
(gAB
r2

)
= 0, (7.2)

implying that
det gAB = r4F (u, x) (7.3)

for some function F (u, x). Under these conditions, r is effectively the areal coordinate.
Overall, this means that a general metric in the Bondi gauge has the form

ds2 = guu du
2 + 2 gur du dr + 2 guA du dx

A + gAB dx
A dxB , (7.4)

A similar gauge called advanced Bondi coordinates (v, r, xa) can be adopted near I −.
Following the conventions of Strominger [121], the Bondi gauge at I − is formally ob-
tained by applying the transformation u 7→ −v to (7.4) and all subsequent equations.

Assuming the spacetime is asymptotically Minkowski and that the large-r expansion
does not contain logarithmic terms1, Einstein’s equations Rµν = 0 are solved by

guu = −1 +
2m

r
+
ϕ

r2
+O(r−3) , (7.5a)

gur = −1 +
1

16r2
CABC

AB +O(r−3) , (7.5b)

guA =
1

2
∇BCAB +

2

3r

(
NA + u ∂Am− 3

32
∂A
(
CBCC

BC
))

+O(r−2) , (7.5c)

gAB = r2 γAB + r CAB +
1

4
γAB CCDC

CD +O(r−1) . (7.5d)

Here we are considering a spherical section of I , with metric γAB. The quantities m,NA

and CAB are called the Bondi mass aspect, the angular momentum aspect and the
1The most general solution of Einstein equations in this setting contains terms of the form ri log rj

even if the initial characteristic data do not [122, 123]. Setting them to zero thus changes the solution
space. Here we point out that the assumption of smooth null infinity excludes infalling matter from past
timelike infinity [124–128].
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shear tensor, respectively2. The shear tensor satisfies γABCAB = 0 as part of the gauge
conditions. Einstein’s equations also imply the evolution equations

∂um = −1

8
NABN

AB +
1

4
∇A∇BN

AB − 4π lim
r→∞

(r2 Tuu) , (7.6a)

∂uNA = −u ∂A∂um+
1

4
∂A
(
NBCC

BC
)
− 1

4
∇B

(
CBCNCA

)
+

1

2
CAB∇CN

BC (7.6b)

− 1

4
∇B

(
∇B∇CCAC −∇A∇CC

BC
)
− 8π lim

r→∞
(r2 TuA) ,

where Tµν is the matter stress tensor and NAB ≡ ∂uCAB is the News tensor.
The asymptotic symmetries of this class of spacetimes must preserve both the Bondi

gauge and the asymptotic Minkowski structure that we are assuming. If we denote the
generator of such asymptotic transformations by ξ, preserving the Bondi gauge corre-
sponds to requiring

Lξgrr = 0, LξgrA = 0, gABLξgAB = 0, (7.7)

while preserving the asymptotically Minkowski structure imposes the following falloff for
the remaining components of the metric variation,

Lξguu = O

(
1

r

)
, LξguA = O(1), (7.8a)

Lξgur = O

(
1

r2

)
, LξgAB = O(r). (7.8b)

As usual for asymptotic symmetries, these are milder conditions than those for proper
isometries. For this reason the Killing vector fields of a given spacetime are always a
subset of the asymptotic symmetries. Notice also that in this formulation asymptotic
symmetries depend on which falloff conditions one demands. With stricter ones, it is
also possible to remove some of them (though this may result in the loss of legitimate
physical content).

2The definition of the angular momentum aspect varies in the literature. The conventions adopted
by Flanagan–Nichols [129] or by Barnich–Troessaert and Compère–Fiorucci–Ruzziconi [130–132] are
related to the one used here respectively by

NFN
A = NA + u ∂Am,

NBT
A = NA + u ∂Am− 3

32
∂A(CBCC

BC)− 1

4
CAB∇CC

BC .

The quantity ϕ is needed for completeness of the map between Bondi and Beig-Schmidt gauges at
the order we work in Chapter 8. The only information we actually use is that is behaves like ϕ =
uϕ−1 + ϕ0 + o(u0). The reader can find its explicit expression in Appendix I.
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One can easily solve the equations in the asymptotic transformations ξ. Equations
(7.7) fix the dependence on r of its components, while (7.8) are meant to determine the
u and xA dependence. The most generic transformation then reads

ξu = T (x) +
u

2
Ψ(x), (7.9a)

ξA = Y A(x) + (∂Bξ
u)

∫ ∞

r

dr′ gAB, (7.9b)

ξr = −r
2

[
DCξ

C + Y ADAξ
u
]
. (7.9c)

It is parametrized by two functions. Y A(x) is a conformal vector on S2 with Ψ = DAY
A

as its conformal factor, while T (x) is an arbitrary function on S2.
The function T (x) can be expanded in terms of spherical harmonics or as a power

series in stereographic coordinates, and it is the generator of the infinite set of transfor-
mations called supertranslations. They generate the Abelian algebra st4. Asymptotically,
they act as

ξT = T (x)∂u −
1

r
γAB∂AT (x)∂B +

1

2

[
DB∂

BT (x)
]
∂r + . . . (7.10)

where Db denotes the covariant derivative on S2 and the dots must be removed if the
spacetime is exactly four-dimensional Minkowski since the subleading corrections in the
metric components vanish identically.

As for the generators Y A(x), if we restrict to the global conformal transformations
forming the Moebius subgroup SL(2,C)/Z2 ≃ SO(1, 3), one obtains the asymptotic global
BMS group for four-dimensional asymptotically Minkowski spacetimes, with algebra

(global)bms4 ≃ st4 × so(1, 3). (7.11)

Otherwise, one can include all local conformal transformations on S2, consisting in two
copies of the Witt algebra [130, 133, 134] corresponding to transformations called super-
rotations. The local BMS group has thus associated algebra

(local)bms4 ≃ st4 ×wL ×wR. (7.12)

With the aim of finding an explicit realisation of these vector fields, let us consider
the stereographic coordinates

z = eiϕ cot
θ

2
, z̄ = e−iϕ cot

θ

2
. (7.13)

We can expand Y z = Y (z) and Y z̄ = Y (z̄) in terms of the generators

ℓn = −zn+1∂z, ℓ̄n = −z̄n+1∂z̄. (7.14)
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Similarly, we can expand the supertranslations generator T (x) as a series

T (z, z̄) =
∑
m,n∈Z

amnTmn (7.15)

with constant amn and
Tmn =

2

1 + zz̄
zmz̄n. (7.16)

The asymptotic algebra reads

[ℓm, ℓn] = (m− n) ℓm+n, (7.17a)[
ℓ̄m, ℓ̄n

]
= (m− n) ℓ̄m+n, (7.17b)

[ℓk, Tmn] =

(
k + 1

2
−m

)
Tm+k,n, (7.17c)

[
ℓ̄k, Tmn

]
=

(
k + 1

2
− n

)
Tm,n+k, (7.17d)

[Tkj, Tmn] = 0. (7.17e)

Thus the superrotation generators {ℓk, ℓ̄k} form two copies of Witt algebras. In the case
of Minkowski spacetime, the Poincaré algebra is recovered as an isometry subalgebra on
the full spacetime formed by ℓ−1,0,1, ℓ̄−1,0,1 and T00, T01, T10, T11.

Let us now turn our attention to a generic even number of dimensions d+ 2 ≥ 6. In
this case the Bondi expansion has a similar form to (7.5) [123] and considering the same
asymptotic conditions as in equations (7.7) and (7.8), the generator for the asymptotic
transformations reads [135]

ξu = T (x) +
u

d
Ψ(x), (7.18a)

ξa = Y A(x) + (∂Aξ
u)

∫ ∞

r

dr′ gAB, (7.18b)

ξr = −r
d

[
DCξ

C + Y ADAξ
u
]
, (7.18c)

with Y A(x) conformal vector on Sd. Thus in dimensions higher than four, the asymptotic
symmetry algebra appears to include supertranslations and simple rotations [120], since
there conformal vectors Y A form the finite algebra so(1, d + 1).3 In higher dimensions
one can only define the global BMS algebra,

(global)bmsd ≃ std × so(1, d+ 1). (7.19)
3Note that in [136] a version of superrotations that is amenable to generalisation to any number of

dimensions was proposed. There Y A is required to be a vector generating smooth diffeomorphisms on
Sd.
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Returning to d+2 = 4 spacetime dimensions, it is possible to associate finite charges
to them (see [130,131,137]). These charges are labelled by the quantities (T, Y A) defined
over the celestial sphere S2, where T is a function parametrising supertranslations while
Y A is a conformal Killing vector parametrising Lorentz rotations and boosts. We give the
following parametrisation where different values of the constants reproduce the various
proposals for global BMS charges in Bondi gauge,

Q(α,β)[T, Y
A] =

1

8πG

∫
S2
dΩ
(
2T m+ Y AN̂A

)
, (7.20)

with

N̂A ≡ NA − α

16
∂A(CBCC

BC)− α

4
CAB∇CC

BC + u
β

4
∇B

(
∇B∇CCAC −∇A∇CCBC

)
.

(7.21)
This parametrisation slightly extends the one defined in [138] in that we include β in
order to properly account for the recently constructed charges in [131, 132, 139]. The
specific values of α and β in each renormalisation scheme will not be important.

The charges (7.20) are non-trivial for generic asymptotically Minkowski spacetimes,
and thus the global BMS group represents an infinite-dimensional family of physical
transformations. Let us now delve into the meaning of such statement. We restrict for
simplicity to Minkowski spacetime, m = CAB = NA = 0. In the stereographic parametri-
sation (7.13) of S2, performing a supertranslation with parameter f(z, z̄) induces a non-
vanishing shear [140],

Czz = −2∇2
zf(z, z̄) . (7.22)

This can be shown to be precisely the effect of the passage of a train of gravitational
waves between two asymptotic observers. If two asymptotic observers are at a certain
distance in Minkowski, the passage of gravitational waves modifies the proper distance
between them. Therefore the spacetime has memory of the passage of gravitational waves,
and such memory can be seen as the action of BMS transformations on the spacetime.
The values of the Poincaré charges are however left unchanged, therefore different values
of supertranslation charges parametrise degenerate gravitational vacua with different
supertranslation charges. The scalar function f entering the shear tensor as in (7.22)
plays therefore the role of a supertranslation Goldstone mode, parametrising the vacua
of the corresponding superselection sector.

A similar connection can be made between local superrotations [141, 142], another
classes of memory effects (the spin memory), and the corresponding appearance of su-
perrotation Goldstone mode in the metric.

7.2 Towards flat holography
Taking inspiration from AdS/CFT, as discussed in Section 1.3 we expect that if a holo-
graphic description of asymptotically flat spacetimes exists, bulk asymptotic isometries
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must be realised as conformal symmetries in the boundary dual theory. In particular, if
flat holography is realised as an equivalence between observables similar to (1.29), bulk
and boundary observables must be invariant under the same transformations, appropri-
ately realised.

This is the main motivation for the proposal called celestial holography [34–38]. In that
approach, scattering amplitudes in four-dimensional Minkowski spacetime are related to
correlators on a S2. As described in the previous sections, the asymptotic symmetries
of asymptotically Minkowski spacetimes include superrotations, which are parametrised
by conformal transformations on S2 (either global or local depending on the considered
version of the BMS group). Restricting to massless m-to-n scattering processes, the
asymptotic states define m insertion points on a 2-sphere S− which is a section of I −.
Similarly, they define n insertion points on a 2-sphere S+ which is a section of I +.
As proposed by celestial holography, such spheres are however antipodally related, in
such a way that the bulk m-to-n scattering amplitude corresponds to a (m + n)-point
function on a single 2-sphere, called the celestial sphere. Taking advantage of the known
results and properties of the S-matrix on Minkowski space, one is then able to rewrite
the four-dimensional scattering amplitudes as putative dual conformal correlators. This
bottom-up approach hence allows one to investigate the putative holographic theory dual
to weakly-coupled physics on flat spacetimes. Note that the BMS symmetry group also
involves supertranslations, and the dual CFTs on the celestial sphere must realise these
additional symmetries too.

This procedure however involves subtleties. Consider an amplitude ⟨out| S |in⟩, where
⟨out| and |in⟩ denote the outgoing and ingoing states respectively, while S indicates the
scattering matrix. Note that ⟨out| and |in⟩ are representations of two distinct symmetry
groups BMS(I −) and BMS(I +) defined on cross-sections of I − and I + respectively.
However, holographically we expect only one dual theory with a single associated phase
space. The proposed solution in celestial holography is then to assume antipodal matching
conditions for the bulk data in a vicinity of spatial infinity so as to make the value of the
BMS(I −) charges match the value of the corresponding BMS(I +) charges at i0. This
effectively diagonalises the BMS(I +) ×BMS(I −) naive boundary symmetry group to
a single BMS group, with a single set of independent BMS charges. There is evidence
that this is a consistent procedure at least in Minkowski spacetime, since it allows one
to show that the celebrated graviton soft theorems imply Ward Identities associated to
BMS symmetries for the celestial correlators in two dimensions [121,143].

In the case of gravitational scattering on asymptotically Minkowski spacetimes, these
antipodal conditions on the bulk matter read

m(xE)
∣∣
I +

−
= m(ΥxE)

∣∣
I −

+
, CAB(x

E)
∣∣
I +

−
= − CAB(Υx

E)
∣∣
I −

+
, (7.23)

NA(x
E)
∣∣
I +

−
= − NA(Υx

E)
∣∣
I −

+
, (7.24)
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where by ΥxA we denote the antipodally-related point to xA: if we cover the sphere
S2 with angular coordinates xA = (θ , φ), we define it by Υ(θ , φ) = (π − θ , φ + π).
Although (7.23) and (7.24) are taken in celestial holography as an additional assumption
on the bulk gravitational scattering processes, in Chapter 8 we will prove these antipodal
matching conditions on the bulk data by analysing the dynamics of the gravitational field
near spatial infinity.

Being a codimension-2 type of holography, the celestial holography program appears
as a promising direction to connect the ambient space to flat holography. At the core of
the celestial picture lie several key ideas from another approach to flat holography very
much inspired by AdS/CFT and first put on paper by de Boer and Solodukhin [40–43],
which we now review.

For their proposal, they restrict to four-dimensional Minkowski spacetime. As we
known from Section 1.2, one can slice the region with X2 < 0 in terms of Euclidean
AdS3 spaces, with metric there of the form,

η = −ds2 + s2

r2
[
dr2 + δABdx

AdxB
]
, (7.25)

where s > 0 and for simplicity we consider the Poincaré patch. Analogously, the region
of Minkowski with X2 > 0 can be foliated with dS3 slices, with metric

η = ds2 +
s2

r2
[
−dr2 + δABdx

AdxB
]
. (7.26)

Their key idea is to perform a non-compact dimensional reduction of a given theory
on Minkowski space along the s direction onto a single representative three-dimensional
hyperbolic space, separately in the regions X2 > 0 and X2 < 0. In principle this allows
one to describe the dynamics on Minkowski space as physics on a lower dimensional
(A)dS space. The intention is then to use AdS/CFT to relate this theory on (A)dS3 to
a CFT2, which would likely correspond to the celestial CFT in celestial holography.

Let us discuss more in detail this proposal and its open issues through an explicit
example, a massless scalar on Minkowski spacetime [40]. Focusing for now on the X2 < 0
region in the coordinates of (7.25) and denoting the Euclidean AdS3 metric as g+, the
bulk equation of motion

2ηΦ(s, r, x) = 0 (7.27)

takes the form of a Sturm-Liouville problem, provided the appropriate boundary condi-
tions which we will discuss later. The solution hence takes the form

Φ(s, r, x) =

∫
d∆
[
s−∆ϕ+

∆(r, x) + s∆−dϕ−
∆(r, x)

]
, (7.28)

where the modes ϕ±
∆ must satisfy the equation of a massive scalar on AdS3,

(2+ −∆(∆− d))ϕ±
∆(r, x) = 0 . (7.29)
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The integral over ∆ is formal since the set of ∆ to sum over depends on the boundary
conditions for the problem. Several possible choices are physically motivated, however the
requirements of propagating modes as well as of regularity on the Minkowski lightcone
at s = 0 restrict ∆ to belong to the principal series ∆± = 1± iλ, with real λ.

Therefore a massless scalar field with support on the regionX2 < 0 of four-dimensional
Minkowski space is equivalent to an infinite set of non-interacting massive modes on Eu-
clidean AdS3. Using AdS/CFT, one is tempted to relate such modes to a family of scalar
dual operators on a putative CFT2. The AdS/CFT dictionary as currently established
and as described in Subsection 1.3.3 involves only positive real scaling dimensions ∆.
For complex ∆’s, the CFT interpretation becomes more obscure since there is no clear
distinction between normalisable and non-normalisable modes. Furthermore, to extract
CFT observables one has to renormalise the divergences at the level of the bulk onshell
action. This is again complicated by the presence of complex scaling dimensions and
the corresponding counterterms are consequently not known. In addition to these diver-
gences, other divergences appear in the onshell action in the limit s→ ∞, and they are
completely different in nature and closer to the type of divergences that are addressed
in gravity on asymptotically flat spacetimes. The decomposition on dS3 in the region
X2 > 0 can be treated analogously, and a further issue of this picture concerns how to
join the descriptions in terms of modes on either AdS3 or dS3 for Minkowski fields with
supports on both X2 < 0 and X2 > 0 regions.

This approach by dimensional reduction exhibits several connections with the am-
bient space setup, which naturally involves hyperbolic slicings of the form (2.8) and
(2.15). Indeed, the computation in Section 2.5 can be viewed as a generalisation of the
dimensional reduction approach by de Boer and Solodukhin beyond four-dimensional
Minkowski. In particular, there the spacetime dimensions are d + 2, the spacetime is
generically Ricci-flat, and consequently the codimension-1 slices are AL(A)dSd+1 (as op-
posed to pure (A)dSd+1) spaces.

To make this connection with the ambient space more explicit and with the aim of
extending the celestial holography framework as well as this dimensional reduction ap-
proach beyond four-dimensional Minkowski spacetimes, in the next section we introduce
an interesting gauge for asymptotically Minkowski spacetimes, the Beig-Schmidt gauge.

7.3 The Beig-Schmidt gauge
Originally studied as a convenient way to describe the dynamics of the gravitational field
on asymptotically Minkowski spacetimes near spatial infinity i0 (for which we use it in
Chapter 8), the Beig–Schmidt gauge [39] also proves useful for connecting the ambient
space to flat holography. A metric in the Beig-Schmidt gauge takes the form

ds2 = N2 dρ2 +Hab (N
a dρ+ dxa) (N b dρ+ dxb) , (7.30)
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where spatial infinity is approached in the limit ρ→ ∞. As this limit is taken, the metric
behaves as

N = 1 +
σ

ρ
, (7.31a)

HabN
b = o(ρ−1) , (7.31b)

Hab = ρ2
(
hab + ρ−1fab +

log ρ

ρ2
iab + ρ−2jab + o(ρ−2)

)
. (7.31c)

These falloff properties of the metric components are ensured also in the case of an
asymptotically Minkowski spacetime sourced by a matter stress tensor, as long as

Tρρ = o(ρ−4) , Tρa = o(ρ−3) , Tab = o(ρ−2) . (7.32)

Einstein’s equations at leading order imply

R[h]ab = 2hab . (7.33)

We take hab to be globally the three-dimensional de Sitter space H. We stick to the
boundary conditions in [144], where hab is not allowed to fluctuate. We treat hab as
a genuine metric on H and indicate the corresponding covariant derivative as Da. All
three-dimensional indices a, b, c, ... are raised and lowered with this metric. As it will be
discussed in Section 7.4, an analogous Beig-Schmidt gauge can be set up in a vicinity of
i+ or i− and in that case hab is required to be ALAdS3, as opposed to ALdS3 as in the
present case.

The leading non-vanishing terms of the electric and magnetic parts of the Weyl tensor
are respectively

Eab = − (DaDb + hab)σ , Bab =
1

2
ϵ cd
a Dckdb , (7.34)

where
kab ≡ fab + 2σhab . (7.35)

The fields σ and kab play the role of potentials for these two pieces of the Weyl tensor.
In order to allow for a well-posed action principle, the trace of kab must vanish as part
of the boundary conditions [144],

kaa = habkab = 0 . (7.36)

Given these definitions and boundary conditions, Einstein’s equations reduce to dy-
namical equations on the three-dimensional de Sitter hyperboloid H, which can be solved
order by order in the ρ−1 expansion. The leading order fields σ, kab and iab satisfy ho-
mogeneous partial differential equations, and act as sources for the subleading field jab.
More specifically, the homogeneous equations satisfied by the leading fields are given by

(D2 + 3)σ = 0 , (D2 − 3)kab = 0 , Dakab = 0 , (7.37)
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(D2 − 2)iab = 0 , iaa = Daiab = 0 . (7.38)

The inhomogeneous equations satisfied by the subleading field jab is given by(
D2 − 2

)
jab = 2iab + Sab , (7.39)

subject to the constraints

jaa = 12σ2 +DaσD
aσ +

1

4
kabkab + kabDaDbσ , (7.40a)

Dbjba =
1

2
kcb D

bkca +Da

(
8σ2 +DaσD

aσ − 1

8
kcdkcd + kcdDcDdσ

)
. (7.40b)

The constraints (7.40) determine the trace and divergence of jab in terms of the first order
data σ and kab. The remaining equation (7.39) should be understood as an equation for
the remaining undetermined degrees of freedom carried by jab. This evolution equation
is sourced by a term Sab quadratic in σ and kab,

Sab = NLab(σ, σ) + NLab(σ, k) + NLab(k, k) . (7.41)

We refer to Appendix C of [144] for explicit expression of (7.41) which is lengthy and
not particularly illuminating.

The asymptotic symmetries at spatial infinity with thee boundary conditions can be
shown to be Poincaré transformations, supertranslations and logarithmic translations
[144]. We discuss the role of superrotations in this gauge in Section 7.4. The action of
logarithmic translations is

ρ→ ρ+ log ρH(xa) + o(ρ0) , (7.42)

xa → xa +
1 + log ρ

ρ
DaH(xb) + o(ρ−1) , (7.43)

where H(xa) is a function on the hyperboloid satisfying the condition (DaDb+hab)H = 0.
Such transformations do not change kab, while they modify σ → σ +H.

Supertranslations act as

ρ→ ρ+ ω(xa) + o(ρ0) , (7.44)

xa → xa +
1

ρ
Daω(xb) + o(ρ−1) , (7.45)

inducing the variation
kab → kab + 2(DaDb + hab)ω , (7.46)

while σ is left unchanged. Here ω is a function on the hyperboloid satisfying

(DaD
a + 3)ω = 0 . (7.47)
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Translations are the transformations which further satisfy

(DaDb + hab)ω = 0 , (7.48)

and they thus lead to no variation in the metric. More details regarding the asymptotic
symmetries in the Beig-Schmidt gauge and the associated finite charges [144] will be
provided in Chapter 8.

7.4 Relations with the ambient space
Conventions. In this section we reinstate the ambient notation for indices adopted
in Chapters 1 to 6. We denote four-dimensional indices by capital Latin letters, three-
dimensional indices by lowercase Greek letters, and two-dimensional indices by lowercase
Latin letters.

As we mentioned in Section 7.3, for four-dimensional asymptotically Minkowski space-
times the vicinity of i+ can also be described in terms of Beig-Schmidt gauge. The
corresponding metric expansion reads

g̃ = −
(
1 +

σ(x)

s

)2

ds2 + s2
[
g+αβ(x) +

fαβ(x)

s
+O(s)−2

]
dxαdxβ , (7.49)

where s describes the geodesic distance from future infinity, reached for s→ ∞. Consid-
ering a Ricci-flat spacetime, the condition R̃MN = 0 can be solved order by order at large
s, from which it follows that g+αβ must be the metric of a 3-dimensional ALAdS space (as
opposed to the Beig-Schmidt expansion near spatial infinity, where the corresponding
2-tensor is ALdS).

Performing the transformation

s→ s− σ(x) log s+ o(s0) , (7.50)

xα → xα − 1 + log s

s
Dασ(x) + o(s−1) , (7.51)

one can transfer the degrees of freedom of σ into an additional logarithmic term with
coefficient f̃αβ(x), yielding the following metric in normal coordinates,

g̃ = −ds2 + s2

[
g+αβ(x) +

fαβ(x)

s
+
f̃αβ(x)

s
log s+O(s)−2

]
dxαdxβ . (7.52)

This transformation is nothing but a logarithmic supertranslation [145], that is a loga-
rithmic translation of the form (7.42) where the function H(x) that parametrises it does
not satisfy (DαDβ + g+αβ)H = 0.
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If one now imposes T = s∂s to be a homothety of the 4-dimensional spacetime such
that LT g̃ = 2g̃, one restricts to spacetimes where fαβ, f̃αβ as well as all the higher order
data in the expansion is vanishing. The resulting geometry is that of an ambient space
in hyperbolic slicing (2.8). Similarly, if one starts from a Beig-Schmidt expansion near
spatial infinity as the one described in Section 7.3, the resulting metric after imposing
the homothety T is the ALdS slicing (2.15) of the ambient space.

In this perspective, the ambient space is a generalisation of Minkowski space which
maintains an analogue of the Euler vector XM∂M , while a general geometry in the
Beig-Schmidt gauge allows one to describe more general Ricci-flat spacetimes where this
homothety is absent. In this latter case, the nullcone structure of ambient spaces is
broken.

In view of generalising the approaches to flat holography described in Section 7.2 to
spacetimes other than four-dimensional Minkowski, it is interesting to discuss where the
BMS Goldstone modes appear in the ambient and Beig-Schmidt metrics. Considering
the local BMS group (7.12), one can show that the superrotation mode is encoded in the
g(d)ij term appearing in the hyperbolic metric g+αβ related to the dual holographic stress
tensor according to AdS/CFT [43]. 4 The supertranslation Goldstone mode is encoded
in fαβ [50, 144]. Thus, enforcing the presence of the homothety T = s∂s requires fαβ to
vanish and fully fixes the supertranslation mode. If we then consider flat spacetimes which
are locally ambient spaces, we expect to be able to describe the soft physics related to
Poincaré transformations and superrotations, while less clearly so for supertranslations.

In particular from the algebra (7.17) it follows that Poincaré transformations together
with superrotations do not form a closed subalgebra of local BMS transformations (7.12).
This entails that if one fixes supertranslations as one does on ambient spaces, the maxi-
mal consistent algebra of near-lightcone transformations is simply ISO(1, 3). Analogous
arguments yield a near-lightcone algebra ISO(1, d+1) in general d+2 spacetime dimen-
sions. This hence seems to indicate that one has to give up the global homothety T and
resort to the more general geometries of the Beig-Schmidt class in order to describe the
soft physics of gravity in flat spacetimes.

At these stage, several questions remain open. It is not yet clear how to use the ambi-
ent and Beig-Schmidt geometries to generalise the proposal by [40,41] of flat holography
as an uplift of AdS/CFT to generic asymptotically Minkowski spacetimes in an arbitrary
number of dimensions. It is also unclear how this framework precisely relates to celes-
tial holography, and how celestial holography can be extended to non-trivial spacetimes
where the gravitational scattering problem is not a priori well-defined.

In the next chapter we will provide useful insight to address all these questions, by
relating the gravitational data appearing in Bondi gauge (where celestial holography is
formulated) to the gravitational data present in Beig-Schmidt gauge (which can serve

4In terms of the ambient isometries presented in Chapter 3, such local superrotations are associated
to a vector E(0) which generates local conformal transformations on the two-dimensional sphere g(0).
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as a potential extension of the dimensional reduction proposal for flat holography to
generic spacetimes). This will allow us to prove the antipodal matching conditions (7.23)-
(7.24) for a general class of asymptotically Minkowski spacetimes. As mentioned, these
conditions are assumed in celestial holography to match the BMS charges on I − to those
on I + and define a well-posed gravitational scattering problem. With these results we
are therefore able to provide a sound foundation to the celestial picture.
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Chapter 8

The antipodal matching conditions in
General Relativity

8.1 The gravitational scattering problem and celestial
holography

In order for the program of celestial holography to reach its full potential, we should care-
fully set it up in a way which appropriately incorporates the nonlinear nature of General
Relativity. Generic asymptotically flat spacetimes significantly differ from Minkowski
space, especially with regards to their structure at spatial infinity i0. As we discussed
in Chapter 7, physical fields are generically not single-valued at i0, such that continuity
cannot be invoked in order to relate their behavior from past null infinity I − to future
null infinity I +. These considerations should play an important role in celestial hologra-
phy. Indeed the newly discovered connections between asymptotic symmetries in General
Relativity and soft graviton theorems crucially rely on i) the definition of a single BMS
group acting simultaneously on both I + and I − via antipodal identifications of the
symmetry generators and asymptotic fields, and on ii) the conservation of BMS charges
from I −

+ to I +
− across i0. The validity of these two conditions in the nonlinear theory

should be tightly connected with the behavior of the gravitational field in a neighborhood
of i0.

In this chapter we wish to shed further light on the matching of BMS charges across
spatial infinity i0 and on the corresponding antipodal matching conditions in the con-
text relevant to the gravitational scattering problem. The class of spacetimes typically
considered in that context are a peeling version of those studied by Christodoulou and
Klainerman (CK), which constitute a set of asymptotically flat geometries non-linearly
close to Minkowski space1 [146]. Although this class of spacetimes satisfies conditions i)
and ii) as defined above, they certainly do not contain all configurations of interest. In

1The initial data sets considered by CK are characterised by a spherically symmetric mass parameter
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particular, they do not account for spacetimes with nonzero supertranslation charges at
i0 [147]. Thus a nontrivial matching of the charges requires one to consider a broader
class of spacetime asymptotics. We will however not investigate how and whether these
asymptotics result from the evolution of mathematically well-defined initial data sets.
See the work of Mohamed and Valiente Kroon along these lines in the case of spin-1 and
spin-2 fields [148].

A key result of our approach is the mapping of scattering data at I to gravitational
data in a neighborhood of i0. Our treatment is entirely coordinate-based and relies on
the Bondi–Sachs description of the gravitational field near I [149–151] and on the Beig–
Schmidt description of the gravitational field near i0 [39, 145]. It therefore differs from
the recent work of Prabhu and Shehzad [152, 153] who studied the matching of charges
within the Ashtekar–Hansen formalism set up to treat i0 and I simultaneously [107,108].
Rather we proceed by performing an asymptotic coordinate transformation between
Bondi and Beig–Schmidt gauges in order to obtain an explicit map relating the respective
asymptotic data.

The descriptions of the gravitational field at I or i0 have distinctive features, and
relating them is therefore of high interest. On the one hand, spatial infinity is the locus
where the variational principle is well-defined, and charges are both integrable and con-
served. The most general phase space in Beig-Schmidt gauge was analysed by Compère
and Dehouck (CD) [144] (see also [154–156]). Their charges satisfy all the desirable prop-
erties2 and give a faithful representation of the BMS algebra without central extension.
Their treatment also extends previous constructions [107,157,158,160–162] in that they
account for nonzero leading electric and magnetic Weyl tensor Eab and Bab, and do not
impose parity conditions on the corresponding potentials σ and kab. On the other hand,
charges computed at I are neither integrable nor conserved, a fact closely related to the
leakage of symplectic flux through I in the form of gravitational radiation.

Inspired by the celestial holography literature, we assume the scattering data at I
to admit a polynomial expansion in negative powers of the radial and retarded time co-
ordinates r and u, and no radiation in the limit to i0. This is the notion of gravitational
scattering we consider here. Under these assumptions we find that the scattering data
maps onto a restricted subset of the CD phase space. In particular both σ and kab turn

and result in spacetimes which do not satisfy the peeling property.
2Note that the renormalization procedure that CD propose involves a Mann-Marolf-type counterterm

[157,158]. This prescription is well-known to partially break bulk diffeomorphisms, in the sense that in
d = 4 it requires additional boundary conditions on the gravitational fields depending on the choice
of the regulating surfaces in order for the variational principle to be well-defined. With our boundary
conditions, this issue does not play any role. It is however not clear whether in principle it is possible
to define alternative schemes that fully preserve covariance at spatial infinity. Another long-known
problematic feature of renormalization at spatial infinity is the non-locality of counterterms, as first
stressed in [159]. From a holographic point of view, this may be due to either some form of incompleteness
of the current perspectives or a fundamental property of theories dual to flat spaces. It would be thus
interesting to assess more in depth these two points.
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out to satisfy specific parity conditions, although the well-posedness of Einstein’s equa-
tions near spatial infinity does not require them a priori. We also demonstrate that the
resulting magnetic Weyl tensor Bab vanishes, a property previously assumed by Prabhu
and Shehzad when considering the matching of Lorentz charges [153]. As far as we know,
Bab = 0 had only been established for spacetimes that are axisymmetric or station-
ary [163]. We confirm that it is in fact a feature of the gravitational scattering problem
(as considered here).

The explicit map between Bondi and Beig–Schmidt data allows us to derive the an-
tipodal matching relations together with the conservation of the BMS charges across
spatial infinity. This in particular implies that only the diagonal subgroup of BMS(I +)
×BMS(I −) is a symmetry of the entire spacetime asymptotic structure, as it was orig-
inally assumed by Strominger in his seminal work [121].

Various analyses of the requirements under which I + and I − and their symmetries
can be matched across spatial infinity can be found in the literature. Perhaps the first
step in this direction was taken by Herberthson and Ludvigsen in demonstrating the
antipodal matching of the Bondi mass aspect [164]. More recently Troessaert derived
Strominger’s original antipodal matching condition relating the supertranslation sym-
metry parameters of BMS(I +) and BMS(I −) [121,165]. In subsequent work Henneaux
and Troessaert studied a set of parity conditions in the Hamiltonian formulation of grav-
ity that allows for a canonical realisation of BMS symmetries at i0 and argued that such
a phase space supports Strominger’s antipodal matching condition [166–168]. The afore-
mentioned analysis of Prabhu and Shezad is instead framed within the Ashtekar–Hansen
formalism and focuses on the matching of the charges themselves [152,153]. Our analysis
builds upon this literature by giving the complete map of asymptotic data and charges
between I +

− and I −
+ .

From our analysis it also follows that the various proposals of BMS charges in Bondi
gauge found in the literature [129–132, 138, 139] all match with the conserved charges
at spatial infinity. This is a consequence of the fact that the terms by which they differ
vanish in the limit to i0 under our working assumptions.

In addition, our work highlights the restrictions on the global spacetime asymptotic
structure resulting from a choice of data at I . This turns into a signpost indicating
the limits of validity of the standard setup, as well as a pathway to envision extensions
towards a more general holographic framework. Indeed we have not restricted our analysis
to solutions that are close to Minkowski space in the sense of CK. For these reasons,
we believe that our approach is naturally suited to study the interplay between null and
spatial infinity and to explore phenomenologically relevant processes beyond perturbative
quantum gravity.

This chapter is organized as follows. In Section 8.2 we introduce assumptions regard-
ing the behavior of the fields in their limit to I −

+ and I +
− . In Section 8.3 we describe

the onshell late-time behaviour of fields entering the Beig–Schmidt metric presented in
Section 7.3. In Section 8.4 we present the map from the Bondi gauge to the Beig–Schmidt
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gauge, whose details are given in Appendix I. In Section 8.5 we use this map together with
Einstein’s equations to derive the antipodal matching relations of the Bondi mass aspect,
angular momentum aspect and shear tensor. In Section 8.6 we provide the matching of
BMS charges between null and spatial infinity.

Conventions. Here we use different conventions to those used in Chapters 1 to 6.
Four-dimensional indices are labelled by lowercase Greek letters, while three-dimensional
indices are denoted with lowercase Latin letters. hab is the metric of the three-dimensional
de Sitter spacetime H and Da is its compatible covariant derivative. The metric on the
celestial sphere S2 is denoted with γAB and ∇A is the covariant derivative, capital
Roman indices label the coordinates on this manifold. As in Section 7.2, covering the
sphere S2 with angular coordinates xA = (θ , φ), we define the antipodal map Υ(θ , φ) =
(π − θ , φ + π). A tensor T on S2 is of odd parity under Υ if Υ∗ T = −T . In terms
of components of a vector field for example, this means that Tφ and Tθ are odd and
even functions on the sphere, respectively. Even parity under Υ is similarly defined.
Covering H with global coordinates xa = (τ , θ , φ), we also define the H-antipodal map
ΥH(τ , θ , φ) = (−τ , π − θ , φ + π) and analogous considerations on parity properties
apply.

8.2 Specifying the data at null infinity
To proceed with the analysis of the matching between quantities defined at past null
infinity I − and at future null infinity I + (in their limit to spatial infinity i0), we assume
that the Bondi gauge is well-suited to describe the region I +

− in the limit u→ −∞. We
start by imposing the following falloff conditions,

m = m0 + u−1m1 + o(u−1) , (8.1a)
NA = N0

A + o(u0) , (8.1b)
CAB = C0

AB + u−1C1
AB + o(u−1) , (8.1c)

together with the falloff rate of the matter stress tensor near I +
− ,

lim
r→∞

r2 Tuu = o(u−2) , lim
r→∞

r2 TuA = o(u−1) . (8.2)

These fall-offs correspond to those typically underlying the proofs of the relation be-
tween soft theorems and asymptotic symmetries. We further discuss the scope of these
conditions later in this section and in Section 8.7. The evolution equations (7.6) yield
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constraints3 on the coefficients of the expansions (8.1), as they directly imply

∇B
(
∇B∇CC0

AC −∇A∇CC0
BC

)
= 0 , (8.3)

and

m1 =
1

4
∇A∇BC1

AB , (8.4a)

∂Am
1 =

1

4
∇B

(
∇B∇CC1

AC −∇A∇CC1
BC

)
. (8.4b)

The meaning of these constraints becomes manifest once we decompose C0
AB and C1

AB

in electric and magnetic parts,

Ci
AB = −2∇A∇BC

i + γAB∇2Ci + ϵC(A∇B)∇CΨi , i = 0, 1 , (8.5)

where Ci is the corresponding electric scalar potential and Ψi is the corresponding mag-
netic pseudo-scalar potential. Note that the l = 0, 1 spherical harmonics in Ci and Ψi

do not contribute to (8.5). We can check that the two differential operators appearing in
(8.3)-(8.4) respectively project out the electric or magnetic modes,

∇A∇BCi
AB = −∇2(∇2 + 2)Ci , (8.6a)

∇B
(
∇B∇CCi

AC −∇A∇CCi
BC

)
= −ϵAB∇B∇2(∇2 + 2)Ψi . (8.6b)

Hence the constraint (8.3) requires ∇2(∇2 + 2)Ψ0 = 0 which eliminates spherical har-
monics with l > 1 in Ψ0. Since C1 and Ψ1 are necessarily independent, the constraints
(8.4) can only be satisfied provided m1 = ∇2(∇2 + 2)C1 = ∇2(∇2 + 2)Ψ1 = 0 which
similarly eliminate all spherical harmonics with l > 1 in C1 and Ψ1. In summary, the
Ansatz (8.1) together with the evolution equations (7.6) imply

C0
AB = −2∇A∇BC + γAB∇2C , m1 = C1

AB = 0 , (8.7)

where the electric potential C ≡ C0 is known as the supertranslation Goldstone mode. In
particular we conclude that the News tensor satisfies the stronger falloff NAB = o(u−2).
This stronger falloff is in fact required for finiteness of the BMS charge fluxes along I
[139], and enters the assumptions for deriving the subleading soft graviton theorem [169].
Notice that the falloffs (8.1) are also such that the BMS charges studied in Section 8.6
are finite in the limit u → −∞, while allowing for overleading terms would result in
divergent charges. The expansions (8.1) can also be considered as inspired by those
resulting from the well-posed Cauchy problem studied by Christodoulou and Klainerman
(CK), although here m0 is not restricted to be a constant and NAB falls off faster than
the O(u−

3
2 ) obtained by CK [146].

3If considered alone, the expansion of CAB (8.1c) would generically yield O(u) and O(lnu) terms in
NA by integration of the corresponding evolution equation. Since we do not allow for such terms, the
evolution equation rather gives constraints solved by (8.7).
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8.3 Late-time expansions of the Beig-Schmidt fields
The connection between quantities at I −

+ and I +
− will involve the dynamics of the

gravitational field near spatial infinity i0. As we reviewed in Section 7.3, a convenient
way to describe this dynamics is to adopt the Beig–Schmidt gauge [39]. We now study
the behavior of the fields σ , kab and jab in the limits to infinite past and future on the
hyperboloid H, which we can expect to connect to past and future null infinity I ±

respectively. It will not be required to discuss iab further since we will find in Section 8.4
that no such term is needed in order to account for the Bondi data appropriate to the
gravitational scattering problem. Covering H with coordinates (τ, xA) and metric

ds2H = − dτ 2 + cosh2 τ γAB dx
A dxB , (8.8)

the loci of interest correspond to the limits τ → ±∞. For simplicity we will only describe
the late-time limit and expand the fields σ , kab and jab in the small parameter e−τ , but a
similar expansion in the early-time limit obviously holds. Such expansions are completely
analogous to the Fefferman–Graham expansions in AdS space described in Subsection
1.3.1. We give the details of these computations in Appendix H and collect the relevant
results here.

Leading fields. The large-τ expansion of the electric potential σ and magnetic poten-
tial kab are found to be

σ(τ, x) = eτ σ(−1) + e−τσ(1) + e−3ττ σ̃ + e−3τ σ(3) + ... , (8.9)

and

kττ = e−3ττ k̃ττ + e−3τ k(3)ττ + ... , (8.10a)

kτA = e−ττ k̃τA + e−τ k
(1)
τA + ... , (8.10b)

kAB = eττ k̃AB + eτ k
(−1)
AB + ... . (8.10c)

The equations of motion (7.37) are quadratic differential equations, and as such they
generically admit two independent sets of solutions with distinct asymptotic behaviors.
The two independent solutions for the electric potential σ are characterized respectively
by σ(−1) and σ(3), while all the other functions appearing in the τ -expansion (8.9) can be
fully determined in terms of these data. A similar structure applies to the components
of kab, where the two sets of independent solutions are characterized by the first two
functions on the sphere appearing in each of the τ -expansions (8.10).

Subleading field. The analysis of the large-τ behavior of jab is significantly more del-
icate due to the appearance of terms quadratic in σ and kab on the right-hand side of
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(7.39)-(7.40). These terms are the manifestation of the nonlinear nature of Einstein’s
equations, and their careful treatment is precisely what will allow us to prove the antipo-
dal matching condition of the angular momentum aspect without imposing dramatic
restrictions on the Bondi data. We can summarise the situation in the following way.
The solutions to (7.39)-(7.40) are given by the superposition of a particular solution that
depends on pre-determined source terms such as Sab, and a combination of homogeneous
solutions. The asymptotic behavior of the homogeneous solutions is easily worked out,

jττ = e−2τj(2)ττ + e−4τj(4)ττ + ... , (8.11a)

jτA = j
(0)
τA + e−2τj

(2)
τA + ... , (8.11b)

jAB = e2τj
(−2)
AB + j

(0)
AB + ... , (8.11c)

while the behavior of the particular solution strongly depends on the form of σ and
kab. A key result of the analysis to be presented in Section 8.4 is that the Bondi data
maps onto a subset of the allowed Beig–Schmidt data, in such a way that the large-τ
behavior of the particular solution is subleading compared to that of the homogeneous
solutions. Thus (8.11) holds true for the full solution of Einstein’s equations provided
such a solution can be mapped onto the Bondi phase space. On the other hand, a generic
solution of the Beig–Schmidt equations (7.39)-(7.40) which is not connected to the Bondi
phase space would see its leading asymptotics (8.11) modified due to weaker falloffs of the
source terms quadratic in σ and kab. This clean separation between large-τ asymptotics
of the homogeneous and particular solutions is a property of the Bondi phase space,
not one of the larger Beig–Schmidt phase space. As we will further show in Section 8.4,
the angular momentum aspect sits in j

(2)
τA and assessing that this term is controlled by

homogeneous solutions appears crucial to the derivation of the corresponding antipodal
matching condition in Section 8.5.

8.4 From Bondi to Beig-Schmidt
At leading order in r and ρ respectively, the Bondi and Beig-Schmidt metrics are simply
that of Minkowski space written in two different coordinate systems. The coordinate
transformation between these two is explicitly given by

u = −ρ e−τ , (8.12a)
r = ρ cosh τ. (8.12b)

Obviously there exists an analogous coordinate transformation to the advanced Bondi
gauge describing the neighborhood of I −,

v = ρ eτ , (8.13a)
r = ρ cosh τ. (8.13b)
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We want to find a map between data of asymptotically flat gravity at null and spatial
infinity. We will proceed by explicit coordinate transformation from the Bondi gauge to
the Beig–Schmidt gauge. However each of these two asymptotic expansions are valid in
different regions of spacetime and one can only hope to relate them where these expan-
sions overlap.4 This happens in the regime r → ∞ , u→ −∞ (v → ∞) or equivalently in
the limit ρ , τ → ∞ (τ → −∞), which can intuitively be thought of as the neighborhood
of I +

− (I −
+ ). To be more precise, we will start from Bondi metrics written as a dou-

ble asymptotic expansion in r ≫ |u|≫ 1, which we will map to Beig–Schmidt metrics
written as a double asymptotic expansion in ρ≫ eτ ≫ 1. Since

u

r
= O(e−2τ ) , (8.14)

terms that are subleading in r but overleading in u will contribute at the same order in ρ
but to subleading order in e−τ . The explicit details of this transformation are relegated
to Appendix I.

A first important observation is that the logarithmic term iab is not generated by this
mapping of the Bondi data onto the Beig–Schmidt data. For the electric potential, the
map yields

σ(−1) = σ(1) = σ̃ = 0 , σ(3) = 2m0 , (8.15)

while for the magnetic potential, we find

k̃τA = k̃AB = 0 , k
(1)
τA = 2∇BC0

AB , k
(−1)
AB =

1

2
C0
AB . (8.16)

Note that this is enough to also determine k̃ττ from the the constraints kaa = Dakab = 0,
and the only undetermined data is therefore k(3)ττ . We show in Appendix J that (8.16)
necessarily implies that kab takes the form

kab = − (DaDb + hab) Φ , (D2 + 3)Φ = 0 , (8.17)

where Φ is the Goldstone mode of supertranslations at spatial infinity [173]. Just like the
electric potential, Φ is fully characterised by its leading asymptotic data Φ(−1) and Φ(3).
In Appendix J we confirm the identification Φ(−1) = C with the supertranslation mode
(8.7) previously made in [173]. The remaining degree of freedom Φ(3) then corresponds
to the undetermined data k(3)ττ . It is known since the work of Troessaert that Φ(3) is in
fact pure gauge [165], and we can therefore consider Φ(3) = k

(3)
ττ = 0 without loss of

generality. Thus kab is fully determined by the supertranslation mode C. Another direct
4Alternatively one could start from the Friedrich gauge which naturally covers a finite portion of I

at least [170–172]. For this to also be the case in Beig-Schmidt coordinates would require to keep the
quantity u = −ρe−τ tunable, a feature which we have to give up once we assume the large-ρ expansion
(7.31). The limit u → −∞ is however compatible with the latter asymptotic expansion and turns out
to be sufficient for our purpose of mapping data from I +

− to i0.
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consequence of the restricted form (8.17) is the vanishing of the leading magnetic Weyl
tensor (7.34),

Bab = 0 . (8.18)

This result has often been assumed in the literature [107,108,174], and played a crucial
role in the previous matching of Lorentz charges by Prabhu and Shehzad [153] (it allows
to single out a Lorentz group within the BMS group). We just showed that (8.18) ac-
tually follows from the particular Bondi phase space described in Section 8.2. Because
of (8.18), the solution space does not include Taub-NUT solutions which are relevant
when discussing dual gravitational charges and their implications on soft graviton the-
orems [175–177]. Note that such configurations are allowed by the boundary conditions
employed in the Hamiltonian formulation of [167].

Similarly, we find that the leading asymptotic data allowed by the homogeneous
solutions for the subleading field jab actually vanishes,

j(2)ττ = j
(0)
τA = j

(−2)
AB = 0 , (8.19)

while the subleading asymptotic data is given by

j(4)ττ = 4∇AC
0
BC∇ACBC

0 − 4∇EC
0
AB∇ACEB

0 + 64ϕ0 , (8.20a)

j
(2)
τA = 4N0

A + C0
AB∇CC

BC
0 , (8.20b)

j
(0)
AB =

1

8
C0
CDC

CD
0 γAB . (8.20c)

At this point we can compute the trace and divergence of jab and verify that they do
satisfy the constraints (7.40) resulting from Einstein’s equations in Beig–Schmidt gauge.
Up to the available orders in τ , we indeed find perfect agreement between the direct
computation from (8.20) and the evaluation of (7.40) requiring only knowledge of the
leading data (8.15)-(8.16), namely

jaa = e−2τ C0
ABC

AB
0 +O(e−4τ ) , (8.21a)

Dbjbτ = −e−2τ C0
ABC

AB
0 +O(e−4τ ) , (8.21b)

DbjbA =
1

2
e−2τ ∂A

(
C0
BCC

BC
0

)
+O(e−4τ ) . (8.21c)

We can now come back to the discussion started at the end of Section 7.3 regarding
the clean separation observed between homogeneous and particular solutions of jab. By
explicit coordinate transformation between Bondi and Beig–Schmidt gauges, we just
obtained a large-τ behavior for jab which coincides with that of the homogeneous solutions
to (7.39)-(7.40) and described in (8.11). Consistency of our findings with the Beig–
Schmidt dynamics therefore requires that the particular solution of jab determined by
the source terms in (7.39) be subleading in τ , a fact which we have verified in Appendix H
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by direct evaluation of the source terms. Thus the quantities (8.20) are entirely governed
by homogeneous solutions to (7.39)-(7.40), which will prove crucial to the derivation of
the antipodal matching condition of the angular momentum aspect NA.

The map between data at I −
+ in retarded Bondi gauge and data in the limit τ → −∞

in Beig–Schmidt gauge is worked out in a similar way. The resulting identifications have
the same functional form as above, with a few minus signs differences. The rule of thumb
is that any τ index yields a relative minus sign. In particular, we find

σ(τ, xA) = 2m0|I −
+
e3τ +O(e5τ ) , (8.22a)

kAB(τ, x
A) =

1

2
C0
AB|I −

+
e−τ +O(eτ ) , (8.22b)

jτA(τ, x
A) = −

(
4N0

A + C0
AB∇CC

BC
0

)
|I −

+
e2τ +O(e4τ ) . (8.22c)

The antipodal matching conditions, to be studied in the next section, give relations
between quantities defined in the two limits τ → ∞ and τ → −∞.

8.5 Derivation of the antipodal matching relations
We are now ready to give a complete derivation of the antipodal matching conditions used
by Strominger and crucial in establishing an equivalence between soft graviton theorems
and Ward identities associated with BMS symmetries [121, 143, 178]. In terms of the
antipodal map Υ defined at the end of Section 8.1, these antipodal matching relations
read

Υ∗m|I +
−
= m|I −

+
, (8.23a)

Υ∗CAB|I +
−
= −CAB|I −

+
, (8.23b)

Υ∗NA|I +
−
= −NA|I −

+
. (8.23c)

In the previous section we mapped the leading Bondi data onto a subset of the
leading Beig–Schmidt data. A key observation is that the latter is fully governed by
homogeneous solutions of the Beig–Schmidt equations. In this section we show that the
antipodal matching relations follow from the parity properties of these homogeneous
solutions under the H-antipodal map ΥH.

As commented on in Section 8.1, various works already exist on this topic [152, 153,
165, 168]. As summarised in [168], in the Hamiltonian framework conditions have been
given at spacelike infinity in order to recover BMS symmetries and argue in favour of the
antipodal matching among past and future null infinities. Earlier, some steps towards the
derivation of (8.23) were taken by Troessaert [165] by mapping the Bondi-Sachs gauge to
the Beig-Schmidt gauge at leading order. After showing that the Lie algebras associated
with global BMS symmetries (I ) and Spi-symmetries (i0) are isomorphic, he argued

127



that the charge density and symmetry parameter associated with Spi-supertranslations
both satisfy antipodal relations. However his analysis was restricted to linearized gravity.
Recently Prabhu [152] and Prabhu and Shehzad [153] tackled the antipodal matching of
both supertranslation and angular momentum charges using the formalism of Ashtekar
and Hansen [107], formally without restricting to the linear theory. Specifically, a number
of assumptions were required to achieve the angular momentum matching, among them
the vanishing of the leading magnetic Weyl tensor Bab was assumed and the inhomoge-
neous terms were neglected in the subleading equation of motion defining the angular
momentum data [153]. In this approach, furthermore, the matching is somewhat indirect
because the charges at I + and i0 are independent and linked through the observation
that the asymptotic limit of certain bulk spacetime quantity is the same as the limit
toward i0 (I +) of the charge defined on I + (i0).

The analysis that we present here completes these results in various important ways.
First, the connection we make between I and i0 goes beyond that of matching Lie al-
gebras associated with asymptotic symmetries, since we have provided in Section 8.4 a
precise dictionary between Bondi data and Beig–Schmidt data. This allows us to unam-
biguously identify where the initial data of the shear CAB, mass aspect m and angular
momentum aspect NA sits in the Beig–Schmidt gauge, and to proceed with the study of
their parity properties and matching of the asymptotic charges at I and i0.

Such analysis does not require any further assumption in the bulk, except those
made on the structure near null infinity. For example, as seen in the previous section,
the leading magnetic Weyl tensor at spacelike infinity Bab vanishes as a consequence of
these. In the current section, the key point we will use in the derivation of the antipodal
matching (8.23) also follows from the structure at null infinity. The relations (8.23) in
fact stem from parity properties of the homogeneous solutions for σ, kab and jab under the
H-antipodal map ΥH. While these were crucially used in [152, 153,165] as well, here we
do not need to discard source terms quadratic in σ and kab in the equations (7.39)-(7.40)
determining jab. Rather, the dictionary of Section 8.4 between Bondi and Beig–Schmidt
data shows that such source terms do not affect the large-τ behavior of jab, and hence the
angular momentum aspect NA is still fully governed by homogeneous solutions of jab. The
derivation of the antipodal relations (8.23) based on parity properties of homogeneous
solutions to the Beig–Schmidt equations then proceeds unobstructed.

Harmonic and Legendre functions. The dependence on the sphere coordinates xA
will be treated by decomposition into scalar spherical harmonics Y m

l (xA), satisfying

∇2Y m
l = −l(l + 1)Y m

l , Υ∗ Y m
l = (−1)l Y m

l . (8.24)

Beig–Schmidt equations then generically reduce to Legendre equations of the form[
(1− s2)∂2s − 2s∂s + l(l + 1)− n2

1− s2

]
F (s) = S(s) , s ≡ tanh τ ∈ (−1, 1) , (8.25)
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with S(s) a generic source term. The homogeneous solutions are associated Legendre
functions on the cut [179],

P n
l (s) , Q

n
l (s) , (n ≥ 0) , (8.26)

satisfying the parity properties

P n
l (−s) = (−1)l+nP n

l (s) , Qn
l (−s) = (−1)l+n+1Qn

l (s) . (8.27)

Of importance to us will be their asymptotic behavior in the limit s→ ±1, or equivalently
in the limit τ → ±∞. For l ≥ n, we have

P n
l (s) = O

(
(1− s)n/2

)
= O(e−nτ ) , Qn

l (s) = O
(
(1− s)−n/2

)
= O(enτ ) , (8.28)

while solutions with l < n have a separate asymptotic behavior. For n = 1, we have

P 1
0 (s) , Q

1
0(s) = O(1/

√
1− s) = O(eτ ) , (8.29)

while for n = 2, we have

P 2
0 (s) , P

2
1 (s) , Q

2
0(s) , Q

2
1(s) = O (1/(1− s)) = O(e2τ ) . (8.30)

We can now proceed to the derivation of the antipodal relations (8.23).

Mass aspect. The initial value of the Bondi mass aspect at I +
− is carried by

σ(3) = 2m|I +
−
, (8.31)

where the electric potential σ solves the homogeneous equation[
−∂2τ − 2 tanh τ ∂τ + cosh−2 τ ∇2 + 3

]
σ = 0 . (8.32)

We introduce the variable s = tanh τ ∈ (−1, 1) and decompose σ in spherical harmonics,

σ(s, xA) =
√
1− s2

∑
l,m

σlm(s)Y
m
l (xA) . (8.33)

The coefficients then satisfy the Legendre differential equation[
(1− s2)∂2s − 2s∂s + l(l + 1)− 4

1− s2

]
σlm(s) = 0 , (8.34)

whose solutions are the Legendre functions

P 2
l (s) , Q

2
l (s) . (8.35)
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Taking into account the prefactor
√
1− s2 in (8.33), we can confirm that independent

solutions behave either as O(eτ ) or O(e−3τ ) in agreement with (8.9). In Section 8.4 we
found that the mode O(eτ ) is absent, by explicit mapping of the Bondi data onto the
Beig-Schmidt data. Therefore we conclude that the relevant general solution for the
electric potential takes the form

σ(s, xA) =
√
1− s2

∞∑
l=2

l∑
m=−l

alm P
2
l (s)Y

m
l (xA) . (8.36)

In particular, it is parity-even under the H-antipodal map,

Υ∗
H σ = σ , (8.37)

in agreement with earlier discussions on the existence of a regular null infinity [152,164,
165, 173]. Making use of (8.22), this also directly yields the antipodal relation for the
Bondi mass aspect,

Υ∗m|I +
−
= m|I −

+
. (8.38)

Shear tensor. The initial value of the shear tensor at I +
− is encoded in the leading

nontrivial component of the magnetic potential,

2 k
(−1)
AB = CAB|I +

−
= −2∇A∇BC + γAB∇2C . (8.39)

We know from Appendix J that the relevant solutions for kab take the form

kab = − (DaDb + hab) Φ ,
(
D2 + 3

)
Φ = 0 , (8.40)

where the supertranslation mode C is identified with the leading large-τ behavior of Φ,

Φ(τ, xA) = eτ C(xA) +O(e−τ ) . (8.41)

Thus it is the scalar potential Φ that carries the relevant information. Its evolution equa-
tion is identical to that of σ, although this time there is no restriction on its asymptotic
behavior. Given (8.41) we are interested in the set of solutions scaling like O(eτ ),

Φ(s, xA) =
√
1− s2

(∑
l=0,1

l∑
m=−l

alm P
2
l (s) +

∞∑
l=0

l∑
m=−l

blmQ
2
l (s)

)
Y m
l (xA) . (8.42)

This solution almost has definite odd parity under ΥH, which is however spoiled by
the alm with l = 0, 1. But these do not contribute to the shear (8.39) since the four
lowest spherical harmonics Y m

0 , Y m
1 are precisely annihilated by the differential operator

−2∇A∇B + γAB∇2. Moreover it can be seen from (J.6) that none of the data specifying
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kab is actually sensitive to the alm, such that we can as well set them to zero. This implies
that the kab satisfies the parity property

Υ∗
H kab = −kab . (8.43)

Strictly speaking this requires the solutions of Φ scaling like O(e−3τ ) to be absent, and
this can always be achieved without loss of generality since these solutions can be removed
by pure gauge transformations [165]. It is sometimes useful to express these relations in
terms of kττ , kτA and kAB viewed as time-dependent scalar, vector and tensor fields on
S2, respectively. These read

Υ∗ kττ (−τ) = −kττ (τ) , Υ∗ kτA(−τ) = kτA(τ) , Υ∗ kAB(−τ) = −kAB(τ) .
(8.44)

Using (8.22), this yields in particular the antipodal relation of the shear tensor,

Υ∗CAB|I +
−
= −CAB|I −

+
. (8.45)

Angular momentum aspect. The initial value of the angular momentum aspect at
I +

− is carried by the leading data of the field jab, namely

j
(2)
τA = 4NA + CAB∇CC

BC |I +
−
. (8.46)

In order to discuss the relevant solutions, we make use of Helmholtz decomposition

jτA = ∇AΨ1 + ϵAB∇BΨ2 . (8.47)

In Appendix H we show that the leading order Ψ1 = O(e−2τ ) is fully determined in terms
of jττ through

∇2Ψ1 = cosh2 τ (∂τ + 3 tanh τ) jττ , (8.48)

while the leading order Ψ2 = O(e−2τ ) is associated with homogeneous solutions that
satisfy [

−∂2τ − 2 tanh τ ∂τ + cosh−2 τ ∇2
]
Ψ2 = 0 . (8.49)

The determination of Ψ1 therefore follows the determination of jττ . Expanding the
latter into spherical harmonics,

jττ (s, x
A) = (1− s2)3/2

∑
l,m

jlm(s)Y
m
l (xA) , (8.50)

the coefficients jlm(s) corresponding to the homogeneous solutions of (H.8a) can be
shown to satisfy the Legendre equation (8.25) with n = 1. Therefore the solutions with
allowed asymptotic behavior O(e−4τ ) are of the form

jττ (s, x
A) = (1− s2)3/2

∞∑
l=1

l∑
m=−l

jlm P
1
l (s)Y

m
l (xA) , (8.51)
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which are parity-odd under the H-antipodal map. Thus the right-hand side of (8.48) is
parity-even and behaves as O(e−2τ ). Hence we conclude that the leading term in Ψ1 is
parity-even, and similarly for the corresponding vector field j∥τA ≡ ∇AΨ1,

Υ∗ j
∥
τA(−τ) = j

∥
τA(τ) . (8.52)

The determination of Ψ2 is straightforward. Expanding into spherical harmonics,

Ψ2(s, x
A) =

√
1− s2

∑
l,m

Ψ2,lm(s)Y
m
l (xA) , (8.53)

the coefficients Ψ2,lm(s) then satisfy the Legendre equation (8.25) with n = 1. The
solutions with asymptotic behavior O(e−2τ ) are of the form

Ψ2(s, x
A) =

√
1− s2

∞∑
l=1

l∑
m=−l

alm P
1
l (s)Y

m
l (xA) , (8.54)

which are parity-odd under ΥH following the parity properties of spherical harmonics
and Legendre functions. The corresponding solutions of j⊥τA ≡ ϵAB∇BΨ2 viewed as a
time-dependent vector field on the sphere S2, then satisfy

Υ∗ j⊥τA(−τ) = j⊥τA(τ) . (8.55)

Let us illustrate this with an example of direct relevance to the Kerr solution. Since
P 1
1 (s) =

√
1− s2 and Y 0

1 (θ, φ) = cos θ, the mode with (l,m) = (1, 0) is given by

Ψ2 = a10 (1− s2) cos θ , (8.56)

and correspondingly
j⊥τφ = a10 (1− s2) sin2 θ , j⊥τθ = 0 . (8.57)

The above nonzero component is parity-even under ΥH in agreement with (8.55) and the
conventions spelled out at the end of the introduction. Note that the angular momentum
aspect of the Kerr solution precisely takes the form (8.57), in which case one can explicitly
identify a10 with the angular velocity of the Kerr solution [160].

Putting (8.52) and (8.55) together and making use of (8.22), we thus obtain the
antipodal relation of the angular momentum aspect,

Υ∗NA|I +
−
= −NA|I −

+
. (8.58)

8.6 Matching of BMS charges from I to i0

As advertised in the Section 8.1 we are able to explicitly match various proposals of
global BMS charges in Bondi gauge (which we presented as Q(α,β)[T, Y

A] in Section 7.1)
to the charges that were directly constructed in Beig–Schmidt gauge by Compère and
Dehouck (CD) at spatial infinity [144]. Conservation of the CD charges then directly
implies conservation of the corresponding BMS charges across i0.
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BMS charges at I +
− . If we evaluate the Bondi charges Q(α,β)[T, Y

A] in the limit to
I +

− (u→ −∞) using the expansions (8.1), they result in

lim
u→−∞

Q(α,β)[T ] =
1

4πG

∫
dΩT m0 , (8.59)

lim
u→−∞

Q(α,β)[Y
A] =

1

8πG

∫
dΩY AN0

A . (8.60)

We note that the charges in this limit are independent of the parameters (α , β). In
particular the term controlled by α is proportional to∫

dΩY A
[
∂A(C

0
BCC

BC
0 ) + 4C0

AB∇CC
BC
0

]
= 0 , (8.61)

which integrates to zero on account of the various identities satisfied by C0
AB and Y A.

We show below that the expressions (8.59)-(8.60) indeed coincide with the conserved
CD charges. Since the latter are conserved, they can be evaluated on any spacelike cut of
H with topology of the sphere S2. We will restrict to constant-τ cuts, and subsequently
take the limit τ → ∞ such that we can easily write them in the terms of the leading
Bondi data m0, C0

AB and N0
A.

Supertranslation charges. The supertranslation charges at spatial infinity are given
by [155]

QCD[ω] =
cosh2 τ

4πG

∮
dΩ (ω∂τσ − σ∂τω) , (8.62)

where the symmetry parameter ω(xa) satisfies the constraint(
D2 + 3

)
ω = 0 , (8.63)

and therefore admits the large-τ expansion

ω(τ, xA) = eτ ω̄(xA) +O(e−τ ) . (8.64)

Under supertranslation, the magnetic potential kab and supertranslation mode Φ defined
in (8.17) transform as

δωkab = 2 (DaDb + hab)ω , δωΦ = −2ω . (8.65)

Using (H.2) and (J.8), we can further identify ω̄ as the symmetry parameter of super-
translations at I ,

ω̄ = −1

2
T , δTC = T . (8.66)

133



By identical arguments as those used in Section 8.5, we also infer the antipodal matching
of the supertranslation parameter,5

Υ∗ T |I +
−
= −T |I −

+
. (8.68)

This is the condition used by Strominger to single out the diagonal subgroup of BMS(I +)
× BMS(I −) as the symmetry group of the gravitational S-matrix [121]. We evaluate
these charges in the limit τ → ∞ and use the dictionary of Section 8.4 to express them
in terms of Bondi data,

QCD[ω] = − 1

4πG

∮
dΩ ω̄ σ(3) = − 1

2πG

∮
dΩ ω̄ m0 =

1

4πG

∮
dΩT m0 . (8.69)

This indeed agrees with (8.59).

Lorentz charges. The Lorentz charges are given by [155]

QCD[ξ
a] =

cosh2 τ

8πG

∫
dΩ ξaδbτ

[
−jab +

1

2
iab +

1

2
kcakcb + habF

]
, (8.70)

with
F ≡ 8σ2 +DcσDcσ − 1

8
kcdkcd + kcdDcDdσ . (8.71)

The symmetry parameters ξa are the Killing vector fields of the hyperboloid H, and
indeed the isometry group of three-dimensional de Sitter space is isomorphic to the
Lorentz group SO(1,3). They satisfy

Daξb +Dbξa = 0 , (8.72)

which in the (τ, xA) coordinate system reads

0 = ∂τξ
τ , (8.73a)

0 = ∂τξA − ∂Aξ
τ − 2 tanh τ ξA , (8.73b)

0 = ∇AξB +∇BξA + 2 cosh τ sinh τ γAB ξ
τ . (8.73c)

The solutions to these equations are given by

ξτ = b(xA) , (8.74a)

ξA = ξ̃A + tanh τ ∂Ab , ∂τ ξ̃
A = 0 , (8.74b)

5The conventions adopted here are such that the supertranslation mode C transforms in the same
way at I ±,

δTC = T |I + , δTC = T |I − , (8.67)

and therefore differ by a relative minus sign from those adopted by Strominger [121].
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with the constraints

0 = ∇Aξ̃B +∇B ξ̃A , (8.75a)
0 = (∇A∇B +∇B∇A + 2γAB) b . (8.75b)

The first constraint implies that ξ̃A is a Killing vector field on the sphere S2 that
parametrise rotations. The second constraint implies that b is a linear combination of the
three spherical harmonics Y m

l=1 parametrising boosts. ξ̃A and b have even and odd parities
under the antipodal map Υ, respectively, such that ξa is even under the H-antipodal map
ΥH. In the limit τ → ∞, we can define the vector fields on the sphere

Y A ≡ − lim
τ→∞

ξA = −(ξ̃A + ∂Ab) , b =
1

2
∇AY

A . (8.76)

Using the above relations, one finds that they satisfy the conformal Killing equation on
the sphere,

∇AYB +∇BYA = γAB ∇CY
C . (8.77)

Consistently, the group of conformal isometries of S2 is isomorphic to the Lorentz group
SO(1,3). The even parity of ξa under ΥH in particular implies the antipodal matching
relation

Υ∗ Y A|I +
−
= Y A|I −

+
. (8.78)

We can then evaluate the Lorentz charges (8.70) in the limit τ → ∞ using the
expansions of Section 8.3 and their expressions in terns of Bondi data given in Section 8.4.
One obtains

QCD[ξ
a] = − 1

32πG

∫
dΩ
[
Y A
(
−j(2)τA + 2k

(−1)
AB k(1)Bτ

)
−∇AY

A k
(−1)
BC k(−1)BC

]
(8.79a)

=
1

8πG

∫
dΩY A

[
N0
A − 1

16
∂A(C

0
BCC

BC
0 )− 1

4
C0
AB∇CC

BC
0

]
(8.79b)

=
1

8πG

∫
dΩY AN0

A , (8.79c)

where we made use of (8.61) in the last equality. This exactly coincides with (8.60).

8.7 Concluding remarks
In this chapter we derived the antipodal matching relations (8.23) used in proving the
equivalence between the soft graviton theorems and BMS charge conservation across
spatial infinity [121,143,178]. We also explicitly demonstrated that the various proposals
for global BMS charges at I precisely match the conserved charges at spatial infinity. To
derive these results we made a few assumptions in Section 8.2 regarding the gravitational
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phase space at I in Bondi gauge, in line with what is usually considered appropriate to
the gravitational scattering problem (at least within the celestial holography program).
We then provided a precise map between gravitational data in Bondi gauge and Beig–
Schmidt gauge, allowing us to address the dynamical evolution taking place between
I −

+ and I +
− . The Bondi data maps onto a restricted subset of the Beig–Schmidt data,

yielding in particular a vanishing leading magnetic Weyl tensor Bab at i0. This justifies
to some extent the assumption made by Prabhu and Shehzad who provided a different
derivation of charge matching between i0 and I [153]. We also confirmed that the electric
and magnetic potentials σ and kab satisfy specific parity properties on the hyperboloid
H (similar parity properties naturally arise in the Hamiltonian framework [166–168]).

Several comments are in order along with a cursory overview of future directions.

General u-behavior at I . We made specific assumptions regarding the falloff rate
of the matter stress tensor (8.2) and other gravitational quantities (8.1) in the limit
to I +

− . While it has been recognised long ago that m0 should not be restricted to be
spherically symmetric – as opposed to what characterise CK spacetimes [146] – in order
to not trivialize BMS charges [152], the conditions on the asymptotic behaviour of the
shear/news tensor are much subtler.

We start from the assumption that the shear is expanded in a Taylor series in u−1. The
picture we present is in line with the minimal requirements for recovering the subleading
soft graviton theorem. The condition NAB = o(u−γ) is usually taken in order to guarantee
that the associated BMS fluxes are finite on all of I : greater than γ = 1 for the leading
soft theorem [121], γ = 2 for the subleading soft theorem [169], and γ = 3 for the sub-
subleading soft theorem [180]. However, it is important to stress that our work does not
exclude other possibilities that have been given both in the context of mathematical
general relativity and soft theorems, as exemplified below.

For example, Christodoulou–Klainerman proof of the non-linear stability of Minkowski
space implies NAB = O(u−3/2) [146], while both different stability proofs [181, 182] and
the work of Prabhu and Shezad result in less stringent falloff behaviours [152, 153].
We can compare such various proposal with our working hypotheses by noticing that
the crucial argument given at the end of Section 8.2 still sets to zero Cα

AB in CAB =
C0
AB+u

−αCα
AB+ . . . for any α ∈ (0, 1). Furthermore, it is clear from our map that Bondi

data with non-integer α are mapped to phase spaces at spacelike infinity that differ from
the standard Beig-Schmidt phase space because of necessarily non-integer powers of ρ
and τ needed in the map.

Similarly, the vanishing of the O(u−1) term in the shear CAB can be contrasted with
the appearance of an analogous term in linearised gravity in conjunction with logarithmic
corrections to the subleading soft graviton theorem [183,184]. According to (7.6b), such
piece would yield a O(log u) term in the angular momentum aspect, which is excluded
in our non-polyhomogeneous falloff conditions (8.1).
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Connected to this, but not only tied to it, the assumption that the large u expansion
is polynomial both for CAB and the other metric functions that we consider, as well
as for all r-subleading terms of the metric, does not hold in general [185, 186]. While
polyhomogeneous asymptotic expansions in r are believed to be a generic feature of
physically relevant asymptotically flat systems (of which CK spacetimes are an example)
[122, 123, 187], although contrasting results exist (see [188] and references therein), the
polyhomogeneous behaviour in u is less understood. The potential interconnection of
the two sources of polyhomogeneity has been briefly recognised in [185]. It is clear from
what presented in this chapter that more general Beig–Schmidt data than those we have
considered might result in such configurations at null infinity.

Further investigation of all these points are clearly desired. As a guiding principle, one
could hope to deal with the issue of flux divergences in the u-integrals not by imposing
ad hoc conditions, however well motivated, but by developing a suitable renormalization
scheme. This is currently missing.

Independently of the issue of u-renormalization, a typical question within mathemati-
cal general relativity is that concerning the existence of physically relevant configurations
that satisfy given conditions on the asymptotic structure or, somewhat equivalently, the
existence of well-defined Cauchy data that evolve to a given asymptotic structure. The
works on the non-linear stability of Minkowski spacetime are pivotal examples. Recently,
Mohamed and Valiente Kroon studied the interplay between initial data sets of spin-1
and spin-2 fields and matching of the corresponding asymptotic charges across spatial
infinity [148]. In some sense, the philosophy of this latter work is reverse to ours, as
they assess which subset of asymptotic initial data gives rise to finite charges at the
corners of I , while we prescribe conditions at I such that charges are finite and re-
construct the corresponding data at spatial infinity, which turns out to have restricted
parity properties.

Sub-subleading antipodal matching. The antipodal matching relations provided
in (8.23) do not suffice to derive the sub-subleading soft graviton theorem [180,189–191].
For this one needs an extra antipodal matching condition on one of the subleading Bondi
fields sitting at order O(r−1) in the angular components of the metric [180]. An obvious
continuation of this work would be to work out the dictionary between Bondi and Beig–
Schmidt data to lower orders in r and u such as to access the relevant field.

Extensions of BMS and corresponding phase space. We restricted our attention
to the standard Bondi phase space in which the metric on the sphere S2 is the smooth unit
round sphere metric. This constraint should be relaxed in order to allow for extensions
of the BMS group at I that also include superrotations [133,134,136,190–192]. However
it is not known whether spatial infinity i0 also admits such extensions of the BMS group,
and if it exists, the corresponding extended phase space in Beig–Schmidt gauge is yet
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to be uncovered. This is the reason we did not discuss the matching of superrotation
charges between I and i0 in Section 8.6; none has been defined at i0 as of yet.
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Appendix A

Tools to find conformal vectors

In this appendix we provide a framework and useful formulas to find conformal Killing
vectors on several families of manifolds. It should be thought of as complementary ma-
terial to what discussed in Chapter 3, as remarked in Section 3.5.

A.1 Conformal vectors on product spaces
Let us consider a product manifold M × N of dimension d = m + n, parametrized by
xA = (xa, xi) and with metric

g = gABdx
AdxB = gab(x

a)dxadxb + gij(x
i)dxidxj. (A.1)

Only the components Γcab and Γkij of the connection are non vanishing. The conformal
Killing equations read

∇AKB +∇BKA = 2ψ(xA)gAB, (A.2)

with
ψ(xA) =

1

d
∇EK

E =
1

d

(
∇aK

a +∇iK
i
)
. (A.3)

Given the block-diagonal form (A.1) of the metric, these equations reduce to

∇aKb +∇bKa = 2ψ(xA)gab, (A.4)
∇aKj +∇jKa = 0 (A.5)
∇iKj +∇jKi = 2ψ(xA)gij, (A.6)

where Ka(x
a, xi), Ki(x

a, xi). From the trace of the first and third equations, we under-
stand that

ψ(xA) =
1

d
∇EK

E =
1

m
∇aK

a =
1

n
∇iK

i. (A.7)
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Thus, once fixed a conformal factor ψ(xA), we can solve (A.4) and (A.6) for the depen-
dence of Ka, Ki on the respective coordinates xa, xi. Equations (A.5) and (A.7) can then
be used to find the dependence on the coordinates of the orthogonal submanifold.

It is possible to proceed further by dividing the derivatives ∇AKB in trace, symmetric
traceless and antisymmetric parts as

∇BKA = ψ(xA)gAB +HAB(x
A) + FAB(x

A), (A.8)
∇bKa = ψ(xA)gab +Hab(x

A) + Fab(x
A), (A.9)

∇jKi = ψ(xA)gij +Hij(x
A) + Fij(x

A), (A.10)

where HAB is traceless symmetric and F is antisymmetric. By plugging them into (A.4)
and (A.6) one finds HAB = 0. Furthermore, by deriving (A.5) in ∇b with (A.9) one has

∇b∇aKj + gab∇jψ(x
A) +∇jFab(x

A) = 0. (A.11)

Since Kj is a scalar according to the connection of gab, one can extract the symmetric
and antisymmetric parts, resulting in the equations

∇a∂bKj + gab∇jψ(x
A) = 0, (A.12)

∇jFab = 0. (A.13)

Similar equations can be obtained for Kj and Fij. The second equation implies that
Fab = Fab(x

a) and Fij = Fij(x
i). We recall that a conformal gradient vector of gab is one

of the form Ka = ∇aΩ(x
a), satisfying

∇a∇bΩ =
1

m
(2MΩ) gab, (A.14)

where we denote the Laplacians of the two submanifolds by 2M and 2N . Note that this
is precisely the content of equations (A.12); from its trace we find

∇jψ(x
A) = − 1

m
2MKj, (A.15)

∇aψ(x
A) = − 1

n
2NKa. (A.16)

We can hence rewrite (A.12) as

∇a∂bKj = gab
1

m
2MKj, (A.17)

∇i∂jKa = gij
1

n
2NKa, (A.18)
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so that ∇aKj must be a gradient vector according to gab and analogously ∇iKa for gab.
From the commutator in (3.30) one can also show that

(m− 1)∇i∇aψ(x
A) = Rab∇bKi, (A.19)

(n− 1)∇i∇aψ(x
A) = Rij∇jKa, (A.20)

which also imply (given (A.5))

Rab

m− 1
∇bKi = − Rij

n− 1
∇aK

j. (A.21)

These relations are useful to constrain the dependence of Ki on xa and Kb on xj

(especially if the submanifolds have special properties, such as being Einstein or 1-
dimensional).

What found so far can be summarised as follows:

• The components of KA = (Ka, Ki) must satisfy the conformal equations (A.4)
and (A.6) separately on the submanifolds, together with the matching condition
(A.7) and (A.5), which determines the dependence of a conformal vector on one
submanifold on the coordinates of the other submanifold.

• With the decomposition in trace, symmetric traceless and antisymmetric parts of
∇aKb and ∇iKj, from the equations above we obtain

∇bKa = ψ(xA)gab + Fab(x
a), (A.22)

∇jKi = ψ(xA)gij + Fij(x
i), (A.23)

so that only the traceful part contains the coordinates of the other submanifold.

• From (A.5) also the relations (A.15)-(A.18) follow, indicating that the dependence
of Ka on xi is such that ∇jKa is a gradient conformal vector on N , and similarly
Kj on M . Note that, once we fix a conformal factor ψ(xA), we automatically know
the dependence of Kj on xa (Ka on xi) from (A.15)-(A.16), since their solution is
formally the massless scalar propagator on M (N) with source −m∇jψ (−n∇aψ).

We can now consider more specific classes of conformal vectors and specialize this
discussion further.

Killing vectors. They represent proper isometries on M ×N , i.e. ψ = 0. Then equa-
tions (A.22)-(A.23) reduce to

∇bKa = Fab(x
a), ∇jKi = Fij(x

i), (A.24)
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i.e the covariant derivatives do not contain the coordinates of the other submanifold.
This means that Ka and Kj must be solutions to the distinct Killing equations on
the respective submanifolds. Thus, sums of Killing vectors of the single subspaces will
be Killing vectors of the product space, but the most general isometric Ka, Ki have
non-trivial dependences on all the coordinates (xa, xi) determined by (A.15)-(A.16) and
(A.19)-(A.20), that is

2MKj = 0, 2NKa = 0, (A.25a)

Rab∇bKi = 0, Rij∇jKa = 0. (A.25b)

Homothetic vectors. They act as dilations, ∇Aψ = 0, i.e. ψ = const. For the same
arguments as for Killing vectors, we need to solve (A.24), along with (A.25) so as to
determine the dependence on the orthogonal directions. The components Ka and Kj

must also be solutions of
∇aKb +∇bKa = 2ψgab, (A.26)

∇iKj +∇jKi = 2ψgij. (A.27)

This means that given two homothetic vectors Ka(x
a) on M and Ki(x

i) on N both with
conformal factor ψ, then we can extend them to Ka(x

a, xi) and Ki(x
a, xi) on M × N

with (A.25). The resulting KA = (Ka, Kj) is then a homothetic vector on M × N with
conformal factor ψ.

Special vectors. These have conformal factor satisfying ∇A∇Bψ = 0, which is equiv-
alent to

∂A∂Bψ = ΓCAB∂Cψ. (A.28)

In this case, (A.25b) also holds.

Generic conformal vectors. From (A.19)-(A.20) one obtains

∇a∇bψ =

(
2Mψ

m

)
gab, (A.29a)

∇i∇jψ =

(
2Nψ

n

)
gij, (A.29b)

along with
2Mψ

m
=

2Nψ

n
. (A.30)

We recognize here the equations for the gradient vectors ∇bψ and ∇iψ. They can be
seen as a generalization of the above conditions ψ = 0, ∇Aψ = 0 and ∇A∇Bψ = 0.
Understanding which conformal transformations ψ are present on a product manifold
amounts to solving equations (A.29).
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A.2 Conformal vectors on conformally-related spaces
In this section we would like to prove that under a Weyl transformation, a conformal
Killing vector of the original manifold remains a conformal Killing vector for the final
conformally-related manifold.

Let us first recall few well-known facts about conformal isometries. A d-dimensional
space can have at most d(d+1)

2
independent Killing vectors and the maximal number is

attained for spaces where all the curvature scalars (constructed with the Riemann tensor)
are constant. The maximal number of conformal vectors in d ≥ 3 is (d+1)(d+2)

2
(for d = 2,

it is infinite). This is the case when a space is conformally flat.
Let us consider a manifold with metric g and conformal vector ξa, satisfying

∇aξb +∇bξa =
2

n
(∇cξ

c) gab. (A.31)

In terms of a Weyl-rescaled metric ĝ = e2ωg, this equation reads

∇̂aξb + ∇̂bξa + ξa∂b(2ω) + ξb∂a(2ω) =
2

n

(
∇̂cξ

c
)
ĝab +

2

n
ξc (∂

c2ω) ĝab, (A.32)

which is precisely the conformal equation for ξ̂a = e2ωξa. We can conclude that given
g with conformal vector ξa, after a Weyl transformation ξ̂a = e2ωξa (i.e. ξ̂a = ξa) is a
conformal vector for ĝ = e2ωg, as one could expect.

Notice instead that under a Weyl transformation a Killing vector will be mapped to
a conformal vector in general, since (A.32) with ∇̂cξ

c = 0 simply reads

∇̂aξb + ∇̂bξa + ξa∂b(2ω) + ξb∂a(2ω) =
2

n
ξc (∂

c2ω) ĝab, (A.33)

which is again the equation for a conformal vector ξ̂a = e2ωξa for ĝ. It will be an isometry
of ĝ if ω = const, that is if the Weyl transformation is simply a global rescaling of the
metric g.

A.3 An equation for the conformal factor
Let us obtain an equation that any conformal factor ψ on a given metric g must satisfy.
We start from the conformal Killing equation

∇iξj +∇jξi = 2ψ(x)gij, (A.34)

where ψ(x) = 1
d
∇ · ξ. By acting with ∇i, one finds

2ξj + (d− 2)∇jψ +Rmjξ
m = 0, (A.35)
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and performing now the derivative ∇j,

∇j2ξj + (d− 2)2ψ +∇j (Rmjξ
m) = 0. (A.36)

From this equation thus follows that

(d− 1)2ψ +Rmj∇mξj +
1

2
ξm∇mR = 0. (A.37)

For Einstein manifolds with R = 2λd(d−1) and Rij = 2λ(d−1)gij, this equation reduces
to

(2+ 2λd)ψ(x) = 0. (A.38)
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Appendix B

Ambient geodesics and parallel
transport of T

In this appendix we provide more details and results concerning the solution of the
ambient geodesic equations and the parallel transport of the homothety T along such
geodesics between two arbitrary points X̃0 and X̃1 on the ambient nullcone, that is
X̃0 = (t0, 0, x

i
0) and X̃1 = (t1, 0, x

i
1).

Let us first focus on the geodesic problem. We indicate the geodesic trajectories with
X̃M(λ), where 0 ≤ λ ≤ 1. The boundary conditions are X̃(0) = X̃0 and X̃(1) = X̃1.
In this affine parametrisation the velocity is normalised according to ˙̃

XM ˙̃
XN g̃MN = C.

Here C is a constant fixed by the boundary conditions and its sign is related to the causal
nature of the ambient trajectory. Its norm is the square of the geodesic length between
the two points,

ℓ(X̃0, X̃1) =

∫ 1

0

dλ

√∣∣∣g̃MN
˙̃
XM ˙̃

XN

∣∣∣ =√|C|. (B.1)

The ambient geodesic equations

¨̃
XM(λ) + Γ̃MAB(λ)

˙̃
XA(λ)

˙̃
XB(λ) = 0, (B.2)

can be expanded as

ẗ− 1

2
tg′ijẋ

iẋj = 0, (B.3)

ρ̈+
2

t
ṫρ̇−

(
gij − ρg′ij

)
ẋiẋj = 0, (B.4)

ẍk +
2

t
ẋk ṫ+ Γkijẋ

iẋj + gklg′ilρ̇ẋ
i = 0, (B.5)

where the Christoffel symbols in (B.5) are computed using gij(x, ρ) at fixed ρ. Here the
prime denotes a derivative in ρ, while the dot stands for a derivative in λ. The velocity
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normalization condition reads

2ρ ṫ2 + 2 t ṫ ρ̇+ t2 gij(x, ρ)ẋ
iẋj = C. (B.6)

These equations cannot be integrated in full generality. As customary some of them can
be reduced to first order ODEs using the ambient isometries K(i)

M described in Chapter 3,
if any is present. They lead to integrals of motion whose value is fixed by the boundary
conditions of the problem,

Qi = K
(i)
M (λ)

˙̃
XM(λ) . (B.7)

The geodesic equations can however be partially solved on general grounds. From
(B.3) and (B.6) we can extract gijẋiẋj and g′ijẋiẋj as functions of ρ and t. Plugging them
into (B.4) one finds

ρ̈+ 4
ṫ

t
ρ̇− C

t2
+ 2ρ

ṫ2

t2
+ 2ρ

ẗ

t
= 0 , (B.8)

which can be easily integrated. Imposing the boundary conditions specified above, the
solution reads

ρ(λ) = −C λ(1− λ)

2t(λ)2
. (B.9)

Observe that the sign of C tells the sign of ρ, that is related to which region of the
ambient space the geodesic is moving through, either the region with ALAdS foliation
or the one with ALdS slices. Note also that equation (B.9) can be rewritten in terms of
the coordinates (2.7) as

s(λ) = t
√
−2ρ2 =

√
Cλ(1− λ), (B.10)

so that the trajectory along s is completely specified once we fix C. This relation turns
out to be sufficient to find the explicit expression of the ambient invariant X̃ij.

Let us now move to the parallel transport of the homothetic vector T from X̃0 to X̃1,
defined by the equations

˙̃
XM(λ) ∇̃MT

A(λ) = 0 , (B.11)

which can be expanded as

∂λT
0 − t

2
g′ijẋ

iT j = 0, (B.12)

∂λT
ρ +

ṫ

t
T ρ +

ρ̇

t
T 0 + (−gij + ρg′ij)ẋ

iT j = 0, (B.13)

∂λT
l +

1

t
ẋlT 0 +

1

t
ṫT l +

1

2
glmg′jm

(
ẋjT ρ + ρ̇T j

)
+ Γlijẋ

iT j = 0. (B.14)
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One of them can be automatically integrated in view of the fact that the norm of T must
stay constant along a geodesic, and in this case the constant is zero (as its norm at X̃0

vanishes). Therefore TM(λ)TM(λ) = 0 entails

2ρT 0(λ)2 + 2tT 0(λ)T ρ(λ) + t2gij(x, ρ)T
i(λ)T j(λ) = 0. (B.15)

Being the norms of ˙̃
X and T constant along the geodesic, one can also show that the

angle between them stays constant, ˙̃
XMTN g̃MN = W . Explicitly,

2ρṫT 0 + tṫT ρ + tρ̇T 0 + t2gij(x, ρ)ẋ
iT j = −C

2
. (B.16)

where the boundary conditions and equation (B.9) fix W = −C
2
.

Observe that from (B.12) we can obtain g′ijẋ
iT j in terms of T 0 and T ρ, while from

(B.16) one finds gij(x, ρ)ẋiT j. If we plug them into (B.13), the resulting equation can be
integrated in terms of T ρ + 2ρ

t
T 0 yielding

T ρ = −2ρ

t
T 0 − Cλ

2t2
. (B.17)

As anticipated these general features of the solutions are enough to compute the
invariant X̃ij. Since the homothetic vector at X̃1 has components TM(1) = (t1, 0, 0), using
the ambient metric at X̃1 one has

X̃01 = −2 T̂M(0)T
N
(1) g̃

(1)
MN = −2 t21 T̂

ρ
(0). (B.18)

Hence, evaluating (B.17) at λ = 1 we can conclude that X̃ij = C = ℓ(X̃i, X̃j)
2 as claimed

in the main discussion.
This entails that solving parallel transport is not required to construct the invariant

X̃ij (even though it generally is necessary when constructing other ambient invariants).
One has to simply solve geodesic equations and extract C from the norm of the velocity
˙̃
XM ˙̃

XN g̃MN = C at any point λ.
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Appendix C

Relation between ambient and AdS
geodesics

Consider an ambient space of the form (2.8). We intend to relate the geodesic distance
between two nullcone points X̃0 = (t0, 0, x

i
0) and X̃1 = (t1, 0, x

i
1) on the ambient space

with the geodesic distance LAdS between those same points xi0 and xi1 at the boundary
of a single Euclidean ALAdS slice. In particular we wish to show that

1

(X̃12)∆
= r−2∆e−∆LAdS

∣∣
r=0

. (C.1)

We assume t0, t1 > 0 meaning that we are interested in spacelike geodesics on the ambient
space. The same result can be attained with completely analogous computations in the
cases of null and timelike ambient geodesics. We choose a slightly different parametriza-
tion consisting in a rescaling of the one used in Appendix B,

g̃AB
˙̃
XA ˙̃

XB = 1. (C.2)

We take advantage of the parent description

SA =
1

2

∫
γ

dλ

[
1

e
g̃AB

˙̃
XA ˙̃

XB + e

]
, (C.3)

where one can put the einbein onshell compatibly with the parametrization above by
setting

e =

√
g̃AB

˙̃
XA ˙̃

XB = 1. (C.4)

The ambient action is then equal to

SA =

∫ L

0

dλ

√
g̃AB

˙̃
XA ˙̃

XB = L, (C.5)

152



i.e. is simply the ambient geodesic length L, with L2 = C = X̃12.
As shown in Appendix B the presence of the homothetic vector T = s∂s allows one to

automatically integrate the geodesic equation along s. In the current parametrization this
entails s(λ) =

√
λ(L− λ). Regulating the integrals by taking the domain λ ∈ (ε, L− ε)

we can set s(λ) onshell in (C.3) (after setting e = 1) and rewrite SA as,

SA = L+
L

4
log

ε

L
+

1

2

∫ L−ε

ε

dλ λ(L− λ)g+µν ẋ
µẋν , (C.6)

where as customary g+µν is the metric on a ALAdS slice. By rewriting the integral using
the new parametrization

p(λ) =
1

L
log

λ

L− λ
, (C.7)

one obtains the constraint

L

4
log

ε

L
+

1

2

∫ − 1
L
log ε

L

1
L
log ε

L

dp g+µν ẋ
µẋν = 0 . (C.8)

Normalizing the velocity on the Euclidean ALAdS slice as

g+µν ẋ
µẋν = q2, (C.9)

for some constant q we have to determine, the parent action for a trajectory on such
(d+ 1) dimensional slice reads

LAdS = SEAdS =
1

2q

∫ − 1
L
log ε

L

1
L
log ε

L

dp g+µν ẋ
µẋν − q

L
log

ε

L
. (C.10)

One also has

LAdS =

∫ − 1
L
log ε

L

1
L
log ε

L

dp
√
g+µν ẋ

µẋν = − q

L
log

ε

L
. (C.11)

We can then use the constraint from the ambient space to fix q. To leading order in ε
one finds q = L/2, entailing

LAdS = − log
ε

L
. (C.12)

Finally, note that in the current parametrization of geodesics,

r(λ) =
s(λ)

t(λ)
=

1

t(λ)

√
λ(L− λ). (C.13)

From the boundary conditions, close to λ = 0 one has t(λ) = t0+O(λ) = 1+O(λ). This
leads to r(λ) =

√
Lλ+O(λ) (where an analogous statement holds near λ = 1), meaning
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that we can express the regulator in terms of the radial component of the trajectory r(λ)
as ε = r2/L and obtain

LAdS = − log
r2

L2
, (C.14)

which precisely reproduces the expected relation (4.19) between the geodesic approxi-
mation on ALAdS and ambient spaces.
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Appendix D

Details on the curvature invariants at
finite temperature

Let us now discuss the completeness of the basis for weighted curvature invariants as
provided by the weight-0 scalars (4.15) in the finite temperature case presented in Chap-
ter 5. Compatibly with equations (4.4)-(4.6), the only non-vanishing components of the
ambient Riemann are

R̃ρjkρ =
d

4

(
d

2
− 1

)
g(d)jk ρ

d
2
−2t2, (D.1a)

R̃ijkl =
d

4

[
δilg(d)jk + δjkg(d)il − δikg(d)jl − δjlg(d)ik

]
ρ

d
2
−1t2. (D.1b)

The subleading orders in ρ in equations (4.4)-(4.6) are proportional to d-dimensional
covariant derivatives acting on g(0) and g(d). In this case these are constant tensors and
hence the expansion in ρ of the ambient Riemann truncates at the leading order.

Because of the homogeneity in t of the Riemann and of the fact that the geometry does
not depend on the boundary directions xi, the action of the ambient covariant derivative
on the Riemann decomposes as a derivative along ρ plus terms which are proportional
to the Riemann. Schematically,

∇̃M R̃iem = δρM ∂ρR̃iem + R̃iem, (D.2)

and the same holds for higher order derivatives. Focusing on d = 4, this means that the
only independent tensorial structures containing the stress tensor VEV g(d)ij are δijg(d)jk
(and symmetrisations) and g(d)ij itself, and they can be extracted from R̃iem|ρ=0 and
∇̃R̃iem|ρ=0. Higher order derivatives of the Riemann simply yield different linear combi-
nations of those two structures. This entails that R(0) and R(1) are the only independent
objects that one needs in order to construct the weight-0 invariants (4.15).

As a consequence, any order two weight-0 invariant can be written as a linear com-
bination of the scalars e0, e1,e2 defined in (5.12).
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At a given order β−nd the weight-0 invariants are to be constructed as a chain of n
R’s,

R(r1)M2

M1
R(r2)M3

M2
. . .R(rn)M1

Mn
, (D.3)

where for each of them one has two possible choices, ri = 0, 1. This means that they pro-
vide at most 2n different invariants, modulo cyclic permutations. Our aim is to reproduce
the whole set of multi-stress tensor blocks entering the thermal OPE at order β−nd. Each
of them is proportional to a Gegenbauer polynomial C(1)

J , with even J = 0 . . . 2n, hence
at this order one needs n+ 1 independent invariants.

At order n = 2 this entails that the three independent scalars e0, e1,e2 in (5.12)
form a basis of ambient invariants. At a generic order n, based on the counting above
the weight-0 curvature scalars are in principle able to form an over-complete basis. We
checked explicitly that they generate a basis of n + 1 invariants in d = 4 up to n = 6,
and one may check it to arbitrarily high order n.

With similar arguments based on the action (D.2) of ambient covariant derivatives,
this discussion can be easily extended to any even d ≥ 4, where now the two independent
objects are R(d/2−2) and R(d/2−1) and any weight-0 invariant is built as a chain of them.
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Appendix E

Perturbative thermal holographic
correlator for general d and ∆

In this appendix we intend to solve the first order equation (5.28b). We will consider
here the case of generic d and ∆ with non-integer κ. Using the leading order solution,
the onshell source on the RHS of (5.28b) reads

S(r) = −
√

2

π
r

3d
2
−2 cos

(
2κ− 1

2
π

)[
Kκ(r)

(
∆2 +

(
η2 + 1

)
r2
)
− drKκ+1(r)

]
, (E.1)

while the Wronskian of the homogeneous solutions is

W (u1, u2) = cos

(
2κ− 1

2
π

)
rd−1. (E.2)

The first order solution will then be of the form

b1(r) = (A(r) + a1)u1 + (B(r) + a2)u2 , (E.3)

where a1 and a2 are integration constants while

A(r) = −
∫ r

0

dr′
u2(r

′)S(r′)

W (r′)
(E.4a)

= −d I(1)(d, κ, 1) + ∆2 I(1)(d− 1, κ, 0) + (1 + η2) I(1)(d+ 1, κ, 0) ,

B(r) =

∫ r

0

dr′
u1(r

′)S(r′)

W (r′)
(E.4b)

= d I(2)(d, κ, 1)−∆2 I(2)(d− 1, κ, 0)− (1 + η2) I(2)(d+ 1, κ, 0) .

Here we defined the following class of integrals involving two Bessel functions,

I(ℓ)(α, κ, δ) =

∫ r

0

dr′ r′α I(−1)ℓ+1(κ)(r
′)Kκ+δ(r

′) . (E.5)
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The explicit expressions for these integrals are

I(1)(α, κ, 0) =
rα+1

2κ(α+ 1)
2F3

(
1

2
,
α+ 1

2
; 1− κ, κ+ 1,

α+ 3

2
; r2
)

(E.6a)

+
2−2κ−1Γ (−κ) rα+2κ+1

(α+ 2κ+ 1)Γ (κ+ 1)
2F3

(
κ+

3

2
,
α

2
+ κ+ 1;κ+ 2, 2κ+ 2,

α

2
+ κ+ 2; r2

)
,

I(1)(α, κ, 1) =
rα

2α
+
rα

2α
2F3

(
1

2
,
α

2
;−κ, κ+ 1,

α

2
+ 1; r2

)
(E.6b)

+
π2−2(κ+1) sec

(
2κ−1
2 π

)
rα+2κ+2

(α+ 2κ+ 2)Γ(κ+ 1)Γ(κ+ 2)
2F3

(
κ+

3

2
,
α

2
+ κ+ 1;κ+ 2, 2κ+ 2,

α

2
+ κ+ 2; r2

)
,

I(2)(α, κ, δ) =
π2−δ−1 sec

((
δ + κ− 1

2

)
π
)
rα−δ

Γ (1− κ)

[
− 22δ+2κr−2κ+1

(−α+ δ + 2κ− 1)Γ (1− δ − κ)
× (E.6c)

3F4

(
−κ+

1− δ

2
,−κ− δ

2
,−κ+

α− δ + 1

2
; 1− κ,−2κ+ 1− δ, 1− δ − κ,

3

2
− κ+

α− δ

2
; r2
)

− r2δ+1
3F4

(
δ+1
2 , δ2 + 1, α+δ+1

2 ; 1− κ, α+δ+3
2 , δ + 1, κ+ δ + 1; r2

)
(α+ δ + 1)Γ (κ+ δ + 1)

]
,

We have fixed the source at the leading O(ϵ0) order, hence the order corresponding
to the source in the near-boundary Fefferman-Graham expansion of the function b1 must
vanish. Integrating over r′ ∈ (0, r) as in equation (E.4), this is automatically true for
a1 = 0. The remaining integration constant a2 is fixed by imposing regularity in the bulk
interior r → ∞. By studying the large–r behaviour of b1 this fixes

a2 =
π3/2 (dη2 − 1) cot

(
πd
2

)
Γ
(
−d

2
− 1

2

)
csc(π∆) sin

(
1
2
π(d− 2∆)

)
csc(π(d−∆))

4Γ
(
1− d

2

)
Γ(−∆)Γ(∆− d)

. (E.7)

The resulting holographic correlator to first order in ϵ is in equation (5.33). Note that
after the appearance of these computations and results in [24], a similar approach for
the holographic correlator was taken in [193], whose results match (5.33) and (5.46).
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Appendix F

Computation of the double-twist
coefficients from the multi-stress tensor
spectrum

In this appendix we provide details on how to perform the sum over images (5.67) to
obtain the thermal correlator (5.68).

First we consider the analytic part of G+ in (5.65). Setting for the moment β = 1,
we thus have to evaluate the sum

Sγ(τ) =
∞∑
m=1

|m+ τ |γ , (F.1)

with γ = −2∆+nd. As it is this sum converges for γ < −1, however we can analytically
continue it using the Hurwitz ζ function, in terms of which it reads

Sγ(τ) = ζ(−γ, 1 + τ) . (F.2)

This expression is finite on the whole complex γ-plane except for a simple pole at γ = −1.
To avoid it, it is sufficient to pick ∆ ̸= n d

2
+ 1

2
for all non-negative integer n.

Using the expansion of the Hurwitz ζ for γ ̸= −1 and |τ |< 1,

ζ(−γ, 1− τ) =
∞∑
p=0

Γ(p− γ)

p! Γ(−γ) ζ(p− γ) τ p , (F.3)

the sum over images of the analytic part then reads,

∞∑
m=1

∞∑
n=0

ã
(T )
n

β2∆

(
τ

β

)nd−2∆

=
1

β∆

∞∑
p=0

Q(OO)
reg, p

τ p

βp
, (F.4)
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where we define the coefficients

Q(OO)
reg, p =

∞∑
n=0

Γ(p+ 2∆− nd)

p! Γ(2∆− nd)
ζ(p+ 2∆− nd) ã(T )n , (F.5)

Turning to the singular part of G+ in (5.65), for the moment we consider terms with
poles of arbitrary positive integer order µ(ℓ),

Wℓ(τ) =
1

|τ |2∆
A(ℓ)(

|τ/β|d − yℓ

)µ(ℓ) . (F.6)

Such a singular term describes d − sin
(
π
2
d
)

poles in the complex τ -plane lying on the
circle of radius |yℓ|. Its form is dictated by the dependence on τ of the multi-stress tensor
series (5.63).

The sum over images that we wish to evaluate is then
∞∑
m=1

Wℓ(τ +m) =
∞∑

m=−∞

1

(τ +m)2∆
A(ℓ)

((τ +m)d − yℓ)
µ(ℓ)

, (F.7)

Due to the singularities, to ensure convergence one has to split this sum based on whether
τ +m is either inside or outside the circle of radius |yℓ|1/d, with τ arbitrarily small. We
thus define M∗

(ℓ) =
⌈
|yℓ|1/d

⌉
and split the sum as

∞∑
m=1

Wℓ(τ +m) = Z0(τ) + Z+(τ) , (F.8)

with

Z0(τ) =

M∗
(ℓ)

−1∑
m=1

Wℓ(τ +m) , Z+(τ) =
∞∑

m=M∗
(ℓ)

Wℓ(τ +m) . (F.9)

Starting with Z+, the range of m in the sum guarantees that the we can expand each
summand as

1

[(τ +m)d − yℓ]
µ(ℓ)

=
∞∑
j=0

(
µ(ℓ) + j − 1

j

)
(yℓ)

j (τ +m)−d(µ(ℓ)+j) . (F.10)

We can then rewrite

Z+(τ) = A(ℓ)

∞∑
m=M∗

(ℓ)

∞∑
j=0

(
µ(ℓ) + j − 1

j

)
(yℓ)

j (τ +m)−d(µ(ℓ)+j)−2∆ , (F.11)

= A(ℓ)

∞∑
j=0

(
µ(ℓ) + j − 1

j

)
(yℓ)

j ζ
(
d(µ(ℓ) + j) + 2∆, τ +M∗

(ℓ)

)
, (F.12)
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which converges for ∆ ̸= nd
2
+µ(ℓ) with integer n. Using the expansion in τ of the Hurwitz

ζ,

ζ(y, τ +M∗
(ℓ)) =

∞∑
p=0

(−1)p

p!
(y)p ζ(p+ y,M∗

(ℓ)) τ
p , (F.13)

where (a)b indicates the Pochhammer symbol, the sum over images in the region outside
the singularity takes the form

Z+ = A(ℓ)

∞∑
p=0

[
(−1)p

p!

∞∑
j=0

(
µ(ℓ) + j − 1

j

)
(yℓ)

j (d(µ(ℓ) + j) + 2∆)p (F.14)

× ζ
(
p+ d(µ(ℓ) + j) + 2∆,M∗

(ℓ)

)]
τ p .

The finite sum Z0 can be expanded in powers of τ in an analogous way, with the only
caveat that given |τ +m|< M∗

(ℓ) one must expand

1

[(τ +m)d − yℓ]
µ(ℓ)

=
∞∑
j=0

(−1)j
(
µ(ℓ) + j − 1

j

)
(τ +m)dj(−yℓ)−µ(ℓ)−j , (F.15)

so as to ensure convergence. Reinstating the appropriate scalings in β, the sum over
images of each singular piece hence takes the form,

∞∑
m=1

Wℓ(τ +mβ) =
1

β2∆

∞∑
p=0

Q
(OO)
(ℓ) p

τ p

βp
, (F.16)

where we defined the coefficients

Q
(OO)
(ℓ) p =

(−1)pA(ℓ)

p!

∞∑
j=0

(
µ(ℓ) + j − 1

j

)[
(F.17)

(yℓ)
j (d(µ(ℓ) + j) + 2∆)p ζ(p+ d(µ(ℓ) + j) + 2∆,M∗

(ℓ))

+ (−1)j(−τℓ)−µ(ℓ)−j (2∆− dj)p

(
ζ(p+ 2∆− dj)− ζ(p+ 2∆− dj,M∗

(ℓ))

)]
,

This expression has been obtained assuming integer order µ(ℓ). However one can check
that it can be analytically continued for all real positive µ(ℓ), thus allowing for branching
points in the complex τ -plane.

Overall, summing these contributions according to (5.67), only even powers of τ
survive and one finds the thermal correlator (5.68).
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Appendix G

Non-perturbative geodesics on the
planar black hole

In Section 5.5 we focused on correlators with close insertions |x|/β ≪ 1 on the planar
AdS black hole. From the ambient perspective this coincides with considering perturba-
tively short geodesics. These can be obtained as perturbations in |x|d/βd of geodesics on
Minkowski spacetime as shown in Section 5.2. By making this choice we do not expect
to be able to account for the double-twist spectrum in the corresponding correlator. The
motivation for this is that as discussed in Subsection 5.5.2, their appearance is related
to non-perturbative effects in |x|/β → 0 and as such one has to take into account the
global properties of the background (in this case the periodicity of the τ direction) to
fully describe them.

As mentioned in Subsection 5.5.2 a possibility to describe the double-twist spectrum
in terms of the ambient formalism is that long geodesics exist on the ambient space
(5.3). By long geodesics here we mean ambient geodesics that connect nullcone points
that are close to each other, and whose length is not perturbatively short in |x|/β → 0.
More explicitly, the length of such geodesics would scale like β instead of |x|, as instead
it happens for perturbatively short geodesics (see equation (5.10)). This would be the
case for geodesics that wrap the thermal circle multiple times for example. If this class
of ambient geodesics existed, the double-twist contributions in the ambient correlator
would likely emerge from the sum over geodesics of the ambient curvature invariants,
paralleling what happens in the holographic correlator (5.40) where they arise from the
sum over images of the multi-stress tensor spectrum. This is however not the case and
we do not find any such geodesic as we detail below.

One can study long geodesics on the planar black hole by finding exact solutions to
the geodesic equations (5.6)-(5.7) with boundary conditions (5.9). As already mentioned
in the main discussion, generic solutions to (5.7) are in terms of inverse elliptic functions
and thus not easily tractable. Nonetheless, if one restricts to trajectories moving only
along the τ direction (i.e. setting x(λ) = 0 as an initial condition, meaning that A2 = 0 in
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(5.6)), the equation for z(λ) is explicitly solvable for any A1. Defining the dimensionless
parameter A =

√
2
π
βA1, one finds

z(λ) =

√
2

π

√
(1− λ)λ

2A2(1− λ)λ+
√
1 + A4(1− 2(1− λ)λ)

β , (G.1)

where we set the endpoints to lie on the same slice of the ambient nullcone, t0 = tf = 1.
Through (5.6) this leads to

τ(λ) =
τf
2

+
β

2π

(
arctan

[
Y−

(
λ− 1

2

)]
+ arctanh

[
Y+

(
λ− 1

2

)])
, (G.2)

where

Y± =
√
2
1± (A2 −

√
A4 + 1)

A
. (G.3)

In expression (G.2) we are still to impose the condition τ(1) = τf , which fixes the value
of the integration constant A. Renaming τf → τ and considering trajectories with A > 0,
the relation that A must satisfy is,

τ

β
= −

(
1

4
+
i

4

)[
arctan

(
4
√
−1A

)
− arctanh

(
4
√
−1A

)]
. (G.4)

This equation is transcendental and cannot be inverted analytically to obtain an ex-
pression for A(τ). Nonetheless, we can extract interesting information from this class of
orbits.1

For all A > 0 these trajectories represent physical solutions. In particular τ(λ) is real
and 0 < z(λ) < zH for any 0 < λ < 1. We can interpret (G.4) as indicating which point τ
on the thermal circle is reached by the geodesic as a function of the integration constant
A. In Figure G.1 we plot τ(A). We see that the furthest τ one is able to reach is half
of the circle, τ = β/2, corresponding to A = 0. An analogous behavior is found if one
repeats the analysis for A < 0.

The ambient geodesic distance square spanned by this class of trajectories is

X̃12(τ) =
2

π2

β2√
1 + A(τ)4

. (G.5)

One can test the small-τ behaviour of this geodesic distance to exclude the presence of
long geodesics, which would correspond to X̃12 ∼ β2 in τ/β → 0, as opposed to short
geodesics whose scaling is X̃12 ∼ τ 2. By inverting the relation (G.4) in a series at small

1Note that these geodesics were also found in [92].
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Figure G.1: This plot shows the behaviour of τ
β
(A) for positive A as fixed by the boundary

condition (G.4) at λ = 1.

τ/β one can check that this class of exact ambient geodesics reduces to the perturbative
geodesics of Section 5.2 for close insertions, meaning in particular that

X̃12(τ) = τ 2
(
1 +O(τ 2)

)
. (G.6)

Therefore, perturbatively close insertions always correspond to perturbatively short
geodesics, contrarily to what happens for instance in Thermal AdS. To further confirm
this picture, we performed a numerical scan allowing for non-trivial dynamics along the
x direction. Also in this more general case no long geodesic was found. This suggests
that the double twist spectrum arises in ambient correlators in a different way than a
sum over long ambient geodesics connecting the same pair of nullcone points, hinting at
the existence of a new class of genuine ambient invariants.
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Appendix H

Details on the late-time expansions of
the Beig-Schmidt fields

In this appendix we work out the behavior of the Beig–Schmidt fields σ , kab and jab in
the asymptotic past and future of the de Sitter hyperboloid H, corresponding to the
limits τ → ±∞ in the global coordinate system (τ, xA).

Electric potential. The equation of motion (7.37) of σ takes the form(
−∂2τ − 2 tanh τ ∂τ + cosh−2 τ ∇2 + 3

)
σ = 0 . (H.1)

The corresponding asymptotic solution is found to be

σ(τ, x) = eτ σ(−1) + e−τσ(1) + e−3ττ σ̃ + e−3τ σ(3) + ... , (H.2)

where σ(−1) and σ(3) are free functions that specify a solution to the quadratic differential
equation (H.1), while all other functions can be fully determined,

σ(1) = −
(
∇2 + 1

)
σ(−1) , σ̃ = ∇2

(
∇2 + 2

)
σ(−1) , ... (H.3)

Mathematical interlude. In order to streamline the analysis of kab and jab to come
momentarily, we consider the generic inhomogeneous differential equation for a symmet-
ric tensor tab,

(D2 − α) tab = Sab , α ∈ R , (H.4)
in the case where not only the source Sab but also the trace taa and divergence Datab are
non-dynamical and pre-determined quantities. This situation will apply to both kab and
jab. The trace and divergence of tab can be written

taa = −tττ + hABtAB, , (H.5a)
Dataτ = − (∂τ + 2 tanh τ) tττ − tanh τ hABtAB + hAB∇AtBτ , (H.5b)
DbtbA = − (∂τ + 2 tanh τ) tAτ + hBC∇BtCA , (H.5c)
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or equivalently

hABtAB = tττ + taa , (H.6a)
hAB∇AtBτ = (∂τ + 3 tanh τ) tττ +Dbtbτ + tanh τ taa , (H.6b)
hBC∇BtCA = (∂τ + 2 tanh τ) tAτ +DbtbA . (H.6c)

These equations allow to eliminate the combinations on the left-hand side in terms of tτa
and the non-dynamical quantities taa and Datab. Introducing the differential operators

D1 ≡ −∂2τ − 6 tanh τ ∂τ − 6 tanh2 τ + cosh−2 τ ∇2 , (H.7a)
D2 ≡ −∂2τ − 2 tanh τ ∂τ + 2 tanh2 τ + cosh−2 τ (1 +∇2) , (H.7b)
D3 ≡ −∂2τ + 2 tanh τ ∂τ + cosh−2 τ ∇2 + 2 , (H.7c)

and making use of (H.6), the equations of motion (H.4) become

(D1 − α) tττ = Sττ + 4 tanh τ Dbtbτ + 2 tanh2 τ taa , (H.8a)
(D2 − α) tτA = SτA + 2 tanh τ ∂Atττ + 2 tanh τ DbtbA , (H.8b)
(D3 − α) tAB = SAB + 2 tanh τ (∇AtBτ +∇BtAτ ) . (H.8c)

They can be solved each one in turn. Indeed (H.8a) is a simple inhomogeneous ordinary
differential equation governing the dynamics of the component tττ , with all quantities on
the right-hand side being pre-determined functions. Once the solution for tττ has been
found, one can go on and solve (H.8b) in order to determine tτA, and then similarly solve
(H.8c) in order to determine tAB .

Magnetic potential. The magnetic potential kab satisfies the equation of motion (H.4)
with α = 3 and vanishing source term, trace and divergence. Solving (H.8) asymptotically
we find

kττ = e−3ττ k̃ττ + e−3τ k(3)ττ + ... , (H.9a)

kτA = e−ττ k̃τA + e−τ k
(1)
τA + ... , (H.9b)

kAB = eττ k̃AB + eτ k
(−1)
AB + ... , (H.9c)

where all functions appearing are free data which serve to specify a particular solution,
while all subleading terms can be determined order by order. Note that these asymptotics
are those of the homogeneous solutions, while the dependencies on the terms on the right-
hand side of (H.8) appear at subleading order in these expansions.

166



Subleading field. The subleading field jab satisfies the equation of motion (H.4) with
α = 2 and pre-determined but nonzero source, trace and divergence given in (7.39)-
(7.40). Generic solutions involve superpositions of homogeneous solutions and particular
solutions depending on the pre-determined quantities appearing on the right-hand side
of (H.8). The asymptotic behavior of the homogeneous solutions is straightforward to
determine,

jττ = e−2τj(2)ττ + e−4τj(4)ττ + ... , (H.10a)

jτA = j
(0)
τA + e−2τj

(2)
τA + ... , (H.10b)

jAB = e2τj
(−2)
AB + j

(0)
AB + ... . (H.10c)

On the other hand, the asymptotic behavior of the particular solutions strongly depends
on the asymptotic behavior of the first order fields σ and kab. Using the data determined
from the Bondi phase space and given in Section 8.4, we explicitly evaluate the right-hand
side of (H.8),

Sττ + 4 tanh τ Dbjbτ + 2 tanh2 τ jaa = O(e−6τ ) , (H.11a)
SτA + 2 tanh τ ∂Ajττ + 2 tanh τ DbjbA = O(e−4τ ) , (H.11b)

SAB + 2 tanh τ (∇AjBτ +∇BjAτ ) = O(e−2τ ) . (H.11c)

This means that the particular solutions of jab are subleading in τ compared to the
homogeneous solutions. Thus (8.11) indeed describes the asymptotic behavior of a generic
solution which can be mapped to the Bondi phase space. Note that some of the subleading
Bondi data which we have not explicitly considered in this work would in principle
contribute to (H.11a) at order O(e−4τ ), but for consistency such terms must cancel out.

Note that the trace and divergence constraints (H.6) restrict the number of inde-
pendent dynamical degrees of freedom. For jτA this is most easily seen by considering
the Helmholtz decomposition (8.47), in which case the divergence constraint (H.6) fully
determines Ψ1 in terms of other dynamical fields,

∇2Ψ1 = cosh2 τ [(∂τ + 3 tanh τ)jττ +Dajτa + tanh τ jaa ] . (H.12)

By careful analysis of (7.40) one can show that the combination Dajτa+tanh τ jaa decays
faster than O(e−4τ ), and therefore does not contribute to the order Ψ1 = O(e−2τ ) of
interest in Section 8.5. On the other hand Ψ2 is an independent mode whose dynamics
follows from (H.8b),[

−∂2τ − 2 tanh τ ∂τ + cosh−2 τ ∇2
]
Ψ2 = O(e−4τ ) . (H.13)

The order Ψ2 = O(e−2τ ) of interest in Section 8.5 is controlled by the homogeneous
solutions to the above equation.
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Appendix I

Details of the map between Bondi and
Beig–Schmidt data

In this appendix we present the details of the doubly-asymptotic coordinate transforma-
tion used to map the Bondi data of Section 8.2 onto the Beig-Schmidt data described in
Section 7.3. The resulting map is summarised in Section 8.4.

As explained in the main discussion, the idea is to map the second order Bondi
metric (7.4) to the Beig-Schmidt gauge, to second order in 1/ρ and to leading order in
τ . We consider an appropriate Ansatz for the transformation between Bondi coordinates
(u, r, xA) and Beig–Schmidt coordinates (ρ, τ, yA),

u = −ρ e−τ + α(τ, yA) +
A(τ, yA)

ρ
+ ... , (I.1a)

r = ρ cosh τ + β(τ, yA) +
B(τ, yA)

ρ
+ ... , (I.1b)

xA = yA +
pA(τ, yA)

ρ
+
qA(τ, yA)

ρ2
+ ... , (I.1c)

where α,A, κ,B, pA and qA are arbitrary functions on the hyperboloid that are to be
determined order by order in ρ by enforcing the Beig-Schmidt gauge. At leading order this
transformation coincides with (8.12), i.e. it relates Minkowski space written in retarded
coordinates and in hyperbolic foliation. Note also that although the sphere coordinates
xA and yA differ by terms which vanish in the limit ρ→ ∞, they can be swapped at will
once the mapping of fields at a given order in ρ has been determined. This allows us to
write down the dictionary in a way that is manifestly covariant on the (celestial) sphere
S2.

The Beig–Schmidt gauge conditions to be imposed at the relevant order in ρ consist
in

gρρ = 1 +
2σ

ρ
+
σ2

ρ2
+ o(ρ−2) , gρa = o(ρ−1) . (I.2)
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At first order in ρ, this relates σ to the Bondi mass aspect according to

σ (τ, y) = 2m0e−3τ + ... , (I.3)

while to leading order in τ one finds for the coordinate transformation

α(τ, y) = 8m0

(
τ − 1

3

)
e−4τ + ... , (I.4a)

β(τ, y) = 8m0

(
τ − 1

3

)
e−2τ + ... , (I.4b)

pA (τ, y) = −2∇BC
AB
0 e−3τ + ... . (I.4c)

This entails

kττ =
8

3
m0 (24τ − 17) e−3τ + ... , (I.5a)

kτA = 2∇BC0
AB e

−τ + ... , (I.5b)

kAB =
1

2
C0
AB e

τ + ... . (I.5c)

In a similar way, the functions in the second order transformation are found to be

A(τ, y) =
(
∇EC

0
AB∇ACEB

0 −∇EC
0
AB∇ECAB

0 + 4ϕ
)
e−5τ + ... , (I.6a)

B(τ, y) = −1

8
C0
ABC

AB
0 e−τ + ... , (I.6b)

qA(τ, y) = 2γAB
(
−4

3
N0
B + CEF

0 ∇BC
0
EF − CEF

0 ∇EC
0
BF

)
e−4τ + ... . (I.6c)

From the resulting Beig-Schmidt metric we can read off the leading data of jab,

jττ = −4
(
∇EC

0
AB∇ACEB

0 −∇EC
0
AB∇ECAB

0 − 16ϕ0
)
e−4τ + ... , (I.7a)

jτA =
(
4N0

A + C0
AB∇CC

BC
0

)
e−2τ + ... , (I.7b)

jAB =
1

8
C0
EFC

EF
0 γAB +

(
−4

3
∇AN

0
B + 8

(
τ − 1

3

)
m0C0

AB + U0
AB

)
e−2τ + ... , (I.7c)

where UAB is defined as the following tracefree tensor on the 2-sphere,

UAB = −(∇E∇FCEF )CAB −∇EC
EF∇FCAB +∇ECFA∇BC

EF

+ CEF∇E∇FCAB − CEF∇E∇ACFB − trace ,
(I.8)

and ϕ0 is the order O(u0) piece in the second order term ϕ appearing in (7.5a),

ϕ =
1

2

(
R(2) −∇Ag(1)uA +∇2g(2)ur

)
≡ uϕ−1 + ϕ0 + o(u0) . (I.9)
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The coefficients g(1)uA and g(2)ur are the orders O(r−1) and O(r−2) of the corresponding
metric components (7.5c) and (7.5b), and R(2) = γABR(2)AB − CABR(1)AB + ḡAB(0) R(0)AB

is the order O(r−2) in the asymptotic expansion of the Ricci scalar associated with gAB
(ḡAB(0) is the inverse of the order O(r0) in gAB). One can show that R(2) only depends on
γAB and CAB since g(0)AB does not have a CAB-independent trace-free part.
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Appendix J

Vanishing of the leading magnetic
Weyl tensor

In this appendix we give the form of kab in case where the leading magnetic Weyl tensor
Bab vanishes, and we work out the corresponding large-τ expansion. This allows us to
demonstrate that the Beig–Schmidt data (8.16) obtained by explicit coordinate trans-
formation from Bondi gauge is that associated with a vanishing Bab. We also confirm
the identification between the supertranslation Goldstone mode at null infinity and the
supertranslation Goldstone mode at spatial infinity that was previously made in [173].

The vanishing of the leading magnetic part of the Weyl tensor Bab defined in (7.34)
is equivalent to the condition

D[akb]c = 0 . (J.1)
On the three-dimensional hyperboloid H a symmetric traceless tensor satisfying the
above condition can be written in terms of a scalar potential Φ [107,194],

kab = − (DaDb + hab) Φ , (D2 + 3)Φ = 0 . (J.2)

The scalar field Φ is the Goldstone mode of supertranslations at spatial infinity [173].
Proceeding exactly as we did with the electric potential σ in Appendix H, we find its
large-τ expansion to be

Φ(τ, x) = eτ Φ(−1) + e−τΦ(1) + e−3ττ Φ̃ + e−3τ Φ(3) + ... , (J.3)

with

Φ(1) = −
(
∇2 + 1

)
Φ(−1) , Φ̃ = ∇2

(
∇2 + 2

)
Φ(−1) , ... (J.4)

Now we express (J.2) in global coordinates (τ, xA),

kττ =
(
−∂2τ + 1

)
Φ , (J.5a)

kτA = (−∂τ + tanh τ) ∂AΦ , (J.5b)
kAB =

(
γAB cosh2 τ (tanh τ ∂τ − 1)−∇A∇B

)
Φ , (J.5c)
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and plug in the asymptotic expansion (J.3) of the scalar potential Φ. Doing so we find
that the leading order terms for the various components of kab are

k̃ττ = −8 Φ̃ = 8∇A∇BCΦ
AB , (J.6a)

k(3)ττ = −8Φ(3) , (J.6b)

k̃τA = 0 , (J.6c)

k
(1)
τA = −2 ∂A(Φ

(−1) − Φ(1)) = 2∇BCΦ
AB , (J.6d)

k̃AB = 0 , (J.6e)

k
(−1)
AB = −∇A∇BΦ

(−1) − 1

2
γAB (Φ(−1) + Φ(1)) =

1

2
CΦ
AB , (J.6f)

where we have suggestively defined

CΦ
AB ≡ −2∇A∇BΦ

(−1) + γAB∇2Φ(−1) . (J.7)

We observe that (J.6) perfectly agree with (8.16) provided that we make the identification

Φ(−1) = C , (J.8)

which in particular also implies CΦ
AB = C0

AB. Building on the work of Troessaert who
pointed out that BMS supertranslations are isomorphic to supertranslations at spatial
infinity [165], (J.8) had been recently argued to hold since both members transform in
the same way [173]. Since we now have the map (8.16) between the large-τ behavior of kab
and the supertranslation mode C, we are able to confirm the identification (J.8) without
relying on their transformation properties, while at the same time proving a consistency
check of our findings. Finally, note that it is known that the subleading mode Φ(3) can
always be removed by a pure gauge transformation [165], and we can therefore set it to
zero without loss of generality.

The data k̃ττ , k
(3)
ττ , k̃τA , k

(1)
τA , k̃AB , k

(−1)
AB fully specifies a solution for kab. Since the

data (8.16) obtained in the main text can be written in the form (J.6), we conclude that
the full solution of kab also admits the form (J.2). This further implies the vanishing of
the leading magnetic Weyl tensor whenever the solution can be mapped onto the Bondi
phase space defined in Section 8.2,

Bab = 0 . (J.9)
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