THE CONJUGACY PROBLEM FOR $\operatorname{Out}\left(F_{3}\right)$.

FRANÇOIS DAHMANI
Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France, and IRL-CRM CNRS, Université de Montréal, Montréal, Canada.
STEFANO FRANCAVIGLIA
Dipartimento di Matematica of the University of Bologna
ARMANDO MARTINO
Mathematical Sciences, University of Southampton
\section*{NICHOLAS TOUIKAN}
Department of Mathematics \& Statistics
University of New Brunswick (Fredericton)

Abstract

We present a solution to the Conjugacy Problem in the group of outer-automorphisms of F_{3}, a free group of rank 3 . We distinguish according to several computable invariants, such as irreducibility, subgroups of polynomial growth, and subgroups carrying the attracting lamination. We establish, by considerations on train tracks, that the conjugacy problem is decidable for the outer-automorphisms of F_{3} that preserve a given rank 2 free factor. Then we establish, by consideration on mapping tori, that it is decidable for outer-automorphisms of F_{3} whose maximal polynomial growth subgroups are cyclic. This covers all the cases left by the state of the art.

[^0]
Contents

1. Introduction 2
Acknowledgements 5
2. Computability of a few invariants 5
Notations 5
Irreducibility 6
Growth 7
Lamination carriers are computable 9
3. The case of a given invariant rank 2 free factor 11
4. Polynomially growing automorphisms 15
Quadratic polynomial growth in F_{3}. 15
Conjugacy Problem in polynomial growth for Out F_{3}. 17
5. Exponential growth: laminations 17
Invariant Free Factor Systems in F_{3} 17
Conjugacy problem for exponential growth with rank 2 lamination 19
6. Exponential growth: mapping tori 19
The Almost Toral case 21
The polynomially growing subgroups in F_{3} 22
References 25

1. Introduction

In this paper we solve Dehn's conjugacy problem in $\operatorname{Out}\left(F_{3}\right)$, the group of outer automorphisms of the free group F_{3} of rank 3:

Theorem 1.1. There exists an algorithm which takes two automorphisms $\phi, \psi \in \operatorname{Aut}\left(F_{3}\right)$ and correctly outputs yes or no whether their outer classes are conjugate in $\operatorname{Out}\left(F_{3}\right)$.

The conjugacy problem has already been solved within certain classes of outer automorphisms of free groups: the atoroidal fully irreducible ones by Sela [Sel95], all the irreducible ones by Los [Los96], all the atoroidal ones by [Dah16], the linearly growing ones by Kristić, Lustig, and Vogtmann [KLV01], the unipotent polynomially growing ones by Feighn and Handel [FH19].

In the case of a free group of rank $2, \operatorname{Out}\left(F_{2}\right) \simeq \operatorname{GL}(2, \mathbb{Z})$ is well known and virtually free, and there is an algorithm to solve its conjugacy problem.

In the case of a free group of rank $3, \operatorname{Out}\left(F_{3}\right)$ is more complicated, and our conjugacy decision algorithm operates by classifying the pair of input automorphisms by means of invariants, in subclasses, in which specific methods can be applied.

Let us mention key conjugacy invariants that are relevant in these classifications, and are computable. They give a first frame of reference.

- Irreducibility (whether there is an invariant conjugacy class of free factor system, or not), Kap14, [FM22];
- exponential growth (whether there is a conjugacy class whose iterated images grow exponentially fast, or not), BFH05;
- rank of the maximal polynomially growing subgroups (the maximal subgroups whose elements have iterated images that grow at most polynomially in conjugacy length), and polynomial degree of growth in these subgroups (Proposition 2.7);
- arrangement of these subgroups (their orbit under the automorphism group of the ambiant free group) (Gersten's algorithm);
- ranks of the free factors carrying the so-called attracting lamination (Proposition 2.9).
Example 1.2. The map $a \mapsto a, b \mapsto b a, c \mapsto c b$ extends to the free group of basis $\{a, b, c\}$ as an automorphism that is reducible $(\langle a, b\rangle$ is an invariant free factor of rank 2), polynomially growing of degree 2 (the growth of c is quadratic).
Example 1.3. A pseudo-Anosov mapping class on a twice punctured torus gives an automorphism that is reducible (each puncture corresponds to a free factor of rank one that is preserved), of exponential growth, with two conjugacy classes of maximal polynomially growing subgroups (corresponding to the punctures), both cyclic, on which the automorphism has polynomial degree 0 . They are both rank 1 free factors, but not in a same free factor system. The attracting lamination is supported by the entire group.
Example 1.4. Take T a torus with one hole ∂T, with a base point on its boundary, and a circle C with a base point, and take the wedge of these spaces, identifying the two base points: its fundamental group is F_{3}. Consider a pseudo-Anosov mapping class on T, fixing the boundary pointwise, and a map that sends C on the concatenation $C \cdot \ell$ for a chosen loop ℓ in T. The defined map on $T \wedge C$ induces an automorphism of F_{3} that is reducible, of exponential growth, with an invariant free factor of rank 2 (the group of T). The cyclic group of the boundary ∂T of T is polynomially growing of degree 0 . Depending on the choice of ℓ, it might or might not be a maximal polynomially growing subgroup: if ℓ is a power of the loop ∂T, the maximal polynomially growing subgroup containing $\pi_{1}(\partial T)$ is actually of rank 2 , on which the automorphism has polynomial degree 0 or 1 , and it is not a free factor of F_{3} but rather a factor of a decomposition of F_{3} as some amalgamated free product

$$
\pi_{1}(T) *_{\pi_{1}(\partial T)} \pi_{1}(C \wedge \partial T)
$$

The attracting lamination is carried by the rank 2 free factor $\pi_{1}(T)$.
It is nevertheless not sufficient to collect these invariants to have characterised the conjugacy class of an outer-automorphism. For instance, knowing that the automorphisms are irreducible, with pure exponential
growth (i.e. the only polynomially growing subgroup is the trivial one) still requires stamina to decide the conjugation between such outerautomorphisms. Actually, all the solved cases listed in the beginning of this introduction all correspond to some particular situation in this frame of reference.

In our study of $\operatorname{Out}\left(F_{3}\right)$, we will observe that, given the state of the art, only three configurations in this frame of reference need to be treated. We will cast two of them in the point of view of automorphisms preserving a specific rank 2 free factor. We will cast the last one in the point of view of toral relatively hyperbolic mapping tori. The first configurations is that of the polynomial growth of degree 2 on the group F_{3} (well illustrated by Example 1.2). The second configuration is the case of exponential growth in which a rank 2 free factor is invariant, and "attracts" all the growth. In that case (that is well illustrated by our example 1.4) there is only one class of maximal polynomially growing subgroup, it is not a free factor, it is either cyclic (generated by the commutator of a basis in the invariant rank 2 free factor), or of rank 2 (attached to this free factor). The last case (illustrated by Example 1.3) is when the growth is exponential, with a rank 1 free factor preserved, and the maximal polynomial growth subgroups are of rank 1 (there might be two of them up to conjugacy).

Our algorithm is shown in Figure 1 and its correctness is derived from the correctness of every classification step as well as every terminal step. There are several ways to separate cases toward the use of Theorem 3.1 or the use of Theorem 6.4 or of methods in section 6, since they overlap, but considering complexity it seems reasonable to leave the later for the smaller number of cases.

In Section 3 we show how to solve the conjugacy problem in $\operatorname{Out}\left(F_{3}\right)$ among all outer automorphisms with a given invariant rank 2 free factor. This result, in a sense, is a type of induction step from $\operatorname{Out}\left(F_{2}\right)$ to $\operatorname{Out}\left(F_{3}\right)$, but as will be explained in Remark 3.10, it will not generalize similarly to higher ranks. This case is critically important as we will show that most problematic situations (which actually fall in the case where the given automorphism induces a polynomial growth automorphism on a non-cyclic subgroup) lead to an invariant free factor of rank 2.

In Section 4 we show that quadratically growing outer automorphisms have an invariant rank 2 free factor. In Section 5 we use train track methods to study the types of attracting laminations that arise. One possibility gives rise (again) to an an invariant rank 2 free factor. In Section 6 we show that the other possibility implies that the outer automorphisms are so-called almost toral relatively hyperbolic and the conjugacy problem for this class of outer automorphisms is established by the main result of [DT21] in its particular case where the so-called

Flowchart 1. Our algorithm to solve the conjugacy problem in $\operatorname{Out}\left(F_{3}\right)$. If at any time the given automorphisms ϕ and ψ follow different arrows, they are not conjugate.
peripheral subgroups are $\mathbb{Z} \times \mathbb{Z}$ or $\mathbb{Z} \rtimes \mathbb{Z}$, the fundamental group of the Klein bottle.

Acknowledgements. We would like to thank Vincent Guirardel, Mark Feighn and Michael Handel for valuable discussions.
F.D. is supported by ANR-22-CE40-0004 GoFR. S.F. is supported by INdAM group GNSAGA and the European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) Mission 4 Education and Research - Component 2 From Research to Business - Investment 1.1, Notice Prin 2022 issued with Decree No. 104 on $2 / 2 / 2022$, with the title 'Geometry and Topology of Manifolds,' proposal code 2022NMPLT8 - CUP J53D23003820001. N.T. is supported by an NSERC Discovery Grant.

2. Computability of a few invariants

Notations. We begin by some general notations, and definitions.

Notation 2.1.

- In a group G, the conjugation of g by h is $g^{h}:=h^{-1} g h$.
- Aut (G) acts on the right: for $\phi \in \operatorname{Aut}(G), g \in G$, the image of g under ϕ is $g \phi$.
- $\operatorname{Ad}(g)$ denotes the automorphism of G that is conjugation by $g: x \operatorname{Ad}(g)=x^{g}$. Hence $\operatorname{Ad}(g) \operatorname{Ad}(h)=\operatorname{Ad}(g h)$.
- Out $(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$, for $\operatorname{Inn}(G)=\{\operatorname{Ad}(g), g \in G\}$.
- $F_{3}=\langle a, b, c\rangle$ denotes a free group of rank 3.
- We will prefer the notation K for free factors, and H for subgroups.
- We write outer-automorphisms with capital greek letters, and automorphisms with small greek letter: if Φ is an outer-automorphism, $\phi \in \Phi$ is an automorphism in its class. In this convention, (according to context) X reads $C h i$, and $\chi \in \mathrm{X}$ is an automorphism.
For $\Phi \in \operatorname{Out}(F)$, we say a subgroup $H \leq F$ is Φ-invariant if for any $\phi \in \Phi$ we have that H is conjugate to $H \phi$.

A free factor system of F is a set of conjugacy classes of subgroups of $F,\left\{\left[K_{1}\right], \ldots,\left[K_{m}\right]\right\}$ such that there exists a free subgroup $F_{r}<F$ for which $F=K_{1} * \cdots * K_{m} * F_{r}$. It is proper if the K_{i} are neither $\{1\}$ nor F. It is Φ invariant if all K_{i} (not necessarily F_{r}) are Φ invariants.

A free factor system $\left\{\left[Y_{1}\right], \ldots,\left[Y_{s}\right]\right\}$ is smaller than $\left\{\left[K_{1}\right], \ldots,\left[K_{m}\right]\right\}$ if for each i there exists j such that Y_{i} has conjugate inside K_{j}.
Irreducibility. A first conjugacy invariant, and decidable, property is the irreducibility of outer-automorphisms.
Definition 2.2. An outer-automorphism Φ is called reducible if it admits an invariant proper, non-trivial, free factor system - see [BFH00]. Otherwise it is said to be irreducible.

An automorphism is fully irreducible if every positive power is irreducible.

Remark 2.3. An automorphism is fully irreducible if and only if the only periodic free factors preserved up to conjugacy are given by either the trivial subgroup or the whole group. Every fully irreducible automorphism is irreducible, but not conversely.

An example of an irreducible automorphism which is not fully irreducible is as follows: take a surface with $p>1$ punctures. Consider a pseudo-Anosov map on the surface which cyclically permutes the punctures. Then the outer automorphism induced on the fundamental group is irreducible but not fully irreducible. In fact, any example of exponential growth arises in this way.

Fully irreducible is often referred to as 'iwip' - irreducible with irreducible powers - in the literature.

There is an algorithm to detect whether $\Phi \in \operatorname{Out}\left(F_{n}\right)$ is fully irreducible given in Kap14, and whether it is irreducible in [FM22]. A more recent algorithm given in [KB19] decides whether Φ is fully irreducible in polynomial time.

Growth. A second set of conjugacy invariant, and decidable, properties is related to growth.

Definition 2.4. Given $\phi \in \Phi \in \operatorname{Out}\left(F_{n}\right)$ and $g \in F_{n}$ and a fixed basis X of F_{n} we define the growth rate of g as follows:

- The element g has polynomial growth of degree at most d under Φ if $\left\|g \phi^{n}\right\|_{X}=O\left(n^{d}\right)$.
- The element g has exponential growth if there exists $\lambda>1$ for which $\lambda^{n}=O\left(\left\|g \phi^{n}\right\|_{X}\right) .1^{1}$

This growth rate is independent of the choice of X and $\phi \in \Phi$. Moreover, by BH92], the growth rate of every $g \in F_{n}$ is either at least exponential or at most polynomial.

Definition 2.5. An outer-automorphism Φ of F_{n} is said to have

- polynomial growth if all elements $g \in F_{n}$ have polynomial growth rate,
- exponential growth if some element $g \in F_{n}$ has exponential growth rate.

In the case of a polynomial growth outer-automorphism of F_{n}, there exists $d \geq 0$ for which all elements of F have polynomial growth of degree at most d, and moreover, the smallest such d satisfies $d \leq n-1$, see BFH05, Lev09].

Definition 2.6. A polynomial growth outer-automorphism of F_{n} is unipotent if it induces an automorphism of the abelianisation \mathbb{Z}^{n} that is represented by a unipotent matrix.

Such a matrix of the abelianisation of an automorphism of F_{n} of polynomial growth only has eigenvalues of modulus 1 , and in in $G L(n, \mathbb{Z})$, so its $|G L(n, \mathbb{Z} / 3)|$-th power is unipotent.

The following is known to specialists, and important to us. We explain a proof, using the theory of CT maps [FH18], that are certain homotopy equivalences on graphs, representing outer-automorphisms on their fundamental groups; the interested reader is referred to this reference.

Proposition 2.7 ([FH11, FH18]). Given an automorphism, $\Phi \in \operatorname{Out}\left(F_{n}\right)$, there is an algorithm to decide:

- If Φ has polynomial or exponential growth and,
- If Φ has polynomial growth, decide the degree of polynomial growth.

[^1]Proof. By [FH18], there is an algorithm to construct a CT map (which is, in particular, a relative train track map) representing a rotationless power of Φ. Since the properties needed here are invariant under taking positive powers, we may as well assume that Φ itself is so-called rotationless (the power needed can be determined in advance). In particular, a rotationless automorphism of polynomial growth would be unipotent, see [FH11, Lemma 4.2.2].
So take a CT map, $f: G \rightarrow G$ representing Φ.
It then follows immediately that if f admits an exponential stratum then Φ will have exponential growth. So we can algorithmically distinguish between exponential and polynomial growth.

So if Φ has polynomial growth, then all strata will be NEG (nonexponentially growing); note that by [FH11], Theorem 2.19, there will be no zero strata in the absence of exponential strata. Then Lemma 4.2 of [FH11] shows that each such NEG stratum consists of a single edge, E, such that $f(E)=E \cdot u$, where the dot denotes a splitting. In particular, the growth of $f^{k}(E)$ is polynomial of one degree higher than that of u. Hence, by induction, we can determine the growth of every edge.

This almost determines the growth of the automorphism, Φ, in the sense that Φ has polynomial growth of degree $d>1$ if and only if some edge grows polynomially with degree d. However, it is possible to represent the identity map as a CT map where some edge grows linearly and this is the only exception. See [Mac02, Lemma 2.16] and AHK22, Lemma 2.3].
However, since we have already passed to a rotationless power (in particular it will be UPG), our automorphism will have growth of degree 0 if and only if it represents the identity and this is immediately checked.

For an outer-automorphism of F_{n} of exponential growth, there exists a canonical finite collection of conjugacy classes of finitely generated subgroups of F_{n}, such that an element $g \in F_{n}$ has polynomial growth rate if and only if it is conjugate in one of these subgroups Lev09]. Those are the maximal polynomially growing subgroups.

Given H such a maximal subgroup, and $\phi \in \Phi$, there is an integer $m>0$, and $g \in F_{n}$ for which $H\left(\phi^{m} \operatorname{Ad}(g)\right)=H$. The automorphism $\phi^{m} \operatorname{Ad}(g)$ of H is then a polynomial growth automorphism. We again refer to [Lev09]. Through standard arguments of quasi-isometry, its polynomial degree of growth rate does not depend on $\phi \in \Phi, m$ and g satisfying the above. We thus call it the degree of growth of Φ on H.

Proposition 2.8. There is an algorithm that, given $\Phi \in \operatorname{Out}\left(F_{n}\right)$ of exponential growth, computes a basis for each conjugacy-representative
of maximal polynomially growing subgroup of F_{n}, and the degree of growth of Φ on it.

Proposition 2.8 follows from the relative hyperbolicity of $F_{n} \rtimes \mathbb{Z}$ given by Φ Gho23, DL20, and the computability of its peripheral subgroups DG13]. This detects the maximal polynomially growing subgroups of F_{n}. Then, Proposition 2.7 determines the induced growth on each of them.

Lamination carriers are computable. A more involved conjugacy invariant for outer-automorphisms of free groups that have exponential growth is that of the carrier of the attracting laminations BFH00, Section 3]. This is a specific conjugacy class of free factor systems of F_{n}, that in some sense, attracts all the exponential growth of the automorphism.

More concretely, let ∂F_{n}, denote Gromov boundary of F_{n}, which for a free group is the same as the set of ends. Let $\widetilde{\mathcal{B}}=\left(\partial F_{n} \times \partial F_{n}-\Delta\right) / \mathbb{Z}_{2}$; where Δ is the diagonal subset of $\partial F_{n} \times \partial F_{n}$, and the \mathbb{Z}_{2} action is via interchanging the coordinates. That is, $\widetilde{\mathcal{B}}$ can be thought of as the set of unordered pairs of distinct points on the boundary of F_{n}; morally, this is the set of lines in F_{n}. The action of F_{n} on its boundary extends to an action on $\widetilde{\mathcal{B}}$.

We then let $\mathcal{B}=\widetilde{\mathcal{B}} / F_{n}$. We say that $\beta \in \mathcal{B}$ is carried by (the conjugacy class of) a free factor K, if β lies in the image of $\partial K \times \partial K \rightarrow$ B. A subset, S, of \mathcal{B} is carried by a free factor system, \mathcal{F}, if every element of S is carried by some free factor in \mathcal{F}.

An attracting lamination for Φ is then a closed subset of \mathcal{B} which is the closure of a single point, β, and has some extra properties $(\beta$ is birecurrent, admits an attracting neighbourhood for some positive iterate of Φ, and is not carried by a Φ-periodic free factor of rank one - see [BFH00, Definition 3.1.5]).

Any automorphism, Φ, then admits a finite set of attracting laminations, $\mathcal{L}(\Phi)$ which is carried by a Φ-invariant free factor system (BFH00, Lemmas 3.1.6 and 3.1.13]). Morally, one has one attracting lamination for every exponential stratum for a relative train track representative for Φ (or some power) and moreover $\mathcal{L}(\Phi)$ is canonical.

For instance, a fully irreducible automorphism will have a single attracting lamination which is only carried by the whole group. A polyonomially growing automorphism will have no attracting laminations.

Again the theory of CT maps allows to compute this invariant. We would like to thank Mark Feign and Michael Handel for the proof of the following Proposition.

Proposition 2.9. Given an automorphism, $\Phi \in \operatorname{Out}\left(F_{n}\right)$ of exponential growth, there is an algorithm to find the smallest free factor system which carries the set of attracting laminations.

Proof. Since the set of attracting laminations is stable under taking positive powers, we are free to replace Φ with a (rotationless) power and use [FH18 to algorithmically produce a CT map representing this power of Φ. Since we are dealing with a rotationless automorphism, each exponential stratum produces exactly one attracting lamination. It is therefore sufficient to produce an algorithm which, given this CT map and a specific exponential stratum, H_{k} of it, finds the smallest free factor carrying Λ, the associated attracting lamination.

Let $f: G \mapsto G$ be the CT map for the power of Φ and let H_{k} be an exponential stratum with corresponding attracting lamination Λ. Construct a leaf L of Λ by choosing a point fixed by f in the interior of an edge e of H_{k} and considering:

$$
e \subset f(e) \subset f^{2}(e) \subset \ldots
$$

Note that L is f-invariant.
Choose a segment of L that starts and ends with a copy of the same oriented edge of H_{k} and with e interior to the segment. Glue the initial and terminal edges of the segment to form a loop γ immersing to G. For $i \geq 0$, denote by γ_{i} the immersed loop (or conjugacy class) $\left[f^{i}(\gamma)\right]$. Note that γ_{i} is obtained from L by gluing segments of the form $\left[f^{i}(e d g e)\right]$. In particular, these segments are long if i is big.

Claim: The free factor support $F(\Lambda)$ of Λ is equal to the free factor support, $F\left(\cup_{i \geq 0}\left\{\gamma_{i}\right\}\right)$ of

$$
\cup_{i \geq 0}\left\{\gamma_{i}\right\} .
$$

Comment: The free factor support of a finite collection of elements can be found algorithmically - see [FH18, Lemma 4.2]. Moreover, sequence of free factor supports of $\left\{\gamma_{1}\right\},\left\{\gamma_{1}, \gamma_{2}\right\}, \ldots$ stabilises. Hence, for an algorithm, it is enough to prove the claim.
Proof of Claim: That $F(\Lambda) \subset F\left(\cup_{i \geq 0}\left\{\gamma_{i}\right\}\right)$ is clear.
For the other direction, we will show that γ_{i} is contained in every Φ-invariant free factor F^{\prime} that carries Λ. It is enough to assume that i is large.

Let G^{\prime} be a marked graph with sub-graph K^{\prime} representing F^{\prime}. Let $\tilde{K}^{\prime} \subset \tilde{G}^{\prime}$ and \tilde{G} denote universal covers. View L (defined above) as a subset of \tilde{G} such that its representation in \tilde{G}^{\prime} is a subset of \tilde{K}^{\prime}. Let T denote the covering translation of G that identifies the segments of L that give γ_{i}.

If lines in \tilde{G} have long (depending on G^{\prime}) overlap then their representations in G^{\prime} intersect - this is a consequence of the bounded cancellation lemma. Let L^{\prime} denote the representation in \tilde{G}^{\prime} of L and T^{\prime} denote the covering translation of \tilde{G}^{\prime} corresponding to T. In particular, L^{\prime} and $T^{\prime}\left(L^{\prime}\right)$ intersect. Since L^{\prime} is in \tilde{K}^{\prime} and intersects $T^{\prime}\left(L^{\prime}\right)$ the union of L^{\prime}
and $T^{\prime}\left(L^{\prime}\right)$ is contained in \tilde{K}^{\prime} - this follows since translates of \tilde{K}^{\prime} are either equal or disjoint.

More generally the union as j ranges over the set of integers of $T^{\prime j}\left(L^{\prime}\right)$ is connected, contained in \tilde{K}^{\prime}, and T^{\prime}-invariant. Hence γ_{i} is carried by F^{\prime}.

3. The case of a given invariant rank 2 free factor

For a free factor $K \leq F$ we define

$$
\operatorname{Out}(F, K)=\{\Phi \in \operatorname{Out}(F): K \text { is } \Phi \text {-invariant }\} .
$$

For any $\Phi \in \operatorname{Out}(F, K)$, the restriction to K is not well defined as an automorphism, but it is well defined as an outer-automorphism, because K is its own normaliser in F.

This section is devoted to the proof of the following.
Theorem 3.1. Let $K \leq F_{3}$ be a free factor of rank 2. Then conjugacy problem in $\operatorname{Out}\left(F_{3}, K\right)$ for pairs elements that induce infinite order outer-automorphisms of K, is decidable.

It will be enough to consider the case where $K=\langle a, b\rangle<F_{3}=$ $\langle a, b, c\rangle$. Before the proof of Theorem 3.1 we estabish some needed result.

Lemma 3.2. Let $G=\operatorname{Out}\left(F_{3}, K\right)$, and $\mathrm{X} \in G$. Then there exists a unique $\chi \in \mathrm{X}$ such that there exists $\epsilon= \pm 1, g \in\langle a, b\rangle$ and $\chi_{0} \in$ Aut $(\langle a, b\rangle)$, satisfying

$$
\chi:\left\{\begin{array}{lll}
c & \mapsto & g c^{\epsilon} \tag{1}\\
b & \mapsto & b \chi_{0} \\
a & \mapsto & a \chi_{0} .
\end{array}\right.
$$

In particular, G is isomorphic to an iterated semi-direct product, $C_{2} \ltimes$ $\left(\operatorname{Aut}\left(F_{2}\right) \ltimes F_{2}\right)$, where the $\operatorname{Aut}\left(F_{2}\right)$ action on F_{2} is the natural one, and the C_{2} action on $\operatorname{Aut}\left(F_{2}\right) \ltimes F_{2}$ is given by the involution which maps $\left(\chi_{0}, g\right)$ to $\left(\chi_{0} \operatorname{Ad}(g), g^{-1}\right)$.

In the light of the decomposition of the lemma, we can represent any $\operatorname{Out}\left(F_{3}, K\right)$ uniquely as an ordered triple, $\left(\epsilon, \chi_{0}, g\right)$.

Proof. The outer automorphism X preserves the conjugacy class of $K=$ $\langle a, b\rangle$, hence an element of X preserves $\langle a, b\rangle$; note that this element is only well-defined up to the normaliser of $\langle a, b\rangle$, which is again $\langle a, b\rangle$.

Then, X must send c into $\langle a, b\rangle c^{ \pm 1}\langle a, b\rangle$, and therefore (after composing with another inner automorphism by an element of $\langle a, b\rangle$) an element of X sends c in $\langle a, b\rangle c^{\epsilon}$, for $\epsilon \in\{-1,1\}$. An inner automorphism preserving $\langle a, b\rangle$ and sending c in $\langle a, b\rangle c^{ \pm 1}$ has to be trivial, and therefore we obtain the first part of the statement.

The set of $\mathrm{X} \in G$ for which $\epsilon=1$ clearly forms a normal subgroup, G_{1}. In G_{1}, the set of elements for which $\chi_{0}=I d$ is again a normal subgroup, G_{2}, isomorphic to $\langle a, b\rangle$. It is clear that the quotient G_{1} / G_{2} (isomorphic to $\left.\operatorname{Aut}\left(F_{2}\right)\right)$ lifts in G_{1}, making $G_{1} \simeq\left(\operatorname{Aut}\left(F_{2}\right) \ltimes F_{2}\right)$. Finally, $G / G_{1} \simeq \mathbb{Z} / 2$ also clearly lifts in G, as the automorphism given by $\chi_{0}=1, g=1, \epsilon=-1$, making G an iterated semi-direct product. One verifies that the involution on G_{1} given by the later lift is the one given in the statement.

Notation 3.3.

- Let G be a group and H a subgroup. For $x, y \in G$ we write $x \sim_{H} y$ if there exists an $h \in H$ such that $x^{h}=y$. We do not require x, y to be in H.
- We say that \sim_{H} is decidable if we can construct is an algorithm which decides on inputs $x, y \in G$, whether $x \sim_{H} y$. That is, \sim_{H} is decidable means that it is a recursive subset of G^{2}, and we have an explicit algorithm to decide membership.

Lemma 3.4. Let G be a group, H a subgroup of G and H_{0} a finite index subgroup of H. Then if $\sim_{H_{0}}$ is decidable and we can compute a complete set h_{1}, \ldots, h_{k} of coset representatives of H / H_{0} then so is \sim_{H}.
Proof. Let h_{1}, \ldots, h_{k} be computed set of coset representatives of H_{0} in H. Then $x \sim_{H} y$ if and only if there exists an i such that $x^{h_{i}} \sim_{H_{0}} y$.

Remark 3.5. Some care needs to be taken here. It is false - there are counterexamples - that if the conjugacy problem is solvable in a finite index subgroup, then it is solvable in the group. That is, there are examples of groups G, with finite index subgroups H such that:

- $\sim_{H} \cap H^{2}$ is recursive,
- \sim_{G} is not recursive.

Hence conjugacy is solvable in H but not in G. This doesn't contradict the Lemma above since we have the stronger hypothesis that \sim_{H} is decidable.

The main tool we will use to solve conjugacy in G is the twisted conjugacy problem.

Definition 3.6. Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then $x, y \in F_{n}$ are said to be twisted ϕ conjugate, written $x \sim_{\phi} y$ if there exists a $w \in F_{n}$ such that:

$$
x=(w \phi) y w^{-1} .
$$

We need the following later:
Lemma 3.7. Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$ and $x \in F_{n}$. Then for any $k \in \mathbb{Z}$, $x \sim_{\phi} x \phi^{k}$.
Proof. Simply notice that $x \phi=(x \phi) x x^{-1}$ and $x \phi^{-1}=\left(\left(x^{-1} \phi^{-1}\right) \phi\right) x\left(x \phi^{-1}\right)$ and that \sim_{ϕ} is an equivalence relation.

Theorem 3.8 (Theorem 1.5 of [BMMV06]). Let $\phi \in \operatorname{Aut}\left(F_{n}\right)$. Then the twisted conjugacy problem for ϕ is solvable. That is, \sim_{ϕ} is a recursive subset of F_{n}^{2}.

We will also need the following:
Theorem 3.9. The conjugacy problem is solvable in $\operatorname{Out}\left(F_{2}\right)$ and $\operatorname{Aut}\left(F_{2}\right)$. Moreover for any $\Phi \in \operatorname{Out}\left(F_{2}\right)$ of infinite order and for any $\phi \in \Phi$:

- The centraliser of Φ in $\operatorname{Out}\left(F_{2}\right)$ is virtually cyclic;
- there is an algorithm that computes the coset representatives of $\langle\Phi\rangle$ in its centraliser;
- the centraliser of ϕ in $\operatorname{Aut}\left(F_{2}\right)$ has a finite index subgroup
$C_{0}=\left\{\phi^{k} \operatorname{Ad}(g): k \in \mathbb{Z}, g \in \operatorname{Fix}(\phi)\right\}=\langle\phi\rangle \times\langle\operatorname{Ad}(g): g \in \operatorname{Fix}(\phi)\rangle ;$
- the group $D=\left\{\chi \in \operatorname{Aut}\left(F_{2}\right)\right.$: $\left.\phi^{\chi}=\phi \operatorname{Ad}(h), h \in F_{2}\right\}$ has a finite index subgroup $D_{0}=\left\{\phi^{k} \operatorname{Ad}(x): k \in \mathbb{Z}, x \in F_{2}\right\}$.

Proof. We note that $\operatorname{Out}\left(F_{2}\right) \cong G L_{2}(\mathbb{Z})$ is virtually a free group of rank 2 , and therefore word hyperbolic. Therefore the conjugacy problem is solvable and centralisers of infinite order elements are virtually cyclic. For any element of infinite order, g in a hyperbolic group it is known to be algorithmic to find the coset representatives of $\langle g\rangle$ in its centraliser. This is folklore, but a detailed proof appears in Proposition 4.11 of BMV10].

The solution for the conjugacy problem for $\operatorname{Aut}\left(F_{2}\right)$ appears in Bog00 and also as Corollary 5.2 of BMV10.

The rest of the statements about $\operatorname{Aut}\left(F_{2}\right)$ are then just translations of the corresponding statements about $\operatorname{Out}\left(F_{2}\right)$.

We now address the conjugacy problem in $\operatorname{Out}\left(F_{3}, K\right)$ for elements that induce infinite order outer-automorphisms on K.

Proof of Theorem 3.1. Let $G=\operatorname{Out}\left(F_{3}, K\right)$, and $\Phi, \Psi \in G$, given by data, as in Lemma 3.2, as

$$
\Phi=\left(\epsilon_{1}, \phi_{0}, u\right) \text { and } \Psi=\left(\epsilon_{2}, \psi_{0}, v\right)
$$

We assume that ϕ_{0}, ψ_{0} define infinite order outer-automorphisms of K. We must decide whether there exists a conjugator, $\chi=\left(\epsilon_{3}, \chi_{0}, h\right) \in$ G, such that $\Phi^{\chi}=\Psi$. By Lemma 3.4, we may assume that $\epsilon_{3}=1$. We calculate the possibilities for Φ^{χ}, listed as a triple:

$$
\begin{array}{ll}
\text { If } \epsilon_{1}=1 & \Phi^{\chi}=\left(1, \phi_{0}^{\chi_{0}},\left(h^{-1} \phi_{0}^{\chi_{0}}\right)\left(u \chi_{0}\right) h\right) \\
\text { If } \epsilon_{1}=-1 & \Phi^{\chi}=\left(-1, \phi_{0}^{\chi_{0}} \operatorname{Ad}(h), h^{-1}\left(h^{-1} \phi_{0}^{\chi_{0}}\right)\left(u \chi_{0}\right)\right) \tag{2}
\end{array}
$$

Hence if $\epsilon_{1}=1$, then for Φ and Ψ to be conjugate, we would require that ϕ_{0} and ψ_{0} are conjugate. If $\epsilon_{1}=-1$, they would need to be conjugate as outer automorphisms. But notice that in this case, when
$\epsilon_{1}=-1$, we can set $\chi_{0}=I d$, and by varying h, we can obtain triples where the second entry is anything of the form $\phi_{0} \operatorname{Ad}(h)$.

Hence, if Φ, Ψ are to be conjugate, we would require $\epsilon_{1}=\epsilon_{2}$ (otherwise we know that they are not conjugate). Moreover, by solving conjugacy in $\operatorname{Aut}\left(F_{2}\right)$ or $\operatorname{Out}\left(F_{2}\right)$, we may assume that $\phi_{0}=\psi_{0}$ as automorphisms. To summarise, we have reduced the problem to the situation where:

- $\epsilon_{1}=\epsilon_{2}$,
- $\phi_{0}=\psi_{0}$ in $\operatorname{Aut}\left(F_{2}\right)$.

Case 1: $\epsilon_{1}=\epsilon_{2}=1$. :
In this case we must have that $\phi_{0}^{\chi_{0}}=\psi_{0}=\phi_{0}$. Hence χ_{0} centralises ϕ_{0}. Let $C=C_{\operatorname{Aut}\left(F_{2}\right)}\left(\phi_{0}\right)$ be the centraliser of ϕ_{0} in $\operatorname{Aut}\left(F_{2}\right)$. Then χ lies in the subgroup, $C \ltimes F_{2}$ of G. By Lemma 3.4, it will be enough to solve the problem where we look at conjugators that lie in the subgroup, $C_{0} \ltimes F_{2}$, where C_{0} is the finite index subgroup of C given by Theorem 3.9. Hence we may assume that $\chi_{0}=\phi_{0}^{k} \operatorname{Ad}(x)$, where $k \in \mathbb{Z}$ and $x \in \operatorname{Fix}\left(\phi_{0}\right)$.

But then we get that:

$$
\Phi^{\chi}=\left(1, \phi_{0},\left(h^{-1} \phi_{0}\right)\left(u \phi_{0}^{k} \operatorname{Ad}(x)\right) h\right)=\left(1, \phi_{0},\left(\left(h^{-1} x^{-1}\right) \phi_{0}\right)\left(u \phi_{0}^{k}\right) x h\right),
$$

using that fact that $x \phi_{0}=x$. Since $\Psi=\left(1, \phi_{0}, v\right)$, that means we are trying to decide whether there exist $k \in \mathbb{Z}, h \in F_{2}, x \in \operatorname{Fix}\left(\phi_{0}\right)$ such that:

$$
\left(h^{-1} x^{-1}\right) \phi_{0}\left(u \phi_{0}^{k}\right) x h=v .
$$

Putting $h^{\prime}=x h$, this is equivalent to deciding:

$$
\left(h^{\prime-1}\right) \phi_{0}\left(u \phi_{0}^{k}\right) h^{\prime}=v .
$$

But by Lemma 3.7, this is equivalent to saying that $u \sim_{\phi_{0}} v$, which is decidable by Theorem 3.8.
Case 2: $\epsilon_{1}=\epsilon_{2}=-1$. :
As before, we have that $\phi_{0}=\psi_{0}$. This time, by Equation 2, we get that χ_{0} belongs to the subgroup D given by Theorem 3.9. Hence, by Lemma 3.4, we may assume that $\chi_{0} \in D_{0}$. Hence, $\chi_{0}=\phi_{0}^{k} \operatorname{Ad}(x)$ for some $x \in F_{2}$. Therefore, using Equation 2 and simplifying:

$$
\Phi^{\chi}=\left(-1, \phi_{0} \operatorname{Ad}(w), h^{-1}\left(h^{-1} \phi_{0} \operatorname{Ad}\left(w h^{-1}\right)\right)\left(u \chi_{0}\right)\right),
$$

where $w=\left(x^{-1} \phi_{0}\right) x h$. However, since we have reduced to the case where $\phi_{0}=\psi_{0}$, we get the extra restriction that $w=1$ that is equivalent to $h=x^{-1}\left(x \phi_{0}\right)$. And hence for Φ and Ψ to be conjugate we would need to simply equate the third entry of the triple:

$$
\left(h^{-1} \phi_{0}\right) h^{-1} x^{-1}\left(u \phi_{0}^{k}\right) x=v .
$$

Putting $h=x^{-1}\left(x \phi_{0}\right)$ this gives:

$$
\left(x^{-1} \phi_{0}^{2}\right)\left(x \phi_{0}\right)\left(x^{-1} \phi_{0}\right)\left(u \phi_{0}^{k}\right) x=\left(x^{-1} \phi_{0}^{2}\right)\left(u \phi_{0}^{k}\right) x=v .
$$

Hence this problem is equivalent, by Lemma 3.7 to $u \sim_{\phi_{0}^{2}} v$ or $u \phi_{0} \sim_{\phi_{0}^{2}}$ v, both of which are solvable by Theorem 3.8.
Remark 3.10. A natural question to ask is whether the strategy above can be generalized to higher rank free groups. We note that ingredients used in the proof above are

- The conjugacy problem in $\operatorname{Aut}\left(F_{2}\right)$. The conjugacy problem in $\operatorname{Aut}\left(F_{n}\right)$ appears to be harder than the conjugacy problem in $\operatorname{Out}\left(F_{n}\right)$.
- Explicit computations of centralizers in $\operatorname{Out}\left(F_{2}\right)$. In our case, we were able to exploit the fact that $\operatorname{Out}\left(F_{2}\right)$ is virtually free. It was shown in BFH97] that centralizers of irreducible automorphisms are virtually cyclic. As for more general automorphisms, the current state of the art for polynomially growing automorphisms Rod13, RW15, AM22a amounts to establishing finiteness properties.
For these reasons, the argument above does not obviously generalize.

4. Polynomially growing automorphisms

Before turning our attention to the quadratic growth case in F_{3} (i.e. the largest polynomial growth permitted there), let us record the combination of classical results, on the conjugacy problem for low degree polynomial growth outer-automorphisms of F_{n}.
Theorem 4.1 ($\overline{\mathrm{Krs} 89, ~}$ KLV01]). The conjugacy problem in $\operatorname{Out}\left(F_{n}\right)$ is decidable among outer automorphisms with growth of polynomial degree 0 or 1 .

Recall also that the conjugacy problem among unipotent polynomially growing outer automorphisms of F_{n} has been solved by [FH19].

Quadratic polynomial growth in F_{3}. Every $\Phi \in \operatorname{Out}\left(F_{n}\right)$ of polynomial growth has a power Φ^{n} that is unipotent. In fact, one can take this power to be uniform for every n; the exponent (or order) of $G L_{n}\left(\mathbb{Z}_{3}\right)$ suffices, as one can define a UPG automorphism as one of polynomial growth which induces the trivial map in \mathbb{Z}_{3} homology.

Definition 4.2. Two automorphisms $\phi, \psi \in \operatorname{Aut}\left(F_{n}\right)$ are said to be isogredient if they are conjugate by an inner automorphism.

Recall that any outer-automorphism of F_{n} is a coset of $\operatorname{Inn}\left(F_{n}\right)$ in $\operatorname{Aut}\left(F_{n}\right)$. On each such outer automorphism, the relation of isogredience is an equivalence relation.

Theorem 4.3 (Bestvina-Handel Theorem, [BH92]). Let $\Phi \in \operatorname{Out}\left(F_{n}\right)$. Then,

$$
\sum \max \{\operatorname{rank}(\operatorname{Fix} \phi)-1,0\} \leq n-1
$$

where the sum is taken over representatives, ϕ, of isogredience classes in Φ.

Theorem 4.4. Let $\Phi \in \operatorname{Out}\left(F_{n}\right)$ have quadratic growth. Then,

$$
1 \leq \sum \max \{\operatorname{rank}(\operatorname{Fix} \phi)-1,0\} \leq n-2
$$

If $n=3$, this sum is exactly equal to 1 and exactly one isogredience class has a non-zero contribution to this sum.

Proof. This follows from results in either Lev09 or Mar02. A full discussion of this is also given in AM22b.

More specifically, as argued in AM22b, Theorems 2.4.6 and 2.4.8], any outer automorphism, Φ of F_{n}, which satisfies the equality from 4.3, namely:

$$
\sum \max \{\operatorname{rank}(\operatorname{Fix} \phi)-1,0\}=n-1,
$$

must have linear growth.
Lemma 4.5. Let $\Phi \in \operatorname{Out}\left(F_{2}\right)$ be $U P G$. Then some automorphism in Φ has fixed subgroup of rank 2.

Proof. It is easy to show that there is a basis of $F_{2},\langle a, b\rangle$ where (some automorphism of) Φ acts as: $a \mapsto a, b \mapsto b a^{k}$ for some integer k. Hence the fixed subgroup is $\left\langle a, b a b^{-1}\right\rangle$ or $\langle a, b\rangle$ when $k=0$.

Theorem 4.6. Let $\Phi \in \operatorname{Out}\left(F_{3}\right)$ be a UPG automorphism of quadratic growth. Then Φ admits a rank 2 invariant free factor, K which is algorithmically computable. Moreover, K is unique in the sense that if K_{1} is any other invariant rank 2 free factor, then K_{1} is conjugate to K.

Proof. By BFH05, there is a basis, a, b, c for Φ such that some $\phi \in$ Φ has the following representation. In fact, by FH18 there is an algorithm to produce the following basis:

$$
\begin{array}{rll}
& \phi & \\
a & \mapsto & a \\
b & \mapsto & b a^{k} \\
c & \mapsto & u c v
\end{array}
$$

where $k \in \mathbb{Z}$ and $u, v \in\langle a, b\rangle$ and $\phi \in \Phi$.
Notice that $k=0$ implies that Φ has linear growth, and hence we deduce that $k \neq 0$. In particular, Fix $\phi=\left\langle a, b a b^{-1}\right\rangle$ (it cannot have higher rank due to Theorems 4.3 and 4.4). Hence $\langle a, b\rangle$ is the smallest free factor containing Fix ϕ.

Thus we have algorithmically produced a Φ-invariant rank 2 free factor, $\langle a, b\rangle$, and all that remains is to show is that it is unique.

If K_{1} were another Φ-invariant rank 2 free factor, then the restriction of Φ to K_{1} would again be UPG, and Lemma 4.5 would imply that
some $\psi \in \Phi$ would have a fixed subgroup of rank 2 , contained in K_{1}. But Theorem 4.4 then implies that ϕ and ψ are isogredient and, hence have conjugate fixed subgroups implying that $\langle a, b\rangle$ and K_{1} are also conjugate.

Corollary 4.7. Let $\Phi \in \operatorname{Out}\left(F_{3}\right)$ be an automorphism of quadratic growth. Then Φ admits a unique invariant rank 2 free factor. Moreover, there is an algorithm to determine this free factor.

Proof. Some positive power, Φ^{k} of Φ is UPG. By Theorem 4.6, Φ^{k} admits a unique invariant rank 2 free factor, K. But $K \Phi$ is also Φ^{k} invariant, and hence the uniqueness of K implies that K is conjugate to $K \Phi$.

Finally, if K_{1} is any Φ-invariant rank 2 free factor, it must also be Φ^{k}-invariant, and hence by Theorem 4.6 again, K_{1} is conjugate to K.

This free factor is produced algorithmically as in Theorem 4.6.
Conjugacy Problem in polynomial growth for Out F_{3}. We may conclude for this section.

Recall (Proposition 2.7) that given Φ and Ψ two outer-automorphisms of F_{3} we may decide whether they are of polynomial growth, and we may compute their degree.

Assume first that both are polynomial growth of degree 2. We may compute by 4.7 the unique conjugacy classes $\left[K_{\Phi}\right],\left[K_{\Psi}\right]$ of invariant free factor of rank 2 of F_{3}. After conjugating Ψ by a (computable) automorphism that sends K_{Φ} to K_{Ψ}, we may assume that these two groups are equal. We may then apply Theorem 3.1 in order to decide whether Φ and Ψ are conjugate in $\operatorname{Out}\left(F_{3}, K\right)$.

Since by Corollary 4.7, the rank 2 invariant free factor of Φ is unique, the two outer-automorphisms are conjugate in $\operatorname{Out}\left(F_{3}, K\right)$ if and only if they are conjugate in $\operatorname{Out}\left(F_{3}\right)$.

This, together with Theorem 4.1, solves the conjugacy problem in Out F_{3} for all polynomially growing outer-automorphisms.

5. Exponential growth: laminations

Recall (references in Section 2, Proposition 2.7) that one can decide whether an outer-automorphism is of exponential growth, and whether it is irreducible. In that case, we recall the following.

Theorem 5.1 ([Los96, Lus07, Kap14, FM22]). The conjugacy problem is decidable among irreducible elements of $\operatorname{Out}\left(F_{n}\right)$.

We will now focus on the reducible case.
Invariant Free Factor Systems in F_{3}. We will now work towards describing reducible exponentially growing automorphisms. Following [BFH00 we have

Proposition 5.2. Let $\Phi \in \operatorname{Out}\left(F_{3}\right)$. Then any relative train track representative of Φ has at most one exponential stratum.

Proof. Suppose that $f: \Gamma \rightarrow \Gamma$ is a relative train track representative of Φ. Suppose that H_{r} is an exponential stratum and that G_{r} is the corresponding f-invariant subgraph (the union of all the strata, up to and including H_{r}).
Similarly, let G_{r-1} be the f-invariant subgraph consisting of the union of the strata up to, but not including, H_{r}.

Let C_{r} be a connected component of H_{r} and let C_{r-1} be a connected component of $C_{r} \cap G_{r-1}$ (which we allow to be empty). Since the transition matrix of H_{r} is irreducible, some power of f must leave both C_{r} and C_{r-1} invariant. However, since H_{r} is an exponential stratum, the the rank of $\pi_{1}\left(C_{r}\right)$ is at least 2 more than the rank of $\pi_{1}\left(C_{r-1}\right)$. (For instance, take an edge of H_{r} incident to C_{r-1} an take a power, k, of f such that $f^{k}(e)$ crosses e at least 3 times). This immediately gives the result: either the rank of $\pi_{1}\left(C_{r-1}\right)$ is zero and the rank of $\pi_{1}\left(C_{r}\right)$ is at least 2 , in which case there can only be zero or polynomial strata above H_{r}, or the rank of $\pi_{1}\left(C_{r-1}\right)$ is one, and there can be no strata above H_{r}.

Corollary 5.3. Let $\Phi \in \operatorname{Out}\left(F_{3}\right)$ have exponential growth. Then Φ has exactly one attracting lamination. This lamination is carried by a Φ-invariant conjugacy class of a free factor, K of F_{3}.

The rank of K is either 2 or 3. If the rank of K is 2, then it is unique in the following sense: if K_{1} is another free factor of rank 2 which is Φ-invariant (up to conjugacy), then K_{1} is conjugate to K.

Proof. Some positive power of Φ has an improved relative train track representative by [BFH00, Theorem 5.1.5]. All we will really need here is that this relative train track is eg-aperiodic; that is, the transition matrix of every exponential stratum is not just irreducible but also aperiodic (also known as primitive), meaning that it has a power where every entry is positive. In fact, it is clear that every relative train track map has a positive iterate which is eg-aperiodic, and we don't really need the full force of [BFH00, Theorem 5.1.5].

Let us call this relative track representative, $f: \Gamma \rightarrow \Gamma$ and denote the $r^{t h}$ stratum by H_{r}.

Then, by [BFH00, Lemma 3.1.10], if β is a generic line of some lamination for Φ, then representing β in Γ yields a line, λ, where the highest stratum crossed by λ is an exponential stratum. (Using the terminology from [BFH00]). Moreover, by [BFH00, Corollary 3.1.11], since our relative train track is eg-aperiodic, any generic line of any lamination whose realisation in Γ which crosses the same H_{r} but no higher stratum will have the same closure as β. However, by Proposition 5.2, f only admits one exponential stratum. Since laminations are closures of such
lines this means that there is exactly one lamination for Φ, which must therefore be fixed by Φ (and not just periodic for Φ).

As in [BFH00, Corollary 2.6.5 and Definition 3.2.3], there is a unique free factor whose conjugacy class carries the lamination of Φ. Since the lamination is fixed by Φ, this free factor is Φ-invariant up to conjugacy.

For the final part, we note that an exponential stratum cannot have a component which has rank 1 as a graph (is homotopic to a circle), so K must have rank 2 or 3.
Furthermore, if K has rank 2, and if K_{1} is a Φ-invariant free factor (up to conjugacy) also of rank 2, then we can form - via [BFH00, Theorem 5.1.5] - an improved relative train track representative for some power of Φ, where K_{1} is the fundamental group of some invariant subgraph, G_{r}. If the restriction of the relative train track map to G_{r} is polynomial, then the whole automorphism will have polynomial growth; this is excluded by hypothesis. Hence, by [BFH00, Lemma 3.1.9], there is a lamination carried by (the conjugacy class of) K_{1}. But there is only one lamination for Φ, hence K and K_{1} are conjugate.

Conjugacy problem for exponential growth with rank 2 lamination. Consider Φ and Ψ two outer-automorphisms of F_{3} that are of exponential growth, and whose attracting lamination is carried by a free factor of rank 2 , respectively K_{Φ} and K_{Ψ}.

By Proposition 2.9 (and the unicity of Corollary 5.3), the groups K_{Φ} and K_{Ψ} can be computed.

Since both K_{Φ} and K_{Ψ} are free factors of same rank, there exists (and one can compute) an automorphism χ of F_{3} sending K_{Ψ} to K_{Φ}, and after conjugating Ψ by the outer-class X of χ, we may assume that $K_{\Phi}=K_{\Psi}$, and we denote it K.

Since by Corollary 5.3, this invariant free factor is unique, the two automorphisms Φ and Ψ are conjugated in $\operatorname{Out}\left(F_{3}\right)$ if and only if they are conjugated in $\operatorname{Out}\left(F_{3}, K\right)$. This can be decided by Theorem 3.1.

6. EXPONENTIAL GROWTH: MAPPING TORI

In this section, we take the point of view of analysing the semidirect products of F_{3} that are associated to automorphisms (see also Sel95, Dah16, Dah17, DT21]). Although this point of view allows to treat the conjugacy problem for all the exponentially growing outerautomorphisms of F_{3}, we restrict our presentation to the remaining case in Flowchart 1, namely the case of automorphisms whose attracting lamination carrier is the entire group F_{3}.

Given $\phi \in \operatorname{Aut}\left(F_{n}\right)$, the associated mapping torus is $F_{n} \rtimes_{\phi}\langle t\rangle$. The normal subgroup $F_{n}<F_{n} \rtimes_{\phi}\langle t\rangle$ is called a fiber. If $\phi=\psi \operatorname{Ad}(g)$ then we have $F_{n} \rtimes_{\psi}\langle t\rangle=F_{n} \rtimes_{\phi}\langle t g\rangle$, in particular $\Phi=[\phi] \in \operatorname{Out}\left(F_{n}\right)$ has
a well-defined mapping torus. The following proposition describes how it relates to conjugacy in $\operatorname{Out}\left(F_{n}\right)$. We refer the reader to [DT21] for precise definititions.

Proposition 6.1 (Standard mapping torus criterion for conjugacy). Let G be a group, $\Phi, \Psi \in \operatorname{Out}(G)$ and $\phi \in \Phi, \psi \in \Psi$. Then Φ is conjugate to Ψ in $\operatorname{Out}(G)$ if and only if there is an isomorphism

$$
f: G \rtimes_{\phi}\langle t\rangle \rightarrow G \rtimes_{\psi}\langle t\rangle
$$

such that $f(G)=G$ and $f(t)=t w$ for some $w \in G$.
The following theorem relates dynamical characteristics of outer automorphisms to the structure of their mapping tori.
Theorem 6.2 (Relative hyperbolicity in exponential growth). For any $\Phi \in \operatorname{Out}\left(F_{n}\right)$, its mapping torus admits a properly relatively hyperbolic (possibly word-hyperbolic) metric if, and only if, Φ has exponential growth. Peripheral subgroups of the relatively hyperbolic structure can be taken to be the mapping tori of Φ restricted to maximal polynomially growing subgroups.
Proof. The converse implication was obtained in [Gho23, Theorem 3.1] and [DL20, Theorem 4]. The direct implication is found in [Mac02], Dah17, Prop 1.3] see also [Hag19, [Bri00, Theorem 1.2].

Using this strategy, in DT21 the conjugacy problem in $\operatorname{Out}\left(F_{n}\right)$ is completely reduced to specific algorithmic problems in the peripheral subgroups. These problems are the algorithmic tractability for their subgroups (effective coherence, conjugacy problem, generation problem), the Minkowski property for certain subgroups, the mixed Whitehead problem, and the conjugacy problem for the induced automorphisms on maximal polynomially growing subgroups. In this reduction, the exponential growth part of the outer automorphisms is completely evacuated from the discussion (it is treated during the reduction).

In the case of exponentially growing automorphisms of F_{3}, the polynomially growing subgroups are sufficiently small that we can complete a solution of the conjugacy problem in their case. We will explain this in the remaining case of Flowchart 1, in which the polynomially growing subgroups are even simpler.

This will require two steps. The first step is giving the solution to the criterion of Proposition 6.1 in the case the mapping tori of the given autmorphisms are so called almost toral. The second step is proving that if the mapping torus of an automorphism is not almost toral, then there is a rank 2 free factor carrying the attracting lamination. This allows to conclude since this later case was already treated. Treating it alternatively through the criterion of Proposition 6.1 is still possible, and involves cases covered by the larger study [DT23], but is not done here.

The Almost Toral case. We say $\Phi \in \operatorname{Out}\left(F_{n}\right)$ or its mapping torus $F_{n} \rtimes_{\phi} \mathbb{Z}, \phi \in \Phi$ is almost toral relatively hyperbolic if $F_{n} \rtimes_{\phi} \mathbb{Z}$ is hyperbolic relative to a collection of subgroups isomorphic to $\mathbb{Z} \times \mathbb{Z}$ or to $\mathbb{Z} \rtimes \mathbb{Z}$, the fundamental group of a Klein bottle. By extension, in that case, we say that the automorphism is almost toral relatively hyperbolic.

The groups $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \rtimes \mathbb{Z}$ are the only possible virtually abelian peripheral subgroups in the relatively hyperbolic structure of Theorem 6.2. Actually the following is immediate from Theorem 6.2 and NielsenSchreier theorem.

Proposition 6.3. The mapping torus of an outer automorphism of F_{n} is almost toral if and only if its maximal polynomially growing subgroups have rank one.

It is furthermore decidable whether the mapping torus of a given automorphism of F_{n} is almost toral, by [DG13] (this is decidable in the following sense: there is an algorithm that will terminate if the automorphism is exponentially growing, and provide presentations for each conjugacy representative of peripheral subgroup, and indicate whether or not they are abelian, or isomorphic to $\mathbb{Z} \rtimes \mathbb{Z}$).

Theorem 6.4. The conjugacy problem in $\operatorname{Out}\left(F_{n}\right)$ is decidable among the almost toral relatively hyperbolic automorphisms.

Proof. If the mapping tori are hyperbolic (i.e. if the peripheral structures are empty) it is enough to invoque Dah16. We now assume that the peripheral structures are non-empty.

Using DT21, Theorem 2.1], it suffices to check that \mathbb{Z}^{2} and $\mathbb{Z} \rtimes \mathbb{Z}$ form a class of algorithmically tractable groups, with solvable fiber-and-orientation preserving mixed Whitehead problem, and Minkowski property for their subgroups.

The algorithmic tractability is actually immediate, despite the definition of this property.

That the group \mathbb{Z}^{2} (or any of its subgroups) satisfies the Minkowski property is due to the classic observation of Minkowski: $G L_{2}(\mathbb{Z}) \rightarrow$ $G L_{2}(\mathbb{Z} / 3)$ has torsion free kernel.

For $K=\mathbb{Z} \rtimes \mathbb{Z}$, the Minkowski property asks for a finite characteristic quotient in which all torsion elements of $\operatorname{Out}(\mathbb{Z} \rtimes \mathbb{Z})$ survive. Let us write $K=\langle a\rangle \rtimes\langle t\rangle$. The following lemma establishes the Minkowski property.

Lemma 6.5. The abelianisation $K^{a b}$ of K is $K /\left\langle a^{2}\right\rangle \simeq(\mathbb{Z} / 2) \times \mathbb{Z}$.
$\operatorname{Out}(K) \simeq(\mathbb{Z} / 2) \times(\mathbb{Z} / 2)$, and injects by the congruence map in $\operatorname{Out}((\mathbb{Z} / 2) \times(\mathbb{Z} / 3))$.
Proof. The first assertion is standard. The subgroups $\left\langle t^{2}\right\rangle$ (the center) and $\langle a\rangle$ (the preimage of the torsion in the abelianisation) are preserved
by all automorphisms. The square roots of t^{2} are the $a^{k} t, k \in \mathbb{Z}$. Therefore any automorphism has the form ($a \mapsto a^{\epsilon_{1}}, t \mapsto a^{k} t^{\epsilon_{2}}$) for $\epsilon_{1}, \epsilon_{2} \in\{-1,1\}$, and $k \in \mathbb{Z}$. Since $\left(a \mapsto a^{-1}, t \mapsto t\right)$, and $(a \mapsto a, t \mapsto$ $\left.a^{2} t\right)$ are both inner, it follows that $\operatorname{Out}(K) \simeq(\mathbb{Z} / 2) \times(\mathbb{Z} / 2)$, with representatives being $\left(a \mapsto a, t \mapsto a^{u} t^{\epsilon}\right)$ for $u \in\{0,1\}$, and $\epsilon \in\{-1,1\}$. All three non-trivial automorphisms descend as obviously non trivial automorphisms in $\operatorname{Aut}((\mathbb{Z} / 2) \times(\mathbb{Z} / 3))$, when quotienting by a^{2} and t^{3}.

It remains to solve the fiber and orientation preserving mixed Whitehead problem for K, the fiber being $\langle a\rangle$. This problem is an orbit problem for the group of outer automorphisms preserving fiber and orientation, for tuples of conjugacy classes of tuples. In the case of K, all outer automorphisms of K (see their expression above) preserve the fiber $\langle a\rangle$ and the orientation $\langle a\rangle t$. There are only four of them, so the problem reduces to the classical multiple conjugacy problem in K, which is easy to solve.

The polynomially growing subgroups in F_{3}. By Levitt's theorem LLev09, Theorem 4.1], given an outer automorphism of F_{n}, its maximal polynomially growing subgroups have rank $\leq n$, they have rank $<n$ if the automorphism has an exponentially growing conjugacy class, and in the later case, if one such group has rank $n-1$, it is unique up to conjugacy.

In the case of $n=3$, the possible polynomially growing subgroups for an exponentially growing outer automorphism of F_{3} are then either trivial, or cyclic, or of rank 2. Given the previous discussion, we consider the case of a single conjugacy class of polynomially growing subgroup of rank 2. It turns out, as we will show, that it must be placed very specifically in the group F_{3}, revealing a lamination carrier of rank 2 .

Recall that if D is a Φ-invariant subgroup, we can find $\phi \in \Phi$ such that $\phi(D)=D$.

Proposition 6.6. If $\phi \in \operatorname{Aut}\left(F_{3}\right)$ is of exponential growth and has an invariant subgroup D of rank at least 2 on which it induces a polynomially growing automorphism, then it preserves the conjugacy class of a rank 2 free factor Q on which it induces an exponentially growing outer-automorphism.

Moreover, the conjugacy class of such a free factor is unique and there exists a conjugate D^{\prime} of D, containing a subgroup C^{\prime} of $Q \cap D^{\prime}$, such that C^{\prime} is generated by the commutator of a basis in Q, and $F_{3}=$ $Q *_{C^{\prime}} D^{\prime}$.

Proof. We assume without loss of generality that D is a maximal ϕ invariant subgroup on which $\left.\phi\right|_{D}$ is polynomially growing. By maximality, we cannot have $D<H<F_{3}$ with H of rank 2 and ϕ-invariant. Indeed, if this were the case either $\left.\phi\right|_{H}$ is either polynomially growing, which contradicts maximality, or exponentially growing with a polynomially growing invariant subgroup of rank 2 , which is impossible in Out $\left(F_{2}\right)$. Furthermore, D cannot be a free factor of F_{3} as the xpression (11) from Lemma 3.2 would imply that ϕ is also polynomially growing. It follows that $\left(F_{3}, D\right)$ is relatively one-ended.

By [GJLL98, Theorem II.2] F_{3} acts faithfully on an \mathbb{R}-tree T_{∞} with trivial arc stabilizers and there is a homotethy $H: T_{\infty} \rightarrow T_{\infty}$ such that for all $x \in T_{\infty}$ and $f \in F_{3}, f \cdot H(x)=H((f \phi) x)$ (here, a homotethy is a map satisfying $d(H(x), H(y))=\lambda d(x, y)$ for some fixed stretch factor $\lambda \geq 1$). Note that from [GJLL98, $\S B-\S E]$ the action of F_{3} on T_{∞} is obtained as a limit of rescaled actions on a fixed free cocompact action of F_{3} on a simplicial metric tree τ. Exponential growth of ϕ implies that D fixes a point in T_{∞}.

Trivial arc stabilizers and the non-trivial subgroup D (which cannot be in a proper free factor) that fixes a point (so the action is not free) imply that we may apply [Hor14, Lemma 4.6] to the action of F_{3} on T_{∞} with the empty free factor system. This lemma gives three possiblities. Two of these imply that point stabilizers must all either be cyclic or contained in proper free factors of F_{3}, which is impossible because of the properties of D. The remaining possiblity is that the action of F_{3} on T_{∞} has a so-called dynamical proper free factor. This implies that T_{∞} is not a simplicial \mathbb{R}-tree, since by definition a dynamical proper free factor must act on its minimal invariant tree with dense orbits.

We now apply [Gui08, Theorem 5.1]. The triviality of arc stabilizers, one-endeness of F_{3} relative to D, and the faithfullness of the action of F_{3} on T_{∞}, imply that the action of F_{3} on T_{∞} decomposes into a graph of actions where each vertex action is either simpicial, Seifert type, or axial. Free groups cannot admit faithful axial actions and since T_{∞} is not simplicial, the graph of actions must contain a Seifert type vertex. Orbifolds with free fundamental groups are surfaces with boundary. Therefore F_{3} decomposes as a graph of groups Y and one of the vertex groups Y_{q} must be isomorphic to the fundamental group of a surface Σ with boundary, equipped with a measured foliation \mathcal{F} with dense leaves, for which the action of Y_{q} on the minimal invariant subtree $\left(T_{\infty}\right)_{Y_{q}}$ is equivariantly isomorphic to the action of $\pi_{1}(\Sigma)$ on the \mathbb{R}-tree dual to lifted measured foliation on the universal cover $(\tilde{\Sigma}, \tilde{\mathcal{F}})$. The subgroup D, elliptic in T_{∞}, must also lie in some vertex group Y_{D}. Since D is a free group of rank 2 that fixes a point, it cannot be conjugate into the subgroup Y_{q}, so $Y_{q} \neq Y_{D}$.

By the definition of a graph of actions (see [Gui08, §1.3]), the edge group incident to Y_{q} must be a point stabilizer, which in turn must
either be trivial or conjugate to the π_{1}-image of $\partial \Sigma$. The former case gives a free decomposition of F_{3} relative to D which contradicts earlier considerations. The latter case implies that all the edges adjacent to q have cyclic edge groups. It also follows that if we collapse all edges of Y that have non-cyclic edge group to get a new graph of groups \bar{Y}, Y_{q} is still a vertex group of this collapsed splitting and \bar{Y} has another vertex group containing D. It follows that F_{3} admits a non-trivial cyclic splitting relative to D containing Y_{q} as a quadratically hanging (QH) subgroup, that is to say it is isomorphic to $\pi_{1}(\Sigma)$ where Σ is a compact surface with boundary and the (conjugacy classes) of the incident edge groups coincide with the π_{1}-image of $\partial \Sigma$.

Because F_{3} is one ended relative to D, by [GL17, Theorem 9.5] F_{3} admits a canonical cyclic JSJ decomposition J relative to D. By our description of \bar{Y} above we know that J has at least two vertex groups and that one of them is a maximal QH subgroup. Arc stabilizers of the Bass-Serre tree dual to J are cyclic and there are at least two vertex orbits so we can apply, for example [GL95], to conclude that J has exactly two non-cyclic vertex groups and that these vertex groups have rank exactly 2 . One of these vertex groups contains (a conjugate of) Y_{q} and is a maximal QH subgroup. The other vertex group contains D. The automorphism invariance of JSJ decompositions, GL17, Corollary 7.4], implies that ϕ must preserve J, i.e. ϕ maps vertex groups and edge groups to conjugates of vertex and edge groups (respectively). Since Q is the unique flexible subgroup of J we must have that $\phi(Q)$ is mapped to a conjugate of Q.

Now the vertex group Y_{q} from the graph of actions Y sits inside the QH subgroup Q as the π_{1}-image of some subsurface, since both groups have the same rank, $Y_{q}=Q$ (up to conjugacy). By CV91 the only Seifert-type action of F_{2} is dual to an irrational foliation on a once punctured torus. It follows that the QH strucutre on Q is that of an orientable surface of genus 1 with one boundary component. Therefore there is exactly one edge group incident to Q.

Let \bar{J} be the graph of groups obtained by contracting all edges except the unique edge adjacent to the unique QH vertex group Q. Then \bar{J} is the amalgamated product $F_{3}=D^{\prime} *_{C} Q$. D^{\prime} must contain a conjugate of D and by construction this splitting is ϕ-invariant, so $D^{\prime}=D$. Since C is conjugate to the π_{1}-image of $\partial \Sigma$ in $\pi_{1}(\Sigma)=Q$ we have that Q is oneended relative to C. Since F_{3} many-ended, by She55, Swa86, Tou15, D is forced to admit a free decomposition $D=\langle d\rangle *\langle c\rangle$ with $C \leq\langle c\rangle$. This gives

$$
F_{3}=\underbrace{\langle d\rangle *(\langle c\rangle}_{D} *_{C} Q) .
$$

Since Q must be the fundamental group of a torus Σ with a boundary component we have that C, the π_{1}-image of $\partial \Sigma$, must be a commutator and therefore cannot be a proper power, thus $C=\langle c\rangle$ so Q is a free
factor of F_{3} as required. Its uniqueness follows from the canonicity of the JSJ decomposition.

By [GJLL98, Theorem II.1] if the stretch factor of the homotethy H is $\lambda=1$, then T_{∞} is simplicial. Since that Q acts on $\left(T_{\infty}\right)_{Q}$ with dense orbits we have $\lambda>1$. Since up to coposition with an inner automorphism we have $\phi(Q)=Q$ we have that ϕ induces an exponentially growing automorphism on Q.

In particular, we get the following.
Corollary 6.7. Let $\Phi \in \operatorname{Out}\left(F_{3}\right)$ be exponentially growing, not fully irreducible, and such that no power has an invariant proper free factor of rank 2. Then the mapping torus $F_{3} \rtimes_{\phi} \mathbb{Z}$ is almost toral relatively hyperbolic.
This concludes all cases of Flowchart 1, and thus proves Theorem 1.1.

References

[AHK22] Naomi Andrew, Sam Hughes, and Monika Kudlinska. Torsion homology growth of polynomially growing free-by-cyclic groups. November 2022.
[AM22a] Naomi Andrew and Armando Martino. Centralisers of linear growth automorphisms of free groups. May 2022. Number: arXiv:2205.12865 arXiv:2205.12865 [math].
[AM22b] Naomi Andrew and Armando Martino. Free-by-cyclic groups, automorphisms and actions on nearly canonical trees. Journal of Algebra, 604:451-495, 2022.
[BFH97] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees, and irreducible automorphisms of free groups. Geometric \& Functional Analysis GAFA, 7(2):215-244, May 1997.
[BFH00] Mladen Bestvina, Mark Feighn, and Michael Handel. The tits alternative for $\operatorname{Out}\left(f_{n}\right)$. i: Dynamics of exponentially-growing automorphisms. Annals of Mathematics. Second Series, 151(2):517-623, 2000.
[BFH05] Mladen Bestvina, Mark Feighn, and Michael Handel. The Tits alternative for $\operatorname{Out}\left(F_{n}\right)$. II: A Kolchin type theorem. Annals of Mathematics. Second Series, 161(1):1-59, 2005.
[BH92] Mladen Bestvina and Michael Handel. Train tracks and automorphisms of free groups. Annals of Mathematics. Second Series, 135(1):1-51, 1992.
[BMMV06] O. Bogopolski, A. Martino, O. Maslakova, and E. Ventura. The conjugacy problem is solvable in free-by-cyclic groups. Bull. Lond. Math. Soc., 38(5):787-794, 2006.
[BMV10] O. Bogopolski, A. Martino, and E. Ventura. Orbit decidability and the conjugacy problem for some extensions of groups. Transactions of the American Mathematical Society, 362(4):2003-2036, 2010.
[Bog00] O. Bogopolski. Classification of automorphisms of the free group of rank 2 by ranks of fixed-point subgroups. Journal of Group Theory, 3(3):339-351, 2000.
[Bri00] P. Brinkmann. Hyperbolic automorphisms of free groups. Geometric and Functional Analysis, 10(5):1071-1089, 2000.
[CV91] Marc Culler and Karen Vogtmann. The Boundary of Outer Space in Rank Two. In S. S. Chern, I. Kaplansky, C. C. Moore, I. M. Singer, and Roger C. Alperin, editors, Arboreal Group Theory, volume 19, pages 189-230. Springer New York, New York, NY, 1991. Series Title: Mathematical Sciences Research Institute Publications.
[Dah16] François Dahmani. On suspensions and conjugacy of hyperbolic automorphisms. Transactions of the American Mathematical Society, 368(8):5565-5577, August 2016.
[Dah17] François Dahmani. On suspensions, and conjugacy of a few more automorphisms of free groups. In Hyperbolic geometry and geometric group theory, volume 73 of Adv. Stud. Pure Math., pages 135-158. Math. Soc. Japan, Tokyo, 2017.
[DG13] François Dahmani and Vincent Guirardel. Presenting parabolic subgroups. Algebraic \& Geometric Topology, 13(6):3203-3222, 2013.
[DL20] François Dahmani and Ruoyu Li. Relative hyperbolicity for automorphisms of free products. Journal of Topology and Analysis, pages 1-38, October 2020. arXiv: 1901.06760.
[DT21] François Dahmani and Nicholas Touikan. Reducing the conjugacy problem for relatively hyperbolic automorphisms to peripheral components. arXiv:2103.16602 [math], March 2021. arXiv: 2103.16602.
[DT23] François Dahmani and Nicholas Touikan. Unipotent linear suspensions of free groups. arXiv:2305.11274, 2023.
[FH11] Mark Feighn and Michael Handel. The recognition theorem for Out $\left(F_{n}\right)$. Groups, Geometry, and Dynamics, 5(1):39-106, 2011.
[FH18] Mark Feighn and Michael Handel. Algorithmic constructions of relative train track maps and CTs. Groups Geom. Dyn., 12(3):1159-1238, 2018.
[FH19] Mark Feighn and Michael Handel. The conjugacy problem for upg elements of $\operatorname{out}\left(f_{n}\right), 2019$.
[FM22] Stefano Francaviglia and Armando Martino. Displacements of automorphisms of free groups. II: Connectivity of level sets and decision problems. Transactions of the American Mathematical Society, 375(4):2511-2551, 2022.
[Gho23] Pritam Ghosh. Relative hyperbolicity of free-by-cyclic extensions. Compositio Mathematica, 159(1):153-183, 2023.
[GJLL98] Damien Gaboriau, Andre Jaeger, Gilbert Levitt, and Martin Lustig. An index for counting fixed points of automorphisms of free groups. Duke Math. J., 93(3):425-452, 1998.
[GL95] Damien Gaboriau and Gilbert Levitt. The rank of actions on R-trees. Ann. Sci. Éc. Norm. Supér. (4), 28(5):549-570, 1995.
[GL17] Vincent Guirardel and Gilbert Levitt. JSJ decompositions of groups. Astérisque, (395):vii+165, 2017.
[Gui08] Vincent Guirardel. Actions of finitely generated groups on $\$ \backslash \mathrm{Bbb}$ R\$-trees. UniversitÃ© de Grenoble. Annales de l'Institut Fourier, 58(1):159-211, 2008.
[Hag19] Mark Hagen. A remark on thickness of free-by-cyclic groups. Illinois Journal of Mathematics, 63(4):633-643, December 2019.
[Hor14] Camille Horbez. The tits alternative for the automorphism group of a free product, 2014.
[Kap14] Ilya Kapovich. Algorithmic detectability of iwip automorphisms. Bull. Lond. Math. Soc., 46(2):279-290, 2014.
[KB19] Ilya Kapovich and Mark C. Bell. Detecting Fully Irreducible Automorphisms: A Polynomial Time Algorithm. Experimental Mathematics, 28(1):24-38, January 2019. Publisher: Taylor \& Francis _eprint: https://doi.org/10.1080/10586458.2017.1326326.
[KLV01] Sava Krstić, Martin Lustig, and Karen Vogtmann. An equivariant Whitehead algorithm and conjugacy for roots of Dehn twist automorphisms. Proc. Edinb. Math. Soc., II. Ser., 44(1):117-141, 2001.
[Krs89] Sava Krstić. Actions of finite groups on graphs and related automorphisms of free groups. Journal of Algebra, 124(1):119-138, July 1989.
[Lev09] Gilbert Levitt. Counting growth types of automorphisms of free groups. Geometric and Functional Analysis. GAFA, 19(4):1119-1146, 2009.
[Los96] Jérôme E. Los. On the conjugacy problem for automorphisms of free groups. Topology, 35(3):779-806, July 1996.
[Lus07] Martin Lustig. Conjugacy and centralizers for iwip automorphisms of free groups. In Geometric group theory. Geneva and Barcelona conferences. Selected papers of the conference on asymptotic and probabilistic methods in geometric group theory, Geneva, Switzerland, June 20-25, 2005 and the Barcelona conference in group theory, Barcelona, Spain, June 28 - July 3, 2005., pages 197-224. Basel: Birkhäuser, 2007.
[Mac02] Natasa Macura. Detour Functions and Quasi-Isometries. The Quarterly Journal of Mathematics, 53(2):207-239, June 2002.
[Mar02] Armando Martino. Maximal index automorphisms of free groups with no attracting fixed points on the boundary are Dehn twists. Algebraic \& Geometric Topology, 2(2):897-919, October 2002. Publisher: Mathematical Sciences Publishers.
[Rod13] Moritz Rodenhausen. Centralisers of polynomially growing automorphisms of free groups. Thesis, Universitäts- und Landesbibliothek Bonn, July 2013. Accepted: 2020-04-18T22:20:26Z.
[RW15] Moritz Rodenhausen and Richard D. Wade. Centralisers of Dehn twist automorphisms of free groups. Mathematical Proceedings of the Cambridge Philosophical Society, 159(1):89-114, July 2015. Publisher: Cambridge University Press.
[Sel95] Z. Sela. The isomorphism problem for hyperbolic groups. I. Annals of Mathematics. Second Series, 141(2):217-283, 1995.
[She55] Abe Shenitzer. Decomposition of a group with a single defining relation into a free product. Proceedings of the American Mathematical Society, 6(2):273-279, 1955.
[Swa86] G. A. Swarup. Decompositions of free groups. Journal of Pure and Applied Algebra, 40:99-102, January 1986.
[Tou15] Nicholas Touikan. On the one-endedness of graphs of groups. Pacific Journal of Mathematics, 278(2):463-478, October 2015.

[^0]: E-mail addresses: francois.dahmani@univ-grenoble-alpes.fr, stefano.francaviglia@unibo.it, A.Martino@soton.ac.uk, nicholas.touikan@unb.ca.

 2020 Mathematics Subject Classification. 20F65, 20F67 ,20E05, 20E36, 20F10.

[^1]: ${ }^{1}$ Note that (for non-negative functions) $f(n)=O(g(n))$ means $f(n) \leq M g(n)$ for some constant M. The reason for the asymmetric definition of growth is that the idea to bound polynomial growth from above and exponential growth from below. It is easy to see that there is always an exponential upper bound.

