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1. Introduction

In this paper we solve Dehn’s conjugacy problem in Out(F3), the
group of outer automorphisms of the free group F3 of rank 3:

Theorem 1.1. There exists an algorithm which takes two automor-
phisms ϕ, ψ ∈ Aut(F3) and correctly outputs yes or no whether their
outer classes are conjugate in Out(F3).

The conjugacy problem has already been solved within certain classes
of outer automorphisms of free groups: the atoroidal fully irreducible
ones by Sela [Sel95], all the irreducible ones by Los [Los96], all the
atoroidal ones by [Dah16], the linearly growing ones by Kristić, Lustig,
and Vogtmann [KLV01], the unipotent polynomially growing ones by
Feighn and Handel [FH19].

In the case of a free group of rank 2, Out(F2) ≃ GL(2,Z) is well
known and virtually free, and there is an algorithm to solve its conju-
gacy problem.

In the case of a free group of rank 3, Out(F3) is more complicated,
and our conjugacy decision algorithm operates by classifying the pair
of input automorphisms by means of invariants, in subclasses, in which
specific methods can be applied.

Let us mention key conjugacy invariants that are relevant in these
classifications, and are computable. They give a first frame of reference.
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• Irreducibility (whether there is an invariant conjugacy class of
free factor system, or not), [Kap14], [FM22];

• exponential growth (whether there is a conjugacy class whose
iterated images grow exponentially fast, or not), [BFH05];

• rank of the maximal polynomially growing subgroups (the max-
imal subgroups whose elements have iterated images that grow
at most polynomially in conjugacy length), and polynomial de-
gree of growth in these subgroups (Proposition 2.7);

• arrangement of these subgroups (their orbit under the automor-
phism group of the ambiant free group) (Gersten’s algorithm);

• ranks of the free factors carrying the so-called attracting lami-
nation (Proposition 2.9).

Example 1.2. The map a 7→ a, b 7→ ba, c 7→ cb extends to the free
group of basis {a, b, c} as an automorphism that is reducible (⟨a, b⟩ is
an invariant free factor of rank 2), polynomially growing of degree 2
(the growth of c is quadratic).

Example 1.3. A pseudo-Anosov mapping class on a twice punctured
torus gives an automorphism that is reducible (each puncture corre-
sponds to a free factor of rank one that is preserved), of exponential
growth, with two conjugacy classes of maximal polynomially growing
subgroups (corresponding to the punctures), both cyclic, on which the
automorphism has polynomial degree 0. They are both rank 1 free fac-
tors, but not in a same free factor system. The attracting lamination
is supported by the entire group.

Example 1.4. Take T a torus with one hole ∂T , with a base point on
its boundary, and a circle C with a base point, and take the wedge of
these spaces, identifying the two base points: its fundamental group is
F3. Consider a pseudo-Anosov mapping class on T , fixing the boundary
pointwise, and a map that sends C on the concatenation C · ℓ for a
chosen loop ℓ in T . The defined map on T∧C induces an automorphism
of F3 that is reducible, of exponential growth, with an invariant free
factor of rank 2 (the group of T ). The cyclic group of the boundary ∂T
of T is polynomially growing of degree 0. Depending on the choice of ℓ,
it might or might not be a maximal polynomially growing subgroup: if ℓ
is a power of the loop ∂T , the maximal polynomially growing subgroup
containing π1(∂T ) is actually of rank 2, on which the automorphism
has polynomial degree 0 or 1, and it is not a free factor of F3 but rather
a factor of a decomposition of F3 as some amalgamated free product

π1(T ) ∗π1(∂T ) π1(C ∧ ∂T ).
The attracting lamination is carried by the rank 2 free factor π1(T ).

It is nevertheless not sufficient to collect these invariants to have char-
acterised the conjugacy class of an outer-automorphism. For instance,
knowing that the automorphisms are irreducible, with pure exponential
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growth (i.e. the only polynomially growing subgroup is the trivial one)
still requires stamina to decide the conjugation between such outer-
automorphisms. Actually, all the solved cases listed in the beginning
of this introduction all correspond to some particular situation in this
frame of reference.

In our study of Out(F3), we will observe that, given the state of
the art, only three configurations in this frame of reference need to be
treated. We will cast two of them in the point of view of automorphisms
preserving a specific rank 2 free factor. We will cast the last one in
the point of view of toral relatively hyperbolic mapping tori. The first
configurations is that of the polynomial growth of degree 2 on the group
F3 (well illustrated by Example 1.2). The second configuration is the
case of exponential growth in which a rank 2 free factor is invariant,
and ”attracts” all the growth. In that case (that is well illustrated
by our example 1.4) there is only one class of maximal polynomially
growing subgroup, it is not a free factor, it is either cyclic (generated
by the commutator of a basis in the invariant rank 2 free factor), or
of rank 2 (attached to this free factor). The last case (illustrated by
Example 1.3) is when the growth is exponential, with a rank 1 free
factor preserved, and the maximal polynomial growth subgroups are of
rank 1 (there might be two of them up to conjugacy).

Our algorithm is shown in Figure 1 and its correctness is derived from
the correctness of every classification step as well as every terminal step.
There are several ways to separate cases toward the use of Theorem
3.1 or the use of Theorem 6.4 or of methods in section 6, since they
overlap, but considering complexity it seems reasonable to leave the
later for the smaller number of cases.

In Section 3 we show how to solve the conjugacy problem in Out(F3)
among all outer automorphisms with a given invariant rank 2 free fac-
tor. This result, in a sense, is a type of induction step from Out(F2) to
Out(F3), but as will be explained in Remark 3.10, it will not generalize
similarly to higher ranks. This case is critically important as we will
show that most problematic situations (which actually fall in the case
where the given automorphism induces a polynomial growth automor-
phism on a non-cyclic subgroup) lead to an invariant free factor of rank
2.

In Section 4 we show that quadratically growing outer automor-
phisms have an invariant rank 2 free factor. In Section 5 we use train
track methods to study the types of attracting laminations that arise.
One possibility gives rise (again) to an an invariant rank 2 free factor.
In Section 6 we show that the other possibility implies that the outer
automorphisms are so-called almost toral relatively hyperbolic and the
conjugacy problem for this class of outer automorphisms is established
by the main result of [DT21] in its particular case where the so-called
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Take a pair (ϕ, ψ) of
automorphisms in Out(F3).

Decide whether they are irreducible [Kap14, FM22]

Use Theorem 5.1
to decide conjugacy.

Irreducible

For each automorphism
construct algorithmic

relative train track maps
and use this to compute growth (Prop. 2.7)

Reducible

Reducible with exponential growth

Exponential

For Polynomial Growth
of degree ≤ 1

Use Theorem 4.1
to decide conjugacy

Polynomial

Degree ≤ 1

Quadratic Polynomial Growth

PolyonomialDegree 2

Find the free factor carrier
of the unique lamination
and its rank (Prop. 2.9)

There is a unique
invariant rank 2 free factor
for each automorphism.

Use Theorem 3.1
to decide conjugacy

Rank=2

By Corollary 6.7 both automorphisms are
almost toral relatively hyperbolic.

Use Theorem 6.4 to decide conjugacy.

Rank =3

Flowchart 1. Our algorithm to solve the conjugacy
problem in Out(F3). If at any time the given automor-
phisms ϕ and ψ follow different arrows, they are not con-
jugate.

peripheral subgroups are Z×Z or Z⋊Z, the fundamental group of the
Klein bottle.
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2. Computability of a few invariants

Notations. We begin by some general notations, and definitions.

Notation 2.1.

• In a group G, the conjugation of g by h is gh := h−1gh.
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• Aut(G) acts on the right: for ϕ ∈ Aut(G), g ∈ G, the image of
g under ϕ is gϕ.

• Ad(g) denotes the automorphism of G that is conjugation by
g: xAd(g) = xg. Hence Ad(g)Ad(h) = Ad(gh).

• Out(G) = Aut(G)/ Inn(G), for Inn(G) = {Ad(g), g ∈ G}.
• F3 = ⟨a, b, c⟩ denotes a free group of rank 3.
• We will prefer the notation K for free factors, and H for sub-
groups.

• We write outer-automorphisms with capital greek letters, and
automorphisms with small greek letter: if Φ is an outer-automorphism,
ϕ ∈ Φ is an automorphism in its class. In this convention, (ac-
cording to context) X reads Chi, and χ ∈ X is an automorphism.

For Φ ∈ Out(F ), we say a subgroup H ≤ F is Φ-invariant if for any
ϕ ∈ Φ we have that H is conjugate to Hϕ.

A free factor system of F is a set of conjugacy classes of subgroups
of F , {[K1], . . . , [Km]} such that there exists a free subgroup Fr < F
for which F = K1 ∗ · · · ∗Km ∗Fr. It is proper if the Ki are neither {1}
nor F . It is Φ invariant if all Ki (not necessarily Fr) are Φ invariants.
A free factor system {[Y1], . . . , [Ys]} is smaller than {[K1], . . . , [Km]}

if for each i there exists j such that Yi has conjugate inside Kj.

Irreducibility. A first conjugacy invariant, and decidable, property
is the irreducibility of outer-automorphisms.

Definition 2.2. An outer-automorphism Φ is called reducible if it ad-
mits an invariant proper, non-trivial, free factor system - see [BFH00].
Otherwise it is said to be irreducible.

An automorphism is fully irreducible if every positive power is irre-
ducible.

Remark 2.3. An automorphism is fully irreducible if and only if the
only periodic free factors preserved up to conjugacy are given by ei-
ther the trivial subgroup or the whole group. Every fully irreducible
automorphism is irreducible, but not conversely.

An example of an irreducible automorphism which is not fully irre-
ducible is as follows: take a surface with p > 1 punctures. Consider
a pseudo-Anosov map on the surface which cyclically permutes the
punctures. Then the outer automorphism induced on the fundamental
group is irreducible but not fully irreducible. In fact, any example of
exponential growth arises in this way.

Fully irreducible is often referred to as ‘iwip’ - irreducible with irre-
ducible powers - in the literature.

There is an algorithm to detect whether Φ ∈ Out(Fn) is fully ir-
reducible given in [Kap14], and whether it is irreducible in [FM22].
A more recent algorithm given in [KB19] decides whether Φ is fully
irreducible in polynomial time.
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Growth. A second set of conjugacy invariant, and decidable, proper-
ties is related to growth.

Definition 2.4. Given ϕ ∈ Φ ∈ Out(Fn) and g ∈ Fn and a fixed basis
X of Fn we define the growth rate of g as follows:

• The element g has polynomial growth of degree at most d under
Φ if ∥gϕn∥X = O(nd).

• The element g has exponential growth if there exists λ > 1 for
which λn = O(∥gϕn∥X). 1

This growth rate is independent of the choice of X and ϕ ∈ Φ.
Moreover, by [BH92], the growth rate of every g ∈ Fn is either at least
exponential or at most polynomial.

Definition 2.5. An outer-automorphism Φ of Fn is said to have

• polynomial growth if all elements g ∈ Fn have polynomial growth
rate,

• exponential growth if some element g ∈ Fn has exponential
growth rate.

In the case of a polynomial growth outer-automorphism of Fn, there
exists d ≥ 0 for which all elements of F have polynomial growth of
degree at most d, and moreover, the smallest such d satisfies d ≤ n−1,
see [BFH05], [Lev09].

Definition 2.6. A polynomial growth outer-automorphism of Fn is
unipotent if it induces an automorphism of the abelianisation Zn that
is represented by a unipotent matrix.

Such a matrix of the abelianisation of an automorphism of Fn of poly-
nomial growth only has eigenvalues of modulus 1, and in in GL(n,Z),
so its |GL(n,Z/3)|-th power is unipotent.
The following is known to specialists, and important to us. We

explain a proof, using the theory of CT maps [FH18], that are certain
homotopy equivalences on graphs, representing outer-automorphisms
on their fundamental groups; the interested reader is referred to this
reference.

Proposition 2.7 ([FH11, FH18]). Given an automorphism, Φ ∈ Out(Fn),
there is an algorithm to decide:

• If Φ has polynomial or exponential growth and,
• If Φ has polynomial growth, decide the degree of polynomial
growth.

1Note that (for non-negative functions) f(n) = O(g(n)) means f(n) ≤ Mg(n) for
some constant M . The reason for the asymmetric definition of growth is that the
idea to bound polynomial growth from above and exponential growth from below.
It is easy to see that there is always an exponential upper bound.
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Proof. By [FH18], there is an algorithm to construct a CT map (which
is, in particular, a relative train track map) representing a rotationless
power of Φ. Since the properties needed here are invariant under tak-
ing positive powers, we may as well assume that Φ itself is so-called
rotationless (the power needed can be determined in advance). In par-
ticular, a rotationless automorphism of polynomial growth would be
unipotent, see [FH11, Lemma 4.2.2].
So take a CT map, f : G→ G representing Φ.
It then follows immediately that if f admits an exponential stra-

tum then Φ will have exponential growth. So we can algorithmically
distinguish between exponential and polynomial growth.

So if Φ has polynomial growth, then all strata will be NEG (non-
exponentially growing); note that by [FH11], Theorem 2.19, there will
be no zero strata in the absence of exponential strata. Then Lemma
4.2 of [FH11] shows that each such NEG stratum consists of a single
edge, E, such that f(E) = E · u, where the dot denotes a splitting.
In particular, the growth of fk(E) is polynomial of one degree higher
than that of u. Hence, by induction, we can determine the growth of
every edge.
This almost determines the growth of the automorphism, Φ, in the

sense that Φ has polynomial growth of degree d > 1 if and only if
some edge grows polynomially with degree d. However, it is possible
to represent the identity map as a CT map where some edge grows
linearly and this is the only exception. See [Mac02, Lemma 2.16] and
[AHK22, Lemma 2.3].

However, since we have already passed to a rotationless power (in
particular it will be UPG), our automorphism will have growth of de-
gree 0 if and only if it represents the identity and this is immediately
checked.

□

For an outer-automorphism of Fn of exponential growth, there exists
a canonical finite collection of conjugacy classes of finitely generated
subgroups of Fn, such that an element g ∈ Fn has polynomial growth
rate if and only if it is conjugate in one of these subgroups [Lev09].
Those are the maximal polynomially growing subgroups.

Given H such a maximal subgroup, and ϕ ∈ Φ, there is an integer
m > 0, and g ∈ Fn for which H(ϕmAd(g)) = H. The automorphism
ϕmAd(g) of H is then a polynomial growth automorphism. We again
refer to [Lev09]. Through standard arguments of quasi-isometry, its
polynomial degree of growth rate does not depend on ϕ ∈ Φ, m and g
satisfying the above. We thus call it the degree of growth of Φ on H.

Proposition 2.8. There is an algorithm that, given Φ ∈ Out(Fn) of
exponential growth, computes a basis for each conjugacy-representative



THE CONJUGACY PROBLEM FOR Out(F3). 9

of maximal polynomially growing subgroup of Fn, and the degree of
growth of Φ on it.

Proposition 2.8 follows from the relative hyperbolicity of Fn⋊Z given
by Φ [Gho23, DL20], and the computability of its peripheral subgroups
[DG13]. This detects the maximal polynomially growing subgroups of
Fn. Then, Proposition 2.7 determines the induced growth on each of
them.

Lamination carriers are computable. A more involved conjugacy
invariant for outer-automorphisms of free groups that have exponential
growth is that of the carrier of the attracting laminations [BFH00,
Section 3]. This is a specific conjugacy class of free factor systems
of Fn, that in some sense, attracts all the exponential growth of the
automorphism.
More concretely, let ∂Fn, denote Gromov boundary of Fn, which for

a free group is the same as the set of ends. Let B̃ = (∂Fn×∂Fn−∆)/Z2;
where ∆ is the diagonal subset of ∂Fn × ∂Fn, and the Z2 action is via

interchanging the coordinates. That is, B̃ can be thought of as the set
of unordered pairs of distinct points on the boundary of Fn; morally,
this is the set of lines in Fn. The action of Fn on its boundary extends

to an action on B̃.
We then let B = B̃/Fn. We say that β ∈ B is carried by (the

conjugacy class of) a free factor K, if β lies in the image of ∂K×∂K →
B. A subset, S, of B is carried by a free factor system, F , if every
element of S is carried by some free factor in F .
An attracting lamination for Φ is then a closed subset of B which

is the closure of a single point, β, and has some extra properties (β
is birecurrent, admits an attracting neighbourhood for some positive
iterate of Φ, and is not carried by a Φ-periodic free factor of rank one
- see [BFH00, Definition 3.1.5]).

Any automorphism, Φ, then admits a finite set of attracting lam-
inations, L(Φ) which is carried by a Φ-invariant free factor system
([BFH00, Lemmas 3.1.6 and 3.1.13]). Morally, one has one attract-
ing lamination for every exponential stratum for a relative train track
representative for Φ (or some power) and moreover L(Φ) is canonical.

For instance, a fully irreducible automorphism will have a single at-
tracting lamination which is only carried by the whole group. A poly-
onomially growing automorphism will have no attracting laminations.

Again the theory of CT maps allows to compute this invariant. We
would like to thank Mark Feign and Michael Handel for the proof of
the following Proposition.

Proposition 2.9. Given an automorphism, Φ ∈ Out(Fn) of exponen-
tial growth, there is an algorithm to find the smallest free factor system
which carries the set of attracting laminations.
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Proof. Since the set of attracting laminations is stable under taking
positive powers, we are free to replace Φ with a (rotationless) power
and use [FH18] to algorithmically produce a CT map representing this
power of Φ. Since we are dealing with a rotationless automorphism,
each exponential stratum produces exactly one attracting lamination.
It is therefore sufficient to produce an algorithm which, given this CT
map and a specific exponential stratum, Hk of it, finds the smallest
free factor carrying Λ, the associated attracting lamination.

Let f : G 7→ G be the CT map for the power of Φ and let Hk be
an exponential stratum with corresponding attracting lamination Λ.
Construct a leaf L of Λ by choosing a point fixed by f in the interior
of an edge e of Hk and considering:

e ⊂ f(e) ⊂ f 2(e) ⊂ . . .

Note that L is f -invariant.
Choose a segment of L that starts and ends with a copy of the same

oriented edge of Hk and with e interior to the segment. Glue the initial
and terminal edges of the segment to form a loop γ immersing to G. For
i ≥ 0, denote by γi the immersed loop (or conjugacy class) [f i(γ)]. Note
that γi is obtained from L by gluing segments of the form [f i(edge)].
In particular, these segments are long if i is big.

Claim: The free factor support F (Λ) of Λ is equal to the free factor
support, F (∪i≥0{γi}) of

∪i≥0{γi}.

Comment: The free factor support of a finite collection of elements can
be found algorithmically - see [FH18, Lemma 4.2]. Moreover, sequence
of free factor supports of {γ1}, {γ1, γ2}, . . . stabilises. Hence, for an
algorithm, it is enough to prove the claim.
Proof of Claim: That F (Λ) ⊂ F (∪i≥0{γi}) is clear.
For the other direction, we will show that γi is contained in every

Φ-invariant free factor F ′ that carries Λ. It is enough to assume that i
is large.

Let G′ be a marked graph with sub-graph K ′ representing F ′. Let
K̃ ′ ⊂ G̃′ and G̃ denote universal covers. View L (defined above) as a
subset of G̃ such that its representation in G̃′ is a subset of K̃ ′. Let T
denote the covering translation of G that identifies the segments of L
that give γi.

If lines in G̃ have long (depending on G′) overlap then their represen-
tations in G′ intersect - this is a consequence of the bounded cancella-
tion lemma. Let L′ denote the representation in G̃′ of L and T ′ denote
the covering translation of G̃′ corresponding to T . In particular, L′ and
T ′(L′) intersect. Since L′ is in K̃ ′ and intersects T ′(L′) the union of L′
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and T ′(L′) is contained in K̃ ′ - this follows since translates of K̃ ′ are
either equal or disjoint.

More generally the union as j ranges over the set of integers of T ′j(L′)
is connected, contained in K̃ ′, and T ′-invariant. Hence γi is carried by
F ′. □

3. The case of a given invariant rank 2 free factor

For a free factor K ≤ F we define

Out(F,K) = {Φ ∈ Out(F ) : K is Φ-invariant}.

For any Φ ∈ Out(F,K), the restriction to K is not well defined as
an automorphism, but it is well defined as an outer-automorphism,
because K is its own normaliser in F .
This section is devoted to the proof of the following.

Theorem 3.1. Let K ≤ F3 be a free factor of rank 2. Then conjugacy
problem in Out(F3, K) for pairs elements that induce infinite order
outer-automorphisms of K, is decidable.

It will be enough to consider the case where K = ⟨a, b⟩ < F3 =
⟨a, b, c⟩. Before the proof of Theorem 3.1 we estabish some needed
result.

Lemma 3.2. Let G = Out(F3, K), and X ∈ G. Then there exists
a unique χ ∈ X such that there exists ϵ = ±1, g ∈ ⟨a, b⟩ and χ0 ∈
Aut(⟨a, b⟩), satisfying

(1) χ :

 c 7→ gcϵ

b 7→ bχ0

a 7→ aχ0.

In particular, G is isomorphic to an iterated semi-direct product, C2 ⋉
(Aut(F2)⋉F2), where the Aut(F2) action on F2 is the natural one, and
the C2 action on Aut(F2) ⋉ F2 is given by the involution which maps
(χ0, g) to (χ0Ad(g), g

−1).

In the light of the decomposition of the lemma, we can represent any
Out(F3, K) uniquely as an ordered triple, (ϵ, χ0, g).

Proof. The outer automorphism X preserves the conjugacy class ofK =
⟨a, b⟩, hence an element of X preserves ⟨a, b⟩; note that this element is
only well-defined up to the normaliser of ⟨a, b⟩, which is again ⟨a, b⟩.
Then, X must send c into ⟨a, b⟩c±1⟨a, b⟩, and therefore (after com-

posing with another inner automorphism by an element of ⟨a, b⟩) an
element of X sends c in ⟨a, b⟩cϵ, for ϵ ∈ {−1, 1}. An inner automor-
phism preserving ⟨a, b⟩ and sending c in ⟨a, b⟩c±1 has to be trivial, and
therefore we obtain the first part of the statement.
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The set of X ∈ G for which ϵ = 1 clearly forms a normal subgroup,
G1. In G1, the set of elements for which χ0 = Id is again a normal
subgroup, G2, isomorphic to ⟨a, b⟩. It is clear that the quotient G1/G2

(isomorphic to Aut(F2)) lifts in G1, making G1 ≃ (Aut(F2) ⋉ F2).
Finally, G/G1 ≃ Z/2 also clearly lifts in G, as the automorphism given
by χ0 = 1, g = 1, ϵ = −1, making G an iterated semi-direct product.
One verifies that the involution on G1 given by the later lift is the one
given in the statement. □

Notation 3.3.

• Let G be a group and H a subgroup. For x, y ∈ G we write
x ∼H y if there exists an h ∈ H such that xh = y. We do not
require x, y to be in H.

• We say that ∼H is decidable if we can construct is an algorithm
which decides on inputs x, y ∈ G, whether x ∼H y. That is,
∼H is decidable means that it is a recursive subset of G2, and
we have an explicit algorithm to decide membership.

Lemma 3.4. Let G be a group, H a subgroup of G and H0 a finite
index subgroup of H. Then if ∼H0 is decidable and we can compute a
complete set h1, . . . , hk of coset representatives of H/H0 then so is ∼H .

Proof. Let h1, . . . , hk be computed set of coset representatives of H0 in
H. Then x ∼H y if and only if there exists an i such that xhi ∼H0 y. □

Remark 3.5. Some care needs to be taken here. It is false - there are
counterexamples - that if the conjugacy problem is solvable in a finite
index subgroup, then it is solvable in the group. That is, there are
examples of groups G, with finite index subgroups H such that:

• ∼H ∩H2 is recursive,
• ∼G is not recursive.

Hence conjugacy is solvable in H but not in G. This doesn’t contradict
the Lemma above since we have the stronger hypothesis that ∼H is
decidable.

The main tool we will use to solve conjugacy in G is the twisted
conjugacy problem.

Definition 3.6. Let ϕ ∈ Aut(Fn). Then x, y ∈ Fn are said to be
twisted ϕ conjugate, written x ∼ϕ y if there exists a w ∈ Fn such that:

x = (wϕ)yw−1.

We need the following later:

Lemma 3.7. Let ϕ ∈ Aut(Fn) and x ∈ Fn. Then for any k ∈ Z,
x ∼ϕ xϕ

k.

Proof. Simply notice that xϕ = (xϕ)xx−1 and xϕ−1 = ((x−1ϕ−1)ϕ)x(xϕ−1)
and that ∼ϕ is an equivalence relation. □
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Theorem 3.8 (Theorem 1.5 of [BMMV06]). Let ϕ ∈ Aut(Fn). Then
the twisted conjugacy problem for ϕ is solvable. That is, ∼ϕ is a recur-
sive subset of F 2

n .

We will also need the following:

Theorem 3.9. The conjugacy problem is solvable in Out(F2) and Aut(F2).
Moreover for any Φ ∈ Out(F2) of infinite order and for any ϕ ∈ Φ:

• The centraliser of Φ in Out(F2) is virtually cyclic;
• there is an algorithm that computes the coset representatives of
⟨Φ⟩ in its centraliser;

• the centraliser of ϕ in Aut(F2) has a finite index subgroup

C0 = {ϕk Ad(g) : k ∈ Z, g ∈ Fix(ϕ)} = ⟨ϕ⟩×⟨Ad(g) : g ∈ Fix(ϕ)⟩;
• the group D = {χ ∈ Aut(F2) : ϕχ = ϕAd(h), h ∈ F2} has a
finite index subgroup D0 = {ϕk Ad(x) : k ∈ Z, x ∈ F2}.

Proof. We note that Out(F2) ∼= GL2(Z) is virtually a free group of rank
2, and therefore word hyperbolic. Therefore the conjugacy problem is
solvable and centralisers of infinite order elements are virtually cyclic.
For any element of infinite order, g in a hyperbolic group it is known to
be algorithmic to find the coset representatives of ⟨g⟩ in its centraliser.
This is folklore, but a detailed proof appears in Proposition 4.11 of
[BMV10].

The solution for the conjugacy problem for Aut(F2) appears in [Bog00]
and also as Corollary 5.2 of [BMV10].

The rest of the statements about Aut(F2) are then just translations
of the corresponding statements about Out(F2). □

We now address the conjugacy problem in Out(F3, K) for elements
that induce infinite order outer-automorphisms on K.

Proof of Theorem 3.1. Let G = Out(F3, K), and Φ,Ψ ∈ G, given by
data, as in Lemma 3.2, as

Φ = (ϵ1, ϕ0, u) and Ψ = (ϵ2, ψ0, v).

We assume that ϕ0, ψ0 define infinite order outer-automorphisms of
K. We must decide whether there exists a conjugator, χ = (ϵ3, χ0, h) ∈
G, such that Φχ = Ψ. By Lemma 3.4, we may assume that ϵ3 = 1. We
calculate the possibilities for Φχ, listed as a triple:

(2)
If ϵ1 = 1 Φχ = (1, ϕχ0

0 , (h
−1ϕχ0

0 )(uχ0)h)

If ϵ1 = −1 Φχ = (−1, ϕχ0

0 Ad(h), h−1(h−1ϕχ0

0 )(uχ0))

Hence if ϵ1 = 1, then for Φ and Ψ to be conjugate, we would require
that ϕ0 and ψ0 are conjugate. If ϵ1 = −1, they would need to be
conjugate as outer automorphisms. But notice that in this case, when
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ϵ1 = −1, we can set χ0 = Id, and by varying h, we can obtain triples
where the second entry is anything of the form ϕ0Ad(h).

Hence, if Φ,Ψ are to be conjugate, we would require ϵ1 = ϵ2 (oth-
erwise we know that they are not conjugate). Moreover, by solving
conjugacy in Aut(F2) or Out(F2), we may assume that ϕ0 = ψ0 as
automorphisms. To summarise, we have reduced the problem to the
situation where:

• ϵ1 = ϵ2,
• ϕ0 = ψ0 in Aut(F2).

Case 1: ϵ1 = ϵ2 = 1. :
In this case we must have that ϕχ0

0 = ψ0 = ϕ0. Hence χ0 centralises
ϕ0. Let C = CAut(F2)(ϕ0) be the centraliser of ϕ0 in Aut(F2). Then χ
lies in the subgroup, C ⋉ F2 of G. By Lemma 3.4, it will be enough
to solve the problem where we look at conjugators that lie in the sub-
group, C0 ⋉ F2, where C0 is the finite index subgroup of C given by
Theorem 3.9. Hence we may assume that χ0 = ϕk0 Ad(x), where k ∈ Z
and x ∈ Fix(ϕ0).
But then we get that:

Φχ = (1, ϕ0, (h
−1ϕ0)(uϕ

k
0 Ad(x))h) = (1, ϕ0, ((h

−1x−1)ϕ0)(uϕ
k
0)xh),

using that fact that xϕ0 = x. Since Ψ = (1, ϕ0, v), that means we are
trying to decide whether there exist k ∈ Z, h ∈ F2, x ∈ Fix(ϕ0) such
that:

(h−1x−1)ϕ0(uϕ
k
0)xh = v.

Putting h′ = xh, this is equivalent to deciding:

(h′
−1
)ϕ0(uϕ

k
0)h

′ = v.

But by Lemma 3.7, this is equivalent to saying that u ∼ϕ0 v, which is
decidable by Theorem 3.8.
Case 2: ϵ1 = ϵ2 = −1. :
As before, we have that ϕ0 = ψ0. This time, by Equation 2, we get

that χ0 belongs to the subgroup D given by Theorem 3.9. Hence, by
Lemma 3.4, we may assume that χ0 ∈ D0. Hence, χ0 = ϕk0 Ad(x) for
some x ∈ F2. Therefore, using Equation 2 and simplifying:

Φχ = (−1, ϕ0Ad(w), h
−1(h−1ϕ0Ad(wh

−1))(uχ0)),

where w = (x−1ϕ0)xh. However, since we have reduced to the case
where ϕ0 = ψ0, we get the extra restriction that w = 1 that is equivalent
to h = x−1(xϕ0). And hence for Φ and Ψ to be conjugate we would
need to simply equate the third entry of the triple:

(h−1ϕ0)h
−1x−1(uϕk0)x = v.

Putting h = x−1(xϕ0) this gives:

(x−1ϕ2
0)(xϕ0)(x

−1ϕ0)(uϕ
k
0)x = (x−1ϕ2

0)(uϕ
k
0)x = v.
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Hence this problem is equivalent, by Lemma 3.7 to u ∼ϕ20
v or uϕ0 ∼ϕ20

v, both of which are solvable by Theorem 3.8. □

Remark 3.10. A natural question to ask is whether the strategy above
can be generalized to higher rank free groups. We note that ingredients
used in the proof above are

• The conjugacy problem in Aut(F2). The conjugacy problem in
Aut(Fn) appears to be harder than the conjugacy problem in
Out(Fn).

• Explicit computations of centralizers in Out(F2). In our case,
we were able to exploit the fact that Out(F2) is virtually free.
It was shown in [BFH97] that centralizers of irreducible auto-
morphisms are virtually cyclic. As for more general automor-
phisms, the current state of the art for polynomially growing
automorphisms [Rod13, RW15, AM22a] amounts to establish-
ing finiteness properties.

For these reasons, the argument above does not obviously generalize.

4. Polynomially growing automorphisms

Before turning our attention to the quadratic growth case in F3 (i.e.
the largest polynomial growth permitted there), let us record the com-
bination of classical results, on the conjugacy problem for low degree
polynomial growth outer-automorphisms of Fn.

Theorem 4.1 ([Krs89, KLV01]). The conjugacy problem in Out(Fn) is
decidable among outer automorphisms with growth of polynomial degree
0 or 1.

Recall also that the conjugacy problem among unipotent polynomi-
ally growing outer automorphisms of Fn has been solved by [FH19].

Quadratic polynomial growth in F3. Every Φ ∈ Out(Fn) of poly-
nomial growth has a power Φn that is unipotent. In fact, one can
take this power to be uniform for every n; the exponent (or order) of
GLn(Z3) suffices, as one can define a UPG automorphism as one of
polynomial growth which induces the trivial map in Z3 homology.

Definition 4.2. Two automorphisms ϕ, ψ ∈ Aut(Fn) are said to be
isogredient if they are conjugate by an inner automorphism.

Recall that any outer-automorphism of Fn is a coset of Inn(Fn) in
Aut(Fn). On each such outer automorphism, the relation of isogredi-
ence is an equivalence relation.

Theorem 4.3 (Bestvina-Handel Theorem, [BH92]). Let Φ ∈ Out(Fn).
Then, ∑

max{rank(Fix ϕ)− 1, 0} ≤ n− 1,
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where the sum is taken over representatives, ϕ, of isogredience classes
in Φ.

Theorem 4.4. Let Φ ∈ Out(Fn) have quadratic growth. Then,

1 ≤
∑

max{rank(Fix ϕ)− 1, 0} ≤ n− 2,

If n = 3, this sum is exactly equal to 1 and exactly one isogredience
class has a non-zero contribution to this sum.

Proof. This follows from results in either [Lev09] or [Mar02]. A full
discussion of this is also given in [AM22b].

More specifically, as argued in [AM22b, Theorems 2.4.6 and 2.4.8],
any outer automorphism, Φ of Fn, which satisfies the equality from 4.3,
namely: ∑

max{rank(Fix ϕ)− 1, 0} = n− 1,

must have linear growth. □

Lemma 4.5. Let Φ ∈ Out(F2) be UPG. Then some automorphism in
Φ has fixed subgroup of rank 2.

Proof. It is easy to show that there is a basis of F2, ⟨a, b⟩ where (some
automorphism of) Φ acts as: a 7→ a, b 7→ bak for some integer k. Hence
the fixed subgroup is ⟨a, bab−1⟩ or ⟨a, b⟩ when k = 0. □

Theorem 4.6. Let Φ ∈ Out(F3) be a UPG automorphism of quadratic
growth. Then Φ admits a rank 2 invariant free factor, K which is
algorithmically computable. Moreover, K is unique in the sense that if
K1 is any other invariant rank 2 free factor, then K1 is conjugate to
K.

Proof. By [BFH05], there is a basis, a, b, c for Φ such that some ϕ ∈
Φ has the following representation. In fact, by [FH18] there is an
algorithm to produce the following basis:

ϕ
a 7→ a
b 7→ bak

c 7→ ucv,

where k ∈ Z and u, v ∈ ⟨a, b⟩ and ϕ ∈ Φ.
Notice that k = 0 implies that Φ has linear growth, and hence we

deduce that k ̸= 0. In particular, Fix ϕ = ⟨a, bab−1⟩ (it cannot have
higher rank due to Theorems 4.3 and 4.4). Hence ⟨a, b⟩ is the smallest
free factor containing Fix ϕ.

Thus we have algorithmically produced a Φ-invariant rank 2 free
factor, ⟨a, b⟩, and all that remains is to show is that it is unique.

If K1 were another Φ-invariant rank 2 free factor, then the restriction
of Φ to K1 would again be UPG, and Lemma 4.5 would imply that
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some ψ ∈ Φ would have a fixed subgroup of rank 2, contained in K1.
But Theorem 4.4 then implies that ϕ and ψ are isogredient and, hence
have conjugate fixed subgroups implying that ⟨a, b⟩ and K1 are also
conjugate. □

Corollary 4.7. Let Φ ∈ Out(F3) be an automorphism of quadratic
growth. Then Φ admits a unique invariant rank 2 free factor. More-
over, there is an algorithm to determine this free factor.

Proof. Some positive power, Φk of Φ is UPG. By Theorem 4.6, Φk

admits a unique invariant rank 2 free factor, K. But KΦ is also Φk

invariant, and hence the uniqueness of K implies that K is conjugate
to KΦ.

Finally, if K1 is any Φ-invariant rank 2 free factor, it must also be
Φk-invariant, and hence by Theorem 4.6 again, K1 is conjugate to K.
This free factor is produced algorithmically as in Theorem 4.6. □

Conjugacy Problem in polynomial growth for OutF3. We may
conclude for this section.

Recall (Proposition 2.7) that given Φ and Ψ two outer-automorphisms
of F3 we may decide whether they are of polynomial growth, and we
may compute their degree.

Assume first that both are polynomial growth of degree 2. We may
compute by 4.7 the unique conjugacy classes [KΦ], [KΨ] of invariant
free factor of rank 2 of F3. After conjugating Ψ by a (computable)
automorphism that sends KΦ to KΨ, we may assume that these two
groups are equal. We may then apply Theorem 3.1 in order to decide
whether Φ and Ψ are conjugate in Out (F3, K).

Since by Corollary 4.7, the rank 2 invariant free factor of Φ is unique,
the two outer-automorphisms are conjugate in Out (F3, K) if and only
if they are conjugate in Out (F3).
This, together with Theorem 4.1, solves the conjugacy problem in

OutF3 for all polynomially growing outer-automorphisms.

5. Exponential growth: laminations

Recall (references in Section 2, Proposition 2.7) that one can decide
whether an outer-automorphism is of exponential growth, and whether
it is irreducible. In that case, we recall the following.

Theorem 5.1 ([Los96, Lus07, Kap14, FM22]). The conjugacy problem
is decidable among irreducible elements of Out(Fn).

We will now focus on the reducible case.

Invariant Free Factor Systems in F3. We will now work towards
describing reducible exponentially growing automorphisms. Following
[BFH00] we have
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Proposition 5.2. Let Φ ∈ Out(F3). Then any relative train track
representative of Φ has at most one exponential stratum.

Proof. Suppose that f : Γ → Γ is a relative train track representative
of Φ. Suppose that Hr is an exponential stratum and that Gr is the
corresponding f -invariant subgraph (the union of all the strata, up to
and including Hr).

Similarly, let Gr−1 be the f -invariant subgraph consisting of the
union of the strata up to, but not including, Hr.

Let Cr be a connected component of Hr and let Cr−1 be a connected
component of Cr ∩ Gr−1 (which we allow to be empty). Since the
transition matrix of Hr is irreducible, some power of f must leave both
Cr and Cr−1 invariant. However, since Hr is an exponential stratum,
the the rank of π1(Cr) is at least 2 more than the rank of π1(Cr−1).
(For instance, take an edge of Hr incident to Cr−1 an take a power, k,
of f such that fk(e) crosses e at least 3 times). This immediately gives
the result: either the rank of π1(Cr−1) is zero and the rank of π1(Cr)
is at least 2, in which case there can only be zero or polynomial strata
above Hr, or the rank of π1(Cr−1) is one, and there can be no strata
above Hr. □

Corollary 5.3. Let Φ ∈ Out(F3) have exponential growth. Then Φ
has exactly one attracting lamination. This lamination is carried by a
Φ-invariant conjugacy class of a free factor, K of F3.

The rank of K is either 2 or 3. If the rank of K is 2, then it is
unique in the following sense: if K1 is another free factor of rank 2
which is Φ-invariant (up to conjugacy), then K1 is conjugate to K.

Proof. Some positive power of Φ has an improved relative train track
representative by [BFH00, Theorem 5.1.5]. All we will really need here
is that this relative train track is eg-aperiodic; that is, the transition
matrix of every exponential stratum is not just irreducible but also
aperiodic (also known as primitive), meaning that it has a power where
every entry is positive. In fact, it is clear that every relative train track
map has a positive iterate which is eg-aperiodic, and we don’t really
need the full force of [BFH00, Theorem 5.1.5].
Let us call this relative track representative, f : Γ → Γ and denote

the rth stratum by Hr.
Then, by [BFH00, Lemma 3.1.10], if β is a generic line of some lami-

nation for Φ, then representing β in Γ yields a line, λ, where the highest
stratum crossed by λ is an exponential stratum. (Using the terminol-
ogy from [BFH00]). Moreover, by [BFH00, Corollary 3.1.11], since our
relative train track is eg-aperiodic, any generic line of any lamination
whose realisation in Γ which crosses the same Hr but no higher stratum
will have the same closure as β. However, by Proposition 5.2, f only
admits one exponential stratum. Since laminations are closures of such
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lines this means that there is exactly one lamination for Φ, which must
therefore be fixed by Φ (and not just periodic for Φ).

As in [BFH00, Corollary 2.6.5 and Definition 3.2.3], there is a unique
free factor whose conjugacy class carries the lamination of Φ. Since the
lamination is fixed by Φ, this free factor is Φ-invariant up to conjugacy.

For the final part, we note that an exponential stratum cannot have
a component which has rank 1 as a graph (is homotopic to a circle), so
K must have rank 2 or 3.

Furthermore, if K has rank 2, and if K1 is a Φ-invariant free fac-
tor (up to conjugacy) also of rank 2, then we can form - via [BFH00,
Theorem 5.1.5] - an improved relative train track representative for
some power of Φ, where K1 is the fundamental group of some invari-
ant subgraph, Gr. If the restriction of the relative train track map
to Gr is polynomial, then the whole automorphism will have poly-
nomial growth; this is excluded by hypothesis. Hence, by [BFH00,
Lemma 3.1.9], there is a lamination carried by (the conjugacy class
of) K1. But there is only one lamination for Φ, hence K and K1 are
conjugate.

□

Conjugacy problem for exponential growth with rank 2 lam-
ination. Consider Φ and Ψ two outer-automorphisms of F3 that are
of exponential growth, and whose attracting lamination is carried by a
free factor of rank 2, respectively KΦ and KΨ.

By Proposition 2.9 (and the unicity of Corollary 5.3), the groups KΦ

and KΨ can be computed.
Since both KΦ and KΨ are free factors of same rank, there exists

(and one can compute) an automorphism χ of F3 sending KΨ to KΦ,
and after conjugating Ψ by the outer-class X of χ, we may assume that
KΦ = KΨ, and we denote it K.

Since by Corollary 5.3, this invariant free factor is unique, the two
automorphisms Φ and Ψ are conjugated in Out(F3) if and only if they
are conjugated in Out(F3, K). This can be decided by Theorem 3.1.

6. Exponential growth: mapping tori

In this section, we take the point of view of analysing the semi-
direct products of F3 that are associated to automorphisms (see also
[Sel95, Dah16, Dah17, DT21]). Although this point of view allows to
treat the conjugacy problem for all the exponentially growing outer-
automorphisms of F3, we restrict our presentation to the remaining case
in Flowchart 1, namely the case of automorphisms whose attracting
lamination carrier is the entire group F3.

Given ϕ ∈ Aut(Fn), the associated mapping torus is Fn ⋊ϕ ⟨t⟩. The
normal subgroup Fn < Fn ⋊ϕ ⟨t⟩ is called a fiber. If ϕ = ψAd(g) then
we have Fn ⋊ψ ⟨t⟩ = Fn ⋊ϕ ⟨tg⟩, in particular Φ = [ϕ] ∈ Out(Fn) has
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a well-defined mapping torus. The following proposition describes how
it relates to conjugacy in Out(Fn). We refer the reader to [DT21] for
precise definititions.

Proposition 6.1 (Standard mapping torus criterion for conjugacy).
Let G be a group, Φ,Ψ ∈ Out(G) and ϕ ∈ Φ, ψ ∈ Ψ. Then Φ is
conjugate to Ψ in Out(G) if and only if there is an isomorphism

f : G⋊ϕ ⟨t⟩ → G⋊ψ ⟨t⟩
such that f(G) = G and f(t) = tw for some w ∈ G.

The following theorem relates dynamical characteristics of outer au-
tomorphisms to the structure of their mapping tori.

Theorem 6.2 (Relative hyperbolicity in exponential growth). For any
Φ ∈ Out(Fn), its mapping torus admits a properly relatively hyper-
bolic (possibly word-hyperbolic) metric if, and only if, Φ has exponential
growth. Peripheral subgroups of the relatively hyperbolic structure can
be taken to be the mapping tori of Φ restricted to maximal polynomially
growing subgroups.

Proof. The converse implication was obtained in [Gho23, Theorem 3.1]
and [DL20, Theorem 4]. The direct implication is found in [Mac02],
[Dah17, Prop 1.3] see also [Hag19], [Bri00, Theorem 1.2]. □

Using this strategy, in [DT21] the conjugacy problem in Out(Fn)
is completely reduced to specific algorithmic problems in the periph-
eral subgroups. These problems are the algorithmic tractability for
their subgroups (effective coherence, conjugacy problem, generation
problem), the Minkowski property for certain subgroups, the mixed
Whitehead problem, and the conjugacy problem for the induced au-
tomorphisms on maximal polynomially growing subgroups. In this
reduction, the exponential growth part of the outer automorphisms
is completely evacuated from the discussion (it is treated during the
reduction).

In the case of exponentially growing automorphisms of F3, the poly-
nomially growing subgroups are sufficiently small that we can complete
a solution of the conjugacy problem in their case. We will explain this
in the remaining case of Flowchart 1, in which the polynomially growing
subgroups are even simpler.

This will require two steps. The first step is giving the solution to
the criterion of Proposition 6.1 in the case the mapping tori of the given
autmorphisms are so called almost toral. The second step is proving
that if the mapping torus of an automorphism is not almost toral, then
there is a rank 2 free factor carrying the attracting lamination. This
allows to conclude since this later case was already treated. Treating
it alternatively through the criterion of Proposition 6.1 is still possible,
and involves cases covered by the larger study [DT23], but is not done
here.
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The Almost Toral case. We say Φ ∈ Out(Fn) or its mapping torus
Fn ⋊ϕ Z, ϕ ∈ Φ is almost toral relatively hyperbolic if Fn ⋊ϕ Z is hy-
perbolic relative to a collection of subgroups isomorphic to Z × Z or
to Z ⋊ Z, the fundamental group of a Klein bottle. By extension,
in that case, we say that the automorphism is almost toral relatively
hyperbolic.

The groups Z× Z and Z ⋊ Z are the only possible virtually abelian
peripheral subgroups in the relatively hyperbolic structure of Theorem
6.2. Actually the following is immediate from Theorem 6.2 and Nielsen-
Schreier theorem.

Proposition 6.3. The mapping torus of an outer automorphism of Fn
is almost toral if and only if its maximal polynomially growing subgroups
have rank one.

It is furthermore decidable whether the mapping torus of a given
automorphism of Fn is almost toral, by [DG13] (this is decidable in the
following sense: there is an algorithm that will terminate if the auto-
morphism is exponentially growing, and provide presentations for each
conjugacy representative of peripheral subgroup, and indicate whether
or not they are abelian, or isomorphic to Z ⋊ Z).

Theorem 6.4. The conjugacy problem in Out(Fn) is decidable among
the almost toral relatively hyperbolic automorphisms.

Proof. If the mapping tori are hyperbolic (i.e. if the peripheral struc-
tures are empty) it is enough to invoque [Dah16]. We now assume that
the peripheral structures are non-empty.
Using [DT21, Theorem 2.1], it suffices to check that Z2 and Z ⋊ Z

form a class of algorithmically tractable groups, with solvable fiber-
and-orientation preserving mixed Whitehead problem, and Minkowski
property for their subgroups.

The algorithmic tractability is actually immediate, despite the defi-
nition of this property.

That the group Z2 (or any of its subgroups) satisfies the Minkowski
property is due to the classic observation of Minkowski: GL2(Z) →
GL2(Z/3) has torsion free kernel.

ForK = Z⋊Z, the Minkowski property asks for a finite characteristic
quotient in which all torsion elements of Out(Z ⋊ Z) survive. Let us
write K = ⟨a⟩ ⋊ ⟨t⟩. The following lemma establishes the Minkowski
property.

Lemma 6.5. The abelianisation Kab of K is K/⟨a2⟩ ≃ (Z/2)× Z.
Out(K) ≃ (Z/2) × (Z/2), and injects by the congruence map in

Out((Z/2)× (Z/3)).

Proof. The first assertion is standard. The subgroups ⟨t2⟩ (the center)
and ⟨a⟩ (the preimage of the torsion in the abelianisation) are preserved
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by all automorphisms. The square roots of t2 are the akt, k ∈ Z.
Therefore any automorphism has the form (a 7→ aϵ1 , t 7→ aktϵ2) for
ϵ1, ϵ2 ∈ {−1, 1}, and k ∈ Z. Since (a 7→ a−1, t 7→ t), and (a 7→ a, t 7→
a2t) are both inner, it follows that Out(K) ≃ (Z/2) × (Z/2), with
representatives being (a 7→ a, t 7→ autϵ) for u ∈ {0, 1}, and ϵ ∈ {−1, 1}.
All three non-trivial automorphisms descend as obviously non trivial
automorphisms in Aut((Z/2) × (Z/3)), when quotienting by a2 and
t3. □

It remains to solve the fiber and orientation preserving mixed White-
head problem for K, the fiber being ⟨a⟩. This problem is an orbit
problem for the group of outer automorphisms preserving fiber and
orientation, for tuples of conjugacy classes of tuples. In the case of
K, all outer automorphisms of K (see their expression above) preserve
the fiber ⟨a⟩ and the orientation ⟨a⟩t. There are only four of them, so
the problem reduces to the classical multiple conjugacy problem in K,
which is easy to solve.

□

The polynomially growing subgroups in F3. By Levitt’s theorem
[Lev09, Theorem 4.1], given an outer automorphism of Fn, its maximal
polynomially growing subgroups have rank ≤ n, they have rank < n if
the automorphism has an exponentially growing conjugacy class, and
in the later case, if one such group has rank n − 1, it is unique up to
conjugacy.

In the case of n = 3, the possible polynomially growing subgroups
for an exponentially growing outer automorphism of F3 are then ei-
ther trivial, or cyclic, or of rank 2. Given the previous discussion, we
consider the case of a single conjugacy class of polynomially growing
subgroup of rank 2. It turns out, as we will show, that it must be
placed very specifically in the group F3, revealing a lamination carrier
of rank 2.

Recall that if D is a Φ-invariant subgroup, we can find ϕ ∈ Φ such
that ϕ(D) = D.

Proposition 6.6. If ϕ ∈ Aut(F3) is of exponential growth and has an
invariant subgroup D of rank at least 2 on which it induces a polyno-
mially growing automorphism, then it preserves the conjugacy class of
a rank 2 free factor Q on which it induces an exponentially growing
outer-automorphism.

Moreover, the conjugacy class of such a free factor is unique and
there exists a conjugate D′ of D, containing a subgroup C ′ of Q ∩D′,
such that C ′ is generated by the commutator of a basis in Q, and F3 =
Q ∗C′ D′.



THE CONJUGACY PROBLEM FOR Out(F3). 23

Proof. We assume without loss of generality that D is a maximal ϕ-
invariant subgroup on which ϕ|D is polynomially growing. By maxi-
mality, we cannot have D < H < F3 with H of rank 2 and ϕ-invariant.
Indeed, if this were the case either ϕ|H is either polynomially growing,
which contradicts maximality, or exponentially growing with a poly-
nomially growing invariant subgroup of rank 2, which is impossible in
Out(F2). Furthermore, D cannot be a free factor of F3 as the xpression
(1) from Lemma 3.2 would imply that ϕ is also polynomially growing.
It follows that (F3, D) is relatively one-ended.
By [GJLL98, Theorem II.2] F3 acts faithfully on an R-tree T∞ with

trivial arc stabilizers and there is a homotethy H : T∞ → T∞ such that
for all x ∈ T∞ and f ∈ F3, f ·H(x) = H((fϕ)x) (here, a homotethy is
a map satisfying d(H(x), H(y)) = λd(x, y) for some fixed stretch factor
λ ≥ 1). Note that from [GJLL98, §B - §E] the action of F3 on T∞ is
obtained as a limit of rescaled actions on a fixed free cocompact action
of F3 on a simplicial metric tree τ . Exponential growth of ϕ implies
that D fixes a point in T∞.

Trivial arc stabilizers and the non-trivial subgroup D (which cannot
be in a proper free factor) that fixes a point (so the action is not free)
imply that we may apply [Hor14, Lemma 4.6] to the action of F3 on T∞
with the empty free factor system. This lemma gives three possiblities.
Two of these imply that point stabilizers must all either be cyclic or
contained in proper free factors of F3, which is impossible because of
the properties of D. The remaining possiblity is that the action of F3

on T∞ has a so-called dynamical proper free factor. This implies that
T∞ is not a simplicial R-tree, since by definition a dynamical proper
free factor must act on its minimal invariant tree with dense orbits.
We now apply [Gui08, Theorem 5.1]. The triviality of arc stabilizers,

one-endeness of F3 relative to D, and the faithfullness of the action of
F3 on T∞, imply that the action of F3 on T∞ decomposes into a graph
of actions where each vertex action is either simpicial, Seifert type, or
axial. Free groups cannot admit faithful axial actions and since T∞ is
not simplicial, the graph of actions must contain a Seifert type vertex.
Orbifolds with free fundamental groups are surfaces with boundary.
Therefore F3 decomposes as a graph of groups Y and one of the vertex
groups Yq must be isomorphic to the fundamental group of a surface Σ
with boundary, equipped with a measured foliation F with dense leaves,
for which the action of Yq on the minimal invariant subtree (T∞)Yq is
equivariantly isomorphic to the action of π1(Σ) on the R-tree dual to
lifted measured foliation on the universal cover (Σ̃, F̃). The subgroup
D, elliptic in T∞, must also lie in some vertex group YD. Since D is a
free group of rank 2 that fixes a point, it cannot be conjugate into the
subgroup Yq, so Yq ̸= YD.
By the definition of a graph of actions (see [Gui08, §1.3]), the edge

group incident to Yq must be a point stabilizer, which in turn must
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either be trivial or conjugate to the π1-image of ∂Σ. The former case
gives a free decomposition of F3 relative to D which contradicts earlier
considerations. The latter case implies that all the edges adjacent to
q have cyclic edge groups. It also follows that if we collapse all edges
of Y that have non-cyclic edge group to get a new graph of groups Ȳ ,
Yq is still a vertex group of this collapsed splitting and Ȳ has another
vertex group containingD. It follows that F3 admits a non-trivial cyclic
splitting relative to D containing Yq as a quadratically hanging (QH)
subgroup, that is to say it is isomorphic to π1(Σ) where Σ is a compact
surface with boundary and the (conjugacy classes) of the incident edge
groups coincide with the π1-image of ∂Σ.
Because F3 is one ended relative to D, by [GL17, Theorem 9.5] F3

admits a canonical cyclic JSJ decomposition J relative to D. By our
description of Ȳ above we know that J has at least two vertex groups
and that one of them is a maximal QH subgroup. Arc stabilizers of the
Bass-Serre tree dual to J are cyclic and there are at least two vertex
orbits so we can apply, for example [GL95], to conclude that J has
exactly two non-cyclic vertex groups and that these vertex groups have
rank exactly 2. One of these vertex groups contains (a conjugate of) Yq
and is a maximal QH subgroup. The other vertex group contains D.
The automorphism invariance of JSJ decompositions, [GL17, Corollary
7.4], implies that ϕmust preserve J , i.e. ϕmaps vertex groups and edge
groups to conjugates of vertex and edge groups (respectively). Since Q
is the unique flexible subgroup of J we must have that ϕ(Q) is mapped
to a conjugate of Q.
Now the vertex group Yq from the graph of actions Y sits inside the

QH subgroup Q as the π1-image of some subsurface, since both groups
have the same rank, Yq = Q (up to conjugacy). By [CV91] the only
Seifert-type action of F2 is dual to an irrational foliation on a once
punctured torus. It follows that the QH strucutre on Q is that of an
orientable surface of genus 1 with one boundary component. Therefore
there is exactly one edge group incident to Q.
Let J̄ be the graph of groups obtained by contracting all edges except

the unique edge adjacent to the unique QH vertex group Q. Then J̄ is
the amalgamated product F3 = D′∗CQ. D′ must contain a conjugate of
D and by construction this splitting is ϕ-invariant, so D′ = D. Since C
is conjugate to the π1-image of ∂Σ in π1(Σ) = Q we have that Q is one-
ended relative to C. Since F3 many-ended, by [She55, Swa86, Tou15],
D is forced to admit a free decomposition D = ⟨d⟩ ∗ ⟨c⟩ with C ≤ ⟨c⟩.
This gives

F3 = ⟨d⟩ ∗ (⟨c⟩︸ ︷︷ ︸
D

∗CQ).

Since Q must be the fundamental group of a torus Σ with a boundary
component we have that C, the π1-image of ∂Σ, must be a commutator
and therefore cannot be a proper power, thus C = ⟨c⟩ so Q is a free
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factor of F3 as required. Its uniqueness follows from the canonicity of
the JSJ decomposition.
By [GJLL98, Theorem II.1] if the stretch factor of the homotethy

H is λ = 1, then T∞ is simplicial. Since that Q acts on (T∞)Q with
dense orbits we have λ > 1. Since up to coposition with an inner auto-
morphism we have ϕ(Q) = Q we have that ϕ induces an exponentially
growing automorphism on Q. □

In particular, we get the following.

Corollary 6.7. Let Φ ∈ Out(F3) be exponentially growing, not fully
irreducible, and such that no power has an invariant proper free factor
of rank 2. Then the mapping torus F3 ⋊ϕ Z is almost toral relatively
hyperbolic.

This concludes all cases of Flowchart 1, and thus proves Theorem
1.1.
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[KLV01] Sava Krstić, Martin Lustig, and Karen Vogtmann. An equivariant
Whitehead algorithm and conjugacy for roots of Dehn twist automor-
phisms. Proc. Edinb. Math. Soc., II. Ser., 44(1):117–141, 2001.
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