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LENGTH FUNCTIONS ON GROUPS AND ACTIONS ON GRAPHS

M. COLLINS AND A. MARTINO

Abstract. We study generalisations of Chiswell’s Theorem that 0-hyperbolic Lyndon length
functions on groups always arise as based length functions of the the group acting isometrically
on a tree. We produce counter-examples to show that this Theorem fails if one replaces 0-
hyperbolicity with δ-hyperbolicity.

We then propose a set of axioms for the length function on a finitely generated group that
ensures the function is bi-Lipschitz equivalent to a (or any) length function of the group acting
on its Cayley graph.

1. Introduction

One of the key insights of geometric group theory is that one can obtain information on a
group by viewing it as a metric space, via the word metric on its Cayley graph. More generally
if a group, G, acts isometrically on a metric space pX, dq one can elucidate properties of the
group from this action. For instance, the class of hyperbolic groups is precisely the class of
those groups admitting a proper, co-compact isometric action on some locally compact, geodesic
δ-hyperbolic space X .

Given a (right) isometric action of G on pX, dq, and a point p in X , one can define a G-
invariant pseudo-metric - which we denote by dp - on G via dppg, hq :“ dppg, phq, which is a
metric precisely when the stabiliser of p is trivial. In fact, this metric on G can be encoded via
the based length function.

Definition 1.1. Let G act isometrically on the metric space pX, dq. Then the based length
function of G based at some point, p P X is the function, lp : G Ñ R, given by:

lppgq :“ dpp, pgq

It is straightforward to see that one can recover the invariant (pseudo) metric from the based
length function via dppg, hq “ lppgh´1q.

Of course, in order to obtain properties of the group it is helpful to impose conditions on the
space and the action, just as for hyperbolicity above. A key area where one can recover a great
deal of information about G is when X is a tree.

The source of inspiration for this paper is a striking result of Chiswell, that one can axiomatise
the based length functions arising from actions on trees - sometimes called Lyndon length
functions, following results from [Lyn63] - and, from the axioms, always recover an isometric
action. Specifically,

Theorem 1.2 ([Chi76]). Suppose l : G Ñ Rě0 satisfies the following axioms:

A1’: lpgq “ 0 if g “ 1
A2 : lpg´1q “ lpgq
A3 : cpg, hq ŕ 0
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H0 : For all g1, g2, g3 P G,
cpg1, g2q ě m, cpg2, g3q ě m implies that cpg1, g3q ě m ,

where

cpg, hq :“
1

2
plpgq ` lphq ´ lpgh´1qq.

Then there exists an R-tree, pX, dq, admitting an isometric G-action and a point, p P X, such
that lppgq “ lpgq. Moreover, if the images of l and c lie in Z, then the tree will be simplicial.

Remark. As noted above a function d : GˆG Ñ R can be defined from l and, from this point
of view, A1’ says that d vanishes on the diagonal, A2 says that it is symmetric and A3 says
that it satisfies the triangle inequality.

The function cpg, hq is then really the Gromov product and axiom H0 should be thought of as
a 0-hyperbolicity condition (see, for example, [ABC`91] for a discussion on hyperbolic groups,
spaces and the Gromov product). Chiswell’s Theorem can then be summarised as saying that a
0-hyperbolic Lyndon length function is always a based length function on a 0-hyperbolic space.

With this in mind, we are motivated to ask the following questions.

Questions.

‚ Is there a generalisation of Chiswell’s Theorem for isometric group actions on metric
graphs?

‚ In particular, is there a generalisation of Chiswell’s Theorem for isometric actions on
δ-hyperbolic graphs?

Remark. In the spirit of Chiswell’s result, we will consider graphs whose edge lengths may
not be integers. For instance, one could take the Cayley graph of a group with respect to some
generating set, and then equivariantly assign positive real lengths to edges.

It turns out that these questions are somehow too broad in their scope. Given a (strictly
positive) length function on G (see Definition 2.2 for the definition of a length function) there is
always a metric graph whose based length function is equal to this function: take the complete
graph on G where the edge between g and h has length lphg´1q - Lemma 3.1. The based length
function on this graph, with respect to the basepoint 1, is equal to l. However, this action is
not particularly useful.

In order to rule out this kind of example we will add some restrictions.

Questions. Let us suppose that G is finitely generated and let us restrict ourselves to isometric,
co-compact actions on locally compact graphs, X .

‚ Given a (strictly positive) length function, l, does G admit an isometric, co-compact
action on a locally compact metric graph, X , such that l “ lp for some p P X?

‚ What if we add the hypothesis that l is δ-hyperbolic (see Definition 2.2 for the definition
of hyperbolicity)?

It turns out that the answer to both of these questions is no. By Proposition 3.4, there exists
a δ-hyperbolic length function which cannot arise as the based length function associated to
any isometric, co-compact action on a locally compact graph.
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However, that example is bi-Lipschitz equivalent to a length function on a Cayley graph.
(Note that, for a finitely generated groups, all based length functions on Cayley graphs with
respect to finite generated sets are bi-Lipschitz equivalent). But one can also produce examples
of δ-hyperbolic length functions which are not bi-Lipschitz equivalent to any based length
function on a Cayley graph, as in Proposition 3.7. In fact, every finitely generated group
admits a hyperbolic length function.

Theorem 3.8. There exists a finitely generated group, G, with a hyperbolic length function,
l : G Ñ Rě0 such that l ‰ lp for any co-compact, metric G-graph.

Moreover, any finitely generated group admits a (free) hyperbolic length function. In partic-
ular, we can find an example of a group G with a hyperbolic length function, l, which is not
quasi-isometric to any based length function arising from an isometric action of G on a geodesic
and proper δ-hyperbolic metric space.

This leads us to the following.

Questions. Suppose that G is finitely generated.

‚ Can one axiomatise those length functions which are bi-Lipschitz equivalent to some
(and hence all) based length functions on a Cayley graph for G (with respect to a finite
generating set)?

‚ Can we make these axioms apply to - for instance - any free Fn action on a simplicial
tree as well as Cayley graphs?

‚ Does this axiomatisation define a connected/contractible/finite dimensional subspace of
RG on which AutpGq acts?

Remark. We do come up with a axiom scheme, below, and we observe that these axioms
hold for all sufficiently well behaved actions - see Proposition 4.1 and Corollary 4.2 - and in
particular to all points of Culler-Vogtmann space.

The third question here arises from the fact that one key use of Chiswell’s Theorem is in the
study of group actions on trees, and the definition of the space of such actions which are then
encoded via functions (usually the translation length function, which is related to the Lyndon
length function). See [CV86] for the seminal paper on the ‘Outer Space’ of free actions on trees,
encoded by length functions (amongst other things).

It is clear that the space of all length functions which are bi-Lipscitiz to one arising from a
Cayley graph is a contractible space (because a linear combination of such functions is another
such function). Therefore, this provides a contractible space on which AutpGq acts. However, it
is far too large and so one might hope that an axiomatisation could provide a more reasonable
subspace.

With these questions in mind, we propose the following axioms for our length functions:

Definition 4.3. Let G be a group. We say that l : G Ñ Rě0 is a graph-like length function if
it satisfies the following axioms:

A1: lpgq “ 0 if and only if g “ 1
A2: lpg´1q “ lpgq
A3: cpg, hq ŕ 0
A4: For all R ě 0, the closed ball BR :“ tg P G | lpgq ď Ru is finite
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A5: There exists 0 ď ǫ ă 1 and K ą 0 such that, for any g P G, if lpgq ą K then there exists
an x P G with:
(i) 0 ă lpxq ď K, and

(ii) cpgx´1, x´1q ď ǫlpxq
2

.

Remark. Here, the mysterious looking axiom A5 is encoding the fact that if one had a rea-
sonable action on a graph, then one could approximate geodesics in the graph with uniform
quasi-geodesics built from the translates of finitely many paths; it is morally a co-compactness
condition expressed solely in terms of the length function. In fact, we prove that this axiom
holds for a fairly wide class of actions in Proposition 4.1 and Corollary 4.2.

We also note that if G acts on its Cayley graph then one easily gets that the based length
function satisfies these axioms with K “ 1 and ǫ “ 0. However, if once considers actions
on graphs with more than one orbit of vertices, then one quickly discovers that the correct
condition is A5(ii) with ǫ ‰ 0. Moreover, scaling the graph by a constant clearly changes the
value of K. For these reasons, to allow these kinds of deformations, we consider these axioms
for more general K and ǫ.

It turns out that this is indeed sufficient to prove the following:

Theorem 4.8. Let l : G Ñ Rě0 be a graph-like length function on a group G. Then l is
bi-Lipschitz equivalent to some (and hence to all) based length function lp arising from a locally
compact, co-compact, metric G-graph and with Stabppq “ 1.

Note that in view of Theorem 3.8, since any finitely generated group admits a hyperbolic
length function, the extra axioms are clearly necessary.

Remark. We should note that another length function one can extract from an action is the
translation length function, which has the advantage of not relying on a basepoint. This is the
point of view of [CM87]. An important result here, building on the work of [CM87], is that
of [Par91] which states that a translation length function (which is 0-hyperbolic) always arises
from an action on a tree. However, this builds crucially on Chiswell’s Theorem 1.2 so it seems
reasonable to start with Lyndon length functions.

2. Preliminaries

We begin with some preliminary definitions and notation. Let G be a group.

Definition 2.1. Given a metric, d : GˆG Ñ Rě0, on a group G we say that d is right-invariant
if dpg1h, g2hq “ dpg1, g2q for all g1, g2, h P G.

Definition 2.2. A map l : G Ñ Rě0 which satisfies the following axioms is called a length
function:

A1: lpgq “ 0 if and only if g “ 1
A2: lpg´1q “ lpgq
A3: cpg, hq ŕ 0

where

cpg, hq :“
1

2
plpgq ` lphq ´ lpgh´1qq

is the Gromov product of g, h P G.
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If, in addition, l satisfies

Hδ: cpg1, g2q ě m, cpg2, g3q ě m implies that cpg1, g3q ě m ´ δ

for some δ ě 0, we say it is a δ-hyperbolic length function. The condition Hδ is referred to as
δ-hyperbolicity.

Remark. Given a length function, it is easy to verify that dpg, hq :“ lpgh´1q is a right-invariant
metric on G. In particular, A3 is equivalent to the triangle inequality, which can be written as

lpgh´1q ő lpgq ` lphq

Also note that here we write axiom A1: lpgq “ 0 if and only if g “ 1 rather than A1’: lpgq “ 0
if g “ 1. This is largely because we end up wanting to characterise those length functions which
are bi-Lipschitz equivalent (or quasi-isometric) to those arising from Cayley graphs. We will
sometimes emphasise this by saying that the length function is free.

Definition 2.3. A metric graph is a 1-dimensional CW-complex with a metric structure. A
metric tree is a metric graph in which any two vertices are connected by exactly one simple
path. We always equip metric graphs with the path metric.

Definition 2.4. By a metric G-graph, we mean a metric graph Γ together with an isometric
right action of G on Γ, sending vertices to vertices and edges to edges.

Since we think of our graphs as metric spaces, given a point p in Γ, we may invoke Defini-
tion 1.1; lppgq “ dΓpp, p.gq is the based length function on Γ, based at p.

3. Hyperbolicity, Length Functions and Counter-Examples

Given a length function, l, as in Definition 2.2 - that is to say, given a metric on G - one can
always construct some metric graph on which G acts isometrically and such that l “ lp:

Lemma 3.1. Let l be a length function on the group, G, as in Definition 2.2.

Let Γ be the complete graph on vertex set G, where the length of the edge between g and h

is set to lpgh´1q “ lphg´1q. Then G acts isometrically on Γ and l is equal to the based length
function on Γ - Definition 1.1 - based at the vertex 1.

However, this is not a very useful object and we will want to insist on some finiteness
conditions; namely, co-compactness and (usually) local compactness.

Since this work arose as an attempt to generalise the celebrated result of Chiswell, The-
orem 1.2, it is a natural way to try to generalise that result by weakening 0-hyperbolicity
to δ-hyperbolicity and instead only expecting the action to be on a (hyperbolic) graph. It
turns out that this doesn’t work and we present two counter-examples, in Proposition 3.4 and
Proposition 3.7.

Before presenting the first example, it is worthwhile observing some examples of hyperbolic
length functions which do arise as the length function of a co-compact action on a graph. In
these examples, we can take an existing length function and deform it slightly, but the following
examples show that in doing so one might still end up with a length function arising from an
action on a graph.

Examples 3.2. For both of these examples, our group is the infinite cyclic group, Z.
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(i) Given 0 ď ǫ ă 1, define:

lpnq “

"

1 ` ǫ if n “ ˘1
|n| otherwise

One can verify that this is the length function of the Cayley Graph of Z, with respect
to the generating set t1, 2, 3u where 1 is given length 1 ` ǫ, 2 is given length 2 and 3 is
given length 3.

(ii) Again, given 0 ď ǫ ă 1, define:

lpnq “

"

0 if n “ 0
|n| ` ǫ otherwise

This is actually 0-hyperbolic, and arises from a non-minimal action on a tree. More
precisely, take a graph with two vertices, u and v, and two edges, one of which is a loop
of length 1 at v and the other is an edge of length ǫ{2 joining u to v. The fundamental
group of that graph is Z and the action on the universal cover gives our length function
(with respect to any lift of u).

Next we show how to deform the standard length function on Z so as to end up with something
that does not arise from an action.

In order to proceed, we need the following observation:

Lemma 3.3. Let Γ be a co-compact, metric G-graph and p P Γ. Let lppgq “ dΓpp, p.gq denote
the based length function. Then there exist finitely many positive real numbers, α1, . . . , αk such
that, for any g P G, lppgq belongs to the submonoid of the (additive) real numbers generated by
the αi.

That is, for every g, there exist non-negative integers ni such that lppgq “
ř

niαi.

Proof. We simply let the αi be the lengths of the edges in Γ. Since the action is isometric and
there are finitely many edge-orbits, it suffices to take only finitely many of them. �

Now we are ready to show that a δ-hyperbolic length function need not come from an action
on a graph.

Proposition 3.4. For any 0 ď ǫ ă 1, the function lǫ : Z Ñ Rě0 defined by lǫpnq “ |n| ` ǫ|n|,
for n ‰ 0 and lp0q “ 0 is a hyperbolic length function.

For ǫ “ 1{2, this cannot be equal to any based length function arising from a co-compact,
isometric action of Z on a metric graph.

Proof. First we verify axioms A1 to A3 and Hδ from Definition 2.2. Note that for ǫ “ 0, this
is just the standard length function of Z acting on the line (which is 0-hyperbolic). For each lǫ
we define cǫ to be the corresponding Gromov product. Note that both l0 and c0 take values in
Z.

Observe that A1 and A2 are clear for all ǫ directly from the definition. To verify A3, notice
that

l0pnq ď lǫpnq ď l0pnq ` ǫ,

and hence that for any n,m P Z,

cǫpn,mq ě c0pn,mq ´ ǫ{2.
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Therefore, since c0 takes values in Z, and ǫ ă 1, the only values for which cǫpn,mq could
be negative would be those where c0pn,mq “ 0. Since, for positive integers n, k we have that
c0pn, n ` kq “ c0p´n,´n ´ kq “ n, we see that c0pn,mq can only be zero if one of n,m is zero
or if one is positive and one is negative. We calculate: if n,m are positive then

cǫp0, nq “ cǫp0,´nq “ 0

and,
cǫpn,´mq “ ǫn ` ǫm ´ ǫn`m ą 0.

This verifies A3. To verify Hδ, note that the inequality l0pnq ď lǫpnq ď l0pnq ` ǫ also gives us
that ǫ ` c0pn,mq ě cǫpn,mq. Hence we get, for all n,m,

ǫ ` c0pn,mq ě cǫpn,mq ě c0pn,mq ´ ǫ{2.

But since l0 is 0-hyperbolic, this implies that lǫ is
3ε
2
-hyperbolic.

To see that l1{2 cannot arise as the length function coming from a co-compact metric Z-graph,
we invoke Lemma 3.3 and argue by contradiction. That is, suppose that l1{2 arises from the
action of Z on a co-compact metric graph, Γ. Then, by Lemma 3.3, we have α1, . . . , αk such
that for any g P G, there exist positive integers, n1, . . . , nk with l1{2pgq “

řk

i“1
niαi. We now

show that this is not possible.

Without loss of generality, by enlarging the set, we may assume that α1 “ 1. Further, again
without loss of generality, we may assume that α1, . . . , αr is a maximal, Q-linearly independent
subset of the αi. Thus for any j ą r, αj is a Q-linear sum of α1, . . . , αr. Fix such an expression
for each j (in fact, it is unique) and notice that the denominators in the coefficients of these

expressions are bounded. In particular, this means that any expression
řk

i“1
niαi, where the

ni are integers can be re-written as an expression
řr

i“1
qiαi, where the qi are now rational, but

with bounded denominator. In particular, this means that there exists an integer, M , such
that for any g P Z, there exists integers mi such that,

l1{2pgq “
1

M

r
ÿ

i“1

miαi.

However, notice that l1{2pgq are rational for every g, and the set α1, . . . , αr are Q-linearly
independent. Hence the Q-linear independence forces mi “ 0 for i ě 2, and therefore,

l1{2pgq “
1

M
m1α1 “

1

M
m1.

This is clearly impossible, since the values of l1{2 do not belong to the additive cyclic subgroup
generated by a rational number. �

Remark. Note that the same proof shows that lǫ cannot be equal to any length function arising
from a co-compact, isometric action of Z on a metric graph for any rational ǫ.

The idea of Proposition 3.4 is that we started with a 0-hyperbolic length function (which
is the standard length function of Z acting on its Cayley graph) and deformed it slightly to
obtain a length function that is δ-hyperbolic but is not equal to any based length function
coming from a co-compact graph. Naturally, since this is a small deformation we obtain a
length function which is bi-Lipschitz equivalent to the original length function. We could also
consider quasi-isometry.
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Definition 3.5. We say that two length functions l1, l2 on a group G are quasi-isometric if
there exists A ě 1, B ě 0 such that, @g P G,

1

A
l1pgq ´ B ď l2pgq ď Al1pgq ` B.

If, in addition, we can take B “ 0, we say that l1, l2 are bi-Lipschitz equivalent.

We record a standard consequence of the Svarc-Milnor Lemma (see, for example, [BH99],
I.8.19):

Lemma 3.6. Let X, Y be co-compact, locally compact metric G-graphs. Then for all points
p P X, q P Y such that Stabppq “ Stabpqq “ 1, the based length functions lp and lq are
bi-Lipschitz equivalent.

Instead of seeking length functions on G which are equal to the based length function of a
suitable G-graph, we can instead seek l : G Ñ Rě0 which lies in the quasi-isometry class of a
suitable G-graph, ideally a Cayley graph for G. Our aim is then to produce axioms for a length
function that make it quasi-isometric, or bi-Lipschitz equivalent to a based length function on
a Cayley graph.

Even here it turns out that hyperbolicity is not sufficient.

Proposition 3.7. Let G be a finitely generated group and let |.| : G Ñ R be the word metric
with respect to some finite generating set. Define a function, l : G Ñ R by lpgq :“ logp|g| ` 1q.
Then this is a δ-hyperbolic length function, for a uniform δ “ 1

2
log 32.

When G “ Z then l is not quasi-isometric (and hence not bi-Lipschitz equivalent) to any
based length function on a geodesic and proper hyperbolic space - for an isometric action of Z.

Proof. First we verify the axioms from Definition 2.2. We immediately see that l satisfies axioms
A1 and A2. To see that A3 holds we observe that for all g, h P G, |g| ` |h| ě |gh´1|. Thus,

logp|g| ` 1q ` logp|h| “ 1q “ logpp|g| ` 1qp|h| ` 1qq

“ logp|g||h| ` |g| ` |h| ` 1q

“ logp|g| ` |h| ` 1q

ě logp|gh´1| ` 1q

ñ cpg, hq “
1

2
plpgq ` lphq ´ lpgh´1qq ě 0

Thus l is a length function.

To see that the length function is δ-hyperbolic, consider the function,

dpg, hq :“ e2cpg,hq “
p|g| ` 1qp|h| ` 1q

|gh´1| ` 1
, g, h P G.

It will be sufficient to show that there exists a δ ě 0 such that for any three group elements,
g, h, k, and any R ě 0,

dpg, hq ě e2R and dph, kq ě e2R ùñ dpg, kq ě e2pR´δq.

To do this, first observe the following two inequalities:
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|g| ě 2|h| ùñ 2p|h| ` 1q ě dpg, hq(1)

dpg, hq ě mint
|g| ` 1

2
,

|h| ` 1

2
u.(2)

To see that 1 is true, simply observe that if |g| ě 2|h| then,

|gh´1| ` 1 ě |g| ´ |h| ` 1 ě
|g|

2
` 1 ě

|g| ` 1

2
,

from which it follows that 2p|h| ` 1q ě dpg, hq.

To see that 2 is true, observe that if |g| ě |h| then, |gh´1| ` 1 ď |g| ` |h| ` 1 ď 2p|g| ` 1q,
from which the desired inequality follows.

To verify that our length function is hyperbolic, let us suppose that we have a triple of group
elements, g, h, k, and a real number, R ě 0 such that dpg, hq ě e2R and dph, kq ě e2R.

Our aim is to find a (uniform) δ ą 0 such that dpg, kq ě e2pR´δq.

We set Λ “ maxt|g|, |h|, |k|u and λ “ mint|g|, |h|, |k|u the argument breaks into two cases
now, depending on whether Λ ě 4λ, or Λ ă 4λ.

case(i): Λ ě 4λ:

Without loss of generality, we will assume that |g| ě |k|. In particular this implies, from

Equation 2, that dpg, kq ě |k|`1

2
.

Suppose first that |h| ě 2|k|. Then from Equation 1, 2p|k| ` 1q ě dph, kq. Therefore,

dpg, kq ě
|k| ` 1

2
ě

dph, kq

4
ě

e2R

4
,

as required (with δ “ logp2q). (We haven’t used the fact that Λ ě 4λ yet).

If instead we have that, |h| ă 2|k| then we must get that |g| ą 2|h|, since Λ ě 4λ.

Hence equations 1, 2 give us that

dpg, kq ě
|k| ` 1

2
ą

|h| ` 1

4
ě

dpg, hq

8
ě

e2R

8
,

as required (here with δ “ 1

2
logp8q).

case(ii): Λ ă 4λ.

Here, we invoke the triangle inequality to get that:

|gk´1| ` 1 ď 2maxt|gh´1| ` 1, |hk´1| ` 1u.

Without loss of generality, we assume that |gh´1| ě |hk´1|. Then,

dpg, kq ě
pλ ` 1q2

2p|gh´1| ` 1q
ą

pΛ ` 1q2

32p|gh´1| ` 1q
ě

dpg, hq

32
ě

e2R

32
.

This completes the proof that our length function is δ-hyperbolic (with δ “ 1

2
logp32q as the

final and maximal estimate).

To finish, note that if Z were to act isometrically on a locally compact hyperbolic space, X ,
with based length function lp, then either lp would have to be bounded, or quasi-isometric to a
linear function. Since logp|n| ` 1q is neither, it is not quasi-isometric to such an lp.
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�

Theorem 3.8. There exists a finitely generated group, G, with a hyperbolic length function,
l : G Ñ Rě0 such that l ‰ lp for any co-compact, metric G-graph.

Moreover, any finitely generated group admits a (free) hyperbolic length function. In partic-
ular, we can find an example of a group G with a hyperbolic length function, l, which is not
quasi-isometric to any based length function arising from an isometric action of G on a geodesic
and proper δ-hyperbolic metric space.

Proof. This is simply the content of Propositions 3.4 and 3.7. �

4. Axioms for graph-like length functions

We finally turn to positive results and produce an set of axioms that do result in length
functions which are bi-Lipschitz equivalent to the based length function on a (or any) Cayley
graph.

Before introducing our axioms, we would like to demonstrate that they are reasonable, to the
extent that they arise naturally from group actions on fairly general yet well behaved spaces.
So we consider the following, noting that the hypotheses on X are satisfied by a locally finite
metric graph equipped with the path metric and a co-compact group action.

Proposition 4.1. Let X be a geodesic metric space with a given basepoint, p. Suppose a
group, G, acts on X isometrically, and co-boundedly. Then there exist constants, K ą 0 and
0 ă ǫ0 ď 1 such that for any g P G with dpp, pgq ě K, there exists an x P G such that:

‚ 0 ă dpp, pxq ď K and,
‚ ǫ0dpp, pxq ` dppx, pgq ď dpp, pgq

Proof. Recall that,

‚ X geodesic means that for any two points in X there exists an isometry from a closed
real interval to X where the images of the endpoints are our given two points of X .

‚ The action is co-bounded means there is a closed ball whose G translates cover X .

Since the action is co-bounded, there exists a closed ball centered at p, of radius K{3 say,
whose G translates cover X . Set B “ BK{3ppq to be this ball.

Given g P G with dpp, pgq ě K, let q P X be the point on a geodesic from p to pg such that
dpp, qq “ K{2. Since q is on a geodesic we also have dpp, pgq “ dpp, qq ` dpq, pgq.

Now, since the translates of B cover X , there exists some x P G such that q P Bx. This
implies that dpq, pxq ď K{3.

First note that dpp, pxq ą 0 since,

dpp, pxq ě dpp, qq ´ dppx, qq ě K{2 ´ K{3 “ K{6 ą 0.

Next note that,

dpp, pxq ď dpp, qq ` dpq, pxq ď K{2 ` K{3 “ 5K{6.

and also,

dppx, pgq ď dppx, qq ` dpq, pgq ď K{3 ` pdpp, pgq ´ K{2q “ dpp, pgq ´ K{6.
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Putting these together we get that,

1

5
dpp, pxq ` dppx, pgq ď K{6 ` pdpp, pgq ´ K{6q “ dpp, pgq.

Hence we are done, with ǫ0 “ 1{5. �

Corollary 4.2. With the same hypotheses as above, set:

‚ lppgq “ dpp, pgq and,
‚ cppg, hq “ 1

2
plppgq ` lpphq ´ lppgh´1qq.

Then there exists 0 ď ǫ ă 1 and K ą 0 such that, for any g P G, if lppgq ą K then there exists
an x P G with:

(i) 0 ă lppxq ď K, and

(ii) cppgx´1, x´1q ď ǫlppxq
2

.

Proof. Just set ǫ “ 1 ´ ǫ0 from Proposition 4.1 since

cppgx´1, x´1q ď ǫlppxq
2

ðñ

lppgx´1q ` lppxq ´ lppgq ď ǫlppxq ðñ

p1 ´ ǫqlppxq ` lppgx´1q ď lppgq

and the last line is equivalent to the conclusion of Proposition 4.1 (where we have also used
the fact that lppwq “ lppw´1q for all w which is just a consequence of the symmetry of the
metric). �

The idea is that a fairly general class of spaces and actions satisfy the equation given by
Corollary 4.2 and hence we will add this as a axiom for our length functions. Therefore, we
propose the following.

Definition 4.3. Let G be a group. We say that l : G Ñ Rě0 is a graph-like length function if
it satisfies the following axioms:

A1: lpgq “ 0 if and only if g “ 1
A2: lpg´1q “ lpgq
A3: cpg, hq ŕ 0
A4: For all R ě 0, the closed ball BR :“ tg P G | lpgq ď Ru is finite
A5: There exists 0 ď ǫ ă 1 and K ą 0 such that, for any g P G, if lpgq ą K then there exists

an x P G with:
(i) 0 ă lpxq ď K, and

(ii) cpgx´1, x´1q ď ǫlpxq
2

.

Remark. We note that A4 is really a statement about the action being properly discontinuous,
especially in view of Proposition 4.7, which says that in the presence of A5, A4 is equivalent to
the statement that BK is finite.

In view of Proposition 4.1 and Corollary 4.2 one should view A5 as a co-compactness condi-
tion; the challenge here was writing an axiom down which could be stated purely in terms of
the length function.
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As noted in the introduction, for a standard Cayley graph, its based length function will
satisfy these axioms with K “ 1 and ǫ “ 0. The A5 condition with ǫ “ 0 is effectively saying
that for every g P G, there is an x of length at most K, such that xp lies on a geodesic from p

to pg.

For an example of a group acting on a graph where ǫ ‰ 0, consider the free group of rank 2,
F2, realised as the fundamental group of a graph with two vertices, u, v, and three edges: an
edge-loop at u, Eu, an edge-loop at v, Ev, and an edge from u to v, Euv. The action of F2 on
the universal cover, T , of this graph will induced a based length function which is graph-like,
but not with ǫ “ 0.

Namely, take a lift of, u of u, as the basepoint of T and consider the orbit of u under the group
elements corresponding to elements of the fundamental group of the form gn “ EuvE

n
vEuv

´1,
for n P Z. Then the geodesic from u to ugn only meets the orbit of u at its endpoints. Hence
this cannot satisfy the A5 condition with ǫ “ 0 for any K.

In fact, it is straightforward to see that any free Fn action on a metric tree - that is, any
point in Culler Vogtmann space - satisfies the axioms above, with K “ 1 but not necessarily
with ǫ “ 0.

Let us start with the following preparatory results:

Lemma 4.4. A length function satisfying A4 is discrete.

Proof. Recall that we say a length function l : G Ñ Rě0 is discrete if there exists µ ą 0 such
that, for all non-trivial g P G, lpgq ě µ.

If G “ 1, then l is immediately discrete. Otherwise, take µ “ mintR ą 0 | BR ‰ 1u. Since
A4 holds, this this minimum will be realised by some R ą 0. �

Lemma 4.5. Given l satisfying A5, set λ “ 1

1´ǫ
. Then for the g, x listed in A5, we have that:

lpgx´1q ď lpgq ´
1

λ
lpxq.

Proof. By A5,

cpgx´1, x´1q ď
ǫlpxq

2

ñ
1

2
plpgq ` lpxq ´ lpgx´1qq ď

ǫlpxq

2
ñ lpgq ` lpxq ´ lpgx´1q ď ǫlpxq

ñ lpgx´1q ď lpgq ` p1 ´ ǫqlpxq

ñ lpgx´1q ď lpgq ´
1

λ
lpxq

�

Lemma 4.6. The ball BK “ tg P G | lpgq ď Ku is a generating set for G. In particular, by
A4, G is finitely generated.

Proof. We will show, by induction on n, that xBKy contains all group elements g with

lpgq ď K `
nµ

λ
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(taking λ from Lemma 4.5 and µ from Lemma 4.4) and hence contains all of G.

Firstly, take g P G such that lpgq ď K. Then g P BK P xBKy, and we are done.

Now assume that, for all g P G satisfying lpgq ď K ` pn´1qµ
λ

, g lies in xBKy.

Take g such that lpgq ď K ` nµ

λ
. Then, by Lemma 4.5, there exists x P Bk such that

lpgx´1q ď lpgq ´
1

λ
lpxq

ď K `
nµ

λ
´

µ

λ
(by properties of g and Lemma 4.4)

“ K `
pn ´ 1qµ

λ

Thus gx´1 P xBKy, and since x P BK , this means that g “ gx´1x P xBKy. �

Proposition 4.7. Let l : G Ñ Rě0 satisfy A1, A2, A3 and A5. Let K, ǫ be as in A5, let
λ “ 1

1´ǫ
, and suppose that the ball BK “ tg P G | lpgq ď Ku is finite. Then,

(a) For any nontrivial g P G, there exists a finite sequence, x0, . . . , xk such that:
(i) Each 0 ă lpxiq ď K (i.e. each xi P BKzt1u),
(ii) lpgx0

´1x1
´1 . . . xk

´1q “ 0, and

(iii) 1

λ

řk
i“0

lpxiq ď lpgq ď
řk

i“0
lpxiq.

(b) Axiom A4 holds - that is to say, the ball BR is finite for all R ě 0.

Proof. Part (a) is clearly true if lpgq ď K, since we can just take g “ x0. To prove it in general,
we use the discreteness of the length function to argue by induction. More precisely, we let Pn

be the statement that (a) holds for all g with lpgq ď K ` nµ

λ
. Thus our initial observation is

that P0 holds. We also observe that, since BK is finite, there exists a minimum length, µ ą 0,
for elements in BK .

Suppose then that Pn´1 holds and consider a g P G with lpgq ď K ` nµ

λ
. If lpgq ď K then

we are done, as above. Otherwise, by Lemma 4.5 and the existence of µ, there exists an x P G

with 0 ă lpxq ď K and

(3) lpgx´1q ď lpgq ´
1

λ
lpxq ď K `

pn ´ 1qµ

λ
.

Now by the induction hypothesis applied to g0 “ gx´1 we can find x1, . . . , xk P G such that

(i) Each 0 ă lpxiq ď K

(ii) lpg0x1
´1x2

´1 . . . xk
´1q “ 0, and

(iii) 1

λ

řk
i“1

lpxiq ď lpg0q ď
řk

i“1
lpxiq.

Now set x “ x0. Then, by Equation 3, we have that,

1

λ

k
ÿ

i“0

lpxiq “
1

λ
lpxq `

1

λ

k
ÿ

i“1

lpxiq ď
1

λ
lpxq ` lpg0q ď lpgq.

Moreover, by A3,

lpgq ď lpxq ` lpg0q ď
k
ÿ

i“0

lpxiq.
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Hence, by induction, (a) result holds for all g.

We now prove (b). Let M ě 0, and let SM denote the following set of finite sequences:

SM “

"

x0, . . . xk P BKzt1u |
k
ÿ

i“1

lpxiq ď M

*

Let R ě 0, and let g P BR. By (a), there exists a sequence x0, . . . xk P SRλ such that g “
xk . . . x0. Therefore, if we can prove that SRλ is finite, we will prove that BR is finite.

Recall that, for all x P BK , lpxq ě µ. Therefore, for all sequences in SRλ,

Rλ ě
k
ÿ

i“1

lpxiq ě kµ ñ k ď
Rλ

µ

Thus SRλ is a set of sequences of elements from the finite set BK , and the length k of these
sequences has an upper bound. Thus SRλ is finite, and we are done. �

Theorem 4.8. Let l : G Ñ Rě0 be a graph-like length function on a group G. Then l is
bi-Lipschitz equivalent to some (and hence to all) based length function lp arising from a locally
compact, co-compact, metric G-graph and with Stabppq “ 1.

Proof. We take Γ to be the Cayley graph on the set BK “ tg P G | lpgq ď Ku, but instead of
assigning every edge length 1, we assign it the length of the corresponding generating element
under l. That is, the vertex set of Γ is G, and we join two vertices, g, h by an edge if and only
if gh´1 “ y P BK ; in that case we assign that edge a length of lpyq. (Note that hg´1 “ y´1 will
also be in BK in that case and have the same length). Γ is then equipped with the path metric.

We then take the base point p to be the vertex corresponding to the identity. By Lemma 4.6,
BK is a finite generating set for G; hence Γ is well-defined and the action of G is co-compact.

We can immediately see that 0 “ lp1q “ lpp1q, so we shall restrict our attention to nontrivial
g P G. For g P G we write, as always, lppgq “ dΓpp, p ¨ gq to denote the based length induced by
Γ. The metric on Γ is the path metric, and so the distance from p to pg is the infimum of the
lengths of all edge paths from p to p ¨ g. Thus for all g ‰ 1,

lppgq “ inf
 

k
ÿ

i“0

lppyiq | y0, . . . , yk P BK , yk . . . y0 “ g
(

“ inf
 

k
ÿ

i“0

lpyiq | y0, . . . , yk P BK , yk . . . y0 “ g
(

where the second equality arises from the fact that lppyq “ lpyq for all y P BK , as these are the
edges of Γ.

By Proposition 4.7 (a), there exists a sequence x0, . . . , xk P BK such that xk . . . x0 “ g and
1

λ

řk

i“0
lpxiq ď lpgq, where λ “ 1

1´ǫ
. Thus 1

λ
lppgq ď lpgq.

Conversely, by inductively applying A3, the triangle inequality, lpgq ď
řk

i“0
lpyiq “

řk
i“0

lppyiq
for all sequences y0, . . . , yk P BK with yk . . . y0 “ g. Thus lpgq ď lppgq.

We have 1

λ
lppgq ď lpgq ď lppgq, hence lp is bi-Lipschitz equivalent to l with bi-Lipschitz

constant λ “ 1

1´ǫ
.
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Therefore, by Corollary 3.6, l lies in the bi-Lipschitz equivalence class of all based length
functions arising from free, locally compact, co-compact metric G-graphs. �

Remark. A hyperbolic graph-like length function is a length function that satisfies the axioms
from Definition 4.3 as well as the Hδ axiom from Definition 2.2 for some δ ą 0.
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